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Abstract

Discussion of a radiation dose calculation example demonstrates various expressive limitations
of the refinement calculus, particularly for systems with continuous variables. A liberalization of
refinement, called retrenchment, is proposed, which will support an analogous formal development
calculus. Useful concrete system behaviour can be specified outside the domain of pure refinement,
in particular behaviour under controlled precision decay.

A syntax and a formal definition are presented for retrenchment in the B notation of J.-R. Abrial.
Necessary transitivity and monotonicity properties for a formal development calculus are stated. A
generalisation, evolving retrenchment, is proposed, and a simple example demonstrates its utility,
by analogy, in control systems applications. Evolution in retrenchment is demonstrated to offer the
expressive power to describe useful simulation-like behaviour, with evolving precision, in software for
control systems. Finally, the dosimetry problem demonstrates the architectural value of retrenchment
for the formal construction of continuous systems.

1 Introduction

From early concerns about proving correctness of programs such as Hoare’s [Hoa69] and Dijkstra’s [Dij76],
a mature refinement calculus of specifications to programs has developed via work such as [Bac81, Mor94,
BvW89, HHS87]. The first relational proposal for a sound and complete proof method for data refinement
was [HHS86]. A modern version of this simulation method, in its forward and backward forms, appears
in [WD96, SCW98] in the Z notation [Spi93], and is discussed more generally in [dRE98].

In this context of model-based specifications the term “refinement” has a very precise meaning; according
to Back and Butler [BB98] it is a “...correctness-preserving transformation...between (possibly abstract,
non-executable) programs which is transitive, thus supporting stepwise refinement, and is monotonic
with respect to program constructors, thus supporting piecewise refinement.” Relationally, refinement is
characterised as a development step requiring the concrete precondition to be weaker than the abstract
(the applicability, or termination condition), and the concrete transition relation to be stronger, or less
nondeterministic, than the abstract (the correctness, or transition condition). The most succinct char-
acterisation of refinement is that of “operational indistinguishability”, i.e. that every concrete behaviour
be a possible abstract one.

Refinement is a strong technique in software development, both in descriptive power, and in deliver-
ing proof obligations that assert strongly coupled structure between levels of abstraction. So it is not



surprising that refinement cannot be used, without simplifying or approximating assumptions and in-
formal justifications, in many real-world system situations. Early work on clean termination of pro-
grams [CH79, Bli81] shares our concern with refining specifications on abstract, infinite domains to finite
computer-oriented domains. Another approach to this finiteness problem was Neilson’s thesis [Nei90],
which proposed a notion of acceptably inadequate design, i.e. that refinement over an infinite domain
could be regarded as a limit of finite refinements. Partial logic approaches have also been proposed
[Owe93].

This work is concerned with our proposal of retrenchment, a liberalisation of refinement, and its utility for
formally verifiable software construction. We have argued, when first proposing the notion [BP98, PB99],
for a weakening of the retrieve relation over the operation step, allowing concrete non-simulating behaviour
in retrenchment. Concrete I/O may have different type to the abstract counterpart, and moreover the
retrenchment relation may define fluidity between state and I/O components across the development step
from abstract to concrete model. In this paper we recap the formal definition of retrenchment, and focus
on questions of simulation (i.e. the existence of retrenchment, or refinement-like relationships between
arbitrary operation sequences) and architecture. A motivating example in radiation dosimetry raises the
issues, particularly that of precision decay in limited-precision and finite software.

The paper proceeds as follows: section 2 gives a brief resumé of the B notation of Jean-Reymond Abrial
[Abr96], which is the formal framework for the presentation of the work. Section 3 presents a motivat-
ing example of dose calculation in radiotherapy [JC76, Kha94, HW94], leading to a formal definition of
retrenchment. The dosimetry example is (partially) recast as a retrenchment. Section 4 states the transi-
tivity and monotonicity results required for a full calculus of retrenchment. In section 5 the generalising
notion of evolving retrenchment is proposed, with a motivating example. This example demonstrates that
“evolution” of retrenchments provides the “glue” to provide useful simulation-like properties under re-
trenchment. By analogy, the utility of evolving retrenchment in control systems specification is discussed.
Section 6 discusses the generalised monotonicity result for operation sequence over evolving retrenchment:
this gives the formal basis for analysis of simulation-like behaviour in retrenchment. Section 7 concludes.

2 Reésumé of B

B is based on a total correctness theory of programming. Its central construct is the predicate transformer,
called a generalised substitution: [S]R (more conventionally written wp(S, R)) describes the weakest
precondition, or most general before-state from which program S is guaranteed to terminate satisfying
postcondition R. In B, [- - -] distributes over conjunction and is monotonic w.r.t. implication. [- - -] does not
satisfy Dijkstra’s [Dij76] “Law of the Excluded Miracle” (which would require that [S]false = false): this
allows a notion of feasibility of programs. Programs (in general nondeterministic) are written in B using
constructors inspired by Dijkstra’s Guarded Command Language, called the Generalised Substitution
Language (GSL). The basic operation is the simple substitution (which is assignment, in procedural
programming terms). For replacement of free variable z in formula R by expression E (no free variable
in F clashes with any bound variable in R) we write [z := E]R. The remaining simple constructors of B
are axiomatised as follows (for unbounded choice z is nonfree in R; this will be written 2z \ R):

[skip|] R =R skip
[P|SJR=PA[SIR precondition
[S|TIR=[S]R A[T]R bounded choice
[P= S|[R=P=|[S|R guard

[@ze SJR=Vze[SJIR 2\ R unbounded choice
GSAxioms

The precondition constructor represents an explicit strengthening of the termination set, guard a strength-
ening of the feasibility set, bounded choice a demonic nondeterministic choice between two operations, and



unbounded choice a universally quantified demonic choice over all operations indexed on some (external)
variable.

Any operation S working with a state variable (list) z can be expressed in the following normalised form,
where P is a predicate in variable(s) z, @Q is a predicate in variables z and z' (z' distinct from z):

S=P|Qz' e (Q = z:=1') Norm
From the axioms, this means that for any predicate R(x)
[SIR=P AVz o (Q = [z :=2']R)

In fact, this decomposition into predicates P and @ is unique (modulo logical equivalence of predicates),
and these are called trm(.S) (termination predicate: before-states from which S is guaranteed to terminate)
and prd, (S) (before-after transition predicate) respectively. The latter form of this theorem gives a nice
interpretation of S as a predicate transformer: from initial state z, S establishes R precisely when S

terminates at ¢ and every z’ reachable from z under S satisfies R. These predicates can be explicitly
defined:

trm(S) = [S] true
prd, (5) = — [S)(2' # x)

A relational model is defined in the obvious way (where s is the set of which the state variable z is a
member) for the precondition set, and the before-after relation for S :

pre(S)
rel(.5)

{z |z €sAtrm(S)} precondition set
{z,z" | (z,2') € s x s Aprd,(S)} transition relation

~
~

The abstract syntax of the GSL is expressed in and complemented by the concrete syntax of the Abstract
Machine Notation (AMN), which includes constructs for modular structuring. The unit of modularity is
the machine, which contains inter alia a state variable (list), an invariant predicate expressing type and
other required state constraints, an initialisation, and a set of operations, which are expressed in terms
of state, input and output variables. The following syntax shows an abstract machine and a refinement.
The latter is a derivative construct: its invariant clause J(u,v) provides both local variable type and
constraint information, as well as the retrieve relation to the abstract variable.

MACHINE M(a) REFINEMENT N
REFINES M

VARIABLES U VARIABLES v
INVARIANT I(u) INVARIANT J(u, v)
INITIALISATION X(u) INITIALISATION Y (v)
OPERATIONS OPERATIONS

S(u,i,0) = - T(v,i,0) = ---
END END RefSyn

A sufficient condition for refinement (equivalent to classical forward simulation) is expressed relationally
as follows. Two abstract machines M and N are defined on state spaces v and v respectively, with a
total relation (the retrieve relation) r : v > u, and a bijection between the operations of M and N (say,
every operation S of machine M corresponds to exactly one operation T of N). If for every such pair
(S, T) the following hypotheses hold, then M is refined by N (written M C N)!:

LA full B definition of refinement is omitted here; see [Abr96]



v:ice bA

dom(v) = ¢ A

v 1[pre(S)] C pre[T] A

v~ Lrel(T) C rel(S);v~1

=

MCN RefR

This corresponds to the operation refinement proof obligation (POB) in the following full formulation of
the refinement rules in generalised substitution form (syntax as per RefSyn). The obligations are initial-
isation consistency, operation consistency (given abstract invariant and abstract operation termination,
then the operation establishes the invariant), initialisation refinement, and operation refinement (for any
concrete step of T, there is some abstract step of S that establishes the retrieve relation):

[X11 Init
IAtrm(S) = [S]I OpCons
[Y]- [X]-J InitRef
INJTAtm(S) = [T]-[S]-J OpRef

3 From refinement to retrenchment

Consider the specification of a program for dose calculation in radiotherapy. Concluding remarks will dis-
cuss the larger architectural picture of this highly nontrivial, safety-critical application and the relevance
of retrenchment, but for now we specify a simple, empirically based program. In traditional radiother-
apy, a beam of radiation (X-rays, electrons or heavy particles) was square, rectangular or circular in
shape in intersection with the patient. Customised lead shielding was placed on the patient if any other
beam intersection (field) shape was required, although today irregular fields can be shaped by collimator
equipment at the beam head [HW94]. It is critical to neither underdose nor overdose the tumour, and to
minimise damage to other healthy tissue by minimising healthy tissue volume inside the beam volume.

Practical dosimetry is empirically based, building tables of dose data collected by measuring exposure
in “phantom” patients, i.e. dummies of the same shape and radiological characteristics as a human
patient (usually tanks of water of size one cubic metre). These tables are usually based on circular beam
fields, and are parameterised by field radius, beam quality, beam source to patient surface distance (SSD)
and depth inside patient. Our example is a typical dosimetry problem of calculating (with acceptable
accuracy) dose at depth d, with beam quality @, SSD F, for a rectangular field of size a * b cm?.

These empirical approaches are based on various mathematical models, all of which respect the following
basic radiation physics. Any particle (we include the photon as a “particle” here) of the radiation beam
incident on the patient disperses its energy while traversing a path through the body. This path will be
very irregular and characterised by many thousands of atomic interaction events that disperse the particle
energy: an X-ray will attenuate and be deflected while dislodging electrons and releasing secondary
Compton radiation from any atom in its path (very simply speaking - see [JC76] for the detailed physics
involved). Thus, any small tissue volume in the beam volume can be regarded as subject to incident
radiation of two kinds: primary radiation arriving directly from the beam source, and scattered radiation
resulting from the myriad atomic scattering events.

Avoiding the physical details, we use the rad as unit of absorbed dose, which measures energy delivered per
unit tissue mass. We use tables of the percentage-depth dose ratio PDD(d,r, F, @) and the backscatter



function BS(r, Q). For field radius r, SSD F, beam quality @, PDD represents the percentage of the
surface dose delivered at depth d. For r = 0 the PDD represents the percentage of dose delivered purely
from primary radiation. BS represents the ratio of dose at the patient surface, for radius r, to the dose
in free space. Thus for r = 0, BS = 1: the backscatter measurement adds the dose “scattered back”
from the patient through a beam field of radius r. For zero radius there is no scatter contribution to the
backscatter ratio. Therefore, for radiation of 100 rads delivered in free air to the SSD for a beam field of
radius r

dose at depth d = PDD(d, r, F, Q) * BS(r, Q) (1)

For dose in free air other than 100 rads, simply multiply the dose at d accordingly. The scatter component
of radiation at depth d, called the scatter function, is given by

S(d,T,F, Q) =PDD(d,7‘,F, Q)*BS(Ta Q)_PDD(d707F7 Q) (2)

The problem is less trivial for a field shape different from that tabulated, and the calculation is done by
approximation and extrapolation. We wish to calculate the dose at point P, depth d, at the centre of
the field size a % b, such as in figure 1. The method can be used to calculate dose at any point inside or
outside the field.

bcm

Figure 1: Circle-segment dose approximation for a rectangular field

We approximate the dose at P as the sum of the primary dose and of scatter components from circular
segments of small angle and appropriate radius. Thus the dose at d for field a * b is approximated by

dOSGZPDD(d,O,F, Q)+%*Z?:15(d7ri7F7 Q) (3)
Choosing segment angle 15° as in figure 1 gives n = 24.

Now consider the specification of the dose calculation program and its refinement. For now we avoid
the question of the empirical nature of the model described. We regard the abstract, ideal model of the
physical world as one with real physical quantities described by BS; and PDD;, real-valued functions
giving backscatter and percentage-depth-dose for rectangular fields. For simplicity we regard dose D;,
PDD; and BS; as state components. Thus in the abstract model the dose computation for depth d cm
in a field of size a * b cm? is simply (modifying signatures for rectangular fields)

Dl(d) :PDDZ(daavvaa Q)*BSZ(aaba Q) (4)

Next consider how this might be refined to floating point (FP) arithmetic. Assume we have functions
PDD,. and BS., which are FP counterparts to the ideal versions, still for rectangular fields. We need
some retrieve relation, say defined in terms of limiting relative error on each of the state components
(ideal %, concrete ¢, some given €):



rel(c,7) = | 7| (5)
ret(c,i) = rel(c,i) <e
Immediately it is evident that the arithmetic precision loss makes refinement impossible. If components
PDD., BS. each have error less than €, then in general D, cannot - FP multiplication propagates error
as follows:

rel(D., D;) = rel(PDD,., PDD;) + rel(BS,, BS;) — rel(PDD,., PDD;) * rel(BS,, BS;)

For argument relative errors close to zero, the result error increases. So refinement stops dead at this
point; because there is no concrete step that guarantees exactly the same result as the abstract one
(unless we restrict ourselves to a rather uninteresting fixed-precision subspace of the abstract model),
the verification conditions generated by refinement are simply unavailable. This is cutting off the nose to
spite the face; limited precision error propagation has been well understood for decades in the Numerical
Analysis community (e.g. [Atk89]) and could be formally exploited in some more liberalised notion of
the refinement step in software development. We will see that retrenchment addresses this need.

Having demonstrated the need to liberalise refinement, we will pursue the example to see the architectural
utility of such a more liberal method. The approximate calculation based on segmented scatter functions
as per (3) above is really a second development step. Assuming for now that there is some way to “liberally
refine” the ideal model to the D., PDD., BS. model, we now seek to construct a further refinement to a
segmented model Dy;. We do not discard PDD, BS; rather we note that the ideal and concrete versions
were idealisations, physical functions that we believe exist, describing properties of rectangular fields. We
treat the empirically measured PDD and BS tables for circular fields as input to the segmented model:
there is no pretence that these relate directly to the idealised versions. We require only that D; , specified
by a computation such as (3), approximates, i.e. “liberally refines” each of D. and D;.

We model this dose calculation as two development steps since there are two quite different approxima-
tion processes happening: from ideal real arithmetic to fixed precision arithmetic, and then from ideal
rectangular-field properties, to empirical circular-field approximations for rectangular-field properties.
The second step error is trigonometric in nature and is determined by the relative error in the coverage of
the rectangular field of area A by segments of total area Agey. It is reasonable to assume (the trigonom-
etry is left as an exercise!) that this error is proportional to the fineness of granularity of segmentation,
i.e. that there is some k such that for an n-segment model

rel(Aseq, A) < %

Of course any retrieve relation between D,, D, is complicated by the arithmetic of fixed-precision sum-

mation.

Thus a “liberalised refinement” development step (to be called a retrenchment step from now on) would
be useful architecturally. If it provides a language for describing the looser relationship between levels of
abstraction, then it may allow us to separate distinct design decisions in the manner demonstrated. Of
course, in any realistic development, once a model is produced “sufficiently close” to the finite, determin-
istic implementation platform, then “vanilla” refinement can be applied.

The following syntax attempts a refinement for the first development step discussed above; later it will
serve as a starting point to specify the retrenchment. We pretend that B contains a richer language of
types, & la Z or VDM, than it actually does: we will use REAL (reals as conventionally defined) as well
as its mundane, finite counterpart FLOAT.

MACHINE DivineMult REFINEMENT MundaneMult



REFINES DivineMult

VARIABLES di, pi, bi VARIABLES de, pc, be
INVARIANT INVARIANT
di € REAL dc € FLOAT A pc € FLOAT A bc € FLOAT
A pi € REAL A ret(dc, di) A ret(pc, pi) A ret(be, bi)
A bi € REAL
OPERATIONS OPERATIONS
DMult = resp +— MMult =
di := pi x bi IF notOf(pe, be) THEN dc := pc * bc ELSE skip END

|| (resp := T [|resp := F)
END
END

It suffices briefly to reflect on the ways in which this is not a refinement. The retrieve relation (i.e.
INVARIANT clause in the REFINEMENT) is not total; overflowing state elements are not modelled.
The operation signature has changed: the concrete operation returns a success/ fail response, since we
cannot guarantee that relative error remains within e, i.e. that ret(dc, di) is true. It seems useful to be
able to add such structure to the concrete model. There are two situations in which an abstract behaviour
cannot be represented: if guard predicate notOf determines that the product will overflow, or if the result
dc relative error exceeds e. Hence MMult nondeterministically returns a T'/F response, and resolution
of this decision is left as a design decision for a subsequent step.

3.1 A syntax and a definition for retrenchment

To anticipate its definition, we propose that retrenchment be, very loosely speaking, the strengthening
of the precondition and the weakening of the postcondition. This seems superficially like the opposite of
refinement. However, we propose to liberalise the connection between abstract and concrete operations
even more widely than that. We will not only allow changes of data type in the state component of
an operation, but will also allow flexibility in the input and output components. Thus we allow inputs
and outputs to change representation between abstract and concrete operations, and moreover we allow
information to drift between I/O and state aspects during a retrenchment. Thus some data that was
most conveniently viewed as part of the input at the abstract level say, might be best designed as partly
input data and partly state at a more concrete level, or vice versa. Similar things might occur on the
output side. This greater flexibility in involving properties of the inputs and outputs in the relation
between versions of an operation, gives more leeway for building realistic but complex specifications of
real systems out of oversimplified but more comprehensible subsystems.

We propose the following syntax for retrenchment. The square brackets indicate optional text.

MACHINE M(a) MACHINE N(b)
RETRENCHES M

VARIABLES U VARIABLES v

INVARIANT I(u) INVARIANT J(v)
RETRIEVES G(u,v)

INITIALISATION X(u) INITIALISATION Y (v)

OPERATIONS OPERATIONS

0 <— OpName(i) = p «— OpNameC(j) =



S(u, i, 0) BEGIN
END T(v,5,p)
[LVAR
Al
WITHIN
P(i,5,u,v,A)
CONCEDES
C(u,v,0,p, A)
END
END

Abstract machine M has parameter a, state variable «, and invariant predicate I(u). Variable u is
initialised by substitution X (u), and is operated on by operation OpName, a syntactic wrapper for
substitution S(wu, %, 0), with input 7 and output o. Unlike a refinement, which in B is a construct derived
from the refined machine, a retrenchment is an independent MACHINE. Thus N is a machine with
parameter b (not necessarily related to a), state variable v, invariant J(v), initialisation Y (v), and
operation OpNameC' as wrapper for T'(v,j,p), a substitution with input j and output p. Viewed as an
independent machine, N cannot refer to M. So the new retrenchment syntax proposed here must in this
case be regarded as null text.

Here we state that machine N RETRENCHES machine M; in general either a MACHINE or a RE-
FINEMENT may be retrenched. The RETRENCHES clause (similarly to REFINES) makes visible the
contents of the retrenched construct. We further assume that the name spaces of the retrenched and re-
trenching constructs are disjoint, but admit an injection of (retrenched to retrenching) operation names.

An injection allows further, independent dynamic structure in the retrenching machine.

In the retrenching machine N we have state variable v under invariant J(v), and the RETRIEVES clause
G(u,v). The existence of N as an independent machine requires that its (local) invariant be stated
independently of the retrieve relation, unlike in B, where the two take the form of a joint predicate.

The radiation dosimetry example, in describing precision decay, showed it was desirable to express what
an operation could achieve if it was not able to maintain an invariant retrieve relation. To give such
expressiveness we propose that the relationship between concrete and abstract state is fundamentally
different, before and after the operation. We model this by distinguishing between a strengthened before-
relation between abstract and concrete states, and a weakened after-relation. Thus the syntax of the
concrete operation OpNameC in N is precisely as in B, with the addition of the ramification, a syntactic
enclosure of the operation. We call this augmented syntax for the operation a ramified generalised
substitution. Before, the relationship is constrained (precondition is strengthened) by the new WITHIN
condition P(u,v,1,j, A) which may change the balance of components between input and state, and may
further define an optional “memory” variable LVAR A for reference in the after-state. The after-relation
is weakened (postcondition is weakened) by the CONCEDES clause (the concession) C(u,v,0,p,A),
which specifies what the operation guarantees to achieve (in terms of after-state, output and logical
variable A) if it cannot maintain the retrieve relation G. The concession will describe the weaker state of
representation after the operation, or preserve exception information if representation fails completely.

We regard the proof obligations as central in the new theory; these give a semantic definition for retrench-
ment. The initialisation POB will be as for refinement, guaranteeing a joint starting state satisfying

G(u,v).



The following POB serves as the definition of retrenchment - the proof obligation (analogous to that
for operation refinement) that concrete OpNameC (substitution T') retrenches the abstract operation
OpName (substitution S):

I(u) A G(u,v) A J(v) A P(i,j,u,v, A) Atrm(T (v, 4, p))
= trm(S(u, i,0)) A [T (v,5,p)] [S(u,i,0)]~ (G(u,v) V C(u,v,0,p, A))
RetGS

As shorthand we write S Sg,p,c,a T. We will justify this definition by comparison with the refinement
proof obligation. In refinement, “operational indistinguishability” of the refined operation is the central
issue. It follows that when the abstract operation terminates, so does the concrete one: precondition
weakening. In retrenchment we are inverting this relationship. The retrenching machine is different from,
independent of, and in a sense, bigger than (contains more information and structure) than the retrenched
machine. It can simulate the abstract machine only for some before-states. Thus we may not be able
to conclude anything from abstract operation termination; however, if we know the concrete operation
terminates then we conclude that the abstract one must too. Thus we strengthen the precondition in
retrenchment. We further strengthen this precondition by conjoining in the proof obligation hypotheses
the WITHIN clause P. This further restricts the combinations of before-state and inputs (over and above
those specified by the RETRIEVES clause) where the concrete operation (viewed as a retrenchment) is
meaningful and will terminate. We have thus accounted for the inversion of the trm clauses, and the
inclusion of the P clause in the hypotheses.

We next observe that the dynamic behaviour of the operation is guaranteed to achieve (G Vv C), that is,
either the RETRIEVES clause or the CONCEDES clause. The concession is defined in terms of abstract
and concrete after-state and output, as well as the logical “memory” variable A. We also observe that
we have preserved the familiar shape of the consequent, i.e. ¥V ConcOp 3 AbsOp e (G V C). That is, for
every concrete transition there exists some abstract transition that either achieves the retrieve relation
or at least meets the concession. There are a number of benefits to this shape:

e We do not make a statement about all abstract steps; this is desirable and consistent with the need

to reduce nondeterminism in retrenchment.

e We make a statement about every concrete step; this enhances the quality of the concrete descrip-

tion.

e Furthermore, for every concrete step, we must consider whether it is (i) excluded from consideration
because either P or trm(T) are not satisfied, (ii) included but can only achieve the concession C,
or (iii) included and achieves G. In fact in the latter case we have refinement-like behaviour,
supporting our intuition that retrenchment is merely “refinement blurred around the edges”; this
point will be further developed in due course.

We complete this section by expressing the concrete subtraction operation MMult as a retrenchment:

MACHINE MundaneMultl

RETRENCHES DivineMult

VARIABLES de, pc, be

INVARIANT de € FLOAT A pc € FLOAT A be € FLOAT
RETRIEVES ret(de, di) A ret(pe, pi) A ret(be, bi)

resp «— MMult =



dc :=pcxbe || (resp := T [|resp := F)
WITHIN notOf(pe, be)
CONCEDES resp := T = ret(dc, di)
A resp := F = rel(de, di) < 2xe¢

END

The design decisions required before are now expressible in the retrenchment step. The IF-structure for
MMult with the skip option is unnecessary since the retrenchment is only defined within the WITHIN
clause notOf(pe, be) as required. The concession is strong and informative here, in logically overlapping
with the RETRIEVES clause: it tells us that the response output is the guaranteed indicator either of
refinement (resp := T') or of controlled precision loss (resp := F'). Nonetheless at this level of abstraction
this choice of response remains nondeterministic, and thus a subsequent design decision.

4 A retrenchment calculus

As mentioned in the introduction, in order to make a retrenchment calculus analogous to the refinement
calculus, it is necessary to show retrenchment is transitive, and that the constructors of the specification
notation (here, the GSL of B) are monotonic w.r.t. retrenchment. For brevity we simply state the results
here.

For transitivity, we assume (as before in section 3.1) that machine N RETRENCHES M, and further that
machine O RETRENCHES N. We define machine O syntactically as a “lexicographic increment” on N,
schematically replacing occurrences of N,b,M,v,J,G,Y, p,j,T,A,P,Cin N by O,c¢,N,w,K,H,Z,q,k,U,B,Q,D,
respectively. Thus operation S in machine M is retrenched by operation T in machine N (w.r.t.
G, P,C,A), which is in turn retrenched by operation U in machine O (w.r.t. H, Q, D, B).

Theorem RetComp

S<aprcAaTANT SuopeU
I(u) ANJv e (Gu,v) A J(v) AN H(v,w)) A K(w)
Adv,j,A e (G(u,v) A J(v) AN H(v,w) A P(i,j,u,v,A) A Q(j,k,v,w, B))
Atrm(U(w, k, q))
= trm(S(u, i, 0)) A [U(w, k, q)]— [S(u, i, 0)]—
(3 v e (G(u,v) A J(v) A H(v,w))
V3uv,pe (G(u,v) A D(v,w,p,q,B))
V3uv,p,Ae (C(u,v,0,p,A) A H(v,w))
V3, p, Ae (C(u,v,0,p,A) A D(v,w,p, q,B)))

The result is intuitively satisfying. The RETRIEVES clause 3v ¢ (G A J A H) combines component
RETRIEVES clauses and intermediate invariant. The WITHIN clause v,5,4 ¢ (G A --- A Q) combines
all component before-state RETRIEVES and WITHIN constraints. The concession is a cross-product
of component RETRIEVES clauses and concessions. It can be shown that the transitivity property
associates.

There are two monotonicity theorems; we leave the theorem concerned with operation sequence “;” for
later. To avoid repetition the sequence result is given in its generalised “evolving” form in section 6.
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Theorem RetMono : Retrenchment is monotonic w.r.t. the precondition, guard, bounded and un-
bounded choice and parallel constructors of B.

Case | : Assume S(u,,0) <g,p,c,a T(v,j,p). Assume @) is a predicate either on a common input
variable or some shared external variable unaffected by either operation. Provided u, v, 0, p are nonfree
in @, then

(Q18) Zarca(Q]T)

Case =— : Assume S(u,i,0) Sg,p,c,a T(v,5,p). Assume @ as for case | above. Then

(@ = 8) Sagprca(@=T)

Case [] : Assume S1(u,i,0) Sg,py,ci,4: T1(v,7,p) and S2(u, i, 0) <@, P, 0,4, T2(v,5,p). Then

Sl[]Sz SG,P1/\P2,C1VC27(A1,A2) Tl[] 12

Case @ : Now assume that S(u,4,0,2) Sg,p,c,4 T(v,j,p, ) for any value of some fresh free external
variable z (distinct from u,%,v,5,p, A). Then

Qz e S<gpcaQreT
Case || : Assume four operations in four distinct machines:

S1(u1,i1,01) Sau,py,c1,4, T1{(v1,51,p1) subject to L, Ji respectively
S2(ug, 2, 02) S@a,Pa, 0,40 T2(02,J2,p2) subject to I, Jo respectively

where all variables, inputs and outputs are distinct. Then

S1 || S2 5G1AG2aP1AP2’CI2a(A1:A2) T1 || T2 subject to Il A IQ,Jl A J2
.. where

012 = (Gl A Cz) \% (G2 A Cl) \% (Cl A 02)

5 Evolving retrenchment and continuous systems

To improve expressiveness in specification with retrenchment, the notion needs further specialisation. Be-
ing a very weak relation, retrenchment lends itself to application-domain specific strengthening. We have
introduced various such specialisations (modulated refinement, sharp and simple simulable retrenchment
- [BP99a, BP99b, BP00]) and here propose a notion of evolving retrenchment for use in simulation of
continuous systems.

The notion of an evolving relationship between system models emerges from the intrinsically approximate
nature of modelling real-world systems with continuous variables. For example, to model the motion of
a projectile near to the earth we might use a linear differential equation relating the acceleration of the
projectile to the forces of gravity and air friction. We might choose to omit, for practical reasons, the
Coriolis effect, or the effect of time-varying crosswinds. So the best mathematical model available to us
will always be approximate, for reasons of cost, practicality, or even lack of mathematical sophistication.

This work is, however, concerned with the relationship between mathematical models at adjacent levels
of abstraction. In the projectile example we might (unwisely choosing a large reduction in abstraction
level) choose to specify the next layer of model using some finite set of floating-point numbers appropriate
to computer implementation. Clearly, a second level of approximation is introduced: before any system
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dynamics are considered, precision is limited to that determined by the floating-point set chosen. More-
over, when some abstract (continuous) operation is considered in relation to its concrete (floating point)
counterpart, precision of representation is in general reduced. For simple addition, precision decays by
a factor of two. For a more complex operation and its “refinement”, say exponentiation, the precision
decay is far more complex.

From a refinement point of view this suggests that relaxing the invariant nature of the retrieve relation
between abstract and concrete models, allowing it to evolve, might give a far more expressive development
step than either refinement or “vanilla” retrenchment. Although retrenchment as discussed thus far allows
breach of the invariant (via establishment of the concession), such breach effectively stops any simulation
of the abstract operation sequence by the concrete. Specialisations of retrenchment, as discussed above,
seek to combine the concession achieved with application domain structure to re-establish the retrieve
relation where the simulation has failed to establish it. The approach here is more universal in relaxing
the immutability of the retrieve relation, and allowing it to evolve. That is, if one operation step results
under retrenchment in achievement of a weaker, evolved retrieve relation, this latter relation can serve

as a starting point for a subsequent retrenchment step.

More formally we propose that the retrieve relation G becomes “variant” (i.e. evolves), in the sense that
it becomes mediated by some parameter a. The intuition behind this is that a belongs to some ordered
set, where increasing a denotes decreasing precision of the representation of abstract by concrete v in
Go(u,v). That is, we will usually (but not always) expect that

aSﬂa(GaiGﬁ)

where “=” reads “implies in all valuations”. This formulation describes a typical precision-decay situation
over a simulation, for example in a sequence of arithmetic steps (real - floating point). We choose the
notion of evolving rather than decaying retrenchment as this suggests, because it is quite possible for
precision to increase over a simulation step. In a control system, sensor readings provide the software
with the inputs necessary to model the real system state. In control systems with a large number of
sensors, it is quite likely that, at a given point in time, some sensors have failed, and that the modelled
state is representing the real system state in some degraded mode?. Some algorithm extrapolating the
failed sensor value from neighbouring sensors may be applied, to make the best of things, but accuracy
is nonetheless lost. Assuming it is possible for sensors to be repaired in-flight, and for repair status to be
detectable, it is manifestly possible for precision of the system state representation to improve.

Simple retrenchment is therefore generalised to define evolving retrenchment:
I(u) A Ga(u,v) A J(v) A Po(i,j,u,v, A) Atrm(T)(v, )
= trm(S5)(w, 8) A [T (v, ], p)]= [S(u, 4, 0)]= (Gp(u,v) V Cp(u, v, 0,p, 4))
RetE

The following shorthand form will be more convenient:
S<T wurt. (G, Py — Gg, Cg)

Thus the (u,v) relationship is now mediated through evolving precision parameters o and 8. Notice
that WITHIN and CONCEDES predicates are also parameterised: this is necessary since each of these
further constrain the (u, v) relationship, in context of inputs and outputs respectively. Generalising these
predicates also allows these relations between abstract/concrete I/O and state to evolve. Note that the

2This relies on reliable sensor failure determination, an issue we will not pursue here.
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precision parameters are metavariables, parameterising the overall retrenchment relationship between
abstract and concrete models, and are conceptually quite different from state or I/O variables. They
denote the (usually decaying) evolution of the RETRIEVES relationships involved at each step.

A simple example in natural number arithmetic will demonstrate the use of evolving retrenchment and,
by analogy, show its utility for floating-point arithmetic and for control systems applications. As before
we take the ideal arithmetic of the naturals as abstract model. We assume loss of capability to represent
odd numbers as the limitation of the concrete model: this is the even naturals and their approximation
of the ideal natural arithmetic.

Figure 2: Evolving retrenchment of simple natural arithmetic

Abstract model: naturals

u

v 0 2 4 6 8

Concrete model: even naturals

We assume abstract inputs are natural, concrete inputs are even natural approximations of their abstract
counterparts. Thus

4 = u = Abstract type = N +a

= +n -2 = -N
J = v = Concrete type = 2N +¢ = 4N —¢c = —aN
where 2N = {2xn|n e N}
More precisely define
+o(u, i) S ui=u+i —o(u, ) Eu>i|lu=u—1
te(v,j) Svi=v+] —c(v,))=v>jlv=v—j

4 and j are abstract and concrete input types. We have

I(w)ZueN P(i,j)20<j—i<1AieNAj€2N
J(v) = v e2N

and the initial retrieve relation G is
Gu,v)=0<v—u<l1

Both addition operations terminate vacuously; for subtraction we have
trm(—g) = u >4 trm(—;.) =v >3

The concrete model is thus one of limited precision representing even numbers exactly, and odd numbers
as the next even number up. The input/output representation is the same; we choose “one-sided”
representation rather than | v — u |< 1 to avoid repetitive proliferation of predicates that add nothing to
the discussion.
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Evidently, precision may decay under addition:

3u 4 4i — 7Y 3% 431 — 6¥
4V 44— 8V 4° + 47 — 8¥'
v—u=1 v—u=1

v—u' =1 v —u' =2

Therefore define
Gp(u,v) =0<v—u<nAneN
It is trivial to see that we have a retrenchment where the weaker-precision G, is the concession:
ING,ANJANP= [+ [+u" (Gn V Grya) (1)
since, given u,%,v,5 and P A Gy, for any v' = v + j from a +.-step, then for v’ = u + 4

vV—uw=v+j-(u+i)=w-u)+(G—-19)<n+1

and v' —u' <n for j=1

Also, since v—u>0Aj—i>0

we have v —u' >0
If we strengthen the WITHIN clause to force j = i, i.e. restrict abstract input to even numbers, we have
a local refinement (in the sense of section 3):

PL(i,j) = P(i,j)Ni=]
IANGyANJAPL= [+ [+4]- Gn (2)
For subtraction the WITHIN clause is a little more intricate: define
P_n(i,j,u,v) = P A Pcan A Ptr“m
...where
P(i,j)=0<j—i<1AieNAjeN
Pcan(i;j;uav) Sv=u =>j=1
Ptrm(ja’”;n) = U_j Z n
P gives the basic I/O relation as before. P.,, avoids “over-cancellation of error” when v = v and i < j,
such as
6 — 1 — 5¢
6v — 21 — 4
Thus a limitation of the model is that when u = v, only subtraction of even inputs can be represented.
Piry, is required in the proof of termination in the subtraction retrenchment:

IAGyANJAtrm(=,) A P_,
= trm(_a) A [_C]_‘ [_a]_‘ (Gn \ anl) (3)

To prove termination: from Py, infer v — n > j. From G, infer v — n < u. Thus u > v — n > j. From
P we have j > i, thus we have u > i = trm(—,).
To prove transition: given u,%,v,5, we have v’ = u — ¢ and v’ = v — j. Then

!

vV—uw=@w—-j)—(u—1)=(wv—u)—(j—14) >0 given Py,

From that expansion we also have, from P and G, that v'—«' < n and, for j—7 = 1, that v' —u' < n—1.
This proves (3) and also the stronger result
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Pl—n(’“’aiavaj)gp—n/\’U;éu:}j_z':l
ING,NJTANtrm(—,) AP,
= () A [ G 0

For addition we guarantee +, < 4+, w.r.t. (G,, P — Gp41,false), i.e. precision decay of at most one
per operation step. There is a more optimistic reading of this, i.e. (Gp, P — Gpy1, Gp): precision
decay of at most one, with the possibility of precision maintenance. In a control system the first reading
is analogous to loss of a sensor and a move to degraded mode with less accurate state representation.
The optimistic reading (which might be less than optimistic for the control system!) corresponds to

uncertainty as to whether a sensor has failed or not over the operation step.

For the stronger, localised case of even abstract inputs, we guarantee precision maintenance, i.e. re-
finement: (G, P, — Gy,false). This is analogous to refinement in the control system, maintaining
accuracy with all sensors present before the operation step known to remain intact.

Similarly, subtraction under P_,, is analogous to precision maintenance in the control system: (G, P_, —
G,,false). A more optimistic reading allows the possibility of precision improvement: (G,,P_, —
Gy, Gp—1). Again this corresponds in the control system to the situation where all sensors present before
the operation step remain intact, with uncertainty as to whether a sensor has recovered during the step.

The stronger case P’ guarantees improvement in accuracy of one: (G, P’,, — G,_1,false). That is,
precision has improved with the detected recovery of a sensor.

The analogy we make between simple arithmetic and control system is crude but illustrative. Evolving
retrenchment can describe the evolving relationship (and its accuracy) between modelled and real system
state. It can moreover describe the uncertainty implicit in such real-world systems, due to such things as
the stochastic nature of failure detection processes.

6 Sequence of evolving retrenchments

It appears that the generalisation to evolving retrenchment cascades straightforwardly through the con-
struction of a calculus of evolving retrenchment analogous to that of section 4, modulo some rather

baroque expressions composing the component precision parameters.

Recall the simulation property for refinement: given a collection of operation refinements, it follows that
an arbitrary abstract operation sequence is refined by the corresponding concrete operation sequence. This

follows from the associativity of “;” and its monotonicity w.r.t. refinement. We state the monotonicity
result for what we will call a sequence of retrenchments in its generalised, “evolving” form.

Theorem RetSeqE

S1<ST1 wrt. (G, Plo(in, i, u,v,41) — Gg, Clg(u, v, 01, p1, 41))
ANS2<S T2 wrt. (G, P23(i2, 2, u, v, A2) — Gy, C2(u, v, 02, p2, A2))
ANIANGy,ANJT
A3Ja, Ay ¢ P1A[T1]-[S1]- (Gs A P2p)
A {trm(S1;52)(u,41,42) VVuj @ Jv; o {I(u;)

= Gp(ug,vi) A J(v) ATja, Ay @ P2p(ia, o, ug, v, Az) Atrm(T2)(vy, 52) }}
Atrm(T1; T2)
Ftrm(S51;52) A [T1; T2]- [S1;52]- (G, v C2,)
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More succinctly, we say
S1;52 < T1;T2 wrt. (Go,Ps — Gy, C2,)
where Pg’ is defined by the fourth through sixth lines of the hypotheses of RetSeqE.

The sequence of retrenchments result has three conjuncts in its WITHIN clause (lines 4-6 above). The
first requires that the first-step WITHIN constraint P; be witnessable for some «, A;. The second,
satisfying intuition, requires the first-step retrenchment to be able to establish both the RETRIEVES
clause and the second-step WITHIN clause P,: the second step must be guaranteed to start before
sequenced retrenchment can be established. The third conjunct is a weakened termination hypothesis,
which means that the sequenced termination result (that is, inference of abstract sequenced termination)
is nontrivial. Note that the composite WITHIN clause Pg’ has only § as precision parameter. The
sequenced concession is identical to the second-step concession.

Simple applications of sequence of retrenchment in the evolving-precision arithmetic example serve to
demonstrate the utility of an evolving version of retrenchment. Thus, without the stronger P} assumption
at either step, retrenchment of sequence of additions is defined, losing precision at 1 per operation step,
i.e. losing 2 for a 2-step sequence:

+aita 5 Feite wr.t. (Gnapjf--q- — Gy, false) (1)
...where

Piy (i1, i, 41, 52) = Pin, i) A Plia, j2) A [+c]= [+a]= Gt

This is easy to see by application of RetSeqE: from discussion of the example earlier we have the
hypotheses

+ta 5 +c w.r.t. (GnaP — Gn+1,false)
A+aS+e wrt. (Gupr — Gryo,false)
ANIAGyANJANP(,H)

Result (1) follows from further assuming the extra hypothesis about establishment of intermediate-state
Gr+t1 A P(iz,j2), which reduces (because intermediate-state P has new input variables only) to

P(i2, 2) A [+C]_‘ [+a]_‘ Gnt1
Of course we already have the second conjunct of this.

Returning to the control system analogy, this represents two steps with sensor (and precision) loss at
each step.

Finally, leaving the working as an exercise for the reader, we see that, if addition loses precision 1 under

!
—n?’

P, and subtraction gains precision 1 under P’ , then overall precision is maintained by the sequence

+ai—a S +e;—c wrt. (Gn, Pi_ — Gy, false) (2)

If the specifier has some freedom in choosing the permutation of operation sequence at run-time, then
some precision optimisation is possible. This effect cannot be seen in this simple example, but is well
known in the Numerical Analysis of floating point, e.g. [Atk89].

The example does, however, show that the choice of sequence permutation determines the composite
WITHIN clause. It is not obvious @ priori which permutation delivers the weakest (and thus most
desirable architecturally) WITHIN clause, or even whether such clauses are comparable by implication.
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The question of associativity of the sequencing of retrenchments must be mentioned here: it transpires
that the composite retrenchment is dependent on association order of component retrenchments. However,
it can be shown that the right-associated WITHIN clause is strictly stronger than the left [Pop00], a fact
which is useful architecturally. It is interesting that an appropriate counterexample for associativity is
Milner’s classic example of late resolution of non-determinism, used to demonstrate the incompleteness
of forward simulation as a proof method for refinement in [{RE98]. This is a technical matter which is
pursued in [Pop00].

7 Conclusion

The radiation dosimetry example is illuminating. The simple version of the problem presented in section
3.1 showed the need for two retrenchment steps to distinguish between two distinct design approxima-
tions: fixed-precision arithmetic and circle-segment-approximation for scatter calculation. The general
dosimetry problem affords more layers of modelling and raises other architectural issues.

Classical models for dose absorbtion are usually based on the Boltzmann Transport Equation [BFM67],
a three-dimensional nonlinear integro-differential equation describing radiation energy density. There are
no known analytic solutions and numerical approximation is not straightforward. In practice, radiation
physicists start from a simpler empirical model based on weighted sums of exponentially attenuating
components, which is developed heuristically by curve-fitting to experimental data. In principle this
represents the first retrenchment step. This step constitutes the belief that the Transport Equation does
indeed describe the physical situation demonstrated in the experiment, and therefore that, within suitable
error bounds, the empirical model will match the abstract one. Although in radiation dosimetry this level
of verification is unlikely to happen, it is in fact typical of the extra-mathematical form of verification
required moving from the physical/ continuous-mathematical description of a real-world system to a

model closer to software implementation.

The next retrenchment step takes the empirical model, still using continuous mathematics, to a discretised
model involving summations and finite algorithms over finite sets of limited precision values. As seen in
previous discussion, architectural separation of concerns will usually require more than one retrenchment
to reach such a model. At that stage the designer is finally in a sufficiently finite, discrete, strongly
defined world to be able to refine to types and algorithms to meet the usual requirements of memory
utilisation, speed etc.

To return to applications, modern control systems are of course more complex than the analogy of
section 5 suggests: in general, more is modelled than state “now”, i.e. at the last cycle or interrupt
of sensor readings. PID (proportional, integral, differential) controllers [Rav77] require recent state
history information, in order to model integral (summation) and differential (rate-of-change) properties
of dynamic state variables. Thus sensor recovery at a given instant does not imply complete instantaneous
recovery of the real-world information delivered by that sensor: a period of time is required to build a
picture of integral and differential properties of the variable being sensed. Recovery of a sensor implies
return over a number of steps (while state history information from that sensor is reassembled), through
a gradually improving mode of operation, to an appropriate recovered mode.

This relates to the question of history and prophecy variables, classically examined in the context of
refinement in [AL91]. Some syntactic manipulations facilitate the strengthening of the primitive notion
of operation sequence in B, in order to make intermediate-state variables explicit in postconditions. Such
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a notion of strong sequence then provides a vehicle for specification with history variables as required by

control systems; this work is reported in [Pop00]. Of course it may be that process-algebraic notations

such as suggested by [TS99] may be more succinctly used in conjunction with B to describe such systems.

Much further work is evidently required to express retrenchment in popular formal frameworks, such as

Z and VDM, as well as notations for concurrent and distributed systems, in order that researchers may

examine and exploit the notion in applications. Such exploration and evaluation should take the form

of case studies, both academic and industrial, to demonstrate the utility of retrenchment in extending

formal verification to parts of safety-critical system developments that refinement can’t reach. Such work

will of course be influenced by the state of formalisation of continuous and numerical mathematics, and

by the level of integration of such formalisation with verification tools and notations used in the Formal

Methods community.
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