
Under consideration for publication in Formal Aspects of Computing

The Mechanical Generation of Fault Trees
for Reactive Systems via Retrenchment I:
Combinational Circuits 1

Richard Banach1 and Marco Bozzano2
1School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
banach@cs.man.ac.uk,
2FBK-IRST, Via Sommarive 18,
Povo, 38123 Trento, Italy
bozzano@fbk.eu

Abstract. The manual construction of fault trees for complex systems is an error-prone and time-consuming activity,
encouraging automated techniques. In this paper we show howthe retrenchment approach to formal system model
evolution can be developed into a versatile structured approach for the mechanical construction of fault trees. The
system structure and the structure of retrenchment concessions interact to generate fault trees with appropriately deep
nesting. We show how this approach can be extended to deal with minimisation, thereby diminishing thepost hoc
subsumption workload and potentially rendering some infeasible cases feasible.

Keywords: Fault Tree Analysis, Fault Injection, Retrenchment, Mechanical Fault Tree Synthesis, Combinational
Circuits

1. Introduction

Safety analysis of complex systems traditionally involvesa set of activities which help engineers understand the system
behaviour in degraded conditions, that is, when some parts of the system are not working properly. In aeronautics, for
instance, safety requirements stating the (degraded) conditions under which systems must remain operational are
defined along with the other system requirements. Safety analysis aims to identify all possible hazards of the system,
in order to ensure that the system meets the safety requirements demanded. Safety analysis is particularly critical in
the case of reactive systems, that is systems with infinite time behaviour, because hazards can be the result of complex
interactions involving the dynamics of the system [Siu94].

Correspondence and offprint requests to: Richard Banach, School of Computer Science, University ofManchester, Oxford Road, Manchester, M13
9PL, U.K. email:banach@cs.man.ac.uk
1 Work partly supported by the E.U. projects ISAAC, contract no. AST3-CT-2003-501848, and MISSA, contract no. ACP7-GA-2008-212088.

2 Banach and Bozzano

One popular safety analysis method is Fault Tree Analysis (FTA) [VGRH81,VSD+02]. It is a deductive analysis,
which, given the specification of an undesired state (e.g. a failure state), usually referred to astop level event(TLE),
systematically builds all possible chains of one of more basic faults that contribute to the occurrence of the event. Fault
trees provide a convenient symbolic representation of the combination of events causing the TLE, and they are usually
represented as a parallel or sequential combination of logical gates. The problem of fault tree generation for reactive
systems is substantially harder than in the traditional combinational case, due to the presence of dynamics, which can
influence the presence of failures.

The manual construction of fault trees relies on the abilityof the safety engineer to understand and to foresee
the system behaviour. As a consequence, it is a time-consuming and error-prone activity; moreover, managing the
generated fault trees is challenging in case of large complex systems. Therefore, in recent years there has been a
growing interest in model-based techniques and tools to automate the production of fault trees [BV+03b,B+06], such
as the FSAP safety analysis platform [BV07,FSA].

The starting point for this paper is our previous work relating retrenchment [Ret, BPJS07, BJP08] and formal
system model evolution [BC04]. In [BC04] we showed how retrenchment, as opposed to conventional refinement, can
provide a formal account of the so-called fault injection process [BV07], that takes the abstract system model (that
is the model of the system in nominal conditions), to the concrete system model (that is the model enriched with a
description of the envisaged faults the system is designed to be robust against).

In this and a companion paper, which we refer to below as PaperII [BB10], we show how retrenchment can be
developed into a versatile structured approach for the mechanical construction of fault trees for reactive systems.2

Building on the ideas sketched in [BC04], where we exemplified the generation of a fault tree on a two-bit adder
example, in this paper we show how the simulation relation ofretrenchment can be used to systematically derive fault
trees built upon the system structure. This is achieved by exploiting the structure of retrenchment concessions, using
suitable notions of composition to gather the degraded cases into the concession of a composed retrenchment.

In the present paper we develop these techniques for the simpler case of combinational circuits, extending to timed
acyclic circuits, and timed circuits with feedback in PaperII. This paves the way for the automated safety analysis
of reactive systems. The techniques we propose usefully complement more traditional safety assessment techniques,
in particular those based on fault tree analysis. Our techniques rely on a formal model of the design and of faulty
behavior, whereas traditional techniques rely on human expertise and knowledge of the system at hand. Hence, a
manual review of the automatically generated fault trees may help the design and safety engineers identify errors (or
limitations) in design and fault models, or in manually produced results, and possibly suggest either changes in the
model themselves, or system redesign recommendations.

The techniques we present in this paper and in PaperII improve over the ones discussed in [BV07], in that they
allow the mechanical generation of fault trees built upon the system structure, which are more informative than the flat
(two-level) fault trees of [BV07], thus facilitating manual review by safety analysts. Furthermore, we exemplify how
these techniques can be adapted to generating the minimal cut sets of a fault tree. We show that, by processing the
generated subtrees on the fly, it is possible to perform some minimisations locally, thereby diminishing thepost hoc,
brute-force subsumption workload of traditional minimisation algorithms.

The rest of the paper is structured as follows. In Section 2 weset up our basic concepts for systems and their
compositions, and present retrenchment and relevant notions of composition for retrenchments. In Section 3 we give
an overview of fault tree analysis and discuss the role of fault trees in the traditional safety and reliability engineering
process. In Section 4 we present our retrenchment directed approach to the generation of structured fault trees on a
running example. The technique is based on resolution, and the resolution trees generated by the underlying algorithm
can then be post-processed into fault trees having a standard format. Section 5 formalises the approach, showing,
crucially, that the generation of resolution trees is soundand complete. The trees thus generated can be used for various
purposes, and we cover their post-processing into fault tree form. In Section 6 we show how the structured analysis
can be modified to reduce the work of finding the minimal cut sets of some fault condition. Section 7 formalises these
insights, making them rigorous in the context of Section 5. This completes our retrenchment based treatment of fault
tree generation for combinational circuits. Section 8 discusses related work, and Section 9 concludes, looking forward
to PaperII.

Notation: In the rest of the paper we use relational techniques. Invariably, we refer to a relation by talking about
the predicate which defines it.

2 Our techniques generate so-calledresolution trees, which can be mechanically transformed into traditional fault trees, whenever needed.

Fault Trees for Reactive Systems I 3

2. Systems, Retrenchments and Compositions

In this paper we approach the mechanisable construction of fault trees for system models via the technique of fault
injection. Fault injection changes the fault-free system model into the faulty system model, by making alterations
to the definition of its behaviour that usually make the two system models incompatible with each other. Relating
two incompatible models of this kind is not trivial theoretically: most theoretical approaches are concerned with
progressing a system abstraction towards code, namely withrefinement. Fault injection is therefore best viewed as
a special kind ofsystem evolution. For this we need a formal approach to system evolution, namely retrenchment
[Ret,BPJS07,BP98,BP03,BJP08] — it proves flexible enough to capture the kind of system changes we have in mind.
This section is concerned with developing the technical tools we need.

We focus on synchronous hardware systems, and we describe our models using collections of input/output trans-
formers, one transformer per component or collection of components, depending on the granularity of the description.
An I/O transformer is a relation from the system’s inputs to the system’s outputs. For the combinational circuits of this
paper, the I/O transformers act instantaneously.

2.1. Circuits and their Compositions

Combinational digital hardware circuits typically have some input signals and some output signals. Henceforth we
will assume that all circuits areacyclic, and alsotime invariant i.e. that observed behaviour does not depend on time.
We will also assume that circuits aretotal as relations from inputs to outputs, i.e. in I/O terminology, they will be
input ready. This will be useful later, and is inevitably the case in practice. For convenience, we also record here that
all data types we use arefinite, as one would expect in a digital hardware context.

Let AcyOp(short forAcyclicOperation) be such a circuit, and suppose thatAcyOphas three inputsi0, i1, i2, and
three outputso0,o1,o2. Then we can represent the behaviour ofAcyOpvia the relationAcyOp(〈i0, i1, i2〉,〈o0,o1,o2〉)
where we have grouped the inputs and outputs using angle brackets. We next consider composition mechanisms for
such relations.

2.1.1. Parallel Composition:

If AcyOp1 andAcyOp2 are two I/O transformers, with the same signatures asAcyOpfor convenience, but with addi-
tional subscripts 1 and 2 respectively, then their parallelcomposition is given by:

AcyOp1|2(〈i10, i11, i12, i20, i21, i22〉,〈o10,o11,o12,o20,o21,o22〉) ≡

AcyOp1(〈i10, i11, i12〉,〈o10,o11,o12〉) ∧ AcyOp2(〈i20, i21, i22〉,〈o20,o21,o22〉) (1)

2.1.2. Skew-Sequential Composition:

Suppose thatAcyOp1 andAcyOp2 have the signatures and dependency structure ofAcyOp, and suppose we want to
compose them sequentially by identifying signals ofAcyOp1 andAcyOp2 as follows:

o10 = i21 o11 = i22 (2)

We note that to avoid ambiguity, we need to specify which signals are to be identified. The general case, in which
it is not necessary thatall the output signals ofAcyOp1 are connected toall the input signals ofAcyOp2, explains
why it is called theskew-sequential composition. Let us write the signal identifications in (2) asδ. This will give
usAcyOp1;δ2. We suppress the ‘δ’ subscript when the connecting signals can be understood from the context. In our
example,o12 becomes an output signal of the composed circuit. Note that if there areno identified signals, skew-
sequential composition reduces to parallel composition.

The composed I/O relationAcyOp1;δ2 can be calculated by composing the I/O relationsAcyOp1 andAcyOp2, along
the connecting signals. Fig. 1 gives an idea of what this produces. We thus obtain the following:

AcyOp1;δ2(〈i10, i11, i12, i20〉,〈o12,o20,o21,o22〉) ≡

(∃x,y • AcyOp1(〈i10, i11, i12〉,〈x,y,o12〉) ∧ AcyOp2(〈i20,x,y〉,〈o20,o21,o22〉) (3)

4 Banach and Bozzano

AcyOp1

o21

o22

o20

i11

i12

i10

AcyOp2

i20

o12

Fig. 1.The skew-sequential composition of circuitsAcyOp1 andAcyOp2.

2.2. Dataflow Retrenchment

We now turn to retrenchment. Retrenchment was designed for evolution steps between system models described via
general state transition systems. As such, it deals with transitions that feature not only the consumption of an input
i and the generation of an outputo, but also a change of the internal state of the system. This full generality will be
needed in PaperII, which deals with stateful systems, but here, to deal with purely combinational digital circuits, we
can restrict to a simpler state-free formulation: dataflow retrenchment. In particular, no separate initialisation criteria
are needed, as they would be if there were initial states to worry about.

Retrenchment relates two system models, an abstract oneAbs, and a concrete oneConc, say. We will assume
that the transitions ofAbs collect intooperations, e.g.OpA(i,o), which are relations (I/O transformers) of the kind
discussed above. ForConc, the corresponding operation will beOpC(j,p), so thatj represents its input(s), andp its
output(s).

In this simple dataflow formulation, a retrenchment fromAbs to Conc consists of two things. Firstly, for every
corresponding pair of operations,OpA(i,o) andOpC(j,p), there are three relations, thewithin relationWOp(i, j), the
outputrelationOOp(o,p, i, j), and theconcedesrelationCOp(o,p, i, j) — collectively these are called the retrenchment
data. Secondly (and on a per-operation basis), the operations and retrenchment data must satisfy the correctness proof
obligation (PO):

WOp(i, j) ∧ OpC(j,p) ⇒ (∃o • OpA(i,o) ∧ (OOp(o,p, i, j) ∨ COp(o,p, i, j))) (4)

This says that provided the within relation is true for a pairof abstract and concrete inputsi, j, whenever there is a
transition of the concrete operation (fromj), then there is a transition of the corresponding abstract operation (from
i), such that the resulting abstract and concrete outputso,p eitherestablish the output relationOOp(o,p, i, j), or they
establish the concedes relationCOp(o,p, i, j). Each choice of different retrenchment data forAbs andConc yields a
different retrenchment, and makes a different statement about the relationship between them.

The absence of state from the simple dataflow formulation of retrenchment just given, brings it much closer to
conventional notions of refinement for pure I/O systems thanwould be the case if state were present — the great
deviation from this being, of course, the presence of the concessionCOp in the conclusion of the PO.

Thus, the within relation (for a given operation) acts just like an input transformer, though being ana priori
unrestricted relation (to aid modelling in situations where the relationship between abstract and concrete systems is
not as close as one would mathematically like), it is not subject to the totality or surjectivity restrictions that one often
finds in refinement formulations. We can view the within relation as restricting the scope of the statement about the
relationship betweenAbs andConc that one wishes to make (due, perhaps, to the intrinsic incompatibility between
them in certain areas), allowing us to make more incisive statements about those parts of the two systems thataremore
compatible. Note that due to the ‘don’t care’ interpretation of the implication connective ‘⇒’ when the hypotheses of
the PO (4) are not all true, it is vital that the retrenchment user assures himself that the within relation employed in
any given situation covers a wide enough range of circumstances — i.e.everythingthat one might wish to be covered
by the retrenchment analysis, taking all other considerations into account.3

In the dataflow retrenchment formulation, the other two relations (for a given operation), give the capability of
partitioning the behaviour of the related abstract and concrete pair of operations into two parts. Aside from their
names,OOp andCOp, there is nothing to distinguish them, since they both feature the same set of variables. However,

3 To give a small informal example of the flexibility of the within and concedes relations, consider an arithmetic operation on bounded fixpoint
values that generates some exceptional situation if the result overflows. In the general case, the within relation wouldbe relatively weak, permitting
inputs that caused the exception, and needing a nontrivial concedes relation to handle the exceptional circumstances.On the other hand,if the
context offered a guarantee that exceptional circumstances would not arise, the within relation could be strengthened to restrict consideration to
those inputs that were possible, and the concedes relation could be trivialised, since the context guarantee ensured that it was not needed.

Fault Trees for Reactive Systems I 5

if state were present (as it will be in PaperII), thenOOp would be coupled to a further relation which is absent from
the dataflow formulation, the retrieve relation, which relates abstract and concrete states, andOOp would thereby be
much more strongly associated with ‘good’ behaviour, allowing COp to cover ‘bad’ behaviour. Accordingly, we will
later useOOp to describe nominal behaviour, and will useCOp to cover faulty behaviour.

For the work of the rest of the paper it is not the PO itself thatwill be used, but the associated simulation relation,
the statement that all the conjuncts of both the antecedent and consequent of the PO are true:

Σ1 ≡ WOp(i, j) ∧ OpA(i,o) ∧ OpC(j,p) ∧ (OOp(o,p, i, j) ∨ COp(o,p, i, j)) (5)

2.3. Compositions of Retrenchments

Now we extend our results on parallel and skew-sequential compositions of I/O relations for circuits, to parallel and
skew-sequential compositions of retrenchment data concerning abstract and concrete versions of them.

To minimise the proliferation of cumbersome formulae, we reuse notations established earlier, and so both com-
positions will be based on our running exampleAcyOp. To construct compositions of retrenchments, we need four ver-
sions ofAcyOp, namely:AcyOp1,A,AcyOp2,A,AcyOp1,C,AcyOp2,C. Of these, theA-subscripted abstract onesAcyOp1,A,

AcyOp2,A, have the variables that appear in (1) forAcyOp1 andAcyOp2 respectively; and theC-subscripted concrete
onesAcyOp1,C,AcyOp2,C, have similar variables, but with all occurrences of input variablesi replaced byj, and all
occurrences of output variableso replaced byp.

We also need retrenchment data. Thus the retrenchment fromAcyOp1,A to AcyOp1,C will have data:WAcyOp,1,

OAcyOp,1, CAcyOp,1, and the retrenchment fromAcyOp2,A to AcyOp2,C will have data:WAcyOp,2,OAcyOp,2,CAcyOp,2.
Both parallel and skew-sequential composition of retrenchments can easily be shown to be sound, in the sense

that if the retrenchment data and operations of each component satisfy the correctness PO individually, then the com-
bined operations satisfy the correctness PO using the combined retrenchment data. We do not cover these soundness
arguments here, see [BJP08]. The soundness arguments extend readily to the simulation relations: if the simulation
relations for the components are valid, then the simulationrelations for the combinations are valid too.

2.3.1. Parallel Composition:

Given the notations just described, the construction of theparallel composition of two retrenchments, fromAbs1 to
Conc1, andAbs2 to Conc2 is straightforward. We use| and∨ for the parallel composition and union of independent
relations (which correspond to∧ and∨ for the predicates which denote those relations). The parallel composition of
the operations is as in (1):

AcyOp1|2,A ≡ AcyOp1,A |AcyOp2,A (6)

AcyOp1|2,C ≡ AcyOp1,C |AcyOp2,C (7)

In this,AcyOp1|2,A is just like (1), except that the identifiersAcyOp1|2,A,AcyOp1,A,AcyOp2,A in (6) and (7) contain an
extra ‘A’ subscript. The story forAcyOp1|2,C is similar except that the extra subscript is ‘C’, and all i ando variables
becomej andp variables respectively.

With the operations defined, the retrenchment data for the parallel composition are given in terms of the component
retrenchment data as follows:

WAcyOp,1|2 ≡ WAcyOp,1 |WAcyOp,2 (8)

OAcyOp,1|2 ≡ OAcyOp,1 |OAcyOp,2 (9)

CAcyOp,1|2 ≡ OAcyOp,1 |CAcyOp,2 ∨ CAcyOp,1 |OAcyOp,2 ∨ CAcyOp,1 |CAcyOp,2 (10)

What these formulae say is actually rather simple. The combined within relation is just the combination of the two
withins, each acting on its own variables. The combined output relation is similar. The combined concedes relation
expresses a disjunction of three possibilities: either thefirst system is well behaved and establishes the output relation
while the second fails and establishes the concession, orvice versa, or both fail and establish their concessions.

2.3.2. Skew-Sequential Composition:

Skew-sequential composition is built on similar lines. We reuse the notation established above, and sequentially com-
pose both abstract and concrete circuits by identifying output signals ofAcyOp1,A andAcyOp1,C with input signals of

6 Banach and Bozzano

AcyOp2,A andAcyOp2,C respectively via an extension of equations (2):

o10 = i21 o11 = i22

p10 = j21 p11 = j22 (11)

Let us write these signal identifications asδ, and the sequential composition of relations based on theseidentifications
aso

9δ. The skew-sequentially composed I/O relations that arise are simple syntactic modifications of (3). Thus, on the
abstract side, we have (3) precisely, except that the various relation names have an additionalA subscript. On the
concrete side, the subscript isC, but also, the various input variables are all calledj instead ofi (although they carry
the same subscripts as in (3)), and the output variables are calledp instead ofo (again carrying the same subscripts).

The most complicated piece of the composed retrenchment data for a skew-sequential composition is the within
relation. We give the derivation next, together with a discussion of a number of assumptions made on the way, but it
will turn out below that we need only a trivial case of it for our application, namely the relation given bytrue. Readers
can skip over the derivation to (16) if they wish.

To make the skew-sequential composition of dataflow retrenchments for our circuits go smoothly, we henceforth
assume that the within relations for a circuit decompose into a conjunction of individual signal-pair subrelations thus:

WAcyOp,1(〈i10, i11, i12〉,〈j10, j11, j12〉) ≡ WAcyOp.0,1(i10, j10) ∧ WAcyOp.1,1(i11, j11) ∧ WAcyOp.2,1(i12, j12) (12)

WAcyOp,2(〈i20, i21, i22〉,〈j20, j21, j22〉) ≡ WAcyOp.0,2(i20, j20) ∧ WAcyOp.1,2(i21, j21) ∧ WAcyOp.2,2(i22, j22) (13)

The representation in (12) and (13) embodies quite a strong assumption on the way that signals behave. What justi-
fication is there for making it? We argue, for a contradiction, that if the signals in the systems that we represent via
our models donot behave in a way that allows us to decouple their behaviour in the way suggested by (12) and (13),
then they are not behaving as ‘pure wires’, which simply transmit what they receive to their output. On the contrary,
they must be viewed as complex devices in their own right, to be modelled by more complex multivariable relations in
order to express the crosstalk that prevents the decoupled treatment of (12) and (13). This also ties in with the skew-
idea, in that the incomplete matching of the outputs of the first layer to the inputs of the second layer is conceptually
problematic if there is crosstalk between signals some of which are connected to a further component and some of
which are not. We are forced to demand decoupling at least between those signals which are connected to the further
component and those that are not, but the even simpler picture of (12) and (13) in fact proves to be sufficient.

With the above understood, we can write down the composed within relation, the most complicated piece of the
composed retrenchment data:

WAcyOp,1;δ2(〈i10, i11, i12, i20〉,〈j10, j11, j12, j20〉) ≡ WAcyOp,1(〈i10, i11, i12〉,〈j10, j11, j12〉) ∧ WAcyOp.0,2(i20, j20)

≡ WAcyOp.0,1(i10, j10) ∧ WAcyOp.1,1(i11, j11) ∧ WAcyOp.2,1(i12, j12) ∧ WAcyOp.0,2(i20, j20) (14)

provided that

o10 = i21 , p10 = j21 , o11 = i22 , p11 = j22

⊢

(OAcyOp,1(〈o10,o11,o12〉,〈p10,p11,p12〉〈i10, i11, i12〉,〈j10, j11, j12〉) ∨

CAcyOp,1(〈o10,o11,o12〉,〈p10,p11,p12〉〈i10, i11, i12〉,〈j10, j11, j12〉)) ⇒

WAcyOp.1,2(i21, j21) ∧ WAcyOp.2,2(i22, j22) (15)

In (14), we seeWAcyOp,1;δ2 decomposed in the first equivalence into two contributions.One comes fromWAcyOp,1,
and one fromWAcyOp.0,2, the contribution toWAcyOp,2 coming from input signalsi20, j20. In the second equivalence,
WAcyOp,1 is further decomposed into subrelations for the individualinputs forAcyOp1 andAcyOp2.

The proviso in (15) stipulates that no matter whether the outcome of the first layer of the skew-sequential compo-
sition is realised viaO or C, every such outcome is contained in the within relation for the second layer, i.e.WAcyOpS,2.
At this point this is an assumption which we demand of the system models involved, in order that the analysis to follow
is well defined, i.e. so that whatever behaviour we see regarding both correct and faulty behaviour in the first layer,
the output does not satisfy the retrenchment PO for the second layer ‘spuriously’ i.e. via the ‘don’t care’ branch of the
interpretation of the implication in the PO. Later, we will see that the assumption offers us no threat, since the within
relations that we will use are all given bytrue. We write the assumption inhypotheses⊢ conclusionstyle, in order to
better show the intermediate values.

Note that, as in (14), in general there can be input values ofAcyOp2 that are not connected to output values of
AcyOp1 via o

9δ. In such cases, the occurrence ofWAcyOp,2 in (15) must be decomposed into the within relations for

Fault Trees for Reactive Systems I 7

individual abstract and concrete input pairs as in (13), andonly those input pairs connected viao
9δ would occur in (15).

Any remaining input pairs would have to be unconstrained, oralternatively, one would have to rely on the environment
to assert the necessary constraints, which is what (14) does.

Next we give the composed output relation:

OAcyOp,1;δ2(〈o12,o20,o21,o22〉,〈p12,p20,p21,p22〉,〈i10, i11, i12, i20〉,〈j10, j11, j12, j20〉) ≡

(∃xa,ya,xc,yc • OAcyOp,1(〈xa,ya,o12〉,〈xc,yc,p12〉,〈i10, i11, i12〉,〈j10, j11, j12〉) ∧

OAcyOp,2(〈o20,o21,o22〉,〈p20,p21,p22〉,〈i20,xa,ya〉,〈j20,xc,yc〉)) (16)

We see that this follows the pattern for skew-sequential composition of operations, so we can write it more succinctly
as:

OAcyOp,1;δ2 ≡ (OAcyOp,1
o
9δ OAcyOpS,2) (17)

Finally we give the concedes relation:

CAcyOp,1;δ2(〈o12,o20,o21,o22〉,〈p12,p20,p21,p22〉,〈i10, i11, i12, i20〉,〈j10, j11, j12, j20〉) ≡

((∃xa,ya,xc,yc • OAcyOp,1(〈xa,ya,o12〉,〈xc,yc,p12〉,〈i10, i11, i12〉,〈j10, j11, j12〉) ∧

CAcyOp,2(〈o20,o21,o22〉,〈p20,p21,p22〉,〈i20,xa,ya〉,〈j20,xc,yc〉)) ∨

(∃xa,ya,xc,yc • CAcyOp,1(〈xa,ya,o12〉,〈xc,yc,p12〉,〈i10, i11, i12〉,〈j10, j11, j12〉) ∧

OAcyOp,2(〈o20,o21,o22〉,〈p20,p21,p22〉,〈i20,xa,ya〉,〈j20,xc,yc〉)) ∨

(∃xa,ya,xc,yc • CAcyOp,1(〈xa,ya,o12〉,〈xc,yc,p12〉,〈i10, i11, i12〉,〈j10, j11, j12〉) ∧

CAcyOp,2(〈o20,o21,o22〉,〈p20,p21,p22〉,〈i20,xa,ya〉,〈j20,xc,yc〉))) (18)

Again this can conveniently be abbreviated:

CAcyOp,1;δ2 ≡ ((OAcyOp,1
o
9δ CAcyOp,2) ∨ (CAcyOp,1

o
9δ OAcyOp,2) ∨ (CAcyOp,1

o
9δ CAcyOp,2)) (19)

We comment on the structure of (16) and (18) which both conform to a generic schema for combining retrenchments.
Each pair of transitions that makes a retrenchment true can establish either the output or the concedes relation (pro-
vided the within relation holds), giving a disjunction of two possibilities. Whenn retrenchments are combined (which
eventually produces a conjunction of the facts asserted by each), a disjunction of 2n terms results via the distributive
law. Of these 2n terms, one will contain output relations exclusively and isdeemed to be the output relation of the
combination; the remaining 2n−1 terms are deemed to form the concedes relation of the combination.

2.3.3. Associativity:

Although we do not prove it here, relying on [BJP08], we note that parallel and skew-sequential compositions of
retrenchments are semantically associative, both individually, and when working together. The theory above is based
entirely on sequential and parallel compositions of relations, so the associativity of relational compositions extends
to the associativity of our manipulations of operations andretrenchments. The only nontrivial aspect of the latter is
the associativity of the composition laws for retrenchmentdata, with the concomitant need to partition 2n terms (in
the general case ofn retrenchments) into composed output and composed concedesrelations. This aspect needs to be
checked by explicit calculation, which confirms the validity of the procedure described for alln.

Looking ahead a little, the nature of the composition laws above means that while the output relation for a general
circuit is most naturally viewed as monolithic (describingcorrect behaviour), the concedes relation is best seen as
decomposing into a disjunctive normal form, each disjunct of which describes a separate kind of faulty situation.

2.4. Hierarchical Structure of Systems and Retrenchments

An important aspect of the design of large systems, is the ability to view them hierarchically. This means having a high
level view in which certain features are described simply, and a lower level view in which they appear in greater detail.
Mathematically, this requires arefinementprocess offering the kind of strong guarantees needed to ensure appropriate
conformity between the levels — this being the self-same property that makes refinement too inflexible to describe
fault injection below. Fortunately, retrenchment has beendesigned to co-exist fruitfully with refinement, so we can
deal not only with the additional complexities coming from the fault analysis via retrenchment, but also the technical

8 Banach and Bozzano

Abs

Abs

Conccg

Concmd

Retcg

Retmd

Refcg-mdRefidl

Fig. 2.TheTower Patterninstantiated for hierarchical design.

.......
XX

Fig. 3. Integrating new low level behaviour into the tower via system XX.

details of hierarchy, all in the same framework. Although there is a plethora of subtly different refinement techniques
in the literature (see [dRE98] for a review of some of them), for us, it will be sufficient to characterise refinement via
a degenerate form of the PO (4), in which:

• the concedes relation is (given by the predicate)false,
• the output relation relates output variables only (i.e. it does not contain any involvement of inputs).

The interworking of refinement and retrenchment is capturedin the Tower Pattern, instantiated for our situation in
Fig. 2. TheTower Patternis essentially a commuting square of horizontal retrenchment rungs and vertical refinement
columns, or it is an assembly of such squares stacked or abutted in the obvious way.

In Fig. 2, the two horizontal arrows are retrenchments:Retcg (a coarse grained retrenchment), andRetmd (a more
detailed retrenchment); these represent fault injection at two different levels of abstraction, a high level, and a lower,
more detailed level respectively. The refinementRefidl on the left hand side represents an elaboration of the high level
view of the ideal model into a low level ideal view, while the refinementRefcg-md on the right hand side, represents
a similar elaboration of the faulty model. The fact that the square commutes represents the compatibility between
ideal/faulty and high/low level views.

The tower, introduced in [BPJS05,BPJS06a,BPJS06b], and resting on fundamental existence theorems established
in [BJ,Jes05], enables refinement developments of the same or related requirements, which are mutually incompatible
from a refinement point of view, to be brought together into the same formal structure. The theorems of [BJ, Jes05]
enable this to be done whenever we have any two adjacent edgesof the square present; the theorems then ‘complete the
square’, building the missing system and its relationshipswith the rest of the square, in an (at least semi-) automatic
manner, opening the way to mechanical support.

The use of the tower enables the treatment of degrees of detail to be kept consistent with the fault injection process.
In general, as one examines increasingly low level detail, it is possible that behaviours emerge that were not considered
earlier. This can arise for a number of reasons. Not only doesthe original fault injection process itself require the use
of the tower, but as the analysis of the various possibilities for failure proceeds, more detailed lower level possibilities
can often emerge, and these have to be incorporated into the analysis in a consistent way. Indeed a staged introduction
of different kinds of failure mode, if done consistently, can significantly aid clarity. To support such approaches, one
needs further retrenchments to capture the new possibilities. This is illustrated in the ‘L’ shape of Fig. 3 in which the
downward development has been extended to the right at the bottom with a new systemXX, accommodating the fresh

Fault Trees for Reactive Systems I 9

behaviour not contained in the higher levels. To integrate these into the rest of the development, one can use the theory
of the tower to lift the fresh behaviours ofXX also to the highest levels if required; this is suggested by the dashed
corner in the top right of Fig. 3.

3. Fault Tree Analysis

Fault Tree Analysis [VGRH81, VSD+02] is a well-established technique in safety and reliability assessment, whose
purpose is to determine the conditions under which hazards can occur. Fault trees can support the decision-making
process. They can be used not only as a diagnostic tool, but also to assist engineers in the evaluation of design alterna-
tives or in carrying out design upgrades, an activity that may have an impact not only on safety, but also on resource
allocation and design costs.

Fault tree analysis can be described as a deductive, analytical technique, whereby an undesired state (the so called
top (level) event(TLE)) is specified, and the system is analyzed for the possible chains ofbasic events(e.g. system
faults) that may cause the top event to occur. A Fault Tree (FT) makes use of logical gates to depict the logical
interrelationships linking such events. The fault tree model is not in itself a quantitative model, but rather a qualitative
model that can be evaluated quantitatively (e.g. to determine the probability of a safety hazard).

An example fault tree (redrawn from [VSD+02]) is depicted in Fig. 4.(a). The main symbols used in a fault tree
are: square boxes, used to represent the top event (the topmost box); theintermediate events(the remaining boxes);
and circles, used to represent the basic events. Logical gates, such as AND and OR, are used to link the events inside
the tree. A plethora of symbols, not considered in the present paper, can be used to provide additional semantics
(see [VSD+02] for a complete list). Special gates can be introduced to model timed dependencies, as in the so-called
Dynamic Fault Tree methodology [DBB92].

In logical terms, the fault tree depicted in Fig. 4.(a) can berepresented by the following logical formula:(A ∨
(B∨ C)) ∧ (C∨ (A∧ B)) with the intended meaning that a propositional symbol is true whenever the corresponding
event occurs. Hence the top event occurs if and only if the formula evaluates totrue. In strictly logical terms, fault
trees can be considered equivalent if the associated logical formulae are equivalent. For instance, it is straightforward
to see that the above formula is logically equivalent toC∨ (A∧ B), which can be graphically represented by the fault
tree in Fig. 4.(b). This shape is of particular interest in reliability analysis, in that it represents the occurrence ofa top
event in terms of the so-calledminimal cut sets(MCS). A minimal cut set can be seen as the smallest combination of
component failures which causes the top event to occur. Boththe previous trees have the same minimal cut sets, that
is, C (single point of failure) andA,B (combination of two basic faults). Logically, a minimised fault tree such as the
one in Fig. 4.(b) is associated with a Boolean formula in disjunctive normal form (i.e. a disjunction of conjunctions of
propositional symbols). Minimal cut sets are of particularinterest in reliability analysis because they represent simpler
explanations for the top event, and they are often used as a starting point for quantitative analysis.

The exact way fault trees are generated in practice may vary,as described in [VGRH81, VSD+02]. A notable ex-
ample of application of Fault Tree Analysis is given in SAE ARP 4761 [Int96] (Aerospace Recommended Practice),
which describes a prototypical process for avionics, addressing the certification of civil aircraft. In short, the process
follows the traditional ‘V’ shape, where the left-hand sideof the ‘V’ represents the collection of the system require-
ments, and the right-hand side represents their validation. Fault trees can be produced at different stages of system
validation. Important notions are the boundary of the analysis (e.g. whether analysis is performed at the subsystem or
system level), and the level of resolution (e.g. abstraction and refinement techniques can be used, to assess a partially
developed system, or to simplify the analyses). It is the responsibility of the safety engineer to decide, for a given
top event, which are to be considered as the basic events, this depending on the boundary and level of resolution, and
depending on which failures are considered relevant for thespecific analysis.

Fault trees are developed starting from the top event. Causes which are considered to be elementary faults are
developed as basic events, whereas the remaining causes aredeveloped as intermediate events. This rule applies
recursively to the intermediate events, which must in turn be traced back to their causes, until the tree is completely
developed. In general, there is no unique way a fault tree canbe built, in particular, there may be different choices for
the intermediate events, and different ways to develop them. The guidelines given in [VSD+02] distinguish the case
where a fault is localized to a given component (‘state of component’ fault) from the case where it is not (‘state of
system’ fault). In the latter case, a fault is developed by considering itsimmediate, necessary, andsufficientcauses
for its occurrence. If the fault is localized to a given component, then itsprimary, secondaryandcommandfaults are
investigated. Primary and secondary faults differ depending on whether the fault occurs in an environment for which
the component is qualified (primary fault) or not qualified (secondary fault), whereas a command fault is due to a
proper operation of a component, but at the wrong time or in the wrong place.

10 Banach and Bozzano

T

E2E1

E4CE3A

A BB C

T

A•BC

A B

Fig. 4.An example Fault Tree (a), and a Minimised Fault Tree (b), corresponding to (a).

It is important to remark here that what makes the tree usefulis not just thelogical relationshipbetween the events,
but rather the way these events areconnected(which is related to the notion ofcausality), together with a proper choice
of intermediate events that are semantically relevant for safety engineers. In this sense, minimal cut set analysis does
not exhaust the wide spectrum of possible questions which fault trees can answer.

The techniques described in this paper aim at improving on the ones presented in [BV07] (see Section 8 for a
discussion of related work), which were tailored to the generation of flat fault trees, that is, to a graphical representation
of minimal cut sets (in the style of Fig. 4.(b)). In this paperwe present novel techniques for the mechanical generation
of multi-level fault trees in the same style. The structure of these fault trees is built upon the underlying system
structure, as given in the formal model. These techniques pave the way for automated generation of fault trees, as
opposed to automated minimal cut set computation.

Concerning the semantics of the generated fault trees, one remark is in order. Delegating the discovery ofcauses
of system events to an automated routine may appear to be (andto a large extent is) an ambitious goal (unless the
routine is properly instructed by a human operator). What anautomated routine can be reasonably asked to do is to
find relationships of the form,it is always the case that if event A occurs, then component B must have previously
failed. However, this does not authorize us to infer that there is a causal relation between eventsA and B (in the
sense that the apparent relationships between eventsA andB might arise for other reasons, or just be a coincidence).
Notwithstanding this difference, we show in the rest of thispaper that automatically generated fault trees can still be
informative enough to be useful for safety engineers, not least because we focus onsystem structure, so that the failure
of a subsystem is related to the failure of components, both logically and causally.

4. Fault Injection and Fault Tree Structure by Example

In this section we examine fault injection via the retrenchment simulation relation in more detail, and illustrate, on an
example, how the simulation relation may be manipulated to derive a fault tree in a mechanical manner. The discussion
via example is made more precise in the theory of Section 5.

4.1. Fault Injection and the Retrenchment Simulation Relation

Consider an individual component of a system. We start with an ideal component, and wish to take into account pos-
sible faulty behaviour. The ideal behaviour is captured in the abstract transition relationOpA, while the possible faulty
behaviour is captured in the concrete transition relationOpC. Normally, potentially faulty behaviour is an extension
of correct behaviour, so, aside from changes of variable names in line with the conventions of Section 2,OpA will
be a subrelation ofOpC; we take this to be the case for the remainder of the paper, this being the sense in which our
processes capture faultinjection. We use this fact to simplify the retrenchment simulation relation (5) in the following
way.

Fault Trees for Reactive Systems I 11

Firstly, we may assume that for each corresponding abstract/concrete pair of variables, both variables take their
values in the same data type.4 Next, we recall that the choice of retrenchment data for a retrenchment is amodelling
decision. For our purposes, it will be sufficient to focus on retrenchments with the following properties:

1. The output relation is the statement that both abstract and concrete systems are displaying correct behaviour (ex-
pressed by saying that what has happened at the concrete level conforms toOpA(i,o) with concrete variables
substituted for abstract ones):

OOp(o,p, i, j) ≡ OpA(i,o) ∧ j = i ∧ p = o (20)

2. The concedes relation is the statement that while the abstract system is displaying correct behaviour (as it must),
the concrete systemis failing to do so. This is expressed by using an error relationErrC,Op, a separately defined part
of the definition of the concrete system, to capture those concrete transitions that are not merely the translations
into concrete variables of abstract ones.5

COp(o,p, i, j) ≡ OpA(i,o) ∧ ErrC,Op(j,p) (21)

The error relation must satisfy two conditions. Firstly, the error transitions are a subset of the concrete ones:

ErrC,Op(j,p) ⇒ OpC(j,p) (22)

Secondly, all concrete transitions which are not ideal transitions (expressed using concrete variables) are error
transitions:

OpC(j,p) ∧ ¬OpA(j,p) ⇒ ErrC,Op(j,p) (23)

3. As mentioned earlier, the within relation is trivial (i.e. given by true). The reason for this is that as the faulty
system’s behaviour drifts increasingly away from the ideal, the discrepancy between the two can become arbitrarily
large, so noa priori bound on the relationship between the inputs to the next component in the circuit can be
imposed. This is consistent with all component behaviours being given by total relations, and with the remarks on
within relations in Section 2.2.

This retrenchment design makes the simulation relation (5)decompose into independent abstract and concrete parts.
We can now discard the abstract part since it is subsumed (using concrete variables) in the concrete part.6 Accord-

ingly, we adjust the notation to reflect this. Both the retrenchment data and simulation relation become relations in
concrete variables only. Thus the retrenchment data become:

WOp(j) ≡ true (24)

OOp(p, j) ≡ OpA(j,p) (25)
COp(p, j) ≡ ErrC,Op(j,p) (26)

and the simulation relation absorbs the explicit statementof the transition and within relations, and merely decomposes
the(O∨ C) part into itsOpA(j,p) and faulty pieces:

Σ1 ≡ OOp(p, j) ∨ COp(p, j) (27)

This is considerably simpler than the more general formulation, and aids efficiency in implementation.

4.2. An Example

We will base the rest of this section on an example. At the top of Fig. 5 we see a black-box depiction of a component
Fred. Fred has two input signals and two output signals. The ideal version isFredA and the potentially faulty version

4 We do not state this formally, but it legitimises e.g. substitution of abstract by concrete variables, and equalities between abstract and concrete
variables. Technically, this is just a convenience, to makesome of the calculations in the sequel more transparent thanthey would otherwise
need to be. As regards modelling though, it may be seen as a distortion, since it forces (the in principle) simpler abstract types to contain any
exceptional values etc. that might be needed in the faulty concrete types. The distortion may be avoided at the expense ofadditional complexity in
the formalisation, which would have to incorporate explicit notations for relations that mediated between the abstract and concrete types. Having
these would, if anything, obscure the clarity of the technical exposition with burdensome detail, without adding anything of significance, so we
avoided it.
5 This strategy allows the same transition to be viewed as bothcorrect and faulty, if necessary.
6 We show below how a different retrenchment design would haveprevented this simplification, without any benefit for faulttree generation.

12 Banach and Bozzano

FredA

I1

I2

O1

O2

J1

J2

F1

F2

A1

A2

A3

F3

P1

P2

K0
K2

K3
K4 K1

FredC

J1

J2

P1

P2

c1

c2

c3

c4

c5

c6

c7

Fig. 5.A subsystemFred and its internal structure.

is FredC, with I/O labelled according to our conventions. At the black-box level of abstraction, the only difference
betweenFredA andFredC is in their transition relations,FredA being a subset ofFredC. Those transitions inFredC
which are not inFredA, i.e. those inErrC,Fred(j,p), represent faults ofFred, and can act as basic faults in a fault tree
(FT) for some system level top level event (TLE) when the system description is such thatFred is regarded as a bottom
level component.

SinceFred behaves instantaneously, we can write down the signature ofFred’s I/O transition relation, without
recourse to any ofFred’s internal details:

FredC(〈J1,J2〉,〈P1,P2〉) (28)

WhenFred is not regarded as a bottom level component, but as something with internal structure, then the faulty
transitions ofFred themselves become TLEs of a more detailed sub-FT which describes how they arise on the basis
of the more detailed structure ofFred.

The bottom of Fig. 5 shows a more detailed view ofFredC, in which it is a circuit where signals flow from
left to right through componentsA1,A2,A3,F1,F2,F3, interconnected by wiresc1-c7. We assume that all signals
J1,J2,P1,P2,c1-c7 are of a fixed finite number of bits. ComponentsA1,A2,A3 are adders. We assume that the adders
do cutoff addition without overflow (so that any value greater than or equal to the maximum representable one is
output as the maximum), e.g.:

A1C(〈c2,c3〉,c5) ≡ c5 = min(c2+c3,MAX) (29)

whereMAX is the maximum representable value in the requisite number of bits. The number of bits is assumed
sufficiently large that the cutoff effects do not occur in theexamples we treat. For simplicity, we will assume in the
rest of the paper thatadders never fail. Therefore the transition relation forA1C is no different from that ofA1A, and
similarly for A2,A3.

ElementsF1,F2,F3 are two-output fanout nodes. Their ideal behaviour is to propagate their input value to their
outputs, e.g.:

F1A(I1,〈a1,a2〉)≡ a1 = a2 = I1 (30)

Fanouts are assumed capable of failure. Their failure modesarestuckat zerofaults on one or other of their outputs.
Also for simplicity, we assume that at most one of thestuck at zero faults is ever active for any fanout. So the
concrete transition relation for a fanout is given by e.g.:

F1C(J1,〈c1,c2〉) ≡ (F1.c1⇒ c1 = 0) ∧ (F1.c2⇒ c2 = 0) ∧ ¬(F1.c1∧ F1.c2) ELSE IDEAL (31)

In (31),F1.c1 (F1 outputc1 stuckat zero) andF1.c2 (F1 outputc2 stuckat zero) are (propositional) fault variables,
which when true, ‘switch on’ thestuckat zero fault for the relevant output signal (this being another facet of fault
injection).

In (31), ELSE IDEAL represents the transliteration of the idealF1A transition relation toJ,P,c variables, and the
mechanics of its being overridden by the faulty behaviour when either ofF1.c1 orF1.c2 is true. When we unravel the
details we get:

F1C(J1,〈c1,c2〉) ≡

(F1.c1∧ c1 = 0∨ ¬F1.c1∧ c1 = J1) ∧ (F1.c2∧ c2 = 0∨ ¬F1.c2∧ c2 = J1) ∧ ¬(F1.c1∧ F1.c2) (32)

Fault Trees for Reactive Systems I 13

Similar remarks apply toF2,F3.
In fault injection via fault variables, the truth of at leastone fault variable is what singles out the subrelationErrC,F1

from the rest ofF1C in the formulation of Section 4.1:

ErrC,F1(J1,〈c1,c2〉)≡ F1C(J1,〈c1,c2〉) ∧ (F1.c1∨ F1.c2) (33)

Note that the presence of fault variables is not essential. One could simply remove them, making the concrete transition
relation more nondeterministic, and definingErrC,F1 by other means. Nevertheless, a description in terms of such
variables is helpful for two purposes. Firstly, it allows anautomated tool (e.g. the FSAP platform [BV07,FSA]) to keep
track of the difference between ideal and faulty behaviour in a particularly simple way. Secondly, the propositional
variables themselves can serve as names for the basic faultsof the relevant components, labelling leaf nodes of FTs as
required.

The ideal and faultyFredmodels are related by a retrenchment. It will be sufficient towrite down the retrenchment
data for just the basic components, since the data for the overall system will emerge in a lazy fashion as needed via
the retrenchment composition laws of Section 2.3 during thefault analysis below. We avail ourselves of the simplified
forms for the retrenchment data derived above.

The adders are assumed fault-free. Thus forA1 we have:

WA1(〈c2,c3〉) ≡ true (34)

OA1(c5,〈c2,c3〉) ≡ c5 = c2+c3 (35)

CA1(c5,〈c2,c3〉) ≡ false (36)

A2,A3 are similar.7 A particular consequence of this is that occurrences ofCA? terms can be dropped below. For the
fanoutF1, we have:

WF1(J1) ≡ true (37)

OF1(〈c1,c2〉,J1) ≡ c1 = c2 = J1 (38)

CF1(〈c1,c2〉,J1) ≡ (F1.c1∧ c1 = 0∧ c2 = J1) ⊕ (F1.c2∧ c2 = 0∧ c1 = J1) (39)

where⊕ is ‘exclusive or’. InCF1, we call the two disjunctsCF1,c1 andCF1,c2 respectively, i.e.:

CF1 = CF1,c1⊕CF1,c2 (40)

Similar remarks hold forF2,F3.

4.3. Structured Fault Analysis

Finite acyclic circuits, such as the combinational logic circuits we are treating, possess a parsing which builds them
up via parallel and skew-sequential composition. In general there will be several such parsings, which can be derived
mechanically from a definition of the circuit in terms of elements and connections, or supplied manually. We work
with one in which the elements closest to the inputs are the most deeply nested. Such a structure is convenient for
a top-down fault analysis starting at the outputs, illustrated in the next section. ForFredC, the structuring we use is
illustrated byK0-K4 in Fig. 5.

Tied to the structure of the parsing, is the principal data that supports the analysis at the algorithmic level. For
each basic componentA1,A2,A3,F1,F2,F3 we have the output and concedes relations, held either explicitly or in
a symbolic form, from which explicit tuples of the relationsmay easily be extracted. For the concessions there will
be the decomposition into basic fault cases as in (40). For each compound entityK0-K4, the output and concedes
relations are conjunctions or disjunctions of more basic component forms, so only the top level formulae are stored,
with appropriate references to lower levels.

Fault analysis for a subsystem likeFred proceeds by taking a TLE, and deriving its causes by resolution with
the retrenchment simulation relation (27). These causes are organised into a tree under the guidance of the structured

7 This a good place to illustrate the consequences of different decisions about retrenchment data. A perfectly good alternative output relation for
the adderA1 could beOalt

A1(a5,c5,〈a2,a3〉,〈c2,c3〉) ≡ a2= c2∧ a3 = c3⇔ a5 = c5. However deriving the kind of facts we require below viaOalt
A1

would necessitate instantiating both abstract and concrete variables appropriately, and using the abstract and concrete transition relations to connect
before- and after- values. This represents a considerable detour to arrive at an equivalent result. In another context,Oalt

A1 might easily be preferable
to OA1, but not for the objective here.

14 Banach and Bozzano

retrenchment data forFred, from which a FT can be extracted. A TLE forFred is just a constraint on the values that
some interface variables ofFredC can take (forFredC, the interface variables areJ1,J2,P1,P2).

The goal is to unify the TLE with the simulation relationΣ1. SinceΣ1
Fred ≡ OFred ∨ CFred, this breaks into two

subproblems. Normally the fault-free behaviour of a systemis regarded as better understood than the faulty behaviour,
so as an optimisation for expository convenience, we will assume thatO terms such asFredA = OFred = OK0 and
OK1-OK4 are all precomputed and available directly whenever required. They can always be calculated by the same
backwards reasoning used for the concessions if necessary.

Let us fix a specific TLE:J1 = J2 = P1 = 1 (with P2 regarded as irrelevant) to illustrate the unification process.
It is easy to check that this does not satisfyOFred. The analysis then proceeds downward throughCFred, decomposing
step by step, eliciting the consequences of composition andof local structure, and deriving aresolution treefor all
possible ways of satisfying the TLE within the constraints.Values of variables once assigned, remain in force as we
descend unless we have to backtrack past the point of assignment, and once the input values have been reached, any
remaining uninstantiated variables can be instantiated within the constraints that hold, case by case, to confirm overall
consistency. (Note that the assumption of input readiness for all operations guarantees that a value can always be
found for an unconstrainedoutputwithout going to the trouble of actually calculating one; the assumption of finite
data types guarantees that, if all else fails, all possible satisfying assignments may be found by brute force search.) In
the following, the various steps are listed in a depth-first manner, for easier readability, but there is no requirement that
the analysis is performed in this way; the only dependenciesbetween the steps are data dependencies.

N.B. There can be significant tradeoffs between space and time complexity for a genuine algorithm, depending
on the balance that is struck between depth-first and breadth-first aspects. In practice, any real algorithm must con-
tain significant depth-first elements, since it is only when bottom level components are reached, that actual values
can be assigned to variables. For expository economy, many of these detailed steps are finessed below. For the sake
of theoretical simplicity, the finessing is carried to an extreme in Section 5 which makes extensive use of angelic
nondeterminism.

TLE: To start with,K0= K2o
9K1, so thatCK0 = OK2o

9CK1 ∨CK2o
9OK1 ∨CK2o

9CK1. Since we are working backwards
throughFred, andK1 is nearest the outputs and is a compound structure, we first decomposeK1, i.e. we decompose
OK1 andCK1 into their component entities. SinceK1 = A2|A3 and adders don’t fail,CK1 is given byfalse, reduc-
ing CK0 to CK2o

9OK1. Also OK1 = OA2|OA3. Now OA3 merely imposes existential constraints onP2,c7,c4 such that
A3C(〈c7,c4〉,P2) holds; we can put these to one side since the TLE does not constrain them further (and since in-
put readiness ofA3C ensures thatA3C(〈c7,c4〉,P2) can be satisfied for anyc7,c4). Meanwhile,OA2 demands that
c1+c6= 1 holds (among other things). There are two ways to satisfy this, namelyc1= 0∧ c6= 1 orc1= 1∧ c6= 0,
giving a top level disjunction intoTLE.L or TLE.R for CK2

o
9OK1.

TLE.L: Sincec1 andc6 are outputs ofK2, we next decomposeCK2 = CK3;F3 = OK3
o
9CF3 ∨ CK3

o
9OF3 ∨ CK3

o
9CF3.

Now CF3 = CF3,c6 ⊕CF3,c7, andCF3,c6 (c6 stuckat zero) is inconsistent withc6 = 1. Also OK3 (output of adder
A1 with inputsJ1 = J2 = 1 and correctly working fanoutsF1,F2) forcesc5 = 2, inconsistent withc6 = 1 too, so
the terms containing these are dropped. SoCK3;F3 reduces toCK3o

9OF3 ∨ CK3o
9CF3,c7. In fact the distinction between

these concerns onlyc7, whose precise value is immaterial, so onlyCK3 is of further interest. Fromc6 = 1, since fault
variableF3.c6 is false, we deducec5 = 1. So we can now decomposeCK3 = CK4;A1, which reduces to justCK4o

9OA1
since adders don’t fail. Now havingc5 = 1 as adder output, impliesc2 = 0 ∧ c3 = 1 or c2 = 1 ∧ c3 = 0, giving a
disjunction intoTLE.L.L or TLE.L.R for CK4o

9OA1.
TLE.L.L: SinceK4 = F1|F2, we haveCK4 = OF1|CF2 ∨ CF1|OF2 ∨ CF1|CF2, with each ofCF1,CF2 being an

exclusive or of two faults. However, we earlier derivedc1 = 0, which is inconsistent withJ1= 1 andOF1, eliminating
a term and forcingF1.c1 true. But c2 = 0 (assumed to hold for this branch) forcesF1.c2 true, and we have the
constraintF1.c1⊕F1.c2 in CF1, i.e. only one fault is ever active in any one component. So wehave a contradiction.
In such a case we must backtrack to the innermost ancestral nontrivial disjunction, and eliminate the subtree rooted at
the relevant disjunct. Thus the subtree atc2 = 0∧ c3 = 1 is eliminated.

TLE.L.R: As in the previous case we haveF1.c1 true, but this timeF1.c2 is false due toc2 = 1; so we remain
within our constraints. Nowc3 = 0 forcesF2.c3 true, and for consistency we must haveF2.c4 false. This yields a cut
set (i.e. valid cause) for the TLE.

TLE.R: We decomposeCK2 as in caseTLE.L , gettingOK3o
9CF3 ∨ CK3o

9OF3 ∨ CK3o
9CF3. The constraintc1 = 1∧

c6 = 0 and no multipleF3 failures, means that this can be made valid by: caseTLE.R.1, in whichOK3o
9CF3,c6 holds,

with c5 = 2; or by caseTLE.R.2, in whichCK3o
9OF3 is presumed to hold, withc5 = 0; or by caseTLE.R.3, in which

CK3o
9CF3,c6 holds, withc5 as yet unconstrained; or by caseTLE.R.4, in which CK3o

9CF3,c7 is presumed to hold, with
c5 = 0.

Fault Trees for Reactive Systems I 15

TLE: (∃ P2 • P1 = 1∧ J1 = 1∧ J2 = 1…)

c1 = 0∧ c6 = 1 c1 = 1∧ c6 = 0

c2 = 0∧ c3 = 1 c2 = 1∧ c3 = 0

F1.c1 F2.c3

F3.c6

F3.c7

F3.c6

F1.c2 F2.c3

F1.c2 F2.c3

F1.c2

F1.c2 F2.c4

F2.c3 F2.c4

c5,c7 = 2,2 c5,c7 = 0,0

c7 = 0

c5 = 0

c2 = 0 c3 = 0

F1.c2 F2.c3

c2 = 0 c3 = 0

Fig. 6.Part of a Resolution Tree for the TLE ofFred.

TLE.R.1: OK3o
9CF3,c6 holds, withc5 = 2. This is a valid cause of the TLE.

TLE.R.2: We haveCK3
o
9OF3 andc5 = 0, so we decomposeCK3 = CK4;A1 which reduces toCK4

o
9OA1 since adders

don’t fail. From the adder,c5= 0 impliesc2= c3= 0 uniquely. The latter two implyF1.c2 andF2.c3 bothtrue, which
with c1 = 1 does not lead to a multiple failure forF1. Also c4 = 1 is acceptable forF2, leading to a cut set for the
TLE.

TLE.R.3: We haveCK3o
9CF3,c6 as a consequence of whichF3.c6 holds, andc5 is unconstrained. We seek all

possible ways of satisfyingCK3 given the inputsJ1 = 1 andJ2 = 1. NowK3 is a parallel composition ofF1 andF2,
soCK3 will contain three terms as usual. Now each ofCF1 andCF2 is an exclusive or of two terms, butc1= 1 prevents
F1.c1 from holding soCF1 has just one term that contributes nontrivially. This leadsto an overall disjunction of five
nontrivial terms.

TLE.R.4: We haveCK3
o
9CF3,c7 andc5 = 0. The latter generates only one solution, i.e.F1.c2 andF2.c3 must both

hold.

A tree that summarises the above is shown in Fig. 6. Near the top we show the variable assignments, but suppress them
near the bottom to save space.

The resolution tree of Fig. 6 is the core output of our technique. As such it can serve as a starting point for
subsequent processing of various kinds. In this paper, we are predominantly interested in fault trees —not only are
fault trees a very familiar concept in safety analysisper se, but they also define the input format for commercial RAMS
tools, see e.g. [ISO]— so we illustrate the post-processingneeded to transform our resolution tree into a fault tree,
focusing on a portion of Fig. 6.8

The main issues to attend to are: (i) to make sure that the basic faults occur only at the leaves of the FT, in round
nodes, and (ii) to ensure that there are suitable intermediate events between any two logical connectives. We ensure
(i) as a consequence of observing that basic faults occur only in concessions belonging to basic components. Since
basic components occur in more complex subsystems only via parallel or sequential composition, and both kinds of

8 The ellipsis in the root indicates that further facts to be accumulated as the analysis descends are to accumulateinsidethe scope of the quantifier
(elsewhere, we suppress the ellipsis).

16 Banach and Bozzano

TLE: (∃ P2 • P1 = 1 ∧ J1 = 1 ∧ J2 = 1 …)

c1 = 1 ∧ c6 = 0

…

c2 = 0 c3 = 0

c5 = 0

c7 = 0 c2 = 0 ∧ c3 = 0

F3.c7

F1.c2 F2.c3

…

Fig. 7.Part of a FT for the TLE ofFred.

composition give concessions which are logically of the form (O1 ∧ C2) ∨ (C1 ∧ O2) ∨ (C1 ∧ C2), it follows that
whenever aC refers to a basic fault, we can always find a∧ immediately above it to hang the FT basic fault node from.
We ensure (ii) by creating intermediate events whenever theanalysis illustrated above generates adjacent connectives
in the resolution tree construction. This is done in a bottom-up postprocessing phase, in which such intermediate events
are created and labelled with the appropriate logical combinations of the immediate descendant variable assignment
expressions (cf. theA•B node in Fig. 4.(b)). Such assignment expressions are bound to be available due to the bottom-
up strategy, in contrast to the top-down strategy of the original construction which assigns to variables in the order that
the resolution process dictates. We show the effect of thesetransformations for the rightmost branch of the resolution
tree in Fig. 6, in the FT portion in Fig. 7.

5. Formal Fault Tree Derivation

In this section, we make precise an abstraction of the algorithm presented informally in the previous one, and prove
various relevant properties. To ease comprehension, we relate the formal structures, where appropriate, to the running
exampleFred in the previous section.

5.1. Basic Definitions

To bring out the key points in the clearest manner possible, we reduce the technical complexity of our account by
working under a number of simplifying assumptions regarding our systems and subsystems, as follows.9

Definition 5.1 (Basic Assumptions).

1. All systems and components are finite, as usual.
2. All variables are eitherFault Variables(FVs), which are Boolean, orI/O Variables(IOVs), which take values in a

single finite data typeD.
3. A systemS consists of a number ofBasic Components(BCs), each of which has (at most) a single FV and a

number of IOVs. When we have a particular system or subsystemT in mind, each IOV ofT is either:

(a) exclusive to one BC, sayA, of T, and is used byA (as either an input variable or an output variable, but not
both) for communicating with the external environment ofT, and is called anExternal Variable(XV) of T; or

9 In particular, we restrict to at most one possible fault per basic component, immediately ruling out our running examplefrom Section 4. However,
this just reduces theoretical clutter, without undermining any point of importance.

Fault Trees for Reactive Systems I 17

(b) is shared by two BCs, sayA1 andA2, of T, and is used for communicating between them, being an input for
one (A1 say) and an output for the other (A2), and is called anInternal Variable(IV) of T and anInterface
Variable(IFV) of A1 andA2.

The IVs and XVs ofSare called the top level IVs and XVs (TLIVs and TLXVs).
4. The I/O transformer of a BCA is given by:

A(j,p) = (¬A.F ∧ OA) ∨ (A.F ∧ CA) (41)

whereA.F is the FV ofA; j,p are the inputs and outputs, andOA,CA are the output and concedes relations ofA
respectively, defined as in Section 4.1.

5. A TLE for a systemS is a quantifier-free expression in TLXVs. N.B. The finite datatype assumption enables us to
eliminate quantifiers from TLEs via enumeration: e.g. ifD = {0,1}, the expression(∃P2 • X(J1,〈P1,P2〉) ∧ J1 =
P1) can be rewritten asX(J1,〈P1,P2〉) ∧ ((J1 = 0∧ P1 = 0∧ P2 = 0) ∨ (J1 = 0∧ P1 = 0∧ P2 = 1) ∨ (J1 = 1∧
P1 = 1∧ P2 = 0) ∨ (J1 = 1∧ P1 = 1∧ P2 = 1)).

In the context of theFred example,A1,A2,A3,F1,F2,F3 are the BCs, with onlyF1,F2,F3 having FVs, as described
earlier. Regarding the IOVs,c5 is an IV of subsystemK2 (which includes both of the BCs that sharec5, i.e.A1 and
F3), but is an XV of subsystemK3 (which includes only one of them, namelyA1). The TLXVs areJ1,J2,P1,P2, and
all other IOVs are TLIVs.

Definition 5.2 (Assignment). An assignment is an equation of the form(variable= value), or a conjunction of such
formulae.

Definition 5.3 (Valuation Set). Let V = {x1, . . . ,xk}, with k≥ 0, be a set of variables ranging over the finite domain
D. We define the valuation set ofD with respect toV, denotedVS(D,V), as follows:

VS(D,V) =
[

g:V→D

{
k̂

i=1

(xi = g(xi))} (42)

(For instanceVS({0,1},{x1,x2}) = {x1 = 0∧ x2 = 0,x1 = 0∧ x2 = 1,x1 = 1∧ x2 = 0,x1 = 1∧ x2 = 1}.)

Definition 5.4 (Fault Variables). Given a systemS, we denote byFV(S) the set of fault variables ofS.

Definition 5.5 (Fault Configuration). Let S be a system. A fault configuration forS is a subsetFC ⊆ FV(S). Fur-
thermore, we denote byFC the set(FV(S)−FC).

In particular, an arbitrary fault configuration need not correspond to any possible fault of the system; it is just a set
of fault variables.

Definition 5.6 (Structural Expressions). Structural expressionsK (for a systemS) are defined by the following
grammar:

K ::= BC | (K o
9K) | (K | K)

BC ∈ {A . . . } (43)

whereK is the non-terminal of the language (used to refer to substructures ofS), andBC is a meta-notation referring
to an element of the set{A . . . } of basic component names ofS.

A sentence forSof the grammar isgroundif it consists solely of basic components and combinatorso
9 and|, and,

viewed bottom-up, each combinatoro
9 or | corresponds to an ‘instantaneous’ parallel or skew-sequential composition of

the appropriate subsystems ofS. N.B. (43) ensures that each basic componentA of S is enclosed in its own individual
K substructure in the parse tree of a ground sentence.

Definition 5.7 (Parse Tree Node Attributes).To eachK node of the parse tree of a ground sentence for a systemS
are associated a number of things:

1. An index (or other unique attribute) to uniquely identifyit, e.g.K3.
2. An output and a concedes relation name for (i.e. a reference to) the appropriate substructure ofSe.g.OK3,CK3.
3. An output and a concedes relation body for the appropriatesubstructure ofS. For ao

9 or | K noden, these are given
by formulae (in the output and concedes relation names for (i.e. references to) child nodes ofn) for the parallel and

18 Banach and Bozzano

skew-sequential compositions of retrenchment data, givenearlier. For aBC K node, these are the relations in (41).

To eachBC node of the parse tree of a ground sentence we associate:
4. An index (or other unique attribute) to uniquely identifyit, e.g.A19.
5. The name of the FV for the basic component, e.g.A19.F.

Thus eachK node of the parse tree of (the structure of a system)S has a unique identifier, and, in effect, two
equations (equating output and concedes relation names to their bodies), which are unwound in exploring the structure
step by step. EachBC node has a unique identifier and the appropriate fault variable. We assume that whenever a
skew-sequential composition occurs, the IFVs are understood from context.

It is clear that we have formalised the description illustrated in Fig. 5 (aside from showing each BC inside an
individual K, which is suppressed). For example,(K2 o

9 K1) is obtained whenKFred, the root of the parse tree of
Fred, is expanded one level according to the structure of Fig. 5.KFred,K1 andK2 are non-terminals in the parse
tree, and the signalsc1,c6,c7,c4, are the IFVs of the sequential composition ofK1 andK2. OFred = (OK2

o
9 OK1) and

CFred = OK2
o
9 CK1 ∨ CK2

o
9 OK1 ∨ CK2

o
9 CK1 are the two equations associated withKFred. A1 andA2 are BCs ofFred,

with OA1 the output relation ofA1, given by (35).

Definition 5.8 (Cut Set). Let S be (the I/O transformer of) a system with TLXVsJ,P. Let FC ⊆ FV(S) be a fault
configuration, andTLE a top level event. We say thatFC is a cut set forS andTLE if there exist values forJ andP
such that:

S(J,P) ∧ TLE∧
^

F∈FC

F ∧
^

G∈FC

¬G (44)

is true (where an empty conjunction is as usualtrue).

Thus, unlike a fault configuration, which is relatively arbitrary, a cut set (with respect to some understood TLE)
must be a set of fault variables whose truth exactly capturessome consistent system behaviour.

Definition 5.9 (Realisability). Let Φ be an expression in some variables of a systemS. ThenΦ is realisablein S iff
values can be found for all as yet uninstantiated variables of S such that (44), withΦ replacingTLE and withFC
defined implicitly by the truth/falsehood of fault variables, becomestrue.

Since an arbitrary candidate TLE need nota priori conform to any consistent system behaviour, we conclude that
a TLE is realisable inS iff there is a cut set forSandTLE.

5.2. The Resolution Tree Algorithm

We now introduce various kinds of tree which will carry the fruits of our analysis. The previously introduced parse
tree of the system structure, provides the backbone upon which the construction of these new trees depends. The first
tree whose construction we introduce is the resolution tree(RT). This is the generic version of what the tree in Fig. 6
for the running example roughly corresponded to. (We say ‘roughly’, since Fig. 6 showed one ‘blind alley’ (which
forced the backtrack) and suppressed a good deal of the detail lower down.) Once we have discussed its construction,
we prove a number of properties of interest for these trees. Subsequently, RTs are transformed into fault trees (FTs) in
a number of stages.

We start by describing the kinds of node that these trees consist of. In each case we give the node tag (TLE, AND,
OR, etc.), and, where needed, the additional information attached to the node following the colon. The last node type
(the IE node) is not needed immediately, but is listed here for convenience.

Definition 5.10 (Node Types).All trees will consist of nodes tagged with one the followinglabels. Nodes (other than
‘AND’ and ‘OR’ nodes) contain additional label-specific information as described.

1. TLE(TLE): A Top LevelEvent node containing a top level eventTLE.
2. AND: A conjunction node.
3. OR: A disjunction node.
4. ASG(Φ): An ASsiGnment node containing an elementΦ ∈ VS(D,V) of the valuation set ofD with respect to a set

of variablesV (V will usually be the IFVs of a skew-sequential composition referred to by aK node of the parse
tree ofS).

Fault Trees for Reactive Systems I 19

Function GenRT
Input: TLE,S, a structure forS
Output: A resolution tree forTLE given byroot
Begin
1 If OS∧ TLE is not satisfiable andCS ∧ TLE is not satisfiable
2 Then Create a tree as in Fig. 9.(a). (The tree contains justTLE.)
3 ElseIf OS ∧ TLE is satisfiable andCS∧ TLE is not satisfiable
4 Then Create a tree as in Fig. 9.(b).

(The GOAS child ofroot contains an assignment for all TLXVs and TLIVs ofS that makesOS∧ TLE realisable.)
5 Else(CS ∧ TLE is satisfiable)
6 Let {θ1 . . .θn} = ΘS⊆ VS(D,TLXVs(S)) be the assignments to the TLXVs ofSwhich makeCS∧ TLE realisable
7 In If OS∧ TLE is not satisfiable
8 Then Create a tree as in Fig. 9.(c).
9 Else Create a tree as in Fig. 9.(d).

(The GOAS node contains an assignment for all TLXVs and TLIVsof S that makesOS∧ TLE realisable.)
10 EndIf
11 ForAll θk ∈ ΘS
12 Do Expand(nk1). (Thenk : ASG node containsθk. Thenk1 : C node contains concedes relation nameCS.)
13 EndForAll
14 EndLet
15 EndIf ;
16 return root;
End

Fig. 8.The algorithm for generating the Resolution Tree.

5. OAS(Φ): An O-ASsignment node containing an elementΦ ∈ VS(D, IVs) of the valuation set ofD with respect to
the IVs of a subsystem ofS referred to by aK node of the parse tree ofS (used when the output relationOK of K
is satisfiable).

6. GOAS(Φ): A Global O-ASsignment node containing an elementΦ of the valuation set ofD with respect to all
TLXVs and TLIVs ofS(used whenOS itself is satisfiable).

7. BF(FV): A BasicFault node containing the fault variableFV of a BC ofS.
8. C(CK): A Concedes node containing a concedes relation nameCK for a substructure ofSreferred to by aK node

of the parse tree ofS.
9. IE(Ψ): An IntermediateEvent node containing a Boolean combinationΨ of assignments of values to IFVs ofS.

Of these node types, the first three should be self-explanatory. The next type, the ASG(Φ) node, typically contains
an assignment (in the sense of Def. 5.2) of the interface variables of a skew-sequential composition of subsystems, to
some values that make the rest of the analysis non-void (in other words, to some values that maintain the realisability
of the analysis-so-far). Under an engineering perspective, comparing with traditional fault tree analysis, such nodes
correspond to genuine intermediate events that relate the interface variables of different components. The next node
type, the OAS(Φ) node, again contains an assignment, but this time of the internal variables of a subsystem, to some
values that witness that the subsystem is operating in a fault-free manner (i.e. such that its output relationO becomes
true, again maintaining the realisability of the analysis-so-far). Under an engineering perspective, such nodes could be
modelled usingexternal events(also calledhouse events, compare [VSD+02]) or they could simply be discarded, given
that the relevant assignments specify fault-free behaviorof a subsystem. They are important for the completeness of the
resolution process, but when resolution trees get post-processed to fault trees of a standard format, they get eliminated
(see Section 5.3). The next type, the GOAS(Φ) node, is like an OAS node, but applied to the whole system andnot just
some subsystem; it takes care of the completely fault-free case. Again, in a traditional fault tree, it would be modelled
with an external event since it corresponds to an empty cut set. The next types, theC(CK) and BF(FV) types, deal with
faulty cases. The former type,C(CK), contains (a reference to) a concedes relation. It is just a placeholder, being used
during the working of the resolution tree algorithm. In fact, these nodes are not preserved in the final resolution tree,
being introduced, but ultimately also eliminated, as the construction proceeds. The latter type, BF(FV), contains what
is effectively a degenerate version of the former, namely a basic fault variable. In engineering terms, it corresponds
to a genuine basic event, modeling a ‘state of component’ fault in the terminology of Section 3 (this being either
a primary or a secondary fault — compare also the discussion in Section 9). The last node type, the IE(Ψ) type,
contains a Boolean combination of assignments of the kind already discussed, and it can interpreted as modelling an
intermediate event.

20 Banach and Bozzano

(c) OS unsatisfiable; CS satisfiable

(b) OS satisfiable; CS unsatisfiable TLE

GOAS

root

TLEroot

(a) OS unsatisfiable; CS unsatisfiable TLEroot

(d) OS satisfiable; CS satisfiable TLEroot

Cnk1

GOAS

OR

OR

ASG ASG ASG

… …

n1 nk nn

Cnk1

OR

ASG ASG

… …

n1 nk nnASG

n

n

Fig. 9. Cases for theGenRTfunction.

In the algorithms which follow we make considerable use ofangelic nondeterminismfor discovering satisfying
assignments (of the kind noted) for expressions at the pointthat they are needed in building the tree. This consider-
ably simplifies the presentation, and shows that despite theappearance of the pseudocode, we are still at a relatively
high level of abstraction. In practice of course, at the implementation level, some sort of depth first exploration with
backtracking would be needed to achieve the required effect.

Definition 5.11 (Resolution Tree).Let S be a system andTLE a top level event forS. Assume a structuring forS
given by a parse tree of a ground sentence of the grammar (43),together with its associated labels and equations. Then
the algorithm of Fig. 8 generates aresolution treefor TLE with respect toSand the given structure.

As is clear by inspection, the resolution tree algorithm of Fig. 8 works top down, guided through the structure of
the system by the structure of the parse tree which has been used to organise the system’s structure. Every time some
variable values are needed on the interface between two subsystems, so that the analysis can separately branch into
the two subsystems, they are discovered angelically in theLet statement on line 6 of Fig. 8 (similarly on line 6 of
Fig. 10), so as not to clutter the algorithm presentation with low level details. Note that for engineering convenience,
the algorithm of Fig. 8 distinguishes at top level all four cases in which the TLE is satisfiable or not viaOS and/orCS
(i.e. all four combinations of possibly completely fault free, and possibly faulty behaviour), so that this structure can
persist into the ultimate FT.

Referring back to our running example, we see that Fig. 6 corresponds to a RT whose top level structure is of type
(c) in Fig. 9 — the TLE is neither unsatisfiable, nor is it satisfiable through fault-free behaviour, eliminating cases (a),
(b) and (d).

The top level functionGenRTmakes use of a recursive functionExpand(n) to grow the tree fromC nodes until the
leaves of the tree are generated. This is given in Fig. 10. In Fig. 10, the phrase ‘m-root-realisable’ is an abbreviation
for ‘realisable, and is consistent with all assignments in all nodes on the path fromm back toroot’ (and including
both). In engineering terms, we can draw a parallel between the expansion routine, and the ‘state of system’ and ‘state
of component’ decomposition rules prescribed by [VSD+02] (compare Section 3 and also the account in Section 9).

Fault Trees for Reactive Systems I 21

Proposition 5.12 (Termination). The algorithm in Fig. 8 always terminates.

Proof. Given that the systemS is acyclic, then the algorithm trivially terminates because each expansion step corre-
sponds to unfolding the parsing of the system. 2

The RT is important because it examinesall the system variables, to ensure that only consistent systembehaviours
are generated. However, once the RT algorithm has produced its output, we can use the resulting RT to focus on just
the causes of faulty behaviours ofS. We call these the (computed) cut sets, and they are intendedto correspond to
the fault configurations/cut sets defined earlier. (Eventually, of course, we will show that they are the same.) Since we
have a tree structure to work with already (the RT), the only sensible approach is to use an inductive strategy. The next
few definitions handle the details.

Definition 5.13 (Nearest Relevant Descendant Nodes).Let RT be a resolution tree, andn be a node inRT. By a
Nearest Relevant Descendant Node(NRDN) of n we mean the first proper descendant node tagged with one of GOAS,
OR, AND, BF on some path fromn towards a leaf ofRT. TheNearest Relevant Descendant Node Set(NRDNS) ofn
is the set of all NRDNs ofn.

Definition 5.14 (Computed Cut Node Sets).Let Sbe a system, andTLEa top level event. LetRT= GenRT(TLE,S),
and letn be a node ofRT tagged with one of TLE, GOAS, OR, AND, BF. LetN be the subtree ofRT rooted atn. Then
the set of computed cut node sets ofN denotedCCNS(N) or CCNS(n) as convenient, is defined as follows:

CCNS(N) =














∅ RT has just a TLE node
{{n}} n is a GOAS node, or a BF node for BCA
S

ni∈NRDNS(n) CCNS(ni) n is an OR node, or a TLE node
{

Sk
i=1CCNSi | CCNSi ∈ CCNS(ni)} n is an AND node, andNRDNS(n) = {n1 . . .nk}

As we see from the above equation, at each point of the inductive computation, there are four possible cases. The
first case deals with inconsistency — no cut node set can explain the TLE. The second case deals with leaves of the
tree (tag BF or GOAS), whose associated set of cut node sets has just one element, the singleton cut node set{n}
— for a GOAS node, this indicates that nominal behaviour can explain the TLE, while for a BF node, it means that
the constraints at that leaf of the RT can be satisfied by invoking that particular basic fault. The third case is for OR
nodes. For these, any alternative cut node set from any of thenearest relevant descendant nodes (NRDNs) of the OR
node will do as an explanation of the constraints demanded atthat point; i.e. any alternative is a cut node set of the
OR node itself. So the set of cut node sets for the OR node is just the union of those for its NRDNs. The fourth case
covers AND nodes. For these, a cut node set consists of a contribution from each of its NRDN nodes, explaining the
constraints demanded at the relevant subtree. So the set of cut node sets for the AND node consists of the set of all
possible ways of combining a selection from each of the NRDNs. A TLE node will in general have a set of faulty
causes that is elaborated via a descendant OR node.

So we have identified the nodes of the RT that can explain the TLE. But safety analysis is more interested in faults
than nodes, so the next definition replaces each basic fault node by its corresponding fault variable (which amounts to
the name of the fault in the present framework), yielding a cut set. A GOAS node is replaced by the empty set since it
attests to explaining the TLE by fault-free behaviour.

Definition 5.15 (Computed Cut Sets).Let Sbe a system, andTLE a top level event. LetRT= GenRT(TLE,S), and
let n, the root of subtreeN, be a node ofRT tagged with one of TLE, GOAS, OR, AND, BF. LetCCNS(N) be the
computed cut node sets forN. Then the computed cut sets forN, denotedCCS(N) (or CCS(n) when convenient), are
generated by replacing each BF nodebf in CCNS(N) by the FV, sayA.F, that it contains, and the GOAS node, if
present, by∅.

Proposition 5.16 (CCNS for CCS). If S is a system,TLE a top level event, andCS∈ CCS(N) is a computed cut set
for N, with N a subtree ofRT= GenRT(TLE,S) as in Def. 5.15, then there is a(t least one) computed cut nodeset in
CCNS(N) that generatesCS. Any such computed cut node set is called a cut node set forCS.

We want to confirm that, in finding a cut set, we have found a consistent behaviour of the entire system. One fact
that contributes to this is knowing that all system variables have been assigned to. This is not completely trivial to
check, since in general, a cut node set includes onlysomeleaves of the RT, due to the presence of OR nodes.

22 Banach and Bozzano

Function Expand(n)
Begin
1 If n : C is a BF node associated with aK ≡ BC node ofS
2 Then Replacen : C with a subtree as in Fig. 11.(a). (Then : ASG node contains an assignment to the outputs

of the BC which makesC n-root-realisable. Then1 : BF node contains the FV for the BC in question.)
3 ElseIf n : C ≡ O1|C2 ∨ C1|O2 ∨ C1|C2 associated with aK ≡ K1|K2 node of the structure ofS
4 Then Replacen : C with a subtree as in Fig. 11.(b). (Then1 : OAS node contains an assignment to the IVs of

componentK1 which makesO1 ∧ C2 n-root-realisable. Then2 : OAS node contains an assignment to the IVs of
componentK2 which makesO2 ∧ C1 n-root-realisable. If any one branchn1,n2,n3 is notn-root-realisable, it is pruned.
If two branches are notn-root-realisable, they are both pruned (though the OR node remains).)
As applicable,Expand(n11); Expand(n21); Expand(n31); Expand(n32).

5 ElseIf n : C ≡ O1
o
9C2 ∨ C1

o
9O2 ∨ C1

o
9C2 associated with aK ≡ K1

o
9K2 node of the structure ofS

6 Then Let {θ1 . . .θn} = ΘK ⊆ VS(D, IFVs(K)) be the assignments to the IFVs of the compositionK ≡ K1
o
9K2 which make the

concessionCK of K n-root-realisable
7 In Replacen : C with a subtree as in Fig. 11.(c).
8 ForAll θk ∈ ΘK
9 Do (Thenk : ASG node containsθk. Thenk11 : OAS node contains an assignment to the IVs ofK1 which makes

O1 ∧ C2 nk1-root-realisable. Thenk12 : OAS node contains an assignment to the IVs ofK2 which makes
O2 ∧ C1 nk1-root-realisable. If any one branchnk11,nk12,nk13 is notnk1-root-realisable, it is pruned.
If two branches are notnk1-root-realisable, they are both pruned (though the OR nodenk1 remains).)
As applicable,Expand(nk111); Expand(nk121); Expand(nk131); Expand(nk132).

10 EndForAll
11 EndLet
12 EndIf ;
13 return ;
End

Fig. 10.TheExpandfunction for the Resolution Tree.

Definition 5.17 (Cut Path). Let Sbe a system,TLE a top level event, and letCS∈ CCS(RT) be a cut set computed
from RT= GenRT(TLE,S). Let CNS∈ CCNS(RT) be a cut node set forCS. If n∈ CNS, then the cut path ofn with
respect toCNSis the set of nodes along the path fromn back to the root ofRT (and including both). The cut path set
(CPS) ofCSwith respect toCNSis the union of the cut paths for alln∈ CNS.

Proposition 5.18 (Assignment Totality). Let Sbe a system, letTLE be a top level event, letCS∈ CCS(RT) be a cut
set computed fromRT = GenRT(TLE,S) and generated by a cut node setCNS. Then the CPS ofCSwith respect to
CNScontains an assignment to every system non-fault variable.

Proof. SinceCS∈ CCS(RT), we haveCCS(RT) 6= ∅. So the RT contains more than just the TLE node. IfCS= ∅,
then this cut set can only come from a GOAS node, which assignsto all the system non-fault variables. Since the
GOAS node is in the CPS ofCSwith respect toCNS, we are done. OtherwiseCS is a nonempty set of FVs and we
have to show that its CPS with respect toCNScontains assignments to all system non-fault variables.

It is clear in such a case thatCS is satisfiable, and thatGenRT(TLE,S) therefore creates a top level subtree as in
cases (c) or (d) of Fig. 9. We focus on the subtree rooted at theOR noden, the parent of the ASG node(s) in these
cases — the subtrees belown in (c) and (d) are identical. It is clear thatCS 6= ∅ implies thatCS∈ CCS(RT) implies
thatCS∈ CCS(n). Now Defs. 5.14 and 5.15 show thatCSand its CPS come from a single branch of the disjunction
undern. This branch descends through an ASG node (containing an assignment to all TLXVs), to aC node developed
by Expand. SinceCS 6= ∅, there must be at least one cut path in the CPS ofCSwith respect toCNS. Any such path
must pass through the ASG node, and so the CPS ofCSwith respect toCNSis guaranteed to contain an assignment
to all TLXVs. It is thus sufficient to show that the relevant top level call toExpanddevelops a subtree such that all cut
paths in the CPS ofCSwith respect toCNSdescend into this subtree, and all TLIVs are assigned to in the CPS.

Consider the parse tree ofS, where the detailed structure under any non-terminal corresponding to a non-failing
subsystem (i.e. a subsystemKk for which OKk is true) has been truncated. We proceed by induction on this truncated
tree, with the following induction hypothesis.

If K is a node for whichCK is true, N is a subtree ofRT= GenRT(TLE,S) generated byExpandon CK , CSK
is a cut set inCCS(N), andCNSK is a cut node set generatingCSK , then all paths of the CPS ofCNSK descend
into N and all IVs ofK are assigned to in the CPS.

To deduce the required conclusion, we apply the hypothesis to the root of the parse tree ofS, truncated in a manner
corresponding to the realisation ofCS that yieldedCS.

Fault Trees for Reactive Systems I 23

(b) C ≡ O1 |C2 ∨ C1 |O2 ∨ C1 |C2

C becomes OR

ANDOAS

(c) C ≡ O1 C2 ∨ C1 O2 ∨ C1 C2

C becomes OR

o

9

o

9

o

9

ASG ASG ASG
… …

(a) C ≡ BF

C becomes ASG

BF

C2

OAS

C1
C1 C2

OR

ANDOAS

C2

OAS

C1
C1 C2

n

n

n

n

n3n2n1

n21
n31 n32

n11

n

n1

n1

nk

n

nn

nk1

nk13nk12nk11

nk121
nk131 nk132

nk111

Fig. 11.Cases for theExpandfunction.

Base cases:K ≡ BC, a single BCA for which CK is true. By case (a) of Fig. 11, the call toExpandcreates a
subtree with a BF leaf containing the FV of the BC, and an ASG node, which assigns to the BC’s outputs. The BF
node contains the FV ofA, i.e.A.F, so by Defs. 5.14 and 5.15 the generated cut set is{A.F}. Evidently the single cut
path in the CPS ofK descends into the subtree generated byExpand, and since a BC has no IVs, this CPS trivially
contains an assignment to every IV of the BC. IfK is a non-faulty subsystem, then there is nothing to prove.

Inductive steps:K ≡ K1|K2. Then the IVs ofK partition into the IVs ofK1 and ofK2. If K1 is a non-failing
subsystem andK2 is a failing subsystem, then the cut set ofK is just the cut set ofK2. By case (b) of Fig. 11, the
relevant call toExpandcreates a branch containing an OAS node forK1, descending to a subtree forK2. The OAS
node assigns to all the IVs ofK1. By the inductive hypothesis, all paths of the CPS of the cutset ofK2 descend into
theK2 subtree, and all IVs ofK2 are assigned to in the CPS. Since the cut paths in the CPS ofK2 must ascend through
the OAS node, the CPS for the cut set ofK contains assignments to all IVs ofK, as required. Similarly ifK1 is a
failing subsystem andK2 is a non-failing subsystem.

If K1 and ofK2 are both failing subsystems, the cut set ofK partitions into nonempty cut sets forK1 and forK2,
as does the set of IVs ofK. The call toExpandcreates an AND of the subtrees forK1 and forK2, and the CPS thereby
also partitions into nonempty CPS for theK1 andK2 subtrees. We then use the inductive hypothesis twice, after which
Defs. 5.14 and 5.15 stipulate that the AND node forces the union of the cut subsets, the cut node subsets, and their
CPSs, ensuring that all IVs ofK are assigned to as needed.

K ≡ K1 o
9 K2. Then the IVs ofK partition into the IFVs of the composition, plus the two setsof IVs of K1 and

K2. The relevant call toExpandcreates an OR node over ASG nodes, each of which contains an assignment to the
IFVs, so that Defs. 5.14 and 5.15 force the cut set ofK to belong to one of the disjuncts. An argument like the one for
parallel composition now shows that all paths of the CPS ofK descend into the subtrees forK1 and/orK2 and that the
IVs of the two components are assigned to in the CPS. Noting that all the cut paths must ascend through the relevant
ASG node, ensures that the CPS includes the IFV assignments too, as required. 2

24 Banach and Bozzano

If we supplement the assignments in a cut path set with an assignment totrue of all system FVs occurring in the
cut set and an assignment tofalse of all system FVs not occurring in the cut set, we arrive at thefollowing correctness
statement, which says that whenever our abstract procedureproduces an answer, it is atrueanswer, i.e. the procedure
does not lie.

Proposition 5.19 (Correctness).Let Sbe (the I/O transformer of) a system, letFC⊆ FV(S) be a fault configuration,
andTLE a top level event. LetRT= GenRT(TLE,S). If FC∈ CCS(RT), thenFC is a cut set forTLE andS.

Proof. By tracing the assignments made during the proof of the previous proposition and the remark following it, it is
clear that they amount to an assignment that satisfies (44). 2

If a cut set is empty, the system is capable of producing the TLE in a fault-free manner, whereas if a cut set is
nonempty, faults are involved. The next proposition confirms that this split corresponds to the output/concedes split of
retrenchment.

Proposition 5.20. Let Sbe a system,TLE a top level event forS, andFC⊆ FV(S) a cut set forTLE andS. If FC = ∅

thenOS is satisfiable. IfFC 6= ∅ thenCS is satisfiable.

Proof. A simple induction on system structure. For the BC case,FC = ∅ corresponds toA.F = false and the satisfia-
bility of the left disjunct of (41), hence ofOS. The only other possibility,FC = {A.F}, corresponds toA.F = true and
the satisfiability of the right disjunct of (41), hence ofCS. For the inductive step it is enough to partition theFC ac-
cording to the disposition of the BCs in the two components, and to note that a compoundO requires both component
Os to betrue, while a compoundC requires at least one componentC to betrue. 2

Proposition 5.21 (Completeness).LetSbe (the I/O transformer of) a system, letFC⊆FV(S) be a fault configuration,
andTLE a top level event. LetRT= GenRT(TLE,S) and letFC be a cut set forSandTLE. ThenFC∈ CCS(RT).

Proof. SupposeFC = ∅. Then sinceFC is a cut set forSandTLE, by Prop. 5.20, we know thatOS must be satisfiable.
Therefore case (b) or (d) of Fig. 9 applies, andGenRTcreates a GOAS node. This contains a set of assignments to all
non-fault variables, which generatesFC by Defs. 5.14 and 5.15.

OtherwiseFC 6= ∅, and by Prop. 5.20,CS is satisfiable. So case (c) or (d) of Fig. 9 applies, andGenRTcreates an
n : C node and callsExpand(n). We proceed by induction on the truncated parse tree ofSas used in Prop. 5.18, with
the following inductive hypothesis:

Let K be (the I/O transformer of) a system for whichCK holds,∅ 6= FC⊆ FV(K) a fault configuration, andΦ
an assignment to all XVs ofK. If there arej andp such that:

K(j,p) ∧ Φ ∧
^

F∈FC

F ∧
^

G∈FC

¬G (45)

holds, thenFC ∈ CCS(N), whereN is the tree produced by the topmost call toExpandin the application of
GenRTto Φ andK.

It is easy to see that the inductive hypothesis implies what is required. We letK = SandΦ be the assignments to TLXVs
in one of the ASG nodes created by the call toGenRT. Since such an assignment makes (44)true, we deduce the truth
of (45), the assumption of the hypothesis. Hence the conclusion of the hypothesis holds, i.e. thatFC∈ CCS(N) where
N is the tree produced by the topmost call toExpand(n). Noting that for theCS satisfiable case,RT= GenRT(TLE,S)
differs fromN only by the addition of an OR structure connectingN to the TLE node,FC ∈ CCS(N) and Defs. 5.14
and 5.15 immediately implyFC∈ CCS(RT).

We now establish the induction.
Base cases: Firstly,K ≡ A, with A a faulty BC. We must haveFC = {A.F}. We know that there existj andp such

thatA(j,p) ∧ Φ ∧ A.F holds. Also, by (41) we have thatA(j,p) ∧ Φ ∧ A.F is equivalent toΦ ∧ A.F ∧ CA. It follows
thatΦ ∧ CA is consistent. Therefore the callExpand(n) in GenRT(Φ,K) createsN, which consists of an ASG node
with a BF child containingA.F. By Defs. 5.14 and 5.15,FC = {A.F} ∈ CCS(N), as required.

Secondly,K is a non-faulty subsystem. The inductive hypothesis holds automatically since its assumption is false.
Inductive cases:K ≡ K1◦K2, where we have two sub-cases,K ≡ K1o

9K2 andK ≡ K1|K2. We prove the first case
in the simple version where the outputs of K1 exactly match the inputs ofK2 (the more general version merely adds
notational clutter). The second case is similar and is left to the reader.

Let j andc be the input and output variables ofK1, andc andp be the input and output variables ofK2, so that the
IFVs of the composition arec.

Now the inductive hypothesis is an implication, and so is only nontrivial if its assumptions hold. To prove it, we

Fault Trees for Reactive Systems I 25

Function RTtoFT(root)
Input: A RT rooted atroot produced byGenRT
Output: A FT for TLE andSgiven byroot
Begin
1 If The RT does not contain an OR node
2 Then return root
3 ElseShort-circuit all OAS nodes (i.e. connect the child node to the parent node and discard the OAS node).
4 Short-circuit all OR nodes with just one child node.
5 While There is an ASG node with another ASG node as child
6 Do Conjoin the assignment in the child ASG into the parent ASG node and short-circuit the child ASG node.
7 EndDo
8 If There is an AND or OR descendant ofroot
9 Then Check(n) wheren is the nearest AND or OR descendant ofroot.
10 EndIf
11 return root
12 EndIf
End

Fig. 12.The RT to FT conversion algorithm.

must derive the conclusions of the implication on the basis that these assumptions are true, namely that there are values
for j,c,p, for which:

K1(j,c) ∧ K2(c,p) ∧ Φ ∧
^

F∈FC

F ∧
^

G∈FC

¬G (46)

hold.
Let m be values forc which make (46)true. Then

K1(j,c) ∧ K2(c,p) ∧ Φ ∧ φK ∧
^

F∈FC

F ∧
^

G∈FC

¬G (47)

is satisfiable, whereφK ≡
V

c(c = m) ∈ VS(D,c).
From (47) we can derive the truth of both:

K1(j,c) ∧ Φ1 ∧ φK ∧
^

F∈FC1

F ∧
^

G∈FC1

¬G (48)

whereFC1 = FC∩FV(K1) ⊆ FV(K1), andΦ1 is Φ with all assignments to variables not belonging toK1 erased
(recalling thatΦ is an assignment to all XVs ofK); and:

K2(c,p) ∧ Φ2 ∧ φK ∧
^

F∈FC2

F ∧
^

G∈FC2

¬G (49)

whereFC2 = FC∩FV(K2) ⊆ FV(K2), andΦ2 is Φ with all assignments to variables not belonging toK2 erased.
SinceΦ1 contains assignments to at leastj andΦ2 contains assignments to at leastp, neitherΦ1 norΦ2 is trivial. It is
now easy to see thatΦ1 ∧ φK is an assignment to all XVs ofK1 and thatΦ2 ∧ φK is an assignment to all XVs ofK2.
Evidently alsoFC1∪FC2 = FC andFC1∩FC2 = ∅.

We can now apply the inductive hypotheses toK1 andK2, noting that at least one ofCK1 or CK2 will be valid.
SupposeOK1 holds in which case there is nothing to prove for it, and thenCK2 must hold. In that case, by hypothesis,
the call toExpandfor K2 produces a treeN2 such thatFC2 is in CCS(N2). Observing that no FV for any BC inK1 is
true, we see that the conjunct

V

F∈FC1
F in (48) is trivial, and that the call toExpandfor K produces a treeN with an

OR root, below which is an ASG node containingφK ≡
V

c(c= m) ∈ VS(D,c), below which is another OR, for which
the relevant branch will contain an OAS node with subtreeN2 descending from it (see Fig. 11.(c)). Since the top node
of N is an OR and the node below the ASG is also an OR,CCS(N) will contain CCS(N2) as a subset, giving us the
required conclusion in this case. The argument forOK2 andCK1 holding is similar.

If both CK1 andCK2 hold, instead of an OAS with descending subtree,Expandcreates an AND node with subtrees
N1 andN2 for K1 andK2 respectively. Noting thatFC1 andFC2 partition FC, that FC1 ∈ CCS(N1) and FC2 ∈
CCS(N2) by the inductive hypotheses, and noting the rule for AND in the CCNSfunction, we derive the required
conclusion. 2

26 Banach and Bozzano

5.3. Turning Resolution Trees into Fault Trees

The preceding section proved the crucial soundness and completeness results for the RT algorithm. Once we have the
resolution tree, we can potentially do many things with it. In this paper we illustrate this potential by describing how
to extract a fault tree of a relatively conventional form from it in a mechanical manner.

Fig. 12 gives an algorithm,RTtoFT, which performs the required task.RTtoFTcalls two further functions,Check
andInsertIE to complete its work. These are given in Fig. 13. We briefly summarise the properties of this transforma-
tion.

Definition 5.22 (Fault Tree). A Fault Tree is a tree such that for every path from the root to aleaf, the node types
encountered form a sentence describable by the regular expression:

FT≡ TLE ((AND +OR) IE)∗ BF (50)

The standard definition [VSD+02] insists on intermediate events (i.e. IE nodes) interleaving between distinct
occurrences of logical connectives, and this is reflected in(50). Note that (50) only partially defines FTs since it must
be supplemented with information on node arities etc. in order to pin down the tree structure precisely.

In this paper we will modify the permitted possibilities in anumber of ways. Firstly we will allow ASG nodes (or
amalgamations thereof) to take the place of IE nodes when they have already been planted in a suitable position by
GenRT. This is a natural choice given that, as mentioned in Section5.2, such nodes correspond to genuine intermediate
events in the fault tree. Secondly, we will allow the top levels of the FT to feature a GOAS node if non-faulty behaviour
can give rise to the TLE. Thirdly, we allow removal of OAS nodes; an alternative, described in Section 5.2, could be
to insert them as external events, but the current choice is sufficient for our purposes. The remaining modifications,
such as inserting IE nodes between consecutive connective nodes, are mostly needed for housekeeping, namely to
conform to the standard fault tree notation. Accordingly, we give the following definition. Again, the specification is
only partial, but it will be sufficient for our purposes sincewe already have the RT to start with.

Definition 5.23 (Modified Fault Tree). A Modified Fault Tree is a tree such that for every path from theroot to a
leaf, the node types encountered form a sentence describable by the regular expression:

FT≡ TLE [[OR] GOAS] + TLE [ASG] ((AND +OR) (ASG+ IE))∗ BF (51)

Proposition 5.24 (RTtoFT Properties). The algorithmRTtoFTconverts the RT produced byGenRTinto a FT ac-
cording to Def. 5.23.

Proof sketch.It is not hard to see that the output ofGenRTis a tree whose root-to-leaf paths consist of:

1. a path through one of the top level cases in Fig. 9.(a)-(d),
2. zero or more occurrences of root-to-leaf paths through Fig. 11.(b) or Fig. 11.(c) with its root overwriting theC leaf

node of the path-so-far (provided the leaf node is indeed aC node),
3. an occurrence of Fig. 11.(a), with its root overwriting theC leaf node of the path-so-far (provided the leaf node is

indeed aC node).

Algorithm RTtoFTstarts by eliminating OAS and one-child OR nodes, and then amalgamating chains of ASG nodes.
After this, the only possible deviation of a path in the tree from the form in (51) is the presence of consecutive AND
or OR nodes in the path. To change these paths into legal ones,we need to interleave IE nodes between consecutive
connective nodes; this is the job of the functionsCheckand InsertIE of Fig. 13, called at the top level in line 9 of
Fig. 12. It is not hard to see that these routines do the job required. 2

We can prove that the fault trees generated according to the algorithm in Fig. 12 enjoy the following restricted
notion of causality, which is related to the structural decomposition of the system (compare also the discussion in
Section 3).

Proposition 5.25 (Causality).Provided substructures closest to the top level inputs are nested more deeply than ones
closer to the top level outputs, then the FT algorithm generates a ‘causal’ FT, in the sense that the variables closest to
the inputs are assigned to in ASG and IE nodes that occur deeper in the FT than the ASG and IE nodes for variables
closer to the outputs.

Proof. Since the RT algorithm works top-down, if theK node foro
91 occurs higher in the parse tree than theK node

for o
92, then the RT algorithm plants the ASG nodes foro

91 higher in the RT than the ASG nodes foro
92. TheRTtoFT

algorithm preserves this ordering. Therefore to achieve a ‘causal’ FT, in which the ASG nodes encountered along a

Fault Trees for Reactive Systems I 27

Function Check(n)
Input: A noden of a pre-processed RT
Begin
1 ForAll Childrennk of n such thatnk is an AND or OR node
2 Do Check(nk)
3 InsertIE(nk)
4 EndForAll
5 ForAll Childrennk of n such thatnk is an ASG node
6 Do Check(nk1) where nk1 is the child ofnk
7 EndForAll
8 return
End

Function InsertIE(n)
Input: A noden of a pre-processed RT
Begin
1 Create an IE node containing the conjunction of the formulae in the ASG or IE children ofn if n is an AND node,

or containing the disjunction of the formulae in the ASG or IEchildren ofn if n is an OR node.
2 Interpose the IE node betweenn and its parent (i.e. make the IE node the child ofn’s parent, and maken the IE node’s child).
3 return
End

Fig. 13.TheCheckandInsertIE functions.

path through the FT toward the root assign to variables in an order not contrary to the variables encountered along the
dataflow, it is sufficient to ensure that earlier sequential compositions (according to dataflow ordering) are more deeply
nested than later sequential compositions. N.B. Since all systems are finite and acyclic, such a nesting can always be
found. 2

The astute reader will notice that the tree in Fig. 7 featuresvariable assignmentc7 = 0 below variable assignment
c5 = 0, despite the fact thatc5 causally precedesc7 in the structureK0-K4 given in Fig. 5. There is no contradiction
with Prop. 5.25, since Prop. 5.25 makes essential use of angelic nondeterminism, whereas the algorithm sketch that
derives Figs. 6 and 7 mirrors a practical algorithm, that perforce avoids angelic nondeterminism, and just follows the
data dependencies. One fact is clear though. Such anomalouscases can only arise for assignments which have no
dataflow to the TLE, since if therewereany dataflow to the TLE, a derivation following a properly constituted input-
innermost structure, would encounter the need to assign toc7 before encounteringc5. Minimisation, discussed next,
in which such non-needed derivations are discarded, prunesthe relevant subtrees anyway.

6. Structured Minimisation

In practical fault analysis, it is of particular interest togenerate the minimal fault configurations, the so-calledminimal
cut sets(MCSs for short), consisting of the fewest possible basic faults that cause a particular TLE. This is because
including redundant fault configurations may lead to an unacceptable combinatorial explosion of causes for a typical
TLE encountered in practice. Furthermore, minimal cut setsare often used as the basis for quantitative evaluation of
fault trees.

The traditional technique for discovering MCSs is subsumption. In principle, one needs to generate all possible
configurations that cause a fault (which may lead to the combinatorial explosion already noted), and then check them
against one another: any that are subsumed by simpler configurations are discarded. Obviously these subsumption
checks can be quite expensive for a large system model, sincethe number of leaves in a tree is exponential in its
depth, and the number of subsumption checks is quadratic in the number of leaves. Although in practice efficient
algorithms [CM92, CM93, Rau93, RD97] based on binary decision diagrams (BDDs) [Bry92] can be used for this
purpose, their worst-case complexity is still exponentialin the number of variables of the BDD.

In this section we explore ways of reducing the subsumption workload by exploiting the structure of the tree
construction as guided by the retrenchment data. The techniques described in this section can be used to generate a
minimised tree in parallel with (or when only minimal cut sets are required, in place of) the construction of the main
resolution tree, described in Section 5. The advantage of such techniques is to avoid a brute-force subsumption on the
flat representation of minimal cut sets. Similar ideas may also offer opportunities for optimizing the computation of
minimal cut sets in the symbolic realm of FSAP. This is brieflydiscussed in Section 8.

28 Banach and Bozzano

TLE: (∃ P2 • P1 = 1 ∧ J1 = 1 ∧ J2 = 1 …)

F1.c2 F2.c3

F3.c6

F1.c1 F2.c3

c1,c6 = 1,0 c1,c5,c6 = 1,0,0c1,c5,c6 = 0,1,1

c3 = 0c2 = 1 c2 = 0 c3 = 0

Fig. 14.A Minimised Fault Tree for the TLE ofFred.

The construction described in this section builds upon someminimisation opportunities and rules, which are illus-
trated below on our running example.

M.1: Discarding non-needed subtrees. If, during the FT construction, an OR choice arises which entails a fault
which leads to an assignment to some variable whose value does not affect the validity of the TLE (e.g. there is no
dataflow from the fault to the TLE), then the subtree rooted atthis OR choice can be discarded immediately since
the TLE is satisfied without it. In general, we call such faults incidental faults. An example is the subtree of Fig. 6,
involving F3.c7,F1.c2,F2.c3, since there is no dataflow fromc7 to the TLE. As in this example, such faults can
arise by considering the disjunction of the complete range of possible faulty configurations of some otherwise needed
component.

M.2: Discarding subtrees at input-insensitive faults. If, during the FT construction, a fault is generated which is
independent of any input to the component in question, the subtree corresponding to the elaboration of those input
values can be discarded immediately. An example occurs in Fig. 6, in caseTLE.R , which considersOK3

o
9CF3,c6 ∨

CK3
o
9OF3 ∨ CK3

o
9CF3,c6. SinceF3.c6 is astuckat zero fault, when it istrue, the behaviour ofK3 is immaterial. So

we can immediately discard the termCK3o
9CF3,c6 in favour ofOK3o

9CF3,c6, and indeed we need not even explore the
satisfiability ofOK3 in detail either.

M.3: Discarding locally subsumed expressions. If, during the construction, a range of options to explore is gen-
erated, some of which are subsumed by others, the subsumed options can be discarded immediately. E.g. in Fig. 6,
F1.c2 subsumesF1.c2∧ F2.c3.

M.4: Doing final subsumption checking at the subsystem level. Thetechniques outlined above are not guaranteed
to be complete, insofar as further minimisations to generate the MCSs may remain. Rather than leaving these to a final
whole-model subsumption check, the brute force subsumption checking to catch them can be done at the subsystem
level, since all contributions to the TLE for a fault in a subsystem likeFredare causally propagated along data pathways
within the subsystem (a structural assumption we take for granted). Thus the inclusion of the rest of the system will
result in an overall description which necessarily factorises, regardless of whether or not the factorisation is obscured
(whether to a human observer or to some algorithm) by the complexity of the final expression.

Note that it could be said that all ofM.1-M.4 are instances of subsumption, if one understands subsumption
from a semantic perspective, i.e. formulae are viewed up to logical equivalence. Unfortunately, algorithms running
on real computing machinery cannot view arbitrary formulaeup to logical equivalence without investing the effort to
prove the logical equivalence, and it is this work that we aretrying to save. Thus it could be said thatM.1 concerns
the subsumption ofCK3o

9CF3,c7 by CK3o
9OF3. However this subsumption only becomes explicit when both terms are

reduced to the cut sets that give rise to their respective behaviours, at which point a machine can indeed determine
that{F1.c2,F2.c3} is a subset of{F1.c2,F2.c3,F3.c7} and thus subsumes it. By noting the circumstances during the
FT algorithm itself, the reduction to cut sets ofCK3

o
9CF3,c7 is avoided. InM.2 a similar thing occurs. Thus it could be

said thatCK3
o
9CF3,c6 is subsumed byOK3

o
9CF3,c6 on the grounds that the cut set of the latter, i.e.{F3.c6}, is a subset of

all cut sets of the former. But again, this only becomes plainto a machine when all the cut sets have been computed.
Bringing the suggested optimisation to bear, saves in this case, a considerable amount of work.

When we apply the above insights to the running example whoseRT is indicated in Fig. 6, we get a considerably
smaller tree. We transform this into a legal FT as per [VSD+02], containing just the MCSs, by the process outlined in
Section 4. Doing this, we end up with the minimised fault treein Fig. 14.

Fault Trees for Reactive Systems I 29

7. Formal Minimisation

In the following, we denote byMin(RT) the resolution tree minimised according to the rules described in the previous
section. We give the following definition.

Definition 7.1 (Subsumption). Let Sbe a system andTLE a top level event. LetCS1 andCS2 be two cut sets forTLE
andS. We say thatCS1 subsumesCS2, writtenCS1 ⊑ CS2, iff CS1 ⊆ CS2.

We have the following obvious results.

Proposition 7.2 (Correctness).Let S be a system andTLE a top level event. LetRT = GenRT(TLE,S). Then the
minimized resolution tree is correct, that is, the following holds.

_

CS∈CCS(RT)

(
^

F∈CS

F) ⇔
_

CS∈CCS(Min(RT))

(
^

F∈CS

F) (52)

Proposition 7.3 (Minimality). Let Sbe a system andTLE a top level event. LetRT= GenRT(TLE,S). Then the cut
sets inCCS(Min(RT)) are minimal, that is, for everyCS1, CS2 ∈ CCS(Min(RT)) we have thatCS1 ⊑ CS2 ⇒ CS1 =
CS2.

Beyond the preceding, is the issue of how minimisation can beincorporated into ‘on-the-fly’ FT generation. The
material in Section 5 opens the way for this, though it has to be accepted, that being focused on describing an ab-
straction of a practical algorithm (moreover one that uses angelic features), it might be misleading in terms of the
practicality of the minimisation opportunities it offers.Nevertheless, we have the following result.

Proposition 7.4 (GenRT Safe Optimisation). If only minimal cut sets are of interest, then in theGenRTalgorithm
of Section 5:

1. It is safe to dispense with case Fig. 9.(d) in favour of Fig.9.(b).
2. In theExpandfunction, in cases Fig. 11.(b) or Fig. 11.(c), if at least oneof the OAS/C branches is realisable, then

it is safe to dispense with the correspondingAND(C1,C2) subtree.

Proof. Regarding 1., ifOS is realisable, then it leads to the empty cut set which is obviously minimal, so there is no
need to exploreCS. Regarding 2., for parallel composition, in case Fig. 11.(b), the two components are independent
since the variables that remain to be instantiated at the point of creation of a Fig. 11.(b) subtree are just IVs of one or
other component. Provided sayO1 ∧ C2 is realisable, it will lead to computed cut sets that only haveC2 faults. Clearly
any cut set ofC1 ∧ C2 will include C1 faults along with a set ofC2 faults, so will be subsumable by theC2 subset,
since these will be a cut set, by independence. The argument for sequential composition is the same, since the only
variables shared by the two components, their IFVs, have already been assigned at the top of a Fig. 11.(c) subtree,
thereby decoupling the two components. 2

The last point in the preceding proof indicates why the optimisation of Prop. 7.4 is merely safe rather than optimal.
In a sequential composition, there can be many assignments to the IFVs that realise the concession for the composite
subsystem. There may be one assignment leading to a cut setCS1′ ⊆ FV1 involving the fault variables of component
1 alone, and another assignment leading to a cut setCS12 ⊆ FV1∪FV2, involving the fault variables of both. Now
CS1′ may be a subset ofCS12∩FV1, in which case it subsumesCS12; or the opposite may hold; or they may be
incomparable. In the latter two casesCS12 may or may not itself also be minimal. Unfortunately, which of these cases
applies, is not apparent at the point of generating a Fig. 11.(c) subtree, at least not without a substantial additional
appeal to angelic nondeterminism.

Despite the above, a tightening of Prop. 7.4 can be made if there is enough determinism around.

Definition 7.5 (Definite TLE). A TLE for a systemS is definite iff it is equivalent to an assignment to all TLXVs.

Proposition 7.6 (GenRT Deterministic Optimisation). Let S be a system, all of whose BCs are deterministic, and
let TLE be a definite top level event forS. Then the optimisations of Prop. 7.4 ensure thatonly minimal cut sets are
generated byGenRT.

Proof. The assumption of a definite TLE and of a deterministicS, ensure that providedTLE∧ S∧ CS is realisable,
the TLE node has a unique ASG node in Fig. 9.(c), and each sequential composition generates a unique ASG node
in Fig. 11.(c). LetCSA andCSB be two cut sets generated by the optimisedGenRTand suppose thatCSA ⊆ CSB.
Let B.F ∈ CSB−CSA. Then in the truncated parse tree ofS relating to the generation ofCSB, there will be a nearest

30 Banach and Bozzano

ancestor of BCB where theCSA run ofGenRTselected an OAS/C branch while theCSB run selected the AND(C1,C2)
subtree. By determinism, both are consistent with a single assignment to all variables other than IVs of the composite,
which decouples the two components. If theCSA run selected an OAS/C branch, then the OAS/C branch is realisable.
Therefore the optimisedGenRTwould have discarded the AND(C1,C2) subtree in its favour, and we deduce that
B.F 6∈ CSB−CSA after all, givingCSB−CSA = ∅. Hence only minimal cut sets are generated. 2

It is now interesting to compare the above results with what was done in Section 6. There, it was clear thatM.1-M.3
could be applied ‘on-the-fly’. They are clearly special cases of the optimisations in Prop. 7.4, which thus subsumes
them. However Prop. 7.4 relies in general on angelic nondeterminism, and in a practical setting, angelic nondeter-
minism costs — for instance with its more extravagant use, one could simply posit that the minimal cut sets were
angelically returned. So in reality there will be a tradeoffbetween the cost of resolving any angelic nondetermin-
ism in a minimal cut set algorithm, and the cost of mopping up residual non-minimal cut sets via a final brute-force
subsumption check.

8. Related Work

The present work falls into the area of model based safety analysis [BV+03b,BCC+03,B+06,BV07,BCT07]. Model
based safety analysis is carried out on formally specified models which take into account system behaviour in the
presence of malfunctions, that is, possible faults of some components. In particular, this paper builds upon previous
work describing algorithms for automated fault tree generation, in particular those implemented in FSAP [BV07,
BCT07,FSA], a platform for supporting the development and safety assessment of complex systems. Incorporation of
the algorithms described in this paper in FSAP is work in progress - a more thorough comparison and discussion of
some relevant issues is given in PaperII.

The FSAP platform has been developed within three European-Union-sponsored projects involving various re-
search centers and industries from the avionics sector, namely the ESACS10 (Enhanced Safety Assessment for Com-
plex Systems), ISAAC11 (Improvement of Safety Activities on Aeronautical Complexsystems) and MISSA12 (More
Integrated Systems Safety Assessment) projects. For a moredetailed description of the project goals we refer to
[BV+03b, BCC+03, B+06]. The FSAP platform has been used to carry out safety assessment of models at industrial
level, see e.g. [BCC+03].

Regarding model based safety analysis, we also mention [JH05, JMWH05], sharing some similarities with the
ISAAC approach. In particular, the integration of traditional development activities with safety analysis activities,
based on a formal model of the system and a clear separation between the nominal model and the fault model, are
ideas that have been pioneered by ESACS [BV+03b]. Finally, we mention [MTH03,TLM02,TM03], sharing with the
ISAAC project the application field (i.e. avionics), and theuse of NuSMV as a target verification language.

The retrenchment based algorithms described in this paper improve over the ones described in [BV07] for two
reasons. First, they allow the generation of structured fault trees, which are more informative than the flat fault trees
currently available in FSAP. Second, assuming the enhancements of PaperII, they allow the taking of dynamic infor-
mation into account, e.g. they can deal with transient failures, and feedback. However they come at a price, that of
potentially excessive complexity, so their realisation must be approached with caution.

We distinguish two different forms of complexity. The complexity of the analysis itself and of an implementation
of it, and the complexity (in terms of, e.g., size and readability) of the generated results. As regards complexity of the
analysis, we defer the discussion to PaperII [BB10], where we briefly discuss the main issues related to a practical
implementation of our techniques using symbolic model checking, in the more general context of time-dependent
circuits. Here it will suffice to say that holding all the details of the analysis in the symbolic world may be prohibitive,
on both time and space grounds, and hence details must be introduced with care and in a controlled way. A full
discussion of this topic, and a thorough outline of the similarities and differences between the retrenchment-based
techniques and the symbolic ones is, however, outside the scope of these papers, and will be published elsewhere.

Concerning complexity of the generated results, there are two ways to deal with this issue, similarly to more tra-
ditional manual analysis techniques. First, it is possibleto restrict the boundary of the analysis. For instance, it is
possible to limit the analysis only to specific sub-systems or equipments of interest. Second, it is possible to reduce
the level of resolution of the analysis, using, e.g. abstraction (and refinement) techniques. For instance, it is possible

10 http://www.esacs.org.
11 http://www.isaac-fp6.org.
12 http://www.missa-fp7.eu.

Fault Trees for Reactive Systems I 31

to view the faults of a given major component as being elementary, without tracing their causes down to more basic
components. This is not different from what happens in traditional fault tree analysis. Moreover, as discussed in Sec-
tion 2.4, the retrenchment-based framework allows for progressive decomposition and recomposition of hierarchical
models, based on the so-called Tower Pattern construction [BJ, Jes05, BPJS05, BPJS06a, BPJS06b], thus facilitating
integration of results obtained at different levels of detail. Finally, the readability of the generated trees, e.g. asregards
the readability of the automatically generated intermediate events, relies on human interpretation and postprocessing
by safety analysts.

Our work has been inspired by Hip-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies)
[Pap00,PM01,PMSH01], and the FoSaM (Formal Safety Model) approach described in [BV+03b,BV07]. Hip-HOPS
is a framework incorporating a mechanical fault tree synthesis algorithm based on the structure of the design model.
The synthesis of the fault tree is based on an exploratory analysis called FFA (Functional Failure Analysis), used to
identify the failure modes of a given component, and a tabular technique called IF-FMEA, whose aim is to generate a
model of the local failure behaviour of the component under investigation. IF-FMEA tables are conceptually similar to
the Failure Propagation and Transformation Notation [FMNP94], a notation used to represent the failure propagation
in a system via a number of modules, each module corresponding to an abstraction of a set of fault trees describing a
particular component. The focus of the Hip-HOPS methodology is not on generating fault treesper se, but in properly
organizing such fault trees in accordance with the structure of the design model, and in managing model evolution.
The result of Hip-HOPS is a hierarchical model that progressively records with increasing detail the implementation of
the system. Our work is instead focused on the automation of the fault tree generation process, starting from a formal
specification of both system and fault models. Furthermore,we discussed how the synthesis algorithm can be coupled
with suitable on-the-fly tactics to perform local minimal cut set computation, reducing the overall computational effort.

A large amount of work has been done in the area of probabilistic safety assessment (PSA) and in particu-
lar on dynamic reliability[Siu94]. Dynamic reliability is concerned with extending the classical event or fault tree
approaches to PSA by taking into consideration the mutual interactions between the hardware components of a
plant and the physical evolution of its process variables [MZDL98]. For different approaches to dynamic reliabil-
ity see e.g. [Ald87, Pap94, CIMP92, MZDL98, SD92]. These approaches are mostly concerned with the problem of
fault tree evaluation, whereas our focus was on automatic synthesis. Also concerned with fault tree evaluation is
DIFTree [MDCS98], a methodology for the analysis of dynamicfault trees, implemented in the Galileo tool [SDC99].
It uses a modularisation technique [DR96] to identify (in linear time) independent sub-trees, that can be evaluated us-
ing the most appropriate techniques (BDD-based techniquesfor static fault trees, Markov techniques or Monte Carlo
simulation for dynamic ones). In addition, it supports different probability distributions for component failures. Asim-
ilar modularisation and decomposition technique is advocated in [AS98]. That technique is orthogonal to our notion
of structural generation; in particular, it is concerned with isolating different sub-trees that can be synthesised (or eval-
uated) separately, whereas our structural information canbe used to synthesise (or evaluate) each sub-tree on its own.
Finally, we mention [Sch03, TS03], both concerned with automatically proving the consistency of fault trees using
model checking techniques; [TS03] presents a fault tree semantics based on Clocked CTL (CCTL) and uses timed
automata for system specification, whereas [Sch03] presents a fault tree semantics based on the Duration Calculus
with Liveness (DCL) and uses Phase Automata as an operational model.

Regarding the algorithms for fault tree generation used in FSAP, the minimisation routines used to extract the
set of minimal cut sets are based on classical procedures forminimisation of Boolean functions, specifically on the
implicit-search procedure described in [CM92, CM93, Rau93, RD97], based on BDDs [Bry92] (see also [RPA08] for
enhanced methods to convert fault trees into BDDs). Alternative explicit-search and satisfiability based techniques
for computation of prime implicants are described, e.g. in [MOMS98]. In addition, important optimisations, that are
tailored to the generation of minimal cut sets, have been recently implemented [BCT07] on top the main routines
for minimising Boolean functions. Some of these optimisations resemble the minimisation opportunities described in
Section 6. In particular, rulesM.1 andM.2 are taken care of by a combination of the BDD package reduction rules
and the DCOI (Dynamic Cone of Influence) construction of [BCT07], whereas rulesM.3 andM.4 are taken care of
by dynamic pruning [BCT07]. The rules of Section 6 may offer further opportunities for optimisations. A thorough
discussion of this topic lies beyond the scope of this paper,and will be reported elsewhere.

9. Conclusions and Forward Look to PaperII

In the preceding sections, we set up our machinery for treating fault injection via retrenchment, and explored its
properties. We introduced the relevant formalisms for systems and faults, and the relevant facts about retrenchment,
especially concerning composition. We showed how the retrenchment concessions could be analysed to generate a

32 Banach and Bozzano

deeply nested resolution tree in a structured manner. This deeply nested resolution tree is the core output of our
technique, and provides a jumping off point for what could potentially be many kinds of further processing and
analysis. Because of the widely known nature of the fault tree concept, we post-processed our resolution tree into
a fairly conventional fault tree format, this being of additional significance since fault trees are the input format for
commercial RAMS tools, see e.g. [ISO]. We backed up the example led discussion with a thoroughgoing theoretical
treatment. We examined minimisation, and showed that the structured analysis gave rise to opportunities for on-
the-fly minimisation, which is always welcome in situationsin which complexity considerations defeat conventional
approaches, as they do for automated fault tree generation.Finally, we were able to position these minimisation
opportunities within the theoretical framework developed.

From an engineering perspective, we believe that the running examples presented throughout the paper should have
convinced the reader of the usefulness and potentialities of automatically generated fault trees. While it is true thatsuch
fault trees are not guaranteed to obey the notion of causality given in [VSD+02] (compare also the discussion in Section
3), the fact that structural decomposition, as described inthis paper, closely follows the system dataflow, suggests, that
in many cases of interest, the fault tree interconnections may in fact correspond to genuine causal relationships. Under
the hypotheses of Prop. 5.25, which is one of the main resultsof this paper, these interconnections are built according
to the system hierarchy. Hence, we can evidently draw a parallel between our formal fault tree derivation and the
structural decomposition prescribed by the ‘state of system’ rule of [VSD+02]. The decomposition has a natural
correspondence with the expansion rules used in the resolution tree algorithm (compare Fig. 10).

The same expansion rules, when applied to basic components,have a natural counterpart with the ‘state of compo-
nent’ decomposition prescribed by [VSD+02]. In principle, our routines can address primary, secondary, and command
faults. Clearly, given that our framework relies on a formalmodel of the system, faults may be discovered to the extent
that they have been covered in the formal model, which may be not completely straightforward for some types of
faults. For instance, modeling secondary faults due to operation of a component in an environment for which it is not
qualified, requires a formal model of the environment covering the environmental conditions of operation that must be
part of the analysis. A similar line of reasoning holds for command faults due to improper operation or human error.
Regarding interpretation of faults, and their classification into the previous categories, it is the responsibility ofthe
safety engineer to analyze the different cases that formal derivation generates and assign them a correct semantical
interpretation in terms of primary, secondary or command faults. Our claim is that the intermediate events generated
by our routines, when analyzed by a safety engineer that has agood comprehension of the system at hand, are a good
starting point for this post-interpretation, as they contain assignments to all the system variables of interest. Finally,
we wish to remark on the important role that automated routines, coupled with on-the-fly minimisation, may have in
the computation of minimal cut sets (and hence for quantitative evaluation) — such computations may be manually
infeasible for many complex models encountered in practice.

From a more general development process perspective, we believe that the techniques presented in this paper
should be used to complement, not necessarily replace, traditional techniques based on expert review and judgment.
Traditional fault tree analysis is an exploratory technique supported by expert knowledge and comprehension of the
system at hand, hence it is guided, but not limited by design and safety models, and automated techniques are in
fact constrained in what they can accomplish by such models.Any deficiency or limitation in the design and fault
models can get exposed in the generated results. However, this is not a limitation of our techniques as such, but
rather is intrinsic to automated formal verification in general. As is usually the case, the results of formal verification
are meaningful to the extent that they can be reviewed and interpreted using human expertise. Then again, on the
positive side, automatic analysis helps reduce the effort and prevent human error, in particular in the most repetitive
and mechanical parts of the analysis. A comparison between automatically generated results and manually generated
ones may expose problems that have escaped manual analysis,and possibly trigger system redesign recommendations.
Moreover, it can expose problems in design and safety models, which may be used elsewhere for different kinds of
analysis, hence resulting in useful feedback for design andsafety engineers.

The work described in this paper applies to acyclic combinational logic circuits, in which there is no time delay
between the consumption of inputs and the production of outputs, and no state. In PaperII, we address these shortcom-
ings. The need to deal with clocked circuits entails the use of I/O streams and state components. It turns out that these
aspects complicate considerably the composition and retrenchment machinery used in this paper, so a large part of Pa-
perII is concerned with elaborating those details. However, once the basic machinery is in place, system descriptions
reduce once more to collections of variables, each taking its values in some finite set. From that point onwards, the
theoretical basis is like the one of this paper, and the theoretical considerations can therefore follow those here rather
closely. PaperII therefore relies quite heavily on reusingthe facts established in the latter parts of this paper.

Fault Trees for Reactive Systems I 33

References

[Ald87] T. Aldemir. Computer-assisted Markov Failure Modeling of Process Control Systems.IEEE Transactions on Reliability, R-36:133–
144, 1987.

[AS98] A. Anand and A. K. Somani. Hierarchical Analysis of Fault Trees with Dependencies, using Decomposition. InProc. Annual
Reliability and Maintainability Symposium, pages 69–75, 1998.

[B+06] M. Bozzano et al. ISAAC, a Framework for Integrated Safety Analysis of Functional, Geometrical and Human Aspects. InProc.
European Congress on Embedded Real Time Software (ERTS 2006), 2006.

[BB10] R. Banach and M. Bozzano. The Mechanical Generation of Fault Trees for Reactive Systems via Retrenchment II: Clocked and
Feedback Circuits, 2010. Submitted.

[BC04] R. Banach and R. Cross. Safety Requirements and FaultTrees using Retrenchment. In M. Heisel, P. Liggesmeyer, andS. Wittmann,
editors,Computer Safety, Reliability and Security, volume 3219 ofLNCS, pages 210–223, Potsdam, Germany, 2004. Springer.

[BCC+03] M. Bozzano, A. Cavallo, M. Cifaldi, L. Valacca, and A. Villafiorita. Improving Safety Assessment of Complex Systems:An Industrial
Case Study.International Symposium of Formal Methods Europe (FME 2003), Pisa, Italy, LNCS, 2805:208–222, September 2003.

[BCT07] M. Bozzano, A. Cimatti, and F. Tapparo. Symbolic Fault Tree Analysis for Reactive Systems. InProc. Symposium on Automated
Technology for Verification and Analysis (ATVA 2007), pages 162–176, 2007.

[BJ] R. Banach and C. Jeske. Retrenchment and Refinement Interworking: the Tower Theorems. Submitted. See [Ret].
[BJP08] R. Banach, C. Jeske, and M. Poppleton. Composition Mechanisms for Retrenchment.J. Log. Alg. Prog., 75:209–229, 2008.
[BP98] R. Banach and M. Poppleton. Retrenchment: An Engineering Variation on Refinement.B’98: Recent Advances in the Development

and Use of the B Method: Second International B Conference, Montpellier, France, LNCS, 1393:129–147, 1998.
[BP03] R. Banach and M. Poppleton. Retrenching Partial Requirements into System Definitions: A Simple Feature Interaction Case Study.

Requirements Engineering Journal, 8:266–288, 2003.
[BPJS05] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Retrenching the Purse: Finite Sequence Numbers and the TowerPattern. In

J. Fitzgerald, I. Hayes, and Tarlecki A., editors,Formal Methods 2005, volume 3582 ofLNCS, pages 382–398, Newcastle, UK, 2005.
Springer.

[BPJS06a] R. Banach, M. Poppleton, C. Jeske, and S. Stepney.Retrenching the Purse: Finite Exception Logs, and Validating the Small. In
M. Hinchey, editor,Software Engineering Workshop 30, pages 234–245, Layola College Graduate Center, Columbia,MD, 2006.
IEEE.

[BPJS06b] R. Banach, M. Poppleton, C. Jeske, and S. Stepney.Retrenching the Purse: Hashing Injective CLEAR Codes, and Security Properties.
In T. Margaria and B. Steffen, editors,2nd International Symposium on Leveraging Applications ofFormal Methods, Verification and
Validation, pages 82–90, Paphos, Cyprus, 2006. IEEE.

[BPJS07] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Engineering and Theoretical Underpinnings of Retrenchment. Sci. Comp. Prog.,
67:301–329, 2007.

[Bry92] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams.ACM Computing Surveys, 24(3):293–318,
1992.

[BV03a] M. Bozzano and A. Villafiorita. Integrating Fault Tree Analysis with Event Ordering Information.Proc. ESREL 2003, pages 247–254,
2003.

[BV+03b] M. Bozzano, A. Villafiorita, et al. ESACS: An IntegratedMethodology for Design and Safety Analysis of Complex Systems. Proc.
ESREL 2003, pages 237–245, 2003.

[BV07] M. Bozzano and A. Villafiorita. The FSAP/NuSMV-SA Safety Analysis Platform. International Journal on Software Tools for
Technology Transfer, 9(1):5–24, 2007.

[CIMP92] G. Cojazzi, J. M. Izquierdo, E. Meléndez, and M. S.Perea. The Reliability and Safety Assessment of ProtectionSystems by the Use
of Dynamic Event Trees. The DYLAM-TRETA Package. InProc. XVIII Annual Meeting Spanish Nucl. Soc., 1992.

[CM92] O. Coudert and J. C. Madre. Implicit and Incremental Computation of Primes and Essential Primes of Boolean Functions. InProc.
Design Automation Conference (DAC 1992), pages 36–39. IEEE Computer Society Press, 1992.

[CM93] O. Coudert and J. C. Madre. Fault Tree Analysis: 1020 Prime Implicants and Beyond. InProc. Annual Reliability and Maintainability
Symposium (RAMS 1993), 1993.

[DBB92] J. Dugan, S. Bavuso, and M. Boyd. Dynamic fault tree models for fault tolerant computer systems.IEEE Transactions on Reliability,
41(3):363–377, 1992.

[DR96] Y. Dutuit and A. Rauzy. A Linear-Time Algorithm to Find Modules in Fault Trees.IEEE Transactions on Reliability, 45(3):422–425,
1996.

[dRE98] W. P. de Roever and K. Engelhardt.Data Refinement Model-Oriented Proof methods and their Comparison. Cambridge University
Press, 1998.

[FMNP94] P. Fenelon, J. A. McDermid, M. Nicholson, and D. J. Pumfrey. Towards Integrated Safety Analysis and Design.Applied Computing
Review, 2(1):21–32, 1994.

[FSA] The FSAP/NuSMV-SA platform.http://sra.itc.it/tools/FSAP.
[Int96] SAE International. Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equip-

ment, December 1996.
[ISO] Isograph.http://www.isograph-software.com.
[Jes05] C. Jeske.Algebraic Integration of Retrenchment and Refinement. PhD thesis, University of Manchester, 2005.
[JH05] A. Joshi and M. P. E. Heimdahl. Model-Based Safety Analysis of Simulink Models Using SCADE Design Verifier. In R. Winther,

B.A. Gran, and G. Dahll, editors,Proc. Conference on Computer Safety, Reliability and Security (SAFECOMP 2005), volume 3688
of LNCS, pages 122–135. Springer, 2005.

[JMWH05] A. Joshi, S. P. Miller, M. Whalen, and M. P. E. Heimdahl. A Proposal for Model-Based Safety Analysis. InProc. AIAA / IEEE
Digital Avionics Systems Conference (DASC 2005), 2005.

[MDCS98] R. Manian, J. B. Dugan, D. Coppit, and K. J. Sullivan. Combining Various Solution Techniques for Dynamic Fault Tree Analysis of
Computer Systems. InProc. High-Assurance Systems Engineering Symposium (HASE1998), pages 21–28. IEEE, 1998.

34 Banach and Bozzano

[MOMS98] V. M. Manquinho, A. L. Oliveira, and J. P. Marques-Silva. Models and Algorithms for Computing Minimum-Size Prime Implicants.
In Proc. International Workshop on Boolean Problems (IWBP 1998), 1998.

[MTH03] S. P. Miller, A. C. Tribble, and M. P. E. Heimdahl. Proving the Shalls. InProc. Formal Methods Europe (FM 2003), volume 2805 of
LNCS, pages 75–93. Springer, 2003.

[MZDL98] M. Marseguerra, E. Zio, J. Devooght, and P. E. Labeau. A Concept Paper on Dynamic Reliability via Monte Carlo Simulation.
Mathematics and Computers in Simulation, 47:371–382, 1998.

[Pap94] I. A. Papazoglou. Markovian Reliability Analysis of Dynamic Systems. In T. Aldemir, N. O. Siu, A. Mosleh, P. C. Cacciabue, and
B. G. Göktepe, editors,Reliability and Safety Assessment of Dynamic Process Systems, volume 120 ofNATO ASI Series F, pages
24–43. Springer, 1994.

[Pap00] Y. Papadopoulos.Safety-Directed System Monitoring Using Safety Cases. PhD thesis, Department of Computer Science, University
of York, 2000. Tech. Rep. YCST-2000-08.

[PM01] Y. Papadopoulos and M. Maruhn. Model-Based Synthesis of Fault Trees from Matlab-Simulink Models. InProc. Conference on
Dependable Systems and Networks (DSN 2001), pages 77–82, 2001.

[PMSH01] Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner. Analysis and Synthesis of the Behaviour of Complex Programmable
Electronic Systems in Conditions of Failure.Reliability Engineering and System Safety, 71(3):229–247, 2001.

[Rau93] A. Rauzy. New Algorithms for Fault Trees Analysis.Reliability Engineering and System Safety, 40(3):203–211, 1993.
[RD97] A. Rauzy and Y. Dutuit. Exact and Truncated Computations of Prime Implicants of Coherent and Non-Coherent Fault Trees within

Aralia. Reliability Engineering and System Safety, 58(2):127–144, 1997.
[Ret] Retrenchment Homepage.http://www.cs.man.ac.uk/retrenchment.
[RPA08] R. Remenyte-Prescott and J.D. Andrews. An enhancedcomponent connection method for conversion of fault trees to binary decision

diagrams.Reliability Engineering and System Safety, 93(10):1543–1550, 2008.
[Sch03] A. Schäfer. Combining Real-Time Model-Checking and Fault Tree Analysis. InProc. Formal Methods Europe (FM 2003), volume

2805 ofLNCS, pages 522–541. Springer, 2003.
[SD92] C. Smidts and J. Devooght. Probabilistic Reactor Dynamics II. A Monte-Carlo Study of a Fast Reactor Transient.Nuclear Science

and Engineering, 111(3):241–256, 1992.
[SDC99] K. J. Sullivan, J. B. Dugan, and D. Coppit. The Galileo Fault Tree Analysis Tool. InProc. Symposium on Fault-Tolerant Computing

(FTCS 1999), pages 232–235. IEEE, 1999.
[Siu94] N. O. Siu. Risk Assessment for Dynamic Systems: An Overview. Reliability Engineering and System Safety, 43:43–74, 1994.
[TLM02] A. C. Tribble, D. L. Lempia, and S. P. Miller. Software Safety Analysis of a Flight Guidance System. InProc. AIAA / IEEE Digital

Avionics Systems Conference (DASC 2002), 2002.
[TM03] A. C. Tribble and S. P. Miller. Software Safety Analysis of a Flight Management System Vertical Navigation Function – A Status

Report. InProc. AIAA / IEEE Digital Avionics Systems Conference (DASC2003), 2003.
[TS03] A. Thums and G. Schellhorn. Model Checking FTA. InProc. Formal Methods Europe (FM 2003), volume 2805 ofLNCS, pages

739–757. Springer, 2003.
[VGRH81] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F.Haasl. Fault Tree Handbook. Technical Report NUREG-0492, Systems and

Reliability Research Office of Nuclear Regulatory ResearchU.S. Nuclear Regulatory Commission, 1981.
[VSD+02] W.E. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick III, and J. Railsback. Fault Tree Handbook with Aerospace Applica-

tions. Technical report, NASA, 2002.

