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Abstract. Retrenchment, introduced to alleviate the excessively strong demands
thatrefinementsometimesimposes,is mosteasilyapplied‘vertically’, i.e. to indi-
vidualexecutionsteps,without regardto thesequentialcompositionof thosesteps.
This paper addresses the issue of how system properties, akin to sets of execution
sequences, can be transformed between systems through retrenchment. Property
transformers based on simulation relations are introduced, as are transformers of
ambivalent properties and constrained property transformers. Their theory is in-
vestigated. Thesimplificationsin thecontext of regularrelationsareexplored. A
number of examples in the discrete and continuous domains are examined.
Keywords. Retrenchment,Simulation,Simulability, SystemProperty, Ambivalent
Property, Property Transformers.

1   Introduction
In [Banachet al. (2005)]theauthorsgave a comprehensive andbroadlybasedover-
view of themotivationsfor introducingretrenchment,andsetout themaincharacter-
isticsof thetechnique.In retrenchment,thepropertiesestablishedfor theafter-vari-
ablesandoutputsof apairof abstractandconcreteexecutionsteps,is notastraight-
forward counterpart of the properties assumed for the before-variables and inputs
(becauseof thewiderdiscrepancy allowedbetweenthepropertiesof thetwo stepsin
a retrenchmentoperationPO,ascomparedwith a typical refinementoperationPO).
Thereforetheanalysisof how widersystempropertiestransmutatethroughretrench-
mentdesignphasesis not trivial, andis closelyrelatedto theanalysisof thesimula-
tion propertiesthatcanbeestablishedwithin a retrenchment.This paperis devoted
to carrying through the more complex analysis involved.

In contrast to refinement, the properties derivable from the retrenchment operation
POsalonearecomparatively weak,soa treatmentbasedjust on whatcanbegeneri-
cally derivedfrom themwill, in general,not getvery far. Accordingly, thestrategy
adoptedin this paperis to work with simulationrelationsdefinedin generalterms,
andto disregardtheissueof theextentto whichsuchrelationsmightbedirectlyprov-
ablefrom theoperationPOs. Sincetheaimof retrenchmentis to caterfor situations
wherethecleancompositionalitysocharacteristicof refinementis unachievable,the
extent to which these simulability notions might actually hold in a given scenario,
musttypically be left to ad-hocreasoningaboutthecasein hand. In this therefore,
the situationis aswith many aspectsof retrenchment:thereareswathesof general
reasoningthat‘do notquitejoin uptogetherfrom generalprinciples’andwhichmust
therefore in practice be brought together by bespoke means.

To seehow thisworksout in thispaper, it is bestto summarisethefollowing sections
oneby one. In Section2 wesetupourbasicterminology, includingnotationsfor sys-
temsandretrenchments.In Section3 default retrenchmentsarereviewedandbire-
trenchmentsareintroduced.Thelatterarethesymmetriccounterpartsof theconven-
tional asymmetricnotionsof retrenchment(in which theoperationPOsareimplica-
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tionsoreintedfrom concreteto abstract).It turnsout thatthemoreflexible arenaof
retrenchmentmakesit easyto recastmany conventionalretrenchmentsinto thesym-
metricbiretrenchmentform. This is veryconvenient,assymmetricnotionsaremuch
moreappropriateto thediscussionof systemproperties,which shouldnot besensi-
tive to wherein thedevelopmenthierarchy any particularsystemlives. In Section4
we introducethebasicnotionsof executionfragment,multifragment,andsimulabil-
ity thatunderpintherestof thepaper. Themainsimulability definitionis craftedin
sucha way thatthesimulability relationshipbetweentwo multifragmentsis unique,
which has useful consequences later, particularly as the flexibility of retrenchment
meansthatwecannotavoid considerationof nonsimulatingsegmentsbetween(mul-
ti)fragments.Section5 considersverticalcompositionof thesimulabilityrelationin-
troduced in Section 4. The results here require additional hypotheses to come
through in full measure (eg. biretrenchments prove to be particularly useful), but
whatis andwhatis notachievableregardingverticalcompositioninfluencestheway
that the definitions of Section 4 are set up, and these points are discussed.

Section6 appliestheprecedingto thestudyof systemproperties,which aredefined
essentiallyascertainsetsof multifragments.Thesetextensionof thesimulabilityre-
lationgivesriseto simulationpropertytransformerssimilar to box anddiamondop-
eratorsin a modalalgebra(seeeg. [Popkorn (1994)]),andthe relvantpropertiesof
thesearedeveloped.In Section7adifferenttackis initiated. Somesystemproperties
areessentiallyexpressionsof (someaspectsof) thestructureof a classof systems.
For these properties, called ambivalent properties, the property definition ports di-
rectlybetweensystems,giving analternativemeansof mappingthesepropertiesbe-
tween systems. The two trains of thought come together in Section 8 where con-
strained property transformers are developed. These allow the nonsimulating seg-
ments of multifragments, whose mappings under the simulation transformers are
moreor lessunconstrained,to have theseunrulycharacteristicscurtailed. Theinter-
actionbetweenthesimulationtransformersandconstraintsgivesriseto amorecom-
plicated version of the theory of Section 6.

Many retrenchmentrelationshipsbetweensystemsarecharacterisedby straightfor-
wardfunctionalor inversefunctionalrelations.Thesegeneraliseto regularrelations,
andSection9 investigatestheconsiderablesimplificationof thetheoryof Section8
thataccruesfrom regularity. Thewide applicabilityof theseresultsis evidencedby
thefactthatthey readilyapplytoawideclassof defaultretrenchments.Thissuggests
thatmany retrenchmentsmaybemodifiedto yield onesfalling into theregularclass,
enabling them thereby to enjoy regular simulation transformers, which in turn can
imply a particularly clean interaction with certain system properties.

Section10 examinesthreeexamplesin the light of thedevelopedtheory. Thefirst
considersaretrenchmentfrom multisetsto finite sequences,whichgivesthetheorya
straightforwarddiscretevehicle. Thesecondcontemplatesa simpledigital redesign
controlproblem,andtypifiesthestateof affairsin mostnumericalanalysissituations,
wherethecleanstructureinvestigatedpreviouslyis lessapplicable.Thesetwo exam-
plesareadaptedfrom [Banachet al. (2005)]. A third examplemodelstheretrench-
mentof systemsthat canbeviewed aspairsof noninterferingprocesses.Herethe
situationdemandstheamplificationof thepreviouslydevelopedideaof ambivalence,
andthepreservationof noninterference(asdemandedby many securityproperties),
canbemodelledusingtheinteractionof thenew ambivalenceconceptsandthesim-
ulation transformers developed earlier.  Section 11 concludes.
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2   Output Retrenchments

In thissectionwegiveourbasicdefinitionsandnotations.Wewill bedealingwith a
pair of systemsin a developmenthierarchy, anabstractsystemAbs anda concrete
oneConc, to berelatedby aretrenchment.Theabstractsystemhasasetof operation
namesOpsA, with typicalelementOpA. An operationOpA will work ontheabstract
statespaceU having typicalelementu (thebefore-state),andaninputspaceIOpA

with
typicalelementi. OpA will produceanafter-statetypically writtenu′ andoncemore
in U, andanoutputo drawn fromanoutputspaceOOpA

. Initial statessatisfythepred-
icateInitA(u′). In this paperwe will work exclusively in a transitionsystemframe-
work, soanoperationOpA will begivenby its transitionor steprelationconsisting
of stepsu -(i, OpA, o)-› u′. Thesetof suchstepsis written stpOpA

(u, i, u′, o). We
define stpA = ∪OpA ∈OpsA

stpOpA
, which is the complete transition relation for the

Abs system,andwheretheunionis necessarilydisjointsincetherelevantOpA name
is part of every execution step.

Givenanexecutionstep,weusethefunctions:st, in, Op,ou,st′, to returnthebefore-
state,input value,operationname,outputvalue,after-staterespectively of thestep,
i.e. for a stepu -(i, OpA, o)-› u′, we getu, i, OpA, o, u′ respectively.

At theconcretelevel wehaveasimilarsetup.TheoperationnamesareOpC ∈ OpsC.
Statesarev ∈ V, inputsj ∈ JOpC

, outputsp ∈ POpC
. Initial statessatisfyInitC(v′).

Transitions arev -(j, OpC, p)-› v′, elements of the step relationstpOpC
(v, j, v′, p).

In [BanachandJeske(2002)]thecontrastbetweennormalor primitiveretrenchment
and output retrenchment was discussed at some length, and the algebraic utility of
outputretrenchmentwasmadeapparent,in thatoutputretrenchmentallowstheprop-
ertiesof outputsof transitionsin the‘well behaved’ (i.e. refinement-like)casesto be
cleanly separated from the corresponding properties in the ‘badly behaved’ cases.
For consistency’s sake we will useoutputretrenchmentexlusively in this paperbut
we will refer to it as just retrenchment for simplicity.

Giventheabove context, an(output)retrenchmentfrom Abs to Conc is definedby
threefacts. Firstly, OpsA ⊆ OpsC, i.e. to eachabstractoperationtherecorresponds
aconcreteoperationwhichwewill assumehasthesamename.Theinclusioncanbe
propersotheconverseneednothold1. Secondly, wehaveacollectionof relationsas
follows:thereisaretrieverelationG(u, v) betweenabstractandconcretestatespaces;
andthereis a family of within, output,andconcedesrelations,POp(i, j, u, v), OOp(o,
p; u′, v′, i, j, u, v) andCOp(u′, v′, o, p; i, j, u, v) respectively, oneof eachfor eachop-
erationOpA ∈ OpsA. Thewithin, output,andconcedesrelationsareover thevaria-
bles shown, i.e. the within relations involve the inputs and before-states, while the
output and concedes relations involve predominantly the outputs and after-states,
thoughinputsandbefore-statescanalsofeatureif required. Note thatwe suppress
the ‘A’ and‘C’ subscriptson Op in theserelationssincethey concernbothlevelsof
abstractionequally. Thirdly, acollectionof properties(theproofobligationsor POs)
must hold.  The initial states must satisfy:

InitC(v′) ⇒  (∃ u′ • InitA(u′) ∧ G(u′, v′)) (2.1)

1. This confirmsthat the ‘A’ and‘C’ subscriptson operationnamesaremetalevel tags. We
suppress them when it is convenient to do so and it does not cause confusion.
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andfor every correspondingoperationpair OpA andOpC, theabstractandconcrete
step relations must satisfy the operation PO:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC
(v, j, v′, p) ⇒

(∃ u′, o • stpOpA
(u, i, u′, o) ∧ ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨

COp(u′, v′, o, p; i, j, u, v))) (2.2)

It is easy to show that retrenchments compose vertically in an associative manner.
Thusif thereis athird system,let uscall it theexecutablesystemExe, andaretrench-
mentfrom Conc to Exe characterisedby retrieve,within, output,andconcedesrela-
tionsH(v, w), QOp(j, k, v, w), FOp(p, q; … ), DOp(v′, w′, p, q; … ), thenthereis a re-
trenchment fromAbs to Exe for which the relations in an obvious notation are:

G(A,E)(u, w)  = [∃ v • G(u, v) ∧ H(v, w)] (2.3)

POp,(A,E)(i, k, u, w)  =
[∃ v, j • G(u, v) ∧ H(v, w) ∧ POp(i, j, u, v) ∧ QOp(j, k, v, w)] (2.4)

OOp,(A,E)(o, q; … )  =
[∃ v′, p, v, j • OOp(o, p; … ) ∧ FOp(p, q; … )] (2.5)

COp,(A,E)(u′, w′, o, q; … )  =
[∃ v′, p, v, j • (G(u, v) ∧ OOp(o, p; … ) ∧ DOp(v′, w′, p, q; … )) ∨

(COp(u′, v′, o, p; … ) ∧ H(v, w) ∧ FOp(p, q; … )) ∨
(COp(u′, v′, o, p; … ) ∧ DOp(v′, w′, p, q; … ))] (2.6)

(This is provedby observingthattheassumptionof (2.4)andasuitableExe stepal-
lows theantecedentof theoperationPOfor theConc to Exe retrenchmentto bein-
fered,whencethePOcanbeusedto infer a suitableConc step;theprocedureis re-
peated,allowing theconjunctionof therespective consequentsto derive thesound-
nessof (2.5)and(2.6).) Thedetailsarecoveredin [Banach(2003)],andin [Banach
andJeske(2002)],thelatterof whichalsodealswith thefactthatstrongernotionsof
compositioncanbeformulated,which in generaldo not enjoy associativity of verti-
cal composition without additional constraints.

3   Default Retrenchments and Biretrenchments

As shown in [BanachandJeske(2002)],onewayof gettingaretrenchmentfor anar-
bitrarypairof systemsis via thedefaultmechanism.With theabovenotationalcon-
ventionsfor two systemsAbs andConc, supposewearegivenaG(u, v), andfor each
Op ∈ OpsA ∩ OpsC, a POp(i, j, u, v) andanOOp(o, p; … ); wherethesesimply ex-
presshow state,input andoutputspacesarerelatedin the two modelsbut neednot
be more specific regarding properties of Abs and Conc than that.2 We define for
each operationOp ∈ OpsA ∩ OpsC:

PDef
Op(i, j, u, v) =
(G(u, v) ∧ POp(i, j, u, v) ∧
(∃ u′, o, v′, p • stpOpA

(u, i, u′, o) ∧ stpOpC
(v, j, v′, p))) (3.1)

2.HenceforthweusethesymmetricOp ∈ OpsA ∩ OpsC, ratherthanOp ∈ OpsA, with aview
to future flexibility .
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CDef
Op(u′, v′, o, p; i, j, u, v) =
(G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA

(u, i, u′, o) ∧ stpOpC
(v, j, v′, p) ∧

¬ (G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) (3.2)

These are the default within and concedes relations for the systems (given G and
{POp, OOp | Op ∈ OpsA ∩ OpsC}). For these, the following is a trivial corollary of
Proposition 3.1 in [Banach and Jeske (2002)]:

Proposition 3.1 Suppose given two systems Abs and Conc, and also given G and
{POp, OOp | Op ∈ OpsA ∩ OpsC}. Then with the default within and concedes rela-
tions defined in (3.1) and (3.2), the operation PO:

G(u, v) ∧ PDef
Op(i, j, u, v) ∧ stpOpC

(v, j, v′, p) ⇒
(∃ u′, o • stpOpA

(u, i, u′, o) ∧ ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨
CDef

Op(u′, v′, o, p; i, j, u, v))) (3.3)

is satisfied.

We now define a biretrenchment between two systems Abs and Conc, by insisting
that as well as (2.1) holding, and (2.2) holding for all Op ∈ OpsA ∩ OpsC, we also
have for all Op ∈ OpsA ∩ OpsC:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA
(u, i, u′, o) ⇒

(∃ v′, p • stpOpC
(v, j, v′, p) ∧ ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨

COp(u′, v′, o, p; i, j, u, v))) (3.4)

This is the counterpart of (2.2) that interchanges the role of abstract and concrete sys-
tems. It is clear that (2.3)-(2.6) will do duty for the associative composition of bire-
trenchments as well as for conventional retrenchments.

Proposition 3.2 Suppose a default retrenchment between two systems Abs and
Conc is given.  Then it is a biretrenchment.

Proof. The definitions (3.1) and (3.2) are symmetrical regarding the abstract and con-
crete systems.  Thus if (3.3) is provable, then so is:

G(u, v) ∧ PDef
Op(i, j, u, v) ∧ stpOpA

(u, i, u′, o) ⇒
(∃ v′, p • stpOpC

(v, j, v′, p) ∧ ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨
CDef

Op(u′, v′, o, p; i, j, u, v))) (3.5)

One consequence of the above is that there is no reason why a ‘bespoke retrench-
ment’, purposely created to single out system characteristics of interest to the devel-
opment, cannot also be crafted as a biretrenchment. All that has to be done is to en-
sure that sufficient properties are included in the output and concedes relations so that
(3.4) is valid for all abstract transitions that satisfy G∧PDef

Op (besides (2.2) being
valid for the concrete ones). This contrasts vividly with the situation in refinement
where due to the exclusive reliance on the retrieve relation, a proper reduction of non-
determinism can be described, but nothing can be said about those abstract steps that
cannot be simulated.
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4   Fragments and Simulability
We will bedealinga lot with sequences.If a = [a0 … an] is a finite sequence,then
dom(a) = {0 … n} anddom•(a) = {0 … n–1}, bothdefaultingto ∅ if a is empty, and
with dom•(a) defaulting to ∅ if a has one element. If a is infinite then dom(a) =
dom•(a) = NAT. We alsodefinemd(a) = max(dom(a)) andmd•(a) = max(dom•(a));
these are∞ if a is infinite.

Definition 4.1 An executionfragment(fragmentfor short)is a sequenceof contig-
uous execution steps written in the form:

S  = [ u0 -(i0, OpA,0, o1)-› u1 -(i1, OpA,1, o2)-› u2 … ] (4.1)

where:

(1) S  may be of zero length:S  = [].

(2) S  may be of finite length:

S  = [ u0 -(i0, OpA,0, o1)-› u1 … … un -(in, OpA,n, on+1)-› un+1 ] (4.2)

with n ≥ 0, dom(S) = {0 … n}, dom•(S) = {0 … n–1}.

(3) S  may be of infinite length, (and dom(S) = dom•(S) = NAT).

Thel’ th stepof S , S [l], is theonestartingatthel’ th statei.e.ul -(il, OpA,l, ol+1)-› ul+1.
Thusfor eachl ∈ dom•(S), st′(S [l]) = st(S [l+1]). Notethatu0 doesnot needtosatisfy
theInitA property; however if it does,S  is called an initial (execution) fragment.

Definition 4.2 An executionmultifragment(multifragmentfor short)is asequence
of execution fragments:

S  = [S0, S1, … ] (4.3)

where:

(1) S  may be of zero length:S  = [].

(2) S maybeof finite length:S = [S0 … Sn] for somen ≥ 0; moreover for all k ∈
dom•(S), Sk is finite, whileSn may be finite or infinite.

(3) S  may be of infinite length, in which case for allk ∈ dom(S), Sk is finite.

A multifragment may contain concatenable adjacent elements. However if it does
not, i.e. if for allk ∈ dom•(S), st′(Sk[md(Sk)]) ≠ st(Sk+1[0]), then it is called curt.

Thecontext will alwaysdistinguishwhetherS denotesafragmentoramultifragment.
The corresponding concrete notions will be denoted byT.

Definition 4.3 Let u -(i, OpA, o)-› u′ beanabstractstepandv -(j, OpC, p)-› v′ acon-
cretestep. Thenthesestepsarein simulation(or theabstractstepsimulatesthecon-
crete step), also written (u -(i, OpA, o)-› u′) Σ1 (v -(j, OpC, p)-› v′), iff we have:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC
(v, j, v′, p) ∧ stpOpA

(u, i, u′, o) ∧
((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨ COp(u′, v′, o, p; i, j, u, v)) (4.4)

An abstract(resp.concrete)stepis simulableiff thereis a concrete(resp.abstract)
stepsuchthat(4.4)holdsfor thepair. Otherwiseit is nonsimulable.Notethatsimu-
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lability depends not only on the two systems in question, but on the retrenchment re-
lation (as defined by G and the POp, OOp, COp) between them.

We extend the simulation notion to abstract and concrete (multi)fragments in the fol-
lowing. First we recall that a segment t of a sequence s is a subsequence ‘with no
gaps’, i.e. it is a subsequence definable by two indexes of s, say a and b, and consists
of all elements s[k] with a ≤ k ≤ b, so dom(s[a ..b]) = {a ..b}. We call this an (a,b)-
segment of s, and write it s[a ..b]. If s is infinite then b can be ∞, and then
dom(s[a ..∞]) consists of all finite k ≥ a. If a > b then the concept of (a,b)-segment
is undefined, in particular it is convenient to insist that all segments have at least one
element. For a segment s[a ..b], md(s[a ..b]) = b of course (or ∞ if s[a ..b] is infinite),
but we also have mind(s[a ..b]) = a, defining the minimal element of the domain of
s[a ..b].

Definition 4.4 Let S and T be abstract and concrete fragments. Then the simula-
bility relation S Σ(li,lf,mi,mf) T   holds iff:

(1) lf – li = mf – mi ≥ 0, including the case that lf = mf = ∞, and (li, lf) and (mi, mf) define
(li,lf)- and (mi,mf)- segments S [li ..lf] and T  [mi ..mf] of S  and T   respectively.

(2) For all k ∈ dom(S [li ..lf]) and k′ ∈ dom(T [mi ..mf]), where k – li = k′ – mi, steps k
of S , i.e. uk -(ik, OpA,k, ok+1)-› uk+1 and k′ of T, i.e. vk′ -(jk′, OpC,k′, pk′+1)-› vk′+1
are in simulation.

The segments S [li ..lf] and T [mi ..mf] are called simulating segments. S [0..li–1] and
T [0..mi–1], i.e. the portions of S and T before the simulating segments, are called
the lead-ins of S and T ; they may be empty. S [lf+1..md(S)] and T [mf+1..md(T )]
are correspondingly called the lead-outs of S and T, also possibly empty. When
S Σ(li,lf,mi,mf) T is understood, we write •S to refer to S with its lead-in removed, and
S • to refer to S with its lead-out removed; and in •S • both are removed; N.B. the lead-
in and lead-out are undefined if there is no simulating segment of S . Similar consid-
erations apply in the concrete case for •T, T •, •T •.

When we have S Σ(0, md(S), 0, md(T )) T, i.e. the simulating segments define a bi-
jection, we say that the simulation is exact, and write S Σ T for short. It is clear that
if S Σ(li,lf,mi,mf) T   holds for some li,lf,mi,mf, then •S • Σ •T • is true.

Example 4.5 Fig. 1 gives some illustrations of Definition 4.4. In each diagram the
arrows are execution steps and the vertical lines depict the parts of the ‘in simulation’
relationship pertinent to the before-state or after-state. In each diagram S is shown
above T, and the shaded squares and parallelograms indicate that the relevant steps of
S and T are in simulation, while a cross indicates that this is not the case. Thus
Fig. 1.(a) illustrates that S Σ(0,2,0,2) T, or alternatively S Σ T. But S Σ(0,1,0,1) T
and S Σ(1,2,1,2) T are also true of Fig. 1.(a), as well as three other statements about
short segments. This illustrates that the S Σ(li,lf,mi,mf) T notion does not insist that
there are no steps of S and T other than the ones it mentions that are in simulation,
i.e. it provides a lower bound to simulability. In the subsequent examples we will not
refer to this aspect explicitly, though we return to the issue later. In this light, Fig.
1.(b) illustrates S Σ(0,1,1,2) T. In Fig. 1.(c), we have that the first steps of S and T
are in simulation, as are the last steps of S and T, so we have S Σ(0,0,0,0) T and
S Σ(2,2,2,2) T. Similar remarks apply to Fig. 1.(d) where although each step of S is
in simulation with some step of T, the relevant steps of T do not form a segment.
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Definition 4.6 Let S and T be abstract and concrete multifragments. Then the re-
lation S Σ(ll) T holds iff ll is a sequence of pairs of of triples of NATs, such that if
ll = [((s0,l0,i,l0,f), (t0,m0,i,m0,f)), ((s1,l1,i,l1,f), (t1,m1,i,m1,f)), … ] then:

(1) dom(S) = {sk | k ∈ dom(ll)} and dom(T  ) = {tk | k ∈ dom(ll)}.

(2) For each k ∈ dom•(ll), we have (sk,lk,i,lk,f) < (sk+1,lk+1,i,lk+1,f) and (tk,mk,i,mk,f) <
(tk+1,mk+1,i,mk+1,f), where (sk, lk,i, lk,f) < (sk+1, lk+1,i, lk+1,f) iff (sk < sk+1) ∨ (sk =
sk+1 ∧ lk,f < lk+1,i); similarly for (tk,mk,i,mk,f) < (tk+1,mk+1,i,mk+1,f).

(3) If k ∈ dom•(ll) then ¬(sk = sk+1 ∧ lk,f + 1 = lk+1,i ∧ tk = tk+1 ∧ mk,f + 1 = mk+1,i).

(4) If k ∈ dom(ll) then Ssk
Σ(lk,i,lk,f,mk,i,mk,f) T tk in the sense of Definition 4.4.

(5) Every simulable step of S  and T   lies in some segment described by ll, i.e.:

(i) For every fragment Ss in S , for every simulable step Ss[j] of Ss, there is a
k ∈ dom(ll), such that Ssk

 = Ss and lk,i ≤ j and j ≤ lk,f.

(ii) For every fragment T t in T, for every simulable step T t[j] of T t, there is a
k ∈ dom(ll), such that T tk = T t and mk,i ≤ j and j ≤ mk,f.

In Definition 4.6, clauses (1)-(3) ensure that the triples in ll refer to the fragments in
S and T in a well defined, complete, appropriately ordered and maximal way. Claus-
es (4)-(5) say that the triples in ll in fact refer to segments of the fragments which are
in simulation, and that there are no simulable steps in S  or T not captured by ll.

Again, the segments defined by ll are called simulating segments. If S Σ(ll) T, for a
fragment Ss within S , the lead-in of Ss is the portion of Ss that precedes the first sim-
ulating segment of Ss mentioned in ll, and •Ss is Ss with this removed. Likewise the
lead-out of Ss is the portion of Ss that follows the last simulating segment of Ss men-
tioned in ll, and Ss

• is Ss with this portion removed. •Ss
• is Ss with both of these re-

(a) (b)

×

(c)

×

(d)

Fig. 1
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moved. The notations •S , S •, •S • and •T, T •, •T • refer to the removal of lead-ins,
lead-outs, and both, from all fragments of S  and T.

In multifragments, the lead-ins and lead-outs and breaks in simulation internal to the
constituent fragments, are collectively called exceptions.

Proposition 4.7 Suppose S and T are abstract and concrete multifragments, and that
S Σ(ll) T   and S Σ(ll′) T   both hold.  Then ll′ = ll.

Proof. The conditions in Definition 4.6 ensure that ll describes a totally ordered bi-
jection between all the simulable steps in S and all the simulable steps in T. There is
only one such totally ordered bijection.

Since the ll in S Σ(ll) T is unique we can suppress it when convenient, writing S Σ T
for short.

Corollary 4.8 Suppose S and T are abstract and concrete multifragments. Then
S Σ T iff there is a totally ordered bijection between all the simulable steps in S and
all the simulable steps in T, where each element of the bijection pairs a step of S to a
step of T   in simulation with it.  If the bijection exists, it is unique.

Fig. 2 illustrates Definition 4.6 using the same conventions as Fig. 1. In Fig. 2.(a) we
have S Σ([((0,1,1), (0,2,2)), ((0,3,4), (1,0,1))]) T, and Fig. 2.(a) also illustrates non-
trivial lead-ins and lead-outs for S and T, namely S0[0..0], S0[5..5] and T 0[0..1],
T1[2..2]. Also •S • Σ •T • fails in Fig. 2.(a) because of S0[2..2]. In Fig. 2.(b) we have
S Σ([((0,0,1), (0,0,1)), ((1,0,1), (0,3,4))]) T. In Fig. 2.(c)-(d), we have examples of
exactness, so that we can write S Σ T ; eg. in Fig. 2.(d), ll = [((0,0,1), (0,0,1)),
((1,0,1), (0,2,3)), ((1,2,3), (1,0,1))]. Fig. 2.(c) shows that abstract and concrete mul-
tifragments S and T such that S Σ(ll) T holds, can be disconnected even taking the
Σ(ll) relationship into account. In Fig. 2.(e) we have a counterexample to S Σ(ll) T
since the middle two simulations do not respect clause (2) of Definition 4.6. Finally
in Fig. 2.(f), we have S Σ([((0,0,1), (0,0,1)), ((1,0,0), (0,2,2)), ((1,2,2), (0,4,4)),
((1,3,4), (1,0,1))] T, showing that breaks in simulation are tolerated within multifrag-
ments. Consequently, Fig. 1.(c)-(d) can be described using the S Σ(ll) T notation,
even if not using the S Σ(li,lf,mi,mf) T one. (Fig. 1.(a)-(b) can be described by either.)

The intention of Definition 4.4 and Definition 4.6 is to capture a notion of simulabil-
ity sufficiently flexible to encompass the possibilities admitted by retrenchment, and
convenient enough to build further theory. Thus the fact that the conditions applica-
ble in the before- and after- states of an execution step in retrenchment are manifestly
not the same (by (2.2), and reflected in (4.4)) means that while the situation in Fig.
1.(a) is the ideal, possibilities such as Fig. 1.(b) in which simulability breaks down
cannot be excluded, the more so since the concrete system is permitted to have oper-
ations not present at the abstract level. Beyond this, the fact that Figs. 1.(c) and 1.(d)
are also admitted by Definition 4.4, indicates that Definition 4.4 alone does not cover
all the issues regarding simulability between multifragments that need to be ad-
dressed. Definition 4.6 is the natural generalisation of Definition 4.4 to multifrag-
ments, and covers more general breakdowns in simulation. It contains not only claus-
es that translate simulability to the multifragment context, but clauses intended to ad-
dress aspects of ‘completeness’ that Definition 4.4 does not cover. We refer to the
various ways of failing to live up to the exemplary behaviour of Fig. 1.(a) as punc-
tured simulations.3
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5   Vertical Composition
We now look at the vertical composition properties of S Σ(li, lf,mi,mf) T for frag-
ments, and of S Σ(ll) T for multifragments. Let U refer to a (multi)fragment of a
executable system Exe, related by a retrenchment to Conc as assumed in (2.3)-(2.6).
We say of a simulable Conc step, that it is AC-simulable if it is in simulation with
some abstract step, and that it is CE-simulable if it is in simulation with some exe-
cutable step, depending on which retrenchment we have in mind. Similarly for the
other systems and various retrenchments and simulation phraseologies.

Proposition 5.1 Suppose S , T, U , are fragments of abstract, concrete and executable
systems Abs, Conc, Exe. Suppose that we have both S Σ(la,i,la,f,ma,i,ma,f) T and
T Σ(lb,i,lb,f,mb,i,mb,f) U . Then S Σ(l(a,b),i,l(a,b),f,m(a,b),i,m(a,b),f) U , according to the
‘in simulation’ definition stemming from the vertically composed retrenchment de-
fined by (2.3)-(2.6), where:

l(a,b),i = If lb,i – ma,i = kl,i > 0 Then la,i + kl,i Else la,i Fi
l(a,b),f = If ma,f – lb,f = kl,f > 0 Then la,f – kl,f Else la,f Fi
m(a,b),i = If ma,i – lb,i = km,i > 0 Then mb,i + km,i Else mb,i Fi
m(a,b),f = If lb,f – ma,f = km,f > 0 Then mb,f – km,f Else mb,f Fi (5.1)

provided that these define a (l(a,b),i,l(a,b),f)-segment of S and a (m(a,b),i,m(a,b),f)-seg-
ment of T.

Proof. It is clear that provided (5.1) defines two nonempty segments S [l(a,b),i ..l(a,b),f]
and U [m(a,b),i ..m(a,b),f] (which is not certain since (5.1) does not guarantee that l(a,b),i
≤ l(a,b),f and m(a,b),i ≤ m(a,b),f), then these segments are each in simulation with the
largest possible common segment of T, given by the intersection of T [ma,i ..ma,f] and
T  [lb,i ..lb,f], and thus are in AE-simulation with each other via (2.3)-(2.6).

Proposition 5.2 The vertical composition of Proposition 5.1 is associative.

Proof. This reduces to the observation that max(max(a,b),c)) = max(a,max(b,c))
(and likewise for min), in the context of constructing the segments of the multiple
compositions.

Proposition 5.3 Suppose S , T, U , are multifragments of systems Abs, Conc, Exe,
which are related via biretrenchments captured in the notations used in (2.3)-(2.6).
Suppose both S Σ(lla) T   and T Σ(llb) U  hold, where:

lla = [((sa,0,la,0,i,la,0,f), (ta,0,ma,0,i,ma,0,f)),
((sa,1,la,1,i,la,1,f), (ta,1,ma,1,i,ma,1,f)), … ]

llb = [((sb,0,lb,0,i,lb,0,f), (tb,0,mb,0,i,mb,0,f)),
((sb,1,lb,1,i,lb,1,f), (tb,1,mb,1,i,mb,1,f)), … ] (5.2)

Suppose the sets of AC-simulable and CE-simulable steps of Conc are equal. Let
ll(a,b) be the set of all pairs of triples of the form:

((sa,j,l(a,b),j,i,l(a,b),j,f), (tb,k,m(a,b),k,i,m(a,b),k,f)) (5.3)

3. In [Banach and Poppleton (1999)], the term punctured simulation was introduced in the con-
text of retrenchments done within the B-Method, and described a more constrained set of sit-
uations than is considered in the present paper.
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such that for each such pair of triples, S sa,j
Σ(l(a,b),j,i, l(a,b),j,f,m(a,b),k,i,m(a,b),k,f) U tb,k

holds, where l(a,b),j,i, l(a,b),j,f, m(a,b),k,i, m(a,b),k,f are given by applying the construction
in Proposition 5.1 to the simulable segments Ssa,j

[la,j,i .. la,j,f], U tb,k
[mb,k,i ..mb,k,f], and a

suitable T tc,k′[nc,k′,i ..nc,k′,f] via (5.1).

Let ll(a,b) be the set of all pairs of triples obtained from ll(a,b) by amalgamating all
continguous pairs of segments, i.e. by replacing two pairs:

((sa,j,l(a,b),j,i,l(a,b),j,f), (tb,k,m(a,b),k,i,m(a,b),k,f))  and
((sa,j′,l(a,b),j′,i,l(a,b),j′,f), (tb,k′,m(a,b),k′,i,m(a,b),k′,f))  such that
(sa,j′ = sa,j ∧ l(a,b),j′,i = l(a,b),j,f + 1) ∧
(tb,k′ = tb,k ∧ m(a,b),k′,i = m(a,b),k,f + 1) (5.4)

by the one pair:

((sa,j,l(a,b),j,i, l(a,b),j′,f), (tb,k,m(a,b),k,i,m(a,b),k′,f)) (5.5)

and repeating (countably often if necessary) until there are no more continguous
pairs. Let ll(a,b) be an ordering of the set ll(a,b) where the ordering of the elements is
given by:

((s(a,b),j,l(a,b),j,i,l(a,b),j,f), (t(a,b),k,m(a,b),k,i,m(a,b),k,f)) <
((s(a,b),j′,l(a,b),j′,i,l(a,b),j′,f), (t(a,b),k′,m(a,b),k′,i,m(a,b),k′,f))

⇔
(s(a,b),j < s(a,b),j′) ∨ (t(a,b),k < t(a,b),k′) ∨
(s(a,b),j = s(a,b),j′ ∧ t(a,b),k = t(a,b),k′ ∧ (l(a,b),j,f < l(a,b),j′,i ∨ m(a,b),k,f < m(a,b),k′,i)) (5.6)

Then S Σ(ll(a,b))U , according to the ‘in simulation’ definition stemming from the ver-
tically composed retrenchment defined by (2.3)-(2.6), which is a biretrenchment.

Proof. That the composed retrenchment defined by (2.3)-(2.6) is a biretrenchment
under the circumstances has been pointed out already in Section 3, so we must estab-
lish the various clauses of Definition 4.6 with respect to ll(a,b).

Firstly we show that the pairs of segments described by ll(a,b) are in simulation. To
see this we note that by Corollary 4.8, both S Σ(lla) T and T Σ(llb) U describe order
preserving bijections between the AC-simulable steps of S and T on the one hand
and the CE-simulable steps of T and U on the other. Since the sets of AC-simulable
steps of Conc and the CE-simulable steps of Conc are equal, the (ma,k,i,ma,k,f)-seg-
ments of T refered to in the second components of elements of lla are exactly the
same as the (lb,k,i,lb,k,f)-segments of T refered to in the first components of elements
of llb. Therefore each step of T contained in these segments, existentially witnesses
as intermediate transition, the derivation of an AE-simulation between the corre-
sponding Abs and Exe steps, obtained by composing the AC-simulation and the CE-
simulation according to (2.3)-(2.6). This gives a bijection between Abs and Exe
steps at the level of individual simulating steps. Since the relative order of corre-
sponding simulating steps in S Σ(lla) T and T Σ(llb) U is the same, the relative order
of corresponding simulating steps in the AE-simulations will be the same too. So we
have a totally ordered bijection between Abs and Exe simulable steps. The steps ag-
gregate via the construction of Proposition 5.1 into relations between segments of S
and U , Ssa,j

Σ(l(a,b),j,i,l(a,b),j,f,m(a,b),k,i,m(a,b),k,f) U tb,k
, and these comprise ll(a,b). The

Ssa,j
and U tb,k

can be aggregated further into ll(a,b) via (5.4) and (5.5), repeatedly ap-
plied, perhaps countably many times, until a fixed point is reached. And since the
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orderon individual stepsin S , T, U , is a total order, theresultingsegmentsin S and
U , whicharedisjointbyconstruction,inherittotalorderstoo. Sincethepairsof these
in ll(a,b)consistof sourceandtargetdatain theelementsof a bijection,it is not hard
to seethat (5.6) definesa total orderon the pairs,and ll(a,b) with this total orderis
ll(a,b).

Next we considerthenon-simulatingsteps. Let Op beanoperationnamecommon
to theAbs, Conc andExe systems,andlet u -(i, OpA, o)-› u′ beanAC-nonsimulat-
ing abstractstepin a segmentof S . Supposetherewasa stepw -(k, OpE, q)-› w′ of
Exe with which it was in simulation via the relations (2.3)-(2.6). Then since
G(A,E)(u, w) ∧ POp,(A,E)(i, k, u, w) is presumed,we caninfer G(u, v) ∧ POp(i, j, u, v)
for some v and j. Since we have a biretrenchment, the step u -(i, OpA, o)-› u′ and
these,imply via thebiretrenchmentoperationPO(3.4), that thereis someconcrete
stepv -(j, OpC, p)-› v′ whichis in simulationwith u -(i, OpA, o)-› u′. Thiscontradicts
theAC-nonsimulabilityof u -(i, OpA, o)-› u′, which thereforemustbeAE-nonsimu-
lable. A similar argumentusingtheconventionalretrenchmentoperationPOshows
that theCE-nonsimulating implementation steps are alsoAE-nonsimulable.

Now we have accumulatedenoughfactsto disposeof thevariousclausesof Defini-
tion 4.6 for S Σ(ll(a,b)) U . Sincedom(S) = { sk | k ∈ dom(lla)} andall AC-simulable
steps of S occur as AE-simulating steps of S by construction, dom(S) = { sk | k ∈
dom(ll(a,b))} quickly follows; likewise dom(T ) = { tk | k ∈ dom(ll(a,b))} , and thus
clause (1). For clause (2) we observe that splitting a segment into two non-empty
ones extends and otherwise preserves the (sk,lk,i,lk,f) < (sk+1,lk+1,i,lk+1,f) ordering,
consistentwith theindexing, andfusingtwo contiguoussegmentsin thesamefrag-
ment of S in the obvious way shrinks and otherwise preserves the (sk,lk,i,lk,f) <
(sk+1,lk+1,i,lk+1,f) ordering,consistentwith theindexing. Now thewaywehavecon-
structedthesegmentsin S of ll(a,b) is by splittingandfusingtheoriginalsegmentsin
S of lla, andsimilarly for thesegmentsin U of ll(a,b)— sincewe first split themvia
the construction of Proposition 5.1, and then aggregated the results via (5.4) and
(5.5). Both activities thusyield orderingson their elementsconsistentwith the in-
dexing andclause(2) follows. Clause(3) follows because(5.4) and(5.5) andtheir
repetition up to a fixed point ensure there are no pairs contiguous segments left in
ll(a,b). Clause(4) holdstrivially by construction,while clause(5) holdsbecausell(a,b)
wasconstructedto representthecompositionof two (total andsurjective) bijections
between all the simulable steps ofS , T, andU .

Proposition 5.4 The vertical composition of Proposition 5.3 is associative.

Proof. This essentially reduces to the observation that the construction rests on a
composition of bijections.

Proposition5.3is anelegantresult,but it restedon two assumptionsthatdonotgen-
erallyhold for anarbitrarypairof simulationrelationsS Σ(lla) T andT Σ(llb) U be-
tween multifragments, namely that the two retrenchments in question were bire-
trenchments, and that the sets of AC-simulable and CE-simulable steps of Conc
werethesame.Let usexaminewhathappenswhentheseassumptionsarerelaxed.

If wehaveconventionalretrenchmentsratherthanbiretrenchments,i.e.operationPO
(3.4)doesnot hold, thenwe cannotdeducetheAE-nonsimulabilityof abstractAC-
nonsimulatingstepsonthebasisof theirAC-nonsimulability, aswedid above. Thus
theremightbeanAC-nonsimulatingAbs step,sayu -(i, OpA, o)-› u′ which is never-
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theless in simulation with some Exe step, say w -(k, OpE, q)-› w′, even if neither of
them is in simulation with any Conc step whatsoever. This happens because the
composed ‘in simulation’ relation, the analogue using (2.3)-(2.6) of (4.4) for the
composed retrenchment, does not require there to be any intermediate Conc step to
witness its truth. Note that the AE-nonsimulability of CE-nonsimulable Exe steps
continues to hold because the conventional retrenchment operation PO still holds.

The repercussions of the above depend on whether the sets of AC-simulable and CE-
simulable steps of Conc are the same in the composition. If they are, then all the AE-
simulable Exe steps in U are catered for in the bijection of simulable steps given by
ll(a,b). Therefore for any AC-nonsimulating Abs step u -(i, OpA, o)-› u′ which occurs
in an exception of S and is in simulation with an Exe step w -(k, OpE, q)-› w′, either
w -(k, OpE, q)-› w′ does not occur in U , or if it does, w -(k, OpE, q)-› w′ is already in
simulation with some other Abs step described in ll(a,b). Thus the simulating frag-
ments described by ll(a,b) enjoy a maximality property, despite there possibly being
additional AE-simulable Abs steps in S . In any case we lose clause (5).(i) of Defini-
tion 4.6 (though (5).(ii) still holds), and thus we cannot assert S Σ(ll(a,b)) U .

If the sets of AC-simulable and CE-simulable steps of Conc are not the same in the
composition, then the constructed ll(a,b) may describe a proper subset of a maximal
collection of simulating fragments of S  and U  as the next counterexample shows.

Counterexample 5.5 Consider S , T, and U , illustrated in Fig. 3. Steps 1 and 2 of
U 0 are CE-nonsimulable and thus AE-nonsimulable, and steps 2 and 3 of S0 are AC-
nonsimulable, and thus AE-nonsimulable if we have biretrenchments. Step 1 of S0
is in AC-simulation with a step of T, but there is no CE-simulation to compose it with
so it falls outside the domain of the ll(a,b) constructed in Proposition 5.3, which is
[((0,0,0),(0,0,0)), ((0,4,4),(0,4,4))]; similarly for step 3 of U 0. But there is no fun-
damental reason why step 1 of S0 cannot be in AE-simulation with step 3 of U 0, and
if it is, it leads to S Σ(ll′(a,b)) U , where ll′(a,b) = [((0,0,0),(0,0,0)), ((0,1,1),(0,3,3)),
((0,4,4),(0,4,4))], provided of course that steps 2 and 3 of S0 are AE-nonsimulable.
If these steps are AE-simulable, then we still get a maximality property of the simu-
lation described by ll′(a,b) even though not all of the criteria of Definition 4.6 are met.

The lessons of these points are thus clear. If we lose biretrenchments, a composition
may lead to additional AE-simulable Abs steps because AC-nonsimulating Abs

S

Fig. 3

T

U
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steps may become AE-simulable. If we lose equality of the AC-simulable and CE-
simulable steps of Conc, the ability of ll(a,b) to control all of the steps of S and U
declared simulable in lla and llb is forfeited, with the consequence that unpredictable
additional simulations between steps of S and U may arise, and not just nicely in-
order ones as in Fig. 3, as cases like Fig. 2.(e) can easily arise. If we lose both prop-
erties, we get both problems, and they can also interact, as the AE-simulable AC-non-
simulable Abs steps, may simulate with the CE-simulable Exe steps liberated from
llb supervision.

In the end, without the support of the stronger conditions, the bijection in ll(a,b) mere-
ly provides a safe lower bound on possible simulating segments in S and U . What
remains of these situations can be salvaged in the following.

Definition 5.6 The notion S Σ(ll)– U is given by Definition 4.6 except that clause
(5).(i) is omitted.

Remark 5.7 Note that this definition permits segments of nonsimulating but never-
theless simulable abstract steps of arbitrary length wihin S . This is not very satisfac-
tory as a concept for capturing simulability, hence we do not give it a high profile. Its
only features worthy of note are in the following.

If p is a sequence of pairs [(p0a,p0b), (p1a,p1b), … ], let snd(p) be the sequence of sec-
ond projections of elements of p, i.e. [p0b, p1b, … ].

Lemma 5.8 Suppose S Σ(ll)– U and S Σ(ll′)– U both hold. Then snd(ll) = snd(ll′).

Proof.  This is an easy unidirectional weakening of Proposition 4.7 .

Proposition 5.9 Suppose S , T, U , are multifragments of systems Abs, Conc, Exe,
which are related via retrenchments captured in the notations used in (2.3)-(2.6).
Suppose both S Σ(lla)

– T and T Σ(llb)– U hold, as in Proposition 5.3. Suppose each
CE-simulable step of Conc is also AC-simulable, and let ll(a,b) be constructed as in
Proposition 5.3. Then S Σ(ll(a,b))

– U according to the ‘in simulation’ definition stem-
ming from the vertically composed retrenchment defined by (2.3)-(2.6).

Proof.  This is also an easy unidirectional weakening of Proposition 5.3.

The inclusion of the CE-simulable steps of Conc in the AC-simulable ones is per-
haps a more arguable scenario than their exact equality (though exact equality is a
feature of the retrenchments in [Banach and Poppleton (2003)]). One can imagine
the approach to a truly executable system, with all its awkward boundary cases etc.,
to be via a series of simplified models, each incorporating more of the low level detail
than its predecessor, and each thus more distant from the original abstract model than
its predecessor; and all this happening in a monotonic manner with respect to inclu-
sion of simulable steps at intermediate models. The composition properties of such
a process are neatly captured in Proposition 5.9, though Remark 5.7 considerably di-
minishes enthusiasm for the Σ(ll)– notion. We see that the general results we are able
to prove about compositions of simulations between (multi)fragments under re-
trenchment are not very strong, and so practical cases will often need to be handled
by ad hoc means.

Remark 5.10 The above vertical composition results, although needing additional
conditions to hold in the strongest cases, have nevertheless influenced the design of
the preceding definitions, in particular Definition 4.6. For instance consider Fig. 2.(c)
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which shows a simulation between two multifragments S = [S0, S1, S2] and T = [T0,
T1, T2], such that S0 and S1 simulate with T0, and S2 simulates with T1 and T2; and
where these two pieces of the simulation are completely separate. Now imagine that
the two pieces refered to multifragments of three systems, Abs, Conc and Exe, such
that the first piece was a simulation between S = [S0, S1] and T = [T0], and the second
piece was a simulation between T = [T0], and U = [U 0, U 1]. Vertically composing
them would give a simulation between S = [S0, S1] and U = [U 0, U 1]. But this would
also consist of two disconnected pieces, S0 simulating U 0, and S1 simulating U 1.
This shows that insisting on stronger connectivity properties in Definition 4.6 would
give a concept of simulation that failed to compose vertically even under favourable
conditions. Similar remarks explain why ‘holes’ in simulation as in Fig. 2.(f) are per-
mitted. They can be easily generated by vertical composition of more innocent situ-
ations.

6   System Properties and Simulation Transformers

In this section, the notions from the preceding sections are applied to show how prop-
erties of one system transform through a given retrenchment to yield properties of the
other system. Given the rather flexible nature of retrenchment, it is of just as much
interest to examine how properties of the concrete system map to the abstract system,
as it is to see how abstract properties map to the concrete system; this is despite the
fact that the latter perspective is significantly more important when one takes a refine-
ment oriented point of view. Also for the same reason, the previous sections were
predominantly built on the symmetric ‘in simulation’ concept of Definition 4.3, rath-
er than using a more asymmetric notion ensuing from the asymmetry of the retrench-
ment POs.

We will identify a property of a system with the set of system behaviours that display
that property, where a system behaviour is a multifragment.4 This conception of sys-
tem behaviour is more generous than in conventional scenarios, the reason being, that
since we will use simulability relationships between abstract and concrete systems as
the main vehicle for translating properties at one level into properties at the other,
and, as we discussed earlier, simulability relationships exhibit various kinds of mis-
behaviour illustrated in examples, the view that a system behaviour can be a single
initial execution fragment is too simplistic.

Definition 6.1 Suppose we are given a system Abs, and let a set of steps Σ(Abs) ⊆
stpA be nominated as the simulable steps of Abs. Then we say that a multifragment
S of Abs is Σ(Abs)-curt iff, for all k, k+dk ∈ dom(S) such that fragments Sk and Sk+dk
both contain simulable steps and dk ≥ 1 is the smallest element of NAT+ for which
this holds (for the given k), then st′(Sk

•[md(Sk
•)]) ≠ st(•Sk+dk

[mind(•Sk+dk
)]), where

the lead-out discarded from Sk to give Sk
• is the longest non-Σ(Abs) suffix of Sk, and

the lead-in discarded from Sk+dk
to give •Sk+dk

is the longest non-Σ(Abs) prefix of
Sk+dk

.

Definition 6.2 An unfettered property SS of a system Abs is just a set of multifrag-
ments of that system.

4. We are thus deliberately excluding ‘properties’ that only concern at most the state, input,
and output spaces, which can be discussed via the relations G, POp, OOp, COp.



17

Definition 6.3 A property SS of a system Abs with respect to a set of simulable steps
Σ(Abs), is an unfettered property for which each multifragment S ∈ SS is both curt
and Σ(Abs)-curt.

Remark 6.4 The intention of Definition 6.3 is to suppress fruitless fragmentation of
the multifragments comprising a property. In a sense, a curt and Σ(Abs)-curt multi-
fragment acts as a code for all its more finely fragmented derivatives (including when
these are embellished with nontrivial lead-ins and lead-outs and intervening nonsim-
ulating fragments). In fact we can regard a property as encoding a down-closed set
of such more finely fragmented derivatives if we regard a single application of step
[1] or [2] in Definition 6.5 below as a progression up a partial order, in a rather obvi-
ous way.

Definition 6.5 Let S ′′ be a multifragment of a system Abs with respect to a set of
simulable steps Σ(Abs). Let S = PRA(S ′′) be the multifragment derived from S ′′ by
the following steps.

[1] Concatenate a pair of concatenable adjacent fragments in S ′′ (i.e. replace a pair
S k and S k+1 of S ′′ such that st′(Sk[md(Sk)]) = st(Sk+1[0]) by their concatena-
tion). Repeat until no further change is possible, to produce multifragment S ′.

[2] In S ′, whenever fragments Sk and Sk+dk
both contain simulable steps, and dk ≥ 1

is minimal for the given k, and st′(Sk
•[md(Sk

•)]) = st(•Sk+dk
[mind(•Sk+dk

)]), then
replace Sk and Sk+dk

 by the concatenation of Sk
• and •Sk+dk

, discarding all Sk+m
for 0 < m < dk. Repeat until no further change is possible, to produce multifrag-
ment S  = PRA(S ′′).

We write PRA also for the set extension of PRA to unfettered properties.

Lemma 6.6 For every S , PRA(S) is curt and Σ(Abs)-curt. PRA is a function on mul-
tifragments which acts as the identity on curt and Σ(Abs)-curt multifragments. By
extension, for every unfettered property SS , PRA(SS ) is a property, and thus PRA is a
function on unfettered properties which acts as the identity on properties.

Proof. That for any S , PRA(S) is curt and Σ(Abs)-curt is clear as step [1] removes all
opportunuites for concatenation, and step [2] ensures Σ(Abs)-curtness. Suitably un-
derstood, all instances of the steps of the procedure in Definition 6.5 are non-interfer-
ing, so their application in any order always leads to an unambiguous result, and thus
PRA is a function. If a multifragment is curt and Σ(Abs)-curt to start with, then steps
[1] and [2] of Definition 6.5 are both null and PRA acts as the identity. The remainder
is by set extension.

Proposition 6.7 Let T be a concrete multifragment, SS be an abstract unfettered
property, and S Σ T for some S ∈ SS , all in the context of a retrenchment which de-
fines the simulable steps.  Then PRA(S) Σ T   where PRA(S) ∈ PRA(SS ).

Proof. Suppose S Σ T for some S ∈ SS . Then if S is not curt and Σ(Abs)-curt, the
procedure in Definition 6.5 at worst concatenates some fragments and erases some
nonsimulable steps and fragments from S , yielding PRA(S). But all the simulable
steps of S survive this process, in the same order (and possibly more concatenated
than in S).  So PRA(S) Σ T   is not hard to prove.
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All of the above have concrete counterparts, PRC being the concrete analogue of PRA.
Below we will continue to mainly just cite the abstract versions of results without
comment, assuming the concrete versions tacitly understood.

Assumption 6.8 From now on we will assume that all abstract multifragments are
curt and Σ(Abs)-curt, and all concrete multifragments are curt and Σ(Conc)-curt; all
with respect to sets of simulating steps Σ(Abs) and Σ(Conc) that should be clear
from the context.

Proposition 6.7 and Remark 6.4 above justify this simplification, avoiding the con-
stant need to deal with the PR functions and with overfragmented multifragments.

Definition 6.9 Suppose given two systems Abs and Conc, and let Σ(Abs) and
Σ(Conc) be the sets of abstract and concrete simulable steps derived from a retrench-
ment via Definition 4.3. Let SS be a property of Abs and TT be a property of Conc
(with respect to Σ(Abs) and Σ(Conc) respectively). Then the simulation transform-
ers [Σ] and 〈Σ〉 are defined as follows.

[Σ]SS   =  {T | (∃ S  • S ∈ SS ∧ S Σ T  ) ∧ (∀ S  • S Σ T ⇒ S ∈ SS )} (6.1)

〈Σ〉SS   =  {T | (∃ S  • S ∈ SS ∧ S Σ T  )} (6.2)

[Σ]TT   =  {S | (∃ T   • T ∈ TT ∧ S Σ T  ) ∧ (∀ T   • S Σ T ⇒ T ∈ TT  )} (6.3)

〈Σ〉TT   =  {S | (∃ T   • T ∈ TT ∧ S Σ T  )} (6.4)

Note the key role played by Assumption 6.8 in Definition 6.9. Without it the second
conjunct in (6.1) would cause [Σ]SS to be empty in general, as for a given T, S Σ T
does not by any means guarantee that S is curt and Σ(Abs)-curt, as it needs to be if
S ∈ SS  is to hold.  Likewise for (6.3).

Proposition 6.10 The following hold for the transformers 〈Σ〉 and [Σ].

(1) SS 1 ⊆ SS 2 ⇒ 〈Σ〉SS 1 ⊆ 〈Σ〉SS 2 ∧ [Σ]SS 1 ⊆ [Σ]SS 2

(2) [Σ]SS ⊆ 〈Σ〉SS

(3) TT ⊆ [Σ]SS ⇔ 〈Σ〉TT ⊆ SS

Proof.  Immediate from the definitions.

The functions [Σ] and 〈Σ〉 (interpreted in both abstract-to-concrete and concrete-to-
abstract directions) provide the fundamental simulation transformers of properties
between the two levels. The purely relational nature of the S Σ T simulability rela-
tionship means that [Σ] and 〈Σ〉 work like fairly standard box and diamond modal op-
erators on a modal algebra, and below we develop some of the natural consequences
of this formalism. We only say ‘fairly standard’ since, unlike many similar situations,
we incorporate the clause (∃ S • S ∈ SS ∧ S Σ T ) in (6.1). Its omission would admit
into [Σ]SS , concrete fragments that are entirely non-simulable. These have no place
in the definition of a mapping via simulation of SS .  Similarly for (6.3).

In general, we obtain a web of richly interrelated properties by applying arbitrary
strings in the alphabet {〈Σ〉, [Σ]} to properties at the abstract and concrete level, with
each occurrence of 〈Σ〉 and [Σ] interpreted as an abstract-to-concrete or concrete-to-
abstract transformer in the only way that makes sense5.
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Definition 6.11 Let SS be an abstract property. Then we define SS • to be the prop-
erty {S | (∃ T   • S ∈ SS ∧ S Σ T  )}.  If SS  = SS  •, we say that SS  is proper.

Thus SS  • is SS  with any non-simulating multifragments removed.

Proposition 6.12 Let SS  be an abstract property.

(1) …  (〈Σ〉[Σ])3SS ⊆  (〈Σ〉[Σ])2SS ⊆ 〈Σ〉[Σ]SS ⊆ SS  • ⊆ SS

(2) SS • ⊆ [Σ]〈Σ〉SS ⊆  ([Σ]〈Σ〉)2SS ⊆  ([Σ]〈Σ〉)3SS …

(3) [Σ]〈Σ〉[Σ]SS   = [Σ]SS

(4) 〈Σ〉[Σ]〈Σ〉SS   = 〈Σ〉SS

(5) w[Σ]〈Σ〉[Σ]SS   = w[Σ]SS , where w ∈ {〈Σ〉, [Σ]}*

(6) w〈Σ〉[Σ]〈Σ〉SS   = w〈Σ〉SS , where w ∈ {〈Σ〉, [Σ]}*

Proof. For (1), SS • ⊆ SS is obvious, after which we argue as follows. Let S ∈
〈Σ〉[Σ]SS . Then by (6.4), for some T ∈ [Σ]SS , S Σ T holds. Now if T ∈ [Σ]SS and
S Σ T holds, then by (6.1), S ∈ SS . Also, because S Σ T and S ∈ SS both hold, then
S ∈ SS •. So 〈Σ〉[Σ]SS ⊆ SS •. Since 〈Σ〉[Σ]SS , and hence (〈Σ〉[Σ])nSS are all prop-
erties, the cases for (〈Σ〉[Σ])n for n > 1 follow by induction.

For (2), we have the following. Let S ∈ SS •. Then there is some T such that S Σ T ;
also for any such T, we have T ∈ 〈Σ〉SS . Therefore such a T witnesses the first clause
of S ∈ [Σ]〈Σ〉SS . For the second clause, for the same S , for any T, if S Σ T then T ∈
{T | S ∈ SS • ∧ S Σ T } ⊆ 〈Σ〉SS , or more briefly S Σ T ⇒ T ∈ 〈Σ〉SS , and so we
deduce S ∈ [Σ]〈Σ〉SS . Altogether we get SS • ⊆ [Σ]〈Σ〉SS . The remaining steps are
by induction again.

For (3), we have 〈Σ〉[Σ]SS ⊆ SS by (1), so that [Σ]〈Σ〉[Σ]SS ⊆ [Σ]SS by monotonicity.
On the other hand, since ([Σ]SS )• = [Σ]SS , then [Σ]SS ⊆ [Σ]〈Σ〉([Σ]SS ) by the con-
crete counterpart of (2), giving [Σ]〈Σ〉[Σ]SS = [Σ]SS . The reasoning for (4) is similar.
Now (5) and (6) follow by noting that 〈Σ〉 and [Σ] are both functions on properties.
We are done.

Of particular interest are properties SS such that 〈Σ〉[Σ]SS = SS or SS = [Σ]〈Σ〉SS , or
better still, when both are true.

Definition 6.13 Let SS be an abstract property. Then core(SS ) = 〈Σ〉[Σ]SS ⊆ SS , is
called the core of SS . If core(SS ) = SS then SS is a core property. Similarly SS • ⊆
rect(SS ) = [Σ]〈Σ〉SS , gives the rectification of SS . If rect(SS ) = SS then SS is a rec-
tified property. A property is weakly robust iff it is a proper, core and rectified prop-
erty, i.e. 〈Σ〉[Σ]SS = SS = [Σ]〈Σ〉SS . A property is robust iff it satisfies SS • = SS and
[Σ]SS  = 〈Σ〉SS .

Observing that [Σ]SS provides the biggest concrete property TT such that arbitrary
translations (via simulation) of its elements back to the abstract level remain within
SS , the core of SS provides the smallest subproperty of SS which contains all these
arbitrary translations. Similarly 〈Σ〉SS provides the biggest concrete property TT
reachable via arbitrary translations of the elements of SS , and the rectification of SS

5. Obviously if we were dealing with more than two levels of abstraction we would have to
enrich the 〈Σ〉 and [Σ] notations somewhat.
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gives the largest superproperty of SS • such that arbitrary translations of its elements
do not breach TT .  Weakly robust and robust properties embody both virtues.

Proposition 6.14 Let SS  be an abstract property.

(1) [Σ]SS  is rectified.

(2) 〈Σ〉SS  is core.

(3) If SS  is robust, then SS  is weakly robust.

Proof. Proposition 6.12.(3)-(4) give (1) and (2). For (3), suppose SS is robust. Then
[Σ]SS = 〈Σ〉SS , so 〈Σ〉[Σ]SS = 〈Σ〉〈Σ〉SS . Also, since 〈Σ〉[Σ]SS ⊆ SS • by Proposition
6.12.(1), and SS • ⊆ 〈Σ〉〈Σ〉SS , and SS • = SS by robustness, we deduce 〈Σ〉[Σ]SS =
SS . We know that SS = SS • ⊆ [Σ]〈Σ〉SS by Proposition 6.12.(2), and by robustness,
[Σ]〈Σ〉SS = [Σ][Σ]SS follows from [Σ]SS = 〈Σ〉SS . So we just have to show that
[Σ][Σ]SS ⊆ SS . So suppose that S ∈ [Σ][Σ]SS but S ∉ SS . Then from S ∈ [Σ][Σ]SS
we have (∃ T • T ∈ [Σ]SS ∧ S Σ T ) = (∗) and (∀ T • S Σ T ⇒ T ∈ [Σ]SS ). Suppose
T satisfies (∗). But (∗) says T ∈ [Σ]SS , and so by (6.1) we have S Σ T ⇒ S ∈ SS ,
contradicting S ∉ SS .

Counterexample 6.15 Fig. 4 shows that the natural converse of Proposition 6.14.(3)
does not hold. The blobs represent individual multifragments and the lines the Σ re-
lationship.  We have 〈Σ〉[Σ]SS  = SS = [Σ]〈Σ〉SS  but [Σ]SS ≠ 〈Σ〉SS .

Proposition 6.16 Let SS be an abstract property. Then there is a partition of CMF A,
the set of all curt and Σ(Abs)-curt multifragments, and partitions of CMF C, the set
of all curt and Σ(Conc)-curt multifragments, as follows:

(1) CMF A  = SS  • ∪+ SS  • +∪ CMF A
NS

(2) CMF C  = [Σ]SS ∪+ [Σ](SS ) +∪ (〈Σ〉SS ∩ 〈Σ〉(SS )) +∪ CMF C
NS

where SS • is clearly a property, where CMF A
NS = {S | ¬(∃ T • S Σ T )} ⊆ CMF A,

CMF A
NS being the nonsimulating subset of CMF A, and where CMF A

S is its comple-
ment, and with similar definitions for CMF C

NS and CMF C
S . Abstract complements

are taken in CMF A.  Moreover:

(3) If SS  is core, then SS  • is rectified.

(4) If SS  is rectified, then SS  • is core.

〈Σ〉[Σ]SS  = SS = [Σ]〈Σ〉SS

Fig. 4

• • •

• •

[Σ]SS
〈Σ〉SS

•
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(5) If SS  is robust, then (〈Σ〉SS ∩ 〈Σ〉(SS  •)) = ∅ in (2).

Proof. For (1), it is clear that SS • is a property and that the union is disjoint. For (2)
we note that for any simulable T, one of the following holds. Either (∀ S • S Σ T ⇒
S ∈ SS ) holds and T ∈ [Σ]SS , or (∀ S • S Σ T ⇒ S ∈ SS •) holds and T ∈ [Σ](SS •),
or neither holds. But in this last case, because T is simulable, there must be an S1 ∈
SS , and an S2 ∈ SS •, such that S1 Σ T and S2 Σ T both hold, and the decomposition

of CMF C is clear.

Of course all the [Σ]SS , 〈Σ〉(SS •), 〈Σ〉SS , [Σ](SS •), figuring in the above are core or
rectified, as appropriate, by Proposition 6.14.

To establish (3) we calculate as follows, where comA and comC are complements in

CMF A and CMF C respectively.

[Σ]〈Σ〉(SS  •)  = [Σ]{T | (∃ S  • S ∈ SS  • ∧ S Σ T  )}
=  (definitions)
[Σ]{T | (∃ S , T  ′ • S ∉ SS ∧ S Σ T  ′ ∧ S Σ T  )}
=  (PC, set theory)
[Σ]{T | (∃ S  • S ∉ SS ∧ S Σ T  )}
=  (PC, set theory)
[Σ]comC({T | (∀ S  • S Σ T ⇒ S ∈ SS )})
= (PC, definitions of [Σ]SS and CMF C

NS )
[Σ]({T | T ∉ [Σ]SS } ∪ CMF C

NS )
=  (T ∈ CMF C

NS ⇒ (∀ S  • ¬(S Σ T  )))
[Σ]{T | T ∉ [Σ]SS }
=  (definition of [Σ], PC, set theory)
{S | ¬((∀ T  ′ • T  ′ ∈ [Σ]SS ∨ ¬(S Σ T  ′)) ∨ (∃ T  ′ • S Σ T  ′ ∧ T  ′ ∈ [Σ]SS ))}
=  (definition of 〈Σ〉, PC, set theory)
comA({S | (∀ T  ′ • S Σ T  ′ ⇒ T  ′ ∈ [Σ]SS )} ∪ 〈Σ〉[Σ]SS  )
=  (definition of [Σ][Σ]SS  and CMF A

NS )
comA([Σ][Σ]SS ∪ CMF A

NS ∪ 〈Σ〉[Σ]SS )
=  (Proposition 6.10)
comA(〈Σ〉[Σ]SS ∪ CMF A

NS )
=  (PC, set theory)
comA(〈Σ〉[Σ]SS ) ∩ CMF A

S  =  comA(〈Σ〉[Σ]SS )•

=  (SS  is core)

SS  • (6.5)

To establish (4) we must show that if SS  is rectified, then 〈Σ〉[Σ](SS  •) = SS  •.

〈Σ〉[Σ](SS •) = 〈Σ〉{T | (∃ S • S ∈ SS • ∧ S Σ T ) ∧ (∀ S • S Σ T ⇒ S ∈ SS •)}
=  (definitions)
〈Σ〉{T | (∃ S , T  ′ • S ∉ SS ∧ S Σ T  ′ ∧ S Σ T  ) ∧

(∀ S  • S Σ T ⇒ (∃ T  ′ • S ∉ SS ∧ S Σ T  ′))}
=  (PC, set theory)
〈Σ〉{T | (∃ S  • S ∉ SS ∧ S Σ T  ) ∧ (∀ S  • S Σ T ⇒ S ∉ SS )}
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=  (PC, set theory)
〈Σ〉comC({T | (∀ S  • S Σ T ⇒ S ∈ SS ) ∨ (∃ S  • S Σ T ∧ S ∈ SS )})
= (PC, definitions of [Σ]SS and CMF C

NS )
〈Σ〉comC([Σ]SS ∪ CMF C

NS ∪ 〈Σ〉SS )
=  (T ∈ CMF C

NS ⇒ (∀ S  • ¬(S Σ T  )), Proposition 6.10)
〈Σ〉{T | T ∉ 〈Σ〉SS }
=  (definition of 〈Σ〉, PC, set theory)
{S  | ¬(∀ T ′ • S Σ T ′ ⇒ T ′ ∈ 〈Σ〉SS )}
=  (definition of [Σ], PC, set theory)
comA([Σ]〈Σ〉SS ∪ CMF A

NS )
=  (PC, set theory)
comA([Σ]〈Σ〉SS ) ∩ CMF A

S  =  comA([Σ]〈Σ〉SS )•

=  (SS  is rectified)

SS  • (6.6)

Point (5) is now obvious.  We are done.

7   Ambivalent Properties and their Transformers

One weakness of the simulation transformers studied in the previous section is that
the simulation relationship S Σ T completely fails to restrict the lead-ins and lead-
outs and other non-simulable segments of both S and T. As a consequence, any prop-
erty defined by a set comprehension of the form {S | … S Σ T }, where T ranges over
some understood property, can take in all possible ways of embellishing the simulat-
ing segments of a given S with such non-simulable portions, almost without reserva-
tion. Fortunately there are other mappings we can consider that can alleviate this to
a degree.

We observe that discussions of systems (and of system property transformations in
particular) invariably take place in an appropriate meta level context, and although
we have been working exclusively at the semantic level, any system property that we
discuss must have some syntactic description at the meta level in order to be dis-
cussed at all. It is the structure of this meta level syntactic description in its meta level
context that we aim to exploit.  Typical candidate meta level contexts include:

[S] The class of all systems. (7.1)

[R] A number of systems together with certain retrenchments between some
pairs of them. (7.2)

[R1]A specific retrenchment between two specific systems. (7.3)

Essentially, an ambivalent property (of a system with respect to a context) is a prop-
erty that can be expressed in the meta language by a predicate which is well defined
(and each of whose subexpressions is well defined) for every choice of system in the
context. Thus the predicate that defines the property must refer only to attributes of
the system that are possessed by all systems belonging to the context. We call such
predicates ambivalent predicates. To make this clearer we give a more precise defi-
nition for the context [S], but quickly move on to discuss other possibilities more in-
formally.
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Definition 7.1 An ambivalent predicate for the context [S] is a predicate φ that for
a candidate multifragment U of a candidate system U of [S], refers only to its struc-
ture as a sequence of sequences, and the property UU = PRU({U | U ∈ CMF U ∧ φ})
that it defines is called an ambivalent property.

Thus consider a multifragment U of U. It is a sequence of sequences U k, each ele-
ment U k[l] of which is a step u -(i, OpU, o)-› u′ (and these steps connect together in
the usual way). Consequently, any set of multifragments that is unrestricted regard-
ing the data items u, i, o, u′, for the various steps, can be described by a set compre-
hension of the form {U | U ∈ CMF U ∧ φ} where φ does not mention st(e), in(e),
Op(e), ou(e), st′(e), for any e that can refer to any step U k[l]. Such a predicate φ is
thus equally applicable to any other system W in [S] and defines, via PRW, a corre-
sponding property of W, namely PRW{W | W ∈ CMF W ∧ φ}. Ambivalent prop-
erties (for the context [S]) are properties that can be described in this way.

To put it another way, ambivalent predicates and properties refer only to aspects that
can be considered to be part of the common structure of the context of discourse.

Example 7.2 The following phrases, when formalised to the extent needed, yield
ambivalent predicates for the context [S].

S  contains one fragment and its length is 5. (7.4)

md(S) = 0 ∧ md(S0) = 4 (7.5)

No fragment in S  has length greater than 15. (7.6)

k ∈ dom(S) ⇒ md(Sk) ≤ 14 (7.7)

Above, (7.4) and (7.5) are intended to be equivalent as are (7.6) and (7.7). In both
cases the latter is a more formal statement of the former. Note that nothing other than
the structure of S  as a sequence of sequences is refered to.

Example 7.3 The following phrases, yield ambivalent predicates for other contexts.

S  contains one fragment and its length is 5; the second and third
operation names are both Inc.  (Assuming Inc ∈ (OpsA ∩ OpsC).) (7.8)

md(S) = 0 ∧ md(S0) = 4 ∧ Op(S0[1]) = Inc ∧ Op(S0[2]) ∈ {Inc} (7.9)

S  contains one fragment; the second operation names is not Inc.
(Assuming Inc ∈ (OpsA ∩ OpsC).) (7.10)

md(S) = 0 ∧ Op(S0[1]) ≠ Inc (7.11)

The first fragment in S  starts in an initial state. (7.12)

Note that (7.8)-(7.11) depend implicitly on there being only one retrenchment in play
in the current discourse, otherwise the term (OpsA ∩ OpsC) becomes ambiguous, so
the predicates defined are suitable for example for the context [R1].

The last item (7.12), initiates the relaxation of the strict tenets of the contexts we have
defined earlier, in that it refers to initial states. Certainly this is not permitted accord-
ing to Definition 7.1, but observing that all the systems we consider do indeed have
initial states, we are entitled to regard the possession of an initial state as a structural
element of our class of systems, and accordingly, mention of initial states ought to be
permitted inside ambivalent predicates since it is well defined for all systems in the
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context. We do not formalise this more precisely here, and instead we spend some
time indicating other viable relaxations of the rather narrow notions of ambivalence
introduced above.

Example 7.4 The following phrases provide further cases of notions that are not
strictly permitted according to earlier remarks, but that could potentially be seen as
structural, and thus as yielding ambivalent predicates for suitable contexts.

The last fragment in S  ends in a final state. (7.13)

Each fragment in S  passes through at least one bottleneck state. (7.14)

The second fragment in S  ends in a state outside the field of the
retrieve relation. (7.15)

The second fragment in S  has three simulable steps. (7.16)

The one and only fragment in S  has three consecutive simulable steps
whose operation names are respectively Inc, Inc, Dec, and all the other
steps are non-simulable. (7.17)

Phrase (7.13) uses the notion of final state, one which is not present in the system con-
cept of Section 2, and so phrase (7.13) is not only undefined in that sense, but also
according to eg. Definition 7.1. But many useful classes of system do have a notion
of final state, and the significance and utility of retrenchment do not depend on
whether this aspect of a system is present or not, so finality of states ought to be ad-
mitted in ambivalent predicates if the context is one where finality is a common struc-
tural property of all systems in the context.

Phrase (7.14) goes further. What is a bottleneck state? There is no predetermined
answer to the question, but there can arise situations in which we are dealing with a
class of systems that each have one or more states that merit some special consider-
ation of this kind. Regarding this class as a context, it then becomes reasonable to
elevate those states to a structural feature, and to allow them to contribute to ambiv-
alent predicates.

The more liberal examples so far can be characterised by saying that all occurences
in the ambivalent predicate φ of st(e), in(e), ou(e), st′(e), for any e that can refer to
any step Sk[l], are constrained to evaluate to elements inside (or outside) of given con-
stant sets whose names have a fixed interpretation in each system in the context.

However (7.15) is more contentious than that. As in (7.8)-(7.11), it assumes there is
only one retrenchment in the current discourse, otherwise it is ambiguous as to which
retrieve relation is being refered to. Beyond this lies a typing issue regarding the do-
main and range of a heterogeneous relation: we need to define the field of a hetero-
geneous relation as the disjoint union of its domain and range before (7.15) is well
typed.

Phrase (7.16) is similar to (7.15) though more complicated, requiring reference to all
the ingredients of a retrenchment, while (7.17) goes even further. (We will return to
(7.17) shortly.)

Reviewing the preceding examples confirms that what can be regarded as acceptable
in an ambivalent predicate is heavily dependent on the meta context. And it suggests
that in a more rigorous formalisation, the aspects we seek to capture can be expressed
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by introducing additional constants into the object language, each with a fixed
(though not necessarily first order) interpretation for each system in the context. Giv-
en the focus on the semantic domain in this paper, we do not pursue such formalisa-
tions here, though there is obviously much scope for detailed exploration of the am-
bivalent predicate idea in various scenarios.

Definition 7.5 Let AA = PRA({S | S ∈ CMF A ∧ φ}) where φ is an ambivalent pred-
icate, be an ambivalent property of the abstract system of a retrenchment. Let BB =
PRC({T | T ∈ CMF C ∧ φ}) be the corresponding concrete ambivalent property. The
ambivalent transformer operator (Α) is defined as follows.

(Α)AA   = BB (7.18)

(Α)BB   = AA (7.19)

For ambivalent properties there are now two ways of mapping them between levels
of abstraction: firstly using [Σ] and 〈Σ〉, and secondly using (Α). Consider the abstract
property SS defined by (7.17) again, which is a good example for comparing these
mappings. We know by Proposition 6.10 that [Σ]SS ⊆ 〈Σ〉SS , and that both consist
only of concrete multifragments (of length at most 3, by Definition 4.6.(1)), that are
each in simulation with at least one element of SS . The individual fragments may
contain arbitrary lead-ins, lead-outs, and other non-simulable segments. On the other
hand (Α)SS consists of concrete multifragments of length 1, each of which contains
a segment of three steps with operation names Inc, Inc, Dec, such that each of these
three steps is individually simulable. But there is no requirement that the simulations
of the concrete Inc, Inc, Dec, steps fit together to make a segment of length 3 in a sin-
gle fragment. Thus if the retrieve and other relations of the retrenchment are suffi-
ciently perverse, there may be elements of SS not in simulation with any element of
(Α)SS , and elements of (Α)SS not in simulation with any element of SS . This pro-
vokes the thought of elevating consecutive simulability to a structural property and
examining the ambivalent properties generated. If (7.17) were strengthened in this
way, then we would find that (Α)SS ⊆ 〈Σ〉SS . These remarks suffice to illustrate that
there is no universally valid relationship between the [Σ] and 〈Σ〉 transformers on the
one hand, and the (Α) transformers on the other.

The (Α) transformer is obviously of limited use since it only applies to ambivalent
properties. But since ambivalent predicates are capable of constraining the lead-ins,
lead-outs, and other non-simulable segments of fragments, the interaction between
ambivalent properties mapped between levels of abstraction by (Α) and arbitrary
properties mapped via [Σ] and 〈Σ〉 is obviously of great interest.

Proposition 7.6 Let a retrenchment be understood, and AA and BB be abstract and
concrete ambivalent properties related via (7.18) and (7.19). Let SS be an arbitrary
abstract property.  Then:

(1) 〈Σ〉(SS ∩ AA ) ∩ BB ⊆ 〈Σ〉(SS ∩ AA ) ⊆ 〈Σ〉SS

(2) 〈Σ〉(SS ∩ AA ) ∩ BB ⊆ 〈Σ〉SS ∩ BB ⊆ 〈Σ〉SS

(3) [Σ](SS ∩ AA ) ∩ BB ⊆ [Σ](SS ∩ AA ) ⊆ [Σ]SS

(4) [Σ](SS ∩ AA ) ∩ BB ⊆ [Σ]SS ∩ BB ⊆ [Σ]SS
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Proof.  The inclusions (1)-(4) follow by monotonicity of 〈Σ〉 and [Σ].

That we cannot uncritically relate the middle terms in (1) and (2) or (3) and (4) in
Proposition 7.6 for arbitrary ambivalent properties is vividly shown as follows.

Counterexample 7.7 Let AA be all multifragments that begin in an abstract initial
state, and BB be all multifragments that begin in a concrete initial state. Then the
standard initialisation PO (2.1), cannot prove that all elements of [Σ](SS ∩ AA ) be-
gin in a concrete initial state, which is true of [Σ]SS ∩ BB . The 〈Σ〉 case is similar.
And the corresponding facts for the concrete counterpart of Proposition 7.6, using an
arbitrary concrete property TT instead of SS , also fail, as (2.1) only says that for each
concrete intial state there is some abstract initial state, which is eg. too weak to prove
that all elements of [Σ](TT ∩ BB ) start in abstract initial states. Of course specific
systems may enjoy stronger properties regarding initialisation, that enable the equal-
ity of 〈Σ〉(SS ∩ AA ) and 〈Σ〉SS ∩ BB or of [Σ](SS ∩ AA ) and [Σ]SS ∩ BB to be
proved, but that is another matter.

8   Constrained Property Transformers

Proposition 7.6 and Counterexample 7.7 showed that the interaction between ambiv-
alent properties and arbitrary properties was not particularly clean. While this might
be viewed initially as a disappointment, on reflection it is not, as it generates greater
expressivity in transforming properties between levels of abstraction; and given the
somewhat unruly nature of the [Σ] and 〈Σ〉 transformers as regards non-simulable seg-
ments within fragments, this can only be welcomed by developers when utilising re-
trenchment in practice.

We now consider in more detail property transformations that take an abstract prop-
erty SS to 〈Σ〉SS ∩ QQ or to [Σ]SS ∩ QQ . We focus on imposing a constraint on the
result of a simulation transformer 〈Σ〉 or [Σ], as we assume that any constraint needed
for SS itself, would naturally be part of the definition of SS already. But now there
is no reason to insist that QQ is a purely ambivalent property. There may be every
reason to be interested in the restriction of 〈Σ〉SS or [Σ]SS to properties which are
quite specific to the concrete system. Thus constrained property transformers will
translate an abstract property SS to a concrete property of the form 〈Σ〉SS ∩ BB ∩
YY , or to [Σ]SS ∩ BB ∩ YY , where BB is an ambivalent property and YY is a prop-
erty specific to the concrete system. We will continue to write these as 〈Σ〉SS ∩ QQ
or [Σ]SS ∩ QQ , with QQ = BB ∩ YY , since no benefit is gained at the mathematical
level by maintaining the distinction between ambivalent and specific constraints, as
Proposition 7.6 and Counterexample 7.7 indicated.

Remark 8.1 Even if there is no mathematical benefit in separating BB and YY , there
may be a benefit at the software methodology level in maintaining the distinction.
These different kinds of constraint may arise from different requirements, and thus
developers may wish to manipulate them differently for that reason. However our
concern now is with mathematics, so we merely note the point for future reference,
and continue to use the abbreviated form.

Definition 8.2 Let SS and PP be abstract properties and TT and QQ be concrete
ones. The property transformers [ΣQQ ], 〈ΣQQ 〉, [ΣPP ], 〈ΣPP 〉, called constrained prop-
erty tranformers (CPTs), are defined as follows.
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[ΣQQ ]SS   = [Σ]SS ∩ QQ (8.1)

〈ΣQQ 〉SS   = 〈Σ〉SS ∩ QQ (8.2)

[ΣPP ]TT   = [Σ]TT ∩ PP (8.3)

〈ΣPP 〉TT   = 〈Σ〉TT ∩ PP (8.4)

We proceed to study [ΣQQ ], 〈ΣQQ 〉, [ΣPP ], 〈ΣPP 〉, along familiar lines. The following
are immediate from the definitions.

Proposition 8.3 The following hold for the CPTs [ΣQQ ], 〈ΣQQ 〉.

(1) SS 1 ⊆ SS 2 ⇒ 〈ΣQQ 〉SS 1 ⊆ 〈ΣQQ 〉SS 2 ∧ [ΣQQ ]SS 1 ⊆ [ΣQQ ]SS 2

(2) [ΣQQ ]SS ⊆ 〈ΣQQ 〉SS

Proposition 8.4 Let SS  be an abstract property and QQ  a concrete one.  Then:

(1) [ΣQQ ]SS ⊆ [Σ]SS

(2) 〈ΣQQ 〉SS ⊆ 〈Σ〉SS

Proposition 8.5 Let SS  and PP  be abstract properties and QQ  be a concrete one.

(1) … (〈ΣPP 〉[ΣQQ ])3SS ⊆  (〈ΣPP 〉[ΣQQ ])2SS ⊆ 〈ΣPP 〉[ΣQQ ]SS ⊆ SS  • ⊆ SS

(2) [ΣQQ ]〈ΣPP 〉[ΣQQ ]〈ΣPP 〉[ΣQQ ]SS   = [ΣQQ ]〈ΣPP 〉[ΣQQ ]SS

(3) [ΣPP ]〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS   = [ΣPP ]〈ΣQQ 〉SS

(4) w[ΣQQ ]〈ΣPP 〉[ΣQQ ]〈ΣPP 〉[ΣQQ ]SS   = w[ΣQQ ]〈ΣPP 〉[ΣQQ ]SS , where w is any
well formed6 word over {〈ΣPP 〉, [ΣQQ ], 〈ΣQQ 〉, [ΣPP ]}

(5) w[ΣPP ]〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS   = w[ΣPP ]〈ΣQQ 〉SS , where w is any
well formed word over {〈ΣPP 〉, [ΣQQ ], 〈ΣQQ 〉, [ΣPP ]}

Proof. For (1), the conclusion follows by Proposition 8.3 and Proposition 8.4. Note
that there is no analogue of Proposition 6.12.(2) because of the conflict between
Proposition 8.4.(2) and the desired ascending chain. For (2), we use [ΣQQ ]SS in place
of TT   in the concrete counterpart of (3).

For (3), let S ∈ [ΣPP ]〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS . Then S ∈ PP , and (∃ T • S Σ T ∧ T ∈
〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS ) = (∗1), and (∀ T • S Σ T ⇒ T ∈ 〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS ) = (∗2), all
hold.

Let T witness (∗1). Then T ∈ Q Q , and there is an S ′ such that S ′ Σ T ∧ S ′ ∈
[ΣPP ]〈ΣQQ 〉SS = (∗3) holds. From (∗3) we deduce (∀ T ′ • S ′ Σ T ′ ⇒ T ′ ∈ 〈ΣQQ 〉SS )
= (∗4) among other things. And since (∗4) applies to T ′ = T because of (∗3), we de-
duce T ∈ 〈ΣQQ 〉SS ; so we have (∃ T   • S Σ T ∧ T ∈ QQ ∧ T ∈ 〈ΣQQ 〉SS ) = (∗5).

From (∗2) we know that if S Σ T holds, then T ∈ QQ , and there is an S ′ such that
(∗3) holds. By the reasoning just used we deduce T ∈ 〈ΣQQ 〉SS again; so we have
(∀ T • S Σ T ⇒ T ∈ QQ ∧ T ∈ 〈ΣQQ 〉SS ) = (∗6). Now S ∈ PP ∧ (∗5) ∧ (∗6) means
that S ∈ [ΣPP ]〈ΣQQ 〉SS , so we have [ΣPP ]〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS ⊆ [ΣPP ]〈ΣQQ 〉SS .

6. Well formed means that the PP  and QQ  subscripts alternate appropriately.
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To prove that [ΣPP]〈ΣQ Q〉SS ⊆ [ΣPP]〈ΣQ Q〉[ΣPP]〈ΣQ Q〉SS , suppose for a contradiction
that S ∈ [ΣPP ]〈ΣQQ 〉SS but that S ∉ [ΣPP ]〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS . Then either S ∉ PP =
(∗1) holds, or there is no T such that S Σ T ∧ T ∈ 〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS = (∗2) holds,
or there is some T   such that S Σ T ∧ T ∉ 〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS  = (∗3) holds.

Now (∗1) is contradicted by the PP  constraint in S ∈ [ΣPP ]〈ΣQQ 〉SS .

Suppose next that there is no T such that (∗2) holds. So for all T, either ¬(S Σ T ) or
T ∉ 〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS holds. Now S ∈ [ΣPP ]〈ΣQQ 〉SS implies (∃ T • S Σ T ∧ T ∈
〈ΣQQ 〉SS ), so pick a T that witnesses this. Then for this T, ¬(S Σ T ) is contradicted,
so T ∉ 〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS is forced. But then this witness also satisfies T ∈ QQ , so
S ∈ [ΣPP ]〈ΣQQ 〉SS and S Σ T and T ∈ QQ , give T ∈ 〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS , which is the
contradiction that rules out (∗2).

Finally suppose that there is a T such that (∗3) holds. Then S ∈ [ΣPP ]〈ΣQQ 〉SS and
S Σ T and T ∉ 〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS (the latter being equivalent to ¬(T ∈ QQ ∧ T ∈
〈Σ〉[ΣPP ]〈ΣQQ 〉SS )) are all assumed, and these imply T ∉ QQ . But S ∈ [ΣPP ]〈ΣQQ 〉SS
implies (∀ T ′ • S Σ T ′ ⇒ T ′ ∈ 〈ΣQQ 〉SS ) and this applies in particular to T ′ = T,
which means that T ∈ QQ holds, giving the last contradiction we need. Therefore
(∗3) is impossible and (3) is proved.

Now (4) and (5) quickly follow.  We are done.

Counterexample 8.6 With the conventions of Counterexample 6.15, Fig. 5.(a) and
Fig. 5.(b) show that clauses (2) and (3) of Proposition 8.5 are respectively optimal.
Thus Fig. 5.(a) shows that 〈ΣPP 〉[ΣQQ ]〈ΣPP 〉[ΣQQ ]SS ≠ 〈ΣPP 〉[ΣQQ ]SS , while Fig. 5.(b)
shows that 〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS ≠ 〈ΣQQ 〉SS .

The defaults for the above when either PP or QQ reduces to the trivial property are
of interest. The following have obvious extensions by suitable words w as in Propo-
sition 8.5.

SS

Fig. 5

• •

• •

[ΣQQ ]〈ΣPP 〉[ΣQQ ]SS

QQ = [Σ]SS = [ΣQQ ]SS

•

PP = [ΣPP ]〈ΣQQ 〉SS

• • •

• •

〈ΣQQ 〉[ΣPP ]〈ΣQQ 〉SS

•

PP = 〈ΣPP 〉[ΣQQ ]SS

〈ΣPP 〉[ΣQQ ]〈ΣPP 〉[ΣQQ ]SS

(a)

QQ = 〈ΣQQ 〉SS

SS

[Σ]〈ΣQQ 〉SS

(b)
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Corollary 8.7 Let PP be the trivial abstract property so that [ΣPP ] = [Σ] and 〈ΣPP 〉 =
〈Σ〉.  Then:

(1) [ΣQQ ]〈Σ〉[ΣQQ ]SS   = [ΣQQ ]SS

(2) [Σ]〈ΣQQ 〉[Σ]〈ΣQQ 〉SS   = [Σ]〈ΣQQ 〉SS

Proof. For (1) we know that 〈Σ〉[ΣQ Q]SS ⊆ SS by Proposition 8.5.(1), so we have
[ΣQQ ]〈Σ〉[ΣQQ ]SS ⊆ [ΣQQ ]SS by monotonicity. Therefore we must show [ΣQQ ]SS ⊆
[ΣQQ ]〈Σ〉[ΣQQ ]SS . Suppose T ∈ [ΣQQ ]SS , i.e. {T } ⊆ [ΣQQ ]SS . Then T ∈ QQ and
(∃ S • S ∈ SS ∧ S Σ T ) and (∀ S • S Σ T ⇒ S ∈ SS ) all hold. Thus the set SS T =
{S | S ∈ SS ∧ S Σ T } which is equal to 〈Σ〉{T } by (6.4), satisfies SS T ⊆ 〈Σ〉[ΣQQ ]SS .
Since {T } ⊆ [ΣQQ ]SS T , we get {T } ⊆ [ΣQQ ]〈Σ〉[ΣQQ ]SS , and so, because T was an
arbitrary element of [ΣQQ ]SS , we deduce [ΣQQ ]SS ⊆ [ΣQQ ]〈Σ〉[ΣQQ ]SS .

Note that (2) is the same as Proposition 8.5.(3), which cannot be improved as Fig.
5.(b) shows.

Corollary 8.8 Let QQ be the trivial concrete property so that [ΣQQ ] = [Σ] and 〈ΣQQ 〉
= 〈Σ〉.  Then:

(1) [Σ]〈ΣPP 〉[Σ]〈ΣPP 〉[Σ]SS   = [Σ]〈ΣPP 〉[Σ]SS

(2) [ΣPP ]〈Σ〉[ΣPP ]〈Σ〉SS   = [ΣPP ]〈Σ〉SS

Proof. We note that (1) is as in Proposition 8.5.(2), which cannot be improved as Fig.
5.(a) shows. Also (2) is as in Proposition 8.5.(3); to see that this cannot be improved
it is enough to let QQ include also the last concrete element in Fig. 5.(b) and to recal-
culate 〈Σ〉SS , [ΣPP ]〈Σ〉SS , and 〈Σ〉[ΣPP ]〈Σ〉SS  in succession.

Definition 8.9 Let SS and PP be abstract properties and QQ be a concrete one. Then
core(PP,QQ )(SS ) = 〈ΣPP 〉[ΣQQ ]〈ΣPP 〉[ΣQQ ]SS ⊆ SS , is called the (PP ,QQ )-core of SS . If
core(PP,QQ )(SS ) = SS then SS is a (PP ,QQ )-core property. Similarly rect(PP,QQ )(SS ) =
[ΣPP ]〈ΣQQ 〉SS , gives the (PP ,QQ )-rectification of SS . If rect(PP,QQ )(SS ) = SS then SS
is a (PP ,QQ )-rectified property. A property is (PP ,QQ )-robust iff it satisfies SS • =
SS , and [ΣQQ ]SS  = 〈ΣQQ 〉SS , and 〈ΣPP 〉[ΣQQ ]SS  = [ΣPP ]〈ΣQQ 〉SS .

In both the case of the (PP ,QQ )-core and the (PP ,QQ )-rectification of SS , these de-
rived properties of SS feature the smallest number of iterations of 〈ΣP P〉[ΣQ Q] and
[ΣPP ]〈ΣQQ 〉 respectively, such that a further application guarantees no change. Also,
compared with the situation in Section 6, there is now greater scope for defining var-
ious weakenings of (PP ,QQ )-robust properties, but we do not do so.

Proposition 8.10 Let SS and PP be abstract properties and QQ be a concrete one.
Then if SS  is a (PP ,QQ )-core property then 〈ΣPP 〉[ΣQQ ]SS  = SS .

Proof. Proposition 8.5.(1) says that 〈ΣPP〉[ΣQ Q] is a contraction mapping, therefore
〈ΣPP 〉[ΣQQ ]〈ΣPP 〉[ΣQQ ]SS  = SS  cannot hold unless 〈ΣPP 〉[ΣQQ ]SS  = SS .

Proposition 8.11 Let SS and PP be abstract properties and QQ be a concrete one.

(1) [ΣQQ ]〈ΣPP 〉[ΣQQ ]SS  is (PP ,QQ )-rectified.

(2) 〈ΣPP 〉[ΣQQ ]〈ΣPP 〉[ΣQQ ]SS  is (PP ,QQ )-core.

Proof. Proposition 8.5.(2) gives both (1) and (2), though only (1) is an ‘efficient’ re-
sult.
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Finally, when we come to reprise Proposition 6.16, the unconstrained interaction be-
tween SS , PP and QQ generates more complexity than it profits us to fully explore.
Thus CMF A partitions into five subsets all potentially non-empty, thus:

CMF A = CMF A
NS +∪ (SS  •∩PP ) +∪ (SS  •∩PP ) +∪

(SS  •∩PP ) +∪ (SS  •∩PP ) (8.5)

At the concrete level, this generates a partition of CMF C into CMF C
NS and fifteen po-

tentially non-empty subsets of CMF C
S as follows. There are four subsets containing

concrete multifragments whose Σ images lie entirely in the four abstract subsets:

(SS  •∩PP ), (SS  •∩PP ), (SS  •∩PP ), (SS  •∩PP ) (8.6)

i.e. they are:

[Σ](SS  •∩PP ), [Σ](SS  •∩PP ), [Σ](SS  •∩PP ), [Σ](SS  •∩PP ) (8.7)

There are six subsets containing concrete multifragments T whose abstract images
lie entirely in pairs drawn from (8.6). There are four subsets whose abstract images
lie entirely in triples drawn from (8.6), and a final subset related to all four subsets in
(8.6). None of this mentions QQ . Each of the above concrete subsets splits into a
part in QQ  and a part outside QQ , i.e.:

[ΣQQ ](SS  •∩PP ), [ΣQQ ](SS  •∩PP ), [ΣQQ ](SS  •∩PP ), [ΣQQ ](SS  •∩PP ),

[ΣQQ ](SS  •∩PP ), [ΣQQ ](SS  •∩PP ), [ΣQQ ](SS  •∩PP ) … etc. (8.8)

So we get thirty potentially non-empty simulating subsets of CMF C. This is without
considering iterations of the 〈ΣPP〉, [ΣQ Q], 〈ΣQ Q〉, [ΣPP] operators, which create even
finer subdivisions, as Counterexample 8.6 shows. We do not explore these more de-
tailed partitions further here.

9   CPTs for Regular Simulation Relations
We recall that a relation R : X ↔ Y is regular iff R;R–1;R = R, where ; is forward
relational composition. Regular relations are also often called difunctional because
any regular relation R can be equivalently characterised by the property that there are
two partial functions f : X → T and g : Y → T such that f;g–1 = R. This means in
particular that functions and inverse functions are subsumed by regularity, which
makes regularity widely applicable in practice, since many development steps feature
functions or inverse functions in the passage from abstract to concrete; see [Banach
(1995)].

As an easy consequence of difunctionality, a regular relation is one whose domain
dom(R) and range rng(R) are partitioned into an equal number of equivalence classes,
such that for any two classes [x] ⊆ dom(R) and [y] ⊆ rng(R), the restriction of R is
either empty from [x] to [y], or universal from [x] to [y], the universal cases corre-
sponding to f –1(t)×g–1(t) when t ∈ T is in the range of both f and g. Such elements
of T consequently set up a bijection between the equivalence classes of the domain
and those of the range.

Proposition 9.1 Suppose the simulation relation Σ arising from a retrenchment is
regular. Then the abstract equivalence classes in CMF A of Σ are robust properties.
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Proof. Let SS be an abstract equivalence class in CMF A of Σ. It is clearly a property.
Evidently SS • = SS . Also there is a concrete equivalence class in CMF C of Σ, TT ,
such that S ∈ SS and S Σ T implies (S ,T ) ∈ SS × TT . And T ∈ TT and S Σ T implies
the same thing.  From this it is easy to see that 〈Σ〉SS  = TT   = [Σ]SS .

Corollary 9.2 Suppose the Σ relation arising from a retrenchment is (partial) func-
tional or (partial) inverse functional. Then the abstract equivalence classes of Σ are
robust properties.

Counterexample 9.3 The converse of Proposition 9.1 (which would say that robust
properties arose from regular Σ relations) does not hold. This is shown by a variant
of Fig. 4 in which the rightmost abstract and concrete multifragments are removed,
resulting in a shape, a Σ relation which is not regular. Now [Σ]SS becomes equal
to 〈Σ〉SS , and SS  is robust.

Proposition 9.4 Suppose the Σ relation arising from a retrenchment is regular. Let
SS  be an abstract equivalence class of Σ and QQ  a concrete property.  Then:

(1) 〈Σ〉SS ∩ QQ ≠ ∅ ⇔ 〈Σ〉[ΣQQ ]SS  = SS

(2) 〈Σ〉SS ⊆ QQ ⇔ [Σ]〈ΣQQ 〉SS  = SS

Proof. For (1), let T ∈ 〈Σ〉SS ∩ QQ . By Proposition 9.1, T ∈ [Σ]SS ∩ QQ , i.e. T ∈
[ΣQQ ]SS . By regularity, S Σ T iff S ∈ SS , so that 〈Σ〉[ΣQQ ]SS = SS . Conversely, if
〈Σ〉[ΣQQ ]SS  = SS , then [ΣQQ ]SS ≠ ∅, so there must be some T ∈ 〈Σ〉SS ∩ QQ .

For (2), if 〈Σ〉SS ⊆ QQ , then 〈ΣQQ 〉SS = 〈Σ〉SS , hence [Σ]〈ΣQQ 〉SS = [Σ]〈Σ〉SS . Since
by Proposition 9.1 SS is robust, by Proposition 6.14.(3) SS is weakly robust. This
implies [Σ]〈Σ〉SS = SS . For the converse, suppose [Σ]〈ΣQQ 〉SS = SS holds, but that T
∈ 〈Σ〉SS – QQ . Then for T, since by regularity S Σ T iff S ∈ SS , we have that for all
S ∈ SS , S ∉ [Σ]〈ΣQQ 〉SS  since T ∉ QQ .  In fact [Σ]〈ΣQQ 〉SS  is empty.

Proposition 9.4 describes a particularly clean interaction between the [Σ] and 〈Σ〉
transformers on the one hand, and constraints arising from a property QQ on the oth-
er, due to the fact that Σ breaks up into a number of disjoint universal relations. We
now examine sufficient conditions for the simulation relation of a retrenchment to be
regular.

Consider a retrenchment given by the data G, POp, OOp, COp. When we say any of
these relations (or any relations formed from these using the usual combinators) is
regular, we mean that it is regular when regarded as a relation from the relevant car-
tesian product of abstract data spaces to the corresponding cartesian product of con-
crete spaces.

Definition 9.5 We say that a retrenchment has regular data iff for all operations Op
∈ OpsA ∩ OpsC, the relation given by G(u, v) ∧ POp(i, j, u, v), the relation given by
G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v), and the one given by COp(u′, v′, o, p; i, j, u, v),
are all regular in the sense just stated (where in the case of G ∧ POp and of G′ ∧ OOp,
we implicitly assume that G and G′ are extended by appropriate universal relations
on the other variables involved, in order that the overall relation has the correct sig-
nature). We say that the retrenchment is fully regular iff in addition, the relation giv-
en by ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨ COp(u′, v′, o, p; i, j, u, v)) is regular.
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Since the intersection of regular relations is regular, regularity of say G ∧ POp, fol-
lows from the individual regularity of G and POp (though this is not a necessary con-
dition). However, since the union of regular relations need not be regular, regular
data for a retrenchment does not imply that the retrenchment is fully regular.

Proposition 9.6 Suppose a retrenchment is fully regular. Then its one-step simula-
tion relation Σ1 is regular.

Proof. We must show that Σ1 ; (Σ1)–1 ; Σ1 ⊆ Σ1 since the converse is obvious. So
suppose OpA and OpC are corresponding abstract and concrete operations and

(u1 -(i1, OpA, o1)-› u′1) Σ1 (v1 -(j1, OpC, p1)-› v′1)
(u2 -(i2, OpA, o2)-› u′2) Σ1 (v1 -(j1, OpC, p1)-› v′1)
(u2 -(i2, OpA, o2)-› u′2) Σ1 (v2 -(j2, OpC, p2)-› v′2) (9.1)

all hold. Refering to (4.4), we see that (G ∧ POp)(u1, v1, i1, j1) and (G ∧ POp)(u2, v1,
i2, j1) and (G ∧ POp)(u2, v2, i2, j2) all hold. By regularity (G ∧ POp)(u1, v2, i1, j2) is
true. Similarly we derive ((G′ ∧ OOp) ∨ COp)(u′1, v′2, o1, p2; i1, j2, u1, v2) by full
regularity. We know from (9.1) that stpOpC

(v2, j2, v′2, p2) ∧ stpOpA
(u1, i1, u′1, o1)

hold, so we have all the ingredients of (u1 -(i1, OpA, o1)-› u′1) Σ1 (v2 -(j2, OpC, p2)-›
v′2) which is what is needed.

Proposition 9.7 A default retrenchment has a regular Σ1 relation iff its original
G(u, v) ∧ POp(i, j, u, v) relations are regular for each Op.

Proof. To fix terms, suppose we are given G, POp, OOp, and from these we generate
a default retrenchment for which the default within relation PDef

Op and default con-
cedes relation CDef

Op are given via (3.1) and (3.2). Let us calculate its Σ1 relation.
Suppressing variable names, we obtain from (4.4):

G ∧ PDef
Op ∧ stpOpC

∧ stpOpA
∧ ((G′ ∧ OOp) ∨ CDef

Op)
=  (definitions)
G ∧ (G ∧ POp ∧ (∃ u′, o, v′, p • stpOpA

∧ stpOpC
)) ∧ stpOpC

∧ stpOpA
∧

((G′ ∧ OOp) ∨ (G ∧ POp ∧ stpOpA
∧ stpOpC

∧ ¬ (G′ ∧ OOp))
=
G ∧ POp ∧ stpOpC

∧ stpOpA
∧ ((G′ ∧ OOp) ∨ (G ∧ POp ∧ stpOpA

∧ stpOpC
))

=
G ∧ POp ∧ stpOpC

∧ stpOpA
(9.2)

Now let us check Σ1 ; (Σ1)–1 ; Σ1 ⊆ Σ1 with Σ1 given by (9.2). Refering to (9.1), the
left hand side implies stpOpC

(v2, j2, v′2, p2) ∧ stpOpA
(u1, i1, u′1, o1) immediately, and

also ((G ∧ POp)(u1, v1, i1, j1) ∧ (G ∧ POp)(u2, v1, i2, j1) ∧ (G ∧ POp)(u2, v2, i2, j2)) =
(∗). If (G ∧ POp) is regular, then we infer (G ∧ POp)(u1, v2, i1, j2) and thence the reg-
ularity of the one-step simulation relation. However if (G ∧ POp) is not regular then
there will be a counterexample that witnesses it, given by some values u1, v1, i1, j1,
u2, v2, i2, j2 for which (∗) holds but (G ∧ POp)(u1, v2, i1, j2) doesn’t, defeating the reg-
ularity of the Σ1 relation also.

Note that this result was obtained by a direct argument rather than by exploiting Prop-
osition 9.6. An algebraic proof along the expected lines would not be possible since
for a default retrenchment, the Σ1 relation is defined using a complement of a relation
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expected to be regular, i.e. ¬ (G′ ∧ OOp). Unfortunately complements of regular re-
lations are not normally regular.

Proposition 9.8 A retrenchment has a regular Σ1 relation iff it has a regular (multi-
fragment) Σ relation.

Proof. Assume the Σ1 relation is regular. Let S and T be abstract and concrete mul-
tifragments. By Corollary 4.8, S Σ T iff there is a totally ordered bijection between
the simulable steps of S and those of T, such that each pair in the bijection is a pair
of steps in simulation. Now let S1 Σ T1 and S2 Σ T1 and S2 Σ T2 all hold. Composing
the relevant totally ordered bijections in the obvious way, gives a totally ordered bi-
jection between the simulable steps of S1 and those of T2. For each pair of simulable
steps in the bijection, say u1 -(i1, OpA, o1)-› u′1 and v2 -(j2, OpC, p2)-› v′2, we have
(9.1), and so, since the one-step simulation relation is regular, u1 -(i1, OpA, o1)-› u′1
and v2 -(j2, OpC, p2)-› v′2 are in simulation. Repeating for all simulable steps in S1
and T2 yields S1 Σ T2, and thus Σ for multifragments is regular. For the converse we
note that the Σ1 relation is effectively a restriction of the Σ relation to exception-free
multifragments containing just one simulable step.

The impact of Proposition 9.7 and Proposition 9.8 is profound. It says that ‘almost
any’ development step done with retrenchment can enjoy a regular Σ relation; with
the appreciable simplification of property mappings that ensues from this. The rea-
son is that arranging for the G(u, v) ∧ POp(i, j, u, v) relations of the retrenchment to
be regular is usually not too difficult, as they can frequently be restricted to straight-
forward mappings between the representations of states and inputs at the two levels
of abstraction. Once this holds, the default retrenchment is always available, and this
guarantees a regular Σ relation via Proposition 9.8.

10   Examples
It is time to examine some examples of the preceding theory. To start with we revisit
the two main examples developed in detail in [Banach et al. (2005)], on multisets and
sequences, and on elementary control theory. Finally we look at a very simple model
of noninterfering processes, in which the main question of interest refers to the inter-
action between concepts of ambivalence and simulation mappings of a property.

10.1   Multisets and Sequences

For this example the abstract model is a multiset of NATs equipped with operations
putA, getA which insert an element and remove an element from the multiset. The
concrete world is more constrained, having as state, a sequence of NATs of maximum
length 10, or one of two exceptional states Uflow, Oflow, and with putC, getC as the
analogues of putA, getA. The more constrained putC, getC can get to Uflow, Oflow,
when there is an attempt to breach the bounds, at which point a resetC is able to re-
store order.  In detail the operations and state spaces are:

{putA, getA} = OpsA ⊆ OpsC = {putC, getC, resetC} (10.1)

U = M (NAT), IputA = NAT, OputA = ∅, IgetA = ∅, OgetA = NAT
V = {ll ∈ seq(NAT) | length(ll ) ≤ 10} ∪ {Uflow, Oflow},
JputC = NAT, PputC = {FULL}, JgetC = ∅, PgetC = NAT ∪ {EMPTY}
JresetC = ∅, PresetC = {OK} (10.2)
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The abstract transitions are:

mset -(n, putA, ε)-› mset+{n}  ; mset+{n} -(getA, n)-› mset (10.3)

and the concrete ones are:

mseq -(n, putC, ε)-› mseq@[n] , if length(mseq) ≤ 9
mseq -(n, putC, FULL)-› Oflow , if length(mseq) = 10 (10.4)

n::mseq -(getC, n)-› mseq , if length(mseq) ≤ 9
mseq -(getC, EMPTY)-› Uflow , if length(mseq) = 0 (10.5)

Oflow -(resetC, OK)-› []  , Uflow -(resetC, OK)-› [] (10.6)

The retrieve relation is the obvious:

G(mset, mseq)  =  (mrng(mseq) = mset) (10.7)

with the two values Uflow, Oflow being outside the range of G. The initialisations
are:

InitA(∅)  ; InitC([]) (10.8)

The concrete model is not a refinement of the abstract one, but it easily becomes a
retrenchment of it. One possible set of within, output, and concedes relations for the
put and get operations is the following:

Pput(i, j, mset, mseq)  =  (i = j ∧ mseq ∉ {Uflow, Oflow}) (10.9)

Oput(o, p; mset′, mseq′, i, j, mset, mseq)  =  (o = ε ∧ p = ε) (10.10)

Cput(mset′, mseq′, o, p; i, j, mset, mseq)  =
(p = FULL ∧ mseq′ = Oflow ∧ length(mseq) = 10 ∧ mset′ = mset+{i}) (10.11)

Pget(i, j, mset, mseq)  =  (mseq ∉ {Uflow, Oflow} ∧ length(mseq) ≠ 0) (10.12)

Oget(o, p; mset′, mseq′, i, j, mset, mseq)  =  (o = p) (10.13)

Cget(mset′, mseq′, o, p; i, j, mset, mseq)  = false (10.14)

The first thing to do with an example like this is to check the regularity conditions,
since if the example proves to be regular, enormous simplifications follow as we saw
in the previous section. Evidently the retrieve relation G is regular; and extending G
by universal relations on other variables, as needed in forming well typed more com-
plex expressions in the operation PO preserves this. Let us now look at the get oper-
ation. Pget is regular since it is universal aside from restricting the value of mseq, and
therefore (G ∧ Pget) is regular. Oget is regular since it is an equality relation, and so
(G′ ∧ Oget) is regular. Cget is empty, so ((G′ ∧ Oget) ∨ Cget) = (G′ ∧ Oget) is regular
and so the get part of the Σ1 relation is regular too.

We check the put operation. Pput is a conjunction of an equality relation and a restric-
tion on the value of mseq, both regular, so Pput is regular; therefore (G ∧ Pput) is reg-
ular. Oput is a pair of constraints on abstract and concrete outputs so is regular, hence
(G′ ∧ Oput) is regular. Turning to Cput, the first three clauses of (10.11) obviously
define regular relations, so their conjunction is too. The last clause is an equality re-
lation on three of the abstract variables, so reduces to a restriction on their values, so
is regular; hence Cput is regular.



35

Finally we check ((G′ ∧ Oput) ∨ Cput). Consider abstract and concrete quadruples
(before-state, input, after-state, output), where the components need not form a tran-
sition step. The abstract tuple A1 = ({1}, 2, {1…11}, ε) is related by (G′ ∧ Oput) to
the concrete tuple C1 = ([291], 378, [1…11], ε). C1 in turn is related by (G′ ∧ Oput)
to the abstract tuple A2 = ({2…11}, 1, {1…11}, ε). A2 is related by Cput to C2 =
([2912], 3789, Oflow, FULL). Now C2 cannot be related by (G′ ∧ Oput) to anything
since its after-state is Oflow and (G′ ∧ Oput) is not defined for such values. Moreover
C2 is not related to A1 by Cput because {1}+{2} ≠ {1…11} as would be demanded
by Cput. So A1 ((G′∧Oput)∨Cput) C2 is false and ((G′ ∧ Oput) ∨ Cput) is not regular.

Although we don’t have a fully regular retrenchment, the general result about default
retrenchments should not leave us despondent. All it means is that Cput lacks some
clauses that make it strong enough for full regularity to emerge. In fact it is useful to
check the Σ1 relation for put directly. There are two subcases. When putC does not
overflow, there is clearly a partial function taking concrete (mseq, j, mseq@[j], ε) to
abstract (mrng(mseq), j, mrng(mseq@[j]), ε) which is regular. When putC overflows,
there is another partial function taking (mseq, j, Oflow, FULL) to (mrng(mseq), j,
mrng(mseq@[j]), ε), also regular. The domains and ranges of these partial functions
are disjoint, so their union is regular. Thus since the Σ1 relations for put and get are
regular, the whole of the Σ1 relation (which is their disjoint union due to the tagging
by the operation names themselves) is regular, and we have what was desired after all.

Let us now examine the (multi)fragments of the two systems. For the abstract sys-
tem, a fragment starts with some mset0 and can perform arbitrary sequences of putAs
and getAs, provided that at each state visited, the number of getAs does not exceed
the number of putAs by more than the cardinality of mset0, i.e. |getA | – |putA | ≤
|mset0 |.  A multifragment is just a sequence of such fragments.

For the concrete system, a simulable segment of a fragment starts off at some mseqsim
and can perform sequences of putCs and getCs, such that at each state visited: (1) the
outcome of any subsequent getC is unique (unlike the abstract case), (2.a) the length
of mseq either stays in bounds after a subsequent putC or getC (because |getC | – |putC |
≤ |mseqsim | and |putC | – |getC | ≤ 10 – |mseqsim |), or (2.b) a subsequent putC takes the
state to Oflow, or (2.c) a subsequent getC takes the state to Uflow. After Oflow or
Uflow, an exception may follow. It must start with a resetC, possibly followed by
some number of alternating getC and resetC steps. And after a resetC, there may be
another simulable segment etc. If mseqsim = [], then the simulable segment may be
preceded by some suffix of an exception as just described. A multifragment is a se-
quence of such fragments.

Since Σ1 is regular, so is Σ by Proposition 9.8, and on the equivalence classes of Σ,
〈Σ〉 and [Σ] coincide by Proposition 9.1. We illustrate these on the simple abstract
property:

{∅ -(1, putA, ε)-› {1} -(2, putA, ε)-› {1, 2} -(getA, 1)-› {2} -(getA, 2)-› ∅ ,
∅ -(1, putA, ε)-› {1} -(2, putA, ε)-› {1, 2} -(getA, 2)-› {1} -(getA, 1)-› ∅}

(10.15)

In Fig. 6 we indicate how the elements of this property map under Σ. The first frag-
ment is easily simulated by the concrete systems as the elements come out in the
same order they went in. However the second fragment runs into a problem half way
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through, as the desired element, 2, is not at the head of the queue. The formulation
of the Σ relation in Section 4 enables us to express what happens via a break in the
simulation. Of course the interpretation of this break must come form the context
within which the example is being discussed. Moreover, each of the three concrete
fragments in Fig. 6 may be embellished with lead-ins and lead-outs as described in
the discussion of exceptions above, in many ways. We have suppressed these from
the Figure, and their interpretation too would be contingent on the context.

10.2   Elementary Control Theory

This example considers a simple control redesign problem in which a simple contin-
uous control situation is remodelled in the discrete domain. We summarise the main
details, noting that the subscripts C/D here indicate continuous/discrete. In the state
space formulation, the continuous system is described by the differential equation:

xC(t)
.

= ACxC(t) + BCrC(t) (10.16)

where xC(t)
.

is the time derivative of xC(t), rC(t) is the external input, and AC and BC are
contants. The solution of (10.16) is standard, and for a period T to the future of a
starting point t = kT, is given by:

This solution can be interpreted as a transition system for an abstract operation OpA
as follows:

(xC(t),
.
xC(t)) -(rC(t), OpA)-› (xC(t′), .

xC(t′)) (10.18)

∅ -(1, putA, ε)-› {1} -(2, putA, ε)-› {1, 2} -(getA, 1)-› {2} -(getA, 2)-› ∅

[] -(1, putC, ε)-›  [1] -(2, putC, ε)-›  [1, 2] -(getC, 1)-›  [2] -(getC, 2)-› []

∅ -(1, putA, ε)-› {1} -(2, putA, ε)-› {1, 2} -(getA, 2)-› {1} -(getA, 1)-› ∅

[] -(1, putC, ε)-›  [1] -(2, putC, ε)-›  [1, 2]
[2, 1] -(getC, 2)-›  [1] -(getC, 1)-› []

Fig. 6

xC((k+1)T) = eACTxC(kT) + ∫
T

0
eAC(T – τ)BCrC(kT + τ) dτ (10.17)
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wheret andt′ arenonnegative realvaluedandt < t′; andthereis a requirementthat
there exists a (global) solution of (10.16), such that for any 0 < t < t′ the solution
agreeswith thequantitiesappearingin (10.18)at t andt′. (Standardtheorysaysthat
thereis enoughinformationrecordedin thestatevector(xC(t),

.
xC(t)), to ensurethata

uniqueanalyticsolutionisdeterminedby it andtheinput,onwhich(10.17)isbased.)

To enablecomparisonwith the discretesystemto be introducedbelow, we expand
(10.17)by Taylor’s Theoremandintegrateterm by term,keepingonly termsup to
order O(T), giving:

xC((k+1)T) = (1 +TAC)xC(kT) + TBCrC(kT) + o(T) (10.19)

Now on the discrete side we have:

∆+TxD(k) = ADxD(k) + BDrD(k) (10.20)

wherexD is thediscretesystemstate,∆+TxD(k) is its forwarddifferencefor sampling
periodT, given by:

rD(k) is theexternal(discrete)input, andAD andBD areconstants,rD beingthedis-
crete external input signal.  The solution of (10.20) for the next state is immediate:

xD(k+1) = (1 +TAD)xD(k) + TBDrD(k) (10.22)

whichcanbeimmediatelycastasatransitionsystemfor aconcreteoperationOpC of
the following kind:

xD(k) -(rD(k), OpC)-› xD(k+1) (10.23)

wherek is naturalvaluedandthequantitiesappearingin (10.23)mustconstituteaso-
lution of (10.20). Thereis enoughinformationrecordedin thestatexD(k) to ensure
that a unique solution to (10.22) is determined by it and the input.

Combining (10.19) and (10.22) yields:

xC((k+1)T) – xD(k+1) = (xC(kT) – xD(k)) + T(ACxC(kT) – ADxD(k)) +
T(BCrC(kT) – BDrD(k)) + o(T) (10.24)

whichcannow easilyrelatethetwo systemsby aretrenchment.As aretrieverelation
we take:

G(xC(kT), xD(k))  =  |xC(kT) – xD(k) | ≤ ε (10.25)

whereε is adequatelysmall. Now (10.24)lendsitself to aretrenchmentreinterpreta-
tion with within, output and concedes relations:

P(rC(kT), rD(k), xC(kT), xD(k))  =
| ACxC(kT) – ADxD(k) + BCrC(kT) – BDrD(k) | ≤ o(1) (10.26)

O(xC((k+1)T), xD(k+1), rC(kT), rD(k), xC(kT), xD(k))  = true (10.27)

C(xC((k+1)T), xD(k+1); rC(kT), rD(k), xC(kT), xD(k))  =
| xC((k+1)T) – xD(k+1) |≤ o(1) (10.28)

∆+TxD(k) = ——–––———
xD(k+1) –xD(k)

T
(10.21)
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The retrenchment (10.25)-(10.28) deserves comment. The first thing to bear in mind
is that it is not an exact result, due to the (relatively crude) approximations adopted
in deriving it. So, as in many engineering situations, an ideal quantitative description
of the situation at hand is not available.

Secondly, the crude analysis performed to arrive at (10.25)-(10.28) entails the inevi-
table decay of the provable precision in estimating | xC(kT) – xD(k) | as k increases,
due to the estimate being in effect based on a Lipshitz condition, which is what the
Taylor’s Theorem analysis introduces — and it is well known that all estimates based
purely on a Lipshitz condition decay rapidly in precision, regardless of the realities
of the situation. To what extent the above analysis might be improved by using a dif-
ferent strategy, is an exercise in control theory beyond the scope of this paper.

Thirdly, there is no hope of this retrenchment yielding a regular Σ1 relation. For con-
sider G(xC(kT), xD(k)). Suppose x1

D(k) = x1
C(kT) + ε/2, x2

C(kT) = x1
D(k) + ε/2, x2

D(k)
= x2

C(kT) + ε/2, all of which satisfy (10.25). Then | x1
C(kT) – x2

D(k) | = 3ε/2, flouting
any prospective regularity of (10.25). This behaviour is typical of numerical approx-
imations, because of the way that the width ε windows can overlap. Considering the
other relations needed for a regular Σ1 relation would not improve matters.

Despite these shortcomings, the machinery we built earlier gives us a means to speak
about what is desirable in this example. Suppose we have an abstract property SS
that we wish to implement via the concrete system. Then what we are interested in
is [Σ]SS (or perhaps [ΣQQ]SS for a suitable QQ ), since that is the concrete property
whose multifragments simulate the abstract ones in SS in such a way that the bounds
on precision expressed in (10.25) with respect to multifragments in SS are never vi-
olated.  Of interest is whether [Σ]SS  is empty or not, and whether or not SS  = SS  •.

Of course the analysis we did in deriving the retrenchment above is not strong enough
for us to be able to formally derive that some arbitrary TT that we might come up
with is in fact [Σ]SS or [ΣQQ]SS , but this is no worse than what engineers have to tol-
erate in real life situations every day. The belief that some TT is adequate to serve
as a [Σ]SS would have to be based on engineering experience (or on a different anal-
ysis), and would be as secure or insecure as these can turn out to be.

10.3   Noninterfering Processes

Our final example concerns noninterfering processes, and illustrates the utility of the
interplay between the simulation property transformers [Σ] and 〈Σ〉 on the one hand,
and ambivalent notions on the other. Suppose we we make a model of two abstract
processes, XA and YA, which run concurrently, but which have no influence on each
other. We model the concurrency by interleaving semantics. Let the transition rela-
tion of XA be stpXA

(x, x′) and that of YA be stpYA
(y, y′). For simplicity we assume no

I/O and no skip steps in either of XA or YA. A step of the combined system is then
(x, y) -(stpA)-› (x′, y′) where either y = y′ and x -(stpXA

)-› x′ is a step of XA, or x = x′
and y -(stpYA

)-› y′ is a step of YA. For any execution fragment of the combined system,
projecting onto the XA states and execution steps in the obvious way clearly yields a
valid execution fragment of XA, and similarly for YA.

Noninterference means that in an execution fragment S , an adjacent pair of steps of
XA and YA:

(x, y) -(stpXA
)-› (x′, y) -(stpYA

)-› (x′, y′) (10.29)
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may be swapped giving:

(x, y) -(stpYA
)-› (x, y′) -(stpXA

)-› (x′, y′) (10.30)

and vice versa. Let swapi,k be the operator that performs this swap on the k’th and
k+1’th elements of the i’th execution fragment (of a multifragment) provided both
steps exist and are performed by different processes. Iterated, such swaps generate
all permutations of the steps of the multifragment, consistent with never interchang-
ing the order of any two XA steps with each other, nor of ever interchanging the order
of any two YA steps with each other. Clearly, such swapping generates an equivalence
relation on fragments, and the equivalence classes are essentially Mazurkiewicz trac-
es for an independence relation which makes all XA steps independent of all YA steps.
(See eg. [Mazurkiewicz (1986), Mazurkiewicz (1988)].)

Let 〈swap〉 be the operator on properties, defined as follows:

〈swap〉SS   = ∪ i,k {swapi,kS | S ∈ SS , swapi,k is applicable to S i} (10.31)

Then:

[SS ]sw  = ∪ l 〈swap〉lSS (10.32)

yields the smallest fixed point of 〈swap〉 containing SS , called the swap closure of SS ,
where the index l ranges over sufficiently high ordinals that the fixed point is reached.
It is clear that the swap closure of SS consists of the Mazurkiewicz traces refered to
above.

The idea of swapping steps of independent processes has a very ‘ambivalent’ feel
about it. However we do not have an ambivalent property as in Section 7, since the
fixed point of the swapping is not given in terms of a simple predicate on the under-
lying primitives that define a (multi)fragment. Instead we have a higher order ambiv-
alent operator; i.e. given a property SS , (10.32) produces an in general different prop-
erty [SS ]sw.

Clearly this goes quite a way beyond what we entertained for ambivalence earlier,
and illustrates the danger of being premature in formalising ambivalent notions be-
fore considering the applications for which they will be used. In the present situation
we are dealing with a class of systems for which the state space is a cartesian product,
and such that each execution step affects only one component of the product, doing
so in a manner indpendent of the value of the other component. Fixing this as a meta
level context [SW], for any system U in the class, the 〈swap〉 and […]sw operations
are well defined, and so can be applied to any property of U.

Suppose now that the next development step creates concrete versions of the two
processes XA and YA, doing so via a retrenchment whose simulation relation Σ is re-
garded as known. Thereby we get processes XC and YC. Suppose furthermore that it
is important to conserve noninterference through this development step (eg. it may
contribute to a model of an important security property). We regard it as a fundamen-
tal feature of all systems in [SW], that for any property SS that is considered to be
implementable, all elements of [SS]sw must also be implementable. Consequently
we would need to be able to prove something akin to the following:

Security ProtoTheorem Let TT be a concrete property and let QQ be a concrete prop-
erty that captures the exceptional aspects of the multifragments in TT .  Then:
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[〈Σ〉TT ]sw  = 〈Σ〉[TT ]sw  = [Σ][TT ]sw  = [[Σ]TT ]sw (10.33)

[[ΣQQ]〈Σ〉TT ]sw  = [ΣQQ][〈Σ〉TT ]sw  = [TT ]sw  =
[〈ΣQQ〉[Σ]TT ]sw  = 〈ΣQQ〉[[Σ]TT ]sw (10.34)

The conditions expressed in (10.33) and (10.34) state that the swap closures of con-
crete properties are separated in a strong way from other properties. The simulation
transformers do not enlarge the swap closures no matter how they are applied. In par-
ticular, the abstract images of the swap closures of concrete properties are themselves
swap closed, and so concrete swap closures are simulation transformer images of ab-
stract swap closed properties, the embodiment of the security properties of interest.

Note the role of QQ in constraining the exceptional aspects of TT . Without it, the
equality of [TT ]sw to the other terms in (10.34) would most likely not be provable,
because of the ease with which exceptions can typically be inserted into multifrag-
ments. Of course the utility of this formalisation depends on the extent to which QQ
captures the exceptional aspects of TT independently of TT itself, since setting QQ
= TT   would yield a credible, if more trivial, statement.

11   Conclusions

The preceding sections set up a general theory, first of execution fragments and mul-
tifragments, and ultimately of property transformers of various kinds, applicable to
pairs of systems related via a retrenchment. As more sensitivity to the context of the
transformation got built into the theory, the theory became more complex. However
when the criterion of regularity was introduced, considerable simplifications were
obtained. Since functional and inverse functional relationships (both instances of
regular relations) are so common in practical cases of formal development, the sim-
plification that ensues is very welcome and can be viewed as widely applicable.

Three very different examples illustrated quite well what the theory can and cannot
do. The discrete multiset/sequence example exhibited most of what one would ex-
pect in a cleanly defined discrete example. The continuous digital redesign control
problem showed how different the continuous world is as regards the techniques of
this paper; nevertheless the terminology developed enabled the desirable aspects of
the redesign to be neatly expressed, even if the actual calculations of the retrenchment
were only approximate and did not enable the mentioned desired aspects to actually
be proved. Finally the noninterfering processes example led to an interesting higher
order development of the ambivalence notion, and showed that system design objec-
tives themselves may interact usefully with the concepts introduced in this paper.

The present theory can be considered as providing a useful framework for discussing
properties and their mappings, when the retrenchment relationship is drafted in terms
of individual execution steps at abstract and concrete levels, and properties are de-
fined as sets of multifragments. While these provide the simplest approach, they are
not the only possibilities. Both for the retrenchment relationship itself and for con-
cepts of system properties, different granularities and greater sensitivity to the sys-
tem’s branching structure can be introduced into the theory, enabling more subtle and
potentially more interesting relationships between systems to be brought into the re-
mit of the theory. For example, if we generalised retrenchment to speak about rela-
tionships between sequences of steps at the abstract and concrete levels, the content
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of the operation POs could acquire a more global perspective. Such a perspective
might well beneficially inform continuous scenarios in particular.7 However this re-
mains work for the future.
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	10.3 Noninterfering Processes
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