
Under consideration for publication in Formal Aspects of Computing

Retrenchment for Event-B: UseCase-wise
Development and Rodin Integration
Richard Banach1
1School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
banach@cs.man.ac.uk

Abstract. UseCase-wise Development, an ‘Agile Method’ which introduces functionality into an application stage
by stage, with each stage being carried through (ideally) toimplementation before the next is considered, is examined
with a view to its being treated via an Event-B methodology. The need to modify top level behaviour in a non-skip
way precludes its naive treatment via Event-B refinement, and paves the way for the use of retrenchment in an Event-B
context. An Event-B formulation of retrenchment aligned tothe practicalities of the Rodin toolset is described. The
details of refinement/retrenchment interworking needed tohandle UseCase-wise development are outlined, and three
small case studies are discussed. The details of the integration of the retrenchment proposal into Rodin are outlined.

Keywords: Event-B, UseCase-wise Development, Incremental Development, Refinement, Retrenchment, Tower Pat-
tern, Rodin Toolset.

1. Introduction

One of the notable things about the move from traditional B [Abr96] to the more recent Event-B [Abr,Roda], is the way
that the re-engineered refinement theory of Event-B has managed to encompass many ‘low hanging fruit’ issues, for
the handling of which, retrenchment has been advanced in more conventional refinement frameworks in the past. One
can mention: the introduction of new events at successive development levels (within certain restrictions); the emphasis
on guards (rather than preconditions) and their strengthening during refinement; the migration of information between
I/O variables and state variables (since in Event-B there isgenerally no separate category of I/O variables to worry
about); and so on. All of this is beneficial, in bringing such issues under more rigorous control than when using other
development techniques (or indeed when using retrenchment).

Nevertheless, because in Event-B (as in every other rigorous refinement framework), the development strategy and
the notion of correctness is fixedab initio —and yet the world is richly and subtly structured— it is almost inevitable
that sooner or later an application scenario will arise in which the demands of Event-B will prove to be a less than ideal
fit. It is to help accomodate situations like these that retrenchment was originally conceived, so it is natural to ask what
retrenchment amounts to in the Event-B context, and how the notions of Event-B refinement and Event-B retrenchment

Correspondence and offprint requests to: Richard Banach, School of Computer Science, University ofManchester, Oxford Road, Manchester, M13
9PL, U.K. email:banach@cs.man.ac.uk

2 Banach

would interact. Fortunately, since the original introduction of retrenchment [BP98], we have accumulated a good deal
of experience and evidence on which to base the answer (see eg. [BPJS07a]).

In this paper we examine retrenchment in the Event-B context, by looking at a couple of case studies developed
using a UseCase-wise development methodology. UseCase-wise development is our name for a development strategy
in which increments of functionality are added in stages, with the introduction of each resulting in a usable application
before the next is considered. Such an approach is at odds with the more traditional waterfall model with which typical
formal development approaches are frequently aligned. We view the exploration of alternative development strategies
from the formal perspective as a good thing, since it improves alignment with human intuition. In this instance, it also
motivates the formulation of retrenchment for Event-B, a question which is of independent interest in any case.

The rest of this paper is as follows. In Section 2 we describe UseCase-wise development, contrasting it with
conventional Event-B development. Section 3 briefly reviews Event-B and discusses the details of retrenchment for
Event-B. In Section 4 we cover retrenchment/refinement interworking and theTower Pattern. The preceding ingredi-
ents are then applied to a small case study in Section 5 — this case study also provides a good vehicle for comparison
with the anticipating event technique of [ACM05]. Section 6discusses a case study based on trains, and Section 7
considers a small telephony case study. All of these show a good fit between the UseCase-wise approach and the
Event-B notion of correctness when retrenchment is available. Section 8 examines the issue of incorporating Rodin
tool support for retrenchment and the tower in some detail. Section 9 concludes.

2. UseCase-wise Development

In Event-B there is a strong emphasis on getting the requirements correct (or as near correct as is achievable) at the
outset. One then analyses the requirements and determines the most appropriate order in which to take them into
account within a sequence of refinements. The refinements themselves, mix the accretion of requirements issues as
identified during requirements analysis, with data refinements, as appropriate. As the models get more detailed, sound
decomposition techniques are available to split models into components, allowing further refinements to be done
independently. This TopDown (TD) approach, proceeding as it does in an essentially linear manner, shows that the
Event-B approach can be viewed as a formal interpretation ofa fairly traditional waterfall strategy.

By UseCase-wise (UCw) development, we mean an approach to system development that proceeds by taking one
or more of the UseCases identified during requirements analysis, and completes the development of those first, from
the abstract models down to implementation, giving a usablesystem (with limited functionality). Subsequently further
UseCases are incorporated, with all the elements of the development getting suitably enhanced, and yielding another
working system, this time with greater functionality. The process is repeated until all the UseCases identified during
requirements analysis have been developed, yielding a system with all the functionality desired. UCw development
can be seen as a member of the ‘Agile Methods’ family of systemdevelopment techniques.1

Fig. 1 illustrates the TD versus UCw distinction. On the leftwe see a development proceeding TD in layers, while
on the right, we see additional slices of functionality being added UCw to an initially developed system. It is important
to realise that the TD vs. UCw distinction refers to thedynamicsof the process by which the system is built. Even
though a system may be built using a UCw process, one which is superficially unsympathetic to Event-B perspectives,
there is no reason why the end result should not be a collection of models which enjoy the levels of mutual consistency
characteristic of Event-B. Thus, even though one might argue that introducing a UCw approach into Event-B would
be a retrograde step for Event-B, it is hard to dispute that introducing Event-B’s criteria for correctness into the UCw
approach would be a positive step for UCw development. This begs the question of how one might incorporate Event-B
correctness into the UCw process. This will be dealt with in Section 4.

3. Event-B Machines, Refinement and Retrenchment for Event-B

In this section, we review Event-B machines, refinements, and against this background, we formulate retrenchment in
a way that will permit the smoothest possible cooperation between the two techniques.

1 We coined the term ‘UseCase-wise development’ in this paperto try to avoid confusion. It is enough to cast a glance at sites such as
http://en.wikipedia.org/wiki/Agile software development and the acronym blizzard one finds there, with the same term having different mean-
ings in different settings, to realise what dangers lurk in the casual use of terms invented in this field. What we call UseCase-wise development is
also called ‘incremental development’ in other places, butthat term is so laden with possibilities for misinterpretation, that we thought it safest to
invent a fresh name, inevitably causing yet more terminological proliferation.

Retrenchment for Event-B 3

… … … … … … …… … … … …

Fig. 1. Illustrating TopDown versus UseCase-wise development strategies.

3.1. Event-B Machines

In a nutshell, an Event-B MACHINE has aname, it SEES one or morestatic contexts, and it owns some VARIABLES;
these are allowed to be updated via EVENTS, but are required to always satisfy the INVARIANTS. The events can
declare their ownparameters(which are bound variables acting as carriers of input values) — and each event has
one or moreguards, and one or moreactionswhich are specified viabefore-after predicates(or notations such as
assignment for simpler cases). Among the events there is anINITIALISATION, whose guard must betrue.

The semantics of Event-B machines and of the refinement relationship between machines, is expressed via a
number of proof obligations (POs). These must be provable inorder for the machine or refinement in question to be
well defined. We quote the main ones of interest to us, mentioning the others more briefly. See [Abr, Roda] for full
details.

For a machineA to be well defined theinitialisation andcorrectnessPOs must hold:

InitA(u′) ⇒ I(u′) (1)

I(u) ∧ GEvA(i, u) ∧ EvA(u, i, u′) ⇒ I(u′) (2)

In (1), InitA is the initialisation event and (1) says that the valueu′ of A’s state variableu established byInitA satisfies
A’s invariantI . Likewise, (2) says that for an eventEvA of A, if A’s invariantI(u), andEvA’s guardGEvA(i, u), both hold
in the before-state of the event, andEvA’s before-after relationEvA(u, i, u′) also holds, then the after-state will satisfy
the invariantI once more. In (1) and (2) we have suppressed mention of the details of the static contexts seen byA, but
we have singled outEvA’s input variablesi for later convenience. For closer conformance to [Abr,Roda] we have not
mentioned any output variables, though it would be trivial to include them in the before-after relationEvA(u, i, u′) and
in (2). Aside from (1) and (2), Event-B machines must satisfyfeasibilityPOs for the initialisation and for all events,
and also adeadlock freedomPO for non-terminating systems; see [Abr,Roda].

3.2. Event-B Refinement

Suppose that as well as machineA, we have another machineC, with state variablew, input variablek, initialisation
eventInitC, and typical eventEvC, with guardGEvC(k, w) and before-after relationEvC(w, k, w′). If C is a refinement
of A, its invariantK(u, w) will be a relation over bothu andw, this reflecting the fact that in the B-Method generally,
the view is emphasised that a refinement is seen as (and is therefore syntactically described as), an enhancement of the
abstraction towards implementation, rather than as an independent entity. The counterparts of (1) and (2) become:

InitC(w′) ⇒ (∃ u′ • InitA(u′) ∧ K(u′, w′)) (3)

I(u) ∧ K(u, w) ∧ GEvC(k, w) ∧ EvC(w, k, w′)

⇒ (∃ i, u′ • GEvA(i, u) ∧ EvA(u, i, u′) ∧ K(u′, w′)) (4)

whereEvC is an event that is supposed to refineEvA and we have amalgamated theguard strengtheningandcorrectness
POs in (4) for later convenience.

In (3), eachInitC(w′) intialisation must be witnessed by someInitA(u′) intialisation that establishes the joint in-
variantJ(u′, w′). Likewise, (4) says that when both invariants hold, eachEvC(w, k, w′) event is witnessed by some
EvA(u, i, u′) event that re-establishes the joint invariant. Aside from (3) and (4) there are alsofeasibilityPOs for the
initialisation and for all events,variant decreasePOs for ‘new’C events not declared to be refinements of any event
of A, and also an overallrelative deadlock freedomPO. See [Abr,Roda] for full details.

We give a small example of Event-B refinement. It builds a directed graph from a finite universe of possible nodes
contained in a setNSetheld in a contextNCtx.

MachineNodesbelow, is concerned with the requirement of assigning nodesto the graph, picking them out of
the setNSetusing the eventAddNode, starting with the empty set. MachineEdgesrefines Nodes, and addresses the

4 Banach

requirement of having edges between some of the graph nodes.In typical Event-B fashion, it simply accumulates
the new model elements, leaving the preceding ones unchanged. SoEdgesjust containsNodesin its body. The new
requirement is handled by adding a new variableedgand a new eventAddEdge. AddEdgeacts likeskip on the existing
variablenod, as required for such ‘new’ events. Also sinceAddEdgedoes not refine any existing event (unlikeAddNode
which refines itself and is thus ‘ordinary’), it must be ‘convergent’, which means that each invocation ofAddEdge
decreases theN-valued VARIANT card(NSet× NSet− edg), ensuring relative deadlock freedom. (We suppress the
WHICH IS clauses below.)

MACHINE Nodes
SEES NCtx
VARIABLES nod
INVARIANTS

inv1 : nod∈ P(NSet)
EVENTS

INITIALISATION
WHICH IS ordinary
BEGIN act1 : nod := ∅ END

AddNode
WHICH IS ordinary
ANY n
WHERE n ∈ NSet− nod
THEN nod := nod∪ {n}
END

END

MACHINE Edges
REFINES Nodes
SEES NCtx
VARIABLES nod, edg
INVARIANTS

inv1 : nod∈ P(NSet)
inv2 : edg∈ P(NSet× NSet)

EVENTS
INITIALISATION

WHICH IS ordinary
BEGIN act1 : nod := ∅ END

AddNode
WHICH IS ordinary
REFINES AddNode
ANY n
WHERE n ∈ NSet− nod
THEN nod := nod∪ {n}
END

AddEdge
WHICH IS convergent
ANY n, m
WHERE n 7→ m∈ NSet× NSet− edg
THEN edg:= edg∪ {n 7→ m}
END

VARIANT card(NSet× NSet− edg)
END

3.3. Retrenchment for Event-B

We now formulate retrenchment for Event-B against the preceding background. The objective of retrenchment is to
offer a flexible relationship between machines or system models that can capture situations in which all the detailed
criteria of some species of refinement cannot be met, but where the two models in question are deemed nevertheless
(and especially by domain experts rather than refinement specialists) to belong to the same development activity.
The focus of retrenchment is on a simulation-like criterion, with the added aim of convenient interworking with
refinement. Retrenchment is therefore formulated as a modification of the main POs of the refinement notion, with the
incorporation of suitable additional predicates to enhance expressivity.2

For the specific context of Event-B, retrenchment is a relationship that is to hold between top level machines. When
a retrenchment involving a refinement machine is needed, onemust quantify away the dependence on the higher level
abstractions to get a self-contained top level machine using the technique described in Chapter 11 of [Abr96].

Unlike refinement in Event-B, in which the refinement data (essentially just the joint invariant and some bookkeep-
ing details, as in our example) are incorporated into the syntax of the refining machine, retrenchment is an independent
syntactic construct, as befits the weaker relationship between machines that it expresses, and especially, the desire that
none of the details of retrenchment interfere in any way withany refinement that any machine involved in a retrench-
ment might also be involved in. Notationally this departs from the scheme in [BP98] and agrees with the line taken
in [BF05,FB07,Fra08].

Suppose we have top level machinesA (having the elements mentioned earlier) andB, andB’s state and input vari-
ables arev, j, the invariant isJ(v) and the other pieces can be imagined. Here is a schematic syntax for the retrenchment
construct, intended as a good fit for Event-B as currently implemented in the Rodin toolset [Rodb]:

2 Thus the modification of the relevant refinement POs constitutes the sense in which thesimulation-like criterionis intended; suitable pairs of
transitions in the two models should satisfy an appropriategeneralisation of (4).

Retrenchment for Event-B 5

RETRENCHMENT Identifier RetA,B
FROM Identifier A TO Identifier B
[SEES IdentifierList]
[RETRIEVES Predicate R(u, v)]
[EVENTS

[RAMIFICATIONS Identifier EvA [TO Identifier EvB]
[WITHIN Predicate WEvA,EvB(i, j, u, v)]
[OUTPUT Predicate OEvA,EvB(u′, v′, i, j, u, v)]
[CONCEDES Predicate CEvA,EvB(u′, v′, i, j, u, v)]
END

]+
]
END

The construct has a nameRetA,B, and is FROM machineA TO machineB. It can SEE static contexts as can a
machine or refinement. There is a RETRIEVES relationR(u, v) between the two state spaces, and for each pair of
retrenchment-related events inA andB, eg.EvA andEvB (where one can omit mentioningEvB if it has the same name
asEvA), there are the RAMIFICATIONS, consisting of the WITHIN relationWEvA,EvB(i, j, u, v), the OUTPUT relation
OEvA,EvB(u

′, v′, i, j, u, v) and the CONCEDES relationCEvA,EvB(u
′, v′, i, j, u, v).

The semantics of retrenchment is given by its POs. These are:

InitB(v′) ⇒ (∃ u′ • InitA(u′) ∧ R(u′, w′)) (5)

I(u) ∧ R(u, v) ∧ J(v) ∧ WEvA,EvB(i, j, u, v) ∧ EvB(v, j, v′)

⇒ (∃ i, u′ • EvA(u, i, u′) ∧ ((R(u′, v′) ∧ OEvA,EvB(u
′, v′, i, j, u, v)) ∨ CEvA,EvB(u

′, v′, i, j, u, v))) (6)

where there is an instance of (6) for each ramifications-related pairEvA andEvB. We see that the intialisation PO is
standard, while the correctness PO permits considerable deviation from refinement-like behaviour by virtue of the
presence of the within, output and concedes relations. In addition to the above, we demand for eachEvA/EvB pair that:

WEvA,EvB(i, j, u, v) ⇒ GEvA(i, u) ∧ GEvB(j, v) (7)

which is called the tower compatibility criterion, and which ensures that retrenchment only engages with well defined
transitions, and thereby interworks smoothly with refinement. Note however, that the other POs of Event-B refinement,
i.e. variant decrease and relative deadlock freedom, do nothave counterparts in retrenchment. We want to be able to
relate machines with significantly different behaviour as regards these aspects, if the requirements arena creates the
perception that it is desirable to do so.

Although this is not an appropriate place to examine in depththe arguments regarding why the above design is
a good one for retrenchment, we can summarise the main issuesas follows. Firstly, the aim of a notion thatdeparts
from refinement ordesires to accommodate inability to satisfyrefinement, must amount to a weakening of refinement
— there is clearly no point in doing the opposite. The proposal we have given above does this, since the occurrences
of WEvA,EvB(i, j, u, v) in the hypotheses, and ofOEvA,EvB(u

′, v′, i, j, u, v) andCEvA,EvB(u
′, v′, i, j, u, v), in the conclusions

respectively, of (6), clearly weaken (4). Secondly, we wantthis weakening to be as general as possible so as not to
have to invent a different notion of non-refinement for everyconceivable departure from refinement that might arise.
Again, (6) achieves this sinceWEvA,EvB(i, j, u, v), OEvA,EvB(u

′, v′, i, j, u, v) andCEvA,EvB(u
′, v′, i, j, u, v) must be specified

on a per-event-pair basis. Thirdly, we would want the departure from refinement to be quantified in some way. Again,
(6) achieves this, at least indirectly, sinceWEvA,EvB(i, j, u, v), OEvA,EvB(u

′, v′, i, j, u, v) andCEvA,EvB(u
′, v′, i, j, u, v) must

actually be specified by the user in each particular case of retrenchment — in doing this the precise details of how
refinement fails to hold is made clear by the user in the details of these (otherwise unconstrained) relations. Lastly,
we would want good interworking with refinement. This important topic, which ensures that retrenchment can add to
rather than detract from what can be done with refinement, is the subject of the next section. See [BPJS07a] for more
extensive discussion of generalities such as these concerning retrenchment.

4. Retrenchment and Event-B Interworking: the Tower Pattern

A definite sine qua nonof retrenchment is that the use of retrenchment should not spoil the rigour achievable via
refinement. The best results are obtained when the two notions work closely together, with retrenchment being used
to connect together otherwise incompatible refinement strands. The more tightly such different refinement strands are
coupled via retrenchment, the more restraint is exercised over retrenchment’s otherwise extreme permissiveness.

6 Banach

A

C D

B

RefA,C

RetC,D

RetA,B

RefB,D
…

Fig. 2.The basic structure for the Tower Pattern on the left, and on the right, its use in constructing a UCw development whose outcome enjoys the
rigour of an Event-B development.

The paradigmatic arrangement of retrenchments and refinements, that achieves both the tight coupling that restricts
retrenchment and the non-interference with the rigour of refinement, is theTower Pattern, an epithet that summarises
a host of square completion and factorisation results that were first studied thoroughly in Jeske’s thesis [Jes05], and
which were more recently reformulated, revised and generalised in [BJ]. The left hand side of Fig. 2 shows a square
of retrenchments and refinements among four system modelsA, B, C, D, with the retrenchments horizontal and the
refinements vertical (and the data that characterises theseretrenchments and refinements implicit). In [Jes05], the
square commutes ‘on the nose’ in that the two paths round the square fromA to D (given by composing theA to B
retrenchment with theB to D refinement on the one hand, and on the other, by composing theA to C refinement with
theC to D retrenchment) yield the same retrenchment fromA to D. In [BJ] this is relaxed a little, and in the general
case, the two paths each describe a portion of a larger retrenchment fromA to D. Either way, the results of [Jes05,BJ]
show that whenever you start with two adjacent sides of such asquare, the square can be completed by building the
missing system model and its impinging retrenchment and refinement out of the existing elements in a canonical way,
and that the result is indeed a square that commutes in the appropriate manner — the case studies in Sections 5-7
are concerned with explicit examples of such constructions. Such squares are the fundamental building blocks of the
tower, which itself is just an arrangement of such squares into a suitable grid pattern as suits the development at hand.

The tower construction has by now had substantial vindication. In the formal development of the Mondex Elec-
tronic Purse [SCW00], there were a number of requirements issues that were handled less than ideally in the formal
modelling. These have all been handled convincingly via retrenchment, mostly using the tower [BPJS05, BJPS05,
BJPS06].

Although [Jes05] was done in the context of Z refinement to directly serve the needs of the Mondex work, the
approach advocated in Section 3, discussed more widely in [BPJS07a], and explored in detail in [Ban], ensures that
there is a wide commonality between retrenchment formulations for different variants of refinement. This commonality
is also behind the reformulated and generalised approach of[BJ]. The insistence that retrenchment is confined to the
initialisation and correctness POs helps here, since most notions of refinement have initialisation and correctness POs
that are either identical to, or extremely close to, (5) and (6). In particular, this applies to Event-B and Z refinements.
So, since the composition of refinements and retrenchments is defined via their initialisation and correctness POs,
these compositions (which yield retrenchments), will be identically defined for both Z and Event-B. See [BJP08].

For our purposes, we need a suitable analogue of the PostjoinTheorem from [Jes05, BJ], which states that if we
have three systemsA, B, C, as in Fig. 2, the square can be completed in a canonical way with a systemD, and a
connecting retrenchmentRetC,D and refinementRefB,D, so that the two retrenchment+refinement compositions round
it are equal (for [Jes05]) or compatible (for [BJ]).

Direct application of the Postjoin Theorem from [Jes05] is impeded by two things: (a) its ferocious technical
complexity; (b) its detailed Z dependence as regards ‘non-correctness’ POs (i.e. the POs that in Z replace guard
strengthening and relative deadlock freedom). The situation as regards the Postjoin Theorem from [BJ] is consider-
ably more pleasant: there, the complexities are confined to details of the characterisation of universality of the main
construction, which is itself relatively straightforward. Fortunately, in the context of a simple and natural example, in
which the constituents are well behaved to start with, most of the complexity simplifies drastically, and a situation that
is ‘obviously sensible’ emerges. Further discussion of these points is best given in the context of an example, so we
pick up this thread again near the end of Section 5.

What does any of this have to do with reconciling the TD and UCwstrategies? Well, a single step of the UCw
strategy takes the pre-existing development, and incorporates a new UseCase of functionality. We can imagine that
the pre-existing development has been captured within a sequence of Event-B refinements, starting with the most

Retrenchment for Event-B 7

abstract formulation of the pre-existing functionality, and descending into more concrete levels of description, perhaps
aggregating additional events into the description as we go, in the usual Event-B way. We can represent this pre-
existing development by the thick vertical line in the middle of Fig. 2.

The incorporation of the new functionality may well requirethe introduction of new events at the top level, a
reworking of the top level invariant, reworked top level guards, and so on. As such it will not generally fit into the
preceding refinement sequence, not least because the new toplevel functionality will usually not manipulate the top
level state in askip-like fashion. (These of course are the crucial reasons why one cannot, in general, capture such
increments of functionality using Event-B refinements.) However, the new functionality can be related to the existing
development via a retrenchment.

(We can say the latter with confidence since we show in [BPJS07a] thatany two system models can be related
via a retrenchment, the potential vacuousness of such a statement being alleviated by the observation that the various
relations that comprise a retrenchment help toquantifythe difference between the models, as noted above. In a well-
controlled situation, such as the introduction of new functionality, the difference between the two models will not be
capriciously arbitrary (despite not necessarily conforming to Event-B refinement desiderata), and so the retrenchment
between them will, in fact, be able to say quite a lot.)

Depicting the retrenchment from previous top level model tonew top level model horizontally, we arrive at the
shape given by the solid part of the next piece of Fig. 2.

Now the tower construction can take over, and complete a sequence of refinements from the new top level via the
requisite sequence of postjoin square completions, working downwards, as illustrated in the next part of Fig. 2. The
new bottom level will be at the right level of abstraction to correspond with the pre-existing bottom level model. Thus
one bout of UseCase introduction has been achieved via the tower. Successive bouts follow the same route. In each
case we draw up the retrenchment that takes us to the new top level model, and allow the tower to do the rest. Finally,
the right hand column of the last bout yields a pristine Event-B development of the full functionality, shown as an even
thicker line on the right of Fig. 2.

5. A Simple Case Study

We tackle a toy distributed allocation problem. It is carried out in the way done here only for purposes of illustrating
our techniques in detail (regarding which, see Section 5.2). In reality, one would only apply the machinery discussed
in this paper to significantly more substantial examples.

Resources, modelled as elements of a set, are to be allocatedto users. At the most abstract level, there is a large
(potentially infinite) set,ASet, whose elements are to be allocated, and at a low level this isreplaced by a much smaller
finite subsetDSet. Also, at low enough levels of abstraction,ASetandDSetare statically partitioned intoASet1, ASet2
andDSet1, DSet2 respectively, withDSet1 a subset ofASet1 andDSet2 a subset ofASet2, ready for allocation to two
individual agents. These static facts are captured in the contextCtx:

CONTEXT Ctx
SETS GSet
CONSTANTS ASet, DSet, ASet1, ASet2, DSet1, DSet2, a
AXIOMS

axm1 : ASet⊆ GSet∧ ASet1 ⊆ GSet∧ ASet2 ⊆ GSet
axm2 : DSet⊆ GSet∧ DSet1 ⊆ GSet∧ DSet2 ⊆ GSet
axm3 : ASet1 ∪ ASet2 = ASet
axm4 : ASet1 ∩ ASet2 = ∅

axm5 : DSet⊂ ASet
axm6 : DSet1 = DSet∩ ASet1
axm7 : DSet2 = DSet∩ ASet2
axm8 : a ∈ ASet

END

5.1. Four Machines

Below are four machines,A, B, C, D, deliberately arranged as in Fig. 2. The left hand column treats only one UseCase,
that of allocation. MachineA, the most abstract one, simply models the allocation of an element fromASetto the
variablex at the global level. MachineA is refined to machineC, in which two agents can allocate from their statically

8 Banach

assigned partitions, with each agent allocating to his own variablex1 or x2 repectively, and where each agent allocation
refines the global allocation event.

The right hand column introduces the deallocation UseCase.MachineB is like machineA, except that (aside from
variable renaming for clarity) it has aSubElevent as well as anAddElone. MachineB is refined to machineD. In
machineD, the allocation and deallocation events are refined into their agent-wise counterparts (the ones for agent 2
being just like the ones for agent 1, and so are suppressed to save space). Also machineD introduces the use ofDSet
and its partition intoDSet1, DSet2.

MACHINE A
SEES Ctx
VARIABLES x
INVARIANTS inv1 : x ∈ P(ASet)
EVENTS

INITIALISATION
BEGIN act1 : x := ∅ END

AddEl
ANY el
WHERE grd1 : el ∈ ASet− x
THEN act1 : x := x∪ {el}
END

END

MACHINE B
SEES Ctx
VARIABLES y
INVARIANTS inv1 : y ∈ P(ASet)
EVENTS

INITIALISATION
BEGIN act1 : y := ∅ END

AddEl
ANY el
WHERE grd1 : el ∈ ASet− y
THEN act1 : y := y∪ {el}
END

SubEl
ANY el
WHERE grd1 : y 6= ∅

grd2 : el ∈ y
THEN act1 : y := y− {el}
END

END

MACHINE C
REFINES A
SEES Ctx
VARIABLES x1, x2
INVARIANTS inv1 : x1 ∈ P(ASet1)

inv2 : x2 ∈ P(ASet2)
inv3 : x = x1 ∪ x2

EVENTS
INITIALISATION

BEGIN act1 : x1 := ∅

act2 : x2 := ∅

END
AddEl1

REFINES AddEl
ANY el
WHERE grd1 : el ∈ ASet1 − x1
THEN act1 : x1 := x1 ∪ {el}
END

AddEl2
REFINES AddEl
ANY el
WHERE grd1 : el ∈ ASet1 − x2
THEN act1 : x2 := x2 ∪ {el}
END

END

MACHINE D
REFINES B
SEES Ctx
VARIABLES y1, y2
INVARIANTS inv1 : y1 ∈ P(DSet1)

inv2 : y2 ∈ P(DSet2)
inv3 : y = y1 ∪ y2

EVENTS
INITIALISATION

BEGIN act1 : y1 := ∅

act2 : y2 := ∅

END
AddEl1

REFINES AddEl
ANY el
WHERE grd1 : el ∈ DSet1 − y1
THEN act1 : y1 := y1 ∪ {el}
END

AddEl2
.

SubEl1
REFINES SubEl
ANY el
WHERE grd1 : y1 6= ∅

grd2 : el ∈ y1
THEN act1 : y1 := y1 − {el}
END

SubEl2
.

END

Let us consider the relationships between these various machines. TheA to C refinement is a normal Event-B
refinement, as is theB to D refinement. However there is a difference between the two. IntheA to C refinement, the
static setASetstays the same, whereas in theB to D refinement, we are able to replaceASetby DSet. The reason we
are able to do this in the case of theB to D refinement but not theA to C refinement is connected with the details of the
Event-B refinement POs. One of these, the relative deadlock freedom PO, demands that the disjunction of the guards

Retrenchment for Event-B 9

of all the abstract events implies the disjunction of the guards of all the concrete ones. Consider then the state in which
all DSetelements have been allocated. If we usedDSetinstead ofASetin machineC, then, whereas the machineA
AddEl’s guard would betrue (since there are plenty of elements left inASet− DSet) the disjunction of the machineC
AddEl1 andAddEl2 guards would befalse (since by definition,(DSet1 − x1) ∪ (DSet2 − x2) is empty in this state).
So the disjunction of the abstract guards would not imply thedisjunction of the concrete ones, and the refinement
would fail. The same is not true of theB to D refinement. There, when all theDSetelements have been allocated, the
disjunction of the abstract guards istrue as before, but now, at the concrete level, even thoughAddEl1 andAddEl2 are
disabled as in machineC, we have theSubEl1 andSubEl2 events enabled, so the disjunction of the concrete guards is
true as well, and the refinement succeeds.3

The relationship from machineA to machineB cannot be an Event-B refinement since machineB’s SubElevent
manipulates the machineA state in a non-skip manner (and furthermore, the relationship cannot be a converse Event-B
refinement since then machineB’s SubElevent would not be refined by anything). To capture this relationship we need
retrenchment, and the trivial retrenchmentRetA,B that follows will do:4

RETRENCHMENT RetA,B
FROM A TO B
SEES Ctx
RETRIEVES ret1 : x = y
EVENTS

RAMIFICATIONS AddEl
WITHIN wth1 : true
OUTPUT out1 : true
CONCEDEScon1 : false
END

END

RETRENCHMENT RetC,D
FROM C TO D
SEES Ctx
RETRIEVES ret1 : x1 = y1

ret2 : x2 = y2
EVENTS

RAMIFICATIONS AddEl1
WITHIN wth1 : true
OUTPUT out1 : true
CONCEDEScon1 : false
END

RAMIFICATIONS AddEl2
.

END

AlongsideRetA,B, we haveRetC,D, the retrenchment required to relate machineC to machineD. Note that neither
retrenchment needs to say anything about the initialisation events, since they are required to work just as in refinement.
RetC,D looks just as trivial asRetA,B but in fact it is less so. In the Rodin toolset, there is a convention that when one
event refines another, any parameters that are identically named in the two events are in fact equal, and the relevant
equalities are automatically factored in to the automated reasoning. We have availed ourselves of a similar convention
for retrenchments, and it applies in bothRetA,B andRetC,D. In RetA,B this has little impact, since the only place where it
applies (the parameters of the machineA and machineB AddElevents), the assumptions pertaining to the two events’
parameters are identical. InRetC,D however, the same situation is less trivial, since machineC’s AddEl1 el is selected
from ASetwhile machineD’s AddEl1 el is selected fromDSet. If we temporarily rename the parameters in these two
events by adding subscripts, the real within relation between theAddEl1 events inRetC,D becomes:

elC = elD ∧ elC ∈ ASet∧ elD ∈ DSet (8)

which enforces an additional constraint onelC. So, despite appearances, the within relation ofAddEl1 has some real
work to do. (Note that a similar thing is silently accomplished in the course of theB to D refinement. And if we had
taken name identity even further, and avoided renaming theA/C variablesx, x1, x2, to theB/D variablesy, y1, y2, we
could have simplifiedRetA,B andRetC,D even more by trivialising the retrieve relations.)

5.2. Retrenchments and Anticipating Events

The tiny case study just discussed had one telling feature, namely that due to the simplicity of the case study, the
events related by theA to B retrenchment and the events related by theC to D retrenchment in each case preserved the
retrieve relation. This simplicity was itself a consequence of the desire to keep the example small enough so that all of
its ingredients, including four machines and four relationships between machines, could be described in detail withina

3 The success can be attributed to the fact that we are using theweak relative deadlock freedom PO rather than the strong one (see[Roda],
Deliverable D3). The strong version demands that foreachabstract event, its guard implies the disjunction of the corresponding concrete guard
with all the ‘new event’ guards. Such a PO would fail here, a circumstance that could be overcome with a more extensive use of retrenchment.
4 One could introduce syntax to deal with such trivial event retrenchments more succinctly.

10 Banach

reasonable amount of space. When corresponding events of a retrenchment preserve the retrieve relation, an alternative
technique is sometimes available for tackling the development step. It may be possible to use the anticipating events
of [ACM05].

In this technique, the events that would be related by retrenchment between abstract and concrete models in our
approach, are of course related by the refinement subset of that retrenchment. New events, those that modify the
abstract variables in a manner that is incompatible with being a refinement ofskip, are introduced in the concrete
machine as if theydid refine an implicit abstract event, but this time not askip event, instead a different, ‘keep’
event. In utilising akeep event, the top model (machineA in our case study), is modified by the inclusion of an event
(calledKeepA say), whose only job is to preserve the invariants. In other words in thekeep event, the variables are
nondeterministically assigned to any values that make the invariants true. The new events in the concrete machine
are now free to modify the variables inherited from the abstract machine in whatever manner they wish, while still
conforming to the demands of a refinement, since any behaviour refines maximally nondeterministic assignment.

In the context of our case study, machineA would implictly acquire an eventKeepA which had a trivial guard, and
whose action wasx :∈ P(ASet). It is clear that once machineA has such an event, then eventSubElin machineB is a
refinement of it, and one can even very easily posit a variant (eg. card(y)) that is decreased by it.

While the use of thekeep (or anticipating) event can undoubtedly handle some of the more benign situations
catered for by retrenchment, there are a number of significant differences.

1. New events introduced via this mechanism still have to decrease a variant, to conform to Event-B’s other refinement
demands. This may not be appropriate for all modifications toa system that one might contemplate performing,
and retrenchment makes no such demand.

2. Likewise, the new events’ guards also have to conform to the demands on guards pertaining to Event-B refinement.
They thus have to co-operate with the other guards to ensure guard strengthening and relative deadlock freedom.
Retrenchment makes no such demands.

3. The introduction of thekeep event into the abstract machine alters the problem solved bythat machine. The
original machine solved a problem that one could phrase as ‘reachability under the (original) collection of events’.
The same machine modified by the introduction of thekeep event, whose action is maximally nondeterministic
assignment while maintaining the invariants, solves a problem that one could phrase as ‘reachability under the
(original) invariants’. Since there is no requirement in Event-B that all states characterised by the invariants have
to be reachable via (some sequence of) the events, the formerproblem defines a stronger reachability problem than
the latter. Thus, unlike the implicit introduction of askip event, which obviously does not alter the reachability
problem solved by the machine, the implicit introduction ofa keep eventdoesalter the reachability problem, and
thus constitutes a nontrivial modification of the top level machine.

In contrast to the points just noted, one of the most prominent aims of retrenchment is tonot require any change
in the machine being retrenched (i.e. the machine that playsthe role of the abstract model). If one is prepared to
change the abstract machine sufficiently, then of course many more transformations become capable of being viewed
as refinements than before. Ultimately, the refinement concept itself can become blurred due to the many implicit
things that might be being imposed on the abstract model during its use.

5.3. A, B, C, D and the Tower

We return to the discussion of our simple case study. MachinesA, B, C, D, (and the various retrenchments and refine-
ments that relate them), form a candidate instance of the Postjoin Theorem. It is time to pick up the discussion left
over from Section 4 regarding this. In fact, due to the totality of the retrieve relations (for both the retrenchments and
the refinements), the square actually commutes ‘on the nose’as far as the various retrenchments and refinements are
concerned, so the differences in approach between [Jes05] and [BJ] are not visible in such a simple example. Thus,
if we follow a state element fromA through theA to B retrieve relation and then through theB to D joint invariant,
we arrive at the same set of possibilities as if we had first gone through theA to C joint invariant and then theC to D
retrieve relation, i.e. the relevant relational compositions are equal (a claim easy enough to check by hand in this sim-
ple example), and they constitute the retrieve relation forthe composed retrenchment. The rest depends on the events.
Of these, the initialisations behave straightforwardly ofcourse; assuming the truth of the component initialisationPOs
enables the truth of the composed initialisation PO to be proved, given the composed retrieve relation.

For the other events, we note that machineA’s AddElevent is going to be retrenched to bothAddEl1 andAddEl2
in machineD, by tracing the square viaB or C. SinceAddEl1 andAddEl2 are so similar, it will be sufficient for us to

Retrenchment for Event-B 11

discussAddEl1 and to leaveAddEl2 to the reader. To discussAddEl1, we first need the within relation forAddEland
AddEl1. This can be obtained in one of two ways. One can compose the within relation of theA to B retrenchment
with the conjunction of the joint invariant and WITNESS relations5 of theB to D refinement, or one can compose the
joint invariant and WITNESS relations of theA to C refinement with the within relation of theC to D retrenchment.
Since the square commutes, these two calculations agree, asthey must, and as the reader can check.

The output and concedes relations forAddElandAddEl1 are determined similarly. Take the output relation. One
way round, the output relation of theA to B retrenchment is composed with the joint invariant and witness relations
of the B to D refinement for the before-state and input parameters, and another copy of theB to D refinement joint
invariant is used for the after-state. The other way round, the witness relation and two copies of the joint invariant
of the A to C refinement are composed with the output relation of theC to D retrenchment. Either way round the
square yields the same result. The strategy for the concedesrelation of theA to B retrenchment is exactly the same.
See [BJP08] for more detailed calculations and proofs regarding the general case.

Altogether, we get the composed retrenchmentRetA,D, in which the familiar facts hold for the commonel parameter
of AddElandAddEl1:

RETRENCHMENT RetA,D
FROM A TO D
SEES Ctx
RETRIEVES ret1 : x = y1 ∪ y2
EVENTS

RAMIFICATIONS AddEl TO AddEl1
WITHIN wth1 : true
OUTPUT out1 : true
CONCEDEScon1 : false
END

RAMIFICATIONS AddEl TO AddEl2
.

END

The above sketches a confirmation that machineD (which we pulled out of a hat) has the right characteristics
to be the desired square completion. In general, when machines are constructed to solve plausible problems, their
interrelationships are benign, and it is normally transparent what the square completion should look like, without
resorting to the general theory. Benign situations are characterised by the fact that the state (and other) spaces partition
into equivalence classes, which the various relations in play treat in an ‘all or nothing’ manner. In other words, the
relations involved are allregular [Ban95]. Moreover, benign situations also feature compositions of regular relations
which themselves turn out to be well behaved. In such cases one can confidently eschew the forbidding complexity
of the results in [Jes05], or their much less forbidding analogues in [BJ], and as here in the Event-B context, work by
hand.

6. A Small Train Case Study

In this section we examine another case study. The scenario concerns trains. In the old days, the rail system relied
for its safety on the vigilance of the train driver who was expected to see, and to respond to, all signals on his route.
Inevitably, given the dependence on human vigilance, therewere some (rare) tragedies, attributable to the driver’s not
in fact responding to a signal that he was expected to respondto. Other sources of accidents were attributable to the
signal system itself not behaving properly, eg. the signal did not move, or change colour in the way it was supposed
to, in response to commands from the signal box.

As a reaction to circumstances like these, Automatic Braking Systems (ABS) were invented. These are electronic
systems —built from hardware of the highest dependability—that communicate with onboard equipment on the train
in order to override the train’s state of motion and bring it to a standstill unconditionally, if the train is not already
coming to a stop by conventional means.

ABS systems are expensive and their installation is often resisted by railway operating companies, for as long as it

5 In Rodin, when an event and its refinement have different parameters, the refined event has a WITNESS clause to say how any abstract parameters
not occurring in the refinement are to be related to the refinedones. This is like the within relation of a retrenchment and goes beyond what is
documented in [Roda] Deliverable D3. See the Rodin User Manual at [Rodb]. When there are no such abstract parameters, thewitness relation
trivialises.

12 Banach

is politically realistic to do so, until regulatory pressure and/or public opinion forces the issue. We will develop a small
model of the installation of ABS onto a conventional system.Since the whole object of the exercise is to change the top
level behaviour under certain circumstances, we are faced with a new use-case that conflicts with existing behaviour,
and must therefore use retrenchment rather than refinement to accomodate it.6

Below on the left is the original, rather primitive,Train system. For simplicity, we have folded in the static context
information into the body of the MACHINE. There are two variables: the motormotor, which ison when the train is
moving andoff when it is stationary, and the dead man’s handledmh, which must beon when the motor is running,
as captured ininv3. The dead man’s handle and motor are independent systems, and theinv3 coupling between them
provides a higher level of dependability than if the motor alone was present. However, for driver convenience, the two
are physically connected in the accelerator handle, which the driver pushes forward to go, holds forward to continue
going, and releases to stop. So the two nontrivial events,Go andStop, couple the setting and unsetting of themotor
anddmhvariables.

MACHINE Train
VARIABLES motor, dmh
INVARIANTS inv1 : motor∈ {on, off}

inv2 : dmh∈ {on, off}
inv3 : motor = on⇒ dmh= on

EVENTS
INITIALISATION

BEGIN act1 : motor := off
act2 : dmh:= off

END
Go

WHEN grd1 : dmh= off
grd2 : motor= off

THEN act1 : motor := on
act2 : dmh:= on

END
Stop

WHEN grd1 : dmh= on
grd2 : motor= on

THEN act1 : motor := off
act2 : dmh:= off

END
END

MACHINE ABSTrain
VARIABLES motorABS, dmhABS, ABS
INVARIANTS inv1 : motorABS∈ {on, off}

inv2 : dmhABS∈ {on, off}
inv3 : motorABS = on⇒ dmhABS = on
inv4 : ABS∈ {OK, KO}
inv5 : motorABS = on⇒ ABS= OK

EVENTS
INITIALISATION

BEGIN act1 : motorABS := off
act2 : dmhABS := off
act3 : ABS:= OK

END
Go

WHEN grd1 : dmhABS = off
grd2 : motorABS = off
grd3 : ABS= OK

THEN act1 : motorABS := on
act2 : dmhABS := on

END
Stop

WHEN grd1 : dmhABS = on
grd2 : motorABS = on
grd3 : ABS= OK

THEN act1 : motorABS := off
act2 : dmhABS := off

END
ABSStop

WHEN grd1 : dmhABS = on
grd2 : motorABS = on
grd3 : ABS= OK

THEN act1 : motorABS := off
act2 : ABS:= KO

END
ResetABS

WHEN grd1 : motorABS = off
grd2 : ABS= KO

THEN act1 : dmhABS := off
act2 : ABS:= OK

END
END

Next toTrain is the ABS-enhanced versionABSTrain, where the variables inherited fromTrain have been given
an ‘ABS’ subscript for clarity.ABSTrainhas an extra variableABS, the state of the ABS on-board system, which can be
OK or KO. Normally it is OK and this fact becomes an additional guard on the existingTrain events — thus far we
have nothing beyond a superposition refinement [BS96, Kat93]. The novelty comes in the fact that the ABS can take

6 Of course we could develop the ABS train systemfrom scratchusing refinement alone, but we could not use theexisting systemas a starting
point, thus losing some connection with the system goals if the objective is indeed to modify the existing system.

Retrenchment for Event-B 13

unilateral action to stop the train. Thus there is a newABSStopevent, which stops the train when the state of the dead
man’s handle isonbut the on-board ABS equipment goes into theKO state on receipt by the on-board ABS equipment
of a STOPsignal from the trackside ABS equipment. Since the motor turnsoff while the dead man’s handle remains
on(the driver might have collapsed and died, falling onto the dead man’s handle and jamming it in theonposition), we
have an event that manipulates theTrain state in a manner incompatible with previousTrain events. So it can neither
be a refinement of any of them, nor can it be equivalent toskip on this state.

A further eventResetABSrestes the state of the ABS system, provided the motor is not running. Part of its respon-
sibility is to reset the dead man’s handle too, if necessary,so it constitutes another case of incompatible manipulation
of the top levelTrain state.

Regarding the retrenchment data fromTrain to ABSTrain, the most natural retrieve relation will obviously be a
pair of equalitiesmotor = motorABS ∧ dmd= dmhABS. Aside from that, for the common events,Go andStop, since
their actions are the same (up to variable renaming) in the two models, they re-establish the retrieve relation in the
after-states, so that all we need is a non-trivial WITHIN relation, in each case sayingABS= OK. This is just a guard
strengthening (from the Event-B perspective), but needs tobe spelled out in a retrenchment since a general WITHIN
relation may contain further constraints if needed.

The simplicity of the retrenchment data attests to the cleanseparation between the newly introduced behaviour,
and the old behaviour, despite the fact that the former manipulates the top level variables in a non-trivial way, and
this simplicity of retrenchment data is something we regardas agood thing. The reason it arises is because Event-B
strongly encourages the encapsulation of (distinct fragments of) distinct behaviour in separate events. This separation
into distinct events impacts the name space of the events, and under the usual working assumption, that identically
named events are the ones we expect to correspond in the two models, the new behaviour has a fresh name, and
therefore lies outside the scope of the retrenchment data. Thus, in the context of the present case study, it is much more
natural to regard theABSStopbehaviour as constituting a separate event, than to view it as a modified version of the
normalStopevent. This is strongly supported by the requirements context in this case, since the triggering of the ABS
system from trackside,really isa separate event in the normal, informal, human, perceptionof what an event is, and is
quite distinct from conventional stopping.

Furthermore, the clean separation can be expected to persist down the refinement hierarchy. So if one develops the
Train system to a lower level of detail via refinement, the same refinement strategy will be capable of a clean extension
to theABSTrainsystem, for which the tower construction would produce a clean template. We do not elaborate the
details further for this example, but refer to the next case study where this issue is pursued more deeply.

7. A Small Telephony Case Study

Telephony is a classic area where there is a large installed base of conventional systems, whose behaviour gets modified
by the addition of new equipment featuring a greater range ofcapabilities. These days, we are no longer surprised by
the availability of sophisticated connection services brought about by the digitisation of the telephone network.

The conventional model of telephony is captured in the name Plain Old Telephone System (POTS). In a POTS
system, one can dial numbers, and they can ring, be busy, or beunobtainable. That’s about it for POTS. We model a
small fragment of the modification of POTS by the addition of acall forwarding facility.

Below on the left is an abstraction of a fragment of the POTS model. The only variable istone, which is a function
from NUMBERSto the tone heard when the handset at the given number is listened to, being one of:idle, ringing,
busy, (for simplicity we do not model the unobtainable tone). We only modelDialling, and the result of a dial is just the
tone obtained, which can be eitherringing orbusy. (In particular, we do not model call establishment or disconnection,
so that with the tiny models that result, we can illustrate a broader range of manipulations within a small space.)

To the right is an enhancement of this model, the CFPOTS model, permitting call forwarding. This is modelled
rather crudely by the addition of a new tone, theforwarding tone, as an outcome ofDialling. Aside from that, the
variables and parameters have been renamed for clarity.

On the understanding that different tones correspond to functionally different outcomes (especially as regards
further refinement), the relationship between POTS and CFPOTS cannot be a refinement. However it makes for a
sensible retrenchment (which is given in detail below). Theretrieve relation for such a retrenchment will simply
equate thetoneandtoneCF variables (on the set of values that they have in common). Beyond this, only theDial event
requires consideration. It will need a within relation to equatefrom to fromCF andto to toCF, a trivial output relation,
and a concession that says thattone(from) = busywhile toneCF(fromCF) = for.

Pausing a moment, note that we could have attempted to model this situation in a manner analogous to the previous
two sections, by splitting off the new functionality into a separate event,CFDial say. However, in contrast to the

14 Banach

previous two sections, it is, here, highly unnatural to regard the new behaviour as belonging to a distinct event. When
a user picks up a phone to make a call, he perceives himself as performing a single event. It may well be that this
single event has a range of outcomes that depends on the details of the system he is using (and whose full capabilities
he may, in any case, not be fully aware of), but his perceptionof performing a single event is not affected by this.
Thus, retrenchment gives us a choice of different ways of modelling what are, mathematically, very similar facts. And
the argument about which method is superior in any given situation will rest squarely on requirements considerations
— retrenchment, as a technique distinct from refinement, would be greatly undermined if it did not permit us to get
deeper into requirements issues in this way.

MACHINE POTS
VARIABLES tone
INVARIANTS

inv1 : tone∈ NUMBERS→ {idle, ring, busy}
EVENTS

INITIALISATION
BEGIN act1 : tone:= NUMBERS× {idle}
END

Dial
ANY from, to
WHERE grd1 : from∈ NUMBERS

grd2 : to ∈ NUMBERS
grd3 : tone(from) = idle

THEN
act1 : tone(from) :∈ {ring, busy}

END
END

MACHINE CFPOTS
VARIABLES toneCF
INVARIANTS

inv1 : toneCF ∈ NUMBERS→ {idle, ring, busy, for}
EVENTS

INITIALISATION
BEGIN act1 : toneCF := NUMBERS× {idle}
END

Dial
ANY fromCF, toCF
WHERE grd1 : fromCF ∈ NUMBERS

grd2 : toCF ∈ NUMBERS
grd3 : toneCF(fromCF) = idle

THEN
act1 : toneCF(fromCF) :∈ {ring, busy, for}

END
END

MACHINE POTSR
REFINES POTS
VARIABLES tone, calls
INVARIANTS

inv1 : tone∈ NUMBERS→ {idle, ring, busy}
inv2 : calls ∈ P(NUMBERS× NUMBERS)

EVENTS
INITIALISATION

BEGIN act1 : tone:= NUMBERS× {idle}
act2 : calls := ∅

END
Dial

REFINES Dial
ANY from, to
WHERE grd1 : from∈ NUMBERS

grd2 : to ∈ NUMBERS
grd3 : tone(from) = idle

THEN
act1 : tone(from) :∈ {ring, busy}
act2 : calls := calls∪ {(from, to)}

END
END

MACHINE CFPOTSR
REFINES CFPOTS
VARIABLES toneCF, callsCF
INVARIANTS

inv1 : toneCF ∈ NUMBERS→ {idle, ring, busy, for}
inv2 : callsCF ∈ P(NUMBERS× NUMBERS)

EVENTS
INITIALISATION

BEGIN act1 : toneCF := NUMBERS× {idle}
act2 : callsCF := ∅

END
DialRB

REFINES Dial
ANY fromCF, toCF
WHERE grd1 : fromCF ∈ NUMBERS

grd2 : toCF ∈ NUMBERS
grd3 : toneCF(fromCF) = idle

THEN
act1 : toneCF(fromCF) :∈ {ring, busy}
act2 : callsCF := callsCF ∪ {(fromCF, toCF)}

END
DialF

REFINES Dial
ANY fromCF, toCF
WHERE grd1 : fromCF ∈ NUMBERS

grd2 : toCF ∈ NUMBERS
grd3 : toneCF(fromCF) = idle

THEN
act1 : toneCF(fromCF) := for
act2 : callsCF :=

callsCF ∪ {(fromCF, FORTAB(toCF))}
END

END

Next, we refine our models. At this next level of detail, we introduce a system internal data structure, thecalls
variable, which is a directed graph over theNUMBERSset that captures the active calls. In the POTSR machine,
which refines POTS, theDial event simply superposes this functionality onto the assignment oftone, adding an edge

Retrenchment for Event-B 15

from from to to to thecalls graph. In the CFPOTSR machine, which refines CFPOTS, the overall behaviour is more
interesting. For thering andbusyoutcomes, the refinement ofDial to DialRB is the same as the refinement ofDial in
the POTSR machine. However, in thefor outcome, the system has a forwarding tableFORTAB, that says where calls
should be forwarded to, and in this case, an edge fromfromCF to FORTAB(toCF) is added to thecallsCF graph. To
avoid technical complications, we assume that any number which is the target of forwarding can never be the source
of further forwarding, so that theFORTABgraph is a set of disconnected edges.

Regarded as Event-B refinements, both the POTS to POTSR refinement and the CFPOTS to CFPOTSR refinement
are basically trivial superposition refinements. And as forPOTS and CFPOTS above, the relationship between POTSR
and CFPOTSR needs to be a retrenchment. The two retrenchments, Pots2CFPotsandPotsR2CFPotsR, are given in
detail as follows.

RETRENCHMENT Pots2CFPots
FROM POTS TO CFPOTS
RETRIEVES ret1 : ∀ num•

num∈ NUMBERS∧ toneCF(num) 6= for ⇒
tone(num) = toneCF(num)

EVENTS
RAMIFICATIONS Dial

WITHIN wth1 : from = fromCF
wth2 : to = toCF

OUTPUT out1 : true
CONCEDES

con1 : ∀ num•
num∈ NUMBERS∧ toneCF(num) 6= for ⇒

tone(num) = toneCF(num)
con2 : tone(from) = busy
con3 : toneCF(fromCF) = for

END
END

RETRENCHMENT PotsR2CFPotsR
FROM POTSRTO CFPOTSR
RETRIEVES ret1 : ∀ num•

num∈ NUMBERS∧ toneCF(num) 6= for ⇒
tone(num) = toneCF(num) ∧
calls(num) = callsCF(num)

EVENTS
RAMIFICATIONS Dial TO DialRB

WITHIN wth1 : from = fromCF
wth2 : to = toCF

END
RAMIFICATIONS Dial TO DialF

WITHIN wth1 : from = fromCF
wth2 : to = toCF

OUTPUT out1 : true
CONCEDES

con1 : ∀ num•
num∈ NUMBERS∧ toneCF(num) 6= for ⇒

tone(num) = toneCF(num) ∧
calls(num) = callsCF(num)

con2 : tone(from) = busy
con3 : toneCF(fromCF) = for
con4 : calls′ = calls∪ {(from, to)}
con5 : calls′CF = callsCF ∪

{(fromCF, FORTAB(toCF))}
END

END

First, we make some observations about thePots2CFPotsretrenchment. Aside from the simple facts mentioned
already above, we note that the retrieve relation is of the form: ∀num • IsGood(num) ⇒ SomeFactsAbout(num).
The distinction between ‘good’num values and ‘not-so-good’ ones, can conveniently be made on the basis of a
property ofnum in the CFPOTSsystem. This is an embodiment of one possible genericpattern for the retrieve
relation in a retrenchment between two systems which are both (compatibly) structured as functions from an index
set (hereNUMBERS) to the state of an individual subsystem. In Z, such a mechanism is called promotion, and is a
frequently used technical device. (See [BPJS] for a broaderdiscussion of the issues surrounding retrenchment in the
context of Z promotion.) The lack of promotion here, means that we have the responsibility to speak about the system
as a whole when we formulate properties of events —even though we know that only one subsystem is active during a
given event— if we wish to forestall the ‘saying nothing intends the interpretation oftrue’ consequences of focusing
on the subsystem in question alone. This point raises its head in the concession ofDial, where we do in fact make a
statement aboutnums other thanfrom(CF) andto(CF). In particular, the statement we make about them is a copy of the
retrieve relation implication itself, and the fact that we can do so indicates that the retrieve relation and concession
are compatible; nothing in the formulation of retrenchmentforbids this. In fact, as soon as a number in theCFPOTS
system opts for thefor outcome, it ceases to satisfy the hypotheses of the retrieverelation implication, allowing us to
include the latter in the concession.

In the context of the last point, and the simplicity of the models we are dealing with, the reader may notice
that we could have written a stronger retrieve invariant:∀num • num ∈ NUMBERS∧ [(toneCF(num) 6= for ∧
tone(num) = toneCF(num)) ∨ (tone(num) = busy∧ toneCF(num) = for)], and ask why we did not. The result
of doing so would, in this very simple case, have allowed us toomit the concession altogether, and we would have
ended up with something akin to a superposition refinement, but one that manipulated existing variables (as a result

16 Banach

of introducing a finer case split), rather than one that merely manipulated new variables, as is the convention. While
such an approach would have been justified in this simple example, it would not have been very generic. For more
complicated examples (even more deeply elaborated versions of this one, were we to introduce a more realist selection
of events), the connection between the ‘abstract’ and ‘concrete’ models of a retrenchment need not allow such a simple
and compact extension of the retrieve relation to the concession cases. In general, one might need something like an
enumeration of states reachable in the two incompatible system models when one examines all possible paths, and a
suitable classification of them into a relation. In general,if nothing else, this quickly becomes syntactically infeasible
as a useful description mechanism for the relationship between the models, for ‘path explosion’ reasons. For this
reason we elected to illustrate the generic treatment of these issues.

All of the above notwithstanding, thereally interesting question is the extent to which the systemCFPOTSRand its
impinging retrenchment and refinement could have been manufactured automatically by means of a square completion
procedure. An automatic square completion procedure is theembodiment of a piece of mathematics, ultimately about
a class of transition systems connected via relationships of a particular kind. One thing such an entity cannot do is
design. For example, in the context of the present case study, thereis nothing in the mathematics to preclude the
‘pot luck’ semantic model for call forwarding, in which the system, on encountering a busy destination, chooses, if
it wants to, a randomidle phone to connect the caller to. The pot luck semantics might be an appropriate design for
an ‘encounter’ service that a phone company may decide to provide for its customers, but it is inappropriate for call
forwarding. However, the distinction lies squarely in the requirements arena.

In the earlierA, B, C, D machines example, the objective of the refinement was data refinement. In such a case,
provided the retrieve relation enjoys sufficient totality and surjectivity properties, it is not unreasonable to expect
that, first mathematics, subsequently its automation, can manage the extension of the data refinement to exceptional
cases described using the concession capability of the retrenchment. However, in the present case study, thecalls
data structure is introduced in thePOTSRmachine without any relationship that connects it to the existing tonedata
structure (because it is a superposition). Therefore, the mathematics will stuggle to say anything sensible about what
should be done with thecallsdata in thefor case in theCFPOTSRsystem, since thefor case falls outside the scope of
thePots2CFPotsretrieve relation. In such a situation, the appropriate mathematical behaviour is to leave the relevant
variables unconstrained. This amounts to a maximally unconstrained design (for that part of the system), which can
can subsequently be refined by the designer in order to give voice to the design aims of that stage of the development.
In our case study, an automatic procedure would have left thesystem’s behaviour in thefor case of (the automatically
produced precursor of) theCFPOTSRsystem unconstrained, leaving it to a human to decide to resolve the maximal
nondeterminism in that part of the system by choosing a tablelookup strategy (like we had), as opposed to a pot
luck strategy, or other alternative. The same thinking guided the partition of theDial event inCFPOTSinto the two
lower level eventsDialRB andDialF . An automated system, insensitive the requirements issues, would not have had
the wisdom to decide on such a partition (at least not withoutguidance from sophisticated heuristics — the latter
possibility is not excluded). In this paper, it is envisagedthat the decision to do the partition was made by a human,
while refining the automatically produced precursor ofCFPOTSR.

8. Rodin Tool Design Issues

In Section 3 we mentioned that our formulation of retrenchment for Event-B was designed to be compatible with the
Rodin Toolset (as it is at the time of writing). In this section, we elaborate this observation, and describe some of
the details that such an integration of retrenchment into Rodin would consist of. (The actual implementation of such
details remains as work for the future.)

The Rodin toolset [Rodb] is built on top of Eclipse [Ecl], as afamily of plugins that manage the whole of the
Event-B development process. Since the source code of Rodinis in the public domain, the proposed extensions for
retrenchment become unproblematic.

The starting point for the incorporation of retrenchment into Rodin would be the introduction of the RETRENCH-
MENT syntactic construct into Rodin. Since Rodin already has extensive facilities for the incremental processing of
syntactic constructs (notably MACHINEs), this requires little more than the adaptation of the existing code. However,
since retrenchment is defined to relate top level machines, further facilities need to be provided to mechanically trans-
late a refinement machine into top level form, as observed in Section 3.3. We note though, that this procedure has a
generic description, eg. as in Chapter 11 of [Abr96], which makes the mechanisation routine in principle.

Once the RETRENCHMENT syntactic construct exists inside Rodin, the relevant proof obligations can be gener-
ated. From Section 3 it is clear that these are of a very similar form to those of refinement, so once more, the adaptation
of the existing proof obligation generator will not be excessively challenging.

Retrenchment for Event-B 17

In Rodin, most routine tasks run unprompted in the background, once their needed inputs become available via
a SAVE. The same approach will work for retrenchment. Once a RETRENCHMENT construct is saved, it can be
checked for consistency. Once it is seen to be internally consistent (i.e. it conforms to the grammar outlined in Section
3.3), it can be checked for external consistency. This starts by checking that the machines referred to exist and are
top level machines. If a needed machine doesn’t exist, an error can be flagged. If a needed machine turns out not to
be top level, the procedure for generating the equivalent top level machine can be invoked, and the system can police
the relationship between the original refinement machine and its top level generated counterpart. (For instance, user-
instigated changes to the generated top level machine can beprevented, and changes to the refinement machine can be
made to cause regeneration of the top level machine, and a re-doing of the subsequent dependent actions.) Once both
needed machines are in a satisfactory state, their internaldetails can be checked; in particular whether the variablesin
the RETRENCHMENT construct are indeed variables of the two machines in the required way, and then whether the
events related via the retrenchment’s RAMIFICATIONS indeed exist as required. Once everything is in order the proof
obligation generator can be let loose, leading to the subsequent automatic invocation of the provers which attempt to
discharge the generated POs.

The preceding constitutes basic support for retrenchment in Rodin. One can use this as a springboard for more
extensive support for the tower. However, whereas most of the activity surrounding the treatment of the basic retrench-
ment construct can be managed ‘behind the scenes’ in the goodold Rodin way just described, when it comes to the
tower, a little more active user control is probably beneficial.

Thus, in theory, Rodin could be programmed to search for ‘tower opportunities’, typically a shape as in Section
4, or a correspondingshape, whenever a new construct was saved.7 However this might result in the tool discovering
tower opportunities that were in conflict with the developer’s system architecture aims, especially when there were
many machines and relationships already commited to the Rodin system during some development. A better strategy
would be to enable the user to select three machines from the current development (that were already arranged in a
suitable shape via an existing retrenchment and refinement), and to prompt Rodin to commence tower construction.
This, and the ensuing tower-related activities described below, would be best done in a new Rodin ‘Tower Perspective’.

Assuming that we were dealing with top level machines throughout (and if not, the situation would be dealt with
as described above), Rodin would then have two tasks. Firstly, the checking of any hypotheses needed for the square
completion process to work; this amounts to simply a standard bout of proof obligation generation and subsequent
discharge. Secondly, the square completion process itself; here Rodin would assemble the new system following the
prescription contained in the requisite theorem. Optionally, the proof obligations for the refinement and retrenchment
that establish the two new edges of the completed square could be generated. Since these confirm facts proved gener-
ically in the requisite theorem, they would always be provable in principle (regardless of whether any specific prover
was up to the task in any particular instance or not).

An important feature of the tower theorems, is their encapsulation of the constructed system within a universality
class of systems, these being interconnected by relationships that invariably include inter-refinability. This enables the
replacement of the generically constructed system by one that is more obviously aligned with the application require-
ments. A Rodin user would thus create a new refinement machine(intended for the purpose), and signal its intended
role as replacement square completion to Rodin. Rodin couldthen not only create the standard proof obligations in-
trinsic to the refinement, but also the converse ones, neededfor establishing the refinement in the other direction. (Note
that this may require a mild extension of the Event-B/Rodin convention that an event may be refined by more than
one refinement event but not vice versa; since if an eventEvA is indeed refined by more than one refinement event,
EvC1 andEvC2 say, then in the converse refinement, the original eventEvA will have to refine the disjunction ofEvC1

andEvC2.) An alternative to two-way inter-refinability (the true significance of which —when considering the system
requirements— depends heavily on the nature of the retrieverelation used) is conventional one-way refinement. If the
inverse refinement is not provable, it means that some additional genuinedesign towards implementationhas been
incorporated into the refinement step. There is no reason to try to prevent this within the tool.

9. Conclusions

Event-B, like all refinement based methodologies, proceedstop-down. This means that levels of abstraction must be
complete (in terms of what use will ever be made of the variables that belong to that level) at the point that they are

7 The other two possible ‘tower opportunities’, corresponding to shapes and are of largely theoretical rather than practical interest —since
they refer to properties ofconverse retrenchments, corresponding to ‘undeveloping’ an application, which one seldom does in practice— thus they
probably do not merit the investment of effort required to incorporate them into the tool.

18 Banach

introduced.8 This insistence on the order in which things are introduced in refinement based methodologies prevents
their integration with today’s ‘Agile Methods’ and other system construction practices, which are typically much more
flexible about the order in which different pieces of the system are brought into the evolving design. Assuming that
bringing the correctness achievable using techniques likeEvent-B to such agile (and similar) methods would be a
good thing, we argued that retrenchment, with its toleration of manipulating the top level state in non-skip ways, and
of even more drastic modifications forbidden by Event-B, provided a means by which we could bridge this gap.

For the sake of being specific, we focused on the UCw approach,which tends to develop the final system via
vertical columns of functionality rather than horizontal layers of abstraction. In order to achieve this we reformulated
retrenchment in a form suitable for Event-B, and for Rodin. Retrenchment bridges the gap via theTower Pattern, a
commuting arrangement of retrenchments and refinements which can be constructed in a number of ways in order to
suit the desired system construction strategy. We illustrated the use of the ‘top down’ orientation of the tower as a
means of integrating Event-B correctness with the UCw approach, by means of a number of small case studies: simple
set manipulation, automatic train braking, and call forwarding in telephony. Some of these examples nicely illustrated
the distinction between what could be expected to be achieved by an automatic construction, and what would have to
be added, in terms of design intent, by hand, afterwards.

The same technical considerations that we have been discussing also enlarge the scope for Event-B to tackle a
wider variety of ‘real-world’ applications. For example, the fact of Event-B’s insistence that all data types are discrete,
inhibits (at minimum) its application in real-world scenarios in which the intrinsic variable types are continuous. Of
course in all such cases, the continuous variables must eventually be reduced to discrete ones in order to implement
digital controllers, but carrying out the argument to justify this replacement within a retrenchment context allows it
to make real contact with the formal development, whereas otherwise, it would have to be expelled completely from
the formal considerations. Other ways in which retrenchment might capture the ‘grey areas’ surrounding a formal
development using Event-B could be easily imagined.

On a technical level, the notion of retrenchment we introduced in Section 3.3 was the natural adaptation of the
generic formulation of retrenchment in [BPJS07a, BJP08] tothe Event-B situation. This incorporated the usual three
relations of a generic retrenchment into Event-B. In particular, it included the output relation in the PO conclusions,
even though this never got used nontrivially in any of our case studies. It would be tempting (in the context of Event-B)
to omit the output relation entirely, since Event-B insistson treating system outputs using normal state variables, thus
enabling all output considerations to be relegated to the retrieve relation.9 This certainly suffices for most applications,
including all of ours. Just occasionally though, it is desirable in a retrenchment to highlight specific before-after
properties of state variables, or to relate these to variables that are performing output roles, in situations where the
retrieve relation is maintained —i.e. tostrengthenthe retrieve relation— as for example happens in the Mondex case
study in [BPJS07b].10 In Event-B (and in general) it would be easy enough to includeall such relevant facts in the
concession, but while the ramifications of the resulting operations would encapsulate the relevant facts in a provable
way, the strengthening of the retrieve relation would not beguaranteedby the logic. For this reason, we retained the
output relation in this paper, even though we take it as read that it would be a seldom used feature.

A further interesting technical point concerns the granularity of naming of events. In Section 6 we encountered a
situation in which it was reasonable to package newly introduced behaviour into new events, for requirements reasons.
In Section 7 we had the converse situation. There, it was morenatural to include the new behaviour as a possible
outcome of an existing event, again for requirements reasons. So both approaches can be justified. The field here gets
more muddied when we consider developing beyond the pure event world, getting closer to actual code. This requires
the merging of finegrained events into pieces of sequential code (see [Abr]). The fact that retrenchment can equally
easily handle both situations: ones in which new behaviour is separately packaged, and ones in which it is included
with existing behaviour, becomes a strength in also dealingwith these later phases of development.

It would of course be desirable to mechanise the technology introduced in this paper, and in the immediately
preceding section, we delved into what the main challenges would be in terms of a Rodin implementation. For this,
as well as the obvious tool development, it would be necessary to formulate precise Event-B versions of the theorems
of [Jes05, BJ]. These would focus on the most useful cases of the tower constructions in a manner that made the
subsequent mechanisations as straightforward as possible. All of this remains as work for the future.

8 The clean state of affairs just noted gets a little blurred inconsidering thekeep events of Section 5.2, and other techniques achievable via
surreptitious modifications of the abstract machine.
9 In fact the precursor of this paper [Ban08], did develop thispossibility in detail.
10 It might be imagined when output is done via state variables,that all such considerations could be incorporated into a more elaborate retrieve
relation. However this is not the case when the considerations in question depend on thename of the event being executed. This is what happens
in [BPJS07b].

Retrenchment for Event-B 19

References

[Abr] J.-R. Abrial. Modeling in Event-B: System and Software Design. In press.
[Abr96] J.-R. Abrial.The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
[ACM05] J-R. Abrial, D. Cansell, and D. Méry. Refinement andReachability in Event-B. InZB 2005: Formal Specification and Development

in Z and B[ZB-05], pages 222–241.
[Ban] R. Banach. Model Based Refinement and the Design of Retrenchments. Submitted.
[Ban95] R. Banach. On Regularity in Software Design.Sci. Comp. Prog., 24:221–248, 1995.
[Ban08] R. Banach. UseCase-wise Development: Retrenchment for Event-B. InProc. ABZ-08, LNCS 5238, pages 167–180, 2008.
[BF05] R. Banach and S. Fraser. Retrenchment and the BToolkit. In ZB 2005: Formal Specification and Development in Z and B[ZB-05],

pages 203–221.
[BJ] R. Banach and C. Jeske. Retrenchment and Refinement Interworking: the Tower Theorems. Submitted.
[BJP08] R. Banach, C. Jeske, and M. Poppleton. Composition Mechanisms for Retrenchment.J. Log. Alg. Prog., 75:209–229, 2008.
[BJPS05] R. Banach, C. Jeske, M. Poppleton, and S. Stepney. Retrenching the Purse: Finite Exception Logs, and Validating the Small. InProc.

IEEE/NASA SEW30-06, pages 234–245, 2005.
[BJPS06] R. Banach, C. Jeske, M. Poppleton, and S. Stepney. Retrenching the Purse: Hashing Injective CLEAR Codes, and Security Properties.

In Proc. IEEE ISOLA-06, pages 82–90, 2006.
[BP98] R. Banach and M. Poppleton. Retrenchment: An Engineering Variation on Refinement. In D. Bert, editor,2nd International B

Conference, volume 1393 ofLNCS, pages 129–147, Montpellier, France, April 1998. Springer.
[BPJS] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Retrenchment and Promotion in Z. Submitted.
[BPJS05] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Retrenching the Purse: Finite Sequence Numbers, and the Tower Pattern. In

Proc. FM-05, LNCS 3582, pages 382–398, 2005.
[BPJS07a] R. Banach, M. Poppleton, C. Jeske, and S. Stepney.Engineering and Theoretical Underpinnings of Retrenchment. Sci. Comp. Prog.,

67:301–329, 2007.
[BPJS07b] R. Banach, M. Poppleton, C. Jeske, and S. Stepney.Retrenching the Purse: The Balance Enquiry Quandary, and Generalised and

(1,1) Forward Refinements.Fund. Inf., 77:29–69, 2007.
[BS96] R.J.R. Back and K. Sere. Superposition refinement of reactive systems.Formal Aspects of Computing, 8(3):324–346, 1996.
[Ecl] Eclipse. The Eclipse Project.http://www.eclipse.org/.
[FB07] S. Fraser and R. Banach. Configurable Proof Obligations in the Frog Toolkit. InProc. Fifth IEEE International Conference on

Software Engineering and Formal Methods, IEEE Computer Society Press, pages 361–370. IEEE, 2007.
[Fra08] Fraser, S.Mechanized Support for Retrenchment. PhD thesis, School of Computer Science, University of Manchester, 2008.
[Jes05] C. Jeske.Algebraic Integration of Retrenchment and Refinement. PhD thesis, University of Manchester, 2005.
[Kat93] S. Katz. A superimposition control construct for distributed systems.ACM TPLAN, 15(2):337–356, April 1993.
[Roda] Rodin. European project rodin (rigorous open development for complex systems) ist-511599http://rodin.cs.ncl.ac.uk/.
[Rodb] Rodin. The Rodin Platform.http://sourceforge.net/projects/rodin-b-sharp/.
[SCW00] S. Stepney, D. Cooper, and J. Woodcock. An Electronic Purse: Specification, Refinement and Proof. Technical Report PRG-126,

Oxford University Computing Laboratory, 2000.
[ZB-05] Proc. ZB-05, volume 3455 ofLNCS. Springer, 2005.

