
Maximally Abstract Retrenchments

R. Banach

Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.
banach@cs.man.ac.uk
ete
ch
w
in-

re
the
m.
e-
t

a-
e-
r-
ks.
b-
its
he
-
is
e-
s.

],
.)
nd

tic-
ted
n.
e
h

re
s.

ted
-
e-
n
hat
t
eld
me
Abstract

The more obvious and well known drawbacks of using
refinement as the sole means of progressing from an
abstract model to a concrete implementation are reviewed.
Retrenchment is presented in a simple partial correctness
framework as a more flexible development concept for for-
mally capturing the early and otherwise preformal stages
of development, and briefly justified.

Given a retrenchment from an abstract to a concrete
model, the problem of finding a model at the level of ab-
straction of the abstract model, but refinable to the con-
crete one, is examined. A construction is given that solves
the problem in a universal manner, there being a canoni-
cal factorisation of the original retrenchment, into a re-
trenchment to the universal system followed by an I/O-fil-
tered refinement. The universality amounts to the observa-
tion that the retrenchment component of any similar
factorisation, factors uniquely through the universal mod-
el. The construction’s claim to be at the right level of ab-
straction is supported by an idempotence property. The
consequences of including termination criteria in the for-
mal models is briefly explored.

1. Introduction

Retrenchment was introduced in [1], and subsequently de-
veloped in [2, 3, 4], as a means of overcoming the relatively
widely perceived (if the truth be admitted) drawbacks of
using refinement alone as the means of going from an ab-
stract model of a system to a concrete one, in a completely
formal manner. Refinement, particularly in formulations
that emphasise total correctness, imposes stringent con-
straints on the relationship that can hold between the re-
lated models, and this can restrict the applicability of the
technique quite severely. This phenomenon is most keenly
felt in applications situations where the conception of the
system starts with physical considerations, described using

conventional applied mathematics, rather than the discr
systems ubiquitous in presentations of refinement. In su
situations, it is commonly found that all except the last fe
steps of the development process have to be performed
formally — because the proof obligations of refinement a
so demanding that adjacent pairs of models higher up
development hierarchy are simply unable to satisfy the
Thus we lose all the benefits of full formalism, such as m
chanical checkability, for the majority of the developmen
effort.

By refinement, we understand its usual forward simul
tion incarnation; see [5] for a comprehensive review of r
finement from both forward and backward simulation pe
spectives, and in both syntactic and semantic framewor
Unlike refinement, a retrenchment step from a more a
stract to a more concrete level of abstraction adm
strengthening of the precondition and weakening of t
postcondition, and the mingling of state and I/O informa
tion between the levels of abstraction in question. This
accomplished by having two extra predicates per r
trenched operation, the WITHIN and CONCEDES clause
(That is what they were called in the B-Method [6, 7, 8
within which the original work on retrenchment was done
The former expresses the precondition strengthening, a
the latter expresses the postcondition weakening. In par
ular, non-refinement-like behaviour can be accomoda
within the framework via the weakened postconditio
This in turn permits inconvenient low level detail of the tru
system from interfering with an idealised model at a hig
level of abstraction, leading to hopefully cleaner, mo
comprehensible, earlier formalisable development route

Retrenchment can thus be seen as serving two rela
purposes. The first is to aid in a formally controllable man
ner, the postponement of the consideration of levels of d
tail during the construction of the actual system definitio
because it is more perspicuous to do the development t
way (and that waywould be impossible using refinemen
alone, even if some other, less transparent, way would yi
to pure refinement). The second is to accomplish the sa

he
up
if

d
re-
ar-
he

ith
p-
.
n
is
nt

ro-
rm
/O-
er.
is-
es
an
a-
n 9

t
g

d
e

m

r
b-
of

e-
el-
ent-
re-
ll

st
f
n,
of
objectivebecause accepted engineering practice demands
consideration of models not relatable by refinement(and
thus only a fraction of some accepted development route
could ever be formally expressed). In the first area, re-
trenchment gives developersscope for building specifica-
tions in a more understandable manner(though a formal
route would be available anyway); in the second retrench-
mentmakes formality usable in situations where it hitherto
has not been so.

In both senses, retrenchment postpones the introduction
of details that for various reasons one does not wish to con-
sider immediately. This postponement normally goes hand
in hand with data concretisation — for instance the limita-
tions of a discrete approximation to the solution of a prob-
lem expressed in continuous mathematics do not normally
become of interest till the representation of the data for the
problem is itself sufficiently concrete and discrete. Never-
theless the question can be put, as to what is the counterpart
at the original level of abstraction, of the concrete problem
description arrived at through one or more retrenchment
steps.

It is with this issue that this paper is concerned. We give
a universal construction that can be seen as porting the ad-
ditional structure introduced at the lower level of a re-
trenchment, to the higher level.

What do we gain by doing this? Three things. Firstly,
we give an affirmative answer to the question of whether,
given a retrenchment, there is a model at the abstract level
which could have beenrefinedto the given concrete level;
in fact there is more than one way of answering this ques-
tion (see the Conclusions). Secondly, we integrate re-
trenchment and refinement, an important consideration for
practitioners, for whom the flexibility of choosing between
retrenchment and refinement development steps no longer
risks fracturing the development process into incompatible
and irreconcilable paths. Thirdly, integrating all the addi-
tional detail introduced during retrenchment steps into the
abstract level of one big refinement, yields — at least in
principle — a technique for validating that all the require-
ments of the system have been adequately taken into ac-
count.

We say ‘at least in principle’ because we rather doubt
whether practitioners would actually feel much inclined to
do requirements validation in this way. If retrenchment has
been used in a natural manner to introduce detail and com-
plexity into a development at appropriate points, it is un-
likely to be more appealing to validate the requirements at
issue by translating them to a less appropriate level of ab-
straction. It is far more likely that a validation process
would be content to confront the collection of requirements
against the actual places in the development where they
have been addressed, relying on the validation of the spe-
cific retrenchment proof obligations to ensure consistency.

Having said the above, the author is in no doubt that t
process of validating requirements via the route opened
by the results of this paper would be a useful thing to do,
for no other reason than that it isalways usefulto force one-
self to view a problem from a different perspective — an
integrating the issues addressed during the various
trenchment steps of a development has exactly this ch
acter. Still, it is not the purpose of this paper to debate t
merits or otherwise of thisprimarily methodologicalaspect
of requirements validation; we are more concerned w
setting out the technical foundations on which such an a
proach would rest. We truncate the discussion of it here

In outline the rest of this paper is as follows. In Sectio
2 we review some of the reasons why refinement alone
too stringent a technique to capture all the developme
steps we might consider to be desirable. Section 3 int
duces retrenchment, in a simple partial correctness fo
that makes for a transparent theory. Section 4 presents I
filtered refinements, the kind of refinements needed lat
Section 5 develops maximally abstract retrenchments, d
cussing their universality properties. Section 6 discuss
junk-freedom and idempotence, while Section 7 treats
example. Section 8 briefly considers guaranteed termin
tion, as needed for general and total correctness. Sectio
concludes.

Notation. In the sequel we will view systems from a se
theoretic and relational viewpoint, which we discuss usin
a logical meta-notation. Thus a predicateis just a notation
for a set etc.

2. Some Drawbacks of Refinement

Almost all applications of refinement are of the forwar
simulation incarnation of the concept. For this reason w
will concentrate on forward simulation in this paper.

To introduce a running example, let us examine a syste
whose stateu is a set ofNATs, and which has an operation
AddEl(n) to add an elementn to the set. Its description (in
a suitable syntactic framework, which will be of no furthe
concern to us) constitutes a simple specification, our a
stract model. At a more concrete level, we model sets
NATs by injective sequences ofNATs, sou = {1, 2, 3}
would correspond tow = [1, 2, 3], orw = [2, 1, 3], or to any
of four other possibilities. There is an obvious retrieve r
lation relating sets and all possible serialisations of their
ements. For pragmatic reasons, the length of any repres
ative sequence can be no greater than 10, while no such
striction applies to the cardinality of the set. Thus not a
sets have concrete representations.

The AddEl(n) operation at the concrete level must te
the length of the sequence and for the prior presence on.
If n is new and the length is 10, the modelling of set unio
for example by appending the extra element to the end

el.

te

-
ny
he
the
e-
ni-
es
e-
of
s-

r-
-
e-
to

s-
es

or
es.
ract

t
ons
e
e

d
si-
on

r-

l

t
vel
is
the sequence, is forbidden. It would break the bound on the
length of w. Whatever the concreteAddEl(n) operation
does in this situation, we claim it cannot be a refinement of
the abstractAddEl(n). For to be a refinement, in the given
situation, it would have to satisfy:

G(u, w) ∧ stpAddElC(w, i, w′) ⇒
(∃ u′ • stpAddElA(u, i, u′) ∧ G(u′, w′)) (2.1)

whereG is the retrieve relation,stpAddElC(w, i, w′) is the
transition or step relation of the concreteAddEl (similarly
for the abstract one), and primes indicate the after-state.

If the concrete operation did nothing, i.e. did askip,
(2.1) would fail asskip is not an option at the abstract level.
In the same way, if the concrete operation output an error
message, (2.1) would fail as a change in signature is not al-
lowed in conventional refinement. These two possibilities
exhaust the relatively sensible options for the concrete op-
eration. Even if the concrete operation did something else
within its constraints, it could not tie up with the abstract
operation, which would produce a set of cardinality 11.

The above shows one very simple scenario in which re-
finement fails to adequately describe a desirable develop-
ment step. Many situations involving a finite computable
subdomain of a mathematically ideal and infinite one, fol-
low the same pattern, and a number of techniques have
been described in the literature, designed to address the
same issue. For example, there is Neilson’s thesis [9],
which presents the concept of acceptably inadequate re-
finements. These tackle the above problem by observing
that the infinite ideal domains usually arise as well behaved
limits of the finite ones, and thus refinement in the idealised
case can be understood as the limit of a finite version. The
failure of refinement observed above becomes merely the
manifestation of an incompletely taken limit. Another av-
enue of attack by Owe is to be found in [10, 11] where he
proposes a logical approach, based on a careful analysis of
the effects of ill-definedness on a programming logic.

Another issue hinted at above is the desirability of
changing I/O signatures during the course of a development
step. This ranges from wanting to make the key aspects of
a specification clearer with a different I/O signature, to sim-
ply wanting to incorporate change of I/O signature in re-
finement. In the literature the question has been pondered
by a number of authors amongst which [12, 13, 14, 15].

Retrenchment, introduced below, brings all of these as-
pects together into a single generic and flexible develop-
ment step, quantified by a pair of predicates per operation.
Interestingly enough, a similar goal has been tackled in the
work of Liu on evolution [16]. This is a technique whereby
the issues discussed above falling outside of conventional
refinement, are incorporated by demanding that the pre-
and post- conditions of the abstract specification in a devel-
opment step be semantically equivalent to subformulae of

the pre- and post- conditions at the more concrete lev
The point here is that any predicateQ can be viewed as a
subformula of a formula equivalent to any other predica
P, sinceQ is a subformula of ((P ∧ Q) ∨ (P ∧ ¬Q)) which
is equivalent toP. This fact tends to rob the evolution no
tion of semantic bite, and without further ado, relates a
two models (with corresponding operations). Of course t
same can be said to apply for retrenchment if one makes
within and concedes relations strong enough; but in r
trenchment, because these relations form part of the defi
tion of the retrenchment step, in making these claus
strong, one is being explicit about just how extreme the r
lationship between the models is. The ‘is a subformula
something equivalent to’ property lacks this element of di
crimination.

3. Retrenchment

For the majority of this paper we adhere to a partial co
rectness framework for system description. A good com
parison between the partial and total correctness fram
works, and also a critical evaluation of many approaches
refinement, can be found in [5]. In our framework, a sy
tem will be given by a state space, a set of operation nam
each with its own I/O signature, and a transition relation f
which each step is labelled by one of the operation nam
To discuss retrenchment we need two systems, an abst
oneAbs and a concrete oneConc.

At the abstract level, the set of operation names isOpsA,
with typical elementOpA. The state space isU, having typ-
ical elementu. For anOpA ∈ OpsA, the input and output
spaces will beIOpA

andOOpA
with typical elementsi, o re-

spectively (the anticipated subscripts oni ando to indicate
which OpA they belong to will be suppressed, withou
causing confusion). Primes, indeces and other decorati
will be used to distinguish different elements of the sam
space. A typical system transition will be written using th
notationu -(i, OpA, o)-› u′, whereu andu′ are the before-
and after- states,i ando are the input and output values, an
OpA is the name of the operation responsible for the tran
tion. The set of all such transitions makes up the transiti
or step relation for the operationOpA, stpOpA

(u, i, u′, o),
which we will always assume non-empty.

At the concrete level we have a similar setup. The ope
ation names areOpC ∈ OpsC. States arew ∈ W, inputsk
∈ K, outputsq ∈ Q. The transitions at the concrete leve
are writtenw -(k, OpC, q)-› w′, and are members of the step
relationstpOpC

(w, k, w′, q). In retrenchment it is assumed
that there is a distinctOpC corresponding to each distinc
OpA, but not necessarily vice versa, so the concrete le
may contain additional operations. We will assume th
correspondence is an inclusionOpsA ⊆ OpsC. Thus we
have the decompositionOpsC = OpsA ∪ (OpsC –OpsA).

af-

s,
tion

es
rbi-
-

ore
t-

ese
w;

h-

-

r.

of

o
re
e-
it-
e-

as
ate
rela-
as
not

h-
iga-

ev-
e-
The relationship between abstract and concrete state spaces
is given by the retrieve relationG(u, w). We assume that
there are initialisation operationsInitA andInitC at abstract
and concrete levels that establishG in corresponding after-
states thus:

InitC(w′) ⇒ (∃ u′ • InitA(u′) ∧ G(u′, w′)) (3.1)

Speaking conventionally, refinement now sets itself the
goal of preserving the retrieve relationG through execu-
tions at the abstract and concrete levels, and different as-
sumptions about how this might be accomplished lead to
differing properties of the process; these then become the
proof obligations (POs) of the particular approach, which
when discharged for some specific application, prove that
the application scenario is indeed a refinement. See once
more [5] for a survey.

Retrenchment differs from refinement in thatG alone is
not enough to fix the relationship between the two levels.
We also have for all operation names inOpsA, a within re-
lationPOp(i, k, u, w) and a concedes relationCOp(u′, w′, o,
q; i, k, u, w), where, exploiting the inclusion ofOpsA ⊆
OpsC, theA/C subscripts onOp have been suppressed be-
cause these relations are relevant to both the abstract and
concrete levels. The punctuation inCOp is intended to
highlight that it is mainly concerned with after-values, but
may refer to the before-values too if required. These rela-
tions are combined into the retrenchment operation proof
obligation for steps of theOpsA operations which says that
for each suchOp:

G(u, w) ∧ POp(i, k, u, w) ∧ stpOpC
(w, k, w′, q) ⇒

(∃ u′, o • stpOpA
(u, i, u′, o) ∧

(G(u′, w′) ∨ COp(u′, w′, o, q; i, k, u, w))) (3.2)

Compared to the conventional forward simulation refine-
ment PO, the import of this is the following. We assert the
consequent of the implication, but only provided bothG
andP hold. This enables us to restrict via the within re-
lation P, the applicability of the relationship between the
abstract and concrete systems; permitting the bringing to-
gether of models that would otherwise fail to support a re-
finement. The consequent itself asserts that for every con-
crete step, there is an abstract step that either re-establishes
the retrieve relationG, or failing that, satisfies the concedes
relationC. Again the additional flexibility allowed byC
permits us to relate models that would not otherwise be ca-
pable of being formally related.

Thus the within relation strengthens the retrieve relation
in before-states, and most importantly, the concedes rela-
tion weakens the retrieve relation in after-states. Beyond
the ability to restrict the relationship between abstract and
concrete levels, the within relation captures any non-trivial
relationship between inputs and before-states. Likewise
the concedes relation captures non-refinement-like proper-

ties, and non-trivial relationships between outputs and
ter-states1 (also before- entities if appropriate).

The structure of the PO (3.2) also yields two predicate
the abstract and concrete core predicates of the opera
Op, corOpA

(u, i) andcorOpC
(w, k), identifying those parts of

the abstract and concrete state and input spaces forOp, for
which the PO (3.2) is non-trivial:

corOpA
(u, i) = (∃ w, k • G(u, w) ∧ POp(i, k, u, w)) (3.3)

corOpC
(w, k) = (∃ u, i • G(u, w) ∧ POp(i, k, u, w)) (3.4)

Clearly what happens in either model outside of the cor
has no bearing on the retrenchment and can thus be a
trary. A set of transitions of a system forming part of a re
trenchment is said to be abstract (resp. concrete) c
bounded iff all the (before-state, input) pairs of the set sa
isfy the abstract (resp. concrete) core predicates. Th
concepts will be needed in the universality results belo
they will be used analogously to totality assumptions.

We now reconsider our running example as a retrenc
ment. PredictablyOpsA = OpsC = { Init, AddEl}, U =
P(NAT), W = iseq(NAT), IAddEl= KAddEl= NAT, OAddEl=
∅, andQAddEl would depend on how we defined the con
creteAddEloperation. In the simple case in whichAddElC
is skip for exceptional cases,QAddEl= ∅, otherwise it con-
tains an overflow message; we concentrate on the forme

To describe theskip case fully, we need to give the with-
in and concedes relations forAddEl(n). Some examples
follow, the first three in order of increasing strength:

P1 = true , C1 = (n ∉ u ⇒ w′ = w)
P2 = true , C2 = (n ∉ u ∧ w′ = w)
P3 = true , C3 = (|u| = 10∧ n ∉ u ∧ w′ = w)
P4 = (|u| ≤ 10) , C4 = (n ∉ u ∧ w′ = w)

There are several similar possibilities. Alternatively:

P5 = (|u| < 10∨ (|u| = 10∧ n ∈ u)) , C5 = false

Note that option 5 describes fewer corresponding pairs
steps than the others, since the cases when|u| = 10∧ n ∉ u
are not in the scope of the relationship between the tw
models. In fact the triviality of the concedes relation he
means that option 5 is describing a particular kind of r
finement, and shows that if one restricts one’s focus su
ably, one can often find a refinement lurking inside a r
trenchment. This point of view is explored also in [3, 4].

The unfortunate consequence of this is of course that
one seeks to avoid mentioning the details that accumul
as one descends through the development process, the
tionship between the top and bottom levels of abstraction
1. Relations between outputs and states ought to hold universally, and
just whenG fails. The truth is thus stronger than (3.2). Sharp retrenc
ment addresses this, establishing in the consequent of the proof obl
tion ((G ∨ C) ∧ V) where V, the nevertheless relation, allows extra
conjunctive properties to be expressed. See [4]. We will ignore the n
ertheless relation in this paper, aside from its use in I/O-filtered refin
ments, in which concedes relations in their turn do not appear.

-

pri-
ion
s

ve
d

ap-
expressed by such a refinement is increasingly noncommi-
tal; only a small portion of the two models is spoken about.

4. I/O-Filtered Refinements

In this section we make precise the particular notion of re-
finement we need so that our subsequent results go through
unproblematically. The conventional notion of forward
simulation in which I/O signatures remain unchanged is not
quite enough, as I/O signatures can be changed during re-
trenchment and this effect leaks through into the universal
result we seek in this paper.

For economy’s sake, we reuse the notation set up al-
ready. Thus we assume abstract and concrete systemsAbs
andConc, with OpsA = OpsC, and with the state spaces
related by a retrieve relationG(u, w) as before. For an I/O-
filtered refinement, we furthermore have for eachOp ∈
OpsA, a within relationROp(i, k), and a nevertheless rela-
tion VOp(o, q). All three relations are constrained to be to-
tal on their first components and onto on their second com-
ponents; i.e. they are relationsS satisfying firstly∀a∃b •
S(a, b) and secondly∀b∃a • S(a, b). They are relations
from abstract to concrete states, from abstract to concrete
inputs, and from abstract to concrete outputs respectively.
Unlike the retrenchment case, the within and nevertheless
relations are not permitted to involve the states, thus sepa-
rating concerns. This assembly of components is required
to verify the following proof obligations.

Firstly there is the initialisation PO. This is the same as
(3.1) so we do not restate it here. Secondly there is the op-
eration PO which for a typicalOp reads:

G(u, w) ∧ ROp(i, k) ∧ stpOpC
(w, k, w′, q) ⇒

(∃ u′, o • stpOpA
(u, i, u′, o) ∧

(G(u′, w′) ∧ VOp(o, q))) (4.1)

From this we can derive the core predicates for I/O-filtered
refinements:

corOpA
(u, i) = true (4.2)

corOpC
(w, k) = true (4.3)

Note also thatVOp enters the consequent of (4.1) conjunc-
tively, in contrast to the retrenchment case.

5. Maximally Abstract Retrenchments

In this section we take the retrenchment fromAbs to Conc
in Section 3, and manufacture a third, universal system
Univ, enjoying the claimed universal properties. The op-
eration names set ofUniv isOpsU with elementsOpU. The
state space isV with elementsv, inputs arej ∈ J, outputs
p ∈ P. These are all constructed from theAbs andConc
systems as follows.

Firstly OpsU = OpsC. EachOpU is in fact one of the
OpCs. The spaces areV = U × W, J = I × K andP = O × Q.

To give the transitions ofUniv we firstly observe thatOpsU
decomposes asOpsU = OpsA ∪ (OpsU – OpsA).

For an operationOpU ∈ (OpsU – OpsA), we have a
transitionv -(j, OpU, p)-› v′ or more explicitly:

(u, w) -((i, k), OpU, (o, q))-› (u′, w′) (5.1)

for arbitraryu, i, o, u′, w, k, q, w′; so that the non-OpA tran-
sitions ofUniv form a universal relation.

For anOpA ∈ OpsA, we havev -(j, OpA, p)-› v′ or:

(u, w) -((i, k), OpA, (o, q))-› (u′, w′) (5.2)

iff u, i, o, u′, w, k, q, w′ satisfy:

G(u, w) ∧ POp(i, k, u, w) ⇒
stpOpA

(u, i, u′, o) ∧
(G(u′, w′) ∨ COp(u′, w′, o, q; i, k, u, w)) (5.3)

Note that the implicational form admits many ‘junk’ tran
sitions, namely(G∧P) × (U × W × O × Q). We will return
to this later.

Finally, InitU(v′) in Univ assignsv′ to any value (u′, w′)
such thatInitA(u′) ∧ G(u′, w′) holds.

We now define a retrenchment fromAbs to Univ and an
I/O-filtered refinement fromUniv to Conc, by giving the
data for these constructions and showing that the appro
ate POs are satisfied. We further show that the composit
of this new retrenchment and I/O-filtered refinement yield
the original retrenchment.

The data for the retrenchment consists of the retrie
and within relations (which yield the core predicates) an
concedes relation. The retrieve relation is:

H(u, v) = (v = (u, w) ∧ G(u, w)) (5.4)

For an operationOp the within relation is:

QOp(i, j, u, v) =
(j = (i, k) ∧ v = (u, w) ∧ POp(i, k, u, w)) (5.5)

A little calculation gives the abstract core:

corOpA
(u, i) = (∃ v, j • H(u, v) ∧ QOp(i, j, u, v)) =

(∃ w, k • G(u, w) ∧ POp(i, k, u, w)) (5.6)

which is identical to (3.3), while the concrete core is:

corOpU
(v, j) = (∃ u, i • H(u, v) ∧ QOp(i, j, u, v)) (5.7)

The concedes relation is:

DOp(u′, v′, o, p; i, j, u, v) =
(v′ = (u′, w′) ∧ p = (o, q) ∧ j = (i, k) ∧ v = (u, w) ∧
COp(u′, w′, o, q; i, k, u, w)) (5.8)

To prove that we have a retrenchment we must show the
propriate POs are valid.

The initialisation PO isInitU(v′) ⇒ (∃ u′ • InitA(u′) ∧
H(u′, v′)). Now InitU assignsv′ to any value (u′, w′) such
that InitA(u′), andG(u′, w′) hold. Noting thatH(u′, v′) iff
G(u′, w′) andv′ = (u′, w′), we see that for any initialv′ there
is indeed au′ as required.

s-

e.

d

nt
es
dif-
he
ot
ent

e

t

nt
the

it is
rs

m

-
nt
f

s

For the operation PO we have to show that:

H(u, v) ∧ QOp(i, j, u, v) ∧ stpOpU
(v, j, v′, p) ⇒

(∃ u′, o • stpOpA
(u, i, u′, o) ∧

(H(u′, v′) ∨ DOp(u′, v′, o, p; i, k, u, v)))

We assume the antecedents. NowH(u, v) ∧ QOp(i, j, u, v)
implies thatv = (u, w) andj = (i, k), and that moreoverG(u,
w) ∧ POp(i, k, u, w) holds. Next, knowingstpOpU

(v, j, v′, p),
by (5.3), fromG(u, w) ∧ POp(i, k, u, w) we can deduce that
stpOpA

(u, i, u′, o) ∧ (G(u′, w′) ∨ COp(u′, w′, o, q; i, k, u, w))
is true. Therefore there areu′, o such thatstpOpA

(u, i, u′, o)
holds, namely the ones just mentioned, and for theseu′ and
o, havingG(u′, w′) ∨ COp(u′, w′, o, q; i, k, u, w), we easily
deriveH(u′, v′) ∨ DOp(u′, v′, o, p; i, k, u, v). This yields the
consequent of the retrenchment PO.

Turning to the I/O-filtered refinement, its data consists
of the retrieve and within relations, and the nevertheless re-
lation. The retrieve relation is:

K(v, w) = (v = (u, w)) (5.9)

For an operationOp the within relation is:

ROp(j, k) = (j = (i, k)) (5.10)

and we note that the abstract and concrete cores will be triv-
ial. The nevertheless relation is:

VOp(p, q) = (p = (o, q)) (5.11)

Noting that these three relations are projection functions
onto the second component, we immediately conclude that
they are total and surjective relations.

The POs for the I/O-filtered refinement are dealt with as
follows. This time the initialisation PO demands that we
haveInitC(w′) ⇒ ∃ v′ • InitU(v′) ∧ K(v′, w′). Now the ini-
tialisation PO of the original retrenchment (3.1) ensures
that for an initialw′ there is an initialu′ such thatG(u′, w′)
holds. Combining thisu′ with w′ gives av′ = (u′, w′) such
thatInitU(v′) ∧ K(v′, w′).

To establish the operation PO we need to show that:

K(v, w) ∧ ROp(j, k) ∧ stpOpC
(w, k, w′, q) ⇒

(∃ v′, p • stpOpU
(v, j, v′, p) ∧

(K(v′, w′) ∧ VOp(p, q)))

For operationsOpC ∈ (OpsU – OpsA), assuming the an-
tecedents, choosing anyv′, p such thatK(v′, w′) ∧ VOp(p, q)
holds will satisfy the predicate, since the surjectivity ofK
andVOp makes this possible, andstpOpU

(v, j, v′, p) is uni-
versal for such operations.

For operationsOpC ∈ OpsA, assume the antecedents.
Now K(v, w) ∧ ROp(j, k) implies thatv = (u, w) andj = (i, k)
for someu and i; and we knowstpOpC

(w, k, w′, q) holds.
Then eitherG(u, w) ∧ POp(i, k, u, w) holds or not. If it does,
then we have all the antecedents of the original retrench-
ment PO (3.2), which asserts that valuesu′, oexist such that
stpOpA

(u, i, u′, o) ∧ (G(u′, w′) ∨ COp(u′, w′, o, q; i, k, u, w))

holds. With such values (5.3) is satisfied, allowing us to a
sert that there arev′, p such thatstpOpU

(v, j, v′, p) holds, and
such thatK(v′, w′) ∧ VOp(p, q) holds too (this being easy to
check), which together yields the consequent for this cas

Otherwise,G(u, w) ∧ POp(i, k, u, w) does not hold and
we are in the ‘junk’ case of (5.3). This is trivial, so we nee
only choosev′, p such thatK(v′, w′) ∧ VOp(p, q) holds. This
is always possible sinceK andVOpare surjective. Thesev′,
p automatically satisfystpOpU

(v, j, v′, p) so we are done.
It remains to define the composition of the retrenchme

and I/O-filtered refinement just constructed. This requir
care since not only are retrenchments and refinements
ferent concepts, but also the collections of variables of t
intermediate system occurring in abutting relations are n
the same. We define the composition to be a retrenchm
for which the component relations are given as follows.

The retrieve relation is the (usual) composition of th
component retrieve relations:

(H;K)(u, w) = (∃ v • H(u, v) ∧ K(v, w)) (5.12)

The within relation is the composition of the componen
within and retrieve relations in the following sense:

(QOp;(ROp∧K))(i, k, u, w) = (∃ v, j • QOp(i, j, u, v) ∧
ROp(j, k) ∧ K(v, w)) (5.13)

The concedes relation is a combination of the compone
concedes, retrieve, nevertheless, and within relations in
following manner:

(DOp;(K′∧VOp∧ROp∧K))(u′, w′, o, q; i, k, u, w) =
(∃ v, j, v′, p • DOp(u′, v′, o, p; i, j, u, v) ∧
K(v′, w′) ∧ VOp(p, q) ∧
ROp(j, k) ∧ K(v, w)) (5.14)

For the retrenchment and refinement constructed above
relatively evident that this notion of composition recove
the relations of Section 3.

Theorem 5.1 Let there be a retrenchment as above fro
theAbs to Conc. Then (see Fig. 1):

(1) There is a universal systemUniv such that: there is a
retrenchment fromAbs to Univ and an I/O-filtered re-
finement fromUniv to Conc whose composition is the
given retrenchment.

(2) Whenever there is a systemXtra and a retrenchment
from Abs to Xtra and an I/O-filtered refinement from
Xtra to Conc whose composition is the given re
trenchment, then there is an I/O-filtered refineme
from Univ to the concrete core bound transitions o
Xtra; such thatH˜ ⇒ H;K˚, Q˜ ⇒ Q;R˚∧K˚, D˜ ⇒
D;K˚′∧V˚∧R˚∧K˚, and such thatK ⇒ K˚;K˜, R ⇒
R̊ ;R̃ , V ⇒ V˚;V˜.

(3) Whenever a systemUniv* has properties (1) and (2)
above ofUniv, then the concrete core bound transition
of Univ andUniv* are mutually I/O-filtered interrefin-
able.

e

-

s,

re

that

)
al
of

d

nt
m.
a

Proof. We have proved (1) already, defining what we need-
ed along the way. Now assume a retrenchment fromAbs to
Xtra given by retrieve relationH˜, within relationQ˜, and
concedes relationD˜; and an I/O-filtered refinement from
Xtra to Conc given by retrieve relationK˜, within relation
R̃ , and nevertheless relationV˜. Let the state, input and
output spaces ofXtra be given byv˜ ∈ V˜, j˜ ∈ J˜, p˜ ∈ P˜.
Let InitX andstpOpX

be the initialisation and step predicates
for Xtra.

We define relationsK˚, R̊ Op, V˚Op, indicate that they
satisfy the inclusions stated, and prove that they are the re-
trieve, within and nevertheless relations of an I/O-filtered
refinement fromUniv to the concrete core boundXtra tran-
sitions. Thus:

K˚(v, v˜) = (∃ w • K(v, w) ∧ K˜(v˜, w)) (5.15)
R̊ Op(j, j˜) = (∃ k • ROp(j, k) ∧ R̃ Op(j˜, k)) (5.16)
V˚Op(p, p˜) = (∃ q • VOp(p, q) ∧ V˜Op(p˜, q)) (5.17)

Firstly K˚ is total and surjective sinceK is a total surjective
function andK˜ is total and surjective. Likewise forR̊ Op
and V˚Op. Proving thatH˜ ⇒ H;K˚, Q˜Op ⇒ QOp;R̊ Op,
D˜Op ⇒ DOp;V˚Op, and thatK ⇒ K˚;K˜, ROp ⇒ R̊ Op;R̃ Op,
VOp ⇒ V˚Op;V˜Op is now an easy exercise and is left to the
reader.

Next, we examine the initialisation PO. We need to
show thatInitX(v˜′) ⇒ ∃ v′ • InitU(v′) ∧ K˚(v′, v˜′), so let us
choose an initialv˜′. We know for thisv˜′ thatInitX(v˜′) ⇒

(∃ u′ • InitA(u′) ∧ H˜(u′, v˜′)) from theAbs toXtra retrench-
ment, so pick a suitableu′. Let w′ be such thatG(u′, w′)
holds; such aw′ must exist becauseK˜ is total andG =
H˜;K˜. Thenv′ = (u′, w′) is easily shown to be a suitablev′.

Now we establish the operation PO, namely that for th
concrete core bound steps ofXtra we have:

K˚(v, v˜) ∧ R̊ Op(j, j˜) ∧ stpOpX
(v˜, j˜, v˜′, p˜) ⇒

(∃ v′, p • stpOpU
(v, j, v′, p) ∧

(K˚(v′, v˜′) ∧ V˚Op(p, p˜)))

For an operationOpX ∈ (OpsX – OpsA), assuming the an-
tecedents, then choosing anyv′, p such thatK˚(v′, v˜′) ∧
V˚Op(p, p˜) will do, since the surjectivity ofK˚ andV˚Op
makes this possible, andstpOpU

(v, j, v′, p) is universal for
such operations.

For operationsOpX ∈ OpsA, let us assume the anteced
ents. Ifv= (u, w) andj = (i, k) are such thatG(u, w) ∧ POp(i,
k, u, w) does not hold, then the preceding argument work
sincestpOpU

(v, j, v′, p) is still universal.

Finally supposeOpX ∈ OpsA and thatv = (u, w) andj =
(i, k) are such thatG(u, w) ∧ POp(i, k, u, w) does hold. We
assume thatv˜ -(j˜, OpX, p˜)-› v˜′ is a concrete core bound
step, since otherwise there is nothing to prove. Therefo
H˜(u, v˜) ∧ Q˜Op(i, j˜, u, v˜) holds. Since we now have the
antecedents of theAbs to Xtra retrenchment, we infer that
there is a stepu -(i, OpX, o)-› u′ such thatH˜(u′, v˜′) ∨
D˜Op(u′, v˜′, o, p˜; i, j˜, u, v˜) holds. NowK˜ andV˜Op are
total, andG = H˜;K˜ andCOp = D˜Op;K˜′∧V˜Op∧R̃ Op∧K˜,
by our assumptions. Therefore we can deduceG(u′, w′) ∨
COp(u′, w′, o, q; i, k, u, w) for suitablew′ andq. We have
now assembled enough pieces to use (5.3) to conclude
stpOpU

(v, j, v′, p) holds, wherev′ = (u′, w′) andp = (o, q).
Noting thatK andVOp are projections allows us to quickly
deduceK˚(v′, v˜′) ∧ V˚Op(p, p˜), completing this case and
part (2) of the theorem.

Part (3) follows readily by observing that for a system
Univ* having the same properties asUniv, there will be an
I/O-filtered refinement fromUniv to the concrete core
bound steps ofUniv* and an I/O-filtered refinement from
Univ* to the concrete core bound steps ofUniv. We are
done.

Note that the mutual interrefinability in Theorem 5.1.(3
is not isomorphism in the conventional set theoretic
sense. To illustrate, the reader might have noticed that
the ‘junk’ transitions afforded by (5.3), we only ever use
ones satisfying (G ∨ C). Therefore an alternative definition
of stpOpU

as (G ∨ C) ∧ ((G ∧ P) ⇒ stpOpA
) would have suf-

ficed above, and this and (5.3) are certainly not equivale
in the sense of conventional set theoretical isomorphis
In fact the mutual interrefinability we showed yields
much looser notion of equivalence of systems.

Abs

Conc

Univ

Fig. 1

retrenchment

retrenchment refinement
G, P, C

H, Q, D

K, R, V

Xtra

retrenchment

refinement

H˜, Q˜, D˜

K˚, R̊ , V˚

refinement
K˜, R̃ , V˜

⊆

⊆

=

d
l

ni-
the

that

n-

is

it
r-

o-
-
r-
re

lly
of

out
n.
p

n
ion

es
is
e-

of
e
ay
as
6. Idemopotence and Junk-Freedom

We claimed that the systemUniv represented a system at
the level of abstraction ofAbs that captured the constraints
demanded byConc, and supported this statement by show-
ing any other retrenchment ofAbs that refined toConc
was refinable throughUniv. But Univ looks pretty com-
plicated. Can we be sure its level of abstraction is high
enough? One test of this is to apply the construction of
Univ to theAbs toUniv retrenchment itself, to see if we get
something substantially different. The steps of a system
UUniv constructed in pursuit of such an objective must sat-
isfy the analogue of (5.3):

H(u, v) ∧ QOp(i, j, u, v) ⇒
stpOpA

(u, i, u′, o) ∧
(H(u′, v′) ∨ DOp(u′, v′, o, p; i, j, u, v)) (7.1)

But substituting forH, QOp, DOp in the familiar manner
leads right back to (5.3), thus the set of non-junk transitions
of (7.1) is isomorphic to those of (5.3), since they are of the
form (u, (u, w)) -((i, (i, k)), OpA, (o, (o, q)))-› (u′, (u′, w′))
and having two copies of the sameAbs transition in aUU-
niv transition is isomorphic to having one copy in the cor-
respondingUniv transition. This supports our claim to
have indeed found the appropriate level of abstraction.

The junk transitions permitted by (7.1) are not however
isomorphic in the same way. DifferentAbs (u, i, u′, o)
quadruples (they needn’t beAbs transitions of course) may
reside in the inner and outer positions of aUUniv junk tran-
sition. Iterating the construction further multiplies the
number of differentAbs quadruples that could reside in a
Unniv junk transition. Nevertheless, thoseUnniv junk tran-
sitions, related via the appropriate retrieve, within and nev-
ertheless relations toUniv junk transitions,do contain just
oneUniv junk transition, as the iteration of (5.9)-(5.11) re-
veals. More generally the junk transitions ofUnniv are em-
bedded in those ofUn+mniv. These phenomena tend to
suggest that junk transitions might somehow be marginal to
the core business of Theorem 5.1. Could we possibly do
without them? The answer is a qualified yes.

We note that the junk transitions came in useful in pro-
viding refinement targets forConc transitions for whichv
was not related tow via G ∧ P. To do without junk transi-
tions we must therefore exclude suchv, w pairs fromK ∧ R.
This requires abandoning I/O-filtered refinements and
moving to the richer notion of modulated refinements, in
which the within (resp. nevertheless) relation can involve
the before-states (resp. after-states), see [3, 4]. Focusing
thus on just the well behavedv, w pairs, and adding suffi-
cient extra hypotheses to ensure that the resulting relations
plug together suitably (since the within and nevertheless re-
lations will no longer automatically be total and surjective),
a junk-free version of Theorem 5.1 can be carried through,
the steps of its universal system being given by replacing⇒

in (5.3) with∧. The version we gave is slightly simpler, an
also made the non-Abs operations refinable in a natura
manner, a property we consider worthwhile.

7. An Example

Let us return to our running example and see what the u
versal construction means in this setting. The states of
Univ system are pairs (u, w) such thatu is a set ofNATs and
w is a sequence ofNATs, eg. ({1, 2}, [2, 5, 3]). Those states
which serve as before-states of non-junk steps are such
w is a serialisation ofu, for example ({1, 3, 4}, [4, 1, 3]).
The non-junk steps ofUniv in nonboundary cases are eg.:

({3, 4}, [3, 4]) -((1, 1),AddEl)-› ({1, 3, 4}, [4, 1, 3])

Note that (as illustrated) there is no necessity for the co
crete component of this step to agree with any specificAd-
dElC step, given that we have suggested thatAddElC should
act only by appending to the end of the sequence.

The boundary steps, in the case thatAddElC is a skip,
look for example like:

({1…10}, [1…10]) -((11, 11),AddEl)-›
({1…11}, [1…10])

and we see clearly why the general product structure
needed for the universal state space; evidently [1…10] can
never be a serialisation of {1…11}.

Focusing now on the nonboundary case for simplicity,
is worth observing that regarding the abstract level info
mation, all steps (u, π(u)) -((i, i), AddEl)-› (u′, π′(u′)) are
equivalent, whereu′ = u ∪ { i}, and π, π′ are arbitrary per-
mutations of the standard orderings ofu, u′. What are we
to deduce from this?

Note that the notion of universality expressed in The
rem 5.1 is only up to interrefinability by total surjective re
lations. Ordinary set theoretic isomorphisms are total su
jective relations, and noting that all the states that we a
implicitly suggesting are equivalent are set theoretica
isomorphic, suggests that there will be a reformulation
the universal construction which deals withsetsof concrete
states rather than individual ones as we used. This turns
to be true, and is an example of Theorem 5.1.(3) in actio
The two forms of universal construction are equivalent u
to interrefinability by total surjective relations. The give
presentation is somewhat simpler, and the general situat
will be explored more fully elsewhere.

Returning to our example, and taking boundary cas
into account, the non-junk part of the universal system
equivalent to a modification of the abstract level alone, r
stricting the abstract transitions to ones satisfying|u′| ≤ 10.
This is of course obvious, and represents an ideal state
affairs, i.e. a situation in which all the extra detail that th
original retrenchment introduced at the concrete level, m
be absorbed into a modified model at the abstract level,

he
f
d-
gle

e,

n

n

s,

a-
ent,
f
as-

-
)
ct

n-

ser

ce
)

at
discussed in the Introduction. Not all situations are neces-
sarily ideal however, and the fact that in an arbitrary re-
trenchment, the within and concedes relations can feature
arbitrary interdependencies between the levels, means that
such a clean lifting of detail to the abstract level will not al-
ways be available without further restrictions.

8. General and Total Correctness

Many refinement techniques take account of the guaranteed
termination properties of operations, leading to general and
total correctness formalisms. In this section we assume
that each Abs operation OpA possesses a predicate
trmOpA

(u, i) whose truth indicates the before-states and in-
puts where the outcome of the operation is guaranteed to be
successfully terminating. Similarly for the other systems in
our discourse. The termination PO arising from the orig-
inal retrenchment is:

G(u, w) ∧ POp(i, k, u, w) ∧ trmOpC
(w, k) ⇒

trmOpA
(u, i) (8.1)

Those for the factorising retrenchment and refinement are:

H(u, v) ∧ QOp(i, j, u, v) ∧ trmOpU
(v, j) ⇒

trmOpA
(u, i) (8.2)

and

K(v, w) ∧ ROp(j, k) ∧ trmOpU
(v, j) ⇒

trmOpC
(w, k) (8.3)

Note that both (8.2) and (8.3) havetrmOpU
(v, j) in the an-

tecedents, highlighting the different directions of thetrm
dependencies in retrenchments and refinements. Given the
relationships already established, it is not hard to see that
the general solution of (8.2) and (8.3) fortrmOpU

(v, j) is:

trmOpU
(v, j) ⇒

(∀ w, k • K(v, w) ∧ ROp(j, k) ⇒
trmOpC

(w, k)) (8.4)

(From (8.4), (8.3) follows readily, while (8.2) requires not-
ing also thatK andRare total.) In particular, the solution is
not unique, allowing an arbitrarily smalltrmOpU

(v, j). Con-
sider now the analogous conditions forXtra, whosetrm
must satisfy:

H˜(u, v˜) ∧ Q˜Op(i, j˜, u, v˜) ∧ trmOpX
(v˜, j˜) ⇒

trmOpA
(u, i) (8.5)

and

K˜(v˜, w) ∧ R̃ Op(j˜, k) ∧ trmOpX
(v˜, j˜) ⇒

trmOpC
(w, k) (8.6)

This allowstrmOpX
(v˜, j˜) to be arbitrarily small too as, for

the same reasons, it needs only to satisfy:

trmOpX
(v˜, j˜) ⇒

(∀ w, k • K˜(v˜, w) ∧ R̃ Op(j˜, k) ⇒
trmOpC

(w, k)) (8.7)

Now in a total correctness framework, one combines t
implications arising from termination and simulation o
steps into a single property, by conjoining all the antece
ents and conjoining all the consequents, making a sin
implication. Lettingtrm be arbitrarily small thus weakens
the impact of the joint simulation relation discussed abov
in the limit making it completely trivial. In this case it is
natural to focus on those factorising systemsXtra for which
trm is the biggest possible; for these the outer implicatio
in (8.7) becomes an equality and the refinement fromXtra
to Conc becomestrm-preserving ontrmOpC

. This restric-
tion allows us to make the outer implication of (8.4) a
equality too. We find:

Proposition 8.1 In a total correctness framework, let the
factorising systemsXtra of Fig. 1 all betrm-preserving on
trmOpC

. ThenUniv may be endowed with thetrm predi-
cate:

trmOpU
(v, j) =

(∀ w, k • K(v, w) ∧ ROp(j, k) ⇒ trmOpC
(w, k))

Proof. For the requiredUniv to Xtra refinement to work,
we need to confirm additionally that with our assumption
K˚(v, v˜) ∧ R̊ Op(j, j˜) ∧ trmOpU

(v, j) ⇒ trmOpX
(v˜, j˜).

To do this, we assume the antecedents of this implic
tion, and call these the outer hypotheses. The consequ
trmOpX

(v˜, j˜), is itself an implication (i.e. the consequent o
(8.7)); we call its antecedents the inner hypotheses and
sume these also.

To exploit the inner hypotheses, assumev˜, j˜ are such
thatK˜(v˜, w) ∧ R̃ Op(j˜, k) holds for somew, k. Next, we
exploit the outer hypotheses by assumingv, j are such that
K˚(v, v˜) ∧ R̊ Op(j, j˜) holds, witnessed by the aforemen
tionedw, k — this is always possible by (5.12) and (5.13
sinceK andR are surjective, and generates as a side effe
K(v, w) ∧ ROp(j, k). Now we can usetrmOpU

(v, j) from the
outer hypotheses, itself a quantified implication, which e
ables us to infertrmOpC

(w, k). This in turn is the conse-
quent under the quantification oftrmOpX

(v˜, j˜). We can
now use the deduction principle, and then quantify overw,
k to get our goal,trmOpX

(v˜, j˜) itself. We are done.

In a general correctness setting, there is a much loo
coupling between the simulation properties andtrm prop-
erties. In fact it is unhelpful to assume any interdependen
at all. Accordingly we require a solution to (8.2) and (8.3
which is as general as possible in terms of the systemsXtra
that we admit. Since (thetrm properties of) these will now
be unrestricted, the only solution fortrmOpU

will be the
empty one. Now there is nothing to prove to deduce th
theUniv to Xtra refinement works in the following.

Proposition 8.2 In a general correctness framework,Univ
may be endowed with thetrm predicate:

trmOpU
(v, j) = false

re-
ther
.

of
by

ng

im-
-

nd

ed

l-
.,

-

-
g
n-

a

-

p-

ra-

,

ce

ta
e-

-

Lack of space prevents us developing these full correctness
formalisations more fully, but we have shown the essential
ingredients out of which they are built. Furthermore Prop-
osition 8.1 and Proposition 8.2 will apply equally well in
the context of the junk-free formulations of step simulation
indicated in Section 7.

9. Conclusions

In the preceding sections we gave a universal construction
for decomposing a retrenchment development step into a
canonical retrenchment followed by a refinement. We
showed that this decomposition enjoyed a universal factor-
isation property, that its construction was idempotent (up to
isomorphism of non-junk), and we indicated that there was
a slightly more complicated junk-free version of the result
along the same lines. We also briefly examined how guar-
anteed termination predicates fared in this setup, and indi-
cated that the minimal and maximal solutions to the ter-
mination predicate for the universal system were respec-
tively more appropriate for general and total correctness;
these issues will be explored in greater detail elsewhere.

The intention was always for the universal system to re-
flect at the abstract level, the detail introduced at the con-
crete level. In the ideal situation this is achieved by build-
ing a more complex model within the abstract state and I/O
spaces, and the example we discussed showed this, up to in-
terrefinability. However, the fact that the within and con-
cedes relations may contain nontrivial dependencies be-
tween abstract and concrete spaces, means that there will
be cases where one cannot restrict purely to the abstract
spaces without quantifying over the concrete spaces in
some way. That is why the general construction had to in-
volve both. Some of the issues in this area regarding quan-
tification are discussed in [4], which deals with a different
way of relating retrenchment and refinement, by looking
for a refinement inside a retrenchment.

The construction we presented can be bootstrapped, to
lift a retrenchment all the way to the top of a development
path, as follows. The given construction yields a retrench-
ment fromAbs to Univ that we may describe as ‘horizon-
tal’. If Abs is itself the result of an earlier refinement step,
then the composition of that refinement and the horizontal
retrenchment yields another ‘diagonal’ retrenchment as in
Fig. 1. The universal construction may then be reapplied to
lift the retrenchment to a higher horizontal level, and so on.
The end result may, if desired, be used for requirements
validation, as suggested in the Introduction.

It is important to explore the interplay between retrench-
ment and refinement, in order to show that they are not
techniques that are somehow in tension or in competition
with each other, but rather ones that naturally complement
one another. The result presented in this paper is merely

one avenue that needed to be explored. Other results
garding retrenchments and refinements that abut each o
in various ways will be the subject of further publications
And the aim of all this activity is to alleviate ‘engineering
unnaturalness’; to supply the developer with a rich suite
specification development techniques, not constrained
the tyranny of pure refinement.

References

1. Banach R., Poppleton M. Retrenchment: An Engineeri
Variation on Refinement.in: Proc. B-98, Bert (ed.), Springer,
1998, 129-147, LNCS1393. See also: UMCS Technical Re-
port UMCS-99-3-2,http://www.cs.man.ac.uk/
cstechrep

2. Banach R., Poppleton M. Retrenchment and Punctured S
ulation.in: Proc. IFM-99, Taguchi, Galloway (eds.), Spring
er, 1999, 457-476.

3. Banach R., Poppleton M. Retrenchment, Refinement a
Simulation.in: Proc. ZB-00, Bowen, Dunne, Galloway, King
(eds.), Springer, 2000, 304-323, LNCS1878.

4. Banach R., Poppleton M. Sharp Retrenchment, Modulat
Refinement and Simulation. Form. Asp. Comp.11, 498-540,
1999.

5. de Roever W.-P., Engelhardt K. Data Refinement: Mode
Oriented Proof Methods and their Comparison. C.U.P
1998.

6. Abrial J. R. The B-Book. C.U.P., 1996.
7. Wordsworth J. B. Software Engineering with B. Addison

Wesley, 1996.
8. Lano K., Haughton H. Specification in B: An Introduction

Using the B-Toolkit. Imperial College Press, 1996.
9. Neilson D. S. From Z to C: Illustration of a Rigorous Devel

opment Method. PhD. Thesis, Oxford University Computin
Laboratory Programming Research Group, Technical Mo
ograph PRG-101, 1990.

10. Owe O. An Approach to Program Reasoning Based on
First Order Logic for Partial Functions. University of Oslo
Institute of Informatics Research Report No. 89. ISBN 82
90230-88-5, 1985.

11. Owe O. Partial Logics Reconsidered: A Conservative A
proach. Form. Asp. Comp.3, 1-16, 1993.

12. Hayes I. J., Sanders J. W. Specification by Interface Sepa
tion. Form. Asp. Comp.7, 430-439, 1995.

13. Boiten E., Derrick J. IO-Refinement in Z.in: Proc. Third
BCS-FACS Northern Formal Methods Workshop. Ilkley
U.K., 1998.

14. Mikhajlova A, Sekerinski E. Class Refinement and Interfa
Refinement in Object-Oriented Programs.in: Proc. FME-97,
Fitzgerald, Jones, Lucas (eds.), LNCS1313, 82-101, Spring-
er, 1997.

15. Stepney S., Cooper D., Woodcock J. More Powerful Z Da
Refinement: Pushing the State of the Art in Industrial Refin
ment.in: Proc. ZUM-98, Bowen, Fett, Hinchey (eds.), LNCS
1493, 284-307, Springer, 1998.

16. Liu S. Evolution: A More Practical Approach than Refine
ment for Software Development.in: Proc. ICECCS-97, 142-
151, IEEE, 1997.

	Maximally Abstract Retrenchments
	R. Banach
	Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K. banach@cs.man.ac.uk
	Abstract
	1. Introduction
	2. Some Drawbacks of Refinement
	3. Retrenchment
	4. I/O-Filtered Refinements
	5. Maximally Abstract Retrenchments
	6. Idemopotence and Junk-Freedom
	7. An Example
	8. General and Total Correctness
	9. Conclusions
	References
	1. Banach R., Poppleton M. Retrenchment: An Engineering Variation on Refinement. in: Proc. B-98, ...
	2. Banach R., Poppleton M. Retrenchment and Punctured Simulation. in: Proc. IFM-99, Taguchi, Gall...
	3. Banach R., Poppleton M. Retrenchment, Refinement and Simulation. in: Proc. ZB-00, Bowen, Dunne...
	4. Banach R., Poppleton M. Sharp Retrenchment, Modulated Refinement and Simulation. Form. Asp. Co...
	5. de Roever W.-P., Engelhardt K. Data Refinement: Model- Oriented Proof Methods and their Compar...
	6. Abrial J. R. The B-Book. C.U.P., 1996.
	7. Wordsworth J. B. Software Engineering with B. Addison- Wesley, 1996.
	8. Lano K., Haughton H. Specification in B: An Introduction Using the B-Toolkit. Imperial College...
	9. Neilson D. S. From Z to C: Illustration of a Rigorous Development Method. PhD. Thesis, Oxford ...
	10. Owe O. An Approach to Program Reasoning Based on a First Order Logic for Partial Functions. U...
	11. Owe O. Partial Logics Reconsidered: A Conservative Approach. Form. Asp. Comp. 3, 1-16, 1993.
	12. Hayes I. J., Sanders J. W. Specification by Interface Separation. Form. Asp. Comp. 7, 430-439...
	13. Boiten E., Derrick J. IO-Refinement in Z. in: Proc. Third BCS-FACS Northern Formal Methods Wo...
	14. Mikhajlova A, Sekerinski E. Class Refinement and Interface Refinement in Object-Oriented Prog...
	15. Stepney S., Cooper D., Woodcock J. More Powerful Z Data Refinement: Pushing the State of the ...
	16. Liu S. Evolution: A More Practical Approach than Refinement for Software Development. in: Pro...

