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Abstract. Retrenchment, introduced to alleviate the excessively strong demands
thatrefinemensometimesmposesjs mosteasilyapplied‘vertically’, i.e. to indi-
vidual executionstepswithout regardto the sequentiatompositionof thosesteps.
This paper addresses the issue of how system properties, akin to sets of execution
sequences, can be transformed between systems through retrenchment. Property
transformers based on simulation relations are introduced, as are transformers of
ambivalent properties and constrained property transformers. Their theory isin-
vestigated. The simplificationsin the contet of regularrelationsareexplored. A
number of gamples in the discrete and continuous domainsxamieed.
Keywords. RetrenchmenSimulation,Simulability, SystemProperty Ambivalent
Property Property Tansformers.

1 Introduction

In [Banachetal. (2005)]the authorsgave a comprehensie andbroadlybasedover-
view of themotivationsfor introducingretrenchmentndsetoutthemaincharacter-
istics of thetechnique.In retrenchmenthe propertiesstablishedor the aftervari-
ablesandoutputsof a pair of abstracandconcretesxecutionstepsjs not a straight-
forward counterpart of the properties assumed for the before-variables and inputs
(becausef thewider discrepang allowedbetweerthe propertiesof thetwo stepsn
aretrenchmenbperationPO,ascomparedvith atypical refinemenbperationPO).
Thereforeheanalysisof how wider systenpropertiedransmutatéhroughretrench-
mentdesignphasess nottrivial, andis closelyrelatedto theanalysisof the simula-
tion propertieghatcanbe establishedvithin aretrenchment.This paperis devoted
to carrying through the more complanalysis imolved.

In contrast to refinement, the properties derivable from the retrenchment operation

POsalonearecomparatiely weak,soatreatmenbasedust on whatcanbe generi-
cally derivedfrom themwill, in generalnotgetveryfar. Accordingly the stratgy

adoptedn this paperis to work with simulationrelationsdefinedin generalterms,
andto disregardtheissueof theextentto which suchrelationsmightbedirectly prov-

ablefrom theoperationPOs. Sincetheaim of retrenchmenis to caterfor situations
wherethe cleancompositionalityso characteristiof refinemenis unachigable,the
extent to which these simulability notions might actually hold in a given scenario,

musttypically be left to ad-hocreasoningaboutthe casein hand. In this therefore,
the situationis aswith mary aspectof retrenchmentthereare swathesof general
reasonindhat‘do notquitejoin uptogethefrom generaprinciples’andwhichmust
therefore in practice be brought together by bespo&ans.

To seehow thisworksoutin this paperit is bestto summarisehefollowing sections
oneby one. In Section2 we setup ourbasicterminology includingnotationgor sys-
temsandretrenchmentsin Section3 default retrenchmentarereviewed andbire-
trenchmentareintroduced. Thelatterarethesymmetriccounterpartef thecornven-
tional asymmetrimotionsof retrenchmengin which the operationPOsareimplica-



tionsoreintedfrom concreteto abstract).It turnsout thatthe moreflexible arenaof

retrenchmenmalesit easyto recasimary corventionalretrenchmentsito thesym-
metricbiretrenchmenform. Thisis very corvenientassymmetricnotionsaremuch
moreappropriateo the discussiorof systempropertieswhich shouldnot be sensi-
tive to wherein thedevelopmenthierarcly ary particularsystemlives. In Sectiond4

we introducethe basicnotionsof executionfragmentmultifragment.andsimulabil-
ity thatunderpintherestof the paper The mainsimulability definitionis craftedin

suchaway thatthe simulability relationshipbetweenwo multifragmentds unique,
which has useful consequences later, particularly as the flexibility of retrenchment

meanghatwe cannotavoid consideratiorof nonsimulatingsggmentsbetweenmul-

ti)fragments.Sections considerserticalcompositiorof thesimulability relationin-

troduced in Section 4. The results here require additional hypotheses to come

through in full measure (eg. biretrenchments prove to be particularly useful), but

whatis andwhatis notachievableregardingverticalcompositioninfluencegheway
that the definitions of Section 4 are set up, and these points are discussed.

Section6 appliesthe precedingo the studyof systempropertieswhich aredefined
essentiallyascertainsetsof multifragments.Thesetextensionof thesimulability re-
lation givesriseto simulationpropertytransformersimilar to box anddiamondop-
eratorsin a modalalgebra(seeeg. [Poplkorn (1994)]), andthe relvant propertiesof
thesearedeveloped.In Section7 adifferenttackis initiated. Somesystenproperties
are essentiallyexpressionof (someaspectof) the structureof a classof systems.
For these properties, called ambivalent properties, the property definition ports di-
rectly betweersystemsgiving analternatve meansof mappingthesepropertiese-
tween systems. The two trains of thought come together in Section 8 where con-
strained property transformers are developed. These allow the nonsimulating seg-
ments of multifragments, whose mappings under the simulation transformers are
moreor lessunconstrainedp have theseunruly characteristicsurtailed. Theinter-
actionbetweerthesimulationtransformersandconstraintgjivesriseto amorecom-
plicated \ersion of the theory of Section 6.

Many retrenchmentelationshipsbetweensystemsare characterisetby straightfor-
wardfunctionalor inversefunctionalrelations. Thesegeneraliséo regularrelations,
andSection9 investigatesthe considerableimplificationof the theoryof Section8
thataccruedrom regularity. Thewide applicability of theseresultsis evidencedby
thefactthatthey readilyapplyto awide classof defaultretrenchmentsThissuggests
thatmary retrenchmentmaybemodifiedto yield onesfalling into theregularclass,
enabling them thereby to enjoy regular smulation transformers, which in turn can
imply a particularly clean interaction with certain system properties.

Section10 examinesthreeexamplesin the light of the developedtheory Thefirst

consideraretrenchmenfrom multisetsto finite sequencesyhich givesthetheorya

straightforvard discretevehicle. Thesecondcontemplatea simpledigital redesign
controlproblem andtypifiesthestateof affairsin mostnumericalnalysissituations,
wherethecleanstructureinvestigatedpreviouslyis lessapplicable. Thesewo exam-

plesareadaptedrom [Banachetal. (2005)]. A third examplemodelsthe retrench-
mentof systemghat canbe viewed aspairsof noninterferingprocesses Herethe

situationdemandsheamplificationof the previously developeddeaof ambwalence,
andthe preseration of noninterferencéasdemandedby mary securityproperties),
canbemodelledusingtheinteractionof the new ambialenceconceptsandthe sim-

ulation transformers deloped earlier Section 11 concludes.



2 Output Retrenchments

In this sectionwe give our basicdefinitionsandnotations.We will bedealingwith a
pair of systemsn a developmenthierarcly, an abstractsystemAbs anda concrete
oneConc, to berelatedby aretrenchmentTheabstracsystemhasasetof operation
nameOps,, with typicalelementOp,. An operationOpp will work ontheabstract
statespaceJ having typicalelement (thebefore-state)andaninputspacdgp, with
typicalelemeni. Opp will produceanatfterstatetypically written u” andoncemore
in U, andanoutputo dravn from anoutputspaceOy,, . Initial statesatisfythepred-
icatelnita(u'). In this paperwe will work exclusiveﬁl in atransitionsystemframe-
work, soanoperationOp, Will be givenby its transitionor steprelationconsisting
of stepsu -(i, Opa, 0)-> U'. The setof suchstepsis written stpg,, (U, i, U, 0). We
define stpp = LI op, mops, StPop,, Which is the complete transition relation for the
Abs systemandwheretheunionis necessarilylisjointsincetherelevantOp, name
is part of @ery execution step.

Givenanexecutionstep,we usethefunctions:st,in, Op, ou, st, to returnthebefore-
state,input value,operationname,outputvalue, afterstaterespectrely of the step,
i.e. for a step -(i, Opa, 0)-> U', we gety, i, Opp, 0, U' respeciiely.

At theconcretdevel we have asimilar setup. TheoperatiomamesareOpc U Opsc.
Statesarev [V, inputsj U Jop., outputsp [ Pgy,.. Initial statessatisfy Inite(v').
Transitions are -(j, Opc, p)-> V, elements of the step relatisipop (v, j, V', p).

In [BanachandJesle (2002)]thecontrastbetweemormalor primitive retrenchment
and output retrenchment was discussed at some length, and the algebraic utility of
outputretrenchmentvasmadeapparentin thatoutputretrenchmenallowstheprop-
ertiesof outputsof transitionsn the‘well behaed’ (i.e. refinement-like) casedo be
cleanly separated from the corresponding properties in the ‘badly behaved' cases.
For consisteng’s sale we will useoutputretrenchmenéxlusively in this paperbut
we will refer to it as just retrenchment for simplicity

Giventheabove contet, an (output)retrenchmentrom Abs to Conc is definedby
threefacts. Firstly, Ops, 0 Opsc, i.e. to eachabstracoperationtherecorresponds
aconcreteoperatiorwhichwe will assumédnasthesamename. Theinclusioncanbe
propersothecorverseneednothold'. Secondlywe have acollectionof relationsas
follows:thereis aretrieverelationG(u, v) betweerabstracandconcretestatespaces;
andthereis afamily of within, output,andconcedeselations Po(i, j, U, v), Ogp(0,
p; U, Vi, j, U, v) andCop(U', V', 0, p; i, J, U, V) respectiely, oneoFeachfor eachop-
erationOpp O Opsp. Thewithin, output,andconcedeselationsareover thevaria-
bles shown, i.e. the within relations involve the inputs and before-states, while the
output and concedes relations involve predominantly the outputs and after-states,
thoughinputsandbefore-statesanalsofeatureif required. Note thatwe suppress
the ‘A" and‘C’ subscripton Op in theserelationssincethey concernbothlevels of
abstractiorequally Thirdly, acollectionof propertieqtheproofobligationsor POs)
must hold. The initial states must satisfy:

Inite(v) O (OU * Inity(U) DG, V)) 2.1)

1. This confirmsthatthe ‘A’ and‘C’ subscriptson operationnamesare metalevel tags. We
suppress them when it is a@mient to do so and it does not cause confusion.



andfor every correspondingperationpair Op, andOpc, the abstractandconcrete
step relations must satisfy the operation PO:

G(u, v) OPop(i, j, u, V) Ostpop (v, j, Vi, p) O
(U, 0 stpop, (U, 1, U', 0) D ((G(U', v) OOgp(0, p; U, V, i, j, U, V) O
Cop(U', V', 0, p; i, j, U, V) (2.2)

It is easy to show that retrenchments compose vertically in an associative manner.

Thusif thereis athird system]etuscall it theexecutablesystemExe, andaretrench-
mentfrom Conc to Exe characterisety retrieve, within, output,andconcedesela-
tionsH(V, W), Qop(i, k v, W), Fop(P, G; --- ), Dop(V, W, p, @; ... ), thenthereis are-
trenchment fromAbs to Exe for which the relat|ons inan ulmus notation are:

Gia gy W) = [OveG(u,v) OH(v, w)] (2.3)
Pop AE)(I k u, W) =
[Dv j *G(u, v) OH(V, W) OPo(i, j, u, v) OQopfi, k, v, W] (2.4)

OOPfA,E)(O, G...) =
OV, p, Vi j * Ogp(0, p; ... ) OFp(P. G; - )] 05

CopaEU.W,0,G;...) =
va’, P, V,j * (G(u, v) DOqu(0, p; ... ) UDop(V, W, p, G ... )) U
(Cop(u, v, 0,p; ... ) UH(v, w) OFgp(p, g; ... )) U
(Cop(U, V', 0,p; ... ) DDV, W, p, G; ... ))] (2.6)

(Thisis provedby observingthatthe assumptiorof (2.4) anda suitableExe stepal-

lows the antecedenof the operationPOfor the Conc to Exe retrenchmento bein-

fered,whencethe PO canbe usedto infer a suitableConc step;theprocedurés re-
peatedallowing the conjunctionof the respectie consequentto derive the sound-
nessof (2.5)and(2.6).) Thedetailsarecoveredin [Banach(2003)],andin [Banach
andJesle (2002)],thelatterof which alsodealswith thefactthatstrongemotionsof

compositioncanbe formulated whichin generaldo not enjoy associatiity of verti-

cal composition without additional constraints.

3 Default Retrenchments and Biretrenchments

As shavnin [BanachandJesle (2002)],oneway of gettingaretrenchmentfor anar-
bitrary pair of systemss via the default mechanism.With theabove notationalcon-
ventionsfor two system#Abs andConc, supposeve aregivenaG(u, v), andfor each
Op 0 Opsp n Opsc, aPoyi, j, u, v) andanOgp(0, p; ... ); wherethesesimply ex-
presshow state,input andoutputspacesare relatedln thetwo modelsbut neednot
be more specific regarding properties of Abs and Conc than that.2 We define for
each operatio®p O Opsp n Opsc:

PDefOp(i! j! u, V) =
(G(u, v) OPop(i, j, u, v) O
(Ju, 0,V, p = stpop, (U, i, U, 0) Ustpop(Vi , V', P))) (3.1

2.Henceforthwe usethesymmetricOp 00 Opsp n Opsc, ratherthanOp O Ops, with aview
to future flibility .



CDEfOp(u,! \/1 Ol pa iy j! ul V) =
(G(u, v) P, j, u, v) Ustpop, (U, i, U', 0) Ustpop (v, ], v, p) U
= (G(U', v) OOgp(0, p; U, V', i, j, U, V) 3.2

These are the default within and concedes relations for the systems (given G and
{Pop: Opp | Op L Opsp n Opsc}). For these, the following isatrivial corollary of
Proposition 3.1 in [Banach and Jeske (2002)]:

Proposition 3.1 Suppose given two systems Abs and Conc, and also given G and
{Pop, Ogp | Op L1 Opsp n Opsc}. Then with the default within and concedes rela-
tions defined in (3.1) and (3.2), the operation PO:

G(u, v) OPPo0(i, J, u, V) Ostpop (Vi j, V., p) O
(U, 0* stpop, (U, i, U', 0) D((G(U', v) OOgp(0, p; U, V, i, j, U, V) O
CP¥op(U', V', 0, i i, ], U, V) (3.3

is satisfied.
We now define a biretrenchment between two systems Abs and Conc, by insisting

that as well as (2.1) holding, and (2.2) holding for all Op [1 Opsp N Opsc, we also
havefor al Op O Opsa N Opsc:

G(u, V) 0P, j, u, v) Ostpop, (u, i, u', 0) 0
BV, pestpop(vi J, V, p) B((G(U', v) D Ogy(o, p; U, V', i, ], U, v)) U
Cop(U', V', 0,p; 1, ], U, V) (3.9

Thisisthe counterpart of (2.2) that interchangestherole of abstract and concrete sys-
tems. Itisclear that (2.3)-(2.6) will do duty for the associative composition of bire-
trenchments as well as for conventional retrenchments.

Proposition 3.2 Suppose a default retrenchment between two systems Abs and
Concisgiven. Thenitisabiretrenchment.

Proof. Thedefinitions(3.1) and (3.2) are symmetrical regarding the abstract and con-
crete systems. Thusif (3.3) is provable, then sois:

G(u, v) OPPo(i, J, U, V) Ostpop, (U, i, U, 0) O
(Ov,pe S[pOpC(V,j:, \/ p) O((G(u', V) DOgp(0, p; U, V', i, j, U, v)) O
CPéop(U, v, 0, p; i, j, U, V) (3.5)

©

One consequence of the above is that there is no reason why a ‘bespoke retrench-
ment’, purposely created to single out system characteristics of interest to the devel-
opment, cannot also be crafted as a biretrenchment. All that has to be doneisto en-
surethat sufficient properties areincluded in the output and concedes rel ations so that
(3.4) isvalid for al abstract transitions that satisfy GDPDefOp (besides (2.2) being
valid for the concrete ones). This contrasts vividly with the situation in refinement
where dueto the exclusive reliance on the retrieve relation, a proper reduction of non-
determinism can be described, but nothing can be said about those abstract steps that
cannot be simulated.



4 Fragments and Simulability

We will bedealingalot with sequenceslf a=[a; ... a,] is afinite sequencethen
dom@) ={0 ... n} anddoni(a) ={0 ... n—1}, bothdefaultingto O if ais empty and
with dom’(a) defaulting to O if a has one element. If a is infinite then dom(a) =
dom'(a) = NAT. We alsodefinemd(@) = max(dom@)) andmd'(a) = max(doni(a));
these areo if ais infinite.

Definition 4.1 An executionfragment(fragmentfor short)is a sequencef contig-
uous @ecution steps written in the form:

S = [Up -(io: OPA,0: 01)-> Uy -(i1, Opa 1, 02)-> U ... ] (4.1)
where:
(1) s may be of zero lengtts. = [].
(2) s may be of finite length:
S =[ug-(ip. OPA0: OP)> Ug - .. Un ~(in, OPA s One1)-> Uneq ] (4.2)
with n= 0, dom() = {0 ... n}, dom’(s) ={0 ... n—1}.
(3) s may be of infinite length, (and dos)(= doni(s) = NAT).

Thel'th stepof s, S[l], istheonestartingatthel’th statei.e. u; -(i;, Opa |, 0j+1)-> Uj+1.
Thusfor each O dom'($), st (s[I]) = st(s[I+1]). Notethatuydoesnot needto satisfy
thelnity property; havever if it does,s is called an initial (eecution) fragment.

Definition 4.2 An executionmultifragment(multifragmentfor short)is a sequence
of execution fragments:

S =[S0, S1, - ] (4.3)
where:
(1) s may be of zero lengtly. = [].

(2) s maybeof finite length:s =[Sy ... S,] for somen = 0; moreawer for all k O
doni(5), Sy is finite, whiles,, may be finite or infinite.

(3) s may be of infinite length, in which case forlalll dom(s), S is finite.

A multifragment may contain concatenable adjacent elements. However if it does
not, i.e. if for allk O donmi(s), st(s, [md(S$,)]) # st(Sk+1[0]), then it is called curt.

Thecontet will alwaysdistinguishwhethers denotesfragmentoramultifragment.
The corresponding concrete notions will be denoted: by

Definition 4.3 Letu-(i, Opp, 0)-> U beanabstracstepandv -(j, Opc, p)-> V' acon-
cretestep. Thenthesestepsarein simulation(or theabstracstepsimulateshe con-
crete step), also writtem £(i, Op,, 0)-> U') =* (v -(j, Opg, p)-> V'), iff we have:

G(u, v) O Pop(i, jr U, V) Dstpopc(v, Vv, p) DstpopA(u, i,u,o0)d
((G(u', v) OOgp(o, p; U, V', i, ], U, v)) OCop(U, V', 0, p i, J, U, V) (4.4)

An abstract{resp.concrete)stepis simulableiff thereis a concrete(resp.abstract)
stepsuchthat(4.4) holdsfor thepair. Otherwiseit is nonsimulable.Notethatsimu-



lability depends not only on the two systemsin question, but on the retrenchment re-
lation (as defined by G and the Pg, Ogp, Cop) between them.

We extend the simulation notion to abstract and concrete (multi)fragmentsin the fol-
lowing. First we recall that a segment t of a sequence s is a subsequence ‘with no
gaps, i.e. it isasubsequence definable by two indexes of s, say a and b, and consists
of all elements gk] with a< k < b, so dom(ga..b]) ={a..b}. Wecall thisan (a,b)-
segment of s, and write it g[a..b]. If sisinfinite then b can be o, and then
dom(g[a..«]) consists of al finitek = a. If a > b then the concept of (a,b)-segment
isundefined, in particular it is convenient to insist that all segments have at least one
element. For asegment ga..b], md(ga..b]) =b of course (or « if ga..b] isinfinite),
but we also have mind(ga..b]) = a, defining the minimal element of the domain of

Ja..b).

Definition 4.4 Let s and 7 be abstract and concrete fragments. Then the simula-
bility relation s Z(I;,lt,m,my) 7 holdsiff:

(1) li=l;=m—m =0, including the casethat | = m = oo, and (l;, Iy) and (my, M) define
(I;,19)- and (m, my)- segments S[l;..I]] and 7 [m..m] of S and 7 respectively.

(2) Fordl kO dom(sIl;..I]) and k' O dom(Z' [m..m{]), wherek —I; = k' —m, steps k

of 5, i.e. Uy -(ix, OPA k» Ok+1)-> Uz @NA K Of 77 i€ Vie -(jie, OPc ks Pie+1)-> Vie+1
arein simulation.

The segments S[I;..1{] and 7 [m..m] are called simulating segments. $[0..I;—1] and
7[0..m-1], i.e. the portions of s and 7 before the simulating segments, are called
thelead-ins of § and 7 ; they may be empty. S[li+1..md(s)] and 7 [my+1..md(7)]
are correspondingly called the lead-outs of s and 7, also possibly empty. When
S Z(I;, Iy, m, my) 7 isunderstood, wewrite"s to refer to s with itslead-in removed, and
S “torefer to s withitslead-out removed; and in*$ * both are removed; N. B. the lead-
in and lead-out are undefined if there is no simulating segment of §. Similar consid-
erations apply in the concrete case for *7;, 7°, *7 °.

When we have s Z(0, md(s), 0, md(7)) 7, i.e. the simulating segments define a bi-
jection, we say that the simulation is exact, and write s =~ 7 for short. It isclear that
if $ Z(I;,l,m,m) 7 holdsfor somel; ls,m,m, then"s * < *7 * istrue.

Example 4.5 Fig. 1 gives some illustrations of Definition 4.4. In each diagram the
arrows are execution steps and the vertical lines depict the parts of the ‘in simulation’
relationship pertinent to the before-state or after-state. In each diagram s is shown
above 7, and the shaded squares and parallelogramsindicate that the rel evant steps of
S and 7 arein simulation, while a cross indicates that this is not the case. Thus
Fig. 1.(a) illustrates that 5 2(0,2,0,2) 7, or aternatively s £ 7. But s £(0,1,0,1) T
and s 2(1,2,1,2) T aredso true of Fig. 1.(a), aswell asthree other statements about
short segments. Thisillustrates that the s (I, I, m,m) 7 notion does not insist that
there are no steps of § and 7 other than the ones it mentions that are in simulation,
i.e. it providesalower bound to simulability. Inthe subsequent exampleswe will not
refer to this aspect explicitly, though we return to the issue later. In thislight, Fig.
1.(b) illustrates s (0,1,1,2) 7. InFig. 1.(c), we have that the first steps of s and T
are in smulation, as are the last steps of s and 7, so we have s 2(0,0,0,0) 7 and
S 2(2,2,2,2) 7. Similar remarks apply to Fig. 1.(d) where although each step of s is
in simulation with some step of 7, the relevant steps of 7 do not form a segment.
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Definition 4.6 Let s and 7 be abstract and concrete multifragments. Then the re-
lation s Z(II) 7 holdsiff Il is a sequence of pairs of of triples of NATS, such that if

1= [((s0lo,s 100+ (to Moy Mo))s ((S1,11,11,0)s (t2, M j; My ), - ] then:
(1) dom(s) = {s | k 0 dom(ll)} and dom(7) = {t | k 0 dom(ll)}.

(2) Foreachk O dom™(Il), we have (s, i j.lif) < (Sir1: i I 1,1) @nd (b, My, M) <
(tk+1vm,<+l,i’n'1<+1,f)a _Where (Sk’lk,i!lk,f) < (sr(+l’|k+l,i’|k+1,f) iff (S <srp) O(s¢=
Sir1 Olis <lyan,); similarly for (ty, myj, M) < (Giers, M1 i Mir1.9)-

(3) 1f kO dom'(I1) then = (8¢ = Seq Dlics + 1= Nt Ot = tiepg DMy + 1= Myyy ).
(4) 1f kO dom(ll) then Sg (I Ik 1, My, M 1) Ty, in the sense of Definition 4.4.
(5) Every simulable step of s and 7" liesin some segment described by 11, i.e.:

(i) For every fragment Sgin s, for every simulable step s[j] of S, thereisa
k O dom(ll), such that 5¢ = Ssand | ;< j andj < lys.

(ii) For every fragment 7; in 7, for every simulable step 73[j] of T}, thereis a
k O dom(ll), such that Ty, = Ty and my; < j and j < my+.

In Definition 4.6, clauses (1)-(3) ensure that the triplesin Il refer to the fragmentsin
S and 7 inawell defined, complete, appropriately ordered and maximal way. Claus-
es (4)-(5) say that thetriplesin Il in fact refer to segments of the fragments which are
in simulation, and that there are no simulable stepsin s or 7 not captured by 1.

Again, the segments defined by Il are called simulating segments. If s Z(Il) 7, for a
fragment Sgwithin §, the lead-in of Sgisthe portion of S that precedes the first sim-
ulating segment of sgmentioned in Il, and "sgis 5S¢ with thisremoved. Likewise the
lead-out of Sgisthe portion of Sqthat follows the last simulating segment of 5 men-
tioned inIl, and Sg" is.Ss with this portion removed. *Ss” is S with both of these re-



moved. The notations s, s °, °s “and *7;, 7 °, °T ° refer to the removal of lead-ins,
lead-outs, and both, from all fragments of s and 7.

In multifragments, the lead-ins and lead-outs and breaks in simulation internal to the
congtituent fragments, are collectively called exceptions.

Proposition 4.7 Suppose s and T are abstract and concrete multifragments, and that
SZ(I) 7 and s Z(II') 7 both hold. Then Il =11.

Proof. The conditions in Definition 4.6 ensure that || describes atotally ordered bi-
jection between all the ssimulable stepsin § and all the simulable stepsin 7. Thereis
only one such totally ordered bijection. ©

Sincethell in s Z(Il) 7 isunigque we can suppress it when convenient, writing § ~ 7
for short.

Corollary 4.8 Suppose s and 7 are abstract and concrete multifragments. Then
S 2 7 iff thereisatotally ordered bijection between all the simulable stepsin s and
al the simulable stepsin 7, where each element of the bijection pairsastep of stoa
step of 7 in simulation with it. If the bijection exists, it is unique.

Fig. 2illustrates Definition 4.6 using the same conventionsasFig. 1. InFig. 2.(a) we
have s Z([((0,1,1), (0,2,2)), ((0,3,4), (1,0,1))]) 7, and Fig. 2.(a) asoillustrates non-
trivial lead-ins and lead-outs for s and 7, namely 5g[0..0], Sq[5..5] and 7[0..1],
74[2..2). Also’s " Z "7 " failsin Fig. 2.(a) because of 5g[2..2]. InFig. 2.(b) we have
S 2([((0,0,12), (0,0,1)), ((1,0,1), (0,3,4))]) 7. InFig. 2.(c)-(d), we have examples of
exactness, so that we can write § ~ 7; eg. in Fig. 2.(d), Il =[((0,0,1), (0,0,1)),
((1,0,1),(0,2,3)), ((1,2,3), (1,0,1))]. Fig. 2.(c) showsthat abstract and concrete mul-
tifragments s and 7 such that s Z(II) 7 holds, can be disconnected even taking the
>(II) relationship into account. In Fig. 2.(€) we have a counterexample to s 2(Il) T
since the middle two simulations do not respect clause (2) of Definition 4.6. Finally
in Fig. 2.(f), we have s Z([((0,0,1), (0,0,1)), ((1,0,0), (0,2,2)), ((1,2,2), (0,4,4)),
((1,3,9), (1,0,1))] 7, showing that breaksin simulation are tol erated within multifrag-
ments. Consequently, Fig. 1.(c)-(d) can be described using the s Z(Il) 7 notation,
evenif not usingthes Z(l;, I, m,my) 7 one. (Fig. 1.(a)-(b) can be described by either.)

Theintention of Definition 4.4 and Definition 4.6 isto capture a notion of simulabil-
ity sufficiently flexible to encompass the possibilities admitted by retrenchment, and
convenient enough to build further theory. Thus the fact that the conditions applica-
bleinthebefore- and after- states of an execution step in retrenchment are manifestly
not the same (by (2.2), and reflected in (4.4)) means that while the situation in Fig.
1.(a) isthe ideal, possihilities such as Fig. 1.(b) in which simulability breaks down
cannot be excluded, the more so since the concrete system is permitted to have oper-
ations not present at the abstract level. Beyond this, the fact that Figs. 1.(c) and 1.(d)
are also admitted by Definition 4.4, indicates that Definition 4.4 alone does not cover
all the issues regarding simulability between multifragments that need to be ad-
dressed. Definition 4.6 is the natural generalisation of Definition 4.4 to multifrag-
ments, and covers more general breakdownsin simulation. It containsnot only claus-
esthat tranglate simulability to the multifragment context, but clausesintended to ad-
dress aspects of ‘completeness’ that Definition 4.4 does not cover. We refer to the
various ways of failing to live up to the exemplary behaviour of Fig. 1.(a) as punc-
tured simulations.3



5 Vertical Composition

We now look at the vertical composition properties of s X(l;,Is,m,my) 7 for frag-
ments, and of § Z(Il) T for multifragments. Let ¢ refer to a (multi)fragment of a
executable system Exe, related by aretrenchment to Conc as assumed in (2.3)-(2.6).
We say of asimulable Conc step, that it is AC-simulable if it isin simulation with
some abstract step, and that it is CE-simulable if it isin simulation with some exe-
cutable step, depending on which retrenchment we have in mind. Similarly for the
other systems and various retrenchments and simulation phraseol ogies.

Proposition 5.1 Suppose S, 7, U, arefragments of abstract, concrete and executable
systems Abs, Conc, Exe. Suppose that we have both 5 Z(15 151 Mg, Mag) 7 and
‘T Z(lb,i'lb,f’ moyi,mbyf) _‘U. Then 5 Z(I(ab)yi,I(ab)‘f,m(ab)ﬁi,rn(a’b)vf) U, accordi ng to the
‘in simulation’ definition stemming from the vertically composed retrenchment de-
fined by (2.3)-(2.6), where:

I(a,b).i =If Ib,i —Myi= kl,i >0 Then Ia,i + kl,i Elselai Fi

I(a,b).f =If maf—lb’f = ku >0 Then Ia,f_kl,f EISEIa,f Fi

Mb)i = I My —lpi = ki > 0 Then my; + Ky Elsemy, Fi

rﬂ(a’b)’f =If |b,f - maf = km,f >0 Then mo’f - km,f Else moj Fi (51)

provided that these define a (I(a )il (ab),)-segment of .S and a (M) i, Map),1)-SES-
ment of 7.

Proof. Itisclear that provided (5.1) definestwo nonempty segments S|l i-(ab) fl
and U [Mygp) i--Map) £ (Whichisnot certain since (5.1) does not guarantee that i (@bh),i
< l(ap),f ad Mgp)i < Mg ), then these segments are each in simulation with the
largest possible common segment of 7, given by the intersection of 7 [my;..m, ] and
T [lp,--1ps], and thus are in AE-simulation with each other via (2.3)-(2.6). ©

Proposition 5.2 The vertical composition of Proposition 5.1 is associative.

Proof. This reduces to the observation that max(max(a,b),c)) = max(a, max(b,c))
(and likewise for min), in the context of constructing the segments of the multiple
compositions. ©

Proposition 5.3 Suppose s, 7, U, are multifragments of systems Abs, Conc, Exe,
which are related via biretrenchments captured in the notations used in (2.3)-(2.6).
Suppose both s (11;) 7 and T Z(Il,) ¢ hold, where:

Ha=[((S20/120,i 1208 (ta0Ma0,is Maof)s
((savlatilard) e MariMa1g))s - |

b = [((S0,0: 16,0, 16,00+ (tb,0:Mb,0,: Mp,0.)s
((So,1:1b,2,s1b,1.0)s (o, 1My 1My 1.0))s -+ ] (5.2)

Suppose the sets of AC-simulable and CE-simulable steps of Conc are equal. Let
Il(a) be the set of all pairs of triples of the form:

((saj:l@b),jirl@b). (b Mab).ki M) k) (53

3. In[Banach and Poppleton (1999)], the term punctured simulation was introduced in the con-
text of retrenchments done within the B-Method, and described a more constrained set of sit-
uations than is considered in the present paper.
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such that for each such pair of triples, Ssaj Z(I(ab),j,i,I(ab)’j,f,m(ab)’kyi,m(ab)yk,f) Uy,
holds, wherelgp i i l(ab)j & M@p) ki Mab) k@€ diven by applying the construction
in Proposition 5.1 to the smulable segments Sg, [1a--laj fl, U, [Mpki--Moksl, anda
suitable Ty [Nc - Neje ] Via(s.1).

Let ll5) be the set of &l pairs of triples obtained from |l by amalgamating all
continguous pairs of segments, i.e. by replacing two pairs.

((Sajr @ap)jir @b (ol Maby ki Mab) k) and

((saj1l(ab)j il @by (ks Mab) ks M@ab)k ) such that

(Saj = Saj Ulap)ji = l@pjs + 1) O

(to = toxk DMab) ki = Mab) kit 1) (5.4
by the one pair:
(sl @by, L@y ok Miab) ki Mab) k1) (5.5)

and repeating (countably often if necessary) until there are no more continguous
pairs. Letll,p,) bean ordering of the set [, ) where the ordering of the elementsis
given by:

((Saby. @by @b ) (ab)k Map) ki Mab) k) <
((Saby il @b).jrisl @by i) (ab) ks Mab) ki Mab)k )

(Sab)j < Sab),) D @bk < tabk) U
(Sab)j = Sab)i' Olab) k= tabyk Dl@p)jf <l@b)ii DM@ ki < Mab)k,)) (5.6)

Thens (Il 51,)) U, according tothe ‘in simulation” definition stemming from the ver-
tically composed retrenchment defined by (2.3)-(2.6), which is a biretrenchment.

Proof. That the composed retrenchment defined by (2.3)-(2.6) is a biretrenchment
under the circumstances has been pointed out already in Section 3, so we must estab-
lish the various clauses of Definition 4.6 with respect to ll 5 p).

Firstly we show that the pairs of segments described by 1,1, are in simulation. To
see thiswe note that by Corollary 4.8, both s 2(1l;)) 7 and T %(Ilb) U describe order
preserving bijections between the AC-simulable steps of s and 7 on the one hand
and the CE-simulable steps of 7 and ¢ on the other. Sincethe sets of AC-simulable
steps of Conc and the CE-simulable steps of Conc are equal, the (M, ;, My i 1)-Seg-
ments of 7 refered to in the second components of elements of 1l are exactly the
same asthe (I, Ip  1)-segments of T refered to in the first components of elements
of Il Therefore each step of 7" contained in these segments, existentially witnesses
as intermediate transition, the derivation of an AE-simulation between the corre-
sponding Abs and Exe steps, obtained by composing the AC-simulation and the CE-
simulation according to (2.3)-(2.6). This gives a bijection between Abs and Exe
steps at the level of individual simulating steps. Since the relative order of corre-
sponding simulating stepsin s Z(1l;) 7 and 7 X(Il,) U isthe same, the relative order
of corresponding simulating stepsin the AE-simulations will be the sametoo. Sowe
have atotally ordered bijection between Abs and Exe simulable steps. The steps ag-
gregate via the construction of Proposition 5.1 into relations between segments of §
and U, 5564. Z(l(ab),j,i!l(ab),j,f! ab),k,i:m(a,b),k,f) (utb,lg’ and these comprlseﬂ(ab). The
S and 4, can be aggregat further into ﬂ%@b) via (5.4_) and (5.5), repeatgdly ap-
plied, perhaps countably many times, until afixed point is reached. And since the
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orderonindividual stepsin s, 7, U, is atotal order theresultingsegmentsin s and
U, whicharedisjointby constructioninherittotalorderstoo. Sincethepairsof these
in 15 ) consistof sourceandtargetdatain the elementof a bijection, it is nothard
to seethat (5.6) definesa total orderon the pairs,andll, ;) with this total orderis

Il a,by

Next we considerthe non-simulatingsteps. Let Op be an operationnamecommon
to the Abs, Conc andExe systemsandlet u -(i, Opa, 0)-> U bean AC-nonsimulat-
ing abstracstepin a segmentof 5. Supposeéherewasa stepw -(k, Opg, g)-> W' of

Exe with which it was in simulation via the relations (2.3)-(2.6). Then since

Ga,E)(U, W) O Pop,a E)i, k u, w) is presumedywe caninfer G(u, v) U Poi, j, u, v)

for somev and j. Since we have a biretrenchment, the step u -(i, Opa, o) > U and

these,mply via the biretrenchmenbperationPO (3.4), thatthereis someconcrete
stepv -(j, Opc, p)-> V whichis in simulationwith u-(i, Opa, 0)-> U'. Thiscontradicts
the AC-nonsimulabilityof u -(i, Opa, 0)-> U', whichthereforemustbe AE-nonsimu-
lable. A similar agumentusingthe corventionalretrenchmenbperationPO showvs

that theCE-nonsimulating implementation steps are aéi&nonsimulable.

Now we have accumulate@&noughfactsto disposeof the variousclausesf Defini-
tion4.6for s Z(Ila p) U. Sincedom(s) ={s |k dom(ly} andall AC-simulable
steps of s occur as AE-simulating steps of § by construction, dom(s) = {s | k O

dom(ll(5))} quickly follows; likewise dom(7') = {t, | k T dom(ll(5,))}, and thus
clause (1) For clause (2) we observe that splitting a segment into two non-empty

ones extends and otherwise preserves the (S, |y, k) < (Sce1slke1 s lke1,1) Ordering,

consistentvith theindexing, andfusing two contiguoussegmentsin the samefrag-
ment of § in the obvious way shrinks and otherwise preserves the (s, .l 1) <

(Sk+1 Ik 1jsIk+1 p) Ordering,consistentvith theindexing. Now theway we have con-
structedthe segmentsin § of Il 5 ) is by splitting andfusingtheoriginal segmentsn

s of Il, andsimilarly for the segmentsin « of || a,b)— sincewe first split themvia
the construction of Proposition 5.1, and then aggregated the results via (5.4) and

(5.5). Both actwities thusyield orderingson their elementonsistentwith thein-

dexing andclause(2) follows. Clause(3) follows becaus€5.4) and(5.5) andtheir
repetition up to a fixed point ensure there are no pairs contiguous segments left in

lla,py Clause(4) holdstrivially by constructionwhile clause(5) holdsbecausdl , 1,

wasconstructedo representhe compositionof two (total andsurjectize) bijections
between all the simulable stepssofr; andu. ©

Proposition 5.4 The \ertical composition of Proposition 5.3 is assougti

Proof. This essentially reduces to the observation that the construction rests on a
composition of bijections©

Propositiorb.3is anelegantresult,but it restedon two assumptionshatdo notgen-
erally holdfor anarbitrarypair of simulationrelationss 2(ll)) 7 and7 Z(ll,) U be-
tween multifragments, namely that the two retrenchments in question were bire-
trenchments, and that the sets of AC-simulable and CE-simulable steps of Conc
werethe same. Let usexaminewhathappensvhentheseassumptionarerelaxed.

If we have cornventionalretrenchmentgatherthanbiretrenchments,e. operatiornPO
(3.4) doesnot hold, thenwe cannotdeducethe AE-nonsimulabilityof abstractAC-
nonsimulatingstepson the basisof their AC-nonsimulability aswe did above. Thus
theremightbean AC-nonsimulatingAbs step,sayu -(i, Opp, 0)-> U whichis never-
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Fig. 3

theless in simulation with some Exe step, say w -(k, Opg, 0)-> W', even if neither of
them is in simulation with any Conc step whatsoever. This happens because the
composed ‘in simulation’ relation, the analogue using (2.3)-(2.6) of (4.4) for the
composed retrenchment, does not require there to be any intermediate Conc step to
witness its truth. Note that the AE-nonsimulability of CE-nonsimulable Exe steps
continues to hold because the conventional retrenchment operation PO still holds.

The repercussions of the above depend on whether the sets of AC-simulable and CE-
simulable steps of Conc arethe samein the composition. If they are, then all the AE-
simulable Exe stepsin U are catered for in the bijection of simulable steps given by
ll(a)- Thereforefor any AC-nonsimulating Abs step u-(i, Opa, 0)-> u" which occurs
in an exception of s and isin simulation with an Exe step w -(k, Opg, 0)-> W', either
w -(k, Opg, 0)-> W' does not occur in ¢, or if it does, w -(k, Opg, g)-> W isaready in
simulation with some other Abs step described in Il ). Thus the simulating frag-
ments described by Il 5, enjoy a maximality property, despite there possibly being
additional AE-simulable Abs stepsin s. Inany case we lose clause (5).(i) of Defini-
tion 4.6 (though (5).(ii) still holds), and thus we cannot assert 5 Z(Il5,)) U.

If the sets of AC-simulable and CE-simulable steps of Conc are hot the same in the
composition, then the constructed Il 5 ,) may describe a proper subset of a maximal
collection of simulating fragments o% S and U asthe next counterexample shows.

Counterexample 5.5 Consider §, 7, and U, illustrated in Fig. 3. Steps 1 and 2 of
U g are CE-nonsimulable and thus AE-nonsimul able, and steps 2 and 3 of 5 are AC-
nonsimulable, and thus AE-nonsimulable if we have biretrenchments. Step 1 of S
isin AC-simulation with astep of 7, but thereisno CE-simulation to composeit with
so it falls outside the domain of the Il ,p,) constructed in Proposition 5.3, which is
[((0,0,0),(0,0,0)), ((0,4,4),(0,4,4))]; smilarly for step 3 of 1. But thereisno fun-
damental reason why step 1 of .Sg cannot bein AE-simulation with step 3 of g, and
ifitis, itleadsto s Z(Il' 3 ) U, wherell' o) =[((0,0,0),(0,0,0)), ((0,1,1),(0,3,3)),
((0,4,4),(0,4,4))], provided of course that steps 2 and 3 of 5y are AE-nonsimulable.
If these steps are AE-simulable, then we still get a maximality property of the smu-
lation described by II' ;) eventhoughnot all of thecriteriaof Definition 4.6 aremet.

Thelessons of these points are thus clear. |f we lose biretrenchments, acomposition
may lead to additional AE-simulable Abs steps because AC-nonsimulating Abs
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steps may become AE-simulable. If we lose equality of the AC-simulable and CE-
simulable steps of Conc, the ability of 11, to control al of the steps of s and u
declared smulablein |l and Il is forfeited, with the conseguence that unpredictable
additional simulations between steps of s and © may arise, and not just nicely in-
order onesasin Fig. 3, ascaseslike Fig. 2.(€) can easily arise. If we lose both prop-
erties, we get both problems, and they can also interact, asthe AE-simulable AC-non-
simulable Abs steps, may simulate with the CE-simulable Exe steps liberated from
I, supervision.

In the end, without the support of the stronger conditions, the bijectionin|l 5, mere-
ly provides a safe lower bound on possible simulating segmentsin § and ¢. What
remains of these situations can be salvaged in the following.

Definition 5.6 The notion s 2(I1)™ ¢ is given by Definition 4.6 except that clause
(5).(i) is omitted.

Remark 5.7 Note that this definition permits segments of nonsimulating but never-
theless simulable abstract steps of arbitrary length wihin §. Thisisnot very satisfac-
tory as aconcept for capturing simulability, hencewe do not giveit ahigh profile. Its
only features worthy of note are in the following.

If pisasequence of pairs[(Pga Pob): (P12 P1b); --- 1. 1t snd(p) be the sequence of sec-
ond projections of elements of p, i.e. [Pop, P1ps - -- 1-

Lemma5.8 Supposes Z(II)~ ¢ and s Z(11")~ @ both hold. Then snd(ll) = snd(ll').
Proof. Thisisan easy unidirectional weakening of Proposition 4.7 . ©

Proposition 5.9 Suppose s, 7, U, are multifragments of systems Abs, Conc, Exe,
which are related via retrenchments captured in the notations used in (2.3)-(2.6).
Suppose both s 2(Il))~ 7 and 7 Z(llp)~ @ hold, asin Proposition 5.3. Suppose each
CE-simulable step of Conc is also AC-simulable, and let I, ;) be constructed asin
Proposition 5.3. Then $ Z(ll(4p))” U accordingtothe ‘insimulation’ definition stem-
ming from the vertically composed retrenchment defined by (2.3)-(2.6).

Proof. Thisisalso an easy unidirectional weakening of Proposition 5.3. ©

The inclusion of the CE-simulable steps of Conc in the AC-simulable ones is per-
haps a more arguable scenario than their exact equality (though exact equality is a
feature of the retrenchments in [Banach and Poppleton (2003)]). One can imagine
the approach to atruly executable system, with all its awkward boundary cases etc.,
to beviaaseries of simplified models, each incorporating more of the low level detail
than its predecessor, and each thus more distant from the original abstract model than
its predecessor; and all this happening in a monotonic manner with respect to inclu-
sion of simulable steps at intermediate models. The composition properties of such
aprocess are neatly captured in Proposition 5.9, though Remark 5.7 considerably di-
minishes enthusiasm for the Z(I1)™ notion. We seethat the general resultswe are able
to prove about compositions of simulations between (multi)fragments under re-
trenchment are not very strong, and so practical cases will often need to be handled
by ad hoc means.

Remark 5.10 The above vertical composition results, although needing additional
conditions to hold in the strongest cases, have nevertheless influenced the design of
the preceding definitions, in particular Definition 4.6. For instance consider Fig. 2.(c)
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which shows a simulation between two multifragments s = [Sq, S1, So] and T = [Ty,
T4, T], such that 5o and 5, simulate with 7y, and S, simulates with 7; and 75; and
where these two pieces of the simulation are completely separate. Now imagine that
the two piecesrefered to multifragments of three systems, Abs, Conc and Exe, such
that thefirst piece was asimulation between s =[Sq, S1] and T =[], and the second
piece was asimulation between T = [7g], and U = [Ug, U4]. Vertically composing
them would give asimulation between § =[5q, S1] and ¢ =[ U, U4]. But thiswould
also consist of two disconnected pieces, Sq simulating ¢, and 5, simulating 4.
This shows that insisting on stronger connectivity propertiesin Definition 4.6 would
give a concept of simulation that failed to compose vertically even under favourable
conditions. Similar remarksexplain why ‘holes' insimulation asin Fig. 2.(f) are per-
mitted. They can be easily generated by vertical composition of more innocent situ-
ations.

6 System Propertiesand Simulation Transformers

In this section, the notions from the preceding sections are applied to show how prop-
erties of one system transform through a given retrenchment to yield properties of the
other system. Given the rather flexible nature of retrenchment, it is of just as much
interest to examine how properties of the concrete system map to the abstract system,
asit isto see how abstract properties map to the concrete system; this is despite the
fact that the latter perspectiveissignificantly moreimportant when onetakesarefine-
ment oriented point of view. Also for the same reason, the previous sections were
predominantly built on the symmetric ‘in simulation’ concept of Definition 4.3, rath-
er than using amore asymmetric notion ensuing from the asymmetry of the retrench-
ment POs.

Wewill identify aproperty of asystem with the set of system behavioursthat display
that property, where asystem behaviour isamultifragment.* This conception of sys-
tem behaviour ismore generousthan in conventional scenarios, the reason being, that
sincewe will use simulability relationships between abstract and concrete systems as
the main vehicle for translating properties at one level into properties at the other,
and, as we discussed earlier, smulability relationships exhibit various kinds of mis-
behaviour illustrated in examples, the view that a system behaviour can be a single
initial execution fragment istoo simplistic.

Definition 6.1 Suppose we are given asystem Abs, and let a set of steps Z(Abs) O
stpa be nominated as the simulable steps of Abs. Then we say that a multifragment
S of Abs isZ(Abs)-curtiff, for al k, k+d, 0 dom(s) such that fragments Sy and Sy,
both contain simulable steps and dy > 1 is the smallest element of NAT™ for which
this holds (for the given k), then st'(s, Tmd(5y))]) # St(" Sk [mind("Sy.q)]), where
the lead-out discarded from s to give §, isthe longest non->(Abs) suffix of ,, and
the lead-in discarded from Sy,q, t0 give “Sy.q, is the longest non-3(Abs) prefix of

Serdie

Definition 6.2 An unfettered property SS of asystem Abs isjust aset of multifrag-
ments of that system.

4. We are thus deliberately excluding ‘properties’ that only concern at most the state, input,
and output spaces, which can be discussed viathe relations G, Pgp, Ogp, Cop.
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Definition 6.3 A property s of asystem Abs with respect to aset of simulable steps
>(Abs), is an unfettered property for which each multifragment s 0 ss is both curt
and Z(Abs)-curt.

Remark 6.4 Theintention of Definition 6.3 isto suppress fruitless fragmentation of
the multifragments comprising a property. In asense, a curt and Z(Abs)-curt multi-
fragment actsasacodefor al its more finely fragmented derivatives (including when
these are embellished with nontrivial lead-ins and lead-outs and intervening nonsim-
ulating fragments). In fact we can regard a property as encoding a down-closed set
of such more finely fragmented derivatives if we regard a single application of step
[1] or [2] in Definition 6.5 below as a progression up a partial order, in arather obvi-
ous way.

Definition 6.5 Let s" be amultifragment of a system Abs with respect to a set of
simulable steps Z(Abs). Let.s = PRa(S") be the multifragment derived from 5" by
the following steps.

[1] Concatenate a pair of concatenable adjacent fragmentsin s" (i.e. replace a pair
Sk and $y4q of $"" such that st'(s, [md(s)]) = st(Sy+1[0]) by their concatena
tion). Repeat until no further change is possible, to produce multifragment 5.

[21 Ing’, whenever fragments §, and Sy, both contain simulable steps, and dy > 1
isminimal for the given k, and st'(Sy Tmd($)]) = St Syeg [Mind("Sysg.1), then
replace Sy and Sy.q, by the concatenation of $,” and Sy, discarding all Sy,
for 0 <m<d,. Repeat until no further changeis possible, to produce multifrag-
ment § = PRA(S").

We write PR, also for the set extension of PR, to unfettered properties.

Lemma6.6 Forevery s, PRa(S) iscurt and £(Abs)-curt. PR, isafunction on mul-
tifragments which acts as the identity on curt and Z(Abs)-curt multifragments. By
extension, for every unfettered property 55, PRA(SS) isaproperty, and thus PR, isa
function on unfettered properties which acts as the identity on properties.

Proof. That for any .5, PRa(S) iscurt and Z(Abs)-curt is clear as step [1] removes all
opportunuites for concatenation, and step [2] ensures Z(Abs)-curtness. Suitably un-
derstood, al instances of the steps of the procedurein Definition 6.5 are non-interfer-
ing, so their application in any order always leads to an unambiguous result, and thus
PR, isafunction. If amultifragment iscurt and Z(Abs)-curt to start with, then steps
[1] and [2] of Definition 6.5 are both null and PRy, actsastheidentity. Theremainder
isby set extension. ©

Proposition 6.7 Let 7 be a concrete multifragment, s be an abstract unfettered
property, and s = 7 for some s O S, al in the context of aretrenchment which de-
fines the simulable steps. Then PR, (S) 7 where PRA(S) O PRA(SS).

Proof. Suppose s ¥ 7 for some s O s5S5. Thenif s isnot curt and X(Abs)-curt, the
procedure in Definition 6.5 at worst concatenates some fragments and erases some
nonsimulable steps and fragments from s, yielding PRA($). But al the simulable
steps of § survive this process, in the same order (and possibly more concatenated
thanin $). So PRA(S) Z 7 isnot hard to prove. ©
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All of the above have concrete counterparts, PR being the concrete analogue of PR,
Below we will continue to mainly just cite the abstract versions of results without
comment, assuming the concrete versions tacitly understood.

Assumption 6.8 From now on we will assume that all abstract multifragments are
curt and Z(Abs)-curt, and al concrete multifragments are curt and >(Conc)-curt; all
with respect to sets of simulating steps >(Abs) and Z(Conc) that should be clear
from the context.

Proposition 6.7 and Remark 6.4 above justify this simplification, avoiding the con-
stant need to deal with the PR functions and with overfragmented multifragments.

Definition 6.9 Suppose given two systems Abs and Conc, and let 2(Abs) and
>(Conc) bethe sets of abstract and concrete simulable steps derived from aretrench-
ment via Definition 4.3. Let SS be aproperty of Abs and 77 be aproperty of Conc
(with respect to 2(Abs) and Z(Conc) respectively). Then the simulation transform-
ers[Z] and (X[are defined as follows.

[Z]lss = {7 |(@sesOssOsz )0 Sses27 0 s0O55)} (6.1
EBS = {7 |(0Os+s508s05Z7)} (6.2
[Zl7r = {s|(@T7 7 07r OsZT)O0@TsZ70707T)} (6.3
A ={s|(07 7 077 OSZT)} (6.4)

Note the key role played by Assumption 6.8 in Definition 6.9. Without it the second
conjunct in (6.1) would cause [Z] 55 to be empty in generdl, asfor agiven 7, s * 7
does not by any means guarantee that 5 is curt and Z(Abs)-curt, as it needs to be if
S ss istohald. Likewisefor (6.3).

Proposition 6.10 The following hold for the transformers [(Z0and [Z].
(1) ss1085, O ElksqOEDS,O[Z])ss10[Z]8So

(2) [2]ss O XCks

3 7r 0[z]ss - ELrr Oss

Proof. Immediate from the definitions. ©

The functions [Z] and CX(interpreted in both abstract-to-concrete and concrete-to-
abstract directions) provide the fundamental simulation transformers of properties
between the two levels. The purely relational nature of the s = 7 simulability rela-
tionship meansthat [2] and [(X0work like fairly standard box and diamond modal op-
erators on amodal algebra, and below we develop some of the natural consequences
of thisformalism. Weonly say ‘fairly standard’ since, unlike many similar situations,
we incorporate the clause (S +s 0 Ss 05 X 7)in(6.1). Itsomission would admit
into [X] S, concrete fragments that are entirely non-simulable. These have no place
in the definition of a mapping via simulation of ss. Similarly for (6.3).

In general, we obtain a web of richly interrelated properties by applying arbitrary
stringsin the alphabet { (Z[][X]} to properties at the abstract and concrete level, with
each occurrence of [(Z[Cand [Z] interpreted as an abstract-to-concrete or concrete-to-
abstract transformer in the only way that makes sense®.
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Definition 6.11 Let 55 be an abstract property. Then we define s ° to be the prop-
ety {S| (07 «sOSs OsZ7T)}. If 5§ =55, wesay that 55 is proper.

Thus $s * is.ss with any non-simulating multifragments removed.
Proposition 6.12 Let ss be an abstract property.

1) ... (EQE)3ss O (EOs])2ss O EQs]ss O ss° 0SS
(2 Sss° 0 [EXZs O (Z)ED2ss O (Z)ED8ss ...

3 [Z]ZXOz]ss = [Z]ss

(4 EOx]ELks = Z0ks

(5 w[Z]xz]ss = w[Z]ss, wherew O {ELO[Z]}*

(6) wz>]Xlks = wlzlks, wherew O {XO[Z]}*

Proof. For (1), $$° O sS is obvious, after which we argue as follows. Let s O
X[Z]ss. Thenby (6.4), forsome 7 O[Z]Ss,S Z 7 holds. Now if 7 O[] S5 and
S 2 7 holds, then by (6.1), s 0 s5. Also, because s = 7 and s 0 S both hold, then
SOSS°. SoXz]ss Oss °. Since [XZ]Ss, and hence ((X[Z])"ss areall prop-
erties, the cases for (CX[J=])" for n > 1 follow by induction.

For (2), we havethefollowing. Let s 0SS °. Thenthereissome 7 suchthat $ 2 7
asofor any such 7, wehave 7 O [X[ks. Thereforesucha7 witnessesthefirst clause
of s O [Z](Xks. For the second clause, for thesame s, forany 7, if $ = 7 then 7 O
{T|s0s8s° 0527} 0OEkS, or more briefly s = 7 0 7 0 [XLES, and so we
deduce s O [Z]CELkS. Altogether we get ss * O [Z]CELkS. The remaining steps are
by induction again.

For (3), wehave (Z[JZ] ss O .55 by (1), sothat [Z](Z[Z] Ss O [Z] Ss by monotonicity.
On the other hand, since ([Z] $5)" = [Z].5S, then [Z] ss O [Z](X[Z] sS) by the con-
crete counterpart of (2), giving [Z] (Z[%] s =[Z].5S. Thereasoning for (4) issimilar.
Now (5) and (6) follow by noting that (X[and [X] are both functions on properties.
We aredone. ©

Of particular interest are properties ss such that (X[>] 55 =SS or S5 =[] (ZLES, or
better still, when both are true.

Definition 6.13 Let s$ be an abstract property. Then core(ss) = XZ]ss O SS, is
called the core of Ss. If core(ss) =SS then s isacore property. Similarly 55 * O
rect(ss) = [Z]XLEs, gives the rectification of $S. If rect(ss) = S then s§ isarec-
tified property. A property isweakly robust iff it isaproper, core and rectified prop-
erty, i.e. [X[[Z] ss = $5 =[Z]XLkS. A property isrobust iff it satisfies 55 * = s and
[Z]ss = (LS.

Observing that [2] 55 provides the biggest concrete property 77 such that arbitrary
tranglations (via simulation) of its elements back to the abstract level remain within
5SS, the core of ss provides the smallest subproperty of ss which contains all these
arbitrary trandlations. Similarly CECks provides the biggest concrete property 77
reachable via arbitrary trandations of the elements of S5, and the rectification of s

5. Obvioudly if we were dealing with more than two levels of abstraction we would have to
enrich the (X[and [Z] notations somewhat.
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gives the largest superproperty of s ° such that arbitrary trandations of its elements
do not breach 77. Weakly robust and robust properties embody both virtues.

Proposition 6.14 Let ss be an abstract property.
(1) [Z]sS isrectified.

(2) [XOks iscore.

(3) If s isrobust, then s isweakly robust.

Proof. Proposition 6.12.(3)-(4) give (1) and (2). For (3), suppose ss isrobust. Then
[Z]ss =[X0ks, so [XZ].ss = [XMELKS. Also, since [XZ].ss O Ss © by Proposition
6.12.(1), and ss * O [XIXLES, and S5 * = 5SS by robustness, we deduce [(X[%] 5s =
S5. Weknow that ss = s ° O [Z]CELkS by Proposition 6.12.(2), and by robustness,
[Z]ZXDks = [Z][Z] ss follows from [Z]ss = (E[FS. So we just have to show that
[Z][Z]ss O ss. Sosupposethat s O [X][Z].ss buts O.s5s. Thenfrom s O [Z][2]ss
wehave(O7 7 O[Z]ss OsZT)=(Dad(07 «sZ7 0 7 0O[Z]SS). Suppose
7 satisfies (0. But (O says7T O[Z]ss,andso by (6.1) wehaves X7 O s 0SS,
contradicting s 0 5s. ©

Counterexample6.15 Fig. 4 showsthat the natural converse of Proposition 6.14.(3)
does not hold. The blobs represent individual multifragments and the linesthe > re-
lationship. We have (X[Z] ss = S5 = [Z](ELks but [Z] ss # ZOKS.

Proposition 6.16 Let ss bean abstract property. Thenthereisapartition of CMF 4,
the set of all curt and Z(Abs)-curt multifragments, and partitions of CM¥ ¢, the set
of al curt and Z(Conc)-curt multifragments, as follows:

(1) cMFp = 85" B 55" B oMF f°
(2 oMF ¢ = [Z]ss B [Z](ss) B (ESS n ZOSS)) B omy &

where sS ° is clearly a property, where cMF o° ={S | =(07 * S Z T)} O CMF a,
CMF »° being the nonsimulating subset of cM¥ », and where CM¥F 4 isits comple-
ment, and with similar definitions for cm¥ & and cM¥F . Abstract complements
aretaken in CMF 5. Moreover:

(3) If Ss iscore, then ss * isrectified.
(4) If ss isrectified, then ss * is core.
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(5) If 55 isrobust, then ((X[Es n X{ss 7)) =0 in(2).

Proof. For (1), it isclear that sS isa property and that the unionisdigjoint. For (2)
we note that for any simulable 7, one of the following holds. Either (O Ses%7 O

sOss)holdsand 7 O [Z] 55, or (OSeS=7 0 sO.S5°) holdsand 7 O [Z] (sS ),
or neither holds. But inthislast case, because T issimulable, there must bean s O

Ss,andan s, O s *, such that 5127 and S, X 7 both hold, and the decomposition
of CMF cisclear.

Of courseall the []5s, CEL(SS ), CX0ES, [£](Ss °), figuring in the above are core or
rectified, as appropriate, by Proposition 6.14.

To establish (3) we calculate as follows, where comy, and comg are complements in
CMF p and CMF  respectively.

[ZIXEESS ") = [T |(OSesOss 052 7)}

= (definitions)

7 |(0s, T esOss0sZ 7' 052 T)}

= (PC, set theory)

7T |(Oses0ss0sZT)}

= (PC, set theory)

[Zlcomc({7 |(OsesZ7 O sO55)})

= (PC, definitions of [Z] 55 and cMF &)

{7 |7 O[2]ss} O emr &)

= (T O0MFE 0O (@OS5=(SZT)))

[ZH{T | T O[Z]ss}

= (definition of [X], PC, set theory)

{s|-((@Q 7' O[Zss O=(SZTH))O@7" esZ 7' 07" O[Z]55))}
= (definition of (X[ PC, set theory)

compa{s|(@O 7' esx7'0 7' O[Z]ss)} O ZEZ]Ss )
= (definition of [Z][Z] 5S and CMF A7)

coma([Z][Z] 55 O eMF p° O [ZZ] 5S)

= (Proposition 6.10)

comp (O] Sss O CMF A7)

= (PC, set theory)

coma((ZOZ]s8) N CMF 4 = comp ((EIZ]SS)°

= (85 iscore)

$8° (6.5

To establish (4) we must show that if 55 is rectified, then (XS] (55 °) = 55 °.

EQE)(Ss ) = ERT |(OsesOss ' 0sZ7)00SesZ7 0 sOS85 )}
= (definitions)
EH7 [0S, T'-s08ss 0527 ' 0s57)0
(0SesZ70 (07" +50850SZT)}
= (PC, set theory)
FEH7T |(0Ses0ss05Z7)0@Ss8527 0 s085)}
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= (PC, set theory)

Etomc({7 |[(OsesZ7 0 sOss)0@ssZ7 Os5085)})
= (PC, definitions of [Z] 55 and cMF &)

Eltomc([Z]ss O emr & O [ELKS)

= (7 0cmy & 0O (OS+~(SZ 7)), Proposition 6.10)

7 |7 O ZLks}

= (definition of (X[ PC, set theory)

{s|-@O7'esz7'0 7' 0EZ0Ss)}

= (definition of [X], PC, set theory)

comp ([Z]EZ0kSs O cMF A7)

= (PC, set theory)

coma ([Z]ELES) N CMF 5 = comp([Z]XES)"

= (s isrectified)

$8° (6.6)

Point (5) isnow obvious. We aredone. ©

7 Ambivalent Propertiesand their Transformers

One weakness of the simulation transformers studied in the previous section is that
the simulation relationship S ~ 7 completely fails to restrict the lead-ins and lead-
outs and other non-simulable segments of both s and 7. Asaconsequence, any prop-
erty defined by a set comprehension of theform{s | ... $ = 7}, where 7 ranges over
some understood property, can take in all possible ways of embellishing the simulat-
ing segments of agiven s with such non-simulable portions, almost without reserva-
tion. Fortunately there are other mappings we can consider that can alleviate this to
adegree.

We observe that discussions of systems (and of system property transformations in
particular) invariably take place in an appropriate meta level context, and although
we have been working exclusively at the semantic level, any system property that we
discuss must have some syntactic description at the meta level in order to be dis-
cussed at all. Itisthestructure of thismetalevel syntactic descriptioninitsmetalevel
context that we aim to exploit. Typical candidate metalevel contextsinclude:

[S] Theclassof al systems. (7.0
[R] A number of systems together with certain retrenchments between some

pairs of them. (7.2)
[R4]A specific retrenchment between two specific systems. (7.3)

Essentially, an ambivalent property (of a system with respect to a context) is a prop-
erty that can be expressed in the meta language by a predicate which is well defined
(and each of whose subexpressionsiswell defined) for every choice of system in the
context. Thus the predicate that defines the property must refer only to attributes of
the system that are possessed by all systems belonging to the context. We call such
predicates ambivalent predicates. To make this clearer we give a more precise defi-
nition for the context [], but quickly move on to discuss other possibilities morein-
formally.
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Definition 7.1 An ambivalent predicate for the context [S] is a predicate ¢ that for
a candidate multifragment ¢ of a candidate system U of [], refers only to its struc-
ture as a sequence of sequences, and the property «u =PRy({u | ¢ O cmMF  O@})
that it definesis called an ambivalent property.

Thus consider amultifragment « of U. It isa sequence of sequences U, each ele-
ment ¢, [1] of whichisastep u-(i, Opy, 0)-> U (and these steps connect together in
the usual way). Conseguently, any set of multifragments that is unrestricted regard-
ing the dataitems u, i, o, U', for the various steps, can be described by a set compre-
hension of the form {« | « O caF O @} where ¢ does not mention st(e), in(e),
Op(e), ou(e), st'(e), for any e that can refer to any step ¢ [l]. Such a predicate @ is
thus equally applicable to any other system W in [S] and defines, via PRy, a corre-
sponding property of W, namely PRy{% | W 0O cM¥F \ O@}. Ambivalent prop-
erties (for the context [S]) are properties that can be described in this way.

To put it another way, ambivalent predicates and properties refer only to aspects that
can be considered to be part of the common structure of the context of discourse.

Example 7.2 The following phrases, when formalised to the extent needed, yield
ambivalent predicates for the context [S].

S contains one fragment and its length is 5. (7.4)
md(s) =0 O md(Sq) =4 (7.5)
No fragment in § has length greater than 15. (7.6)
kO dom(s) O md(s,) <14 7.7

Above, (7.4) and (7.5) are intended to be equivalent as are (7.6) and (7.7). In both
casesthelatter isamoreformal statement of theformer. Notethat nothing other than
the structure of § as a sequence of sequencesis refered to.

Example7.3 Thefollowing phrases, yield ambivalent predicatesfor other contexts.

S contains one fragment and its length is 5; the second and third

operation names are both Inc. (Assuming Inc O (Opsa N Opsc).) (7.8)
md(s) = 0 Omd(Sg) =4 0O0p(Sg[1]) = Inc D Op(sel2]) O {Inc} (7.9)
S contains one fragment; the second operation namesis not Inc.

(Assuming Inc O (Opsp N Opse).) (7.20)
md(s) =0 0 Op(sgll]) # Inc (7.11)
Thefirst fragment in § startsin an initial state. (7.12)

Notethat (7.8)-(7.11) depend implicitly on there being only oneretrenchment in play
in the current discourse, otherwisetheterm (Opsa N Opsc) becomes ambiguous, so
the predicates defined are suitable for example for the context [R4].

Thelastitem (7.12), initiates the relaxation of the strict tenets of the contexts we have
defined earlier, inthat it referstoinitial states. Certainly thisisnot permitted accord-
ing to Definition 7.1, but observing that all the systems we consider do indeed have
initial states, we are entitled to regard the possession of an initial state as a structural
element of our class of systems, and accordingly, mention of initial states ought to be
permitted inside ambivalent predicates since it is well defined for all systemsin the
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context. We do not formalise this more precisely here, and instead we spend some
time indicating other viable relaxations of the rather narrow notions of ambivalence
introduced above.

Example 7.4 The following phrases provide further cases of notions that are not
strictly permitted according to earlier remarks, but that could potentially be seen as
structural, and thus as yielding ambivalent predicates for suitable contexts.

Thelast fragment in s endsin afina state. (7.13)
Each fragment in s passes through at Ieast one bottleneck state. (7.14)
The second fragment in § endsin a state outside the field of the

retrieve relation. (7.15)
The second fragment in s has three simulable steps. (7.16)

The one and only fragment in § has three consecutive simulable steps
whose operation names are respectively Inc, Inc, Dec, and al the other
steps are non-simulable. (7.17)

Phrase (7.13) usesthe notion of final state, onewhich isnot present in the system con-
cept of Section 2, and so phrase (7.13) is not only undefined in that sense, but also
according to eg. Definition 7.1. But many useful classes of system do have a notion
of final state, and the significance and utility of retrenchment do not depend on
whether this aspect of a system is present or not, so finality of states ought to be ad-
mitted in ambivalent predicatesif the context isonewherefinality isacommon struc-
tura property of al systemsin the context.

Phrase (7.14) goes further. What is a bottleneck state? There is no predetermined
answer to the question, but there can arise situations in which we are dealing with a
class of systemsthat each have one or more states that merit some specia consider-
ation of thiskind. Regarding this class as a context, it then becomes reasonable to
elevate those states to a structural feature, and to allow them to contribute to ambiv-
aent predicates.

The more liberal examples so far can be characterised by saying that all occurences
in the ambivalent predicate @ of st(e), in(e), ou(e), st'(e), for any e that can refer to
any step $[1], are constrained to eval uate to elementsinside (or outside) of given con-
stant sets whose names have afixed interpretation in each system in the context.

However (7.15) is more contentious than that. Asin (7.8)-(7.11), it assumesthereis
only one retrenchment in the current discourse, otherwiseit isambiguous asto which
retrieverelationis being refered to. Beyond thislies atyping issue regarding the do-
main and range of a heterogeneous relation: we need to define the field of a hetero-
geneous relation as the digoint union of its domain and range before (7.15) is well
typed.

Phrase (7.16) issimilar to (7.15) though more complicated, requiring referenceto all
the ingredients of aretrenchment, while (7.17) goes even further. (We will return to
(7.17) shortly.)

Reviewing the preceding examples confirms that what can be regarded as acceptable
in an ambivalent predicate is heavily dependent on the meta context. And it suggests
that in amore rigorous formalisation, the aspects we seek to capture can be expressed
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by introducing additional constants into the object language, each with a fixed
(though not necessarily first order) interpretation for each system in the context. Giv-
en the focus on the semantic domain in this paper, we do not pursue such formalisa-
tions here, though there is obviously much scope for detailed exploration of the am-
bivalent predicate ideain various scenarios.

Definition 7.5 Let 22 =PRA({S |5 O cMF o O@}) where @isan ambivalent pred-
icate, be an ambivalent property of the abstract system of aretrenchment. Let 38 =
PRc({7 | 7 O cMF ¢ O@}) be the corresponding concrete ambivalent property. The
ambivalent transformer operator (A) is defined as follows.

(A)aa = 33 (7.18)
(A) B3

a4 (7.19)

For ambivalent properties there are now two ways of mapping them between levels
of abstraction: firstly using [Z] and [X[Jand secondly using (A). Consider the abstract
property ss defined by (7.17) again, which is a good example for comparing these
mappings. We know by Proposition 6.10 that [2].ss O CE[kS, and that both consist
only of concrete multifragments (of length at most 3, by Definition 4.6.(1)), that are
each in simulation with at least one element of 55. The individual fragments may
contain arbitrary lead-ins, lead-outs, and other non-simulable segments. On the other
hand (A)ss consists of concrete multifragments of length 1, each of which contains
a segment of three steps with operation names Inc, Inc, Dec, such that each of these
three stepsisindividually ssmulable. But thereisno requirement that the simulations
of the concrete Inc, Inc, Dec, stepsfit together to make asegment of length 3inasin-
gle fragment. Thusif the retrieve and other relations of the retrenchment are suffi-
ciently perverse, there may be elements of 5$ not in simulation with any element of
(A)ss, and elements of (A)Ss not in simulation with any element of ss. This pro-
vokes the thought of elevating consecutive simulability to a structural property and
examining the ambivalent properties generated. If (7.17) were strengthened in this
way, then wewould find that (A)Ss O [XLkS. Theseremarks sufficetoillustrate that
thereis no universally valid relationship between the [Z] and [(Z[ransformers on the
one hand, and the (A) transformers on the other.

The (A) transformer is obviously of limited use since it only applies to ambivalent
properties. But since ambivalent predicates are capable of constraining the lead-ins,
lead-outs, and other non-simulable segments of fragments, the interaction between
ambivalent properties mapped between levels of abstraction by (A) and arbitrary
properties mapped via[X] and [Z[0s obviously of great interest.

Proposition 7.6 Let aretrenchment be understood, and 22 and B3 be abstract and
concrete ambivalent properties related via (7.18) and (7.19). Let ss be an arbitrary
abstract property. Then:

(1) EOSS na4)n 33 O XSS n 44) O XS
2 IOss n4aa)n 88 0 Xks n 88 O [XkS
Q) [Z1S naa)n 33 O [Z](sS n aa) O [5]ss
@ [Z](ss naa)n 88 O [Z]ss n 88 O [Z]SS
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Proof. Theinclusions (1)-(4) follow by monotonicity of (ZZ(and [Z]. ©

That we cannot uncritically relate the middlie termsin (1) and (2) or (3) and (4) in
Proposition 7.6 for arbitrary ambivalent propertiesis vividly shown as follows.

Counterexample 7.7 Let 24 be al multifragments that begin in an abstract initial
state, and B8 be all multifragments that begin in a concrete initial state. Then the
standard initialisation PO (2.1), cannot prove that all elements of [Z] (55 n 44) be-
gininaconcreteinitial state, whichistrue of [Z] S5 n 88. The [Zcaseis similar.
And the corresponding facts for the concrete counterpart of Proposition 7.6, using an
arbitrary concrete property 77 instead of s, alsofail, as(2.1) only saysthat for each
concreteintial state thereis some abstract initial state, which is eg. too weak to prove
that all elements of [Z] (77 n BB) start in abstract initial states. Of course specific
systems may enjoy stronger properties regarding initialisation, that enable the equal-
ity of [(Z[{sS n 44) and [X[kS n B8 or of [Z](sS n 44) and [Z] SS n BB to be
proved, but that is another matter.

8 Constrained Property Transformers

Proposition 7.6 and Counterexample 7.7 showed that the interaction between ambiv-
alent properties and arbitrary properties was not particularly clean. While thismight
be viewed initially as a disappointment, on reflection it is not, as it generates greater
expressivity in transforming properties between levels of abstraction; and given the
somewhat unruly nature of the[Z] and [(Z[transformers asregards non-simul able seg-
ments within fragments, this can only be welcomed by devel opers when utilising re-
trenchment in practice.

We now consider in more detail property transformations that take an abstract prop-
erty $s to [(Z0kS n QQ orto[Z]ss n QQ. Wefocusonimposing aconstraint on the
result of asimulation transformer [X[or [X], as we assume that any constraint needed
for ss itself, would naturally be part of the definition of ss aready. But now there
isno reason to insist that QQ is a purely ambivalent property. There may be every
reason to be interested in the restriction of (kS or [Z] ss to properties which are
quite specific to the concrete system. Thus constrained property transformers will
translate an abstract property SS to a concrete property of the form [Z[ks n 88 n
27y, 0rto[Z] SS n BB n 9%, where BB isan ambivalent property and 99 isa prop-
erty specific to the concrete system. We will continue to writethese as [X0kS n QQ
or [Z]SS n QQ,with QQ = BB n 97, since no benefit isgained at the mathematical
level by maintaining the distinction between ambivalent and specific constraints, as
Proposition 7.6 and Counterexample 7.7 indicated.

Remark 8.1 Evenif thereisno mathematical benefit in separating 38 and 97, there
may be a benefit at the software methodology level in maintaining the distinction.
These different kinds of constraint may arise from different requirements, and thus
developers may wish to manipulate them differently for that reason. However our
concern now is with mathematics, so we merely note the point for future reference,
and continue to use the abbreviated form.

Definition 8.2 Let ss and PP be abstract properties and 77 and QQ be concrete
ones. The property transformers [Z ], (X ,,[J[Z,,], [Z,,[]called constrained prop-
erty tranformers (CPTs), are defined as follows.
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[Zl s = [2]8S n Q. (8.)
Eo5s = EEs n QQ (8.2)
[Z,,]7T = [Z]2T n PP (8.3)
[, 007 = I0T n PP (8.4)

We proceed to study [Z,,], (4,0 [Z,], X, aong familiar lines. The following
are immediate from the definitions.

Proposition 8.3 The following hold for the CPTs[Z ], (X, [

(1) 851085, O Epy[551 O[5S O[Z 0] 851 O[22

(@) [Zql 85 O Xl

Proposition 8.4 Let s be an abstract property and QQ a concrete one. Then:
(D) [Zglss O [Z]ss

(2) Xy Lks O [ZLks

Proposition 85 Let ss and PP be abstract properties and QQ be a concrete one.
D) o (EpdZe])3ss O (EplZ)3ss O EplElss O ss° 0 ss

) [Zo] Ep 2 o] E 02501 S5 = [Zgo) Epp 12 0] 55

Q) [Ze]E o2 ] E o[BS = [Z] X o[5S

(4) WIZ ] 0% o ] 02 0] 85 = W[Z ] (E,, 02 ] 85, where wis any
well formed® word over { (X, [ [Z o], oo D [Z]}

(5) WZ0]E 02, ] X o[5S = W[Z,,][X,[5S, where wisany
well formed word over {[Z,,[)[Z,], X L[Z4]}

Proof. For (1), the conclusion follows by Proposition 8.3 and Proposition 8.4. Note
that there is no analogue of Proposition 6.12.(2) because of the conflict between
Proposition 8.4.(2) and the desired ascending chain. For (2), weuse[X ]SS in place
of 77 in the concrete counterpart of (3).

For (3), let § O[] E oo 0%, ] E oo [5S. Then s O ep, and (DT + S 7 07 O
(F o 15 ] E o B5) = (), and (O T « ST T 0 7 O [E o [15,,]E o, [55) = (B), al
hoid.

Let 7 witness (). Then T O QQ, and thereisan s’ suchthat s' ¥ 7 Os' O
[Z] X, [5S = (CF) holds. From () wededuce (O 7'+ 5" 2 7' O 7' O [X,,[5S)
= (4,) among other things. And since (0y) appliesto 7' = 7 because of ((}), we de-
duce 7 O [Xy,[ks; sowehave (07 « sZ7 07 0QQ OT OIEX,[ES) = ().

From (G3,) we know that if $ ~ 7 holds, then T O QQ, and thereisan s’ such that
(C%) holds. By the reasoning just used we deduce 7 [ [X,,[5s again; so we have
OTesz7 0 70QOT OIX,IES)= (k). Now s O ep O(L) U(L) means
that § O [Z,,] (X, [ES, sowe have [2,,] (X, (12, ] (X, [5S O [Z,,] X, 05S.

6. Well formed means that the 27 and QQ subscripts aternate appropriately.
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To prove that [%,,] (X, [ks O [Z,,] (X, 0Z,,] X ,,[5S, suppose for a contradiction
that 5 0 [Z,,](X,, DS.S but that S O[Z0] [ZQQEBZPP] (X, [5s. Theneither s 0 PP =
(33) holds, or therels no7 suchthat ¥ 7 07 OX,,02,,]X,ks = () holds,
or thereissome 7 suchthat s = 7 07 0 [X,[]Z,,] [IQQD% = (Eg) holds.

Now (03) is contradicted by the P constraint in § O [X,,](X , (k5.

Suppose next that thereisno 7 such that ([3) holds. So for all 7, either = (5 X~ 7°) or
fI O X2, ] (X, [ES holds. Now s O [Z,,](X,,[kS implies(OT «sZ7 07 [0

@ 5S), so pick aT that witnesses this. Then for this 7, = (5 £ T') is contradicted,
soT 0 X o %, ] (X5, [ isforced. But then thiswitnessalso satisfies 7 0 QQ, S0
SO[Z,]Z,sand sz 7 and T 0 QQ, give T O [X,,[Z,,] (X, [kS, whichisthe
contradlctlon that rules out ().

Finally suppose that thereis a7 such that (Ck) holds. Then s O [Z,,](X,,[ks and
SZT and T OIX,[0z,,]ZX,05s (thelatter being equivalentto - (7 0 QQ 07 O
[Z[Z,,][X,,[5s)) areal assumed, and theseimply 7 0 QQ. But.s O [Z,,](X,[5S
implies(D 7"+ 527" 0 7' 0I[X,,[Lks) and this appliesin particular to 7' = 7,
which meansthat 7 O QQ holds, giving the last contradiction we need. Therefore
(%) isimpossible and (3) is proved.

Now (4) and (5) quickly follow. We are done. ©

Counterexample 8.6 With the conventions of Counterexample 6.15, Fig. 5.(a) and
Fig. 5.(b) show that clauses (2) and (3) of Proposition 8.5 are respectively optimal.
Thus Fig. 5.(a) shows that (X, [IZ ] (X, (2 ] 5SS # [X,,[0Z,] S, while Fig. 5.(b)
showsthat (X, (%, ] (X, [5S # (X,

The defaults for the above when either PP or QQ reduces to the trivial property are
of interest. The following have obvious extensions by suitable wordsw asin Propo-
sition 8.5.
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Corollary 8.7 Let PP bethetrivial abstract property sothat [%,,] =[Z] and [X,,[F
X0 Then:

(D) [ZelEHZqo] 88 = [2go) SS
() [ZIEQTEIE B = [Z]E, 55

Proof. For (1) we know that [(X[JZ ] s$ O Ss by Proposition 8.5.(1), so we have
[Zoo] E0Z ]88 O [Zy,]188 by monotonicity. Therefore we must show [Z,,]55 O
[Zoo] ZOZ ] 8S. Suppose T O [Zy,]SS,ie.{T} O[Zy]ss. ThenT O QQ and
(OsesOssOsZT)and (0SS5 7 O s0OSs)al hold. Thustheset $s,, =
{s|s0ss 05z 7} whichisequal to (X T} by (6.4), satisfies 55, 0 X% ]SS
Since {7} O[Z]55,,weget {T} O[Z,]EZ,]SS, and so, because T was an
arbitrary element of [X,,].55, we deduce [2 ,] 5SS O [, ](E]X,,]15S.

Note that (2) is the same as Proposition 8.5.(3), which cannot be improved as Fig.
5.(b) shows. ©

Corollary 8.8 Let QQ bethetrivial concrete property sothat [Z,,] =[2] and [X,,0]
=[Z0 Then:

D) [EE,Q2]E,Q2]ss = [Z]E,,02]ss
) [Z]Z02,,]ZLS = [2,]E05S

Proof. We notethat (1) isasin Proposition 8.5.(2), which cannot beimproved as Fig.
5.(a) shows. Also (2) isasin Proposition 8.5.(3); to see that this cannot be improved
itisenoughtolet QQ include also the last concrete element in Fig. 5.(b) and to recal-
culate (X[5s, [Z,,](Z0ks, and (Z[]%,,] (ELES insuccession. ©

Definition 8.9 Let ss and PP be abstract propertiesand QQ beaconcreteone. Then
COr€(pp, 00)(S5) = (L 12 oo | (X, 12 o] 85 T 55, is called the (22, QQ)-core of 55 If
CON€(pp, q0)(SS) = S5 then Ss isa (PP, QQ)-core property. Similarly rect,, qo)(SS) =
[Z,M,i[ZQQDSS, givesthe (27, QQ)-rectification of Ss. If rect(,, ,,)(55) =SS then S5
isa(Pr,QQ)-rectified property. A property is (PP, QQ)-robust iff it satisfies 5§ * =
S, and [Z,] 85 = [E0[5S, and [, (1%, ] 85 = [Z,] (X [

In both the case of the (PP, QQ )-core and the (PP, QQ)-rectification of s, these de-
rived properties of s feature the smallest number of iterations of [£,,[0Z,,] and
[Z,,] (X4, Lrespectively, such that a further application guarantees no change. Also,
compared with the situation in Section 6, thereis now greater scope for defining var-
ious weakenings of (PP, QQ)-robust properties, but we do not do so.

Proposition 8.10 Let ss and PP be abstract properties and QQ be a concrete one.
Thenif 55 isa(PP,QQ)-core property then [X,, [, ] 55 = SS.

Proof. Proposition 8.5.(1) says that [L,,[Z /] is a contraction mapping, therefore
(. 12 4 | (X, 2 ] SS =SS cannot hold unless (X, [, ] S5 = 5S. ©

Proposition 8.11 Let ss and PP be abstract properties and QQ. be a concrete one.
(D) [Zo] X, 02,1588 is (PP, QQ)-rectified.
(2 Ep02 ] Z,, 02,18 is(PP,QQ)-core.

Proof. Proposition 8.5.(2) gives both (1) and (2), though only (1) isan ‘efficient’ re-
sult. ©

29



Finally, when we come to reprise Proposition 6.16, the unconstrained interaction be-
tween Ss, PP and QQ generates more complexity than it profits us to fully explore.
Thus cM¥F p partitions into five subsets all potentially non-empty, thus:

CMF o= CMF 2 B (S5 °n PP) B (S5 PP)
(S5 nPP) B (SS "nPP) (8.5)

At the concrete level, this generates apartition of cM# ¢ into e & and fifteen po-
tentially non-empty subsets of cF ¢ asfollows. There are four subsets containing
concrete multifragments whose 2 images lie entirely in the four abstract subsets:

(55 *n PP), (55 *n PP), (55 *n PP), (55 *n PP) (8.6)
i.e. they are:
[Z1(S$ " 2P), [Z](SS *n 2P), [Z1(SS *n 2P), [Z](SS “n 2P) (87)

There are six subsets containing concrete multifragments 7 whose abstract images
lie entirely in pairs drawn from (8.6). There are four subsets whose abstract images
lieentirely in triples drawn from (8.6), and afinal subset related to all four subsetsin
(8.6). None of this mentions QQ. Each of the above concrete subsets splits into a
part in QQ and apart outside QQ , i.e.

[Zqal (55 "0 22), [Z] (8 "0 2P), [Z] (85 " 2), [) (55 *n 22),
[Zoo] (85 N 2P), [Z55](SS “n PP), [Z,](SS “n PP) ... etc. (8.8)

So we get thirty potentially non-empty simulating subsets of cM7 . Thisiswithout
considering iterations of the [X,,0)[Z,], (X,,0)[Z,,] operators, which create even
finer subdivisions, as Counterexample 8.6 shows. We do not explore these more de-
tailed partitions further here.

9 CPTsfor Regular Simulation Relations

We recall that arelation R: X « Y isregular iff R;R1;R = R, where ; is forward
relational composition. Regular relations are also often called difunctional because
any regular relation R can be equivalently characterised by the [i)roperty that there are
two partial functionsf: X - Tandg:Y — T suchthat f;g™ =R Thismeansin
particular that functions and inverse functions are subsumed by regularity, which
makes regularity widely applicablein practice, since many devel opment stepsfeature
functions or inverse functions in the passage from abstract to concrete; see [Banach

(1995)].

As an easy consequence of difunctionality, a regular relation is one whose domain
dom(R) and range rng(R) are partitioned into an equal number of equivalence classes,
such that for any two classes [X] O dom(R) and [y] O rng(R), the restriction of Ris
either empty from [X] to [y], or universal from [X] to [y], the universal cases corre-
sponding to f X(t) xg™(t) when t O T isin the range of both f and g. Such elements
of T consequently set up a bijection between the equivalence classes of the domain
and those of the range.

Proposition 9.1 Suppose the simulation relation Z arising from a retrenchment is
regular. Then the abstract equivalence classesin cMF 5 of X are robust properties.
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Proof. Let s bean abstract equivalence classin cMF p of Z. Itisclearly aproperty.
Evidently 55 * = 55. Also there is a concrete equivalence classin cM¥ ¢ of Z, 77,
suchthat s 0 $s and S Z 7 implies($,7) 058 x77. And 7 077 and s £ 7 implies
the samething. From thisit iseasy to seethat [(Z[§S = 77 =[Z]SS. ©

Corollary 9.2 Suppose the X relation arising from aretrenchment is (partial) func-
tional or (partial) inverse functional. Then the abstract equivalence classes of X are
robust properties.

Counterexample 9.3 The converse of Proposition 9.1 (which would say that robust
properties arose from regular X relations) does not hold. Thisis shown by a variant
of Fig. 4 in which the rightmost abstract and concrete multifragments are removed,
resulting in a1 shape, a Z relation which is not regular. Now [Z] 55 becomes equal
to (X0ks, and s isrobust.

Proposition 9.4 Suppose the X relation arising from aretrenchment isregular. Let
SS be an abstract equivalence class of 2 and QQ a concrete property. Then:

(1) Esnez0 = EZ,]ss =585
(2 EBs0QQ = [IX ks =585

Proof. For (1), let 7 O XLkS n QQ. By Proposition9.1, 7 O [Z] S n QQ,i.e. T O
[Z]5S. By regularity, s = 7 iff 5 00 85, so that [Z[JZ,,]5S = Ss. Conversely, if
ZZ ]85 =55, then[Z,,] 85 # O, so there must be some 7 [ [Z[5S n QQ.

For (2), if [(X[ks O QQ, then X, [ks = [Z[kS, hence [Z] (X, [kSs = [Z](X[kS. Since
by Proposition 9.1 ss is robust, by Proposition 6.14.(3) ss is weakly robust. This
implies [Z][(Z[ks = SS. For the converse, suppose[Z][X,,[kS =SS holds, but that 7
O X0FS — QQ. Thenfor 7, since by regularity s ~ 7 iff § 0 S5, we have that for all
SO8S5, S O[Z]X,5s since T 0QQ. Infact [Z](X,,[Fs isempty. ©

Proposition 9.4 describes a particularly clean interaction between the [Z] and (X0
transformers on the one hand, and constraints arising from a property QQ on the oth-

er, due to the fact that 3 breaks up into a number of digoint universal relations. We
now examine sufficient conditions for the simulation relation of aretrenchment to be
regular.

Consider aretrenchment given by the data G, Pgp,, Ogp, Cop. When we say any of
these relations (or any relations formed from these using the usual combinators) is
regular, we mean that it is regular when regarded as a relation from the relevant car-
tesian product of abstract data spaces to the corresponding cartesian product of con-
crete spaces.

Definition 9.5 We say that aretrenchment has regular data iff for all operations Op
0 Opsa n Opsc, therelation given by G(u, v) O Poy(i, J, U, v), the relation given by
G(u, V) 0 Oop (o, p; U, V,i,j, u, V), andtheoneglven by Cop(U', V', 0, p; i, j, U, V),

areall regular |n the sensejust stated (wherein the case of G ﬂ)PO and of G'O Oop:
we implicitly assume that G and G’ are extended by appropriate unlversal relations
on the other variables involved, in order that the overall relation has the correct sig-
nature). We say that the retrenchment isfully regular iff in addition, the relation giv-
enby ((G(U', v) OOgp(0, p; U, V, i, j, U, V) O Cop(U, V, 0, p; i, j, U, V) isregular.
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Since the intersection of regular relations is regular, regularity of say G U Pgy, fol-
lows from the individual regularrty of G and Pg,, (though thisis not anecessery con-
dition). However, since the union of regular reIaIrons need not be regular, regular
data for a retrenchment does not imply that the retrenchment is fully regular.

Proposition 9. 6 Suppose aretrenchment isfully regular. Then its one-step simula-
tion relation 1 is regular.

Proof. We must show that =1 ; (=11 ; =1 O £ since the converse is obvious. So
suppose Op, and Op are corresponding abstract and concrete operations and

(up -(i1, Opa, 07)-> U'y) Zl (V1-(1, Opc, PO~ V1)
(Uz ~(i2, Opa, 0p)-> U') =2 (v4 ~(j1, Opc, pp)-> V'9)
(Uz ~(i, Opa, 0p)> U') I (V2 (2, Opc, Po)-> V'5) (9.3)

al hold. Referingto (4.4), we seethat (G L1Pg)(uy, vy, iy, j1) and (G U Pop)(uz, vy,
i2,J1) and (G O Pgp)(Up, Vy, i, jo) al hold. By regularlty (GO Pop)(ul, Vo, i1, ]0) IS
true. Similarly we derrve ((G' 0 Ogp) UCop)(U'y, Va, 01, P2; i, J2, Uy, Vo) by full
regularity. We know from (9.1) that stPop (v2, jor Vo, po) Ost POPA(UJ-’ i1, U'q, 07)
hold, so we have all the ingredients of (uy -(i1, Opa, 01)-> U'1) Z~ (V2 -(j», Opc, Po)->
V',) which iswhat is needed. ©

Proposition 9.7 A default retrenchment has a regular £* relation iff its original
G(u, v) OPog(i, j, u, v) relations are regular for each Op.

Proof. To fix terms, suppose we are given G, Py, Ogy,, and from these we generate
a default retrenchment for which the default W|th|n r at|on PPe, and default con-
cedes relation CP¥( op aegivenvia(3.1) and (3.2). Letus calculate its =1 relation.
Suppressing variable names, we obtain from (4.4):

G DPop Dstpop, HstPop, U (G 01Ogp) 0 Cgyp)

= (definitions)

GO (G | POp ] (Du', 0, \/, p . StpOpA DStpOpC)) Dstpopc DStpOpA 0
((G' 00gp) U(G OPgy Ostpop, OStPop. - (G 00gy)

Go Pop 0 Stpopc 0 StpOpA 0 ((G' 0 Oop) 0 (G 0 Pop 0 ngpA 0 Stpopc))

GQo Pop O Stpopc O StpOpA (92)

Now let uscheck 3?; (zl)—1 1 021 with = given by (9.2). Refering to (9.1), the
|eft hand side implies stpop.(V2, j2, V2, P2) Lstpop, (Uy, i1, U'y, 01) immediately, and
also ((G O Pgp)(uy, vy, i, J](j 0(G O Pop)(Ug, vy, 12, 1) T(G UPop)(Up, V2, in, j2)) =
(0O. If (G DPO ) isregular, then weinfer (G LJPp)(Uy, Vo, iy, j2) and thence the reg-
ularity of the onestep simulation relation. However if (G UPgp) isnot regular then
there will be a counterexample that witnessesiit, given by some val ues uy, vy, iy, jq,
Uy, Vg, i, szor which (D) holds but (G UPgp)(uy, Vy, iy, j) doesn't, defeating the reg-
ularity of the 1 relation also. ©

Notethat thisresult was obtained by adirect argument rather than by exploiting Prop-
osition 9.6. An algebraic proof aI ong the expected lines would not be possible since
for adefault retrenchment, the ! relation is defined using acomplement of arelation
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expected to beregular, i.e. = (G' U Ogy). Unfortunately complements of regular re-
lations are not normally regular.

Proposition 9.8 A retrenchment has aregular ! relation iff it has aregular (multi-
fragment) > relation.

Proof. Assumethe =1 relationisregular. Let.s and 7 be abstract and concrete mul-
tifragments. By Corollary 4.8, s < 7 iff thereisatotally ordered bijection between
the simulable steps of .s and those of 7, such that each pair in the bijection is a pair
of stepsin simulation. Now let 51 > 77 and S, Z 77 and S, Z 75 all hold. Composing
the relevant totally ordered bijections in the obvious way, gives atotally ordered bi-
jection between the simulable steps of 54 and those of 75. For each pair of simulable
steps in the bijection, say u; -(i1, Opa, 07)-> U1 and V5 -(jo, Opg, Po)-> Vo, we have
(9.1), and so, since the one-step simulation relation is regular, uq -(i1, Opa, 01)-> U’y
and V5 -(jo, Opc, po)-> Vo arein simulation. Repeating for all simulable stepsin $4
and 7, yields 51 > T,, and thus X for multifragmentsis regular. For the converse we
note that the =1 relation is effecuvely arestriction of the Z relation to exception-free
multifragments containing just one simulable step. ©

The impact of Proposition 9.7 and Proposition 9.8 is profound. It says that ‘almost
any’ development step done with retrenchment can enjoy aregular  relation; with
the appreciable simplification of property mappi ngs that ensues from this. The rea-
son is that arranging for the G(u, v) U Pgfi, j, u, v) relations of the retrenchment to
be regular is usually not too difficult, asthey can frequently be restricted to straight-
forward mappings between the representations of states and inputs at the two levels
of abstraction. Once thisholds, the default retrenchment isaways available, and this
guarantees aregular X relation via Proposition 9.8.

10 Examples

It istime to examine some examples of the preceding theory. To start with we revisit
the two main examples developed in detail in [Banach et al. (2005)], on multisets and
sequences, and on elementary control theory. Finally welook at avery simple model
of noninterfering processes, in which the main question of interest refersto the inter-
action between concepts of ambivalence and simulation mappings of a property.

10.1 Multisets and Sequences

For this example the abstract model is a multiset of NATs equipped with operations
puts, gety which insert an element and remove an element from the multiset. The
concreteworld ismore constrained, having as state, a sequence of NATs of maximum
length 10, or one of two exceptional states Uflow, Oflow; and with putc, gefc as the
analogues of puty, gety. The more constrained putc, gete can get to Uflow, Oflow
when there is an attempt to breach the bounds, at which point areset is able to re-
store order. In detail the operations and state spaces are:

{puta, geta} = Opsa U Opsc ={putc, getc, reseg} (10.1)
U = o/ (NAT), IputA = NAT, OputA =0, IgetA =0, OgetA = NAT

V ={Il O seq(NAT) | length(ll) < 10} O {Uflow;, Oflow},

‘]prC = NAT’ Pputc = {FULL}v Jgefc = D1 Pgetc =NAT O {EMPTY}

Jreset = U, Preseg = {ok} (10.2)
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The abstract transitions are:
mset -(Nn, puta, €)-> mset+{n} ; mset+{n} -(geta, N)-> mset (10.3)
and the concrete ones are:

mseq -(n, putc, €)-> mseq@[n] , if length(mseq) <9

mseq -(n, putc, FULL)-> Oflow, if length(mseq) = 10 (10.4)
n::mseq -(gete, n)-> mseq, if length(mseq) <9

mseq| -(getc, EMPTY)-> Uflow, if length(mseq) =0 (10.5)
Oflow -(resetc, ok)-> [] , Uflow -(resetc, oK)-> [] (10.6)

Theretrieverelation is the obvious:
G(mset, mseq) = (mrng(mseq) = mset) (20.7)

with the two values Uflow, Oflow being outside the range of G. The initialisations
are

Inita (D) ; Inite((]) (10.8)

The concrete model is not a refinement of the abstract one, but it easily becomes a
retrenchment of it. One possible set of within, output, and concedes relations for the
put and get operations is the following:

Pput(is J, mset, mseq) = (i =j Omseq O {Uflow, Oflow}) (10.9)
Oput(0, p; mset’, mseq(, i, j, mset, mseq) = (0o=¢ep=¢) (10.10)

Cout(mset’, mseq, o, p; i, j, mset, mseq) =
(p=FuLL Omseq' = Oflow Olength(mseq) = 10 Omset’ = mset+{i}) (10.11)

Pger(i, j, mset, mseq) = (mseq U { Uflow, Oflow} [length(mseq) # 0) (10.12)
Oget(0, p; mset’, mseq', i, j, mset, mseq) = (0=p) (10.13)
Cyet(mset’, mseq, o, p; i, j, mset, mseq) = false (10.14)

The first thing to do with an example like this is to check the regularity conditions,
sinceif the example proves to be regular, enormous simplifications follow aswe saw
in the previous section. Evidently the retrieve relation G isregular; and extending G
by universal relations on other variables, as needed in forming well typed more com-
plex expressionsin the operation PO preservesthis. Let usnow look at the get oper-
ation. Py isregular sinceitisuniversal aside from restricting the value of mseg, and
therefore (G U Pgey) isregular. Ogg isregular sinceit is an equality relation, and so
(G' OOyw) is regular C etllsempty, 0 ((G' U Oge) U Cyey) = (G' U Oggy) is regular
and so tﬂe get part of th gZ relation is regular too.

We check the put operation. Py, isaconjunction of anequality relation and arestric-
tion on the value of mseq, both regular, so Py, isregular; therefore (G L1 Ppy) isreg-
ular. O, isapair of constraints on abstract and concrete outputs so is regul ar, hence
(G O C[)) put) 1S regular. Turning to Cy, the first three clauses of (10 11) obviously
define regular relations, so their conjunctron istoo. Thelast clauseisan equality re-
lation on three of the abstract variables, so reduces to arestriction on their values, so
isregular; hence Cp isregular.
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Finally we check ((G' U Opy) U Cpyy). Consider abstract and concrete quadruples
(before-state, input, after- state output) where the components need not form atran-
sition step. The abstract tuple A1 = ({1}, 2, {1...11}, €) isrelated by (G' 0O, to
the concrete tuple C1 = ([291], 378, [1...11], €). Clinturnisrelated by (G' [/ Opy)
to the abstract tuple A2 = ({2...11}, 1, {1...11}, ). A2isrelated by Cput tO C2 =
([2912], 3789, Oflow, FULL). Now C2 cannot be related by (G' [ O,;;) to anything
sinceits after-state is Oflow and (G' L] Oyy) is not defined for such values. Moreover
C2isnot related to Al by C, ¢ because {1} +{2} #{1...11} aswould be demanded
by Cout- SO AL ((G'HOpy) UCy) C2isfalseand ((G' LOpyy) U Cpyy) isnot regular.

Although we don’t have afully regular retrenchment, the general result about default
retrenchments should not leave us despondent. All it meansisthat Cy,; lacks some
clausesthat make it strong enough for full regularity to emerge. In fact itisuseful to
check the = relation for put directly. There are two subcases. When put does not
overflow, there is clearly a partial function taking concrete (mseq, j, mseq@Jj], €) to
abstract (mrng(mseq), j, mrng(mseq@(j1), €) whichisregular. When putc overflows,
there is another partial function taking (mseq, j, Oflow, FULL) to (mrng(mseq), j,
mrng(mseq@Yj]), €), also regular. The domains and rangas of these partial functions
are digoint, so their union |s regular. Thus since the s1 relations for put and get are
regular, the whole of the s1 relation (which istheir digoint union due to the tagging
by the operation namesthemselves) isregul ar, and we have what was desired after all.

Let us now examine the (multi)fragments of the two systems. For the abstract sys-
tem, afragment starts with some msety and can perform arbitrary sequences of puta s
and getps, provided that at each state visited, the number of get,s does not exceed
the number of put,s by more than the cardinality of msety, i.e. |gets| — [puta | <
[msetp]. A multifragment is just a sequence of such fragments.

For the concrete system, asimulable segment of afragment starts off at some mseqg,
and can perform sequences of putcs and getcs, such that at each state visited: (1) the
outcome of any subsequent getc is unique (unlike the abstract case), (2.a) the length
of mseq either staysin bounds after a subsequent putc or getc (because |getc|—|putc|
< |mseggm| and |putc| —|getc| < 10 — |msegqm ), or (2.b) asubsequent putc takesthe
state to Oflow, or (2.c) a subsequent getc takes the state to Uflow. After Oflow or
Uflow, an exception may follow. It must start with a resetc, possibly followed by
some number of alternating getc and resetc steps. And after aresetc, there may be
another simulable segment etc. If mseqq,,, =[], then the simulable segment may be
preceded by some suffix of an exception asjust described. A multifragment is a se-
guence of such fragments.

Since =1 is regular, so is = by Proposition 9.8, and on the equivalence classes of %,
[X[0and [Z] coincide by Proposition 9.1. We illustrate these on the simple abstract

property:
{0 -1, puta, €)-> {1} -(2, puta, €)-> {1, 2} -(geta, 1)-> {2} -(geta, 2)-> 0,
0 -(1, puta, €)-> {1} -(2, puta, €)-> {1, 2} -(geta, 2)-> {1} -(geta, 1)-> U}
(10.15)

In Fig. 6 we indicate how the elements of this property map under . Thefirst frag-
ment is easily simulated by the concrete systems as the elements come out in the
same order they went in. However the second fragment runsinto a problem half way
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0 (L, puta, £)> {1} (2, puta, £)> {1, 2} -(geta, > {2} (geta, 2 O

(1 -(L, putc, €)-> [1] ~(2, putc, €)-> [1, 2] ~(getc, 1)-> [2] -(getc, 2)-> []

O -(1, putp, €)-> {1} -(2, puta, €)-> {1, 2} -(geta, 2)-> {1} -(geta. 1)-> O

[1-(1, putc, €)-> [1] -(2, putc, €)-> [1, 2]\ \ \

(2, 1] -(getc, 2)-> [1] ~(getc, - []

Fig. 6

through, as the desired element, 2, is not at the head of the queue. The formulation
of the X relation in Section 4 enables us to express what happens via a break in the
simulation. Of course the interpretation of this break must come form the context
within which the example is being discussed. Moreover, each of the three concrete
fragments in Fig. 6 may be embellished with lead-ins and |ead-outs as described in
the discussion of exceptions above, in many ways. We have suppressed these from
the Figure, and their interpretation too would be contingent on the context.

10.2 Elementary Control Theory

This example considers a simple control redesign problem in which asimple contin-
uous control situation is remodelled in the discrete domain. We summarise the main
details, noting that the subscripts C/D here indicate continuous/discrete. In the state
space formulation, the continuous system is described by the differential equation:

Xc(t) = AcXc(t) + Bere(t) (10.16)
where X(t) isthetime derivative of x.(t), r(t) isthe external input, and A- and B. are

contants. The solution of (10.16) is standard, and for a period T to the future of a
starting point t = KT, is given by:

*o((k+1)T) = Tx(KT) + IZ AT=1R ¢ (KT + 1) dt (10.17)

This solution can be interpreted as a transition system for an abstract operation Opa
asfollows:

(xc(t), Xc(1)) -(re()), Opa)-> (Xc(t), Xc(t)) (10.18)
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wheret andt' arenonn@ative realvaluedandt < t'; andthereis arequirementhat
there exists a (global) solution of (10.16), such that for any 0 <t <t' the solution
agreeswith thequantitiesappearingn (10.18)att andt’. (Standardheorysaysthat
thereis enoughinformationrecordedn the statevector(x.(t), X=(t)), to ensurethata
unigueanalyticsolutionis determinedy it andtheinput,onwhich (10.17)isbased.)

To enablecomparisorwith the discretesystemto be introducedbelow, we expand
(10.17)by Taylor's Theoremandintegrateterm by term, keepingonly termsup to
order O, giving:

Xc((k+1)T) = (1 +TA)Xc(KT) + TBcrc(KT) + o(T) (10.19)
Now on the discrete side wevsa
A*Txp(K) = ApXp(K) + Borp(K) (10.20)

wherex; is the discretesystemstate A*™xy(K) is its forward differencefor sampling
periodT, given by:

Xp(k+1) —xp(K)

(10.21
T

ATX(K) =

ro(K) is the external(discrete)input, and Ay and B, areconstantsr, beingthe dis-
crete aternal input signal. The solution of (10.20) for thetretate is immediate:

Xp(k+1) = (1 +TAp)Xp(K) + TBprp(K) (10.22)

which canbeimmediatelycastasatransitionsystentfor aconcreteoperationOpg of
the following kind:

*o(K) -(ro(K), Opc)-> Xp(k+1) (10.23)

wherek is naturalvaluedandthequantitiesappearingn (10.23)mustconstitutea so-
lution of (10.20). Thereis enoughinformationrecordedn the statexy(k) to ensure
that a unique solution to (10.22) is determined by it and the input.

Combining (10.19) and (10.22) yields:
Xc((k+ 1)T) =xp(k+1) = Kc(KT) =Xp(K)) + T(AX(KT) —Apxp(K)) +
T(Bcre(KT) —Borp(K)) + o(T) (10.24)

whichcannow easilyrelatethetwo systemdy aretrenchmentAs aretrieverelation
we tale:

Gxc(KT), xo(K)) = [xc(KT) —xp(K) [< € (10.25)

wheree is adequatelgmall. Now (10.24)lendsitself to aretrenchmenteinterpreta-
tion with within, output and concedes relations:

P(re(KT), ro(K), Xe(KT), xp(K)) =
| AcXc(KT) —Apxp(K) + Bere(KT) —Bprp(K) | < o(1) (10.26)

O(Xc((k+1)T), Xp(k+1), re(KT), ro(K), Xo(KT), %p(K)) = true (10.27)
Clc((k+1)T), Xp(k+1); re(KT), ro(k), xc(KT), %p(K)) =
| Xc((k+1)T) —Xo(k+1) |< 0(1) (10.28)
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The retrenchment (10.25)-(10.28) deserves comment. Thefirst thing to bear in mind
isthat it is not an exact result, due to the (relatively crude) approximations adopted
inderivingit. So, asin many engineering situations, an ideal quantitative description
of the situation at hand is not available.

Secondly, the crude analysis performed to arrive at (10.25)-(10.28) entails the inevi-
table decay of the provable precision in estimating | Xo(kT) — X5(K) | as k increases,
due to the estimate being in effect based on a Lipshitz condition, which is what the
Taylor's Theorem analysisintroduces— and it iswell known that all estimates based
purely on a Lipshitz condition decay rapidly in precision, regardless of the realities
of the situation. To what extent the above analysis might be improved by using adif-
ferent strategy, is an exercise in control theory beyond the scope of this paper.

Thirdly, thereis no hope of thisretrenchment yielding aregular s1relation. For con-
sider G(xc(KT), Xp(K)). Suppose x15(K) = X2(KT) + €/2, X2c(KT) = x35(K) + €/2, X%p(K)
= x2(KT) + €/2, all of which satisfy (10.25). Then | x}c(KT) —x?5(K) | = 3¢/2, flouting
any prospective regularity of (10.25). Thisbehaviour istypical of numerical approx-
imations, because of the way that the width € windows can overlap. Considering the
other relations needed for aregular =* relation would not improve matters.

Despite these shortcomings, the machinery we built earlier gives us ameans to speak
about what is desirable in this example. Suppose we have an abstract property Ss
that we wish to implement via the concrete system. Then what we are interested in
is [Z]ss (or perhaps [Zo0]Ss for asuitable QQ), since that is the concrete property
whose multifragments simulate the abstract onesin S in such away that the bounds
on precision expressed in (10.25) with respect to multifragmentsin s$ are never vi-
olated. Of interest iswhether [Z]5s isempty or not, and whether or not 5§ = S5 °.

Of coursetheanalysiswedid in deriving the retrenchment aboveisnot strong enough
for us to be able to formally derive that some arbitrary 77 that we might come up
withisinfact [Z]Ss or [Zo0]Ss, but thisis no worse than what engineers have to tol-
eratein real life situations every day. The belief that some 77 is adequate to serve
asa[Z]ss would have to be based on engineering experience (or on adifferent anal-
ysis), and would be as secure or insecure as these can turn out to be.

10.3 Noninterfering Processes

Our final example concerns noninterfering processes, and illustrates the utility of the
interplay between the simulation property transformers [X] and [X[Jon the one hand,
and ambivalent notions on the other. Suppose we we make a model of two abstract
processes, X, and Y, which run concurrently, but which have no influence on each
other. We model the concurrency by interleaving semantics. Let the transition rela-
tion of Xp be stpy, (x, X) and that of Y be stpy, (v, y). For smplicity we assume no
1/0 and no skip stepsin either of X, or Yo. A step of the combined system is then
(X, Y) -(stpa)-> (X, y') where either y =y and x -(stpx,)-> X isastep of Xp, or x =X
andy-(stpy,)-> Y isastep of Y5. For any execution fragment of the combined system,
projecting onto the X, states and execution stepsin the obvious way clearly yields a
valid execution fragment of X,, and similarly for Ya.

Noninterference means that in an execution fragment s, an adjacent pair of steps of
Xa and Yp:

(%, y) -(stpx,)-> (X, Y) =(Stpy,)-> (X, Y) (10.29)
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may be swapped giving:
(X, ¥) -(stpy,)-> (X, ¥) -(stpx,)-> (X, Y) (10.30)

and vice versa. Let swap; , be the operator that performs this swap on the K'th and
k+1'th elements of the i'th execution fragment (of a multifragment) provided both
steps exist and are performed by different processes. Iterated, such swaps generate
all permutations of the steps of the multifragment, consistent with never interchang-
ing the order of any two X, stepswith each other, nor of ever interchanging the order
of any two Y, stepswith each other. Clearly, such swapping generates an equivalence
relation on fragments, and the equival ence classes are essentially Mazurkiewicz trac-
esfor anindependence relation which makesall X, stepsindependent of all Yy steps.
(See eg. [Mazurkiewicz (1986), Mazurkiewicz (1988)].)

Let [Swaplbe the operator on properties, defined as follows:

Bwapds = [ {swap; s |5 O s, swap; isapplicable to s} (10.31)
Then:

[sSlsy = U, Bwapthss (10.32)

yieldsthe smallest fixed point of [Swapltontaining SS, called the swap closure of S5,
wheretheindex | ranges over sufficiently high ordinal sthat the fixed point isreached.
Itis clear that the swap closure of 5SS consists of the Mazurkiewicz traces refered to
above.

The idea of swapping steps of independent processes has a very ‘ambivalent’ feel
about it. However we do not have an ambivalent property asin Section 7, since the
fixed point of the swapping is not given in terms of a simple predicate on the under-
lying primitivesthat define a (multi)fragment. Instead we have ahigher order ambiv-
alent operator; i.e. given aproperty s, (10.32) produces anin general different prop-
erty [S5]sw

Clearly this goes quite a way beyond what we entertained for ambivalence earlier,
and illustrates the danger of being premature in formalising ambivalent notions be-
fore considering the applications for which they will be used. In the present situation
we are dealing with aclass of systemsfor which the state spaceis acartesian product,
and such that each execution step affects only one component of the product, doing
so in amanner indpendent of the value of the other component. Fixing thisasameta
level context [SW], for any system U in the class, the [SwaplCand [ ...]g, operations
are well defined, and so can be applied to any property of U.

Suppose now that the next development step creates concrete versions of the two
processes X, and Ya, doing so viaaretrenchment whose simulation relation Z isre-
garded as known. Thereby we get processes X and Y. Suppose furthermorethat it
is important to conserve noninterference through this development step (eg. it may
contributeto amodel of animportant security property). Weregard it asafundamen-
tal feature of all systemsin [SW], that for any property Ss that is considered to be
implementable, al elements of [5$]g, must also be implementable. Consequently
we would need to be able to prove something akin to the following:

Security ProtoTheorem Let 7T be a concrete property and let QQ be a concrete prop-
erty that captures the exceptional aspects of the multifragmentsin 77. Then:
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(BT Joy = EOTT gy = [2)[TT Jsw = [[2]TT Jsw (10.33)

[l EIT Jay = [ZoollEEAT lgy = [7T sy =
[EQQUZ]TT Jaw = EoIZ] 7T Jsy (10.34)

The conditions expressed in (10.33) and (10.34) state that the swap closures of con-
crete properties are separated in a strong way from other properties. The simulation
transformers do not enlarge the swap closures no matter how they are applied. In par-
ticular, the abstract images of the swap closures of concrete properties are themselves
swap closed, and so concrete swap closures are simulation transformer images of ab-
stract swap closed properties, the embodiment of the security properties of interest.

Note the role of QQ in constraining the exceptional aspects of 77. Without it, the
equality of [7T g, to the other terms in (10.34) would most likely not be provable,
because of the ease with which exceptions can typically be inserted into multifrag-
ments. Of course the utility of thisformalisation depends on the extent to which QQ
captures the exceptional aspects of 77 independently of 77 itself, since setting QQ
=77 wouldyield acredible, if moretrivial, statement.

11 Conclusions

The preceding sections set up ageneral theory, first of execution fragments and mul-
tifragments, and ultimately of property transformers of various kinds, applicable to
pairs of systemsrelated viaaretrenchment. Asmore sensitivity to the context of the
transformation got built into the theory, the theory became more complex. However
when the criterion of regularity was introduced, considerable simplifications were
obtained. Since functional and inverse functional relationships (both instances of
regular relations) are so common in practical cases of formal development, the sim-
plification that ensuesis very welcome and can be viewed as widely applicable.

Three very different examples illustrated quite well what the theory can and cannot
do. The discrete multiset/sequence example exhibited most of what one would ex-
pect in a cleanly defined discrete example. The continuous digital redesign control
problem showed how different the continuous world is as regards the techniques of
this paper; nevertheless the terminology developed enabled the desirable aspects of
theredesign to be neatly expressed, evenif the actual cal culations of the retrenchment
were only approximate and did not enable the mentioned desired aspects to actualy
be proved. Finaly the noninterfering processes example led to an interesting higher
order development of the ambivalence notion, and showed that system design objec-
tives themselves may interact usefully with the concepts introduced in this paper.

The present theory can be considered as providing a useful framework for discussing
properties and their mappings, when the retrenchment relationship is drafted in terms
of individual execution steps at abstract and concrete levels, and properties are de-
fined as sets of multifragments. While these provide the simplest approach, they are
not the only possibilities. Both for the retrenchment relationship itself and for con-
cepts of system properties, different granularities and greater sensitivity to the sys-
tem’s branching structure can be introduced into the theory, enabling more subtle and
potentially more interesting relationships between systems to be brought into the re-
mit of the theory. For example, if we generalised retrenchment to speak about rela-
tionships between sequences of steps at the abstract and concrete levels, the content
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of the operation POs could acquire a more global perspective. Such a perspective
might well beneficially inform continuous scenariosin particular.7 However thisre-
mains work for the future.
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