A Deidealisation Semantics for KAOS

Richard Banach

School of Computer Science, University of Manchester, Manchester, M13 9PL, UK.
banach@cs.man.ac.uk

ABSTRACT

KAOS is a goal directed requirements engineering framework based
on the decomposition and refinement of goals. Decomposition and
refinement continue until a point is reached at which agents, identi-
fiable in the application environment, can be assigned responsibil-
ity for operations that manipulate variables over which they have
control, and where the information for determining changes in the
controlled variables resides in variables which the agent can moni-
tor. Although many of the ‘refinements’ that arise in the KAOS pro-
cess can be viewed as acceptable according to one or other Model
Based Refinement Formalism, many cannot. Those that cannot
correspond to ‘deidealisation’ steps, not covered by conventional
refinement formalisms. It is shown that such deidealisations can
be seen as retrenchments, and the smooth interworking between
refinement and retrenchment leads to a fuller formalisation of the
KAOS process than is otherwise possible.

Categories and Subject Descriptors

D.2.1 [Requirements/Specifications]: Languages

Keywords
KAOS, ASM, Refinement, Retrenchment, Tower Pattern.

1. INTRODUCTION

KAOS [1, 2] is a goal directed requirements engineering frame-
work, based on the decomposition and refinement of goals. The
decomposition and refinement continue until a point is reached,
at which agents, which can be identified in the application envi-
ronment, can be assigned responsibility for manipulating variables
over which they have control, the manipulation being based on val-
ues of variables which the agent can monitor. The manipulation is
packaged into operations, these being of the same general kind as
appear in typical Model Based Refinement Formalisms (MBRFs).
As in many areas of requirements engineering, the word ‘refine-
ment’ is used relatively liberally, referring not only to system de-
scription evolutions that would be described as refinements in a
typical MBREF, but also to changes of system description that are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SAC 2010 Sierre, Switzerland

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

too permissive to be so described. It is the aim of this paper, to
show how the weaker criteria that apply to retrenchment, enable
these ‘not-really-refinements’ to be integrated with the ‘real’ refine-
ments, to give a more robust formal account of the KAOS process
(and, by implication, similar RE approaches).

To say the preceding is not to imply that the KAOS process is
without solid formal underpinnings — far from it. However, sprin-
kled here and there, in [1] for example, one finds comments that
such-and-such an issue, . . . ‘requires more research’ or ‘needs more
detailed investigation’. Frequently, these issues involve some ques-
tion of imprecision that arises because some goal is treated in dif-
ferent ways in different parts of the description — in an idealised
(and thus too simplistic) manner in one place, and in a more realis-
tic (and thus more complicated) manner elsewhere.

If we accept that the potential for a fully rigorous development
is desirable (at least in principle), in that such approaches can ul-
timately yield systems of the highest quality, then the tension be-
tween these two views gives rise to a variety of technical responses.
For example, many advocates of formal approaches would stress
that the idealised approach ought to have no place in a formal de-
scription, saying that the top level spec. ought not to conceal any
unavoidable complexities. But this is arguably somewhat naive; we
cannot put it better than in [1]:

“It is actually desirable to start from idealised goal definitions. The rea-
son is simple: premature compromises of what is ideally required prevents
the identification of further goals and the exploration of alternatives, such as
alternative ways of deidealising goals, or to make trade-offs between con-
flicting goals. Therefore, one should be idealist when writing first-sketch
goal definitions.”

So there can be an ‘idealistic’ definition of the system, and also
a ‘realistic and accurate’ definition. Much hinges on where in the
system’s-to-be modelling hierarchy the ‘realistic and accurate’ top
level spec. is located. When it is buried too deeply in a forest of
partial models addressing varying aspects of the system-to-be, then
the connection between the realistic definition and the initially con-
ceived goals can be noticeably weakened.

It is with issues such as these, regarding the strength of the for-
mal connection between idealised goals and their more precise but
more complex counterparts, that we are concerned in this paper.
The beauty of the retrenchment approach (the core of our strategy),
is that it allows the idealised and accurate viewpoints to be formally
reconciled. Crucial to the enterprise is the smooth interworking be-
tween refinement and retrenchment, achieved via the theorems of
the Tower Pattern [3, 4, 5], which allow both refinement and re-
trenchment to contribute to a solidly integrated whole.

Our approach is to formalise the operational layer of KAOS us-
ing ASM [6] and then to propagate the results to the rest of the
KAOS method (insofar as space allows). We choose ASM for rea-
sons of simplicity, and for the fact that ASM provide a concrete

‘existential witness’ for formalisability. Thus, regarding the lat-
ter point, whereas the KAOS literature provides ample clues that
a translation to a fully formal model based development process is
perfectly feasible (see eg. (13)-(16) below), to this author’s knowl-
edge (at least), it is not completely clear that all the needed machin-
ery is actually in place to the extent that one expects in a MBRE.
With ASM there is no doubt regarding this point, and by now, many
fully mechanically checked rigorous developments have been per-
formed using ASM, in tandem with suitable theorem proving tech-
nology. Regarding the simplicity issue, unlike most MBRFs, which
insist on executing a single rule or event at a time, ASM insist
that ‘all rules with true guards fire in the next step (and must be
consistent)’, which neatly matches the KAOS convention that ‘all
operations with a true trigger fire in the next step (and must be con-
sistent)’. This sidesteps the need to do ‘technical plumbing’ round
this issue.

The plan for the rest of this paper is as follows. In Section 2,
we review refinement and retrenchment in the ASM formalism. In
Section 3, we give a brief review of KAOS goals, goal refinement
and goal operationalisation. In Section 4 we give the relatively
straightforward mapping from KAOS operations to ASM rules. In
Section 5, we look at obstacles and conflicts, and connect them to
retrenchment. In Section 6, we take one of the main running ex-
amples from [1], the Mine Pump, and rework some fragments of it
using the tools just developed. Section 7 generalises the discussion
in order to benefit from the retrenchment Tower Pattern and Sec-
tion 8 extends it to encompass system and requirements evolution.
Section 9 concludes.

2. ASM REFINEMENT, RETRENCHMENT

In this section we briefly review what we need of ASM refine-
ment and retrenchment. The standard reference for the ASM method
is [6], building on the earlier [7]. In general, to prove an ASM
refinement, one verifies so-called (m, n) diagrams, in which m ab-
stract steps are in simulation with n concrete ones. The general
policy was made rigorous (and proved formally in KIV [8]) in the
work of Schellhorn [9, 10]. For this paper, for application to KAOS
(as it is described in [1, 2]), we just need the (1,1) case, which
makes ASM refinement look pretty much like any other MBRF
(aside from the firing policy noted above). It will be sufficient to
focus on the following refinement proof obligations (POs):

V' e Clnit(v') = (3 u’ e Alnit(u') A R(u',V')) (1)
v u7 i7 V7j7 Vl?p L4 R(u7 v) /\ In(i7j) /\ COp(V,j, v,7p) é
(Fu',0 e AOp(u,i,u’,0) AR ,V') A Out(o,p)) 2)

In (1), the initialisation PO, it is demanded that for each concrete
initial state V', there is an abstract initial state #’ such that the re-
trieve or abstraction relation R(u’,v") holds. In (2), the correctness
PO, it is demanded that when there is a concrete step COp(v,j,V', p),
performed by a concrete operation COp (with before-/after- states
v,v' and input/output j, p) such that the retrieve and input relations
R(u,v) A In(i,j) hold between concrete and abstract before-states
and inputs, then an abstract step AOp(u,i,u’,0) can be found to
re-establish the retrieve and output relations R(u’,v') A Out(o,p).
The ASM refinement policy also demands that non-termination be
preserved from concrete to abstract, but we will not need that in
this paper.

For retrenchment, [11, 12] give definitive accounts; latest de-
velopments are found in [13]. See also [14] for formulations of
retrenchment adapted to several specific MBRFs including ASM.
Like refinement, retrenchment is also characterised by POs: an
initialisation PO identical to (1), and a ‘correctness’ PO which

Retag

A—>8B
e l l e
C—bD

Retcp

Figure 1: The Tower Pattern basic square, with refinements ver-
tical, retrenchments horizontal.

weakens (2) by inserting within, output and concedes relations,
Wop, Oop, Cop respectively into (2), to give extra flexibility and ex-
pressivity. In particular, the concession Cp, weakens the conclu-
sions of (2) disjunctively, giving room for many kinds of ‘excep-
tional” behaviour. The result is:

You,i,v,j,v,p @ R(u,v) A Wou(i,j, u,v) A COp(v,j,Vv',p) =
(3u',0e AOp(u,iu’,0) A
((R(' V') A Ogp(o,p,u’ V' u,v,i,7)) V
Cop(u',v',0,p,u,v,1,)))) 3)

To ensure that retrenchment only deals with well defined transi-
tions, and to ensure smooth retrenchment/refinement interworking,
we also insist that R A Wy, always fall in the domain of the requi-
site operations:

Y ou,v,i,j ® R(u,v) A Wopl(i,j, u,v) =
dom AOp(u, i) A dom COp(v,) 4)

The smooth interworking between refinements and retrenchments
is guaranteed by the Tower Pattern, the basic construction for which
is shown in Fig. 1. There, refinements are vertical arrows and re-
trenchments are horizontal, and the two paths round the square
from A to D (given by composing the refinement Refy,c with the re-
trenchment Retc p on the one hand, and on the other, by composing
the retrenchment Ret4 p with the refinement Refz p) are compatible,
in the sense that they each define a portion of a (potentially larger)
retrenchment from A to D.

The Tower Pattern is typically applied when two adjacent sides
of a square such as Fig. 1 are available, consisting of three system
models with a retrenchment and refinement connecting them, and it
is desired to ‘complete the square’ by building the missing system
model, and the retrenchment and refinement that connect it to two
of the given ones. The theorems of [4] (subsequently reformulated
and revised in [3]) show that such square completions can be made
in a generic manner, opening the way to the automatic construction
of systems that are defined as (or are seen to naturally arise as) the
solutions to such problems.

3. KAOS GOALS, GOAL REFINEMENT,
OPERATIONALISATION

KAOS [1, 2] is a richly structured methodology for discovering
and precisely defining the requirements of a system-to-be. Many
of the 700 or so pages of [2] are deeply involved with strategies
for determining the true system goals from a foundation of imper-
fectly articulated and often flawed user understanding — clearly,
we cannot cover all these aspects in this paper.

For us, the starting concept is the system goal, howsoever arrived
at, which following [1, 2], reduces formally to an expression in
temporal logic (TL) in the style of [15]. The logic is over an N-
indexed time variable, and centres on a conventional definition of
the truth of a temporal formula P at a given index i of a (total)

[Achieve[EliminateMalariaFromHumanPopulation] |

Achieve Maintain Maintain Maintain

[Eradicate [Negligible [Anti [Mosquito

Mosquitos] Mosquito Malaria Repellent
Population] Therapy] Measures]

Figure 2: A simple informal KAOS AND/OR goal refinement.

history o, featuring the usual future and past temporal operators,
<, 0,0, 9, W, @, parcelled up pairwise in (5)-(7):

(0,i) EOP, ®P iff (0,j)EP forsomej>i,j<i 5)
(o,i)E P, WP iff (0,/)EP forallj>i,j<i (6)
(0,i)EOP,®P iff (0,i+1,i—1)EP ,andi >0 (7)

Beyond the basic temporal primitives, two kinds of generalisation
are supported: (a) binary operators: until U, unless-later W, since
S, unless-earlier B; (b) deadline-enhanced versions of the quanti-
fied primitives in (5), (6), namely: <y, <y, W<, W<y, where
for simplicity we can take d to be a number of ticks (though more
complex time metrics are obviously also possible). The deadline-
enhanced operators restrict the time range within which the gov-
erned formula is required to be true to be no more than d ticks away
from ‘now’, and extend to the temporal compounds in the obvious
way. We also note the distinction between the ‘pointwise’ connec-
tives, P — Q and P < Q, and their ‘strong’, or ‘[]" versions,
P=0=0P—-0Q)andP<=0=0(P < Q).

Goals conform to specific patterns of temporal behaviour. KAOS
stresses Achieve, Cease, Maintain, Avoid patterns, given by:

Achieve[Q] Cease[g] P=<-0 (8)
Maintain[Q] Avoid[g] P=0-Q 9)

P=<0
P=0Q

where in each case, P is a suitable hypothesis. Goals are also fur-
ther categorised as eg. Satisfaction, Safety, Security, Information,
Accuracy goals, etc.

The crucial concept in KAOS for progress towards an imple-
mentable system is goal refinement. Goal refinement consists of
growing a shallow (two level) AND/OR subtree under a goal, where
each conjunction of goals under any of the disjuncts is itself capable
of satisfying the original goal. Although the explorations of alter-
natives (via the OR) is crucial to the KAOS methodology, we will
ignore it for the rest of this paper, since everything we will say will
be equally applicable to each alternative. Fig. 2 shows a simple in-
formal example concerning the elimination of malaria from an area
infested by an (effectively) isolated, infected mosquito population.

Formally, a set of subgoals G . . . G, refines a goal G in the con-
text of a(n application) domain theory Dom iff the following hold:

Gi1...G,,DomEF G (completeness) (10)
G1...G,,Dom ¥ false (consistency) (11)
Vie (A . Gj,Dom¥ G) (minimality) (12)

Ultimately, the goals have to be operationalised, i.e. turned into
collections of operations that can be performed by individual (soft-
ware or environment) agents. The (unique) agent assigned respon-
sibility to execute a given operation must be capable of monitoring
the variables involved in the operation, and must also be capable
of (and uniquely responsible for) controlling the variables updated
by the operation. The sensitivity of KAOS to such matters of re-
sponsibility, and the need to connect operations to the goals that
they operationalise, means that KAOS operations Op are specified

by means of several predicates on states: the domain preconditions
DomPre, the domain postconditions DomPost, the required precon-
ditions RPr € ReqPre, the required triggers RTr € ReqTrig, and
the required postconditions RPo € ReqPost. These predicates con-
tribute to the sematics of an operation Op in the following manner.

Each operation Op is essentially a description of a set of state
transitions of a similar kind to those appearing in MBRFs. It is
given a temporal semantics via the formula [| Op |] in (13), which
just describes the raw updates to state variables accomplished by
the operation at two adjacent ticks via DomPre and DomPost, with-
out concern for when the operation occurs. The remaining predi-
cates, RPr, RTr, RPo, are given a temporal semantics via the for-
mulae [| RPr|], [| RTr|], [| RPo |], defined in (14)-(16). (N.B. For
(13)-(16), we favour the slightly simpler formulation in [2] over
thatin [1].)

The required preconditions RPr € ReqPre, act as guards; (14)
defines [| RPr |] to be the TL formula that says that the operation
can take place only if the required precondition RPr holds. The
required triggers RTr € ReqTrig, strengthen the required precon-
ditions and force operation execution; (15) defines [| RTr |] to be
the TL formula that says that the operation must take place as soon
as any required trigger holds. Finally, the required postconditions
RPo € ReqPost, take care of any other conditions for the operation
which are not already dealt with earlier; so (16) defines [| RPo || to
be the TL formula that says that the operation can take place only
if the required postconditions hold in the after-state. A history o
contains only valid occurrences of operation Op iff all occurrences
of Op satisfy [| Op |], and [| RPr |], [| RTr |], [| RPo |] hold on o.
(N.B. (V%) indicates quantification over all free variables.)

[|Op|] = DomPre(Op) A ODomPost(Op) (13)
If RPr € ReqPre(Op) Then [|RPr|] = (Vx) [|Op|] = RPr (14)
If RTr € ReqTrig(Op) Then

[IRTr|] = (V*) DomPre(Op) A RTr = [|Op|] (15)
If RPo € ReqPost(Op) Then
[I[RPo|] = (V%) [|Op|] = ORPo (16)

A collection of operations Op; ... Op, operationalise a goal G iff
the following hold:

[[Opi]]...[IOpu]] E G (completeness) 17)
[IOp1]]...[|Op,|] ¥ false (consistency) (18)
GE[|Op1]]--.1|Opnl] (minimality) (19)

Note the similarities and differences between (10)-(12) and (17)-
(19). There is no domain theory in (17)-(19), since at that level, the
environment is itself assumed to be modelled by operations and in-
variants at an appropriate level of detail. Beyond that, (17)-(18)
closely parallels (10)-(11). However (19) differs from (12) be-
cause, while goal refinement minimality merely requires that the
refinement does not introduce superfluous goals, operationalisation
requires that the behaviours of the goal are sufficient to infer the
capabilities of the operations. Thus while a goal may be a proper
underspecification of its refinement, an operationalisation of a goal
must be equivalent (in temporal terms) to the goal that it opera-
tionalises.

4. KAOS OPERATIONS AS ASM RULES

As mentioned before, the ASM framework is an MBRF which,
unlike the majority of similar formalisms, conforms to the ‘all rules
with true guards fire immediately’ paradigm. This makes it partic-
ularly easy to translate KAOS operationalisations into ASM rules.
For all the operations in the operationalisation, we merely need to

conjoin the domain preconditions, required preconditions, and the
disjunction of the required triggers to form the ASM guard, and to
choose an after-value for the state that satisfies the domain and re-
quired postconditions, to derive a schematic translation as follows,
where vs are the state variables of Op:

Op = (20)
if DomPre(Op)(vs) and A pp, ¢ regpre(op) RP7(vS)

and V/ g, € ReqTrig(0p) RTT (vs)
then

choose vs’ , ,
with DomPost(Op)(vs') and A pp, ¢ reqpost(op) RPO(vS')

do vs:=vs’

The above gives the lazy execution scheme for KAOS Ops: an Op
does not execute unless one of its triggers is true. Removing the
triggers disjunction from (20) gives the eager scheme: Op executes
as soon as its preconditions are true. To allow for executions inter-
mediate between eager and lazy, a (per-operation) flag can be intro-
duced to override the falsehood of the triggers, together with a per-
operation, always-enabled (or, for more sophisticated strategies,
conditionally enabled), auxiliary rule that non-deterministically as-
signs it to true or false.

5. OBSTACLES, CONFLICTS AND
RETRENCHMENTS IN KAOS

The process of investigating an application-to-be can generate
inconsistency in a wide variety of ways. Amongst these we can
find that:

o Identified goals may be inconsistent with the application’s do-
main model when formalised (Obstacles).

e Domain experts can express views that, when formalised, give
rise give to goals which are inconsistent (Conflicts).

In KAOS, obstacles and conflicts are characterised by a set of
conditions of the form:

X,G1...Gy,Dom F false (conflict) (21)
Vie (A X, Gj,Dom ¥ false) (minimality) (22)
I(o,i) e (0,i) F X (feasibility) (23)

The general picture in equations (21)-(23) is called a divergence,
and describes the conflict between goals G . .. G, in the presence
of X. If there is just one goal, then X is typically referred to as
an obstruction, while if there are several goals, then X is typically
referred to as a boundary condition for the conflict.

Suppose that there is an obstacle or a conflict. If the obstacle
or boundary condition X involves entities envisaged as being con-
trolled by the application-to-be, then its negation can be added as a
new goal, and the elaboration of the application-to-be can continue
on that basis. However, if X is not of this nature, (or, if it is con-
sidered injudicious to proceed in this way), then it is necessary to
deidealise one or more goals in order to arrive at a description of
the application-to-be that is satisfiable.

Assuming that a goal is of the form H = T, [1] discusses dei-
dealising by: (a) weakening the goal, so that H = T becomes
H = T V C; or (b) strengthening the assumptions made, so that
H = T in effect becomes W A H = T. In (a) and (b), C and W
would be suitably related to the problem condition X. Of course we
have paraphrased [1] (with C and W suitably related to X) so that
the deidealisation process parallels the introduction of the concedes
and within relations during retrenchment.

Although X is a temporal formula in principle, in many cases it
reduces to a state formula, since, in a discrete transition system,

[Maintain[PumpOnWhenHighwater] |

Maintain
[PumpOnWhenHighWaterDetected]

Maintain
[HighWaterDetected]

Maintain
[PumpOnWhenSwitchOn]

Maintain
[PumpSwitchOnWhen
HighWaterDetected]

Figure 3: A fragment of the Mine Pump goal refinement.

the problem condition often reveals itself because the current state
satisfies some predicate. In this simple situation, the connection be-
tween retrenchment, a primarily operation-focused technique, and
KAOS, a primarily TL-focused technique, is particularly easy to
make, and goes as follows.

As we stressed above, a KAOS operationalisation is equivalent
to the TL goal formulation that it instantiates. Thus if retrench-
ment can express the properties of a relatively arbitrary change in
a collection of operations via the retrenchment data and POs, and
a collection of operations is equivalent to the TL formulation of
to some KAOS goals, then retrenchment can likewise express the
properties of a relatively arbitrary change in the KAOS goals. Note
that this goes beyond merely saying WHAT the change is, it can
help illuminate, via the POs and their proofs, WHY the change was
a good idea, in the same way that a proof of any conclusion illumi-
nates why that conclusion follows from the premises.

The argument just advanced was made in the context of X being a
straightforward state formula, for simplicity. But there is no reason
to suppose that it will not hold up in the face of more complicated
X, simply because the behaviours permitted by an arbitrary tempo-
ral formula consist (in our N-indexed model of time) of individual
transitions, which will in an operationalisation, amount to the tran-
sitions of its operations. Each of these, in turn, can be endowed
with its own retrenchment data, and the discharge of the associated
POs contributes to the WHY of the goal collection morphism (see
Section 8) being performed.

The last remarks briefly considered dealing with a multistep X
via the fine-grained techniques of single step retrenchment. How-
ever there is no reason to restrict to that perspective, and a treatment
of a multistep X via coarse-grained retrenchment techniques [16] is
perfectly appropriate. The full theoretical consequences of such an
observation are beyond the scope of a short paper like this one; they
will be detailed elsewhere. We will content ourselves with illustrat-
ing the single step version on a familiar case study.

6. THE MINE PUMP IN KAOS AND ASM

We now illustrate the preceding ideas on a well known case
study, originally presented in [17], and treated at length as a running
example in [1], the Mine Pump. Here is the informal description,
taken from [17]. Below, we restrict to a few relevant fragments of
the treatment in [1], concentrating on some of the earlier features.

(I) Water percolating into a mine is collected in a sump to be pumped out
of the mine. The water level sensors D and E detect when water is above
a high and below a low level, respectively. A pump controller switches the
pump on when the water reaches the high water level and off when it goes
below the low water level. If, due to a failure of the pump, the water cannot
be pumped out, the mine must be evacuated within one hour.

(II) The mine has other sensors (A, B, C) to monitor the carbon monox-
ide, methane and airflow levels. An alarm must be raised and the operator
informed within one second of any of these levels becoming critical so that

the mine can be evacuated within one hour. To avoid the risk of explosion,
the pump must be operated only when the methane level is below a critical
level.

(II) Human operators can also control the operation of the pump, but
within limits. An operator can switch the pump on or off if the water is
between the low and high water levels. A special operator, the supervisor,
can switch the pump on or off without this restriction. In all cases, the
methane level must be below its critical level if the pump is to be operated.
Readings from all sensors, and a record of the operation of the pump, must
be logged for later analysis.

6.1 Accuracy of Measurement

Consider the goal refinement fragment shown in Fig. 3, and fo-
cus on the top goal Maintain[PumpOnWhenHighWater], which,
hypothesising a suitable DomainTheory, is formalised in an ideal
way as:

WaterLevl > High = PumpMotor = ‘On’ (24)

But of course, the water detection mechanism is not infinitely pre-
cise, so a deidealised version of the goal might read:

WaterLevl > High + Dev = PumpMotor = ‘On’ (25)

where Dev describes a tolerable deviation between the actual wa-
ter level and the pump controller’s perception of it. In fact [1]
explores the issue further, introducing a variable WaterMeasure
corresponding to the level of water measured, and discusses vari-
ous goals that relate the ideal of (24) to more realistic possibilities.
In this paper, the relationship between (24) and (25) will be suffi-
cient to make our point.

In (26) below, in ASM notation, we see idealised and realistic
operationalisations (subsripted *;” and ‘") of the switching on and
the switching off of the pump motor.

PumpOng = (26)
if PumpMotorg = Off
and WaterLevig >

PumpOn; =
if PumpMotor; = Off
and WaterLevl; > High

then PumpMotor; := On High + Dev
then PumpMotorg := On
PumpOff; = PumpOffr =

if PumpMotor; = On
and WaterLevl; < Low
then PumpMotor; := Off

if PumpMotorgr = On
and WaterLevig <
Low — Dev
then PumpMotorg := Off

In [1], in connection with the discussion of the nature of triggers, a
distinction is drawn between the fact that if the water level gets high
then the motor must come on, whereas once the water level ceases
to be high then the motor may go off, leading to an absence of trig-
gers and a different kind of operationalisation in the latter case. But
taking note of the fact that once the water level becomes too low,
then the motor must go off, whereas (with analogous thinking) once
the water ceases to be too low then the motor may come on, leads
to two versions each of the PumpOn and PumpOff operations, one
triggered and one not triggered. If we disregard for now any con-
sequences of paragraphs (II) and (III) of the problem description,
keeping both versions of each operation would be wasteful, so in
(26) we merged the untriggered and triggered versions, leading to
a pure ‘bang bang’ control model. Such a merging is of course
perfectly permissible in KAOS.

Turning to the relationship between the idealised and realistic
models, it will not be a goal refinement in the normal KAOS sense.
For suppose that the water level is somewhere between High and
High + Dev. Then (24) would demand that the pump be on, while
(25) would not, so the usual implicative relation, from the TL for-
mula(e) expressing the refining goal(s), to the TL formula express-
ing the refined goal, would not hold. As regards the pure oper-
ationalisation, we might be able to ‘get away with it’ to an ex-

tent, if we posit a retrieve relation that is piecewise linearly bi-
jective between the ideal and realistic water levels, matching up
intervals [0..Low)|, [Low..High], [High..oo] of the ideal water level,
respectively to intervals [0..Low — Dev], [Low — Dev..High + Dev],
[High + Dev..co] of the realistic water level. However, even if this
were made to work technically, it would be highly detrimental to
the wider requirements context — consider for instance what would
happen to the laws representing the inflow of water into the mine in
the two models (and the relationship between these formulations)
if we adopted this correspondence between ideal and realistic water
levels. So such a strategy is ruled out as a thoroughly bad idea —
not all technically achievable refinements turn out to necessarily be
good in reality.

Another aspect of the relationship between the ideal and realistic
models, is the fact that the visible lack of accuracy in the correspon-
dence between ideal and realistic triggering water levels, leads to
a breakdown in synchronisation between the two models when we
wish to set up an extended simulation between them. Thus, starting
from the same initial conditions and assuming the same steady in-
flow of water into the mine, the realistic pump will come on slightly
later (by J secs. say) than the ideal one. The two will empty their
sumps at the same rate, and then the realistic pump will go off 20
secs. after the ideal one goes off, etc. Later, the ideal and realistic
models will be completely out of phase, and even later, they will re-
turn to being in phase, the realistic pump having lost a whole cycle
relative to the ideal pump.

A solution to both of these difficulties can be found in retrench-
ment. In (27) we present the retrenchment data for a simple re-
trenchment from PumpOn; to PumpOng, and also a similar one
from PumpOff; to PumpOffz, in an ad hoc ASM-like notation.'

retrenchment PumpOn = retrenchment PumpOff = 27
retrieves retrieves

| WaterLevl; — WaterLevlg | | WaterLevl; — WaterLevlg |

< 2Dev < 2Dev

within WaterLevl; = Low
and WaterLevig =
Low — Dev
output true
concedes false

within WaterLevl; = High
and WaterLevig =
High + Dev
output true
concedes false

In (27) we see that the retrieve relation expresses a relatively ‘hon-
est’ relationship between ideal and realistic water level values, on
the satisfaction of which, we expect that something sensible might
be said about the two pairs of operations (or indeed regarding other
aspects of the Mine Pump problem). The within relations strengthen
the retrieve relation (in an operation-specific way) to the precise
form appropriate for the comparison of the two pairs of operations.

Retrenchments work on a per-operation (pair) basis, and the POs
(3) and (4) do not insist on re-establishing in the after-state the same
conditions that held in the before-state. This immediately avoids
the problem of the failure of refinement and of extended simula-
tion noted above. The notion that replaces (extended) simulation in
the retrenchment context is punctured simulation (see [11, 18]). In
a punctured simulation, the normal simulation criteria that ensure
that the two parties in the simulation stay in step, can break down
periodically due to the weaker constraints demanded of them. As a
result, whereas the comparison between operations during conven-
tional refinement implicitly assumes that we compare occurrences
of them that are suitably ‘in synch’, the comparison between opera-
tions during retrenchment is unable to carry any such connotations
without additional assumptions. Thus (27) allows a comparison of
how the ideal and realistic operations work, without any presump-

1 . . .
Obvious extensions of the notation can cater for cases where the opera-
tions in question have different names, etc.

tion of synchronisation.

Of course, the reason why the ideal and realistic systems both
give a credible account of the operation of the pump, despite the
breakdown of conventional simulation criteria, is that higher level
invariants are at play. For instance either system satisfies the goal
Maintain[WaterLevelNeverTooHighUnlessException], that we
can formalise as:

P = WaterLevl < High + Dev (28)

where P excludes all the circumstances in which the water level
could indeed get too high, such as those that follow from para-
graphs (II) and (III) of the Mine Pump (and furthermore taking into
account equipment failure modes etc.).

Both the ideal and realistic models refine (28) even though one is
not a refinement of the other. That is not to say that either the ideal
or realistic model should be discarded in favour of the other —
as already observed in the Introduction, both can make a valuable
contribution to requirements development. However, we can take
advantage of retrenchment to tie them together formally.

The retrenchment treatment worked principally via the details of
the operationalisations of the goals in question. This is in slight
contrast with [1, 2] which promote working with the TL formula-
tion of goals over working with the details of the operationalisa-
tions. Normally this is perfectly justifiable. However our present
business is with deidealisation, which (in essence) deals with the
breakdown of invariants. In a discrete time framework such as the
KAOS one, if an invariant is true at one time, but is not true at
some later time, it can only be because there was some specific
moment at which the invariant failed, i.e. some event caused the
breakdown of the invariant. In such situations, it is the present au-
thor’s contention that a precise understanding of the event causing
the invariant breakdown is just as important as the bigger picture
obtained via the TL formulation.

6.2 Accuracy of Timing

The bottom left goal in Fig. 3, MaintainfPumpSwitchOnWhen
HighWaterDetected], can be formalised in an ideal way as:

HighWater = ‘on’ = Switch = ‘on’ (29)

In (29), HighWater is the pump controller high water signal and
Switch is the pump on/off signal.

Of course the reaction of the pump switch to the controller is not
instantaneous, so a deidealised version of the goal might read:*

B pumppelay HighWater = ‘on’ = Switch = ‘on’ 30)

As in the previous case, we have a failure of refinement, since,
whenever the high water signal is on for less than PumpDelay secs.,
the realistic switch is not required to be on, whereas the ideal switch
is required to be on.

To capture the dissonance between the ideal and realistic sys-
tems, we consider the operationalisations. It is clear from (29) and
(30) that there is no difference at all between the corresponding op-
erations in the two models (since the delay will be due the finite
rate of working of the apparatus), so we bundle their descriptions
as follows:

SwitchOny g = (€29)]
if Switch;;g = off and HighWater;/r = on
then Switchy /g := on

’In [1], the formalisation corresponding to (30) has an additional @ in the
temporal quantifier, to cater for the fact that before- and after- states differ
by one tick. We will ignore this here, though it is obviously easy to take it
into account.

The interest in this deidealisation lies in how to describe the dis-
crepancies in behaviour despite the identity of the operations — for
this we allow the needed retrenchment to become coarse-grained.

In the conventional retrenchment of (1), (3), (4), the variables
that are allowed to appear in the retrenchment data are spelled out
explicitly — they are the variables that the operations explicitly
touch. In coarse-grained retrenchment [16], we relax this and al-
low arbitrary TL formulae to appear in the retrenchment data. With
such a proviso, we can draw up a retrenchment for this deidealisa-
tion as follows:

retrenchment SwitchOn = (32)
retrieves HighWater; = HighWaterg and Switch; = Switchg
within nowr > now; and nowg < now; + PumpDelay

and W, 0, HighWatergr = on
output true
concedes false

As well as things that we have seen already, the retrenchment in
(32) features the now; and nowy time variables, to permit the cap-
turing of information about the instants of time that the operations
took place at (i.e. the before-ticks). For the purposes of illustration,
we also allowed the retrenchment to encompass situations in which
the realistic switch could react early if the command to switch the
pump on arrived before the full PumpDelay period has elapsed,
this being achieved via the pair of inequalities relating the now;
and nowr, time variables.

The coarse-grained retrenchment approach not only allows more
general statements to be made about corresponding pairs of single
operations, as in (32), but also permits saying things about longer
sequences of operations. To cater for possible interleavings of op-
erations of interest with other independent activities taking place in
the system as a whole, the approach in [16] captures the operation
sequences using flow event structures [19].> These conveniently al-
low the description of a variety of incompatible outcomes resulting
from the same starting conditions — as can easily result when one
is contemplating non-trivial changes to system behaviour.

With this in mind, suppose we complemented our SwitchOn; /g
operations with corresponding SwitchOff;/r operations, and con-
sidered an entire cycle consisiting of: switching the pump on, run-
ning the pump for a while (until a low water indication became
true), and switching the pump off — and we called this sequence
of events SwitchOnOffCycle;/r. Then we could express the fact
that the ideal and realistic cycles will take the same amount of
time (since in the current deidealisation we are only looking at de-
lays in pump switching on and off, and are insensitive to the ac-
curacy issues of Section 6.1) using the following retrenchment of
SwitchOnOffCycle:

retrenchment SwitchOnOffCycle = (33)
retrieves HighWater; = HighWaterg and Switch; = Switchg
within inig > ini; and inig < ini; + PumpDelay

and W, ., HighWaterg = on
output fing < fin; + PumpDelay
concedes false

In (33) ini; g are the start ideal/realistic times of the entire cycle
and fin; /g are the corresponding end times, and we assume that the
delays for transmitting the commands to switch on and off are the
same. Note that in (33) we are able to capture a global property of
the entire on/off cycle in the output relation (the one that strength-
ens the retrieve relation in the after-state). In this example the re-
alistic system does not deviate dramatically from the ideal one, so
the concedes capability was not needed.

*More global aspects of behaviour can also be addressed using fluent tem-
poral logic, eg. [20].

6.3 Goal Conflict

We now return to Fig. 3 and take note of some of the provi-
sions of paragraph (II) of the Mine Pump. The remark about the
critical methane level indicates that there is a conflict between the
goal Maintain[PumpOnWhenHighWater] and one that could be
expressed as Maintain[PumpOffWhenCriticalMethane] [1]. The
conflict bites when the boundary condition:

WaterLevl > High A MethanelLevl > CriticalMethane (34)

becomes true. A little further investigation shows that it is not the
emptying of the water by the pumping mechanism that gives rise
to the hazard in the presence of critical methane, but the sparks
potentially originating in its electric motor.* Accordingly, at the
operational level, the conflict is between turning the pump switch
on when the high water signal becomes true, and keeping it off
because the methane level is critical. This impels us to revisit the
SwitchOn operation considered before. Here is the new realistic
operation:

SwitchOng = 35)
if Switchg = off and HighWaterg = on
then if HighMethaner = off

then Switchg := on else MethaneAlarm

In (35) we have an ‘else MethaneAlarm’ option (not detailed fur-
ther), since the controller will certainly not ignore the fact that the
methane level has got high.

The discrepancy between the ideal and realistic SwitchOn is now
greater than before, and the retrenchment relating them now has
two options. Firstly, we can focus it on the parts of the behaviours
that are common, by suitably restricting the within relation. This
works technically, but has the demerit of excluding significant parts
of the behaviours of the two systems from scrutiny by the retrench-
ment. Secondly, and better, we can include all the possible be-
haviours in the retrenchment relationship, and use the concession
(which we can make mutually exclusive to the output relation to
prevent confusion between safe and unsafe modes of operation) to
highlight the contradictory parts in the two systems’ behaviours.

retrenchment SwitchOn = 36)
retrieves HighWater; = HighWaterg and Switch;y = Switchg
within nowg > now; and nowgr < now; + PumpDelay

and W, 0w, HighWaterr = on
output HighMethaner = off
concedes HighMethaneg = on and MethaneAlarm

Note that we created (36) by adaptating (32) to take account of
the the additional circumstances. However, (36) could also have
been obtained by creating an independent retrenchment to deal with
methane alone, and then composing it with the earlier one using
conjunctive fusion composition [12].

7. PROPAGATING MODIFIED GOALS,
AND THE TOWER PATTERN

In [1], the examples of deidealisation that we remodelled as re-
trenchments above, occur in the midst of the Mine Pump goal elab-
oration. As it then says in [1]: “Once the goal is weakened, the
transformation of the of the goal definition is propagated up and
down along the goal refinement and operationalisation links.” Since,
regarding (just) the goal variables, all the goal refinements in [1]
amount to inclusions of parent goal variable sets into offspring goal
variable sets, this propagation is relatively straightforward.

4Hypothetically, one might operate the pump safely even while the methane
was critical, if the electric motor was on the surface and the pump was
operated using a suitable arrangement of drive belts and wheels.

ImproveFidelity
[PumpSensitivity]

. ~

a® o,
ImproveFidelit ResolveConflict
[SwitchTiming [WaterLevel/CriticalMethane]

L1 : P

------------l------------->|

Figure 4: Goal morphisms describing goal deidealisations via
retrenchments.

Viewed through retrenchment glasses, these propagations are in-
stances of the Tower Pattern, Fig. 1, specifically of the pattern’s
Lifting Theorem and Postjoin Theorem. The former starts with the
‘L’ shape made by systems A, C and D, and completes the square
by constructing B together with its relationships to A and D, and
is useful for propagating changed goals upwards, towards ancestor
goals. The latter starts with the ‘" shape made by systems A, B and
C, and completes the square by constructing D together with its re-
lationships to C and B, and is useful for propagating changed goals
downwards, towards descendant goals or their operationalisations.
The advantage of viewing the process as an instance of the Tower
Pattern is that the latter can deal with correspondences between
levels of abstraction mediated by relationships between variables
that are more complicated than mere inclusions, giving the whole
modelling process more options.

Thus suppose that at a high level of abstraction the most suitable
variables are u; . ..u,. It may be that as goals are refined (not to
mention retrenched), a more suitable family of variables to express
the descendant goals is v1 . . . vy,. In a standard KAOS development,
V1 ...V, would have to be a superset of u; ...u, since standard
KAOS goal refinement (as described in the literature) does not cater
for non-trivial ‘data’ refinement during goal refinement. However,
the use of the full capabilities of the Tower Pattern not only per-
mits the use of data refinement during goal refinement (something
that would admittedly not be hard to achieve provided one stuck to
pure refinement and eschewed deidealisation in any form), but also
allows the integration of this with the proper formal treatment of
deidealisations via retrenchment.

8. GOAL/REQUIREMENTS/SYSTEM
EVOLUTION — GOAL MORPHISMS

The KAOS methodology highlights the benefits of analysing the
requirements of a system-to-be, by first identifying and decompos-
ing the goals that the system should satisfy, a perspective that is
frequently stressed in the generally excellent [2]. This amounts to
focusing on the WHY before getting down to the WHAT and HOW.

Above, we showed in a few small examples how retrenchment
could help explain (via its POs) the WHY of a goal deidealisation.
But the mathematical basis of what we did is insensitive to the rela-
tively small scale of the changes required in those small examples.
The techniques used could address much bigger scale change-of-
goals issues. In other words, one could reasonably extend the re-
trenchment perspective to the activity of system requirements evo-
lution in the large too.

Interestingly, in [2], a work in which the reader is left in no doubt
at all that the informal discussion has solid rigorous underpinnings
(despite the fact that formality is downplayed somewhat until the

final chapters), the chapter on requirements evolution is the one
that betrays the least connection with rigorous methods (a property
it shares with all other writings on requirements evolution that the
present author is acquainted with). The focus in the relevant chap-
ter of [2] is on: evolution types and causes, traceability and depen-
dency, and change management. What is missing (in the present
author’s opinion) is the WHY of the evolution, in other words the
goal of the change of goal(s) — or to give it a more telling name,
the goal of the goal morphism. A goal morphism would be the
concept that drives the change from one set of goals to another,
i.e. that changes the before-goals into the after-goals. Our thesis in
this paper is that retrenchment can help address this issue.

In Fig. 4 we show what such an approach might contribute. The
top left empty box is the original, ideal MaintainfPumpOnWhen
HighWater] goal. A fat arrow, representing the retrenchment that
implements its deidealisation, and labelled by the ImproveFidelity
[PumpSensitivity] goal morphism, connects it to its more realis-
tic counterpart, underneath which, the rest of the goal refinement
shown in Fig. 3 has been reproduced using empty boxes, on the
assumption that the ImproveFidelity[PumpSensitivity] deideali-
sation has been appropriately propagated to the refinement using
the Tower Pattern Postjoin construction.

The bottom left empty box is the original bottom left goal of
Fig. 3, the Maintain[PumpSwitchOnWhenHighWaterDetected]
goal, deidealised as just described, but before the deidealisations of
Sections 6.2 and 6.3 have been applied. The dashed fat arrows, la-
belled by the goal morphisms ImproveFidelity[SwitchTiming] and
ResolveConflictfWaterLevel/CriticalMethane], represent the in-
dividual component retrenchments discussed briefly in Section 6.3.
The fact that they can be combined by conjunctive fusion compo-
sition corresponds to the higher goal morphism ModifyGoals]...],
and the long solid fat arrow represents the composed retrenchment,
which deidealises the Maintain[PumpSwitchOnWhenHighWater
Detected] goal to its realistic counterpart discussed in greater de-
tail in Section 6.3.

With the approach just outlined, the goal elaboration process can
take on something of a ‘staircase’ appearance, with genuine refine-
ment steps going in a downward direction, and deidealisation and
similar steps going horizontally. The tower constructions can be
used to propagate the effects of decisions internal to the goal elab-
oration strategy up and down the abstraction hierarchy, ensuring
consistency of all parts of the process.

9. CONCLUSIONS

In the preceding sections, we briefly overviewed key aspects of
the KAOS requirements engineering methodology, and the ASM
model based refinement formalism (the latter chosen mainly for
the convenient fit of its firing policy to the KAOS one). We saw
that KAOS operationalisations can readily map to ASM rules, and
we brought in the ASM formulation of retrenchment to enable the
phenomena inherent in goal deidealisation and conflict to be more
precisely reasoned about, principally at the operationalisation level.
This more precise reasoning can be viewed as an extension of the
KAOS methodology via the concept of goal morphism, which re-
trenchment can be seen as giving a precise semantics to. The em-
phasis on operationalisations in connection with such phenomena
(compared with the emphasis on the temporal formulation during
refinement) was argued to be appropriate given that the breakdown
of invariants will always be rooted in the properties of some specific
events in a discrete time framework.

In this paper, we illustrated the the approach in the small, using
a few examples of goal deidealisation taken from [1] for the Mine
Pump case study. We saw that this generates a staircase shaped

development route, which the Tower Pattern can fill out to propa-
gate the effects of retrenchment-described deidealisations to higher
and lower levels of abstraction. What we additionally claim in this
paper, is that the approach extends to encompass the description
of much more large scale system and requirements changes —i.e.
system, or requirements evolution— since the mathematics utilised
is insensitive to such size issues.

10. REFERENCES

[1] Letier, E.: Reasoning about Agents in Goal-Oriented
Requirements Engineering. PhD thesis, Dépt. Ingénierie
Informatique, Université Catholique de Louvain (2001)

[2] van Lamsweerde, A.: Requirements Engineering: From
System Goals to UML Models to Software Specifications.
Wiley (2009)

[3] Banach, R., Jeske, C.: Retrenchment and Refinement
Interworking: the Tower Theorems. Submitted.

[4] Jeske, C.: Algebraic Integration of Retrenchment and
Refinement. PhD thesis, University of Manchester (2005)

[5] Banach, R., Poppleton, M., Jeske, C., Stepney, S.:
Retrenching the Purse: Finite Sequence Numbers, and the
Tower Pattern. In: Proc. FM-06, LNCS. Volume 3582.
(2005) 382-398

[6] Borger, E., Stirk, R.: Abstract State Machines. A Method for
High Level System Design and Analysis. Springer (2003)

[7] Borger, E.: The ASM Refinement Method. FAC 15 (1-2)
(2003) 237-257

[8] The Karlsruhe Interactive Verifier. http://www.informatik.
uni-augsburg.de/lehrstuehle/swt/se/kiv/.

[9] Schellhorn, G.: Verification of ASM Refinements Using
Generalized Forward Simulation. J.UCS 7(11) (2001)
952-979

[10] Schellhorn, G.: ASM Refinement and Generalizations of
Forward Simulation in Data Refinement: A Comparison.
Theor. Comp. Sci. 336 (2005) 403-435

[11] Banach, R., Poppleton, M., Jeske, C., Stepney, S.:
Engineering and Theoretical Underpinnings of
Retrenchment. Sci. Comp. Prog. 67 (2007) 301-329

[12] Banach, R., Jeske, C., Poppleton, M.: Composition
Mechanisms for Retrenchment. J. Log. Alg. Prog. 75 (2008)
209-229

[13] Retrenchment Homepage.
http://www.cs.man.ac.uk/retrenchment.

[14] Banach, R.: Model Based Refinement and the Design of
Retrenchments. Submitted.

[15] Koymans, R.: Specifying Message Passing and Time-Critical
Systems with Temporal Logic. LNCS. Volume 651, Springer
(1992)

[16] Banach, R.: Coarse Grained Retrenchment and the Mondex
Denial of Service Attacks. In: Proc. IEEE TASE-09. (2009)
103-110

[17] Joseph, M.: Real-Time Systems: Specification, Verification
and Analysis. Prentice-Hall Int. (1996)

[18] Banach, R., Poppleton, M.: Retrenchment and Punctured
Simulation. In: Proc. IFM-99, Springer (1999) 457-476

[19] Boudol, G.: Flow Event Structures and Flow Nets. In:
Semantics and Systems of Concurrent Processes, Proc.
LITP-90, Springer LNCS 469 (1990) 62-95

[20] Letier, E., Kramer, J., Magee, J., Uchitel, S.: Fluent
Temporal Logic for Discrete-Time Event-Based Models. In:
Proc. ESEC/FSE-05. (2005)

