Under consideration for publication in Formal Aspects oh®uiting

The Mechanical Generation of Fault Trees
for Reactive Systems via Retrenchment I:
Combinational Circuits 1

Richard Banachand Marco Bozzarfo

1school of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.

banach@s. man. ac. uk,

2FBK-IRST, Via Sommarive 18,

Povo, 38123 Trento, Italy

bozzano@ bk. eu

Abstract. The manual construction of fault trees for complex systesvaierror-prone and time-consuming activity,
encouraging automated techniques. In this paper we showtt®wetrenchment approach to formal system model
evolution can be developed into a versatile structuredagmbr for the mechanical construction of fault trees. The
system structure and the structure of retrenchment colocsssteract to generate fault trees with appropriatebpde
nesting. We show how this approach can be extended to dealmiitimisation, thereby diminishing thgost hoc
subsumption workload and potentially rendering some gifda cases feasible.

Keywords: Fault Tree Analysis, Fault Injection, Retrenchment, Medta Fault Tree Synthesis, Combinational
Circuits

1. Introduction

Safety analysis of complex systems traditionally involasgt of activities which help engineers understand thesyst
behaviour in degraded conditions, that is, when some phttesystem are not working properly. In aeronautics, for
instance, safety requirements stating the (degraded)itcmm&l under which systems must remain operational are
defined along with the other system requirements. Safetlysinaims to identify all possible hazards of the system,
in order to ensure that the system meets the safety requitsrdemanded. Safety analysis is particularly critical in
the case of reactive systems, that is systems with infimite behaviour, because hazards can be the result of complex
interactions involving the dynamics of the system [Siu94].

Correspondence and offprint requestsRichard Banach, School of Computer Science, Universitylafchester, Oxford Road, Manchester, M13
9PL, U.K. email:banach@s. man. ac. uk
1 Work partly supported by the E.U. projects ISAAC, contragt AST3-CT-2003-501848, and MISSA, contract no. ACP7-G)9&-212088.

2 Banach and Bozzano

One popular safety analysis method is Fault Tree AnalySia)FfVGRH81,VSD'02]. It is a deductive analysis,
which, given the specification of an undesired state (e.gilaré state), usually referred to txp level even(TLE),
systematically builds all possible chains of one of morédfasilts that contribute to the occurrence of the eventltFau
trees provide a convenient symbolic representation ofdlhebination of events causing the TLE, and they are usually
represented as a parallel or sequential combination ofdbgiates. The problem of fault tree generation for reactive
systems is substantially harder than in the traditionallmoational case, due to the presence of dynamics, which can
influence the presence of failures.

The manual construction of fault trees relies on the abditghe safety engineer to understand and to foresee
the system behaviour. As a consequence, it is a time-conguamd error-prone activity; moreover, managing the
generated fault trees is challenging in case of large compjstems. Therefore, in recent years there has been a
growing interest in model-based techniques and tools tnaate the production of fault trees [B\03b, B"06], such
as the FSAP safety analysis platform [BV07, FSA].

The starting point for this paper is our previous work relgtretrenchment [Ret, BPJS07, BJP08] and formal
system model evolution [BC04]. In [BC04] we showed how netttement, as opposed to conventional refinement, can
provide a formal account of the so-called fault injectionqess [BV07], that takes the abstract system model (that
is the model of the system in nominal conditions), to the cetecsystem model (that is the model enriched with a
description of the envisaged faults the system is desigmbed tobust against).

In this and a companion paper, which we refer to below as PgB810], we show how retrenchment can be
developed into a versatile structured approach for the améchl construction of fault trees for reactive systéms.
Building on the ideas sketched in [BC04], where we exempliftee generation of a fault tree on a two-bit adder
example, in this paper we show how the simulation relatiorettEnchment can be used to systematically derive fault
trees built upon the system structure. This is achieved pjo#ing the structure of retrenchment concessions, using
suitable notions of composition to gather the degradedsdase the concession of a composed retrenchment.

In the present paper we develop these techniques for théesingse of combinational circuits, extending to timed
acyclic circuits, and timed circuits with feedback in Pdperhis paves the way for the automated safety analysis
of reactive systems. The techniques we propose usefullpmnent more traditional safety assessment techniques,
in particular those based on fault tree analysis. Our tephes rely on a formal model of the design and of faulty
behavior, whereas traditional techniques rely on humarerige and knowledge of the system at hand. Hence, a
manual review of the automatically generated fault treeg hedp the design and safety engineers identify errors (or
limitations) in design and fault models, or in manually prodd results, and possibly suggest either changes in the
model themselves, or system redesign recommendations.

The techniques we present in this paper and in Paperll ingpooer the ones discussed in [BV07], in that they
allow the mechanical generation of fault trees built upangirsstem structure, which are more informative than the flat
(two-level) fault trees of [BV07], thus facilitating manuaview by safety analysts. Furthermore, we exemplify how
these techniques can be adapted to generating the minitsétsuof a fault tree. We show that, by processing the
generated subtrees on the fly, it is possible to perform sominisations locally, thereby diminishing theost hog
brute-force subsumption workload of traditional minintisa algorithms.

The rest of the paper is structured as follows. In Section Z&teup our basic concepts for systems and their
compositions, and present retrenchment and relevantnsotibcomposition for retrenchments. In Section 3 we give
an overview of fault tree analysis and discuss the role df feees in the traditional safety and reliability enginegr
process. In Section 4 we present our retrenchment diregigaach to the generation of structured fault trees on a
running example. The technique is based on resolution fedesolution trees generated by the underlying algorithm
can then be post-processed into fault trees having a sthrfidianat. Section 5 formalises the approach, showing,
crucially, that the generation of resolution trees is scamndicomplete. The trees thus generated can be used forsvariou
purposes, and we cover their post-processing into fawdtfsam. In Section 6 we show how the structured analysis
can be modified to reduce the work of finding the minimal cut sésome fault condition. Section 7 formalises these
insights, making them rigorous in the context of SectionttisTompletes our retrenchment based treatment of fault
tree generation for combinational circuits. Section 8 asses related work, and Section 9 concludes, looking fatwar
to Paperll.

Notation In the rest of the paper we use relational techniques. i@l we refer to a relation by talking about
the predicate which defines it.

2 Qur techniques generate so-calkegolution treeswhich can be mechanically transformed into traditionaltfrees, whenever needed.

Fault Trees for Reactive Systems | 3

2. Systems, Retrenchments and Compositions

In this paper we approach the mechanisable constructioautif trees for system models via the technique of fault
injection. Fault injection changes the fault-free systewdsi into the faulty system model, by making alterations
to the definition of its behaviour that usually make the twestsyn models incompatible with each other. Relating
two incompatible models of this kind is not trivial theowstily: most theoretical approaches are concerned with
progressing a system abstraction towards code, namelyrgfitement Fault injection is therefore best viewed as
a special kind ofystem evolutianFor this we need a formal approach to system evolution, hyareérenchment
[Ret,BPJS07,BP98,BP03,BJP08] — it proves flexible enoaglapture the kind of system changes we have in mind.
This section is concerned with developing the technicdbta® need.

We focus on synchronous hardware systems, and we descrilbeaniels using collections of input/output trans-
formers, one transformer per component or collection ofpoments, depending on the granularity of the description.
An I/O transformer is a relation from the system’s inputdte system’s outputs. For the combinational circuits of this
paper, the I/O transformers act instantaneously.

2.1. Circuits and their Compositions

Combinational digital hardware circuits typically haversminput signals and some output signals. Henceforth we
will assume that all circuits ar&cyclic, and alsdime invariant i.e. that observed behaviour does not depend on time.
We will also assume that circuits atetal as relations from inputs to outputs, i.e. in 1/O terminolothey will be
input ready. This will be useful later, and is inevitably the case in pi@e For convenience, we also record here that
all data types we use afimite, as one would expect in a digital hardware context.

Let AcyOp(short forAcyclicOperatiol be such a circuit, and suppose thatyOphas three inputs,is,i2, and
three output®g,01,02. Then we can represent the behaviouAa/Opvia the relationAcyOg (o, i1,i2), (0o, 01,02))
where we have grouped the inputs and outputs using angl&édisadVe next consider composition mechanisms for
such relations.

2.1.1. Parallel Composition:

If AcyOp andAcyOp are two I/O transformers, with the same signatureA@gOpfor convenience, but with addi-
tional subscripts 1 and 2 respectively, then their parathehposition is given by:

AcyOp2((i10,111,112 120,121, 122), (010,011, 012,020, 021, 022)) =
AcyOnp ({i10,i11,i12), (010,011,012)) A ACYyOR((i20,i21,i22), (020,021,022)) (1)

2.1.2. Skew-Sequential Composition:

Suppose that\cyOp andAcyOp have the signatures and dependency structufecgOp and suppose we want to
compose them sequentially by identifying signal$\of/Op andAcyOp as follows:

010 = i21 011 = i 2

We note that to avoid ambiguity, we need to specify which aigm@are to be identified. The general case, in which
it is not necessary thatll the output signals oAicyOp are connected tall the input signals oAcyOp, explains
why it is called theskewsequential composition. Let us write the signal identifaas in (2) asd. This will give
usAcyOp;;2. We suppress thg” subscript when the connecting signals can be understawd fhe context. In our
example,012 becomes an output signal of the composed circuit. Note fhthere areno identified signals, skew-
sequential composition reduces to parallel composition.

The composed I/O relatiohcyOn ;> can be calculated by composing the 1/O relatiéogOp andAcyOp, along
the connecting signals. Fig. 1 gives an idea of what this peced. We thus obtain the following:

AcyOn ;2((i10,i11,112,i20), (012,020,021,022)) =
(3x,y @ AcyOn ((i10,i11,i12), (X,¥,012)) A AcyOR((i20,X,Y), (020,021,022)) (3)

4 Banach and Bozzano

i0 020

10— —

021

in—j — — o2

ilZ_ 12

AcyOp, AcyOp,

Fig. 1. The skew-sequential composition of circusyOp andAcyOp.

2.2. Dataflow Retrenchment

We now turn to retrenchment. Retrenchment was designed/édutéon steps between system models described via
general state transition systems. As such, it deals wittsitians that feature not only the consumption of an input
i and the generation of an outpaitbut also a change of the internal state of the system. THigénerality will be
needed in Paperll, which deals with stateful systems, b, e deal with purely combinational digital circuits, we
can restrict to a simpler state-free formulation: dataflewenchment. In particular, no separate initialisatiateca

are needed, as they would be if there were initial states toweatout.

Retrenchment relates two system models, an abstrachisieand a concrete on@onc, say. We will assume
that the transitions of\bs collect intooperations e.g.Opa(i,0), which are relations (I/O transformers) of the kind
discussed above. F@onc, the corresponding operation will l&pc(j,p), so thaf represents its input(s), anmits
output(s).

In this simple dataflow formulation, a retrenchment frébs to Conc consists of two things. Firstly, for every
corresponding pair of operation®pa(i,0) andOpc(j,p), there are three relations, théthin relationWoy(i,j), the
outputrelationOgp(0, p,i,j), and theconcedeselationCop(0,p,i,j) — collectively these are called the retrenchment
data. Secondly (and on a per-operation basis), the opesaditd retrenchment data must satisfy the correctness proof
obligation (PO):

WOp(iaj) A OpC(Jap) = (30. OpA(ivo) A (OOD(Oa palvj) \ COP(07 palaj))) (4)

This says that provided the within relation is true for a pdiabstract and concrete input$, whenever there is a
transition of the concrete operation (frginthen there is a transition of the corresponding abstrpetation (from
i), such that the resulting abstract and concrete outppteitherestablish the output relatidDop(0,p,i,j), or they
establish the concedes relatiGap(0,p,i,j). Each choice of different retrenchment data Abs andConc yields a
different retrenchment, and makes a different statememnitahe relationship between them.

The absence of state from the simple dataflow formulatiorebtEnchment just given, brings it much closer to
conventional notions of refinement for pure 1/O systems tvanld be the case if state were present — the great
deviation from this being, of course, the presence of theessiorCoy, in the conclusion of the PO.

Thus, the within relation (for a given operation) acts juke lan input transformer, though being arpriori
unrestricted relation (to aid modelling in situations wdémne relationship between abstract and concrete systems is
not as close as one would mathematically like), it is notescittjo the totality or surjectivity restrictions that onéesf
finds in refinement formulations. We can view the within nelatas restricting the scope of the statement about the
relationship betweeAbs andConc that one wishes to make (due, perhaps, to the intrinsic ipedibility between
them in certain areas), allowing us to make more incisivestants about those parts of the two systemsdteanore
compatible. Note that due to the ‘don’t care’ interpretatid the implication connective=-’ when the hypotheses of
the PO (4) are not all true, it is vital that the retrenchmes@ruassures himself that the within relation employed in
any given situation covers a wide enough range of circunessan- i.e everythinghat one might wish to be covered
by the retrenchment analysis, taking all other considenatinto account.

In the dataflow retrenchment formulation, the other twotiefes (for a given operation), give the capability of
partitioning the behaviour of the related abstract and wetecpair of operations into two parts. Aside from their
namesQpp andCoyp, there is nothing to distinguish them, since they both festinle same set of variables. However,

3 To give a small informal example of the flexibility of the withand concedes relations, consider an arithmetic operatiobounded fixpoint
values that generates some exceptional situation if thatr@gerflows. In the general case, the within relation wdddrelatively weak, permitting
inputs that caused the exception, and needing a nontriviatezies relation to handle the exceptional circumstar@eshe other handf the

context offered a guarantee that exceptional circumstaneeuld not arisethe within relation could be strengthened to restrict @eration to
those inputs that were possible, and the concedes relaiidd be trivialised, since the context guarantee ensumdttivas not needed.

Fault Trees for Reactive Systems | 5

if state were present (as it will be in Paperll), th@s, would be coupled to a further relation which is absent from
the dataflow formulation, the retrieve relation, which tetaabstract and concrete states, @ag would thereby be
much more strongly associated with ‘good’ behaviour, alf@mCop to cover ‘bad’ behaviour. Accordingly, we will
later useOgp to describe nominal behaviour, and will USgp, to cover faulty behaviour.

For the work of the rest of the paper it is not the PO itself thidltbe used, but the associated simulation relation,
the statement that all the conjuncts of both the antecedeht@nsequent of the PO are true:

sl= Wop(i,j) A Opa(i,0) A Opc(j,p) A (Oop(0,p,i,j) V Cop(0,p,i,j)) (5)

2.3. Compositions of Retrenchments

Now we extend our results on parallel and skew-sequentiapositions of 1/O relations for circuits, to parallel and
skew-sequential compositions of retrenchment data caimggabstract and concrete versions of them.

To minimise the proliferation of cumbersome formulae, weseenotations established earlier, and so both com-
positions will be based on our running examplyOp To construct compositions of retrenchments, we need feur v
sions ofAcyOp namely:AcyOp a, AcyOp a, AcyOp c,AcyOp c. Of these, thé\-subscripted abstract on&syOp a,
AcyOp a, have the variables that appear in (1) fryOp andAcyOp respectively; and th€-subscripted concrete
onesAcyOnp c,AcyOp c, have similar variables, but with all occurrences of inputiatalesi replaced byj, and all
occurrences of output variableseplaced byp.

We also need retrenchment data. Thus the retrenchmentAay®@p A to AcyOp c will have data:Wacyop1,
Oacyop1; Cacyop1, and the retrenchment fromcyOp a to AcyOp c will have dataMWacyop2, Oacyop2, Cacyop2-

Both parallel and skew-sequential composition of retremehts can easily be shown to be sound, in the sense
that if the retrenchment data and operations of each conmpsatsfy the correctness PO individually, then the com-
bined operations satisfy the correctness PO using the emdletrenchment data. We do not cover these soundness
arguments here, see [BJP08]. The soundness arguments exéatily to the simulation relations: if the simulation
relations for the components are valid, then the simulatdations for the combinations are valid too.

2.3.1. Parallel Composition:

Given the notations just described, the construction ofpirallel composition of two retrenchments, frétbs; to
Conci, andAbs;y to Concy is straightforward. We usgandV for the parallel composition and union of independent
relations (which correspond to andV for the predicates which denote those relations). The lghammposition of
the operations is as in (1):

AcyOp2a = AcyOp a|AcyOpa (6)
AcyOpj2,c = AcyOp c|AcyOp.c (7)

In this, AcyOp)2 a is just like (1), except that the identifiefeyOp 2 o, ACyOp A, ACyOR A in (6) and (7) contain an
extra ‘A’ subscript. The story foAcyOpo ¢ is similar except that the extra subscript@,‘and alli ando variables
becomg andp variables respectively.

With the operations defined, the retrenchment data for thedlpbcomposition are given in terms of the component
retrenchment data as follows:

WAcyOpl\z = Wacyop1 | Wacyop2 (8)
Oacyop1)2 = Oacyop1 | Oacyop2 (9)
Cacyop1/2 = Oacyop1 | Cacyopz V Cacyopt | Oacyopz V Cacyop1 | Cacyop2 (10)

What these formulae say is actually rather simple. The coatbivithin relation is just the combination of the two
withins, each acting on its own variables. The combined wiutplation is similar. The combined concedes relation
expresses a disjunction of three possibilities: eithefiteesystem is well behaved and establishes the outputorlat
while the second fails and establishes the concessionc@rersaor both fail and establish their concessions.

2.3.2. Skew-Sequential Composition:

Skew-sequential composition is built on similar lines. \Wase the notation established above, and sequentially com-
pose both abstract and concrete circuits by identifyingotsignals ofAcyOp a andAcyOp c with input signals of

6 Banach and Bozzano

AcyOp A andAcyOp c respectively via an extension of equations (2):

010 = i21 011 = i
P10 = jo21 P11 = j22 (11)

Let us write these signal identifications@snd the sequential composition of relations based on ideséfications
asgs. The skew-sequentially composed I/O relations that arigeianple syntactic modifications of (3). Thus, on the
abstract side, we have (3) precisely, except that the vaielation names have an additiodakubscript. On the
concrete side, the subscript@ but also, the various input variables are all cajléastead ofi (although they carry
the same subscripts as in (3)), and the output variablesafleglp instead ofo (again carrying the same subscripts).

The most complicated piece of the composed retrenchmeafoaa skew-sequential composition is the within
relation. We give the derivation next, together with a désion of a number of assumptions made on the way, but it
will turn out below that we need only a trivial case of it forr@pplication, namely the relation given bye. Readers
can skip over the derivation to (16) if they wish.

To make the skew-sequential composition of dataflow retrevemnts for our circuits go smoothly, we henceforth
assume that the within relations for a circuit decomposeantonjunction of individual signal-pair subrelationsghu

Wacyop1({i10,i11,112), (j10,i11,]12)) = Wacyopo.1(i10,J10) A Waeyopt 1(i11,]11) A Wagyop2 1 (112:]12) (12)
Wacyop2((i20,121,122), (20,]21,i22)) = Wacyopo 2(i20,120) A Wacyopt 2(i21,J21) A Wagyop2 2(i22,]22) (13)

The representation in (12) and (13) embodies quite a stresgnaption on the way that signals behave. What justi-
fication is there for making it? We argue, for a contradictitrat if the signals in the systems that we represent via
our models dawot behave in a way that allows us to decouple their behaviouramtay suggested by (12) and (13),
then they are not behaving as ‘pure wires’, which simply $rait what they receive to their output. On the contrary,
they must be viewed as complex devices in their own rightetmbdelled by more complex multivariable relations in
order to express the crosstalk that prevents the decouglatirtent of (12) and (13). This also ties in with the skew-
idea, in that the incomplete matching of the outputs of the Fayer to the inputs of the second layer is conceptually
problematic if there is crosstalk between signals some othvare connected to a further component and some of
which are not. We are forced to demand decoupling at leastdaet those signals which are connected to the further
component and those that are not, but the even simpler piofyd.2) and (13) in fact proves to be sufficient.

With the above understood, we can write down the composddrwiglation, the most complicated piece of the
composed retrenchment data:

Wacyop1:52((110, 111,112, 120), (j10,i11,j12,20)) = Wacyop1({i10,i11,i12), (j10,J11,J12)) A Wacyopo 2(i20,]20)

= Wacyop0,1(i10,J10) A Wagyopt 1(1115§11) A Wagyopz 1(i12,J12) A Wacyopo 2(i20,20) (14)
provided that
010=l21, Pro=j21, O11 =122, P11 =22

',
(Oacyop1({(010,011,012), (P10, P11, P12) {i10,i11,112), (j10,j11,]12)) V
Cacyop1({010,011,012), (P10, P11, P12) (i10, 111,112, (j10,j11,]12))) =
Wacyopt 2(i21,]21) A Wagyop? 2(i22,]22) (15)

In (14), we seéNacyop1;;2 decomposed in the first equivalence into two contributié@se comes fronWacyopa,
and one frorrWACyopovz, the contribution tdNacyop2 cOming from input signal$yo,j2o. In the second equivalence,
Wiacyop1 is further decomposed into subrelations for the individonputs forAcyOp andAcyOp.

The proviso in (15) stipulates that no matter whether theame of the first layer of the skew-sequential compo-
sition is realised vi@ or C, every such outcome is contained in the within relationtiersecond layer, i.8Vacyop.
At this point this is an assumption which we demand of theegysnhodels involved, in order that the analysis to follow
is well defined, i.e. so that whatever behaviour we see raugtibth correct and faulty behaviour in the first layer,
the output does not satisfy the retrenchment PO for the sdeager ‘spuriously’ i.e. via the ‘don’t care’ branch of the
interpretation of the implication in the PO. Later, we willesthat the assumption offers us no threat, since the within
relations that we will use are all given lmpe. We write the assumption inypotheses conclusionstyle, in order to
better show the intermediate values.

Note that, as in (14), in general there can be input valuescgOp that are not connected to output values of
AcyOn via 5. In such cases, the occurrenceVicyop2 in (15) must be decomposed into the within relations for

Fault Trees for Reactive Systems | 7

individual abstract and concrete input pairs as in (13),a@rig those input pairs connected giawould occur in (15).
Any remaining input pairs would have to be unconstrainedjternatively, one would have to rely on the environment
to assert the necessary constraints, which is what (14) does

Next we give the composed output relation:

Oacyop1;52((012, 020,021, 022) , (P12, P20, P21, P22), (i10, 111,112, 120), (j10,j11,J12,j20)) =
(IXa, Ya, Xc; Ye ® Oacyop1((Xa, Ya; 012), (Xc, Ve, P12), (110,111, 112), (j10,]11,j12)) A
Oacyop2({020,021,022), (P20, P21, P22), (i20, Xa; Ya), {j20, X, Yc)) (16)

We see that this follows the pattern for skew-sequentialpmsition of operations, so we can write it more succinctly
as:

Oacyopt;52 = (Oacyop1 & Oacyops2) (17)
Finally we give the concedes relation:

Cacyop1;52((012,020,021, 022), (P12, P20, P21, P22), (i10,111,112,120), (j10,]11,]12,]20)) =

((I%a, Ya, Xc, Yc ® Oacyop1((Xa, Ya, 012), (Xc, Ve, P12), (i10,i11,112), (j10,j11,j12)) A
Cacyop2({020,021,022), (P20, P21, P22) ; {i20, Xa, Ya), (20, Xc, Ye))) V

(IXa, Ya, Xc, Ye ® Cacyop1((Xa, Ya, 012), (Xc, Yo, P12), (i10,111,112), (j10,j11,]12)) A
Oacyop2({020,021,022), (P20, P21, P22), (i20, Xa, Ya), (j20, Xc, Ye))) V

(IXa, Ya, Xc, Ye ® Cacyop1 ((Xa, Ya, 012), (Xc, Yo, P12), (i10,111,112), (j10,j11,]12)) A

Cacyop2((020,021,022), (P20, P21, P22), {i20, Xa, Ya), (20, Xc, Yc)))) (18)
Again this can conveniently be abbreviated:

Cacyop1;52 = ((Oacyop1 85 Cacyop2) V (Cacyop1 8 Oacyop2) V (Cacyop1 85 Cacyop2)) (19)

We comment on the structure of (16) and (18) which both confiora generic schema for combining retrenchments.
Each pair of transitions that makes a retrenchment true stablésh either the output or the concedes relation (pro-
vided the within relation holds), giving a disjunction ofdyossibilities. Whem retrenchments are combined (which
eventually produces a conjunction of the facts assertedablg)ea disjunction of 2terms results via the distributive
law. Of these 2 terms, one will contain output relations exclusively andiéemed to be the output relation of the
combination; the remaining'2- 1 terms are deemed to form the concedes relation of the catidnin

2.3.3. Associativity:

Although we do not prove it here, relying on [BJP08], we ndtattparallel and skew-sequential compositions of
retrenchments are semantically associative, both indalig, and when working together. The theory above is based
entirely on sequential and parallel compositions of refaj so the associativity of relational compositions edtgen
to the associativity of our manipulations of operations egtdenchments. The only nontrivial aspect of the latter is
the associativity of the composition laws for retrenchnata, with the concomitant need to partitioht2rms (in
the general case ofretrenchments) into composed output and composed concad#dens. This aspect needs to be
checked by explicit calculation, which confirms the valjdif the procedure described for all

Looking ahead a little, the nature of the composition lanaa@means that while the output relation for a general
circuit is most naturally viewed as monolithic (describiomyrect behaviour), the concedes relation is best seen as
decomposing into a disjunctive normal form, each disjufigtltich describes a separate kind of faulty situation.

2.4. Hierarchical Structure of Systems and Retrenchments

An important aspect of the design of large systems, is tHiyata view them hierarchically. This means having a high
level view in which certain features are described simpig alower level view in which they appear in greater detail.
Mathematically, this requiresrafinemenprocess offering the kind of strong guarantees needed toeappropriate
conformity between the levels — this being the self-sam@eny that makes refinement too inflexible to describe
fault injection below. Fortunately, retrenchment has beesigned to co-exist fruitfully with refinement, so we can
deal not only with the additional complexities coming frame fault analysis via retrenchment, but also the technical

8 Banach and Bozzano

Abs Conc
Retgy i

Refy) Retg.md

Re];nd

Fig. 2. The Tower Patterninstantiated for hierarchical design.

Fig. 3.Integrating new low level behaviour into the tower via systex.

details of hierarchy, all in the same framework. Althougérthis a plethora of subtly different refinement techniques
in the literature (see [dRE98] for a review of some of ther) s, it will be sufficient to characterise refinement via
a degenerate form of the PO (4), in which:

e the concedes relation is (given by the predicétisg,
o the output relation relates output variables only (i.eoksinot contain any involvement of inputs).

The interworking of refinement and retrenchment is captimetie Tower Pattern instantiated for our situation in
Fig. 2. TheTower Patterns essentially a commuting square of horizontal retrenatimengs and vertical refinement
columns, or it is an assembly of such squares stacked oreahuatthe obvious way.

In Fig. 2, the two horizontal arrows are retrenchmeRisty (a coarse grained retrenchment), &et,q (a more
detailed retrenchment); these represent fault injectidwa different levels of abstraction, a high level, and adow
more detailed level respectively. The refinem@efy on the left hand side represents an elaboration of the higth le
view of the ideal model into a low level ideal view, while thefinemenRetg.mq on the right hand side, represents
a similar elaboration of the faulty model. The fact that th@are commutes represents the compatibility between
ideal/faulty and high/low level views.

The tower, introduced in [BPJS05,BPJS06a,BPJS06b], atidgeon fundamental existence theorems established
in [BJ, Jes05], enables refinement developments of the saretated requirements, which are mutually incompatible
from a refinement point of view, to be brought together inte shme formal structure. The theorems of [BJ, Jes05]
enable this to be done whenever we have any two adjacent efijessquare present; the theorems then ‘complete the
square’, building the missing system and its relationshijpis the rest of the square, in an (at least semi-) automatic
manner, opening the way to mechanical support.

The use of the tower enables the treatment of degrees of tbeb@ kept consistent with the fault injection process.
In general, as one examines increasingly low level detadl piossible that behaviours emerge that were not consldere
earlier. This can arise for a number of reasons. Not only tleesriginal fault injection process itself require the use
of the tower, but as the analysis of the various possibslitie failure proceeds, more detailed lower level posgiesi
can often emerge, and these have to be incorporated intoéthgsés in a consistent way. Indeed a staged introduction
of different kinds of failure mode, if done consistentlyncgignificantly aid clarity. To support such approaches, one
needs further retrenchments to capture the new possbilitihis is illustrated in the ‘L’ shape of Fig. 3 in which the
downward development has been extended to the right at thenbwith a new systenXX, accommodating the fresh

Fault Trees for Reactive Systems | 9

behaviour not contained in the higher levels. To integitaésé into the rest of the development, one can use the theory
of the tower to lift the fresh behaviours ®#X also to the highest levels if required; this is suggestedeydashed
corner in the top right of Fig. 3.

3. Fault Tree Analysis

Fault Tree Analysis [VGRH81, VSt02] is a well-established technigue in safety and religbdssessment, whose
purpose is to determine the conditions under which hazaadsccur. Fault trees can support the decision-making
process. They can be used not only as a diagnostic tool, smt@hssist engineers in the evaluation of design alterna-
tives or in carrying out design upgrades, an activity thay tmave an impact not only on safety, but also on resource
allocation and design costs.

Fault tree analysis can be described as a deductive, arafigchnique, whereby an undesired state (the so called
top (level) even{TLE)) is specified, and the system is analyzed for the péssiains ofbasic eventge.g. system
faults) that may cause the top event to occur. A Fault Treg (Rdkes use of logical gates to depict the logical
interrelationships linking such events. The fault tree slésinot in itself a quantitative model, but rather a quéira
model that can be evaluated quantitatively (e.g. to detegriie probability of a safety hazard).

An example fault tree (redrawn from [VSD2]) is depicted in Fig. 4.(a). The main symbols used in atfaak
are: square boxes, used to represent the top event (the svpiorg; theintermediate event@he remaining boxes);
and circles, used to represent the basic events. Logicas gaich as AND and OR, are used to link the events inside
the tree. A plethora of symbols, not considered in the prtegaper, can be used to provide additional semantics
(see [VSD02] for a complete list). Special gates can be introducedddehtimed dependencies, as in the so-called
Dynamic Fault Tree methodology [DBB92].

In logical terms, the fault tree depicted in Fig. 4.(a) canrégresented by the following logical formul@a v
(BV C)) A (CV (AA B)) with the intended meaning that a propositional symbol ie titnenever the corresponding
event occurs. Hence the top event occurs if and only if thenfte evaluates terue. In strictly logical terms, fault
trees can be considered equivalent if the associated Idgivaulae are equivalent. For instance, it is straightfary
to see that the above formula is logically equivalentta (A A B), which can be graphically represented by the fault
tree in Fig. 4.(b). This shape is of particular interest iimak@lity analysis, in that it represents the occurrenca tdp
event in terms of the so-calledinimal cut set4MCS). A minimal cut set can be seen as the smallest combimafi
component failures which causes the top event to occur. Betiprevious trees have the same minimal cut sets, that
is, C (single point of failure) and\, B (combination of two basic faults). Logically, a minimisealift tree such as the
one in Fig. 4.(b) is associated with a Boolean formula inwttisfive normal form (i.e. a disjunction of conjunctions of
propositional symbols). Minimal cut sets are of particuderest in reliability analysis because they represenpkar
explanations for the top event, and they are often used astagtpoint for quantitative analysis.

The exact way fault trees are generated in practice may &amnyescribed in [VGRH81, VSID2]. A notable ex-
ample of application of Fault Tree Analysis is given in SAERRR761 [Int96] (Aerospace Recommended Practice),
which describes a prototypical process for avionics, asking the certification of civil aircraft. In short, the pess
follows the traditional 'V’ shape, where the left-hand sifehe 'V’ represents the collection of the system require-
ments, and the right-hand side represents their validakiaalt trees can be produced at different stages of system
validation. Important notions are the boundary of the asial{e.g. whether analysis is performed at the subsystem or
system level), and the level of resolution (e.g. abstradiiod refinement techniques can be used, to assess a partially
developed system, or to simplify the analyses). It is theaasibility of the safety engineer to decide, for a given
top event, which are to be considered as the basic evergglépending on the boundary and level of resolution, and
depending on which failures are considered relevant fospleeific analysis.

Fault trees are developed starting from the top event. Ganbé&h are considered to be elementary faults are
developed as basic events, whereas the remaining causeg\aieped as intermediate events. This rule applies
recursively to the intermediate events, which must in twgriraced back to their causes, until the tree is completely
developed. In general, there is no unique way a fault tredoeasuilt, in particular, there may be different choices for
the intermediate events, and different ways to develop tiéra guidelines given in [VSD02] distinguish the case
where a fault is localized to a given component (‘state of ponent’ fault) from the case where it is not (‘state of
system’ fault). In the latter case, a fault is developed biysodering itsimmediate necessaryandsufficientcauses
for its occurrence. If the fault is localized to a given compnt, then itprimary, secondanandcommandaults are
investigated. Primary and secondary faults differ depsmpdin whether the fault occurs in an environment for which
the component is qualified (primary fault) or not qualifieddsndary fault), whereas a command fault is due to a
proper operation of a component, but at the wrong time oreénitlong place.

10 Banach and Bozzano

Fig. 4. An example Fault Tree (a), and a Minimised Fault Tree (b)esponding to (a).

Itis important to remark here that what makes the tree usefdt just thdogical relationshipbetween the events,
but rather the way these events aoanectedqwhich is related to the notion @fwusality, together with a proper choice
of intermediate events that are semantically relevantd@etg engineers. In this sense, minimal cut set analysis doe
not exhaust the wide spectrum of possible questions whidhtfees can answer.

The techniques described in this paper aim at improving eroties presented in [BV07] (see Section 8 for a
discussion of related work), which were tailored to the gatien of flat fault trees, that is, to a graphical represimta
of minimal cut sets (in the style of Fig. 4.(b)). In this papear present novel techniques for the mechanical generation
of multi-level fault trees in the same style. The structufeéh@se fault trees is built upon the underlying system
structure, as given in the formal model. These techniques ffee way for automated generation of fault trees, as
opposed to automated minimal cut set computation.

Concerning the semantics of the generated fault trees,egnark is in order. Delegating the discoveryoauses
of system events to an automated routine may appear to bedanthrge extent is) an ambitious goal (unless the
routine is properly instructed by a human operator). Whaaatomated routine can be reasonably asked to do is to
find relationships of the fornit is always the case that if event A occurs, then component& hrave previously
failed. However, this does not authorize us to infer that there iawsal relation between evermsandB (in the
sense that the apparent relationships between elesntsiB might arise for other reasons, or just be a coincidence).
Notwithstanding this difference, we show in the rest of aper that automatically generated fault trees can still be
informative enough to be useful for safety engineers, rastlbecause we focus epstem structureso that the failure
of a subsystem is related to the failure of components, lmgfichlly and causally.

4. Fault Injection and Fault Tree Structure by Example

In this section we examine fault injection via the retrenelntrsimulation relation in more detail, and illustrate, on a
example, how the simulation relation may be manipulateetosd a fault tree in a mechanical manner. The discussion
via example is made more precise in the theory of Section 5.

4.1. Fault Injection and the Retrenchment Simulation Relaipn

Consider an individual component of a system. We start witidaal component, and wish to take into account pos-
sible faulty behaviour. The ideal behaviour is capturedhadbstract transition relati@pa, while the possible faulty
behaviour is captured in the concrete transition relafpg. Normally, potentially faulty behaviour is an extension
of correct behaviour, so, aside from changes of variableesaim line with the conventions of Section Qpa will

be a subrelation 0Dpc; we take this to be the case for the remainder of the paperb#ing the sense in which our
processes capture fautjection We use this fact to simplify the retrenchment simulatidatien (5) in the following
way.

Fault Trees for Reactive Systems | 11

Firstly, we may assume that for each corresponding abAtoaatrete pair of variables, both variables take their
values in the same data typélext, we recall that the choice of retrenchment data for@nehment is anodelling
decision For our purposes, it will be sufficient to focus on retrenels with the following properties:

1. The output relation is the statement that both abstrattancrete systems are displaying correct behaviour (ex-
pressed by saying that what has happened at the concretedamferms toOpa(i,0) with concrete variables
substituted for abstract ones):

Oop(0,p,i,j) =Opa(i,0) Aj=iAp=0 (20)

2. The concedes relation is the statement that while theaadbstystem is displaying correct behaviour (as it must),
the concrete systeis failing to do so. This is expressed by using an error reldfiog op, a separately defined part
of the definition of the concrete system, to capture thoserata transitions that are not merely the translations
into concrete variables of abstract oRes.

Cop(0,p,i,j) = Opa(i,0) A Errcop(j, p) (21)
The error relation must satisfy two conditions. Firstlye #rror transitions are a subset of the concrete ones:
Errc.op(i,p) = Opc(j, p) (22)

Secondly, all concrete transitions which are not idealditeoans (expressed using concrete variables) are error
transitions:

Opc(j,p) A —Opa(j,p) = Errcop(j,p) (23)

3. As mentioned earlier, the within relation is trivial (i.given bytrue). The reason for this is that as the faulty
system’s behaviour drifts increasingly away from the igdtred discrepancy between the two can become arbitrarily
large, so naa priori bound on the relationship between the inputs to the next cokmt in the circuit can be
imposed. This is consistent with all component behavioamsdgiven by total relations, and with the remarks on
within relations in Section 2.2.

This retrenchment design makes the simulation relatiod€pmpose into independent abstract and concrete parts.

We can now discard the abstract part since it is subsumeniyasicrete variables) in the concrete Satccord-
ingly, we adjust the notation to reflect this. Both the retfement data and simulation relation become relations in
concrete variables only. Thus the retrenchment data become

Wop(j) = true (24)
Oop(p: i) = Opali,p) (25)
Cop(p.j) = Errcop(i;) (26)

and the simulation relation absorbs the explicit stateroéttite transition and within relations, and merely decongisos
the (O Vv C) part into itsOpa(j, p) and faulty pieces:

! = Oop(p,j) V Cop(pj) (27)
This is considerably simpler than the more general fornutatind aids efficiency in implementation.

4.2. An Example

We will base the rest of this section on an example. At the fdfigh 5 we see a black-box depiction of a component
Fred. Fred has two input signals and two output signals. The ideal garsiFreds and the potentially faulty version

4 We do not state this formally, but it legitimises e.g. subtitin of abstract by concrete variables, and equaliti¢sdmn abstract and concrete
variables. Technically, this is just a convenience, to msdme of the calculations in the sequel more transparent tttenwould otherwise
need to be. As regards modelling though, it may be seen adatitis, since it forces (the in principle) simpler abstrages to contain any
exceptional values etc. that might be needed in the faullgrete types. The distortion may be avoided at the expenadditional complexity in
the formalisation, which would have to incorporate expli@tations for relations that mediated between the alistrad concrete types. Having
these would, if anything, obscure the clarity of the techhixposition with burdensome detail, without adding amghof significance, so we
avoided it.

5 This strategy allows the same transition to be viewed as dmifect and faulty, if necessary.

6 We show below how a different retrenchment design would Ipegeented this simplification, without any benefit for faméte generation.

12 Banach and Bozzano

Il — —— O1 J1 —— —— P1
Fredy Fred,
n —- —— 02 J2 — —— P2
r!’r:i:i:i—T:i:i:i:i_‘: - = = —T 77777 j‘

|
\ s
C.
Ir L | Al ‘ F3 |l
I

Fig. 5. A subsystentred and its internal structure.

is Fredc, with 1/0O labelled according to our conventions. At the tidmox level of abstraction, the only difference
betweenFreds andFredc is in their transition relationg;reda being a subset dfredc. Those transitions ifrredc
which are not inFreda, i.e. those irEfrc rred(j,), represent faults dfred, and can act as basic faults in a fault tree
(FT) for some system level top level event (TLE) when theaystlescription is such thited is regarded as a bottom
level component.

SinceFred behaves instantaneously, we can write down the signatuFeedfs I/O transition relation, without
recourse to any dfred’s internal detalils:

Fredc((J1,J32), (P1,P2)) (28)

When Fred is not regarded as a bottom level component, but as something mtghnial structure, then the faulty
transitions ofFred themselves become TLEs of a more detailed sub-FT which ibescnow they arise on the basis
of the more detailed structure Bfed.

The bottom of Fig. 5 shows a more detailed viewFsédc, in which it is a circuit where signals flow from
left to right through componentsl, A2, A3,F1,F2,F3, interconnected by wiresl-c7. We assume that all signals
J1,32,P1,P2,c1-c7 are of a fixed finite number of bits. ComponeaAisA2, A3 are adders. We assume that the adders
do cutoff addition without overflow (so that any value greatean or equal to the maximum representable one is
output as the maximum), e.g.:

Alc({c2,c3),c5) = c5 = min(c2+ c3,MAX) (29)

where MAX is the maximum representable value in the requisite numbéite The number of bits is assumed
sufficiently large that the cutoff effects do not occur in the@mples we treat. For simplicity, we will assume in the
rest of the paper thadders never fail Therefore the transition relation fédc is no different from that oAla, and
similarly for A2, A3.

Elementsg=1,F2,F3 are two-output fanout nodes. Their ideal behaviour is tippgate their input value to their
outputs, e.g.:

F1a(l1,(al,a2)) =al =a2=11 (30)

Fanouts are assumed capable of failure. Their failure madestuck at zerofaults on one or other of their outputs.
Also for simplicity, we assume that at most one of thetuck_at_zero faults is ever active for any fanout So the
concrete transition relation for a fanout is given by e.g.:

Flc(J1,(cl,c2)) = (Fl.cl=c1l=0) A (F1.c2=c2=0) A =(F1.c1 AF1.c2) ELsEIDEAL (31)

In (31),F1.cl (F1 outputcl stuckat zerg andF1.c2 (F1 outputc2 stuckat zerg are (propositional) fault variables,
which when true, ‘switch on’ thetuckat zerofault for the relevant output signal (this being anotheefaaf fault
injection).

In (31), eLse.ibeaL represents the transliteration of the id&dly transition relation toJ, P, c variables, and the
mechanics of its being overridden by the faulty behaviouemvbither of=1.c1 or F1.c2 is true. When we unravel the
details we get:

Flc(J1,(cl,c2)) =
(FLClACl=0V ~F1clAcl=J1) A (FLC2AC2=0V ~F1.c2 A c2=J1) A ~(FLcl A F1.c2) (32)

Fault Trees for Reactive Systems | 13

Similar remarks apply t&2, F3.
In fault injection via fault variables, the truth of at leasie fault variable is what singles out the subrelakort F1
from the rest of1¢ in the formulation of Section 4.1:

Errcr1(J1,(cl,c2)) = Flc(J1,(cl,c2)) A (Fl.clVv F1l.c2) (33)

Note that the presence of fault variables is not essentia.@uld simply remove them, making the concrete transition
relation more nondeterministic, and definikgrc r1 by other means. Nevertheless, a description in terms of such
variables is helpful for two purposes. Firstly, it allowsartomated tool (e.g. the FSAP platform [BV07,FSA]) to keep
track of the difference between ideal and faulty behaviaua particularly simple way. Secondly, the propositional
variables themselves can serve as names for the basicdathesrelevant components, labelling leaf nodes of FTs as
required.

The ideal and faultyffred models are related by a retrenchment. It will be sufficiemttite down the retrenchment
data for just the basic components, since the data for thelbggstem will emerge in a lazy fashion as needed via
the retrenchment composition laws of Section 2.3 durindah# analysis below. We avail ourselves of the simplified
forms for the retrenchment data derived above.

The adders are assumed fault-free. ThusAbive have:

Waz((€2,¢3)) = true (34)
On1(c5,(c2,c3)) =c5=c2+c3 (35)
Ca1(c5, (c2,c3)) = false (36)

A2, A3 are similar, A particular consequence of this is that occurrenceSafterms can be dropped below. For the
fanoutF1, we have:

We1(J1) = true (37)
OF1({c1,c2),J1)=cl=c2=J1 (38)
Cr1({c1,c2),J1) = (FlciAncl=0Ac2=J1) & (Flc2Ac2=0Acl=J1) (39)

where is ‘exclusive or’. InCg1, we call the two disjunct€r1 c1 andCr1 oo respectively, i.e.:
Cr1=Cr1c1®Cr1e2 (40)

Similar remarks hold foF2, F3.

4.3. Structured Fault Analysis

Finite acyclic circuits, such as the combinational logicgits we are treating, possess a parsing which builds them
up via parallel and skew-sequential composition. In gdribegie will be several such parsings, which can be derived
mechanically from a definition of the circuit in terms of elents and connections, or supplied manually. We work
with one in which the elements closest to the inputs are thst meeply nested. Such a structure is convenient for
a top-down fault analysis starting at the outputs, illustiain the next section. Fdfredc, the structuring we use is
illustrated byK0-K4 in Fig. 5.

Tied to the structure of the parsing, is the principal datg gupports the analysis at the algorithmic level. For
each basic componeAtl, A2, A3 F1,F2 F3 we have the output and concedes relations, held eitheickpor in
a symbolic form, from which explicit tuples of the relatiomgy easily be extracted. For the concessions there will
be the decomposition into basic fault cases as in (40). Fein eempound entity)K0-K4, the output and concedes
relations are conjunctions or disjunctions of more basioponent forms, so only the top level formulae are stored,
with appropriate references to lower levels.

Fault analysis for a subsystem lilkged proceeds by taking a TLE, and deriving its causes by reswmlutiith
the retrenchment simulation relation (27). These causesrganised into a tree under the guidance of the structured

7 This a good place to illustrate the consequences of diffatedisions about retrenchment data. A perfectly goodraitare output relation for
the addeA1 could beoz'{(a& c5, (a2,a3),(c2,c3)) = a2=c2 A a3 = c3 < ab = c5. However deriving the kind of facts we require below @?{
would necessitate instantiating both abstract and cameretables appropriately, and using the abstract and etesnttansition relations to connect
before- and after- values. This represents a consideraideidto arrive at an equivalent result. In another con@X‘i, might easily be preferable
to Oaz, but not for the objective here.

14 Banach and Bozzano

retrenchment data fdfred, from which a FT can be extracted. A TLE fBred is just a constraint on the values that
some interface variables Bfedc can take (fofFredc, the interface variables add, J2, P1, P2).

The goal is to unify the TLE with the simulation relatiad. Sincez,l:red = Ofred V Crred, this breaks into two
subproblems. Normally the fault-free behaviour of a systeragarded as better understood than the faulty behaviour,
SO as an optimisation for expository convenience, we wiluase thatO terms such agreds = Opreq = Oko and
Ok1-Ok4 are all precomputed and available directly whenever requifhey can always be calculated by the same
backwards reasoning used for the concessions if necessary.

Let us fix a specific TLEJ1 = J2 = P1 =1 (with P2 regarded as irrelevant) to illustrate the unification pesc
It is easy to check that this does not sati€fy.q. The analysis then proceeds downward throGgly, decomposing
step by step, eliciting the consequences of compositioncathaktal structure, and deriving i@solution treefor all
possible ways of satisfying the TLE within the constraiMalues of variables once assigned, remain in force as we
descend unless we have to backtrack past the point of assignand once the input values have been reached, any
remaining uninstantiated variables can be instantiatéuimihe constraints that hold, case by case, to confirm tvera
consistency. (Note that the assumption of input readin@salf operations guarantees that a value can always be
found for an unconstrainesutputwithout going to the trouble of actually calculating oneg tlissumption of finite
data types guarantees that, if all else fails, all possitisfying assignments may be found by brute force searsh.) |
the following, the various steps are listed in a depth-firahner, for easier readability, but there is no requirenteit t
the analysis is performed in this way; the only dependerm@tseen the steps are data dependencies.

N.B. There can be significant tradeoffs between space areldomplexity for a genuine algorithm, depending
on the balance that is struck between depth-first and brdadttaspects. In practice, any real algorithm must con-
tain significant depth-first elements, since it is only wherttdm level components are reached, that actual values
can be assigned to variables. For expository economy, niinese detailed steps are finessed below. For the sake
of theoretical simplicity, the finessing is carried to anrerie in Section 5 which makes extensive use of angelic
nondeterminism.

TLE: To start with,KO= K23K1, so thaCko = Ok25Ck1 V Ck230k1 V Ck23Ck1. Since we are working backwards
throughFred, andK 1 is nearest the outputs and is a compound structure, we dicsingposd 1, i.e. we decompose
Ok1 andCx; into their component entities. Siné€l = A2|A3 and adders don't failCk1 is given byfalse, reduc-
ing Cko to Ck230k1. Also Ok1 = Oa2|Oas. Now Oaz merely imposes existential constraints c7,c4 such that
A3c((c7,c4),P2) holds; we can put these to one side since the TLE does notraongtem further (and since in-
put readiness oA3c ensures thaf3¢((c7,c4),P2) can be satisfied for ang7,c4). Meanwhile,0Oa, demands that
cl+c6 =1 holds (among other things). There are two ways to satigytlamelycl=0Ac6=1orcl=1Ac6=0,
giving a top level disjunction intdLE.L or TLE.R for Ck230k1.

TLE.L: Sincecl andc6 are outputs oK2, we next decompos’.éKz = Cka:r3 = Ok33Cr3 V Ck330r3 V Ck3$Crs.
Now Crz = Cr3c6 ® Crac7, andCrz s (C6 Stuckat zerg is inconsistent withee = 1. Also Oks (output of adder
Al with inputsJ1 = J2 = 1 and correctly working fanouts1, F2) forcesc5 = 2, inconsistent wittcé = 1 too, so
the terms containing these are droppedCﬁgpgg reduces tOCK390F3 V Ck33Cra,c7. In fact the distinction between
these concerns only7, whose precise value is immaterial, so 08lys is of further interest. From6 = 1, since fault
variableF3.c6 is false, we deduce5 = 1. So we can now decompo€gs = Cka:a1, Which reduces to justk430a1
since adders don't fail. Now havingb = 1 as adder output, implie =0Ac3=1o0rc2=1Ac3=0, giving a
disjunction intoTLE.L.L or TLE.L.R for Cx43Oaz1.

TLE.L.L: SinceK4 = F1|F2 we haveCK4 = O|:1|CF2 V C|:1|O|:2 V CF1|C|:2, with each ofCg1,Cro being an
exclusive or of two faults. However, we earlier derivedd= 0, which is inconsistent witli1 = 1 andOg4, eliminating
a term and forcing-1.c1 true. But c2 = 0 (assumed to hold for this branch) fordes.c2 true, and we have the
constraint~1.c1@ F1.c2 in Cgy, i.e. only one fault is ever active in any one component. Staes a contradiction.
In such a case we must backtrack to the innermost ancestraxivial disjunction, and eliminate the subtree rooted at
the relevant disjunct. Thus the subtregat= 0 A c3 =1 is eliminated.

TLE.L.R: As in the previous case we haifd.cl true, but this timeF1.c2 is false due toc2 = 1; so we remain
within our constraints. Now3 = 0 forcesF2.c3 true, and for consistency we must hav@.c4 false. This yields a cut
set (i.e. valid cause) for the TLE.

TLE.R: We decompos€x; as in casdLE.L , gettingOx33Cr3 V Ck33Or3 V Ck33Cr3. The constraintl =1 A
¢6 = 0 and no multiplé=3 failures, means that thls can be made valid by: dafeR.1, in which Ox33Cg3 ¢ holds,
with ¢5 = 2; or by casélLE.R.2, in which Ck330kg3 is presumed to hold, witbh5 = 0; or by caséTLE.R.3, in which
Ck33Cr3 s holds, withcb as yet unconstrained; or by cabeE.R.4, in which Ck33Cr3c7 is presumed to hold, with

Fault Trees for Reactive Systems | 15

TLE: (OP2.P1=10J1=10J2=1...)

oo, I~ R N
1 c1=00c6=11 1cl=10c6=01
L

______ El L e — 4

r——I——'| r——I——1

1 5,7 =2,21 1 5,7 =0,01
| S —— | | T |
!_é_\
r—='—n" r—=———n"
1¢c2=01 1c3=01

[L

| Flc2 | | F2.c3| | Fl.c2 | | F2.c4|

Fig. 6. Part of a Resolution Tree for the TLE Bfed.

TLE.R.1: Ok3§Cr3c6 holds, withc5 = 2. This is a valid cause of the TLE.

TLE.R.2: We haveCk330F3 andc5 = 0, so we decompogexs = Cka:a1 Which reduces t€x430a1 since adders
don’tfail. From the adde5 = 0 impliesc2 = ¢3 = 0 uniquely. The latter two impli#1.c2 andF2.c3 bothtrue, which
with c1 = 1 does not lead to a multiple failure fér1. Alsoc4 = 1 is acceptable foF2, leading to a cut set for the
TLE.

TLE.R.3: We haveCk33Cr3 s as a consequence of whié8.c6 holds, andc5 is unconstrained. We seek all
possible ways of satisfyinGk3 given the inputd1l = 1 andJ2 = 1. NowK3 is a parallel composition df1 andF2,
s0Ckgz will contain three terms as usual. Now eactCpfi andCr» is an exclusive or of two terms, bat = 1 prevents
F1.cl from holding soCr; has just one term that contributes nontrivially. This letdan overall disjunction of five
nontrivial terms.

TLE.R.4: We haveCk3{Cr3 7 andc5 = 0. The latter generates only one solution, -&.c2 andF2.c3 must both
hold.

A tree that summarises the above is shown in Fig. 6. Near the/¢éoshow the variable assignments, but suppress them
near the bottom to save space.

The resolution tree of Fig. 6 is the core output of our techaigAs such it can serve as a starting point for
subsequent processing of various kinds. In this paper, e@m@adominantly interested in fault trees —not only are
fault trees a very familiar concept in safety analysis se but they also define the input format for commercial RAMS
tools, see e.g. [ISO]— so we illustrate the post-processemged to transform our resolution tree into a fault tree,
focusing on a portion of Fig. 8.

The main issues to attend to are: (i) to make sure that the Emdis occur only at the leaves of the FT, in round
nodes, and (ii) to ensure that there are suitable interiedigents between any two logical connectives. We ensure
(i) as a consequence of observing that basic faults occyrinordoncessions belonging to basic components. Since
basic components occur in more complex subsystems onlyargllel or sequential composition, and both kinds of

8 The ellipsis in the root indicates that further facts to beumeulated as the analysis descends are to accuninidethe scope of the quantifier
(elsewhere, we suppress the ellipsis).

16 Banach and Bozzano

TLE: (3P2«Pl=1AJ1=1AJ2=1..) |

Fig. 7. Part of a FT for the TLE ofred.

composition give concessions which are logically of therfdO; A Cy) vV (C1 A O2) V (C1 A Cp), it follows that
whenever & refers to a basic fault, we can always find anmediately above it to hang the FT basic fault node from.
We ensure (i) by creating intermediate events wheneveatiatysis illustrated above generates adjacent connective
in the resolution tree construction. This is done in a bottgnpostprocessing phase, in which such intermediate gvent
are created and labelled with the appropriate logical coatiins of the immediate descendant variable assignment
expressions (cf. thaeB node in Fig. 4.(b)). Such assignment expressions are bourelavailable due to the bottom-
up strategy, in contrast to the top-down strategy of themalgonstruction which assigns to variables in the ordat th
the resolution process dictates. We show the effect of ttiessformations for the rightmost branch of the resolution
tree in Fig. 6, in the FT portion in Fig. 7.

5. Formal Fault Tree Derivation

In this section, we make precise an abstraction of the dlgarpresented informally in the previous one, and prove
various relevant properties. To ease comprehension, wterde formal structures, where appropriate, to the rignnin
exampleFred in the previous section.

5.1. Basic Definitions

To bring out the key points in the clearest manner possibéeraduce the technical complexity of our account by
working under a number of simplifying assumptions regagdiar systems and subsystems, as follws.

Definition 5.1 (Basic Assumptions).

1. All systems and components are finite, as usual.
2. All variables are eithdfault Variables(FVs), which are Boolean, dfO Variables(IOVs), which take values in a
single finite data typ®.

3. A systemS consists of a number dasic Componenté8Cs), each of which has (at most) a single FV and a
number of IOVs. When we have a particular system or subsy$tamnmind, each IOV ofT is either:

(a) exclusive to one BC, sa, of T, and is used by (as either an input variable or an output variable, but not
both) for communicating with the external environmenTofind is called afxternal Variable(XV) of T; or

9 In particular, we restrict to at most one possible fault @sit component, immediately ruling out our running exanfim Section 4. However,
this just reduces theoretical clutter, without underngramy point of importance.

Fault Trees for Reactive Systems | 17

(b) is shared by two BCs, s&4 andA,, of T, and is used for communicating between them, being an imut f
one @; say) and an output for the otheky), and is called arnternal Variable(IV) of T and aninterface
Variable (IFV) of A; andA;.

The IVs and XVs ofSare called the top level IVs and XVs (TLIVs and TLXVS).
4. The I/O transformer of a B& is given by:

A(j,p) = (-AFAOa) V (AFACa) (41)
whereA.F is the FV ofA; j,p are the inputs and outputs, afd, Ca are the output and concedes relation#\of

respectively, defined as in Section 4.1.

5. ATLE for a systen8is a quantifier-free expression in TLXVs. N.B. The finite digfae assumption enables us to
eliminate quantifiers from TLEs via enumeration: e.@ i {0,1}, the expressiof8P2 e X(J1, (P1,P2)) A J1 =
P1) can be rewritten aX(J1, (P1,P2)) A (J1=0AP1=0AP2=0)V (J1=0AP1=0AP2=1) Vv (J1=1A
P1=1/\P2=O)\/(lel/\Pl:l/\Pz:l)).

In the context of thé&red example A1,A2 A3 F1, F2 F3 are the BCs, with onl{¥1, F2, F3 having FVs, as described
earlier. Regarding the IOVs5 is an IV of subsysterik2 (which includes both of the BCs that shafe i.e.Al and
F3), butis an XV of subsystetd3 (which includes only one of them, namei§). The TLXVs arel1,J2,P1, P2, and
all other IOVs are TLIVs.

Definition 5.2 (Assignment). An assignment is an equation of the fofwariable= value), or a conjunction of such
formulae.

Definition 5.3 (Valuation Set). LetV = {x1, ..., %}, with k > 0, be a set of variables ranging over the finite domain
D. We define the valuation set Bfwith respect td/, denotedVSD, V), as follows:

k
vsD,V)= |J {Axi=9(x)} (42)

gV—D i=1

(FOI‘ instance/S({O, 1}, {Xj_,Xz}) = {Xj_ =0AX=0,X=0AX=1LX1=1AX=0XxX1=1AX = 1})
Definition 5.4 (Fault Variables). Given a systen$, we denote byV(S) the set of fault variables &.

Definition 5.5 (Fault Configuration). Let Sbe a system. A fault configuration f&is a subseFC C FV(S). Fur-
thermore, we denote ByC the setFV(S) — FC).

In particular, an arbitrary fault configuration need notrespond to any possible fault of the system; it is just a set
of fault variables.

Definition 5.6 (Structural Expressions). Structural expressionk (for a systemS) are defined by the following
grammar:

K == BC | (KgK) | (K|K)
BC ¢ {A...} (43)

whereK is the non-terminal of the language (used to refer to sublstres ofS), andBC is a meta-notation referring
to an element of the s¢iA ... } of basic component names 8f

A sentence foS of the grammar igroundif it consists solely of basic components and combinagarsd |, and,
viewed bottom-up, each combinagar | corresponds to an ‘instantaneous’ parallel or skew-segaleomposition of
the appropriate subsystems®MN.B. (43) ensures that each basic comporeoit Sis enclosed in its own individual
K substructure in the parse tree of a ground sentence.

Definition 5.7 (Parse Tree Node Attributes). To eachK node of the parse tree of a ground sentence for a syStem
are associated a number of things:

1. Anindex (or other unique attribute) to uniquely identifye.g.K3.
2. An output and a concedes relation name for (i.e. a referer)¢he appropriate substructure3xé#.g.Ok3, Cks.

3. Anoutput and a concedes relation body for the appropsigistructure o8. For agor | K noden, these are given
by formulae (in the output and concedes relation names.tar@ferences to) child nodesmffor the parallel and

18 Banach and Bozzano

skew-sequential compositions of retrenchment data, gieelifer. For 8BC K node, these are the relations in (41).
To eachBC node of the parse tree of a ground sentence we associate:
4. Anindex (or other unique attribute) to uniquely ideniifye.g.A19.
5. The name of the FV for the basic component, AP.F.

Thus eachK node of the parse tree of (the structure of a syst8rhgis a unique identifier, and, in effect, two
equations (equating output and concedes relation namlesitdobdies), which are unwound in exploring the structure
step by step. EacBC node has a unique identifier and the appropriate fault vieride assume that whenever a
skew-sequential composition occurs, the IFVs are undeddrom context.

It is clear that we have formalised the description illustdain Fig. 5 (aside from showing each BC inside an
individual K, which is suppressed). For examp{&23K1) is obtained wherKgeq, the root of the parse tree of
Fred, is expanded one level according to the structure of FidKgag, K1 andK2 are non-terminals in the parse
tree, and the signatsl, c6, c7,c4, are the IFVs of the sequential compositionkdf andK?2. Ogreg = (Ok230k1) and
Crred = Ok23Ck1 V Ck230k1 V Ck23Ck1 are the two equations associated Wiifeq. A1 andA2 are BCs ofFred,
with Oa1 the output relation oAl, given by (35).

Definition 5.8 (Cut Set). Let S be (the I/O transformer of) a system with TLX\sP. Let FC C FV(S) be a fault
configuration, and LE a top level event. We say thBC is a cut set foiSand TLE if there exist values fod andP
such that:

SI,P)ATLEA A\ FA A -G (44)
FEFC GeFC
is true (where an empty conjunction is as ustrak).

Thus, unlike a fault configuration, which is relatively arbry, a cut set (with respect to some understood TLE)
must be a set of fault variables whose truth exactly capsoease consistent system behaviour.

Definition 5.9 (Realisability). Let ® be an expression in some variables of a sysiithen® is realisablein Siff
values can be found for all as yet uninstantiated variabieS such that (44), withd replacingTLE and withFC
defined implicitly by the truth/falsehood of fault variablédoecomesue.

Since an arbitrary candidate TLE need agdriori conform to any consistent system behaviour, we conclude tha
a TLE is realisable irgiff there is a cut set foEandTLE.

5.2. The Resolution Tree Algorithm

We now introduce various kinds of tree which will carry thaifs of our analysis. The previously introduced parse
tree of the system structure, provides the backbone upochwhe construction of these new trees depends. The first
tree whose construction we introduce is the resolution(fR88. This is the generic version of what the tree in Fig. 6
for the running example roughly corresponded to. (We sayghty’, since Fig. 6 showed one ‘blind alley’ (which
forced the backtrack) and suppressed a good deal of the ldetar down.) Once we have discussed its construction,
we prove a number of properties of interest for these tragiss&juently, RTs are transformed into fault trees (FTs) in
a number of stages.

We start by describing the kinds of node that these treedstafsin each case we give the node tag (TLE, AND,
OR, etc.), and, where needed, the additional informatitathed to the node following the colon. The last node type
(the IE node) is not needed immediately, but is listed heredovenience.

Definition 5.10 (Node Types).All trees will consist of nodes tagged with one the followlagels. Nodes (other than
‘AND’ and ‘OR’ nodes) contain additional label-specific amfnation as described.

1. TLE(TLE): A Top LevelEvent node containing a top level everitE.
2. AND: A conjunction node.

3. OR: A disjunction node.
4

. ASG(@®): An ASsiGnment node containing an elem&ht VS D, V) of the valuation set db with respect to a set
of variablesV (V will usually be the IFVs of a skew-sequential compositiofereed to by &K node of the parse
tree ofS).

Fault Trees for Reactive Systems | 19

Function GenRT
Input: TLE, S, a structure folS
Output: A resolution tree foif LE given byroot

Begin

1 If Os A TLE is not satisfiable an@s A TLE is not satisfiable
2 Then Create a tree as in Fig. 9.(a). (The tree containsTu&t)
3 Elself Os A TLE is satisfiable an€s A TLE is not satisfiable
4 Then Create a tree as in Fig. 9.(b).

(The GOAS child ofroot contains an assignment for all TLXVs and TLIVs®that make$s A TLE realisable.)
5 Else(Cs A TLE is satisfiable)
6 Let {61...8n} = ©s C VYD, TLXVLYS)) be the assignments to the TLXVs 8fvhich makeCs A TLE realisable
7 InIf Os A TLE s not satisfiable
8 Then Create a tree as in Fig. 9.(c).
9 Else Create a tree as in Fig. 9.(d).
(The GOAS node contains an assignment for all TLXVs and TLd¥/Sthat makes A TLE realisable.)

10 EndIf

11 ForAll 6y € ©g

12 Do Expandnyi). (Theny : ASG node contain8. Theny; : C node contains concedes relation nabie)
13 EndForAll

14 EndLet

15 EndIf;

16 return root;

End

Fig. 8. The algorithm for generating the Resolution Tree.

5. OAS@): An O-ASsignment node containing an elemént VS D, 1Vs) of the valuation set ob with respect to
the IVs of a subsystem @referred to by & node of the parse tree &f(used when the output relati@y of K
is satisfiable).

6. GOAS): A Global O-ASsignment node containing an elem@nbf the valuation set ob with respect to all
TLXVs and TLIVs of S(used wherDs itself is satisfiable).

. BF(FV): A BasicFault node containing the fault variali#&/ of a BC ofS.

8. C(Ck): A Concedes node containing a concedes relation ragier a substructure dreferred to by & node
of the parse tree d.

9. IE(W): An Intermediatdevent node containing a Boolean combinatiBrof assignments of values to IFVs §f

~

Of these node types, the first three should be self-explandtbe next type, the AS@) node, typically contains
an assignment (in the sense of Def. 5.2) of the interfac@lbke$ of a skew-sequential composition of subsystems, to
some values that make the rest of the analysis non-void fieretords, to some values that maintain the realisability
of the analysis-so-far). Under an engineering perspeativeparing with traditional fault tree analysis, such reode
correspond to genuine intermediate events that relatentbgface variables of different components. The next node
type, the OAS®) node, again contains an assignment, but this time of tleeriat variables of a subsystem, to some
values that witness that the subsystem is operating in &ffd manner (i.e. such that its output relatf@tecomes
true, again maintaining the realisability of the analysisfar). Under an engineering perspective, such nodes teul
modelled usingxternal eventgalso callechouse eventgompare [VSD 02]) or they could simply be discarded, given
that the relevant assignments specify fault-free behafiasubsystem. They are important for the completenesgof th
resolution process, but when resolution trees get postessed to fault trees of a standard format, they get elimihat
(see Section 5.3). The next type, the GO&B(ode, is like an OAS node, but applied to the whole systemrmanglist
some subsystem; it takes care of the completely fault-fase.cAgain, in a traditional fault tree, it would be modelled
with an external event since it corresponds to an empty ¢uthe next types, th€(Ck) and BFEV) types, deal with
faulty cases. The former typ€(Cx), contains (a reference to) a concedes relation. It is jul@epolder, being used
during the working of the resolution tree algorithm. In fatiese nodes are not preserved in the final resolution tree,
being introduced, but ultimately also eliminated, as thestiction proceeds. The latter type, BV, contains what
is effectively a degenerate version of the former, namelpgidfault variable. In engineering terms, it corresponds
to a genuine basic event, modeling a ‘state of componenk fauhe terminology of Section 3 (this being either
a primary or a secondary fault — compare also the discussiddection 9). The last node type, the Y§(type,
contains a Boolean combination of assignments of the kirehdl discussed, and it can interpreted as modelling an
intermediate event.

20 Banach and Bozzano

(a) Og unsatisfiable; Cg unsatisfiable root | TLE

(b) Oy satisfiable; Cg unsatisfiable root | TLE

(c) Og unsatisfiable; Cg satisfiable root | TLI

3
Q

H S
tm >

»n

[
ASG |

n

=
=

=
=H
Q

=
B

(d) Oy satistiable; Cg satisfiable

root

ny

ASG | g

ASG | y

ASG |

Fig. 9. Cases for th&enRTfunction.

In the algorithms which follow we make considerable usamgelic nondeterminisifor discovering satisfying
assignments (of the kind noted) for expressions at the ploattthey are needed in building the tree. This consider-
ably simplifies the presentation, and shows that despitappearance of the pseudocode, we are still at a relatively
high level of abstraction. In practice of course, at the inpéntation level, some sort of depth first exploration with
backtracking would be needed to achieve the required effect

Definition 5.11 (Resolution Tree).Let S be a system andLE a top level event fos. Assume a structuring fd®
given by a parse tree of a ground sentence of the grammar¢g@ther with its associated labels and equations. Then
the algorithm of Fig. 8 generatesesolution treefor TLE with respect t&Sand the given structure.

As is clear by inspection, the resolution tree algorithm igf. B works top down, guided through the structure of
the system by the structure of the parse tree which has beelnta®rganise the system'’s structure. Every time some
variable values are needed on the interface between twystiebss, so that the analysis can separately branch into
the two subsystems, they are discovered angelically inL#iestatement on line 6 of Fig. 8 (similarly on line 6 of
Fig. 10), so as not to clutter the algorithm presentatiom atv level details. Note that for engineering convenience,
the algorithm of Fig. 8 distinguishes at top level all fousesa in which the TLE is satisfiable or not \@g and/orCs
(i.e. all four combinations of possibly completely faukedr, and possibly faulty behaviour), so that this structare c
persist into the ultimate FT.

Referring back to our running example, we see that Fig. Gesponds to a RT whose top level structure is of type
(c) in Fig. 9 — the TLE is neither unsatisfiable, nor is it skisle through fault-free behaviour, eliminating cases (a)
(b) and (d).

The top level functioizenRTmakes use of a recursive functiBmpandn) to grow the tree fron€ nodes until the
leaves of the tree are generated. This is given in Fig. 10ign1®, the phrasamroot-realisablé is an abbreviation
for ‘realisable, and is consistent with all assignmentslimades on the path frorm back toroot' (and including
both). In engineering terms, we can draw a parallel betwleeexpansion routine, and the ‘state of system’ and ‘state
of component’ decomposition rules prescribed by [VER] (compare Section 3 and also the account in Section 9).

Fault Trees for Reactive Systems | 21

Proposition 5.12 (Termination). The algorithm in Fig. 8 always terminates.

Proof. Given that the syster8is acyclic, then the algorithm trivially terminates becaesich expansion step corre-
sponds to unfolding the parsing of the system. o

The RT is important because it examiradisthe system variables, to ensure that only consistent syisédraviours
are generated. However, once the RT algorithm has prodtgedtput, we can use the resulting RT to focus on just
the causes of faulty behaviours 8f We call these the (computed) cut sets, and they are intetodeairespond to
the fault configurations/cut sets defined earlier. (Evdiyuaf course, we will show that they are the same.) Since we
have a tree structure to work with already (the RT), the oahstble approach is to use an inductive strategy. The next
few definitions handle the details.

Definition 5.13 (Nearest Relevant Descendant Noded)et RT be a resolution tree, amibe a node irRT. By a
Nearest Relevant Descendant N¢N&DN) of nwe mean the first proper descendant node tagged with one 0S50A
OR, AND, BF on some path fromtowards a leaf oRT. TheNearest Relevant Descendant Node (S#8DNS) ofn

is the set of all NRDNs of.

Definition 5.14 (Computed Cut Node Sets)Let Sbe a system, antiLE a top level event. L&RT = GenRTTLE,S),
and letn be a node oRT tagged with one of TLE, GOAS, OR, AND, BF. LBtbe the subtree T rooted ain. Then
the set of computed cut node setd\bflenotedCCNSN) or CCNSn) as convenient, is defined as follows:

CCNSN) =
I} RT has just a TLE node
{{n}} nis a GOAS node, or a BF node for BE
Un;enrongn) CCNS i) nis an OR node, or a TLE node

{UX,CCNS | CCN$ e CCNSn)} nis an AND node, antdRDNSn) = {n;...nc}

As we see from the above equation, at each point of the inductimputation, there are four possible cases. The
first case deals with inconsistency — no cut node set can iexghla TLE. The second case deals with leaves of the
tree (tag BF or GOAS), whose associated set of cut node setpifiaone element, the singleton cut node{sgt
— for a GOAS node, this indicates that nominal behaviour ogoladn the TLE, while for a BF node, it means that
the constraints at that leaf of the RT can be satisfied by imgpthat particular basic fault. The third case is for OR
nodes. For these, any alternative cut node set from any afdheest relevant descendant nodes (NRDNSs) of the OR
node will do as an explanation of the constraints demand#thapoint; i.e. any alternative is a cut node set of the
OR node itself. So the set of cut node sets for the OR nodetishjasinion of those for its NRDNSs. The fourth case
covers AND nodes. For these, a cut node set consists of almatidn from each of its NRDN nodes, explaining the
constraints demanded at the relevant subtree. So the set nbde sets for the AND node consists of the set of all
possible ways of combining a selection from each of the NRDNFLE node will in general have a set of faulty
causes that is elaborated via a descendant OR node.

So we have identified the nodes of the RT that can explain the But safety analysis is more interested in faults
than nodes, so the next definition replaces each basic fadét by its corresponding fault variable (which amounts to
the name of the fault in the present framework), yielding eset. A GOAS node is replaced by the empty set since it
attests to explaining the TLE by fault-free behaviour.

Definition 5.15 (Computed Cut Sets).Let Sbe a system, andlLE a top level event. L&RT = GenRTTLE,S), and
let n, the root of subtre®, be a node oRT tagged with one of TLE, GOAS, OR, AND, BF. L&CNSN) be the
computed cut node sets fidr Then the computed cut sets fdr denoted”CSN) (or CCSn) when convenient), are
generated by replacing each BF ndafein CCNSN) by the FV, sayAF, that it contains, and the GOAS node, if
present, by>.

Proposition 5.16 (CCNS for CCS).If Sis a systemTLE a top level event, an@Se CCSN) is a computed cut set
for N, with N a subtree oRT = GenRTTLE,S) as in Def. 5.15, then there is a(t least one) computed cut seide
CCNSN) that generate€S Any such computed cut node set is called a cut node s&Sor

We want to confirm that, in finding a cut set, we have found a isterst behaviour of the entire system. One fact
that contributes to this is knowing that all system varialilave been assigned to. This is not completely trivial to
check, since in general, a cut node set includes soigeleaves of the RT, due to the presence of OR nodes.

22 Banach and Bozzano

Function Expandn)

Begin

1 If n:Cis aBF node associated withka= BC node ofS

2 Then Replacen : C with a subtree as in Fig. 11.(a). (The ASG node contains an assignment to the outputs
of the BC which make€ n-root-realisable Then; : BF node contains the FV for the BC in question.)

3 Elself n: C = 04|C, V C1|O2 Vv C1|C; associated with & = K1 |K2 node of the structure &

4 Then Replacen : C with a subtree as in Fig. 11.(b). (The : OAS node contains an assignment to the IVs of
componenK; which make€); A C; n-root-realisable Then; : OAS node contains an assignment to the Vs of
componenK; which make<, A C; n-root-realisable If any one brancimg, ny, nz is notn-root-realisable it is pruned.
If two branches are nat-root-realisable they are both pruned (though the OR node remains).)

As applicable Expandni1); Expandng1); Expandngs); Expandngz).

5 Elselfn: C=013C, vV C1 30, v C1§C; associated with & = K1 §K> node of the structure &

6 Then Let {8;...8rn} = Ok C VYD, IFVs(K)) be the assignments to the IFVs of the composior K1 §K> which make the

concessiorCy of K n-root-realisable

7 In Replacen: C with a subtree as in Fig. 11.(c).

8 ForAll 6y € Ok

9 Do (Theng : ASG node contain8g. Theny;1 : OAS node contains an assignment to the IV&pfvhich makes

01 A Cy ngg-root-realisable Thengio : OAS node contains an assignment to the IV&gfvhich makes
Oz A Cp ngg-root-realisable If any one brancimgi 1, nk12, Nk13 iS Notng;-root-realisable it is pruned.

If two branches are naty; -root-realisable they are both pruned (though the OR noggremains).)

As applicable Expandnki11); Expandngizi); Expandngizi); Expandnkizz).

10 EndForAll
11 EndLet

12 EndIf;

13 return;

End

Fig. 10. The Expandfunction for the Resolution Tree.

Definition 5.17 (Cut Path). Let Sbe a systemTLE a top level event, and 1&€S<c CCSRT) be a cut set computed
from RT= GenRTTLE,S). Let CNSe CCNSRT) be a cut node set f&S If n € CNS then the cut path afi with
respect tadCNSis the set of nodes along the path frorback to the root oRT (and including both). The cut path set
(CPS) ofCSwith respect tadCNSis the union of the cut paths for alle CNS

Proposition 5.18 (Assignment Totality). Let Sbe a system, I€ILE be a top level event, |&€Se CCSRT) be a cut
set computed fronRT = GenRTTLE, S) and generated by a cut node &S Then the CPS oESwith respect to
CNScontains an assignment to every system non-fault variable.

Proof. SinceCSe CCYRT), we haveCCSRT) # &. So the RT contains more than just the TLE nodeCH= &,
then this cut set can only come from a GOAS node, which ass@all the system non-fault variables. Since the
GOAS node is in the CPS @Swith respect taCNS we are done. OtherwigeSis a nonempty set of FVs and we
have to show that its CPS with respectibScontains assignments to all system non-fault variables.

It is clear in such a case th@ is satisfiable, and tha&enRTTLE,S) therefore creates a top level subtree as in
cases (c) or (d) of Fig. 9. We focus on the subtree rooted aDtRaoden, the parent of the ASG node(s) in these
cases — the subtrees belovin (c) and (d) are identical. It is clear th@S+# @ implies thatCSe CCSRT) implies
thatCSe CCSn). Now Defs. 5.14 and 5.15 show th@Band its CPS come from a single branch of the disjunction
undern. This branch descends through an ASG node (containing &massnt to all TLXVs), to &C node developed
by Expand SinceCS# @, there must be at least one cut path in the CPE%ivith respect taCNS Any such path
must pass through the ASG node, and so the CRSSafiith respect taCNSis guaranteed to contain an assignment
to all TLXVs. Itis thus sufficient to show that the relevanptevel call toExpanddevelops a subtree such that all cut
paths in the CPS dESwith respect taCNSdescend into this subtree, and all TLIVs are assigned toaiCS.

Consider the parse tree 8f where the detailed structure under any non-terminal spmeding to a non-failing
subsystem (i.e. a subsystédn for which O, is true) has been truncated. We proceed by induction on this tredcat
tree, with the following induction hypothesis.

If K is a node for whiclCx is true, N is a subtree oORT = GenRTTLE, S) generated b¥xpandon Cx, C
is a cut setilCCYN), andCN is a cut node set generatif@fxk, then all paths of the CPS 6fiN& descend
into N and all IVs ofK are assigned to in the CPS.

To deduce the required conclusion, we apply the hypothediset root of the parse tree 8f truncated in a manner
corresponding to the realisation ©§ that yieldedCS

Fault Trees for Reactive Systems | 23

(a) C = BF

n becomes n| AS

Q

=

b) C = 01|C2vC1|02vC||C2
n becomes n

]
m| OAS "2| 0AS | n3| AND |

nyy m| €
n3p n3p | C,

(©) C = 013C,v 50,V C5C,

n becomes n
n | ASG 3 n, | ASG

k1

Z

[
OAS

”kl3| A

131 32| Cy

Fig. 11.Cases for thé&xpandfunction.

D |

| G npo1| Cy

Base caseK = BC, a single BCA for which Cx is true. By case (a) of Fig. 11, the call t&xpandcreates a
subtree with a BF leaf containing the FV of the BC, and an AS@enavhich assigns to the BC'’s outputs. The BF
node contains the FV &4, i.e.A.F, so by Defs. 5.14 and 5.15 the generated cut spAiE }. Evidently the single cut
path in the CPS oK descends into the subtree generatedtkgand and since a BC has no 1Vs, this CPS trivially
contains an assignment to every IV of the BCKIfs a non-faulty subsystem, then there is nothing to prove.

Inductive stepsK = K1|K2. Then the IVs oK partition into the 1Vs ofK1 and ofK2. If K1 is a non-failing
subsystem an# 2 is a failing subsystem, then the cut setkofs just the cut set oK2. By case (b) of Fig. 11, the
relevant call toExpandcreates a branch containing an OAS nodeKar descending to a subtree f§2. The OAS
node assigns to all the Vs &f1. By the inductive hypothesis, all paths of the CPS of thesetibfK2 descend into
theK2 subtree, and all IVs df2 are assigned to in the CPS. Since the cut paths in the CR3 wiust ascend through
the OAS node, the CPS for the cut setkoftontains assignments to all 1Vs &f, as required. Similarly iK1 is a
failing subsystem anH 2 is a non-failing subsystem.

If K1 and ofK2 are both failing subsystems, the cut seKgbartitions into nonempty cut sets firl and forK 2,
as does the set of IVs ¢f. The call toExpandcreates an AND of the subtrees #t and forK2, and the CPS thereby
also partitions into nonempty CPS for tkd andK2 subtrees. We then use the inductive hypothesis twice,\aftieh
Defs. 5.14 and 5.15 stipulate that the AND node forces theruaof the cut subsets, the cut node subsets, and their
CPSs, ensuring that all IVs &f are assigned to as needed.

K = K1gK2. Then the IVs oK partition into the IFVs of the composition, plus the two setdVs of K1 and
K2. The relevant call t&expandcreates an OR node over ASG nodes, each of which containsgmement to the
IFVs, so that Defs. 5.14 and 5.15 force the cut sé &6 belong to one of the disjuncts. An argument like the one for
parallel composition now shows that all paths of the CPR d&scend into the subtrees #t and/oK?2 and that the
IVs of the two components are assigned to in the CPS. Notiaigahthe cut paths must ascend through the relevant
ASG node, ensures that the CPS includes the IFV assignnuentag required. o

24 Banach and Bozzano

If we supplement the assignments in a cut path set with agrassint totrue of all system FVs occurring in the
cut set and an assignmentfagse of all system FVs not occurring in the cut set, we arrive affthiewing correctness
statement, which says that whenever our abstract procedodeces an answer, it istiaie answer, i.e. the procedure
does not lie.

Proposition 5.19 (Correctness).Let Sbe (the I/O transformer of) a system, BE C FV(S) be a fault configuration,
andTLE a top level event. L&RT = GenRTTLE, S). If FC € CCSRT), thenFC s a cut set folfLE andS.

Proof. By tracing the assignments made during the proof of the ptesvproposition and the remark following it, it is
clear that they amount to an assignment that satisfies (44). o

If a cut set is empty, the system is capable of producing thE iflLa fault-free manner, whereas if a cut set is
nonempty, faults are involved. The next proposition cordgithat this split corresponds to the output/concedes dplit o
retrenchment.

Proposition 5.20. Let She a systemTLE a top level event fo§, andFC C FV(S) a cut set folTLE andS. If FC = &
thenOg is satisfiable. IfFC # @ thenCg is satisfiable.

Proof. A simple induction on system structure. For the BC c&&&~= @ corresponds té.F = false and the satisfia-
bility of the left disjunct of (41), hence dds. The only other possibilityyfC = {A.F}, corresponds té.F = true and
the satisfiability of the right disjunct of (41), hence®§. For the inductive step it is enough to partition A€ ac-
cording to the disposition of the BCs in the two componenid,ta note that a compour@requires both component
Os to betrue, while a compound requires at least one componéhto betrue. o

Proposition 5.21 (Completeness)Let Sbe (the I/O transformer of) a system, &€ C FV(S) be a fault configuration,
andTLE a top level event. L&RT = GenRTTLE, S) and letFC be a cut set fosandTLE. ThenFC € CCSRT).

Proof. Supposé-C = @. Then sincd-C is a cut set foSandTLE, by Prop. 5.20, we know th&s must be satisfiable.
Therefore case (b) or (d) of Fig. 9 applies, @enRTcreates a GOAS node. This contains a set of assignments to all
non-fault variables, which generate€ by Defs. 5.14 and 5.15.

Otherwise=C # @, and by Prop. 5.2@Cs is satisfiable. So case (c) or (d) of Fig. 9 applies, GethRTcreates an
n: C node and call&xpandn). We proceed by induction on the truncated parse tregasf used in Prop. 5.18, with
the following inductive hypothesis:

LetK be (the I/O transformer of) a system for whi€k holds,o # FC C FV(K) a fault configuration, and
an assignment to all XVs d€. If there arg andp such that:

KGp)ron A FA N\ -G (45)
FeFC GeFC

holds, thenFC € CCSN), whereN is the tree produced by the topmost calBrpandin the application of
GenRTto ® andK.

Itis easy to see that the inductive hypothesis implies waaquired. We le = Sand® be the assignments to TLXVs
in one of the ASG nodes created by the calG®nRT Since such an assignment makes (448, we deduce the truth
of (45), the assumption of the hypothesis. Hence the coioelug the hypothesis holds, i.e. thie€ € CCSN) where
N is the tree produced by the topmost calBxpandn). Noting that for theCs satisfiable cas&RT = GenRTTLE,S)
differs fromN only by the addition of an OR structure connectidgo the TLE nodeFC € CCSN) and Defs. 5.14
and 5.15 immediately implfC € CCSRT).

We now establish the induction.

Base cases: Firstly = A, with A a faulty BC. We must havEC = {A.F}. We know that there exigtandp such
thatA(j,p) A ® A AFF holds. Also, by (41) we have tha((j,p) A ® A AF is equivalent tab A A.F A Ca. It follows
that® A Ca is consistent. Therefore the c@lkpandn) in GenRT®,K) createsN, which consists of an ASG node
with a BF child containind\.F. By Defs. 5.14 and 5.1%,C = {A.F} € CCSN), as required.

SecondlyK is a non-faulty subsystem. The inductive hypothesis haldsmatically since its assumption is false.

Inductive caseK = K10K2, where we have two sub-casis= K13K2 andK = K1|K2. We prove the first case
in the simple version where the outputs of K1 exactly matehitiputs ofK2 (the more general version merely adds
notational clutter). The second case is similar and is ¢efivé reader.

Letj andc be the input and output variableskl, andc andp be the input and output variablesk?, so that the
IFVs of the composition are.

Now the inductive hypothesis is an implication, and so igyerdntrivial if its assumptions hold. To prove it, we

Fault Trees for Reactive Systems | 25

Function RTtoFT{root)
Input: A RT rooted atroot produced byGenRT
Output: A FT for TLE andSgiven byroot

Begin

1 If The RT does not contain an OR node

2 Then return root

3 Else Short-circuit all OAS nodes (i.e. connect the child noden®parent node and discard the OAS node).
4 Short-circuit all OR nodes with just one child node.

5 While There is an ASG node with another ASG node as child

6 Do Conjoin the assignment in the child ASG into the parent AS@enand short-circuit the child ASG node.
7 EndDo

8 If There is an AND or OR descendantrobt

9 Then Checkn) wheren is the nearest AND or OR descendantat.

10 EndIf

11 return root

12 EndIf

End

Fig. 12.The RT to FT conversion algorithm.

must derive the conclusions of the implication on the bassthese assumptions are true, namely that there are values
for j,c, p, for which:

Ki(,c)AK2(c,p)A®A N\ FA A -G (46)
FeFC GEFC
hold.
Let m be values foc which make (46)rue. Then
Ki(,c) AK2(c,p) A®P A A N\ FA N\ -G (47)

FeFC GeFC

is satisfiable, wherex = A (c=m) € VYD, c).
From (47) we can derive the truth of both:

Kij,oA®iAgn A\ FA A -G (48)
FeFCy GeFCy

whereFC; = FCNFV(K1) C FV(K1), and®; is @ with all assignments to variables not belongingkib erased
(recalling that® is an assignment to all XVs &f); and:

K2cprdaneen N\ FA N -G (49)
FeFCy GgF_Cz

whereFCy; = FCNFV(K2) C FV(K2), and®, is ® with all assignments to variables not belonging<® erased.
Since®; contains assignments to at lepahd®, contains assignments to at lepsheither®; nor @, is trivial. It is
now easy to see thai; A @k is an assignment to all XVs &€1 and thatd, A @k is an assignment to all XVs df2.
Evidently alsoFC; UFC, = FC andFC1NFC, = 2.

We can now apply the inductive hypothesektb andK2, noting that at least one @1 or Ck2 will be valid.
Suppos®k1 holds in which case there is nothing to prove for it, and t8gp must hold. In that case, by hypothesis,
the call toExpandfor K2 produces a tred2 such thafC; is in CCSN2). Observing that no FV for any BC iK1 is
true, we see that the conjunffecec, F in (48) is trivial, and that the call texpandfor K produces a trel with an
OR root, below which is an ASG node containipg= A;(c=m) € VYD, c), below which is another OR, for which
the relevant branch will contain an OAS node with subiMgelescending from it (see Fig. 11.(c)). Since the top node
of N is an OR and the node below the ASG is also an ORSN) will contain CC§N2) as a subset, giving us the
required conclusion in this case. The argumentdgs andCk; holding is similar.

If both Cx1 andCk> hold, instead of an OAS with descending subti&qandcreates an AND node with subtrees
N1 andN2 for K1 andK2 respectively. Noting thaEC, and FC; partition FC, thatFC; € CCSN1) andFC; €
CCSN2) by the inductive hypotheses, and noting the rule for AND i@ @CNSfunction, we derive the required
conclusion. m

26 Banach and Bozzano

5.3. Turning Resolution Trees into Fault Trees

The preceding section proved the crucial soundness andletanpss results for the RT algorithm. Once we have the
resolution tree, we can potentially do many things withritthis paper we illustrate this potential by describing how
to extract a fault tree of a relatively conventional formrfrdt in a mechanical manner.

Fig. 12 gives an algorithnRTtoFT, which performs the required tadRTtoF T calls two further functiongCheck
andInsertlEto complete its work. These are given in Fig. 13. We briefly swarise the properties of this transforma-
tion.

Definition 5.22 (Fault Tree). A Fault Tree is a tree such that for every path from the root keaf the node types
encountered form a sentence describable by the regulagssipn:

FT=TLE ((AND +OR) IE)* BF (50)

The standard definition [VSD02] insists on intermediate events (i.e. IE nodes) inteitepbetween distinct
occurrences of logical connectives, and this is reflect€80). Note that (50) only partially defines FTs since it must
be supplemented with information on node arities etc. ireotd pin down the tree structure precisely.

In this paper we will modify the permitted possibilities imamber of ways. Firstly we will allow ASG nodes (or
amalgamations thereof) to take the place of IE nodes whentthee already been planted in a suitable position by
GenRT This is a natural choice given that, as mentioned in Seé&tidrsuch nodes correspond to genuine intermediate
events in the fault tree. Secondly, we will allow the top leva the FT to feature a GOAS node if non-faulty behaviour
can give rise to the TLE. Thirdly, we allow removal of OAS negan alternative, described in Section 5.2, could be
to insert them as external events, but the current choiceffigient for our purposes. The remaining modifications,
such as inserting IE nodes between consecutive connecitiesn are mostly needed for housekeeping, namely to
conform to the standard fault tree notation. Accordinglg, give the following definition. Again, the specification is
only partial, but it will be sufficient for our purposes singe already have the RT to start with.

Definition 5.23 (Modified Fault Tree). A Modified Fault Tree is a tree such that for every path fromrba to a
leaf, the node types encountered form a sentence des@ibglihe regular expression:

FT=TLE[[OR GOAS] + TLE [ASG] ((AND +OR) (ASG+ IE))* BF (51)

Proposition 5.24 RTtoFT Properties). The algorithmRTtoFT converts the RT produced WyenRTinto a FT ac-
cording to Def. 5.23.

Proof sketch.It is not hard to see that the output@EnRTis a tree whose root-to-leaf paths consist of:

1. apath through one of the top level cases in Fig. 9.(a)-(d),

2. zero or more occurrences of root-to-leaf paths throughi.(b) or Fig. 11.(c) with its root overwriting tl2leaf
node of the path-so-far (provided the leaf node is inde€dade),

3. an occurrence of Fig. 11.(a), with its root overwriting @leaf node of the path-so-far (provided the leaf node is
indeed &C node).

Algorithm RTtoFTstarts by eliminating OAS and one-child OR nodes, and thesdgamating chains of ASG nodes.
After this, the only possible deviation of a path in the tremnf the form in (51) is the presence of consecutive AND
or OR nodes in the path. To change these paths into legal weeaseed to interleave |IE nodes between consecutive
connective nodes; this is the job of the functid@iseckandInsertlE of Fig. 13, called at the top level in line 9 of
Fig. 12. Itis not hard to see that these routines do the jobired. o

We can prove that the fault trees generated according tolgieeithm in Fig. 12 enjoy the following restricted
notion of causality, which is related to the structural daposition of the system (compare also the discussion in
Section 3).

Proposition 5.25 (Causality). Provided substructures closest to the top level inputsested more deeply than ones
closer to the top level outputs, then the FT algorithm geesra ‘causal’ FT, in the sense that the variables closest to
the inputs are assigned to in ASG and IE nodes that occur deeffe FT than the ASG and IE nodes for variables
closer to the outputs.

Proof. Since the RT algorithm works top-down, if tiienode forg, occurs higher in the parse tree than Kx@ode
for g,, then the RT algorithm plants the ASG nodesgphigher in the RT than the ASG nodes §gr The RTtoFT
algorithm preserves this ordering. Therefore to achieveaasal’ FT, in which the ASG nodes encountered along a

Fault Trees for Reactive Systems | 27

Function Checkn)
Input: A noden of a pre-processed RT
Begin
ForAll Childrenny of n such thaty is an AND or OR node
Do ChecKny)
InsertlE(ny)
EndForAll
ForAll Childrenny of n such thaty is an ASG node
Do ChecKny,) where ny, is the child ofng
EndForAll
return

oO~NO O~ WNPEF

End

Function InsertlE(n)

Input: A noden of a pre-processed RT

Begin

1 Create an |IE node containing the conjunction of the forminghe ASG or IE children af if nis an AND node,
or containing the disjunction of the formulae in the ASG orctitldren ofn if nis an OR node.

2 Interpose the |IE node betweamand its parent (i.e. make the IE node the childhsfparent, and make the |E node’s child).
3 return
End

Fig. 13. TheCheckandInsertlE functions.

path through the FT toward the root assign to variables inrdaraot contrary to the variables encountered along the
dataflow, it is sufficient to ensure that earlier sequentahpositions (according to dataflow ordering) are more deepl
nested than later sequential compositions. N.B. Sinceyslems are finite and acyclic, such a nesting can always be
found. m

The astute reader will notice that the tree in Fig. 7 featuaemble assignmemZ = 0 below variable assignment
¢5 = 0, despite the fact thab causally precede¥ in the structurd&0-K4 given in Fig. 5. There is no contradiction
with Prop. 5.25, since Prop. 5.25 makes essential use ofiamgadeterminism, whereas the algorithm sketch that
derives Figs. 6 and 7 mirrors a practical algorithm, thafgree avoids angelic nondeterminism, and just follows the
data dependencies. One fact is clear though. Such anomzdsas can only arise for assignments which have no
dataflow to the TLE, since if thengereany dataflow to the TLE, a derivation following a properly stituted input-
innermost structure, would encounter the need to assigi before encounterings. Minimisation, discussed next,
in which such non-needed derivations are discarded, ptheaglevant subtrees anyway.

6. Structured Minimisation

In practical fault analysis, it is of particular interestgenerate the minimal fault configurations, the so-caihgimal

cut sets(MCSs for short), consisting of the fewest possible bagittdathat cause a particular TLE. This is because
including redundant fault configurations may lead to an aaptable combinatorial explosion of causes for a typical
TLE encountered in practice. Furthermore, minimal cut ae¢soften used as the basis for quantitative evaluation of
fault trees.

The traditional technique for discovering MCSs is subsuomptin principle, one needs to generate all possible
configurations that cause a fault (which may lead to the coatbrial explosion already noted), and then check them
against one another: any that are subsumed by simpler ceatfigns are discarded. Obviously these subsumption
checks can be quite expensive for a large system model, gieceumber of leaves in a tree is exponential in its
depth, and the number of subsumption checks is quadratiteimamber of leaves. Although in practice efficient
algorithms [CM92, CM93, Rau93, RD97] based on binary deaisliagrams (BDDs) [Bry92] can be used for this
purpose, their worst-case complexity is still exponenitidhe number of variables of the BDD.

In this section we explore ways of reducing the subsumptiorkisad by exploiting the structure of the tree
construction as guided by the retrenchment data. The tqabgsidescribed in this section can be used to generate a
minimised tree in parallel with (or when only minimal cutsatre required, in place of) the construction of the main
resolution tree, described in Section 5. The advantageabf ®chniques is to avoid a brute-force subsumption on the
flat representation of minimal cut sets. Similar ideas mayp alfffer opportunities for optimizing the computation of
minimal cut sets in the symbolic realm of FSAP. This is brigfigcussed in Section 8.

28 Banach and Bozzano

| TLE: (3P2+Pl=1AJ1=1AJ2=1..) |

[) I |
cl,c5,c6=0,1,1 | cl,c6=1,0 | cl,c5,c6 =1,0,0 |

Fig. 14.A Minimised Fault Tree for the TLE ofred.

The construction described in this section builds upon sminémisation opportunities and rules, which are illus-
trated below on our running example.

M.1: Discarding non-needed subtrees. If, during the FT cornstrucan OR choice arises which entails a fault
which leads to an assignment to some variable whose valuerdmeaffect the validity of the TLE (e.g. there is no
dataflow from the fault to the TLE), then the subtree rootethast OR choice can be discarded immediately since
the TLE is satisfied without it. In general, we call such fauitcidental faults. An example is the subtree of Fig. 6,
involving F3.c7,F1.c2,F2.c3, since there is no dataflow froe¥ to the TLE. As in this example, such faults can
arise by considering the disjunction of the complete rarfgmesible faulty configurations of some otherwise needed
component.

M.2: Discarding subtrees at input-insensitive faults. If, dgrthe FT construction, a fault is generated which is
independent of any input to the component in question, th¥ree corresponding to the elaboration of those input
values can be discarded immediately. An example occursgn@iin caseTLE.R, which consider®x33Cr3z s V
Ck380r3 V Ck33Crac6. SinceF3.c6 is astuckat zerofault, when it istrue, the behaviour oK3 is immaterial. So
we can immediately discard the tel@x33Cr3cs in favour of Ox33Cr3 s, and indeed we need not even explore the
satisfiability ofOks in detail either.

M.3: Discarding locally subsumed expressions. If, during thestwiction, a range of options to explore is gen-
erated, some of which are subsumed by others, the subsuniedsopan be discarded immediately. E.g. in Fig. 6,
F1.c2 subsumef1.c2 A F2.c3.

M.4: Doing final subsumption checking at the subsystem level.tétleniques outlined above are not guaranteed
to be complete, insofar as further minimisations to gemdiat MCSs may remain. Rather than leaving these to a final
whole-model subsumption check, the brute force subsumgti@cking to catch them can be done at the subsystem
level, since all contributions to the TLE for a fault in a system likeFred are causally propagated along data pathways
within the subsystem (a structural assumption we take fantgd). Thus the inclusion of the rest of the system will
result in an overall description which necessarily fastesi regardless of whether or not the factorisation is gbscu
(whether to a human observer or to some algorithm) by the tmiitp of the final expression.

Note that it could be said that all &fl.1-M.4 are instances of subsumption, if one understands subsumpti
from a semantic perspective, i.e. formulae are viewed upgachl equivalence. Unfortunately, algorithms running
on real computing machinery cannot view arbitrary formulpdo logical equivalence without investing the effort to
prove the logical equivalence, and it is this work that wetayig to save. Thus it could be said tHdt1 concerns
the subsumption 0€«33Ck3.c7 by Ck33Or3. However this subsumption only becomes explicit when bets are
reduced to the cut sets that give rise to their respectivexiebrs, at which point a machine can indeed determine
that{F1.c2,F2.c3} is a subset of F1.c2, F2.c3,F3.c7} and thus subsumes it. By noting the circumstances during the
FT algorithm itself, the reduction to cut sets@£z3Cr3c7 is avoided. INV.2 a similar thing occurs. Thus it could be
said thatCk33Cr3 cs iS Subsumed bk 33Cr3 s 0N the grounds that the cut set of the latter,{[€3.c6}, is a subset of
all cut sets of the former. But again, this only becomes piaia machine when all the cut sets have been computed.
Bringing the suggested optimisation to bear, saves in g ca considerable amount of work.

When we apply the above insights to the running example wRdsis indicated in Fig. 6, we get a considerably
smaller tree. We transform this into a legal FT as per [V8P)], containing just the MCSs, by the process outlined in
Section 4. Doing this, we end up with the minimised fault freEig. 14.

Fault Trees for Reactive Systems | 29

7. Formal Minimisation

In the following, we denote biflin(RT) the resolution tree minimised according to the rules dbedrin the previous
section. We give the following definition.

Definition 7.1 (Subsumption). Let She a system an@LE a top level event. LeCS andCS be two cut sets fof LE
andS. We say thaCS subsume€S, writtenCS C CS, iff C§ C CS.

We have the following obvious results.

Proposition 7.2 (Correctness).Let S be a system andLE a top level event. LeRT = GenRTTLE,S). Then the
minimized resolution tree is correct, that is, the follog/imolds.

V. (AF) = V.o (AF) (52)

CSECCYRT) FeCs CS=CCYMin(RT)) FeCS

Proposition 7.3 (Minimality). Let Sbe a system and@LE a top level event. LeRT = GenRTTLE,S). Then the cut
sets inCCYMin(RT)) are minimal, that is, for ever€S, CS € CCSMin(RT)) we have thaCS C CS = CS =
CS.

Beyond the preceding, is the issue of how minimisation caimb@rporated into ‘on-the-fly’ FT generation. The
material in Section 5 opens the way for this, though it hase@tcepted, that being focused on describing an ab-
straction of a practical algorithm (moreover one that usegehc features), it might be misleading in terms of the
practicality of the minimisation opportunities it offefdevertheless, we have the following result.

Proposition 7.4 GenRT Safe Optimisation). If only minimal cut sets are of interest, then in tBenRTalgorithm
of Section 5:

1. Itis safe to dispense with case Fig. 9.(d) in favour of Bigb).

2. IntheExpandfunction, in cases Fig. 11.(b) or Fig. 11.(c), if at least ohthe OAS/C branches is realisable, then
it is safe to dispense with the correspondikigD(C;, Cy) subtree.

Proof. Regarding 1., ifOs is realisable, then it leads to the empty cut set which isalsty minimal, so there is no
need to explor€s. Regarding 2., for parallel composition, in case Fig. 1)1 ifire two components are independent
since the variables that remain to be instantiated at tha pbcreation of a Fig. 11.(b) subtree are just IVs of one or
other component. Provided s&y A C; is realisable, it will lead to computed cut sets that onlyd@y faults. Clearly

any cut set ofC; A C, will include C; faults along with a set o€, faults, so will be subsumable by tli& subset,
since these will be a cut set, by independence. The arguroesefjuential composition is the same, since the only
variables shared by the two components, their IFVs, hawadiyr been assigned at the top of a Fig. 11.(c) subtree,
thereby decoupling the two components. o

The last point in the preceding proof indicates why the ojstation of Prop. 7.4 is merely safe rather than optimal.
In a sequential composition, there can be many assignmettis i1FVs that realise the concession for the composite
subsystem. There may be one assignment leading to a d0get FV1 involving the fault variables of component
1 alone, and another assignment leading to a cut€Segt C FV1UFV2, involving the fault variables of both. Now
CSy may be a subset @SN FV1, in which case it subsumé&3S;; or the opposite may hold; or they may be
incomparable. In the latter two casg§ > may or may not itself also be minimal. Unfortunately, whidhtese cases
applies, is not apparent at the point of generating a Figcl ubtree, at least not without a substantial additional
appeal to angelic nondeterminism.

Despite the above, a tightening of Prop. 7.4 can be mader# fhkeenough determinism around.

Definition 7.5 (Definite TLE). A TLE for a systentis definite iff it is equivalent to an assignment to all TLXVs.

Proposition 7.6 GenRT Deterministic Optimisation). Let S be a system, all of whose BCs are deterministic, and
let TLE be a definite top level event f& Then the optimisations of Prop. 7.4 ensure tray minimal cut sets are
generated bysenRT

Proof. The assumption of a definite TLE and of a determiniSjiensure that provideLE A SA Cs is realisable,
the TLE node has a unique ASG node in Fig. 9.(c), and each ségueomposition generates a unique ASG node
in Fig. 11.(c). LetCS andCSs be two cut sets generated by the optimis&ehRTand suppose th&@S, C CSs.

Let B.F € CS$ — CS. Then in the truncated parse treeSfelating to the generation &g, there will be a nearest

30 Banach and Bozzano

ancestor of B@ where theCS run ofGenRTselected an OA® branch while the€Ss run selected the ANEC;, Cp)
subtree. By determinism, both are consistent with a sirgge@ament to all variables other than 1Vs of the composite,
which decouples the two components. If tB&, run selected an OAS/branch, then the OAS/branch is realisable.
Therefore the optimise@enRTwould have discarded the AND1,Cy) subtree in its favour, and we deduce that
B.F ¢ CE — CS, after all, givingCS — CS, = @. Hence only minimal cut sets are generated. o

Itis now interesting to compare the above results with wheet done in Section 6. There, it was clear Mat-M.3
could be applied ‘on-the-fly’. They are clearly special caséthe optimisations in Prop. 7.4, which thus subsumes
them. However Prop. 7.4 relies in general on angelic nomaétésm, and in a practical setting, angelic nondeter-
minism costs — for instance with its more extravagant use, aould simply posit that the minimal cut sets were
angelically returned. So in reality there will be a traddodtween the cost of resolving any angelic nondetermin-
ism in a minimal cut set algorithm, and the cost of mopping egidual non-minimal cut sets via a final brute-force
subsumption check.

8. Related Work

The present work falls into the area of model based safetlysisdBV"03b, BCC 03, B"06,BV07,BCT07]. Model
based safety analysis is carried out on formally specifiedetsowhich take into account system behaviour in the
presence of malfunctions, that is, possible faults of soameponents. In particular, this paper builds upon previous
work describing algorithms for automated fault tree geti@na in particular those implemented in FSAP [BVO07,
BCTO07,FSA], a platform for supporting the development aaiety assessment of complex systems. Incorporation of
the algorithms described in this paper in FSAP is work in peeg - a more thorough comparison and discussion of
some relevant issues is given in Paperll.

The FSAP platform has been developed within three Eurojpidan-sponsored projects involving various re-
search centers and industries from the avionics sectorelyaive ESACS (Enhanced Safety Assessment for Com-
plex Systems), ISAAE' (Improvement of Safety Activities on Aeronautical Compsstems) and MISSK (More
Integrated Systems Safety Assessment) projects. For a detaded description of the project goals we refer to
[BVT03b,BCC03,B"06]. The FSAP platform has been used to carry out safety sseees of models at industrial
level, see e.g. [BCE03].

Regarding model based safety analysis, we also mention5|JJHMOWHO5], sharing some similarities with the
ISAAC approach. In particular, the integration of traditéd development activities with safety analysis actigitie
based on a formal model of the system and a clear separatimedre the nominal model and the fault model, are
ideas that have been pioneered by ESACS{BSb]. Finally, we mention [MTHO03, TLM02, TMO03], sharing vkithe
ISAAC project the application field (i.e. avionics), and thee of NUSMV as a target verification language.

The retrenchment based algorithms described in this pamaove over the ones described in [BV07] for two
reasons. First, they allow the generation of structurett fezes, which are more informative than the flat fault trees
currently available in FSAP. Second, assuming the enhascenof Paperll, they allow the taking of dynamic infor-
mation into account, e.g. they can deal with transient faguand feedback. However they come at a price, that of
potentially excessive complexity, so their realisatiorstrue approached with caution.

We distinguish two different forms of complexity. The coraxty of the analysis itself and of an implementation
of it, and the complexity (in terms of, e.g., size and realitslppdf the generated results. As regards complexity of the
analysis, we defer the discussion to Paperll [BB10], wheedwiefly discuss the main issues related to a practical
implementation of our techniques using symbolic model khy;, in the more general context of time-dependent
circuits. Here it will suffice to say that holding all the diétaf the analysis in the symbolic world may be prohibitive,
on both time and space grounds, and hence details must loeluctrd with care and in a controlled way. A full
discussion of this topic, and a thorough outline of the snities and differences between the retrenchment-based
techniques and the symbolic ones is, however, outside tipesaf these papers, and will be published elsewhere.

Concerning complexity of the generated results, therevementays to deal with this issue, similarly to more tra-
ditional manual analysis techniques. First, it is posstbleestrict the boundary of the analysis. For instance, it is
possible to limit the analysis only to specific sub-systemsquipments of interest. Second, it is possible to reduce
the level of resolution of the analysis, using, e.g. abstvaqand refinement) techniques. For instance, it is ptessib

10 http:// wwmv. esacs. or g.
11 http://ww. i saac-fp6. org.
12 http:// ww ni ssa-fp7. eu.

Fault Trees for Reactive Systems | 31

to view the faults of a given major component as being eleargntvithout tracing their causes down to more basic
components. This is not different from what happens in tiaadial fault tree analysis. Moreover, as discussed in Sec-
tion 2.4, the retrenchment-based framework allows for msgjve decomposition and recomposition of hierarchical
models, based on the so-called Tower Pattern construdidnlgs05, BPJS05, BPJS06a, BPJS06b], thus facilitating
integration of results obtained at different levels of deFnally, the readability of the generated trees, e.gegsrds

the readability of the automatically generated intermtedéaents, relies on human interpretation and postprotgssi
by safety analysts.

Our work has been inspired by Hip-HOPS (Hierarchically Berfed Hazard Origin and Propagation Studies)
[Pap00,PMO01,PMSHO01], and the FoSaM (Formal Safety Mogedy@ach described in [BV03b, BV07]. Hip-HOPS
is a framework incorporating a mechanical fault tree sysithalgorithm based on the structure of the design model.
The synthesis of the fault tree is based on an exploratorysisacalled FFA (Functional Failure Analysis), used to
identify the failure modes of a given component, and a tatietzhnique called IF-FMEA, whose aim is to generate a
model of the local failure behaviour of the component undeestigation. IF-FMEA tables are conceptually similar to
the Failure Propagation and Transformation Notation [FMAPa notation used to represent the failure propagation
in a system via a number of modules, each module correspgiman abstraction of a set of fault trees describing a
particular component. The focus of the Hip-HOPS methodpisgot on generating fault tre@gr se but in properly
organizing such fault trees in accordance with the strectdithe design model, and in managing model evolution.
The result of Hip-HOPS is a hierarchical model that progvesgrecords with increasing detail the implementation of
the system. Our work is instead focused on the automatiameofaiult tree generation process, starting from a formal
specification of both system and fault models. Furthermeesgiscussed how the synthesis algorithm can be coupled
with suitable on-the-fly tactics to perform local minimat set computation, reducing the overall computationalr&ffo

A large amount of work has been done in the area of probabikstfety assessment (PSA) and in particu-
lar on dynamic reliability[Siu94]. Dynamic reliability is concerned with extendirgetclassical event or fault tree
approaches to PSA by taking into consideration the mutuakactions between the hardware components of a
plant and the physical evolution of its process variableZ[M98]. For different approaches to dynamic reliabil-
ity see e.g. [Ald87, Pap94, CIMP92, MZDL98, SD92]. Theserapphes are mostly concerned with the problem of
fault tree evaluation, whereas our focus was on automatithegis. Also concerned with fault tree evaluation is
DIFTree [MDCS98], a methodology for the analysis of dynafaidt trees, implemented in the Galileo tool [SDC99].

It uses a modularisation technique [DR96] to identify (melar time) independent sub-trees, that can be evaluated us-
ing the most appropriate techniques (BDD-based technifpuesatic fault trees, Markov techniques or Monte Carlo
simulation for dynamic ones). In addition, it supports eliéint probability distributions for component failuressif-

ilar modularisation and decomposition technique is adiggta [AS98]. That technique is orthogonal to our notion
of structural generation; in particular, it is concernethvigolating different sub-trees that can be synthesiseeval-
uated) separately, whereas our structural informatiorbeamsed to synthesise (or evaluate) each sub-tree on its own.
Finally, we mention [Sch03, TS03], both concerned with endtically proving the consistency of fault trees using
model checking techniques; [TS03] presents a fault treeanéns based on Clocked CTL (CCTL) and uses timed
automata for system specification, whereas [Sch03] presefdult tree semantics based on the Duration Calculus
with Liveness (DCL) and uses Phase Automata as an operbtimmtkel.

Regarding the algorithms for fault tree generation usedSARF; the minimisation routines used to extract the
set of minimal cut sets are based on classical proceduresifomisation of Boolean functions, specifically on the
implicit-search procedure described in [CM92, CM93, Ral@397], based on BDDs [Bry92] (see also [RPA08] for
enhanced methods to convert fault trees into BDDs). Altiaraa@xplicit-search and satisfiability based techniques
for computation of prime implicants are described, e.gM®OMS98]. In addition, important optimisations, that are
tailored to the generation of minimal cut sets, have beeanthcimplemented [BCTO07] on top the main routines
for minimising Boolean functions. Some of these optimizasiresemble the minimisation opportunities described in
Section 6. In particular, ruldgl.1 andM.2 are taken care of by a combination of the BDD package reducties
and the DCOI (Dynamic Cone of Influence) construction of [BC], whereas rulebl.3 andM.4 are taken care of
by dynamic pruning [BCTQ7]. The rules of Section 6 may offerttier opportunities for optimisations. A thorough
discussion of this topic lies beyond the scope of this papet,will be reported elsewhere.

9. Conclusions and Forward Look to Paperll
In the preceding sections, we set up our machinery for trgdfult injection via retrenchment, and explored its

properties. We introduced the relevant formalisms foreayst and faults, and the relevant facts about retrenchment,
especially concerning composition. We showed how the melmment concessions could be analysed to generate a

32 Banach and Bozzano

deeply nested resolution tree in a structured manner. Tégplg nested resolution tree is the core output of our
technique, and provides a jumping off point for what couldemtially be many kinds of further processing and
analysis. Because of the widely known nature of the fault trencept, we post-processed our resolution tree into
a fairly conventional fault tree format, this being of addlital significance since fault trees are the input format for
commercial RAMS tools, see e.g. [ISO]. We backed up the eXated discussion with a thoroughgoing theoretical
treatment. We examined minimisation, and showed that thetsred analysis gave rise to opportunities for on-
the-fly minimisation, which is always welcome in situatiansvhich complexity considerations defeat conventional
approaches, as they do for automated fault tree generatinally, we were able to position these minimisation
opportunities within the theoretical framework developed

From an engineering perspective, we believe that the rgreamples presented throughout the paper should have
convinced the reader of the usefulness and potentialitimstomatically generated fault trees. While itis true thath
fault trees are not guaranteed to obey the notion of caug@lién in [VSD"02] (compare also the discussion in Section
3), the fact that structural decomposition, as describéisgpaper, closely follows the system dataflow, suggdsas, t
in many cases of interest, the fault tree interconnecticagimfact correspond to genuine causal relationships. Unde
the hypotheses of Prop. 5.25, which is one of the main restittss paper, these interconnections are built according
to the system hierarchy. Hence, we can evidently draw a lpakatween our formal fault tree derivation and the
structural decomposition prescribed by the ‘state of systelle of [VSDT02]. The decomposition has a natural
correspondence with the expansion rules used in the resoln¢e algorithm (compare Fig. 10).

The same expansion rules, when applied to basic compomhentesa natural counterpart with the ‘state of compo-
nent’ decomposition prescribed by [VSD2]. In principle, our routines can address primary, seaoy)éind command
faults. Clearly, given that our framework relies on a forrmaldel of the system, faults may be discovered to the extent
that they have been covered in the formal model, which maydieompletely straightforward for some types of
faults. For instance, modeling secondary faults due toaijmer of a component in an environment for which it is not
qualified, requires a formal model of the environment covggthe environmental conditions of operation that must be
part of the analysis. A similar line of reasoning holds fomgpand faults due to improper operation or human error.
Regarding interpretation of faults, and their classifmatinto the previous categories, it is the responsibilityhef
safety engineer to analyze the different cases that fore@ation generates and assign them a correct semantical
interpretation in terms of primary, secondary or commandt$aOur claim is that the intermediate events generated
by our routines, when analyzed by a safety engineer that gasécomprehension of the system at hand, are a good
starting point for this post-interpretation, as they cantessignments to all the system variables of interest.llyina
we wish to remark on the important role that automated restisoupled with on-the-fly minimisation, may have in
the computation of minimal cut sets (and hence for quaiviavaluation) — such computations may be manually
infeasible for many complex models encountered in practice

From a more general development process perspective, wavdé¢hat the techniques presented in this paper
should be used to complement, not necessarily replacdtidraal techniques based on expert review and judgment.
Traditional fault tree analysis is an exploratory techeigupported by expert knowledge and comprehension of the
system at hand, hence it is guided, but not limited by desighsafety models, and automated techniques are in
fact constrained in what they can accomplish by such modéaig.deficiency or limitation in the design and fault
models can get exposed in the generated results. Howeigiisthot a limitation of our techniques as such, but
rather is intrinsic to automated formal verification in geaieAs is usually the case, the results of formal verifiaatio
are meaningful to the extent that they can be reviewed amdpréted using human expertise. Then again, on the
positive side, automatic analysis helps reduce the effadtmevent human error, in particular in the most repetitive
and mechanical parts of the analysis. A comparison betwagmetically generated results and manually generated
ones may expose problems that have escaped manual aratysssibly trigger system redesign recommendations.
Moreover, it can expose problems in design and safety modéish may be used elsewhere for different kinds of
analysis, hence resulting in useful feedback for desigrsafety engineers.

The work described in this paper applies to acyclic comipdnal logic circuits, in which there is no time delay
between the consumption of inputs and the production ofudstand no state. In Paperll, we address these shortcom-
ings. The need to deal with clocked circuits entails the di$éostreams and state components. It turns out that these
aspects complicate considerably the composition andheitreent machinery used in this paper, so a large part of Pa-
perll is concerned with elaborating those details. Howewece the basic machinery is in place, system descriptions
reduce once more to collections of variables, each takmgatues in some finite set. From that point onwards, the
theoretical basis is like the one of this paper, and the @tz considerations can therefore follow those hereerath
closely. Paperll therefore relies quite heavily on reushregfacts established in the latter parts of this paper.

Fault Trees for Reactive Systems | 33

References

[Ald87] T. Aldemir. Computer-assisted Markov Failure Mdidg of Process Control SystemdEEE Transactions on ReliabilifyR-36:133—
144, 1987.

[AS98] A. Anand and A. K. Somani. Hierarchical Analysis ofufiaTrees with Dependencies, using Decomposition.Ptac. Annual
Reliability and Maintainability Symposiurpages 69-75, 1998.

[B+06] M. Bozzano et al. ISAAC, a Framework for Integrated Safetalysis of Functional, Geometrical and Human AspectsPioc.
European Congress on Embedded Real Time Software (ERT$ 2006.

[BB10] R. Banach and M. Bozzano. The Mechanical GeneratioRaanlt Trees for Reactive Systems via Retrenchment II: Kddcand
Feedback Circuits, 2010. Submitted.

[BCO4] R. Banach and R. Cross. Safety Requirements and Fads using Retrenchment. In M. Heisel, P. LiggesmeyerSamiittmann,
editors,Computer Safety, Reliability and Securiplume 3219 oL NCS pages 210-223, Potsdam, Germany, 2004. Springer.

[BCCT03] M. Bozzano, A. Cavallo, M. Cifaldi, L. Valacca, and A. Mifiorita. Improving Safety Assessment of Complex Systefmdndustrial
Case Studylnternational Symposium of Formal Methods Europe (FME 20P8&a, Italy, LNCS$2805:208-222, September 2003.

[BCTO7] M. Bozzano, A. Cimatti, and F. Tapparo. Symbolic Fduwee Analysis for Reactive Systems. Rroc. Symposium on Automated
Technology for Verification and Analysis (ATVA 200¥ges 162-176, 2007.

[BJ] R. Banach and C. Jeske. Retrenchment and Refinemenwémiéng: the Tower Theorems. Submitted. See [Ret].

[BJPO8] R. Banach, C. Jeske, and M. Poppleton. Compositiechishisms for Retrenchment. Log. Alg. Prog. 75:209-229, 2008.

[BP98] R. Banach and M. Poppleton. Retrenchment: An Engingé&/ariation on RefinemenB'98: Recent Advances in the Development
and Use of the B Method: Second International B Conferenastpéllier, France, LNCS1393:129-147, 1998.

[BPO3] R. Banach and M. Poppleton. Retrenching Partial Rements into System Definitions: A Simple Feature IntéomcCase Study.
Requirements Engineering Journ8t266—288, 2003.

[BPJSO05] R. Banach, M. Poppleton, C. Jeske, and S. StepnetyeriRhing the Purse: Finite Sequence Numbers and the Tattrn. In
J. Fitzgerald, I. Hayes, and Tarlecki A., editdfermal Methods 2005/0lume 3582 of NCS pages 382—-398, Newcastle, UK, 2005.
Springer.

[BPJS06a] R. Banach, M. Poppleton, C. Jeske, and S. Stefetyenching the Purse: Finite Exception Logs, and Valdathe Small. In
M. Hinchey, editor,Software Engineering Workshop ,38ages 234-245, Layola College Graduate Center, Coluriviiig,2006.
IEEE.

[BPJS06b] R.Banach, M. Poppleton, C. Jeske, and S. SteRe&gnching the Purse: Hashing Injective CLEAR Codes, @udi8y Properties.
In T. Margaria and B. Steffen, editorand International Symposium on Leveraging Applicationsosial Methods, Verification and
Validation pages 82-90, Paphos, Cyprus, 2006. IEEE.

[BPJS07] R. Banach, M. Poppleton, C. Jeske, and S. Stepnegynéering and Theoretical Underpinnings of Retrenchm®ait Comp. Prog.
67:301-329, 2007.

[Bry92] R. E. Bryant. Symbolic Boolean Manipulation with @red Binary Decision Diagram&CM Computing Survey24(3):293-318,
1992.

[BV03a] M. Bozzano and A. Villafiorita. Integrating Fault@e Analysis with Event Ordering InformatioRroc. ESREL 200%ages 247-254,
2003.

[BV*t03b] M. Bozzano, A. Villafiorita, et al. ESACS: An Integratdtethodology for Design and Safety Analysis of Complex SysteProc.
ESREL 2003pages 237-245, 2003.

[BVO7] M. Bozzano and A. Villafiorita. The FSAP/NuSMV-SA Sy Analysis Platform. International Journal on Software Tools for
Technology Transfe®(1):5-24, 2007.

[CIMP92] G. Cojazzi, J. M. Izquierdo, E. Meléendez, and MP8rea. The Reliability and Safety Assessment of Prote&imtems by the Use
of Dynamic Event Trees. The DYLAM-TRETA Package.Rroc. XVIII Annual Meeting Spanish Nucl. Sot992.

[CM92] 0. Coudert and J. C. Madre. Implicit and Incrementah@utation of Primes and Essential Primes of Boolean FometiInProc.
Design Automation Conference (DAC 1992ages 36—39. IEEE Computer Society Press, 1992.

[CM93] O. Coudert and J. C. Madre. Fault Tree Analysis’®®rime Implicants and Beyond. Proc. Annual Reliability and Maintainability
Symposium (RAMS 1993)993.

[DBB92] J. Dugan, S. Bavuso, and M. Boyd. Dynamic fault trezdels for fault tolerant computer systeniSEE Transactions on Reliability
41(3):363-377, 1992.

[DR96] Y. Dutuit and A. Rauzy. A Linear-Time Algorithm to RifModules in Fault TreedEEE Transactions on Reliability45(3):422-425,
1996.

[dRE98] W. P. de Roever and K. Engelharfitata Refinement Model-Oriented Proof methods and their Goisgn Cambridge University
Press, 1998.

[FMNP94] P. Fenelon, J. A. McDermid, M. Nicholson, and D. dnfrey. Towards Integrated Safety Analysis and Des#yoplied Computing
Review 2(1):21-32, 1994.

[FSA] The FSAP/NuSMV-SA platformht t p: //sra.itc.it/tool s/ FSAP.

[Int96] SAE International. Guidelines and Methods for Coaiihg the Safety Assessment Process on Civil Airbornee®ystand Equip-
ment, December 1996.

[1ISO] Isograph.ht t p: / / www. i sogr aph- sof t war e. com

[Jes05] C. JeskeAlgebraic Integration of Retrenchment and RefinemBhD thesis, University of Manchester, 2005.

[JHO5] A. Joshi and M. P. E. Heimdahl. Model-Based Safetylysia of Simulink Models Using SCADE Design Verifier. In R. itfer,
B.A. Gran, and G. Dahll, editor®roc. Conference on Computer Safety, Reliability and Sgc(BAFECOMP 2005)volume 3688
of LNCS pages 122-135. Springer, 2005.

[JMWHO05] A. Joshi, S. P. Miller, M. Whalen, and M. P. E. Heinlla A Proposal for Model-Based Safety Analysis. Rroc. AIAA / IEEE
Digital Avionics Systems Conference (DASC 20@8p5.

[MDCS98] R. Manian, J. B. Dugan, D. Coppit, and K. J. Sulliv&@ombining Various Solution Techniques for Dynamic Fauiel Analysis of

Computer Systems. IRroc. High-Assurance Systems Engineering Symposium (MASE pages 21-28. IEEE, 1998.

34

[MOMS98]
[MTHO3]
[MZDL98]

[Pap94]

[Pap00]
[PMO01]
[PMSHO01]

[Rau93]
[RDI7]

[Ret]
[RPAOS]

[Scho3]
[SD92]
[SDC99]

[Siu94]
[TLMO2]

[TMO03]
[TSO03]
[VGRHS81]

[VSD*02]

Banach and Bozzano

V. M. Manquinho, A. L. Oliveira, and J. P. Marquegva. Models and Algorithms for Computing Minimum-Size e Implicants.
In Proc. International Workshop on Boolean Problems (IWBP8)92998.

S. P. Miller, A. C. Tribble, and M. P. E. Heimdahl. Ring the Shalls. IrProc. Formal Methods Europe (FM 20Q3)olume 2805 of
LNCS pages 75-93. Springer, 2003.

M. Marseguerra, E. Zio, J. Devooght, and P. E. Labea Concept Paper on Dynamic Reliability via Monte Carlo Slation.
Mathematics and Computers in Simulati@7:371-382, 1998.

I. A. Papazoglou. Markovian Reliability Analysis@ynamic Systems. In T. Aldemir, N. O. Siu, A. Mosleh, P. C.c€abue, and
B. G. Goktepe, editorReliability and Safety Assessment of Dynamic Processrystelume 120 ofNATO ASI Series Fpages
24-43. Springer, 1994.

Y. Papadopoulo&afety-Directed System Monitoring Using Safety CaBé® thesis, Department of Computer Science, University
of York, 2000. Tech. Rep. YCST-2000-08.

Y. Papadopoulos and M. Maruhn. Model-Based SynshesiFault Trees from Matlab-Simulink Models. Rroc. Conference on
Dependable Systems and Networks (DSN 2Q@ges 77-82, 2001.

Y. Papadopoulos, J. McDermid, R. Sasse, and G.ddeiAnalysis and Synthesis of the Behaviour of Complex Ruwgnable
Electronic Systems in Conditions of Failuri@eliability Engineering and System Safet$(3):229-247, 2001.

A. Rauzy. New Algorithms for Fault Trees Analysieliability Engineering and System Safet@(3):203-211, 1993.

A. Rauzy and Y. Dutuit. Exact and Truncated Compotaiof Prime Implicants of Coherent and Non-Coherent Fa@aed within
Aralia. Reliability Engineering and System Safdéi@(2):127-144, 1997.

Retrenchment Homepagett p: / / www. cs. man. ac. uk/ retrenchment .

R. Remenyte-Prescott and J.D. Andrews. An enhaoceeibonent connection method for conversion of fault tredsrtary decision
diagrams.Reliability Engineering and System Safé&i$(10):1543-1550, 2008.

A. Schafer. Combining Real-Time Model-Checkimgl &ault Tree Analysis. IProc. Formal Methods Europe (FM 20Q3)olume
2805 ofLNCS pages 522-541. Springer, 2003.

C. Smidts and J. Devooght. Probabilistic Reactorddyits 1. A Monte-Carlo Study of a Fast Reactor Transiéiiiclear Science
and Engineering111(3):241-256, 1992.

K. J. Sullivan, J. B. Dugan, and D. Coppit. The Galifault Tree Analysis Tool. IRroc. Symposium on Fault-Tolerant Computing
(FTCS 1999)pages 232-235. |IEEE, 1999.

N. O. Siu. Risk Assessment for Dynamic Systems: Ae@iew. Reliability Engineering and System Safet@:43—74, 1994.
A. C. Tribble, D. L. Lempia, and S. P. Miller. SoftwarSafety Analysis of a Flight Guidance SystemPioc. AIAA / IEEE Digital
Avionics Systems Conference (DASC 2020)2.

A. C. Tribble and S. P. Miller. Software Safety Analyof a Flight Management System Vertical Navigation Florct A Status
Report. InProc. AIAA / IEEE Digital Avionics Systems Conference (D2803) 2003.

A. Thums and G. Schellhorn. Model Checking FTA.Aroc. Formal Methods Europe (FM 20Q3)olume 2805 olLNCS pages
739-757. Springer, 2003.

W. E. Vesely, F. F. Goldberg, N. H. Roberts, and DHEasl. Fault Tree Handbook. Technical Report NUREG-0492te8ns and
Reliability Research Office of Nuclear Regulatory Rese&icd. Nuclear Regulatory Commission, 1981.

W.E. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, dahik Ill, and J. Railsback. Fault Tree Handbook with Agaxse Applica-
tions. Technical report, NASA, 2002.

