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Abstract conventional applied mathematics, rather than the discrete
systems ubiquitous in presentations of refinement. In such
situations, it is commonly found that all except the last few
steps of the development process have to be performed in-
formally — because the proof obligations of refinement are
so demanding that adjacent pairs of models higher up the
development hierarchy are simply unable to satisfy them.
Thus we lose all the benefits of full formalism, such as me-
chanical checkability, for the majority of the development
effort.

By refinement, we understand its usual forward simula-
tion incarnation; see [5] for a comprehensive review of re-
finement from both forward and backward simulation per-
spectives, and in both syntactic and semantic frameworks.
Unlike refinement, a retrenchment step from a more ab-

trenchment to the universal system followed by an 1/O-fil- stract :10 a mo][e hconcrete O'I?Ye' of dabstr?(ctlc_)n adfm;]ts
tered refinement. The universality amounts to the observa-Strengt ening o the precon ltion and wea ening o the
tion that the retrenchment component of any similar postcondition, and the mingling of state and I/O informa-

factorisation, factors uniquely through the universal mod- 10N between the levels of abstraction in question. This is
el. The construction’s claim to be at the right level of ab- 2ccomplished by having two extra predicates per re-
straction is supported by an idempotence property. The trenched operation, the WITHIN and CONCEDES clauses.

consequences of including termination criteria in the for- (1hat is what they were called in the B-Method [6, 7, 8],
mal models is briefly explored. within which the original work on retre.nchmentwas §J0ne.)
The former expresses the precondition strengthening, and
the latter expresses the postcondition weakening. In partic-
. ular, non-refinement-like behaviour can be accomodated
1. Introduction within the framework via the weakened postcondition.

Retrenchment was introduced in [1], and subsequently de- This in turn permits inconvenient low level detail of the true
veloped in [2, 3, 4], as a means of overcoming the relatively system from interfering with an idealised model at a high
widely perceived (if the truth be admitted) drawbacks of level of abstraction, leading to hopefully cleaner, more
using refinement alone as the means of going from an ab-comprehensible, earlier formalisable development routes.
stract model of a system to a concrete one, in a completely Retrenchment can thus be seen as serving two related
formal manner. Refinement, particularly in formulations purposes. The firstis to aid in a formally controllable man-
that emphasise total correctness, imposes stringent con-ner, the postponement of the consideration of levels of de-
straints on the relationship that can hold between the re-tail during the construction of the actual system definition
lated models, and this can restrict the applicability of the because it is more perspicuous to do the development that
technique quite severely. This phenomenon is most keenlyway (andthat waywould be impossible using refinement
felt in applications situations where the conception of the alone, even if some other, less transparent, way would yield
system starts with physical considerations, described usingto pure refinement). The second is to accomplish the same

The more obvious and well known drawbacks of using
refinement as the sole means of progressing from an
abstract model to a concrete implementation are reviewed.
Retrenchment is presented in a simple partial correctness
framework as a more flexible development concept for for-
mally capturing the early and otherwise preformal stages
of development, and briefly justified.

Given a retrenchment from an abstract to a concrete
model, the problem of finding a model at the level of ab-
straction of the abstract model, but refinable to the con-
crete one, is examined. A construction is given that solves
the problem in a universal manner, there being a canoni-
cal factorisation of the original retrenchment, into a re-



objectivebecause accepted engineering practice demandsHaving said the above, the author is in no doubt that the
consideration of models not relatable by refinemgntd process of validating requirements via the route opened up
thus only a fraction of some accepted development route by the results of this paper would be a useful thing to do, if
could ever be formally expressed). In the first area, re- for no other reason than that itatways usefuto force one-
trenchment gives developessope for building specifica-  self to view a problem from a different perspective — and
tions in a more understandable manr(@ough a formal integrating the issues addressed during the various re-
route would be available anyway); in the second retrench- trenchment steps of a development has exactly this char-
mentmakes formality usable in situations where it hitherto acter. Still, it is not the purpose of this paper to debate the
has not been so merits or otherwise of thigrimarily methodologicahspect

In both senses, retrenchment postpones the introductionof requirements validation; we are more concerned with
of details that for various reasons one does not wish to con-setting out the technical foundations on which such an ap-
sider immediately. This postponement normally goes hand proach would rest. We truncate the discussion of it here.
in hand with data concretisation — for instance the limita- ~ In outline the rest of this paper is as follows. In Section
tions of a discrete approximation to the solution of a prob- 2 we review some of the reasons why refinement alone is
lem expressed in continuous mathematics do not normally too stringent a technique to capture all the development
become of interest till the representation of the data for the steps we might consider to be desirable. Section 3 intro-
problem is itself sufficiently concrete and discrete. Never- duces retrenchment, in a simple partial correctness form
theless the question can be put, as to what is the counterparthat makes for a transparent theory. Section 4 presents I/O-
at the original level of abstraction, of the concrete problem filtered refinements, the kind of refinements needed later.
description arrived at through one or more retrenchment Section 5 develops maximally abstract retrenchments, dis-
steps. cussing their universality properties. Section 6 discusses

It is with this issue that this paper is concerned. We give junk-freedom and idempotence, while Section 7 treats an
a universal construction that can be seen as porting the adexample. Section 8 briefly considers guaranteed termina-
ditional structure introduced at the lower level of a re- tion, as needed for general and total correctness. Section 9
trenchment, to the higher level. concludes.

What do we gain by doing this? Three things. Firstly, Notation In the sequel we will view systems from a set
we give an affirmative answer to the question of whether, theoretic and relational viewpoint, which we discuss using
given a retrenchment, there is a model at the abstract levela logical meta-notation. Thus a predic&gust a notation
which could have beerefinedto the given concrete level;  for a set etc.
in fact there is more than one way of answering this ques-
tion (see the Conclusions). Secondly, we integrate re- 2 Some Drawbacks of Refinement
trenchment and refinement, an important consideration for
practitioners, for whom the flexibility of choosing between Almost all applications of refinement are of the forward
retrenchment and refinement deve|0pment steps no |0nge|5imU|ati0n incarnation of the concept. For this reason we
risks fracturing the development process into incompatible Will concentrate on forward simulation in this paper.
and irreconcilable paths. Thirdly, integrating all the addi- To introduce a running example, let us examine a system
tional detail introduced during retrenchment steps into the whose state is a set oNATs, and which has an operation
abstract level of one big refinement, yields — at least in AddE(n) to add an elementto the set. Its description (in
principle — a technique for validating that all the require- a suitable syntactic framework, which will be of no further
ments of the system have been adequately taken into acconcern to us) constitutes a simple specification, our ab-
count. stract model. At a more concrete level, we model sets of

We say ‘at least in principle’ because we rather doubt NATS by injective sequences &ATs, sou = {1, 2, 3}
whether practitioners would actually feel much inclined to would correspond te = [1, 2, 3], orw=[2, 1, 3], or to any
do requirements validation in this way. If retrenchment has of four other possibilities. There is an obvious retrieve re-
been used in a natural manner to introduce detail and com-lation relating sets and all possible serialisations of their el-
plexity into a development at appropriate points, it is un- ements. For pragmatic reasons, the length of any represent-
likely to be more appealing to validate the requirements at ative sequence can be no greater than 10, while no such re-
issue by translating them to a less appropriate level of ab- striction applies to the cardinality of the set. Thus not all
straction. It is far more likely that a validation process Sets have concrete representations.
would be content to confront the collection of requirements ~ The AddE(n) operation at the concrete level must test
against the actual places in the development where theythe length of the sequence and for the prior presence of
have been addressed, relying on the validation of the spe-If nis new and the length is 10, the modelling of set union,
cific retrenchment proof obligations to ensure consistency. for example by appending the extra element to the end of



the sequence, is forbidden. It would break the bound on thethe pre- and post- conditions at the more concrete level.
length ofw. Whatever the concretAddE(n) operation The point here is that any predicafecan be viewed as a
does in this situation, we claim it cannot be a refinement of subformula of a formula equivalent to any other predicate
the abstracAddE(n). For to be a refinement, in the given P, sinceQ is a subformula of @ [0 Q) [ (P O -Q)) which
situation, it would have to satisfy: is equivalent td°. This fact tends to rob the evolution no-
G(u, ) O StpAddElg(Wi i,w) O :ion of :aerlnant'k;l bite, and V\éijthout further ado(,);elates arrw]y
(O * Stpagagy (U, i, U) DG, w)) 2.1) wo models (WI'[' corresponding operatlons). course the
same can be said to apply for retrenchment if one makes the
whereG is the retrieve relationstpaggei. (W, i, W) is the  within and concedes relations strong enough; but in re-

transition or step relation of the concretddEl (similarly trenchment, because these relations form part of the defini-
for the abstract one), and primes indicate the after-state. tion of the retrenchment step, in making these clauses
If the concrete operation did nothing, i.e. dids&ip, strong, one is being explicit about just how extreme the re-

(2.1) would fail asskip is not an option at the abstract level. lationship between the models is. The ‘is a subformula of
In the same way, if the concrete operation output an error something equivalent to’ property lacks this element of dis-
message, (2.1) would fail as a change in signature is not al-crimination.
lowed in conventional refinement. These two possibilities
exhgust the rel'atively sensible optio_ns for the concrete 0p-3. Retrenchment
eration. Even if the concrete operation did something else
within its constraints, it could not tie up with the abstract For the majority of this paper we adhere to a partial cor-
operation, which would produce a set of cardinality 11. rectness framework for system description. A good com-
The above shows one very simple scenario in which re- parison between the partial and total correctness frame-
finement fails to adequately describe a desirable develop-Works, and also a critical evaluation of many approaches to
ment step. Many situations involving a finite computable refinement, can be found in [5]. In our framework, a sys-
subdomain of a mathematically ideal and infinite one, fol- tem will be given by a state space, a set of operation names
low the same pattern, and a number of techniques haveeach with its own I/O signature, and a transition relation for
been described in the literature, designed to address thevhich each step is labelled by one of the operation names.
same issue. For example, there is Neilson’s thesis [9], To discuss retrenchment we need two systems, an abstract
which presents the concept of acceptably inadequate re-oneAbs and a concrete on€onc.
finements. These tackle the above problem by observing Atthe abstract level, the set of operation nam&3ps,,
that the infinite ideal domains usually arise as well behaved with typical elemenOp,. The state space i$, having typ-
limits of the finite ones, and thus refinement in the idealised ical elemenu. For anOp, O Ops,, the input and output
case can be understood as the limit of a finite version. The spaces will bég,, andOqy, with typical elements, o re-
failure of refinement observed above becomes merely thespectively (the anticipated subscriptsicando to indicate
manifestation of an incompletely taken limit. Another av- which Op, they belong to will be suppressed, without
enue of attack by Owe is to be found in [10, 11] where he causing confusion). Primes, indeces and other decorations
proposes a logical approach, based on a careful analysis ofwill be used to distinguish different elements of the same
the effects of ill-definedness on a programming logic. space. A typical system transition will be written using the
Another issue hinted at above is the desirability of notationu -(i, Opa, 0)-> U, whereu andu’ are the before-
changing I/0 signatures during the course of a developmentand after- states ando are the input and output values, and
step. This ranges from wanting to make the key aspects ofOpy is the name of the operation responsible for the transi-
a specification clearer with a different I/O signature, to sim- tion. The set of all such transitions makes up the transition
ply wanting to incorporate change of I/O signature in re- or step relation for the operatid@pa, stpop, (U, i, U', 0),
finement. In the literature the question has been ponderedwhich we will always assume non-empty.
by a number of authors amongst which [12, 13, 14, 15]. At the concrete level we have a similar setup. The oper-
Retrenchment, introduced below, brings all of these as- ation names ar®pc 1 Opsc. States arev O W, inputsk
pects together into a single generic and flexible develop- O K, outputsq 0 Q. The transitions at the concrete level
ment step, quantified by a pair of predicates per operation. are writterw -(k, Opc, g)-> W, and are members of the step
Interestingly enough, a similar goal has been tackled in the relationstpop. (W, k, W', d). In retrenchment it is assumed
work of Liu on evolution [16]. This is atechnique whereby that there is a distindDp¢ corresponding to each distinct
the issues discussed above falling outside of conventionalOp,, but not necessarily vice versa, so the concrete level
refinement, are incorporated by demanding that the pre-may contain additional operations. We will assume this
and post- conditions of the abstract specification in a devel- correspondence is an inclusi@ps, O Opsc. Thus we
opment step be semantically equivalent to subformulae of have the decompositiddpsc = Opsa O (Opsc—0Opsa)-



The relationship between abstract and concrete state spacetes, and non-trivial relationships between outputs and af-
is given by the retrieve relatioB(u, w). We assume that ter-stated (also before- entities if appropriate).

there are initialisation operatiofisit, andInitc at abstract The structure of the PO (3.2) also yields two predicates,
and concrete levels that establiShn corresponding after-  the abstract and concrete core predicates of the operation
states thus: Op, corgp, (U, i) andcorg, (w, K), identifying those parts of

the abstract and concrete state and input space&3ddior

Inite(w) O @« Inita (1) DG(U, W) (3-1) which the PO (3.2) is non-trivial:
Speaking conventionally, refinement now sets itself the COroy, (U, i) = (OW, ke G(u, w) OPoi, k, U, w)) (3.3)
goal of preserving the retrieve relati@ through execu- corgpA(V\; K = (Du’ . G(u'w) ngp(i’ Ku W) (3'4)
pc £l L] L] p 1 1 3 .

tions at the abstract and concrete levels, and different as- o .

sumptions about how this might be accomplished lead to Clearly what_ happens in either model outside of the cores
differing properties of the process; these then become the@s no bearing on the retrenchment and can thus be arbi-
proof obligations (POs) of the particular approach, which trary. A set qf tran5|tlons of a system forming part of a re-
when discharged for some specific application, prove that trenchment is said to be abstract (resp. concrete) core

the application scenario is indeed a refinement. See once?ounded iff all the (before-state, input) pairs of the set sat-
more [5] for a survey. isfy the abstract (resp. concrete) core predicates. These

concepts will be needed in the universality results below;
they will be used analogously to totality assumptions.

We now reconsider our running example as a retrench-
ment. PredictablyOps, = Opsc = {Init, AddE}, U =
P(NAT), W = iseq(NAT), Iadde1= Kadde1= NAT, Oagdel=
O, andQagqe;Would depend on how we defined the con-
&reteAddEIoperation. In the simple case in whiglldE
IS skip for exceptional caseQaqqe1= [, otherwise it con-

highlight that it is mainly concerned with after-values, but talrjrs zn ovet;flcl\;]v rzgssagef; v|\1e concentdr?te on ttT1e fo_r;:er.
may refer to the before-values too if required. These rela- . 0 describé thekip case fully, we need to give the with-

tions are combined into the retrenchment operation proof :cn”and tzonf(?eﬁﬁ relz_monz f@rdfd_E(n). _Somt:{:- exatrpples
obligation for steps of th®ps, operations which saysthat '0'oW: (€ Tirst three in order ot increasing strength:
for each suclop: Pp=true ,C, = MOuld w=w)

. P, = true , C nOuldw =w
G(u, W) OPgi, k, u, w) Ostpop (W, k, W, q) O 2~ irue C2 Elulz 1ODnD3Dw‘ —w)
(OU, 0+ stpop, (U, i, U, 0) O NG

(G(U, W) DCodlf, W, 0,1, k U, W) (3.2) (l<10) . Ca = @HUDW =w)

There are several similar possibilities. Alternatively:
Compared to the conventional forward simulation refine-
ment PO, the import of this is the following. We assert the Ps = (ul<100(u/=100n0w) , Cs = false
consequent of the implication, but only provided b@h Note that option 5 describes fewer corresponding pairs of
andP hold. This enables us to restrict via the within re- steps than the others, since the cases djen10COn O u
lation P, the applicability of the relationship between the are not in the scope of the relationship between the two
abstract and concrete systems; permitting the bringing to- models. In fact the triviality of the concedes relation here
gether of models that would otherwise fail to support a re- means that option 5 is describing a particular kind of re-
finement. The consequent itself asserts that for every con-finement, and shows that if one restricts one’s focus suit-
crete step, there is an abstract step that either re-establisheably, one can often find a refinement lurking inside a re-
the retrieve relatiois, or failing that, satisfies the concedes trenchment. This point of view is explored also in [3, 4].

Retrenchment differs from refinement in ti&aglone is
not enough to fix the relationship between the two levels.
We also have for all operation nameddps,, a within re-
lation Po i, k, u, w) and a concedes relati@p (U, W, o,
qg; i, k, u, w), where, exploiting the inclusion ddpsa U
Opsc, thea/c subscripts orOp have been suppressed be-
cause these relations are relevant to both the abstract an
concrete levels. The punctuation @y, is intended to

T T
~w
1

relationC. Again the additional flexibility allowed by The unfortunate consequence of this is of course that as
permits us to relate models that would not otherwise be ca- one seeks to avoid mentioning the details that accumulate
pable of being formally related. as one descends through the development process, the rela-

Thus the within relation strengthens the retrieve relation tionship between the top and bottom levels of abstraction as
in before-states, and most importantly, the concedes rela-1. Relations between outputs and states ought to hold universally, and not
tion weakens the retrieve relation in after-states. Beyond Just whenG fails. The truth is thus stronger than (3.2). Sharp retrench-
the ability to restrict the relationship between abstract and r_nent addresses this, establishing in the consequent' of the proof obliga-

. . .. . tion ((G OC) OV) whereV, the nevertheless relation, allows extra
concrete levels, the within relation captures any non-trivial conjunctive properties to be expressed. See [4]. We will ignore the nev-
relationship between inputs and before-states. Likewise ertheless relation in this paper, aside from its use in I/O-filtered refine-

the concedes relation captures non-refinement-like proper-ments, in which concedes relations in their turn do not appear.




expressed by such a refinement is increasingly noncommi-To give the transitions af/niv we firstly observe thadps,
tal; only a small portion of the two models is spoken about. decomposes @psy = Opsa U (Opsy —Ops,).

For an operatiorOpy O (Opsy — Ops,), we have a
4. 1/O-Filtered Refinements transitionv -(j, Opy, p)-> V' or more explicitly:

In this section we make precise the particular notion of re- (u, w) -((i, k). Opy, (0, )~ (U', W) G.1)
finement we need so that our subsequent results go througtfor arbitraryu, i, o, Uu’, w, k, g, w'; so that the nor®p, tran-
unproblematically. The conventional notion of forward sitions of Univ form a universal relation.

simulation in which I/0 signatures remain unchangedisnot  For anOp, 0 Opsp, we haver -(j, Opa, p)-> V' Or:
quite enough, as I/O signatures can be changed during re-

trenchment and this effect leaks through into the universal (U, W) ({1, k), Opa, (0, @)-> (U, W) (5-2)
result we seek in this paper. iff u,i,o,u,wk, g, w satisfy:
For economy’s sake, we reuse the notation set up al- G(u, W) OPoi, k, u,w) O
ready. Thus we assume abstract and concrete systbms StRop, (U, i, U, 0)
and Conc, with Opsp = Opsc, and with the state spaces (G(u', W) OCoy(u', W, 0,q; i, k u, w)) (5.3)

related by a retrieve relatid&(u, w) as before. For an 1/O-
filtered refinement, we furthermore have for ea@p O
Opsa, a within relationRy (i, k), and a nevertheless rela-
tion Vo,(0, 0). All three relations are constrained to be to- _ . . . . ,
tal onct)ﬁ(eir?i)rst components and onto on their second com- Finally, I_th(,\/) n U{?IV assigns/ to any value ¢, w)
ponents; i.e. they are relatioigssatisfying firstlyJalb such tham'tA(L_J) DG(u', w) holas. )

S, b) and secondlyTbla + S(a, b). They are relations We now define a retrenchment frofibs to Univ and an

from abstract to concrete states, from abstract to concrete!/O-filtered refinement fronUniv to Conc, by giving the
inputs, and from abstract to concrete outputs respectively, dat@ for these constructions and showing that the appropri-
Unlike the retrenchment case, the within and neverthelesst® POs are satisfied. We further show that the composition

relations are not permitted to involve the states, thus sepa-Of this new retrenchment and 1/O-filtered refinement yields

rating concerns. This assembly of components is required € Original retrenchment. . .
to verify the following proof obligations. The data for the retrenchment consists of the retrieve

Firstly there is the initialisation PO. This is the same as and within reIaFions (which yield the core predicates) and
(3.1) so we do not restate it here. Secondly there is the Op_concedes relation. The retrieve relation is:

Note that the implicational form admits many ‘junk’ tran-
sitions, namelf(GP) x (U x W x O x Q). We will return
to this later.

eration PO which for a typic&@p reads: H(u,v) = (/= (u, w) OG(u, w)) (5.4
G(u, W) ORop(i, K) Ustpop.(w, k, W, g) O For an operatiorOp the within relation is:
(O u”, 0 * stpop, (U, i, U, 0) O Qopgfi i U V) =
(G(u, w) DVop(o, 0)) (4.1) (= G,K 0v= @ w) DOPofi, k uw)  (5.5)

From this we can derive the core predicates for I/O-filtered a |ittle calculation gives the abstract core:

refinements: (i) = @V, *H(Uu v) 0Qudi, ] )
o Corpp, (U, i) = @V, *H(u, v, oplis s U, V) =
COrop, (U, i) = true (4.2) (Ow, k » G(u, w) OPo(i, k u, w)) (5.6)
Corpp(W, k) = true (4.3) o . :
] which is identical to (3.3), while the concrete core is:
Note also thaVg, enters the consequent of (4.1) conjunc-

tively, in contrast to the retrenchment case. corop,(v 1) = @u,i+H(u,v) DQoli,j, u,v)) (5.7)
The concedes relation is:

5. Maximally Abstract Retrenchments Dop(U, V, 0, p; .}, U, V) =

In this section we take the retrenchment fréiis to Conc (v = (u w) O P.: (0.9 Dj=(@. Kk Ov=(uwD

in Section 3, and manufacture a third, universal system Cop(U', W, 0, g; i, k, u, W) (5.8)

Univ, enjoying the claimed universal properties. The op- To prove that we have a retrenchment we must show the ap-
eration names set &fnivis Ops, with element©Opy,. The propriate POs are valid.

state space i¥ with elementsy, inputs arg 0 J, outputs The initialisation PO idnity(v) O (OU » Inita(u) O
p O P. These are all constructed from tl&s and Conc H(u', v')). Now Inity, assigns/ to any value (', w') such
systems as follows. thatInita(u'), andG(u', w) hold. Noting thatH(u', v') iff

Firstly Opsy, = Opsc. EachOpy is in fact one of the G(u', w) andv' = (U, w), we see that for any initial there
Opcs. The spacesaké=UxW,J=1xKandP =0 x Q. is indeed al' as required.



For the operation PO we have to show that: holds. With such values (5.3) is satisfied, allowing us to as-
H(u, v) O i i uv) Ost iv.p) O sert that there aré, p such thastpgp, (v, j, V', p) holds, and
(u (VD) u %O,péltpi) u(x) i j %WD(V J P) such thaK(v', w) UVgy(p, g) holds too (this being easy to
1 p v by L] . . .
(H(U', v) O DoAp(U" v, 0,p; i, k U, V))) check), wr_uch togethery|eld_s the consequent for this case.
Otherwise G(u, w) [ Po(i, k, u, w) does not hold and

We assume the antecedents. Ne{u, v) 0 Qgfi, j, U, V) we are in the junk’ case of (5.3). This s trivial, so we need
implies thatv = (u, w) andj = (i, k), and that moreoves(u, only choose/, p such thak(v', w) OVo(p, @) holds. This

W) OPofi, k, u, w) holds. Next, knowingtpop (v j, V', p), is always possible sindéandVgy,are surjective. These,

by (5.3), fromG(u, w) OPo(i, k, u, w) we can deduce that  p aytomatically satisfgtaog, (v j, V', p) S0 we are done.
StRop, (W 1, U, 0) T (G(U', w) O Cop(U', W, 0, q; i, K, u, w)) It remains to define the composition of the retrenchment
is true. Therefore there aws o such thastpop, (U, i, U', 0) and I/O-filtered refinement just constructed. This requires

holds, namely the ones just mentioned, and for theaed  ¢are since not only are retrenchments and refinements dif-
0, havingG(u', w) UCoy(U', W, 0, q; i, k, u, w), we easily  ferent concepts, but also the collections of variables of the
deriveH(U', v) UDog(U', V', 0, p; i, k u, v). Thisyieldsthe  jntermediate system occurring in abutting relations are not
consequent of the retrenchment PO. the same. We define the composition to be a retrenchment

Turning to the 1/Ofiltered I’efinement, its data consists for which the Component relations are given as follows.
of the retrieve and within relations, and the neverthelessre-  The retrieve relation is the (usual) composition of the

lation. The retrieve relation is: component retrieve relations:
Kvw) = (= (u,w) (5.9) (H;K)(u,w) = @v * Hu, v) OK(v, w)) (5.12)

For an operatior©p the within relation is: The within relation is the composition of the component
Ropli- K = (=, K) (5.10) within and retrieve relations in the following sense:

and we note that the abstract and concrete cores willbe triv-  (Qop (RoptK))(i, k u,w) = @V, j * Qoi, j, u, v) O

ial. The nevertheless relation is: Ropli, K) DK(V, w)) (5.13)
Vo @) = (=0, ) (5.11) The concedes relation is a combination of the component

) ] o ) concedes, retrieve, nevertheless, and within relations in the
Noting that these three relations are projection functions following manner:

onto the second component, we immediately conclude that .

they are total and surjective relations. (Dop (K’ DVOpDROpDK)),(U'v W,0,q; i,k uw) =
The POs for the I/O-filtered refinement are dealt with as (Ov,j, v, p « Dop(U', v, 0, pr i o U, v)

follows. This time the initialisation PO demands that we K(v, w) OVoy(p, 9) O

havelnitc(w) O OV  Init,(v) DK, w). Now the ini- Rop(i: K) DK(v, w)) (5.14)
tialisation PO of the original retrenchment (3.1) ensures For the retrenchment and refinement constructed above it is
that for an initialw' there is an initial’ such thaG(u', w') relatively evident that this notion of composition recovers

holds. Combining this’' with w' gives av' = (U', w') such the relations of Section 3.

thatinity(v) ,D KV, w). . Theorem 5.1 Let there be a retrenchment as above from
To establish the operation PO we need to show that: e Aps to Conc. Then (see Fig. 1):

K(v, W) ORop(l, K) U stpop (W, k, w', ) [ (1) There is a universal systetiiv such that: there is a
(OV, pestppp,(v ], v, p) O retrenchment frombs to Univ and an I/O-filtered re-
(K(v, w) OVop(p, a))) finement fromUnivto Conc whose composition is the

For operation®pg O (Opsy — Ops,), assuming the an- given retrenchment.
tecedents, choosing amy p such thak(v', w) OVop, ) (2) Whenever there is a systeKira and a retrenchment
holds will satisfy the predicate, since the surjectivitykof from Abs to Xtra and an 1/0-filtered refinement from

; ; : : . Xtra to Conc whose composition is the given re-
andVop makes this po_s:mble, argpop (v, J, V', p) is uni trenchment, then there is an 1/O-filtered refinement
versal for such operations.

from Univ to the concrete core bound transitions of

For operation$pc O Opsy, assume the antecedents. Xtra; such thatH™ 0 H:K°, Q" 0 Q;R'IK®, D™ O
Now K(v, w) D Roj, K) implies thatv = (u, w) andj = (i, k) D:K”'IV'OR°CK®, and such thaK 0 K*:K”, RO
for someu andi; and we knowstpo, (W, k, W', @) holds. R:R, VO V:V.
then we have all the antecedents of the original retrench- above ofUniv, then the concrete core bound transitions
ment PO (3.2), which asserts that valug® exist such that of UnivandUniv* are mutually I/O-filtered interrefin-

StRop, (U i, U, 0) O(G(U', W) OCoy(u', W', 0, q; i, k, U, w)) able.



(OU e Initp (u) OH (U, v™")) from theAbs to Xtraretrench-

ment, so pick a suitablg’. Letw' be such thaG(u', w')
ra ) -
holds; such av must exist becausk™ is total andG =
R H™K". Thenv' = (U, w') is easily shown to be a suitable
H.Q.,D . Now we establish the operation PO, namely that for the
retrenchment ‘,1;0 o v concrete core bound stepsXifa we have:
“.‘ refinement K*(v, V) OR o, J7) Ostpop, (V7,7 V', p7) O
(Ov, p°stpo\,};(v,j, v, p) O
H,Q D - . (K'(v, V") OV oh(p. P)))
e 0 JeREY o 00 .
retrenchment refinement For an operatio®py O (Opsy —Ops,), assuming the an-
tecedents, then choosing awy p such thatk’(v', v°") O
_ V op(p, P) will do, since the surjectivity oK® and Vg,
G.PC K,R V makes this possible, aredpo (v, j, V', p) is universal for
retrenchmen refinement such operations.
For operation©py 1 Ops,, let us assume the anteced-
ents. Ifv=(u, w) andj = (i, K) are such thaB(u, w) U Pq(i,

k, u, w) does not hold, then the preceding argument works,
sincestpyp (V. J, V', p) is still universal.
Finally suppos®py 0 Ops, and thaty = (u, w) andj =

(i, K) are such thaB(u, w) U Pgi, k, u, w) does hold. We
assume that™ -(j~, Opy, p")-> V"' is a concrete core bound
step, since otherwise there is nothing to prove. Therefore
H™(u, v1) D Q op(i, 7, u, V) holds. Since we now have the
antecedents of thabs to Xtra retrenchment, we infer that

Proof. We have proved (1) already, defining what we need- thNere IS aN SteF“{'('v_PW’ 0)-> u" such th"i‘tH (u, vi) O

ed along the way. Now assume a retrenchment fAdmmito Dop(u, V', 0,071, |7, u, V1) holds. NowK™andV'g,, are

Xtra given by retrieve relatioi”, within relationQ”, and ~ fotal, andG = H7 K" andCqp, = Do K™ IV opl Riopl K7,
concedes relatiod™; and an I/O-filtered refinement from by our assumptions. Therefore we can deddge, w) [

Xtra to Conc given by retrieve relatiok”, within relation ~ Cop(U's W, 0, 0; i, k, u, w) for suitablew’ andq. We have

R, and nevertheless relatiofi. Let the state, input and ~Now assembled enough pieces to use (5.3) to conclude that

Fig. 1

output spaces oftra be given by O V™, [~ 0J", p" O P". Stpop, (% I, V', p) holds, where/ = (u', w) andp = (0, g).
Let Inity andstpy,, be the initialisation and step predicates Noting thatk andVg,, are projections allows us to quickly
for Xtra. deduceK’ (v, V™) D\/"op(p, p’), completing this case and

We define relation&’, R o, V'op, indicate that they  part (2) of the theorem.
satisfy the inclusions stated, and prove that they are the re-  Part (3) follows readily by observing that for a system
trieve, within and nevertheless relations of an 1/O-filtered Univ* having the same properties aiv, there will be an

refinement fromUnivto the concrete core boundratran- I/O-filtered refinement fromUniv to the concrete core
sitions. Thus: bound steps ot/niv* and an 1/O-filtered refinement from
K°(v, V) = @w e K(v, w) DKV, w)) (5.15) Univ* to the concrete core bound steps @dhiv. We are
Ropli,J) = Ok*Rogi, k) DR oK) (5.16)  done.©
VoopP, P) = g+ Voup, 9) OV o™, q)) (5.17) Note that the mutual interrefinability in Theorem 5.1.(3)
Firstly K® is total and surjective sind€is a total surjective IS not isomorphism in the conventional set theoretical
function andK™ is total and surjective. Likewise fd® g sense. To illustrate, the reader might have noticed that of

and VoOp- Proving thatH™ O H;K®, Qopl QOp;ROOpv the ‘junk’ transitions afforded by (5.3), we only ever used
D op 0 DopV'op and thakK 0 K*K™, Ropy 0 R opR op, ones satisfying® (C). Therefore an alternative definition
Vop U \/OOp;\fOp is now an easy exercise and is left to the of stpp,, as GUC) U((GUP) U stpop,) would have suf-

reader. ficed above, and this and (5.3) are certainly not equivalent
Next, we examine the initialisation PO. We need to in the sense of conventional set theoretical isomorphism.
show thatinity (v") O OV e« Inity (V') OK(V, V"), so let us In fact the mutual interrefinability we showed yields a

choose an initia™. We know for thisv™ thatInity (V™) O much looser notion of equivalence of systems.



6. ldemopotence and Junk-Freedom in (5.3) with[0. The version we gave is slightly simpler, and
also made the noAbs operations refinable in a natural

We claimed that the systeldniv represented a system at manner, a property we consider worthwhile.

the level of abstraction oAbs that captured the constraints
demanded by’onc, and supported this statement by show-
ing any other retrenchment &fbs that refined toConc
was refinable througlyniv. But Univ looks pretty com- Let us return to our running example and see what the uni-
plicated. Can we be sure its level of abstraction is high versal construction means in this setting. The states of the
enough? One test of this is to apply the construction of Univsystem are pairsi(w) such thatiis a set oNATs and
Univto theAbsto Univretrenchmentitself, to see if we get  wis a sequence MNATs, eg. ({1, 2},[2, 5, 3]). Those states
something substantially different. The steps of a system which serve as before-states of non-junk steps are such that
UUniv constructed in pursuit of such an objective must sat- w is a serialisation ofi, for example ({1, 3, 4}, [4, 1, 3]).

7. An Example

isfy the analogue of (5.3): The non-junk steps dfnivin nonboundary cases are eg.:
H(u, v) DQOp(i,j, u,v) O ({3, 4}, [3, 4]) -((1, 1),AddE)-> ({1, 3, 4}, [4, 1, 3)])
Stiop, (U, 1, U', 0) L Note that (as illustrated) there is no necessity for the con-

(H(', v) DDoglU, v, 0, pi i ), U, V) (7.1) crete component of this step to agree with any speaific
But substituting forH, Qgp, Doy in the familiar manner  dEl step, given that we have suggested fadE| should
leads right back to (5.3), thus the set of non-junk transitions act only by appending to the end of the sequence.
of (7.1) is isomorphic to those of (5.3), since they are ofthe  The boundary steps, in the case tAaIdEL is a skip,
form (U, '(U, W)) '((i1 (Iv k))v OpAv (01 (07 q)))') .(U', .(ulv W)) look for example like:
arjd havmg tvvp copies of 'the sam@s transition in aUU- ({1...10}, [1...10]) (11, 11) AddE)->
niv transition is isomorphic to having one copy in the cor- ({1...11}, [1...10])
respondingUniv transition. This supports our claim to prmTh e
have indeed found the appropriate level of abstraction. ~and we see clearly why the general product structure is

The junk transitions permitted by (7.1) are not however needed for the universal state space; evidently10] can

isomorphic in the same way. Differertbs (u, i, U, 0) never be a serialisation of {111}.
guadruples (they needn’t B&bs transitions of course) may Focusing now on the nonboundary case for simplicity, it
reside in the inner and outer positions df&/nivjunk tran- is worth observing that regarding the abstract level infor-

sition. Iterating the construction further multiplies the mation, all stepsy, T(u)) -((i, i), AddE)-> (U, Tt(u')) are
number of differentAbs quadruples that could reside in a equivalent, wheref = u O {i}, and 1, Tt are arbitrary per-

U"nivjunk transition. Nevertheless, thos€hnivjunk tran- mutations of the standard orderingswfu’. What are we
sitions, related via the appropriate retrieve, within and nev- to deduce from this?

ertheless relations toniv junk transitionsdo contain just Note that the notion of universality expressed in Theo-
oneUnivjunk transition, as the iteration of (5.9)-(5.11) re- rem 5.1 is only up to interrefinability by total surjective re-
veals. More generally the junk transitions(a@fniv are em- lations. Ordinary set theoretic isomorphisms are total sur-

bedded in those ot/™™niv. These phenomena tend to jective relations, and noting that all the states that we are
suggest that junk transitions might somehow be marginal to implicitly suggesting are equivalent are set theoretically
the core business of Theorem 5.1. Could we possibly do isomorphic, suggests that there will be a reformulation of

without them? The answer is a qualified yes. the universal construction which deals wégstsof concrete

We note that the junk transitions came in useful in pro- states rather than individual ones as we used. This turns out
viding refinement targets fa€onc transitions for whichv to be true, and is an example of Theorem 5.1.(3) in action.
was not related tav via G OP. To do without junk transi- ~ The two forms of universal construction are equivalent up
tions we must therefore exclude suchv pairs fromK OR. to interrefinability by total surjective relations. The given

This requires abandoning 1/O-filtered refinements and presentation is somewhat simpler, and the general situation
moving to the richer notion of modulated refinements, in will be explored more fully elsewhere.

which the within (resp. nevertheless) relation can involve  Returning to our example, and taking boundary cases
the before-states (resp. after-states), see [3, 4]. Focusingnto account, the non-junk part of the universal system is
thus on just the well behavedw pairs, and adding suffi-  equivalent to a modification of the abstract level alone, re-
cient extra hypotheses to ensure that the resulting relationsstricting the abstract transitions to ones satisfjuijgs 10.

plug together suitably (since the within and nevertheless re- This is of course obvious, and represents an ideal state of
lations will no longer automatically be total and surjective), affairs, i.e. a situation in which all the extra detail that the
a junk-free version of Theorem 5.1 can be carried through, original retrenchment introduced at the concrete level, may
the steps of its universal system being given by replacing  be absorbed into a modified model at the abstract level, as



discussed in the Introduction. Not all situations are neces- Now in a total correctness framework, one combines the
sarily ideal however, and the fact that in an arbitrary re- implications arising from termination and simulation of
trenchment, the within and concedes relations can featuresteps into a single property, by conjoining all the anteced-
arbitrary interdependencies between the levels, means thaents and conjoining all the consequents, making a single
such a clean lifting of detail to the abstract level will not al- implication. Lettingtrm be arbitrarily small thus weakens

ways be available without further restrictions. the impact of the joint simulation relation discussed above,
in the limit making it completely trivial. In this case it is
8. General and Total Correctness natural to focus on those factorising systeXiga for which

i i trm is the biggest possible; for these the outer implication
Many refinement techniques take account of the guaranteeqn (8.7) becomes an equality and the refinement fina

termination properties of operations, leading to general and to Conc becomesrm-preserving ortrm This restric-
total correctness formalisms. In this section we assume i allows us to make the outer impali%ation of (8.4) an

that each Abs operatic_)n QpA possesses a predicatg equality too. We find:

trmop, (U, i) whose truth indicates the before-states and in- .

puts where the outcome of the operation is guaranteed to be’foPOsition 8.1 In a total correctness framework, let the
successfully terminating. Similarly for the other systems in factorising systemira of Fig. 1 all betrm-preserving on
our discourse. The termination PO arising from the orig- {Mop.: ThenUniv may be endowed with theem predi-

inal retrenchment is: cate:
G(u, W) OPoi, k, u, w) Otrmgp.(w, k) O trmop, (v, J) = _
trmOpA(ur,J i) " (8.1) (Ow, k*K(v, W) ORop(j, K) O trmgp (W, K))

Those for the factorising retrenchment and refinement are: Proof. For the requiredJniv to Xtra refinement to work,
- . we need to confirm additionally that with our assumptions,
H(u, v) 0Qop(i, J, u, v) Utrmgy, (v, j) O

K°(v V) OR ogli, 1) Otrmop, M ) O trmep, (v, 7).

trmopA(u, ) (8-2) To do this, we assume the antecedents of this implica-
and tion, and call these the outer hypotheses. The consequent,
K(v W) O Royfi, k) Otrmop, (v ) O trmop, (V',]7), i§ itself an impIication_ (i.e. the consequent of
trMop (W, K) (8.3) (8.7)); we call its antecedents the inner hypotheses and as-

sume these also.

Note that both (8.2) and (8.3) hatngy, (v, j) in the an- To exploit the inner hypotheses, assuviig™ are such

tecedents, highlighting the different directions of the thatK™(v", w) R og((", K) holds for soma, k. Next, we

dependencies in retrenchments and refinements. Giventhee ; o
xploit the outer hypotheses by assuminpare such that
relationships already established, it is not hard to see thatKo?V V) O R o Jyf)) holds wit);essed b)? the aforemen-
1 p 1 1

the general solution of (8.2) and (8.3) fomgp, (v, j) is: tionedw, k — this is always possible by (5.12) and (5.13)

trmopu(v, j) d sinceK andR are surjective, and generates as a side effect
(Uw, ke K(v, w) ORopj, K K(v, w) ORop(j, K). Now we can usérmgy, (v, j) from the
trmop. (W, K)) (8.4) outer hypotheses, itself a quantified implication, which en-

(From (8.4), (8.3) follows readily, while (8.2) requires not- 2bles us to infetrmgy (w, K). This in turn is the conse-
ing also thak andRare total.) In particular, the solutionis ~ duent under the quantification @ing,, (v, 7). We can

not unique, allowing an arbitrarily smafimey, (v j). Con- now use the deduction erincipIe, and then quantify aver
sider now the analogous conditions f¥tra, whosetrm k'to get our goakrmop, (V' ) itself. We are done2
must satisfy: In a general correctness setting, there is a much looser
H(u, V) DQopfi, 7, u, V) Dtrmep, (v, ) O cogpling betvyegn the simulation propertigs armd prop-
trMop, (U, 1) (8.5) erties. Infactitis unhelpful to assume any interdependence

at all. Accordingly we require a solution to (8.2) and (8.3)

and which is as general as possible in terms of the systétres
K'(v', W) OR o, K) Otrmgp (V',j7) O that we admit. Since (theem properties of) these will now
trmopc(W, K) (8.6) be unrestricted, the only solution formg,, will be the

empty one. Now there is nothing to prove to deduce that

This allowstrmgy,, (V' J7) to be arbitrarily small too as, for . ) : .
Opx( N y the Univ to Xtra refinement works in the following.

the same reasons, it needs only to satisfy:
trmog, (V) O Proposition 8.2 In a general correctness framewotk)iv
O(% WK - K7, w) OR (" K) 0 may be endowed with them predicate:
L] ) p )

trmopc(W, K)) (8.7) trmop, (v ) = false



Lack of space prevents us developing these full correctnessone avenue that needed to be explored. Other results re-
formalisations more fully, but we have shown the essential garding retrenchments and refinements that abut each other
ingredients out of which they are built. Furthermore Prop- in various ways will be the subject of further publications.
osition 8.1 and Proposition 8.2 will apply equally well in  And the aim of all this activity is to alleviate ‘engineering
the context of the junk-free formulations of step simulation unnaturalness’; to supply the developer with a rich suite of

indicated in Section 7.

specification development techniques, not constrained by

the tyranny of pure refinement.

9. Conclusions
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