
Model Based Engineering of Specifications by Retrenching Partial Requirements

R. Banacha, M. Poppletonb

aComputer Science Dept., Manchester University, Manchester, M13 9PL, U.K.
bDept. of Computing, Open University, Milton Keynes, MK7 6AL, U.K.
 banach@cs.man.ac.uk , m.r.poppleton@open.ac.uk
r-
the

it),
the
in
a

te
er-
ue
ete
en-
e.)
n-
n
fi-

ed
at
the

to
h
re
te

n be
r.
at

me

-

vi-
p-
ng
-

lt in
ne-
ni-
Abstract

In conventional model-oriented formal refinement, the
abstract model is supposed to capture all the properties of
interest in the system, in an as-clutter-free-as-possible
manner. Subsequently, the refinement process guides
development inexorably towards a faithful implementa-
tion. However refinement says nothing about how to
obtain the abstract model in the first place. In reality
developers experiment with prototype models and their
refinements until a workable arrangement is discovered.

Retrenchment is a formal technique intended to capture
some of the informal approach to a refinable abstract
model in a formal manner that will integrate with refine-
ment. This is in order that the benefits of a formal ap-
proach can migrate further up the development hierarchy.
After a presentation of the basic ideas of retrenchment, a
simple telephone system feature interaction case study is
given to illustrate how retrenchment can relate incompati-
ble partial models to a more definitive consolidated model
during the development of the contracted specification.

1. Introduction

Formal refinement, in its various guises, has a long and dis-
tinguished history. From the early papers of Wirth, Dijk-
stra, Hoare [1, 2, 3], it has developed into a large and vi-
brant field of research. A comprehensive survey would be
out of place here, but modern accounts in the spirit of the
original work can be found in [4, 5]. In all of these the as-
sumption is that oneknows alreadywhat the abstract model
is, and all one has to do is to refine it to a suitable lower lev-
el model, gaining a high degree of assurance for the de-
velopment thereby.

But the reality is, that in most software development, the
correct abstract model is by no means obvious at the outset.
Anecdotal evidence1 suggests that this is not only true
where one would expect it, namely in the development of

large and complex real world critical applications, unde
taken using a formal approach because of the belief in
assurance obtainable (or because legislation mandates
but is even present in the behind the scenes aspects of
development of small textbook or research examples,
which some experimentation is often required before
model that will satisfactorily refine to the desired concre
one is arrived at. (And that last sentence exhibits an und
tone that is quite deliberate, because it is frequently tr
that at the outset one has a firmer idea of what the concr
model looks like than the abstract one, and one reverse
gineers the latter from the concrete one to some degre
The upshot of this is that formal approaches, of the conve
tionally understood kind, do not help much in the creatio
of an abstract model that can be contracted to with con
dence for further development. Not that they ever claim
to, but in the ‘oversold and underused’ [6] atmosphere th
has often surrounded debate about formal techniques in
past, it is easy to imagine that they might have done.

Retrenchment [7, 8, 9, 10], is a technique that aims
help address this issue by providing a formalism in whic
the demanding proof obligations (POs) of refinement a
weakened, so that models not refineable to the ultima
concrete system, but nevertheless considered useful, ca
incorporated into the development in a formal manne
This is not to say that every misconception and blunder th
led to the correct abstraction ought to be recorded in so
sort of retrenchment audit trail, but that asanitisedac-
count2 of the construction of the abstract model from pre
liminary but incomplete precursorsthat are considered
convincing by the domain experts is of benefit.

The stress on the acquiescence of domain experts is
tal. To seek to impose from the outside, an alien develo
ment discipline on an already well established engineeri
mileu is doomed to failure. Yet a naive effort to impose re
finement as a software development technique can resu
exactly that. To be able to successfuly discharge the refi

1. Several private communications.
2. Taking some liberties with language, we mean not only ‘made sa
tary’ but ‘made sane’.

i-
to
ays
he
st
e
to
-

e-
e-

er
nd
en
t is
ive
ow
are
be
ut
e-
el.
ce-
e
rip-
of

r
e-
o

s,

t
n
s

e
p

ut
ment POs can force a development to adopt a structure sur-
prisingly unlike what one might imagine at the outset, es-
pecially when interfacing with physical models. Further-
more engineers with an established track record of
successful development are seldom sympathetic to the sug-
gestion that all their familiar working practices must sud-
denly be abandoned in favour of a way of working forced
implicitly by the rigidity of the refinement POs.

Retrenchment is a technique that seeks not to disturb
well entrenched engineering habits, by allowing models to
be developed in a manner more in tune with engineering in-
tuitions. Yet it aims to do so in a manner that can ultimately
be integrated with refinement. To do so, the POs of re-
trenchment must be less exigent than those of refinement,
but neverthless have a structure that is close enough to
those of the refinement POs to make the reconciliation fea-
sible; we will see the details below. Above all, it is vital
that the mathematics of the formalism be the servant and
not the master during the development activity.

The development route that retrenchment opens up now
appears as follows. In the initial stages of requirements
definition and specification design, many preliminary and
partial models are built. Some of these may well prove,
upon experimentation and further reflection, to be misguid-
ed. They can be discarded. Other models will, perhaps af-
ter some modifications, contain a sensible account of as-
pects of the desired behaviour of the intended system. Un-
fortunately, it is quite likely that not all of these sensible
models will be compatible with each other, in that being
concerned with only part of the desired behaviour, and
above all with clarity and intuitive perspicuity, not all of the
complexities of how the part focused on interacts with oth-
er parts will have been ironed out. Nor indeed should one
expect it to have been. One must understand first the broad
intentions before narrowing down on the finer details; de-
tails moreover that may only be of concern in limited spe-
cial cases. On a formal level, the incompatibility we speak
of usually manifests itself in the impossibility of accomo-
dating the various models we speak of in a single refine-
ment based development. Retrenchment, being more for-
giving of this kind of incompatibility, offers the possibility
of retrenching from such a collection of models to a more
complicated model that properly takes into account all the
requirements, and that can serve both as the basis of a con-
tract between customer and supplier, and as the basis of a
subsequent refinement based implementation. We call this
latter model the contracted model.

The reflective process involved in reconciling the in-
compatible partial models with the contracted model,
which is partially captured in the retrenchment relations
and proof obligations between these models, strengthens
the confidence that the right contracted model has been de-
cided upon, an activity that would otherwise be completely

informal. At worst this is simply because itis a reflective
process.Anykind of reconsideration of such design dec
sions from a novel standpoint is bound to be helpful
some degree, simply because two perspectives are alw
better than one. At best the engineering of the POs of t
retrenchments will have brought into sharp focus the mo
important issues that need to be clarified in firming up th
contracted model. One side effect of retrenchment is
provide a formal framework within which such considera
tions can exist.

The rest of this paper is as follows. The next section r
views the basic ideas of retrenchment. In Section 3 we d
velop a very primitive telephone system model, togeth
with two independent enhancements, call forwarding a
call hold. Since there are areas of incompatibility betwe
the primitive model and the enhancements, retrenchmen
needed to describe the relationships between the primit
model and the enhanced models. Section 4 considers h
the two enhancements may be combined: again there
areas of incompatibility when both enhancements can
triggered. It is shown that given a design decision abo
how to resolve the incompatibility, retrenchments can r
late the two enhancements to the resulting final mod
Section 5 considers the two compositions of the enhan
ments along the two routes from the original model to th
final model, and compares these to a retrenchment desc
tion of a one step derivation. This attests to the solidity
the retrenchment technique. Section 6 concludes.

2. Retrenchment

In this paper we work in a transition system framework fo
simplicity. In the context of model based requirements d
velopment, we will consider the relationship between tw
systems: theabridgedsystem, expressing an idealised view
of a part of the desired system, and thecompletedsystem,
that takes all the necessary details into account3.

At the abridged level, we have a set of operations,OpsA
with typical elementmA, and our state space, input space
and output spaces, areU, ImA

, OmA
, respectively. Meta lev-

el values inU, ImA
, OmA

will be writtenu, i, o respectively,
with primes or subscripts or indices to distinguish differen
values from the same space. (We will lighten the notatio
by not subscripting input and output values.) Transition
will be written asu -(i, mA, o)-› u′, whereu andu′ are the
before- and after- states,i ando are the input and output,
andmA is the operation responsible for the transition. Th
totality of such transitions makes up the transition or ste
relation formA, stpmA

(u, i, u′, o).
At the completed level we have state, input and outp

spacesV, J, P, respectively, with valuesv, j, p, and similar
3. Most presentations of retrenchment speak of anabstractand acon-
crete system, in the spirit of moving towards an implementation.

in-
at
cti-
.2)

e
-
r-
lit-
i-
e
is
ur

h
all
h

c-

es

c-
e

n-

e
e

conventions, except that we write operation name sets and
operation names subscripted withC, eg.mC. We assume
each abridged level operationmA, has a corresponding
completed level operationmC, but there may also be other
completed level operations, so that there is an injection
from the setOpsA toOpsC, which associatesmA with mC.

The relationship between abridged and completed state
spaces is given by the retrieve relationG(u, v). The initial-
isation operationInit at abridged and completed levels es-
tablishesG in corresponding after-states (as usual, the free
variables are assumed implicitly universally quantified):

InitC(v′) ⇒ (∃ u′ • InitA(u′) ∧ G(u′, v′)) (2.1)

Turning to the transition relation for operationmA, beyond
the retrieve relationG, we have the within relationPm(i, j,
u, v), and concedes relationCm(u′, v′, o, p; i, j, u, v). The
punctuation indicates thatCm is mainly concerned with af-
ter-values, but may refer to before-values too where nec-
essary. These are combined into the retrenchment PO for
steps which says that for eachmA:

G(u, v) ∧ Pm(i, j, u, v) ∧ stpmC
(v, j, v′, p) ⇒

(∃ u′, o • stpmA
(u, i, u′, o) ∧

(G(u′, v′) ∨ Cm(u′, v′, o, p; i, j, u, v))) (2.2)

This PO affords considerable flexibility in relating different
levels of abstraction, see [7, 8, 9, 10] for a discussion.

We consider a toy example, just to set the scene. The
abridged level is given by an initialisation operationInitA,
and one further operationUpA. We haveU = {0, 3}, and
IUpA

= ∅ = OUpA
. InitA setsu to 0, andUpA is given by 0

-(ε, UpA, ε)-› 3, whereε is the empty input and output; this
is the only step instpUpA

. At the completed level we have
InitC, andUpC. The state space isV = {0, 3, X}, and JUpC
= ∅, PUpC

= {Done, Error}. InitC setsv to 0, andstpUpC
=

{0 -(ε, UpC, Done)-› 3, 0 -(ε, UpC, Error)-› X}. The non-
trivial steps are illustrated in Fig. 1.

The retrieve relation is given by the inclusion ofU into
V i.e. equality of abstract and concrete values, and the with-
in relation forUp is U × V (i.e. we have a trivial within re-
lation), where we also ignore the presence of the empty in-
put spaces. There is some scope for choosing the concedes
relationCUp. The smallest possibility is:

C1 = {(u′, v′, p) | u′ = 3∧ v′ = X ∧ p = Error}

while other possibilities include:

C2 = {(u′, v′, p) | (v′ = X ∧ p = Error) ∨
(v′ = u′ ∧ p = Done)}

C3 = {(u′, v′, p) | (p = Error ⇒ v′ = X) ∧
(p = Done⇒ v′ = u′)}

Note thatC2 = C3 because of the smallness of the spaces
volved. These different possibilities indicate some of wh
can be expressed using retrenchment in a more synta
cally based framework. It is easy to check that the PO (2
holds for each of theCi’s.

3. Features in a Simple Telephone Model

We will illustrate the potential for retrenchment to captur
the evolution of an integrated specification from incom
plete and contradictory partial models, using feature inte
action in telephone systems. There is now a substantial
erature on this topic, eg. [11, 12], since the naive comb
nation of novel services on top of the plain old telephon
system (POTS) model can be problematic. Since our aim
to illustrate retrenchment and not to advance telephony, o
models will be oversimplified in the extreme. Still, they
will make the intended points. In this section we start wit
the simplest model and then consider the addition of c
forward and call hold facilities, a well known case in whic
the naive combination of extra services does not work.

PHONE: In this system the state space is just the set of a
tive calls, a partial injection on the available phonesNUM,
initialised empty:

calls : NUM ›+—› NUM where
dom(calls) ∩ rng(calls) = ∅ (3.1)

There are just two operations,connectn(i) andbreakn, the
former to dial numberi from phonen, and the latter to dis-
connect phonen. We define free(n) ≡ n ∉ fld(calls) ≡ ¬
busy(n), where fld(R) = dom(R) ∪ rng(R).

calls -(i, connectn, o)-› calls′ where
free(n) ∧
if free(i) ∧ (n ≠ i)
theno = OK ∧ calls′ = calls ∪ {n |→ i}
elseo = NO ∧ calls′ = calls (3.2)

calls -(breakn)-› calls′ where
busy(n) ∧ calls′ = {n} <−| calls |−> { n} (3.3)

From this very basic model we construct enhanced servic
one at a time. First call forwarding.

PHONECF: In this system the state space is the set of a
tive calls as before, plus a table of call forwarding data, th
latter being a partial injection on the phones whose tra
sitive closure is acyclic, and also initialised empty:

fortab : NUM ›+—› NUM where
fortab+ ∩ idNUM = ∅ (3.4)

Two new operationsregforCF,n(i) and delforn manipulate
the table. The former inserts forwarding destinations in th
table, the latter removes them. Note that for simplicity w

0 3(ε, UpA, ε)

0 3(ε, UpC, Done)

X(ε, UpC, Error)

Fig. 1

0

n

ple
he

di-
he
le

e

ced
of

d

-

e

is
ll
ty.
se

1);
do not mention parts of the state (i.e.calls) left unaltered by
an operation. Note thatregforCF,n merely overwrites any
existing information in the table if it is safe to do so.

fortab -(i, regforCF,n)-› fortab′ where
if (fortab <+ { n |→ i}) + ∩ idNUM = ∅
thenfortab′ = fortab <+ { n |→ i}
elsefortab′ = fortab (3.5)

fortab -(delforCF,n)-› fortab′ where
fortab′ = {n} <−| fortab (3.6)

In the presence of this new service, theconnectn(i) and
breakn operations need reexamination, as their behaviour
potentially changes due to the new requirements. Indulg-
ing now and henceforth in a little imprecision regarding de-
finedness offortab+(i) and of similar relations, thecon-
nectn(i) operation may be reengineered thus:

calls -(i, connectCF,n, o)-› calls′ where
free(n) ∧
if free(i) ∧ (n ≠ i)
theno = OK ∧ calls′ = calls ∪ {n |→ i}
else if busy(i) ∧ fortab+(i) = z ∧ free(z)
theno = OK ∧ calls′ = calls ∪ {n |→ z}
elseo = NO ∧ calls′ = calls (3.7)

while thebreakn operation, it turns out, is unaltered:

breakCF,n = breakn (3.8)

This completes call forwarding. Now for call holding.

PHONECH: In this system the state space is the set of ac-
tive calls, plus a table of call holding data, this being a sub-
set of the phones, initialised empty:

holtab⊆ NUM (3.9)

Two operations insert and remove elements of this subset.

holtab -(regholCH,n)-› holtab′ where
holtab′ = holtab∪ {n} (3.10)

fortab -(delholCH,n)-› fortab′ where
holtab′ = holtab – {n} (3.11)

With this service,connectn(i) andbreakn also need reex-
amination, for the same reason as above. Theconnectn(i)
operation simulates rather primitively the infuriating feed-
back obtainable from most holding services; however there
is no attempt to accurately model the resolution of a hold
when the call recipient bcomes free:

calls -(i, connectCH,n, o)-› calls′ where
free(n) ∧
if free(i) ∧ (n ≠ i)
theno = OK ∧ calls′ = calls ∪ {n |→ i}
else if busy(i) ∧ i ∈ holtab
theno= (“Our advisor is busy. Please hold.”)100∧

calls′ = calls
elseo = NO ∧ calls′ = calls (3.12)

The breakn operation is unaltered as before:

breakCH,n = breakn (3.13)

completing the call holding model.
Before going on to consider feature interaction, we ca

ask how these two enhanced modelsPHONECF and
PHONECH, are related toPHONE. The natural expecta-
tion is that they would be refinements ofPHONE, but this
turns out not to be the case. The reason is that the sim
PHONE system prescribes a specific response for t
busy(i) case, this being given byo = NO ∧ calls′ = calls, a
naive model of the engaged tone. Under the same con
tions, when appropriate supplementary conditions hold, t
two enhanced models prescribe different and incompatib
behaviour: inPHONECF a connection can be made to th
forward location, while inPHONECH an irritating mes-
sage drones on interminably. This means that the enhan
models cannot be viewed as straightforward extensions
thePHONE model. But in one sense or another this woul
be necessary if the relationships betweenPHONE and the
other systems were to be refinements.

There is no difficulty however in casting these relation
ships as retrenchments.

PHONE to PHONECF: We set up the data for the re-
trenchment as follows, withPHONEas the abridged model
andPHONECF as the completed model, and taking som
minor liberties with notation:

GCF(u, v) = (u = calls ∧ v = (calls, fortab)) (3.14)

PCF,connectn(i, j, u, v) = (i = j) (3.15)

CCF,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ fortab+(j) = z ∧ free(z) ∧
u′ = u ∧ v′ = (calls ∪ {n |→ z}, fortab) ∧
o = NO ∧ p = OK) (3.16)

PCF,breakn(u, v) = true (3.17)

CCF,breakn(u′, v′; u, v) = false (3.18)

Showing that the POs of retrenchment hold for these data
now easy. The initialisation PO (2.1) is trivial given that a
the sets in the states of both models are initialised emp
Also the operation PO (2.2) is easy given that the only ca
where the actions ofconnectn andconnectCF,ndiffer is pre-
cisely the case documented in the concedes relation (3.1
also the two break operations are identical.

PHONE to PHONECH: The abridged model isPHONE
as before andPHONECH is now the completed model:

GCH(u, v) = (u = calls ∧ v = (calls, holtab)) (3.19)

PCH,connectn(i, j, u, v) = (i = j) (3.20)

CCH,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ holtab∧ u′ = u ∧ v′ = v ∧
o = NO ∧ p = (“Our … hold.”)100) (3.21)

e
e

ot

the

not

of
at

-
one
e

ry
an
PCH,breakn(u, v) = true (3.22)

CCH,breakn(u′, v′; u, v) = false (3.23)

The POs are as straightforward as previously. The initial-
isation PO (2.1) is trivial, and the operation PO (2.2) is also
similar to the preceding case, and for the same reason.

4. Feature Interaction in Telephony

Having built our basic system, and having separately con-
sidered the call forwarding and call holding optional en-
hancements, we now consider combining the two features.
Any combination is based on the assumption that thecalls
state component and the input and output spaces of the two
variants of theconnectn and breakn operations are to be
identified insofar as possible. (This precludes construc-
tions that incorporate say twocalls state components and
then implement call forwarding in one, and call holding in
the other. Formally this might work up to some point, but
in practice such solutions are not useful as models of the
real world.) Here is our combined system.

PHONECF/CH: Here the state space iscallsas before, plus
a table of call forwarding data, plus a table of call holding
data:

(calls : NUM ›+—› NUM ,
fortab : NUM ›+—› NUM ,
holtab⊆ NUM) where

dom(calls) ∩ rng(calls) = ∅ ∧
fortab+ ∩ idNUM = ∅ (4.1)

The auxiliary operations to manage the two tables are un-
changed:

regforCF/CH,n = regforCF,n
delforCF/CH,n = delforCF,n
regholCF/CH,n = regholCH,n
delholCF/CH,n = delholCH,n (4.2)

as is the break operation:

breakCF/CH,n = breakCF,n = breakCH,n = breakn (4.3)

The interest lies of course in theconnectCF/CH,n(i) opera-
tion. Our design is guided by the following principles.
Firstly, if the conditions for neither service enhancement
hold, then the system should behave like the plainPHONE
service. Secondly, if the conditions for exactly one of the
service enhancements hold, then the system should behave
according to that enhancement, eitherPHONECF or
PHONECH as appropriate. The third case, when the con-
ditions for both the call forwarding and call hold enhance-
ments are valid, requires a design decision. We determine
that in this case, the caller should have the option of being
forwarded rather than a simple default of being held. To
keep things as simple as previously, we do not model the in-
teraction with the caller or the resolution of a hold situation

very faithfully, modelling it by a particular message at th
output, in line with the unsophisticated nature of all th
models in this paper.

calls -(i, connectCF/CH,n, o)-› calls′ where
free(n) ∧
if free(i) ∧ (n ≠ i)
theno = OK ∧ calls′ = calls ∪ {n |→ i}
else if busy(i) ∧ i ∉ holtab∧ fortab+(i) = z ∧

 free(z)
theno = OK ∧ calls′ = calls ∪ {n |→ z}
else if busy(i) ∧ i ∈ holtab∧

 (i ∉ dom(fortab) ∨ busy(fortab+(i))
theno= (“Our advisor is busy. Please hold.”)100∧

calls′ = calls
else if busy(i) ∧ i ∈ holtab∧ fortab+(i) = z ∧

 free(z)
theno = (“Our advisor is busy. Please press 1

to speak to the janitor.”)∧ calls′ = calls
elseo = NO ∧ calls′ = calls (4.4)

It is clearly at least plausible to say that refinements will n
hold either betweenPHONECF andPHONECF/CH, or be-
tweenPHONECH andPHONECF/CH. For a specific in-
stance this is because in the penultimate of the cases for
connectCF/CH,n(i) operation, the conditions for forwarding
and holding are both true, and the behaviour specified is
the same as in eitherPHONECF or PHONECH.

Despite this, retrenchment can give a good account
the situation, due to the more flexible proof obligations th
characterise it.

PHONECF to PHONECF/CH: In contrast to the two re-
trenchments given previously, this timePHONECF is the
abridged model andPHONECF/CH is the completed mod-
el, illustrating how in a development hierarchy, what is re
garded as concrete at one point, becomes abstract when
focuses lower down. This is just as appropriate for th
piecewise development of a specification from prelimina
models as it is when developing an implementation from
agreed specification.

GCF›CH(u, v) = (u = (calls, fortab) ∧
v = (calls, fortab, holtab)) (4.5)

PCF›CH,connectn(i, j, u, v) = (i = j) (4.6)

CCF›CH,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ holtab∧

(¬(fortab+(j) = z ∧ free(z)) ∧
u′ = u ∧ v′ = v ∧ o = NO ∧
p = (“Our … hold.”)100) ∨
(fortab+(i) = z ∧ free(z) ∧
u′ = (calls ∪ {n |→ z}, fortab) ∧
v′ = v ∧ o = OK ∧
p = (“Our … janitor.”))) (4.7)

el

ts
re-
l

r,
e-

les
l

te

l

n-
is

el

p-

h-

te

d

PCF›CH,breakn(u, v) = true (4.8)

CCF›CH,breakn(u′, v′; u, v) = false (4.9)

PCF›CH,regforn(i, j, u, v) = (i = j) (4.10)

CCF›CH,regforn(u′, v′; i, j, u, v) = false (4.11)

PCF›CH,delforn(u, v) = true (4.12)

CCF›CH,delforn(u′, v′; u, v) = false (4.13)

It is clear that the relvant POs hold. Initialisation is trivial
as usual, and the operation POs verify that the cases where
the abridged and completed models differ, is adequately
documented in the concedes clause.

PHONECH to PHONECF/CH: Here the abridged model is
PHONECH andPHONECF/CH plays the part of the com-
pleted model, so the role ofPHONECH is different to its
role in the other retrenchment in which it appears.

GCH›CF(u, v) = (u = (calls, holtab) ∧
v = (calls, fortab, holtab)) (4.14)

PCH›CF,connectn(i, j, u, v) = (i = j) (4.15)

CCH›CF,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ fortab+(j) = z ∧ free(z) ∧

((j ∉ holtab∧ u′ = u ∧ o = NO ∧ p = OK ∧
v′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨
(j ∈ holtab∧ u′ = u ∧ v′ = v ∧
o = (“Our … hold.”)100∧
p = (“Our … janitor.”)))) (4.16)

PCH›CF,breakn(u, v) = true (4.17)

CCH›CF,breakn(u′, v′; u, v) = false (4.18)

PCF›CH,regholn(u, v) = true (4.19)

CCF›CH,regholn(u′, v′; u, v) = false (4.20)

PCF›CH,delholn(u, v) = true (4.21)

CCF›CH,delholn(u′, v′; u, v) = false (4.22)

The POs are as straightforward as previously. The initial-
isation PO (2.1) is trivial, and the operation PO (2.2) is also
similar to the preceding case, and for the same reason.

We note that in both of these retrenchments, the con-
cedes clause for theconnectn operation has to cater for two
exceptional conditions. In the case of theCF›CH retrench-
ment, when holding is available, the two actions for for-
warding available or not are both incompatible with
PHONECF, while in theCH›CF retrenchment, when for-
warding is available the two actions for holding available or
not are both incompatible withPHONECH. Aside from
these nontrivial cases, we have a greater proliferation of es-
sentially trivial operation POs, arising from the fact that
PHONECF andPHONECH have management operations
for the forward and hold tables respectively, and these are
also present in identical fashion inPHONECF/CH.

5. Compositions of Retrenchments and a
Direct Retrenchment Design

Given that we have two routes to get from the simple mod
PHONE to the final modelPHONECF/CH, the first via
PHONECF and the second viaPHONECH, we can exam-
ine the compositions of the relevant pairs of retrenchmen
and compare them, both to each other and to a one step
trenchment obtaining the final design from the origina
simplePHONE system.

For the formulation of retrenchment used in this pape
the method of composing retrenchments is examined in d
tail in [10]. For brevity we just cite the results.

Suppose we have at top level a system given by variab
u, i, u′, o (for a typical operation). At intermediate leve
suppose the variables arev, j, v′, p (for the corresponding
operation). And at lowest level suppose the variables arew,
k, w′, q (for an operation corresponding to an intermedia
level operation with variablesv, j, v′, p). Suppose a re-
trenchment is given from top level to intermediate leve
with retrieve relationG(u, v), and for a top level operation
m, within and concedes relationsPm(i, j, u, v), Cm(u′, v′, o,
p; i, j, u, v). Suppose there is also a retrenchment from i
termediate level to lowest level whose retrieve relation
H(v, w), and for intermediate level operationm, within and
concedes relationsQm(j, k, v, w), Dm(v′, w′, p, q; j, k, v, w).
Then there is a retrenchment from top level to lowest lev
whose retrieve relation is:

K(u, w) = (∃ v • G(u, v) ∧ H(v, w)) (5.1)

and whose within and concedes relations for a top level o
erationm are:

Rm(i, k, u, w) =
(∃ v, j • G(u, v) ∧ H(v, w) ∧

Pm(i, j, u, v) ∧ Qm(j, k, v, w)) (5.2)

Em(u′, w′, o, q; i, k, u, w) =
(∃ v′, p, v, j •

(G(u′, v′) ∧ Dm(v′, w′, p, q; j, k, v, w)) ∨
(Cm(u′, v′, o, p; i, j, u, v) ∧ H(v′, w′)) ∨
(Cm(u′, v′, o, p; i, j, u, v) ∧

Dm(v′, w′, p, q; j, k, v, w))) (5.3)

We will now calculate these quantities for the two retrenc
ment routes fromPHONE to PHONECF/CH. In both cases
we only need to check for the top level operationsconnectn
andbreakn because the other operations at the intermedia
level get filtered out of the composed retrenchment.

We start with the route viaPHONECF, getting a re-
trenchment that we label withCF›CH. Starting with the re-
trieve relation, we plug (3.14) and a suitably relabelle
(4.5) into (5.1) and get:

KCF›CH(u, w) = (u = calls ∧
w = (calls, fortab, holtab)) (5.4)

to

9)
:

k

nt

he
Moving to connectn and the within relation, we likewise
plug (3.14) and (3.15) and a suitably relabelled (4.5) and
(4.6) into (5.2). Noting that as far as the use of the resulting
relation in the operation PO is concerned, we can discard
the termKCF›CH(u, w) which arises via (5.2) since both
PCF,connectn(i, j, u, v) andQCF›CH,connectn(j, k, v, w) are in-
dependent of the state variables andKCF›CH(u, w) is one of
the PO antecedents anyway, we get:

RCF›CH,connectn(i, k, u, w) = (i = k) (5.5)

Similarly we plug (3.14) and (3.16) and a suitably rela-
belled (4.5) and (4.7) into (5.3). After some simplification
and further manipulation we get:

ECF›CH,connectn(u′, w′, o, q; i, k, u, w) = (busy(k) ∧
[1] ((k ∉ holtab∧ fortab+(k) = z ∧ free(z) ∧

u′ = u ∧ o = NO ∧ q = OK ∧
w′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨

[2] (k ∈ holtab∧ fortab+(k) = z ∧ free(z) ∧
u′ = u ∧ o = NO ∧ q = OK ∧
w′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨

[3] (k ∈ holtab∧ ¬(fortab+(k) = z ∧ free(z)) ∧
u′ = u ∧ w′ = w ∧ o = NO ∧
q = (“Our … hold.”)100) ∨

[4] (k ∈ holtab∧ fortab+(k) = z ∧ free(z) ∧
u′ = calls ∪ {n |→ z} ∧ w′ = w ∧
o = OK ∧ q = (“Our … janitor.”)) ∨

[5] (k ∈ holtab∧ fortab+(k) = z ∧ free(z) ∧
u′ = u ∧ w′ = w ∧ o = NO ∧
q = (“Our … janitor.”)))) (5.6)

In deriving (5.6) we fully exploited the environment of an-
tecedents of the PO, i.e.i = j, j = k and the properties ofG
andH, removing the existential quantifications∃ v′, v, j via
the one point rule. Also we identified intermediate level
outputs with higher or lower level outputs as appropriate
whenG or H was involved, eliminating the∃ p quantifi-
cation too; this goes slightly beyond what is expressed in
the generic operation PO because outputs are discussed
only in the concedes clause4.

Now disjuncts[1] and [2] of (5.6) come fromC∧H in
(5.3), [2] being an artifact of the insensitivity ofH to the
means by which the state it is mapping was arrived at, i.e.
it allows forwarding behaviour to survive when a subse-
quent design decision has overriden it;[3] and[4] come from
G∧D with [4] likewise being an artifact; and[5] comes from
C∧D, one of the disjuncts fromD generatingfalse.

The other operation figuring in the retrenchment is
breakn for which we find, uninterestingly:

RCF›CH,breakn(u, w) = true (5.7)

ECF›CH,breakn(u′, w′; u, w) = false (5.8)

Now we can turn our attention to the alternative route
PHONECF/CH via PHONECH. Going through the same
procedure we get a retrenchment labelled withCH›CF.
The retrieve relation is as before:

KCH›CF(u, w) = (u = calls ∧
w = (calls, fortab, holtab)) (5.9)

Similarly, for connectn, we obtain the within relation:

RCH›CF,connectn(i, k, u, w) = (i = k) (5.10)

and to obtain the concedes relation, we manipulate (3.1
and (3.21) and a suitably relabelled (4.14) and (4.16) into

ECH›CF,connectn(u′, w′, o, q; i, k, u, w) = (busy(k) ∧
[1] ((k ∈ holtab∧ ¬(fortab+(k) = z ∧ free(z)) ∧

u′ = u ∧ w′ = w ∧ o = NO ∧
q = (“Our … hold.”)100) ∨

[2] ((k ∈ holtab∧ fortab+(k) = z ∧ free(z) ∧
u′ = u ∧ w′ = w ∧ o = NO ∧
q = (“Our … hold.”)100) ∨

[3] (k ∈ holtab∧ fortab+(k) = z ∧ free(z) ∧
u′ = u ∧ w′ = w ∧ o = (“Our … hold.”)100∧
q = (“Our … janitor.”)) ∨

[4] (k ∉ holtab∧ fortab+(k) = z ∧ free(z) ∧
u′ = u ∧ o = NO ∧ q = OK ∧
w′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨

[5] (k ∈ holtab∧ fortab+(k) = z ∧ free(z) ∧
u′ = u ∧ w′ = w ∧ o = NO ∧
q = (“Our … janitor.”)))) (5.11)

Using the same technical tricks as before, this time[2] and
[3] are spurious; with[1], [4], [5] agreeing with[3], [1], [5] re-
spectively of (5.6).

As expected, forbreakn we find:

RCH›CF,breakn(u, w) = true (5.12)

ECH›CF,breakn(u′, w′; u, w) = false (5.13)

Now we can consider what the retrenchment would loo
like if we built both features into the plainPHONE model
simultaneously. It is not hard to see that this retrenchme
is given by:

GCH/CF(u, w) = (u = calls ∧
w = (calls, fortab, holtab)) (5.14)

and forconnectn we get the within relation:

PCH/CF,connectn(i, k, u, w) = (i = k) (5.15)

while for the concedes relation we need merely record t
cases in which the simplePHONE model differs from the
PHONECF/CH model, thus:

CCH/CF,connectn(u′, w′, o, q; i, k, u, w) =
(busy(k) ∧ u′ = u ∧ o = NO ∧

((k ∉ holtab∧ fortab+(k) = z ∧ free(z) ∧
q = OK ∧
w′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨

4. To improve matters in this regard one can move to a more expressive if
more complicated formulation of retrenchment eg. sharp retrenchment or
its close relatives [9, 10].

t-
lts
s
al

to
rea
id-
to
n-
ot
his-
g.
ns
ar
ly
a

ch-
er,
ad-
es
to

e

n:

e-

t:
.
A

:
al

i-

ent

nt,
p.

ti-

in
s.
u-
(k ∈ holtab∧ ¬(fortab+(k) = z ∧ free(z)) ∧
w′ = w ∧ q = (“Our … hold.”)100) ∨
(k ∈ holtab∧ fortab+(k) = z ∧ free(z) ∧
w′ = w ∧
q = (“Our … janitor.”)))) (5.16)

For breakn we find as usual:

PCH/CF,breakn(u, w) = true (5.17)

CCH/CF,breakn(u′, w′; u, w) = false (5.18)

With these formulae in place, we are in a position to com-
pare the various retrenchments we have derived. The only
places in which they differ are the various concedes rela-
tions for theconnectn operation. A little thought shows that
CCH/CF,connectn is a subrelation of bothECF›CH,connectn and
of ECH›CF,connectn; see Fig. 2.

It is not hard to see why. The law of composition (5.3) isin-
clusive, in that all the behaviours described by the compo-
nent concedes relations are effectively preserved and com-
bined in all possible ways in the composed concedes rela-
tion. In some cases this yields more than we want, as we
have remarked; still it always gives a safe upper bound.

The kind of composition of concedes clauses we have
used is appropriate for adescriptiveapproach, in which it
is the job of the concedes clauses todescribewhat the sys-
tems actually do. In aprescriptiveapproach, in which the
concedes clauses mustdictatewhat the systems ought to do
(and what they ought not to do too), a semantically more in-
cisive law of composition, where a later retrenchment can
override the provisions of an earlier one in places where
they disagree (just as happens in sequential composition of
assignments), might be more appropriate. Much depends
on the precise interpretation of the disjunction in (2.2).
However the details of such a composition are beyond the
scope of this paper.

6. Conclusions

Feature interaction in telephony has attracted a fair amount
of attention in recent years, eg. [11, 12]. The burgeoning
telecoms industry is always introducing new capabilities in
to its systems, mainly because of the flexibility afforded by
digitally programmed interconnection exchanges. Howev-
er, even if a telecoms provider can make a rational recon-
ciliation of all of the enhanced services that it provides it-

self, it is by no means clear that when one provider’s ne
work is interfaced to another provider’s network, the resu
will be as either provider envisaged. This kind of thing ha
posed a challenge to development techniques (both form
and not so formal).

Amongst these efforts, refinement has been used to
address the problem, but the use of refinement in an a
where previously established properties have to be overr
den, is frequently an exercise in perversity. One has
search for a way of formulating the problem so that the co
tradictions inherent in a typical development step do n
become exposed during the refinement process, the sop
tication of the notion of refinement used notwithstandin
In contrast, the recording of the development decisio
made via retrenchment would, we would claim, appe
much more natural. However since the denial of previous
established properties is fraught with danger if adopted in
development path, we emphasise that such use of retren
ment must be made in a completely transparent mann
and that it not be taken as some miraculous panacea the
herence to the formal structure of which, alone guarante
success. With such a proviso, retrenchment can help
both document and to justify the final design arrived at.

References

1. Wirth N. (1971); The Development of Programs by Stepwis
Refinement. Comm. ACM14, 221-227.

2. Dijkstra E. W. (1972); Notes on Structured Programming. i
Structured Programming, Academic Press.

3. Hoare C. A. R. (1972); Proof of Correctness of Data repr
sentations. Acta Inf.1, 271-281.

4. de Roever W-P., Engelhardt K. (1998); Data Refinemen
Model-Oriented Proof Methods and their Comparison. CUP

5. Back R. J. R., von Wright J. (1998); Refinement Calculus,
Systematic Introduction. Springer.

6. Barroca L. M., McDermid J. A. (1992); Formal Methods
Use and Relevance for the Development of Safety-Critic
Systems. Computer Journal35, 579-599.

7. Banach R., Poppleton M. (1998); Retrenchment: An Eng
neering Variation on Refinement.in: Proc. B-98, Bert (ed.),
LNCS 1393, 129-147, Springer.See also: Tech. Rep.
UMCS-99-3-2,http://www.cs.man.ac.uk/cstechrep

8. Banach R., Poppleton M. (2000); Retrenchment, Refinem
and Simulation.in: Proc. ZB-00, Bowen, Dunne, Galloway,
King (eds.), LNCS1878, 304-323, Springer.

9. Banach R., Poppleton M. (1999); Sharp Retrenchme
Modulated Refinement and Simulation. Form. Asp. Com
11, 498-540.

10. Banach R., Poppleton M. (2001); Engineering and Theore
cal Underpinnings of Retrenchment.to be submitted.
http://www.cs.man.ac.uk/~banach/some.pubs/Re-
trench.Underpin.ps.gz

11. Calder M., Magill E. (eds.) (2000); Feature Interactions
Telecommunications and Software Systems VI. IOS Pres

12. Kimbler K. (ed.) (1999); Feature Interactions in Telecomm
nications and Software Systems V. IOS Press.

PHONE

PHONECF/CH

PHONECHPHONECF

Fig. 2

⊆⊇

	Model Based Engineering of Specifications by Retrenching Partial Requirements
	R. Banacha, M. Poppletonb
	aComputer Science Dept., Manchester University, Manchester, M13 9PL, U.K. bDept. of Computing, Op...
	Abstract
	1. Introduction
	2. Retrenchment
	3. Features in a Simple Telephone Model
	4. Feature Interaction in Telephony
	5. Compositions of Retrenchments and a Direct Retrenchment Design
	6. Conclusions
	References
	1. Wirth N. (1971); The Development of Programs by Stepwise Refinement. Comm. ACM 14, 221-227.
	2. Dijkstra E. W. (1972); Notes on Structured Programming. in: Structured Programming, Academic P...
	3. Hoare C. A. R. (1972); Proof of Correctness of Data representations. Acta Inf. 1, 271-281.
	4. de Roever W-P., Engelhardt K. (1998); Data Refinement: Model-Oriented Proof Methods and their ...
	5. Back R. J. R., von Wright J. (1998); Refinement Calculus, A Systematic Introduction. Springer.
	6. Barroca L. M., McDermid J. A. (1992); Formal Methods: Use and Relevance for the Development of...
	7. Banach R., Poppleton M. (1998); Retrenchment: An Engineering Variation on Refinement. in: Proc...
	8. Banach R., Poppleton M. (2000); Retrenchment, Refinement and Simulation. in: Proc. ZB-00, Bowe...
	9. Banach R., Poppleton M. (1999); Sharp Retrenchment, Modulated Refinement and Simulation. Form....
	10. Banach R., Poppleton M. (2001); Engineering and Theoretical Underpinnings of Retrenchment. to...
	11. Calder M., Magill E. (eds.) (2000); Feature Interactions in Telecommunications and Software S...
	12. Kimbler K. (ed.) (1999); Feature Interactions in Telecommunications and Software Systems V. I...

