Under consideration for publication in Formal Aspects ohuiting

Retrenchment for Event-B: UseCase-wise
Development and Rodin Integration

Richard Banach

1School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
banach@s. nan. ac. uk

Abstract. UseCase-wise Development, an ‘Agile Method’ which introglsi functionality into an application stage
by stage, with each stage being carried through (ideallijhfdementation before the next is considered, is examined
with a view to its being treated via an Event-B methodolodye heed to modify top level behaviour in a nskip

way precludes its naive treatment via Event-B refinememt paves the way for the use of retrenchmentin an Event-B
context. An Event-B formulation of retrenchment alignedhe practicalities of the Rodin toolset is described. The
details of refinement/retrenchment interworking needduatadle UseCase-wise development are outlined, and three
small case studies are discussed. The details of the ititagd the retrenchment proposal into Rodin are outlined.

Keywords: Event-B, UseCase-wise Development, Incremental DevedoprRefinement, Retrenchment, Tower Pat-
tern, Rodin Toolset.

1. Introduction

One of the notable things about the move from traditional Br%6] to the more recent Event-B [Abr,Roda], is the way
that the re-engineered refinement theory of Event-B has gethd encompass many ‘low hanging fruit’ issues, for
the handling of which, retrenchment has been advanced ie numventional refinement frameworks in the past. One
can mention: the introduction of new events at successiveldpment levels (within certain restrictions); the emgiba
on guards (rather than preconditions) and their strengtbeturing refinement; the migration of information between
I/0 variables and state variables (since in Event-B thegeiterally no separate category of 1/O variables to worry
about); and so on. All of this is beneficial, in bringing susbues under more rigorous control than when using other
development techniques (or indeed when using retrenchment

Nevertheless, because in Event-B (as in every other rigamefinement framework), the development strategy and
the notion of correctness is fixedb initio —and yet the world is richly and subtly structured— it is abhimevitable
that sooner or later an application scenario will arise imlihe demands of Event-B will prove to be a less than ideal
fit. Itis to help accomodate situations like these that rethenent was originally conceived, so it is natural to askiwha
retrenchment amounts to in the Event-B context, and howdliems of Event-B refinement and Event-B retrenchment

Correspondence and offprint requestsRichard Banach, School of Computer Science, Universitylafichester, Oxford Road, Manchester, M13
9PL, U.K. email:banach@s. man. ac. uk

2 Banach

would interact. Fortunately, since the original introdantof retrenchment [BP98], we have accumulated a good deal
of experience and evidence on which to base the answer (sfgRI507a)).

In this paper we examine retrenchment in the Event-B congxtooking at a couple of case studies developed
using a UseCase-wise development methodology. UseCasedevelopment is our name for a development strategy
in which increments of functionality are added in stage#hWie introduction of each resulting in a usable applicatio
before the nextis considered. Such an approach is at odialsheitnore traditional waterfall model with which typical
formal development approaches are frequently aligned. ide the exploration of alternative development strategies
from the formal perspective as a good thing, since it imps@lggnment with human intuition. In this instance, it also
motivates the formulation of retrenchment for Event-B, agtion which is of independent interest in any case.

The rest of this paper is as follows. In Section 2 we describeQase-wise development, contrasting it with
conventional Event-B development. Section 3 briefly regi®&vent-B and discusses the details of retrenchment for
Event-B. In Section 4 we cover retrenchment/refinementwiadeking and theTower Pattern The preceding ingredi-
ents are then applied to a small case study in Section 5 —ak#s study also provides a good vehicle for comparison
with the anticipating event technique of [ACMO05]. Sectiomi§cusses a case study based on trains, and Section 7
considers a small telephony case study. All of these showod §jb between the UseCase-wise approach and the
Event-B notion of correctness when retrenchment is avail&kection 8 examines the issue of incorporating Rodin
tool support for retrenchment and the tower in some detadtiSn 9 concludes.

2. UseCase-wise Development

In Event-B there is a strong emphasis on getting the req@ingscorrect (or as near correct as is achievable) at the
outset. One then analyses the requirements and deterrhimesdst appropriate order in which to take them into
account within a sequence of refinements. The refinementsstifiees, mix the accretion of requirements issues as
identified during requirements analysis, with data refineisieas appropriate. As the models get more detailed, sound
decomposition techniques are available to split models @omponents, allowing further refinements to be done
independently. This TopDown (TD) approach, proceeding deés in an essentially linear manner, shows that the
Event-B approach can be viewed as a formal interpretati@nfaily traditional waterfall strategy.

By UseCase-wise (UCw) development, we mean an approacistensydevelopment that proceeds by taking one
or more of the UseCases identified during requirements aisalgnd completes the development of those first, from
the abstract models down to implementation, giving a ussyde=m (with limited functionality). Subsequently furthe
UseCases are incorporated, with all the elements of thda@mwent getting suitably enhanced, and yielding another
working system, this time with greater functionality. Th@gess is repeated until all the UseCases identified during
requirements analysis have been developed, yielding amysith all the functionality desired. UCw development
can be seen as a member of the ‘Agile Methods’ family of systemelopment techniqués.

Fig. 1 illustrates the TD versus UCw distinction. On the Veft see a development proceeding TD in layers, while
on the right, we see additional slices of functionality lgegmided UCw to an initially developed system. It is important
to realise that the TD vs. UCw distinction refers to thenamicsof the process by which the system is built. Even
though a system may be built using a UCw process, one whialpercially unsympathetic to Event-B perspectives,
there is no reason why the end result should not be a colfeafimodels which enjoy the levels of mutual consistency
characteristic of Event-B. Thus, even though one mightetbat introducing a UCw approach into Event-B would
be a retrograde step for Event-B, it is hard to dispute thaddtucing Event-B'’s criteria for correctness into the UCw
approach would be a positive step for UCw development. TégsIbhe question of how one mightincorporate Event-B
correctness into the UCw process. This will be dealt withécti®n 4.

3. Event-B Machines, Refinement and Retrenchment for Even

In this section, we review Event-B machines, refinements against this background, we formulate retrenchmentin
a way that will permit the smoothest possible cooperatidween the two techniques.

1 We coined the term ‘UseCase-wise development’ in this papery to avoid confusion. It is enough to cast a glance atssitech as
http://en.wikipedia.org/wiki/Agile_software_development and the acronym blizzard one finds there, with the same teundaifferent mean-
ings in different settings, to realise what dangers lurkhim ¢asual use of terms invented in this field. What we call dse@vise development is
also called ‘incremental development’ in other places,tbat term is so laden with possibilities for misinterprietat that we thought it safest to
invent a fresh name, inevitably causing yet more termiriokdgroliferation.

Retrenchment for Event-B 3

Fig. 1. lllustrating TopDown versus UseCase-wise developmeategjies.

3.1. Event-B Machines

In a nutshell, an Event-B MACHINE hasmme it SEES one or morstatic contextsand it owns some VARIABLES;
these are allowed to be updated via EVENTS, but are requiratiMays satisfy the INVARIANTS. The events can
declare their owrparametergwhich are bound variables acting as carriers of input \&lue and each event has
one or moreguards and one or moractionswhich are specified vibefore-after predicategor notations such as
assignment for simpler cases). Among the events therelNIahALISATION whose guard must Heue.

The semantics of Event-B machines and of the refinemenfiae#itip between machines, is expressed via a
number of proof obligations (POs). These must be provabteder for the machine or refinement in question to be
well defined. We quote the main ones of interest to us, meiniipthe others more briefly. See [Abr, Roda] for full
details.

For a machiné\ to be well defined thaitialisation andcorrectnes$0s must hold:

Inita(u') = (W) (1)
[(u) A Ggy, (i, u) A Eva(u,i,u’) = 1(U) (2)

In (1), Inita is the initialisation event and (1) says that the vallef A's state variablel established bynit, satisfies
A's invariantl. Likewise, (2) says that for an eveat, of A, if A's invariantl (u), andEva’s guardGey, (i, u), both hold

in the before-state of the event, aBdy’s before-after relatiofieva(u, i, Uu") also holds, then the after-state will satisfy
the invariant once more. In (1) and (2) we have suppressed mention of théglet the static contexts seen Bybut
we have singled oUuEva’s input variables for later convenience. For closer conformance to [Abr, Redahave not
mentioned any output variables, though it would be triwdahiclude them in the before-after relati&ma(u, i, u’) and

in (2). Aside from (1) and (2), Event-B machines must satfeBsibility POs for the initialisation and for all events,
and also aleadlock freedorRO for non-terminating systems; see [Abr, Roda].

3.2. Event-B Refinement

Suppose that as well as machifsyewe have another machii@ with state variablev, input variablek, initialisation
eventlnitc, and typical evenEvc, with guardGg,. (k, w) and before-after relatioBvc(w, k, w). If C is a refinement

of A, its invariantk (u, w) will be a relation over botlu andw, this reflecting the fact that in the B-Method generally,
the view is emphasised that a refinement is seen as (and éfdhesyntactically described as), an enhancement of the
abstraction towards implementation, rather than as arpert#ent entity. The counterparts of (1) and (2) become:

Inite(W) = (3U' o Inita(U’) A KU, W) 3)
(u) A K(u,w) A Ggy (K, W) A Eve(w, k, W)
= (Ji,U" e Ggy,(i,u) A Eva(u,i,u’) A K(U',w)) 4)

whereE\¢ is an event that is supposed to refibg and we have amalgamated thgard strengtheningndcorrectness
POs in (4) for later convenience.

In (3), eachlnitc(w') intialisation must be witnessed by sormét,(u’) intialisation that establishes the joint in-
variantJ(u',w’). Likewise, (4) says that when both invariants hold, eBeb(w, k, w') event is witnessed by some
Eva(u,i, ") event that re-establishes the joint invariant. Aside fr@nand (4) there are aldeasibility POs for the
initialisation and for all eventsjariant decreas@Os for ‘new’C events not declared to be refinements of any event
of A, and also an overatélative deadlock freedofO. See [Abr, Roda] for full details.

We give a small example of Event-B refinement. It builds aaled graph from a finite universe of possible nodes
contained in a séXSetheld in a contexNCtx

MachineNodesbelow, is concerned with the requirement of assigning naddke graph, picking them out of
the setNSetusing the evenfddNode starting with the empty set. Machiglgesrefines Nodes, and addresses the

4 Banach

requirement of having edges between some of the graph nbdggical Event-B fashion, it simply accumulates
the new model elements, leaving the preceding ones unctlaBg&dgesjust containdNodesin its body. The new
requirementis handled by adding a new variadzlgand a new everAddEdgeAddEdgeacts likeskip on the existing
variablenod, as required for such ‘new’ events. Also sigdEdgeloes not refine any existing event (unlkedNode
which refines itself and is thus ‘ordinary’), it must be ‘cengent’, which means that each invocationAafdEdge
decreases thi¥-valued VARIANT cardNSetx NSet— edg), ensuring relative deadlock freedom. (We suppress the
WHICH IS clauses below.)

MACHINE Nodes MACHINE Edges
SEES NCtx REFINES Nodes
VARIABLES nod SEES NCtx
INVARIANTS VARIABLES nod, edg
invl : nod € P(NSe} INVARIANTS
EVENTS invl : nod € P(NSej}
INITIALISATION inv2 : edge P(NSetx NSe}
WHICH IS ordinary EVENTS
BEGIN actl : nod:= & END INITIALISATION
AddNode WHICH IS ordinary
WHICH IS ordinary BEGIN actl : nod:= @& END
ANY n AddNode
WHERE n € NSet— nod WHICH IS ordinary
THEN nod:= nodU {n} REFINES AddNode
END ANY n
END WHERE n € NSet— nod
THEN nod := nodU {n}
END
AddEdge
WHICH IS convergent
ANY n,m
WHERE n +— m € NSetx NSet— edg
THEN edg:= edgU {n — m}
END
VARIANT card(NSetx NSet— edg)
END

3.3. Retrenchment for Event-B

We now formulate retrenchment for Event-B against the mtiegebackground. The objective of retrenchment is to
offer a flexible relationship between machines or systemeatsoithat can capture situations in which all the detailed
criteria of some species of refinement cannot be met, butedinertwo models in question are deemed nevertheless
(and especially by domain experts rather than refinemertiasts) to belong to the same development activity.
The focus of retrenchment is on a simulation-like criteriaiith the added aim of convenient interworking with
refinement. Retrenchment is therefore formulated as a nsatidn of the main POs of the refinement notion, with the
incorporation of suitable additional predicates to enleaxpressivity.

For the specific context of Event-B, retrenchment s a retestip that is to hold between top level machines. When
a retrenchment involving a refinement machine is neededyust quantify away the dependence on the higher level
abstractions to get a self-contained top level machinegyusia technique described in Chapter 11 of [Abr96].

Unlike refinementin Event-B, in which the refinement dataéesially just the joint invariant and some bookkeep-
ing details, as in our example) are incorporated into théssyof the refining machine, retrenchmentis an independent
syntactic construct, as befits the weaker relationship @etvmachines that it expresses, and especially, the deaire t
none of the details of retrenchment interfere in any way itk refinement that any machine involved in a retrench-
ment might also be involved in. Notationally this departsnfrthe scheme in [BP98] and agrees with the line taken
in [BFO5, FBO7, Fra08].

Suppose we have top level machide@having the elements mentioned earlier) 8)dndB'’s state and input vari-
ables are, j, the invariantis)(v) and the other pieces can be imagined. Here is a schemataxdpnthe retrenchment
construct, intended as a good fit for Event-B as currentlyiémented in the Rodin toolset [Rodb]:

2 Thus the modification of the relevant refinement POs conetitthe sense in which trgmulation-like criterionis intended; suitable pairs of
transitions in the two models should satisfy an appropgeteeralisation of (4).

Retrenchment for Event-B 5

RETRENCHMENT Identifier Rej g
FROM Identifier A TO Identifier B
[SEES IdentifierList]
[RETRIEVES Predicate R(u, V)]
[EVENTS
[RAMIFICATIONS Identifier Eva [TO Identifier Evi]
[WITHIN Predicate Wey, v (i, j, U, V)]
[OUTPUT Predicate Ogy, v (W, V,i,j,u,V)]
[CONCEDES Predicate Cgy, gy (U, V,1,],U,V)]
END
1+
]
END

The construct has a nanieh g, and is FROM machiné TO machineB. It can SEE static contexts as can a
machine or refinement. There is a RETRIEVES relafjn, v) between the two state spaces, and for each pair of
retrenchment-related eventsArandB, eg.Eva andEvs (where one can omit mentionirigys if it has the same name
asEwa), there are the RAMIFICATIONS, consisting of the WITHIN agbnWey, e (i,], U, v), the OUTPUT relation
Orv,ews (U, V', i,]j, u,v) and the CONCEDES relatioBgy, ey, (U, V', i,], U, V).

The semantics of retrenchment is given by its POs. These are:

Initg(V) = (3U' e Inita(U') A R, W) ()
L(u) A R(U, V) A J(V) A Wy, (1], U, V) A EVg(V,], V)
= (Fi,u e Eva(u,i,u) A ((R(U,V) A Ogyew (U, V,i,j,u,V)) V Ceyew (U, V,i,j,u,V))) (6)

where there is an instance of (6) for each ramificationsgedlpairEva andEvs. We see that the intialisation PO is
standard, while the correctness PO permits considerabiataa from refinement-like behaviour by virtue of the
presence of the within, output and concedes relations.ditiad to the above, we demand for ede¥p /Evs pair that:

WEVAEVB(i7j7 U,V) = GEVA(i7 U) A GEVB(j7V) (7)

which is called the tower compatibility criterion, and whiensures that retrenchment only engages with well defined
transitions, and thereby interworks smoothly with refinatniote however, that the other POs of Event-B refinement,
i.e. variant decrease and relative deadlock freedom, dbana counterparts in retrenchment. We want to be able to
relate machines with significantly different behaviour egards these aspects, if the requirements arena creates the
perception that it is desirable to do so.

Although this is not an appropriate place to examine in dépgharguments regarding why the above design is
a good one for retrenchment, we can summarise the main iasuesiows. Firstly, the aim of a notion thdeparts
from refinement odesires to accommodate inability to satisffinement, must amount to a weakening of refinement
— there is clearly no point in doing the opposite. The propasahave given above does this, since the occurrences
of Wev,ew (i,], U, V) in the hypotheses, and @y, ey (U, V', i,], U,V) andCey,ew (U, V', 1,],U,V), in the conclusions
respectively, of (6), clearly weaken (4). Secondly, we wéhig weakening to be as general as possible so as not to
have to invent a different notion of non-refinement for evempceivable departure from refinement that might arise.
Again, (6) achieves this sin0&%ky, ev (i,], U, V), Oey,evw (U, V', 1,], U, v) andCgy, gy, (U, V', 1,], U, V) must be specified
on a per-event-pair basis. Thirdly, we would want the departrom refinement to be quantified in some way. Again,
(6) achieves this, at least indirectly, Sinfd&, ey (i,], U, V), Ogy,ew (U, V,1,], U, V) and Cey, ey (U, V', i,], U, v) must
actually be specified by the user in each particular casetmehment — in doing this the precise details of how
refinement fails to hold is made clear by the user in the detdithese (otherwise unconstrained) relations. Lastly,
we would want good interworking with refinement. This im@orttopic, which ensures that retrenchment can add to
rather than detract from what can be done with refinemertigistibject of the next section. See [BPJS07a] for more
extensive discussion of generalities such as these cdngaetrenchment.

4. Retrenchment and Event-B Interworking: the Tower Pattem

A definite sine qua norof retrenchment is that the use of retrenchment should rait 8 rigour achievable via
refinement. The best results are obtained when the two reotionk closely together, with retrenchment being used
to connect together otherwise incompatible refinemenhd#:alhe more tightly such different refinement strands are
coupled via retrenchment, the more restraint is exercisedretrenchment’s otherwise extreme permissiveness.

6 Banach

RetA’B

A ———8B
Refy ¢ l lRefB,D ‘ |:
C —=D

ReZC’D

L L L
1
A1

Fig. 2. The basic structure for the Tower Pattern on the left, andenight, its use in constructing a UCw development whoseamme enjoys the
rigour of an Event-B development.

The paradigmatic arrangement of retrenchments and refimsnteat achieves both the tight coupling that restricts
retrenchment and the non-interference with the rigour fiieenent, is théfower Patternan epithet that summarises
a host of square completion and factorisation results tlegieviirst studied thoroughly in Jeske’s thesis [Jes05], and
which were more recently reformulated, revised and geiseidin [BJ]. The left hand side of Fig. 2 shows a square
of retrenchments and refinements among four system méd@&sC, D, with the retrenchments horizontal and the
refinements vertical (and the data that characterises tetsmchments and refinements implicit). In [Jes05], the
square commutes ‘on the nose’ in that the two paths roundghars fromA to D (given by composing thé to B
retrenchment with th& to D refinement on the one hand, and on the other, by composiigtin€ refinement with
the C to D retrenchment) yield the same retrenchment féde D. In [BJ] this is relaxed a little, and in the general
case, the two paths each describe a portion of a larger obtmeent fromA to D. Either way, the results of [Jes05, BJ]
show that whenever you start with two adjacent sides of suszfuare, the square can be completed by building the
missing system model and its impinging retrenchment andew®fent out of the existing elements in a canonical way,
and that the result is indeed a square that commutes in the@gte manner — the case studies in Sections 5-7
are concerned with explicit examples of such constructiBnsh squares are the fundamental building blocks of the
tower, which itself is just an arrangement of such squaresarsuitable grid pattern as suits the development at hand.

The tower construction has by now had substantial vindicatin the formal development of the Mondex Elec-
tronic Purse [SCWO00], there were a number of requiremeatesthat were handled less than ideally in the formal
modelling. These have all been handled convincingly vieersthment, mostly using the tower [BPJS05, BJPSO05,
BJPSO06].

Although [Jes05] was done in the context of Z refinement tedlly serve the needs of the Mondex work, the
approach advocated in Section 3, discussed more widelyRd$B7a], and explored in detail in [Ban], ensures that
there is a wide commonality between retrenchment formanatfor different variants of refinement. This commonality
is also behind the reformulated and generalised approa@JpfThe insistence that retrenchment is confined to the
initialisation and correctness POs helps here, since nutigins of refinement have initialisation and correctness PO
that are either identical to, or extremely close to, (5) &)dIf particular, this applies to Event-B and Z refinements.
So, since the composition of refinements and retrenchmerisfined via their initialisation and correctness POs,
these compositions (which yield retrenchments), will benitically defined for both Z and Event-B. See [BJP08].

For our purposes, we need a suitable analogue of the Posti@iarem from [Jes05, BJ], which states that if we
have three system&, B, C, as in Fig. 2, the square can be completed in a canonical wiyanvsystenD, and a
connecting retrenchmeRet p and refinemenReg p, so that the two retrenchment+refinement compositionsdoun
it are equal (for [Jes05]) or compatible (for [BJ]).

Direct application of the Postjoin Theorem from [JesO5]ngpeded by two things: (a) its ferocious technical
complexity; (b) its detailed Z dependence as regards ‘raynectness’ POs (i.e. the POs that in Z replace guard
strengthening and relative deadlock freedom). The stoais regards the Postjoin Theorem from [BJ] is consider-
ably more pleasant: there, the complexities are confineetaild of the characterisation of universality of the main
construction, which is itself relatively straightforwafebrtunately, in the context of a simple and natural exarriple
which the constituents are well behaved to start with, mbgteocomplexity simplifies drastically, and a situationttha
is ‘obviously sensible’ emerges. Further discussion o$é¢hgoints is best given in the context of an example, so we
pick up this thread again near the end of Section 5.

What does any of this have to do with reconciling the TD and WsEnategies? Well, a single step of the UCw
strategy takes the pre-existing development, and incatpsra new UseCase of functionality. We can imagine that
the pre-existing development has been captured within aeseg of Event-B refinements, starting with the most

Retrenchment for Event-B 7

abstract formulation of the pre-existing functionalitydedescending into more concrete levels of descriptiornges
aggregating additional events into the description as wergthe usual Event-B way. We can represent this pre-
existing development by the thick vertical line in the migldf Fig. 2.

The incorporation of the new functionality may well requite introduction of new events at the top level, a
reworking of the top level invariant, reworked top level gig and so on. As such it will not generally fit into the
preceding refinement sequence, not least because the néswébfunctionality will usually not manipulate the top
level state in askip-like fashion. (These of course are the crucial reasons wigyaannot, in general, capture such
increments of functionality using Event-B refinements.Wedwer, the new functionality can be related to the existing
development via a retrenchment.

(We can say the latter with confidence since we show in [BPdBiatany two system models can be related
via a retrenchment, the potential vacuousness of suchearstat being alleviated by the observation that the various
relations that comprise a retrenchment helguantifythe difference between the models, as noted above. In a well-
controlled situation, such as the introduction of new fiorality, the difference between the two models will not be
capriciously arbitrary (despite not necessarily conforgrto Event-B refinement desiderata), and so the retrendhmen
between them will, in fact, be able to say quite a lot.)

Depicting the retrenchment from previous top level modeidw top level model horizontally, we arrive at e
shape given by the solid part of the next piece of Fig. 2.

Now the tower construction can take over, and complete asseguof refinements from the new top level via the
requisite sequence of postjoin square completions, wgrtownwards, as illustrated in the next part of Fig. 2. The
new bottom level will be at the right level of abstraction trrespond with the pre-existing bottom level model. Thus
one bout of UseCase introduction has been achieved via ter.t§uccessive bouts follow the same route. In each
case we draw up the retrenchment that takes us to the newvepriedel, and allow the tower to do the rest. Finally,
the right hand column of the last bout yields a pristine Ex@dievelopment of the full functionality, shown as an even
thicker line on the right of Fig. 2.

5. A Simple Case Study

We tackle a toy distributed allocation problem. It is cadraut in the way done here only for purposes of illustrating
our techniques in detail (regarding which, see Section m2pality, one would only apply the machinery discussed
in this paper to significantly more substantial examples.

Resources, modelled as elements of a set, are to be alldcatisdrs. At the most abstract level, there is a large
(potentially infinite) setASet whose elements are to be allocated, and at a low level trepiaced by a much smaller
finite subseDSet Also, at low enough levels of abstractigkGetandDSetare statically partitioned intASet , ASep
andDSet, DSe® respectively, wittDSetl a subset oASel andDSeP a subset oASe2, ready for allocation to two
individual agents. These static facts are captured in theegtoCtx:

CONTEXT Citx
SETS GSet
CONSTANTS ASet DSet ASel, ASep, DSetl, DSeR, a
AXIOMS
axml : ASetC GSetA ASel C GSetA ASeR C GSet
axn? : DSetC GSetA DSett C GSetA DSeR C GSet
axnmB : ASel U ASep = ASet
axmi : ASel NASeR = &
axnmb : DSetC ASet
axnd : DSett = DSetn ASel
axni : DSeR = DSetn ASep
axns : a € ASet
END

5.1. Four Machines

Below are four machine#, B, C, D, deliberately arranged as in Fig. 2. The left hand columatgrenly one UseCase,
that of allocation. Machind, the most abstract one, simply models the allocation of ameht fromASetto the
variablex at the global level. Machin& is refined to machin€, in which two agents can allocate from their statically

8 Banach

assigned partitions, with each agent allocating to his caviablex1 or x2 repectively, and where each agent allocation
refines the global allocation event.

The right hand column introduces the deallocation UseQdaehineB is like machineA, except that (aside from
variable renaming for clarity) it has @ubElevent as well as aAddElone. MachineB is refined to machin®. In
machineD, the allocation and deallocation events are refined intio #yent-wise counterparts (the ones for agent 2
being just like the ones for agent 1, and so are suppressesdémspace). Also machirizintroduces the use @Set
and its partition intdSet , DSe?.

MACHINE A
SEES Citx
VARIABLES x
INVARIANTS invl : x € P(ASe}
EVENTS
INITIALISATION
BEGIN actl : x := & END
AddEI
ANY el
WHERE grd1 : el € ASet— x
THEN actl : x := xU {el}
END
END

MACHINE B
SEES Ctx
VARIABLES y
INVARIANTS invl : y € P(ASe}
EVENTS
INITIALISATION
BEGIN actl : y:= & END
AddEI
ANY el
WHERE grd1 : el € ASet—y
THEN actl : y:=yU {el}
END
SubEl
ANY el
WHERE grdl : y # &
grd2:eley
THEN actl : y:=y— {el}
END
END

MACHINE C
REFINES A
SEES Citx
VARIABLES x1, x2
INVARIANTS invl : x1 € P(ASetl)
inv2 : x2 € P(ASep)
inv3 : x = x1 U X2
EVENTS
INITIALISATION
BEGIN actl : x1 := &
ac2 : x2 : =g
END
AddEL
REFINES AddEI
ANY el
WHERE grd1 : el € ASel — x1
THEN actl : x1 := x1 U {el}
END
AddER
REFINES AddEI
ANY el
WHERE grd1 : el € ASel — x2
THEN actl : x2 :=x2 U {el}
END
END

MACHINE D
REFINES B
SEES Citx
VARIABLES y1,y2
INVARIANTS invl : y1 € P(DSetl)
inv2 : y2 € P(DSeR)
inv3 :y=yluUy2
EVENTS
INITIALISATION
BEGIN actl : yl := &
ac2 1 y2 := o
END
AddEN
REFINES AddEI
ANY el
WHERE grd1 : el € DSetl —y1
THEN actl : y1 :=yl U {el}
END
AddER
SubEL
REFINES SubEl
ANY el
WHERE grd1 : yl # &
grd2 : el eyl
THEN actl : y1 :=yl — {el}

END

Let us consider the relationships between these varioufimezs: TheA to C refinement is a normal Event-B
refinement, as is thB to D refinement. However there is a difference between the twthdw to C refinement, the
static setASetstays the same, whereas in Bi¢o D refinement, we are able to replag8etby DSet The reason we
are able to do this in the case of tB¢o D refinement but not tha to C refinement is connected with the details of the
Event-B refinement POs. One of these, the relative deadteeklbm PO, demands that the disjunction of the guards

Retrenchment for Event-B 9

of all the abstract events implies the disjunction of therde®f all the concrete ones. Consider then the state in which
all DSetelements have been allocated. If we uksktinstead ofASetin machineC, then, whereas the machide
AddEls guard would berue (since there are plenty of elements leftiBet— DSe) the disjunction of the machirn@
AddEIl andAddER guards would béalse (since by definition(DSetl — x1) U (DSeR — x2) is empty in this state).

So the disjunction of the abstract guards would not implydisgunction of the concrete ones, and the refinement
would fail. The same is not true of thito D refinement. There, when all tiZSetelements have been allocated, the
disjunction of the abstract guardsise as before, but now, at the concrete level, even thaAdgEl andAddER are
disabled as in maching, we have the&SubEl andSubE® events enabled, so the disjunction of the concrete guards is
true as well, and the refinement succeéds.

The relationship from maching to machineB cannot be an Event-B refinement since macHdiseSubElevent
manipulates the machifestate in a norskip manner (and furthermore, the relationship cannot be a cse/ent-B
refinement since then machiB&s SubElevent would not be refined by anything). To capture this i@taship we need
retrenchment, and the trivial retrenchm&et g that follows will do#

WITHIN wthl : true
OUTPUT outl : true
CONCEDESconl : false
END

END

RETRENCHMENT Reh g RETRENCHMENT Ret p

FROM A TO B FROM C TO D

SEES Citx SEES Citx

RETRIEVESTretl : x =y RETRIEVES retl : x1 =yl

EVENTS ret2 : x2 =y2
RAMIFICATIONS AddEl EVENTS

RAMIFICATIONS AddELN
WITHIN wthl : true
OUTPUT outl : true
CONCEDEScon! : false
END

RAMIFICATIONS AddER

END

AlongsideRel g, we haveRet p, the retrenchment required to relate machin® machineD. Note that neither
retrenchment needs to say anything about the initialisai@nts, since they are required to work just as in refinement
Ret p looks just as trivial aikeh g but in fact it is less so. In the Rodin toolset, there is a catiea that when one
event refines another, any parameters that are identicathed in the two events are in fact equal, and the relevant
equalities are automatically factored in to the automategoning. We have availed ourselves of a similar convention
for retrenchments, and it applies in b&eh g andRet p. In Reh g this has little impact, since the only place where it
applies (the parameters of the machinand machin® AddElevents), the assumptions pertaining to the two events’
parameters are identical. Ret p however, the same situation is less trivial, since mac@iiseAddEl el is selected
from ASetwhile machineD’s AddEL el is selected fronDSet If we temporarily rename the parameters in these two
events by adding subscripts, the real within relation betwideAddEll events inRet p becomes:

elc = elp A elc € ASetA elp € DSet (8)

which enforces an additional constraint elg. So, despite appearances, the within relatioAddEN has some real
work to do. (Note that a similar thing is silently accompéshin the course of thB to D refinement. And if we had
taken name identity even further, and avoided renamingfi@@variablesx, X1, x2, to theB/D variablesy, y1, y2, we
could have simplifieReh g andRet p even more by trivialising the retrieve relations.)

5.2. Retrenchments and Anticipating Events

The tiny case study just discussed had one telling featamety that due to the simplicity of the case study, the
events related by th&to B retrenchment and the events related byGtte D retrenchment in each case preserved the
retrieve relation. This simplicity was itself a consequeentthe desire to keep the example small enough so that all of
its ingredients, including four machines and four relagioips between machines, could be described in detail wathin

3 The success can be attributed to the fact that we are usingehgrelative deadlock freedom PO rather than the strong one[Reea],
Deliverable D3). The strong version demands thatdfachabstract event, its guard implies the disjunction of theesponding concrete guard
with all the ‘new event’ guards. Such a PO would fail here rawhstance that could be overcome with a more extensivefustrenchment.

4 One could introduce syntax to deal with such trivial evetrerechments more succinctly.

10 Banach

reasonable amount of space. When corresponding eventstéachment preserve the retrieve relation, an altemativ
technique is sometimes available for tackling the develapirstep. It may be possible to use the anticipating events
of [ACMO5].

In this technique, the events that would be related by retmerent between abstract and concrete models in our
approach, are of course related by the refinement subseabfdtrenchment. New events, those that modify the
abstract variables in a manner that is incompatible witimdpai refinement o$kip, are introduced in the concrete
machine as if theylid refine an implicit abstract event, but this time noskdp event, instead a differentkeep’
event. In utilising &eep event, the top model (machirdein our case study), is modified by the inclusion of an event
(calledKeep say), whose only job is to preserve the invariants. In othemd in thekeep event, the variables are
nondeterministically assigned to any values that makerthariants true. The new events in the concrete machine
are now free to modify the variables inherited from the axdtmachine in whatever manner they wish, while still
conforming to the demands of a refinement, since any beharéfines maximally nondeterministic assignment.

In the context of our case study, macheould implictly acquire an ever{eep, which had a trivial guard, and
whose action was :c P(ASej. Itis clear that once machirfehas such an event, then ev&ubElin machineB is a
refinement of it, and one can even very easily posit a vareamtdardy)) that is decreased by it.

While the use of thé&keep (or anticipating) event can undoubtedly handle some of tbeenbenign situations
catered for by retrenchment, there are a number of signtfatiferences.

1. New events introduced via this mechanism still have toebse a variant, to conform to Event-B’s other refinement
demands. This may not be appropriate for all modificatiors $ystem that one might contemplate performing,
and retrenchment makes no such demand.

2. Likewise, the new events’ guards also have to conformg¢a#mands on guards pertaining to Event-B refinement.
They thus have to co-operate with the other guards to ensumel gtrengthening and relative deadlock freedom.
Retrenchment makes no such demands.

3. The introduction of th&eep event into the abstract machine alters the problem solvethéymachine. The
original machine solved a problem that one could phrasesastrability under the (original) collection of events'.
The same machine modified by the introduction of kkep event, whose action is maximally nhondeterministic
assignment while maintaining the invariants, solves a lpralthat one could phrase as ‘reachability under the
(original) invariants’. Since there is no requirement ireBi#B that all states characterised by the invariants have
to be reachable via (some sequence of) the events, the fprot@dem defines a stronger reachability problem than
the latter. Thus, unlike the implicit introduction ofskip event, which obviously does not alter the reachability
problem solved by the machine, the implicit introductioraddeep eventdoesalter the reachability problem, and
thus constitutes a nontrivial modification of the top levelahine.

In contrast to the points just noted, one of the most promtiagns of retrenchment is toot require any change
in the machine being retrenched (i.e. the machine that flaysole of the abstract model). If one is prepared to
change the abstract machine sufficiently, then of courseymmemme transformations become capable of being viewed
as refinements than before. Ultimately, the refinement quinitgelf can become blurred due to the many implicit
things that might be being imposed on the abstract modehdiits use.

5.3. A, B, C, D and the Tower

We return to the discussion of our simple case study. Masl#inB, C, D, (and the various retrenchments and refine-
ments that relate them), form a candidate instance of thgdfo3heorem. It is time to pick up the discussion left
over from Section 4 regarding this. In fact, due to the totadf the retrieve relations (for both the retrenchments and
the refinements), the square actually commutes ‘on the @eskr as the various retrenchments and refinements are
concerned, so the differences in approach between [Jes@9Bd] are not visible in such a simple example. Thus,
if we follow a state element frorA through theA to B retrieve relation and then through tBeto D joint invariant,
we arrive at the same set of possibilities as if we had firseghrough theA to C joint invariant and then th€ to D
retrieve relation, i.e. the relevant relational composisi are equal (a claim easy enough to check by hand in this sim-
ple example), and they constitute the retrieve relationlfercomposed retrenchment. The rest depends on the events.
Of these, the initialisations behave straightforwardlgadirse; assuming the truth of the component initialisafi@s
enables the truth of the composed initialisation PO to bggutpgiven the composed retrieve relation.

For the other events, we note that machiteAddElevent is going to be retrenched to b&tddEl andAddER
in machineD, by tracing the square via or C. SinceAddEll andAddER are so similar, it will be sufficient for us to

Retrenchment for Event-B 11

discussAddEll and to leaveAddEP to the reader. To discugsddEll, we first need the within relation fakxddEland
AddEIl. This can be obtained in one of two ways. One can compose théwvelation of theA to B retrenchment
with the conjunction of the joint invariant and WITNESS t@as’ of the B to D refinement, or one can compose the
joint invariant and WITNESS relations of thfeto C refinement with the within relation of thé to D retrenchment.
Since the square commutes, these two calculations agréeyasiust, and as the reader can check.

The output and concedes relations AatdElandAddELl are determined similarly. Take the output relation. One
way round, the output relation of theto B retrenchment is composed with the joint invariant and veitneslations
of the B to D refinement for the before-state and input parameters, aoith@ncopy of theB to D refinement joint
invariant is used for the after-state. The other way rouhe vtitness relation and two copies of the joint invariant
of the A to C refinement are composed with the output relation ofGh® D retrenchment. Either way round the
square yields the same result. The strategy for the concetig®on of theA to B retrenchment is exactly the same.
See [BJPO08] for more detailed calculations and proofs kggthe general case.

Altogether, we get the composed retrenchniel p, in which the familiar facts hold for the commehparameter
of AddElandAddEl:

RETRENCHMENT Reh p
FROM A TO D
SEES Ctx
RETRIEVESTretl : x =yl Uy2
EVENTS
RAMIFICATIONS AddElI TO AddERL
WITHIN wthl : true
OUTPUT outl : true
CONCEDEScon : false
END
RAMIFICATIONS AddElI TO AddER

END

The above sketches a confirmation that mactin@vhich we pulled out of a hat) has the right characteristics
to be the desired square completion. In general, when mestadre constructed to solve plausible problems, their
interrelationships are benign, and it is normally transpamwhat the square completion should look like, without
resorting to the general theory. Benign situations areazttarised by the fact that the state (and other) spacetigarti
into equivalence classes, which the various relationsay fpleat in an ‘all or nothing’ manner. In other words, the
relations involved are atiegular [Ban95]. Moreover, benign situations also feature contjmoss of regular relations
which themselves turn out to be well behaved. In such casesam confidently eschew the forbidding complexity
of the results in [Jes05], or their much less forbidding agags in [BJ], and as here in the Event-B context, work by
hand.

6. A Small Train Case Study

In this section we examine another case study. The scenamicetns trains. In the old days, the rail system relied
for its safety on the vigilance of the train driver who was esjed to see, and to respond to, all signals on his route.
Inevitably, given the dependence on human vigilance, thverre some (rare) tragedies, attributable to the drivers no
in fact responding to a signal that he was expected to resgor@ther sources of accidents were attributable to the
signal system itself not behaving properly, eg. the sigmhhoét move, or change colour in the way it was supposed
to, in response to commands from the signal box.

As a reaction to circumstances like these, Automatic Bigypstems (ABS) were invented. These are electronic
systems —built from hardware of the highest dependabilititat communicate with onboard equipment on the train
in order to override the train’s state of motion and bringitat standstill unconditionally, if the train is not already
coming to a stop by conventional means.

ABS systems are expensive and their installation is ofteisted by railway operating companies, for as long as it

5 In Rodin, when an event and its refinement have differentrpaters, the refined event has a WITNESS clause to say how atraettparameters
not occurring in the refinement are to be related to the reforeb. This is like the within relation of a retrenchment anéggbeyond what is
documented in [Roda] Deliverable D3. See the Rodin User Mbau[Rodb]. When there are no such abstract parametersyithess relation
trivialises.

12 Banach

is politically realistic to do so, until regulatory presswand/or public opinion forces the issue. We will develop além
model of the installation of ABS onto a conventional syst&imce the whole object of the exercise is to change the top
level behaviour under certain circumstances, we are fadédamnew use-case that conflicts with existing behaviour,
and must therefore use retrenchment rather than refinemantbomodate #.

Below on the left is the original, rather primitiv&rain system. For simplicity, we have folded in the static context
information into the body of the MACHINE. There are two vdnlies: the motomotor, which isonwhen the train is
moving andoff when it is stationary, and the dead man’s hartitdy which must beon when the motor is running,
as captured inv3. The dead man’s handle and motor are independent systecheinv3 coupling between them
provides a higher level of dependability than if the motana was present. However, for driver convenience, the two
are physically connected in the accelerator handle, wiietdtiver pushes forward to go, holds forward to continue
going, and releases to stop. So the two nontrivial evésand Stop couple the setting and unsetting of tietor
anddmhvariables.

MACHINE Train MACHINE ABSTrain
VARIABLES motor,dmh VARIABLES motomgs, dmhgs, ABS
INVARIANTS invl : motor € {on, off } INVARIANTS invl : motomgs € {on, off }
inv2 : dmhe {on, off} inv2 : dmhgs € {on, off }
inv3 : motor = on = dmh= on inv3 : motomgs = on = dmhgs = on
EVENTS inv4 : ABSe {OK, KO}
INITIALISATION inv5 : motomgs = on = ABS= OK
BEGIN actl : motor := off EVENTS
act2 : dmh:= off INITIALISATION
END BEGIN actl : motomnggs := off
Go act2 : dmhgs := off
WHEN grd1 : dmh= off act3 : ABS:= OK
grd2 : motor = off END
THEN actl : motor:= on Go
act2 : dmh:= on WHEN grd1 : dmhgs = off
END grd2 : motomgs = off
Stop grd3 : ABS= OK
WHEN grd1 : dmh= on THEN actl : motomgs := on
grd2 : motor= on act2 : dmhgs:= on
THEN actl : motor := off END
act2 : dmh:= off Stop
END WHEN grd1 : dmhgs = on
END grd2 : motorgs = on

grd3 : ABS= OK
THEN actl : motormgs := off
act2 : dmhngs := off
END
ABSStop
WHEN grd1 : dmhgs = on
grd2 : motomgs = on
grd3 : ABS= OK
THEN actl : motormngs := off
act2 : ABS:= KO
END
ResetABS
WHEN grd1 : motorgs = off
grd2 : ABS= KO
THEN actl : dmhgs := off
act2 : ABS:= OK
END
END

Next to Train is the ABS-enhanced versigkBSTrain where the variables inherited frofmain have been given
an ‘ags subscript for clarity ABSTrainhas an extra variabléBS the state of the ABS on-board system, which can be
OK or KO. Normally it is OK and this fact becomes an additional guard on the exidirag events — thus far we
have nothing beyond a superposition refinement [BS96, Hal¥f: novelty comes in the fact that the ABS can take

6 Of course we could develop the ABS train systéom scratchusing refinement alone, but we could not useékRisting systenas a starting
point, thus losing some connection with the system goaleifobjective is indeed to modify the existing system.

Retrenchment for Event-B 13

unilateral action to stop the train. Thus there is a A®EStopevent, which stops the train when the state of the dead
man’s handle imnbut the on-board ABS equipment goes into if@@ state on receipt by the on-board ABS equipment
of a STOPsignal from the trackside ABS equipment. Since the motargaff while the dead man’s handle remains
on(the driver might have collapsed and died, falling onto teadiman’s handle and jamming it in theposition), we
have an event that manipulates ffrain state in a manner incompatible with previdirain events. So it can neither
be a refinement of any of them, nor can it be equivaleskip on this state.

A further eveniResetAB$estes the state of the ABS system, provided the motor isumsting. Part of its respon-
sibility is to reset the dead man’s handle too, if necessary, constitutes another case of incompatible manipuiatio
of the top levelTrain state.

Regarding the retrenchment data frdinain to ABSTrain the most natural retrieve relation will obviously be a
pair of equalitiesnotor = motomgs A dmd = dmhgs Aside from that, for the common even@Go andStop since
their actions are the same (up to variable renaming) in tlrerhwedels, they re-establish the retrieve relation in the
after-states, so that all we need is a non-trivial WITHINateln, in each case sayidBS= OK. This is just a guard
strengthening (from the Event-B perspective), but needetspelled out in a retrenchment since a general WITHIN
relation may contain further constraints if needed.

The simplicity of the retrenchment data attests to the cteparation between the newly introduced behaviour,
and the old behaviour, despite the fact that the former maaigs the top level variables in a non-trivial way, and
this simplicity of retrenchment data is something we reger@good thing The reason it arises is because Event-B
strongly encourages the encapsulation of (distinct fragmef) distinct behaviour in separate events. This sejoarat
into distinct events impacts the name space of the eventsuiadier the usual working assumption, that identically
named events are the ones we expect to correspond in the tdelsnshe new behaviour has a fresh name, and
therefore lies outside the scope of the retrenchment dhtss, Tn the context of the present case study, it is much more
natural to regard thABSStofehaviour as constituting a separate event, than to viesvatraodified version of the
normalStopevent. This is strongly supported by the requirements sbirighis case, since the triggering of the ABS
system from tracksideeally isa separate event in the normal, informal, human, percepfiamat an event is, and is
quite distinct from conventional stopping.

Furthermore, the clean separation can be expected totuwaia the refinement hierarchy. So if one develops the
Train system to a lower level of detail via refinement, the sameeeient strategy will be capable of a clean extension
to the ABSTrainsystem, for which the tower construction would produce arclemplate. We do not elaborate the
details further for this example, but refer to the next casdyswhere this issue is pursued more deeply.

7. A Small Telephony Case Study

Telephony is a classic area where there is a large instadisel &f conventional systems, whose behaviour gets modified
by the addition of new equipment featuring a greater rangap#bilities. These days, we are no longer surprised by
the availability of sophisticated connection serviceslgitt about by the digitisation of the telephone network.

The conventional model of telephony is captured in the nataim ®Id Telephone System (POTS). In a POTS
system, one can dial numbers, and they can ring, be busy, unddgainable. That's about it for POTS. We model a
small fragment of the modification of POTS by the addition cb# forwarding facility.

Below on the left is an abstraction of a fragment of the POT8e@hdl' he only variable isone which is a function
from NUMBERSto the tone heard when the handset at the given number irdidt®, being one ofdle, ringing,
busy (for simplicity we do not model the unobtainable tone). Wié/anodelDialling, and the result of a dial is just the
tone obtained, which can be eithrérging orbusy (In particular, we do not model call establishment or diseaction,
so that with the tiny models that result, we can illustrateaalder range of manipulations within a small space.)

To the right is an enhancement of this model, the CFPOTS mpdenitting call forwarding. This is modelled
rather crudely by the addition of a new tone, fbewarding tone, as an outcome Dfalling. Aside from that, the
variables and parameters have been renamed for clarity.

On the understanding that different tones correspond totifmmally different outcomes (especially as regards
further refinement), the relationship between POTS and AfP€annot be a refinement. However it makes for a
sensible retrenchment (which is given in detail below). Tégieve relation for such a retrenchment will simply
equate theoneandtone-¢ variables (on the set of values that they have in common)oBeyhis, only theDial event
requires consideration. It will need a within relation tauatpfrom to fromeg andto to tocg, a trivial output relation,
and a concession that says ttate(from) = busywhile tone:g(fromeg) = for.

Pausing a moment, note that we could have attempted to noslsltuation in a manner analogous to the previous
two sections, by splitting off the new functionality into aparate eveniCFDial say. However, in contrast to the

14 Banach

previous two sections, it is, here, highly unnatural to rdghe new behaviour as belonging to a distinct event. When
a user picks up a phone to make a call, he perceives himselrésiming a single event. It may well be that this
single event has a range of outcomes that depends on this @étifie system he is using (and whose full capabilities
he may, in any case, not be fully aware of), but his perceptioperforming a single event is not affected by this.
Thus, retrenchment gives us a choice of different ways ofetfliod) what are, mathematically, very similar facts. And
the argument about which method is superior in any giversdn will rest squarely on requirements considerations
— retrenchment, as a technique distinct from refinement|avbe greatly undermined if it did not permit us to get
deeper into requirements issues in this way.

MACHINE POTS
VARIABLES tone
INVARIANTS
invl : tone€ NUMBERS— {idle, ring, busy}:
EVENTS
INITIALISATION
BEGIN actl : tone:= NUMBERSXx {idle}
END
Dial
ANY from, to
WHERE grd1 : from € NUMBERS
grd2 : to € NUMBERS
grd3 : tone(from) = idle
THEN
actl : tongfrom) :€ {ring, busy}
END
END

MACHINE CFPOTS
VARIABLES toner
INVARIANTS
invl : tonecp € NUMBERS— {idle, ring, busy for}
EVENTS
INITIALISATION
BEGIN actl : tonecr := NUMBERSX {idle}
END
Dial
ANY fromcg, tocg
WHERE grd1 : fromcg € NUMBERS
grd2 : toce € NUMBERS
grd3 : tonezg (fromeg) = idle
THEN
actl : tonezr (fromeg) :€ {ring, busy for}
END
END

MACHINE POTSR
REFINES POTS
VARIABLES tone calls
INVARIANTS
invl : tone€ NUMBERS— {idle, ring, busy}
inv2 : calls € P(INUMBERSx NUMBERS
EVENTS
INITIALISATION
BEGIN actl : tone:= NUMBERSXx {idle}
act2 : calls:= @
END
Dial
REFINES Dial
ANY from, to
WHERE grd1 : from € NUMBERS
grd2 : to € NUMBERS
grd3 : tone(from) = idle
THEN
actl : tong(from) :€ {ring, busy}
act2 : calls := callsu {(from, to) }
END
END

MACHINE CFPOTSR
REFINES CFPOTS
VARIABLES tonef, callsce
INVARIANTS
invl : tonecp € NUMBERS— {idle, ring, busy for}
inv2 : callscg € P(NUMBERSx NUMBERS
EVENTS
INITIALISATION
BEGIN actl : tonecr := NUMBERSX {idle}
act2 : callsgr := @
END
DialRB
REFINES Dial
ANY fromcg, tocg
WHERE grd1 : fromcg € NUMBERS
grd2 : tocg € NUMBERS
grd3 : tonezg (fromeg) = idle
THEN
actl : tonecr (fromer) :€ {ring, busy}
act2 : callsge := callscg U {(fromcg, tocr) }
END
DialF
REFINES Dial
ANY fromcg, tocg
WHERE grd1 : fromcg € NUMBERS
grd2 : toce € NUMBERS
grd3 : tonecg (fromeg) = idle

THEN
actl : tonezg (fromeg) := for
act2 : callscr :=
callscg U {(fl’Oer;F, FORTARtocg)) }
END

END

Next, we refine our models. At this next level of detail, wedatce a system internal data structure, ¢bbs
variable, which is a directed graph over tN&JMBERSset that captures the active calls. In the POTSR machine,
which refines POTS, thBial event simply superposes this functionality onto the assimt oftone adding an edge

Retrenchment for Event-B 15

from from to to to thecalls graph. In the CFPOTSR machine, which refines CFPOTS, thalbbahaviour is more
interesting. For theing andbusyoutcomes, the refinement Bial to DialRBis the same as the refinementifl in

the POTSR machine. However, in tfog outcome, the system has a forwarding tae@RTAB that says where calls
should be forwarded to, and in this case, an edge firomce to FORTARtocr) is added to theallscg graph. To
avoid technical complications, we assume that any numbéehag the target of forwarding can never be the source
of further forwarding, so that theORTABgraph is a set of disconnected edges.

Regarded as Event-B refinements, both the POTS to POTSRm&fiteind the CFPOTS to CFPOTSR refinement
are basically trivial superposition refinements. And a$XomS and CFPOTS above, the relationship between POTSR
and CFPOTSR needs to be a retrenchment. The two retrenchyRet®2 CFPotsand PotsRCFPotsR are given in
detail as follows.

RETRENCHMENT Pot2CFPots RETRENCHMENT PotsRCFPotsR
FROM POTSTO CFPOTS FROM POTSRTO CFPOTSR
RETRIEVES retl : Vnume RETRIEVES retl : Vnume
numée NUMBERSA tonezg (num) # for = nume NUMBERSA tonezg (num) # for =
tong(num) = tonezg (NumM) tong(num = tonezg(Num) A
EVENTS calls(num) = callscr (num)
RAMIFICATIONS Dial EVENTS
WITHIN wthl : from = fromcg RAMIFICATIONS Dial TO DialRB
wth2 : to = tocr WITHIN wthl : from = fromcg
OUTPUT outl : true wth2 : to = tocr
CONCEDES END
conl : Vnume RAMIFICATIONS Dial TO DialF
numée NUMBERSA tonezg (num) # for = WITHIN wthl : from = fromcg
tong(num) = tonezg(num) wth2 : to = tocp
corR : tongfrom) = busy OUTPUT outl : true
com : tonezg (fromeg) = for CONCEDES
END conl : Ynume
END numée NUMBERSA tonezg(num) # for =

tong(num) = tonezg (Num) A
calls(num) = callscg (num)
cort : tongfrom) = busy
cor : tonezg (fromeg) = for
cond : calls’ = callsU {(from, to) }
corb : calls; = callscr U
{(fromcg, FORTARtocE)) }
END
END

First, we make some observations aboutBoe2CFPotsretrenchment. Aside from the simple facts mentioned
already above, we note that the retrieve relation is of thef&’ num e IsGood (num) = SomeFactsAbout (num).

The distinction between ‘goodiumvalues and ‘not-so-good’ ones, can conveniently be madénherbasis of a
property ofnumin the CFPOTSsystem. This is an embodiment of one possible gerngatitern for the retrieve
relation in a retrenchment between two systems which are (@aimpatibly) structured as functions from an index
set (hereNUMBERS to the state of an individual subsystem. In Z, such a meshais called promotion, and is a
frequently used technical device. (See [BPJS] for a brodideussion of the issues surrounding retrenchment in the
context of Z promotion.) The lack of promotion here, meard the have the responsibility to speak about the system
as a whole when we formulate properties of events —even thauggknow that only one subsystem is active during a
given event— if we wish to forestall the ‘saying nothing indis the interpretation dfue’ consequences of focusing
on the subsystem in question alone. This point raises itd imethe concession dbial, where we do in fact make a
statement aboutuns other tharfromcry andto cr. In particular, the statement we make about them is a cogyeof t
retrieve relation implication itself, and the fact that wenado so indicates that the retrieve relation and concession
are compatible; nothing in the formulation of retrenchimfenlbids this. In fact, as soon as a number in @&POTS
system opts for théor outcome, it ceases to satisfy the hypotheses of the retréation implication, allowing us to
include the latter in the concession.

In the context of the last point, and the simplicity of the ralsdwe are dealing with, the reader may notice
that we could have written a stronger retrieve invarigium e num € NUMBERSA [(tonesg(num) # for A
tongnum = tonesg(num)) Vv (tongnum = busy A tonee(num = for)], and ask why we did not. The result
of doing so would, in this very simple case, have allowed usniit the concession altogether, and we would have
ended up with something akin to a superposition refinementybe that manipulated existing variables (as a result

16 Banach

of introducing a finer case split), rather than one that ngame@nipulated new variables, as is the convention. While
such an approach would have been justified in this simple plant would not have been very generic. For more
complicated examples (even more deeply elaborated vearsidhis one, were we to introduce a more realist selection
of events), the connection between the ‘abstract’ and ‘ertmodels of a retrenchment need not allow such a simple
and compact extension of the retrieve relation to the caioe<ases. In general, one might need something like an
enumeration of states reachable in the two incompatiblkesymodels when one examines all possible paths, and a
suitable classification of them into a relation. In gendfalpthing else, this quickly becomes syntactically infioées

as a useful description mechanism for the relationship éetwthe models, for ‘path explosion’ reasons. For this
reason we elected to illustrate the generic treatment sktissues.

All of the above notwithstanding, theally interesting question is the extent to which the sys&FPOTSRand its
impinging retrenchment and refinement could have been matwred automatically by means of a square completion
procedure. An automatic square completion procedure isriiteodiment of a piece of mathematics, ultimately about
a class of transition systems connected via relationsHipsparticular kind. One thing such an entity cannot do is
design For example, in the context of the present case study, ieamething in the mathematics to preclude the
‘pot luck’ semantic model for call forwarding, in which thgsdem, on encountering a busy destination, chooses, if
it wants to, a randoridle phone to connect the caller to. The pot luck semantics miglarbappropriate design for
an ‘encounter’ service that a phone company may decide tadedor its customers, but it is inappropriate for call
forwarding. However, the distinction lies squarely in teguirements arena.

In the earlierA, B, C, D machines example, the objective of the refinement was déteneent. In such a case,
provided the retrieve relation enjoys sufficient totalitydasurjectivity properties, it is not unreasonable to expec
that, first mathematics, subsequently its automation, camage the extension of the data refinement to exceptional
cases described using the concession capability of theniment. However, in the present case studyctiks
data structure is introduced in tiFOTSRmachine without any relationship that connects it to thetsxgtonedata
structure (because it is a superposition). Therefore, thiln@ematics will stuggle to say anything sensible about what
should be done with thealls data in thefor case in theCFPOTSRsystem, since thir case falls outside the scope of
the Pot2CFPotsretrieve relation. In such a situation, the appropriatenmaatical behaviour is to leave the relevant
variables unconstrained. This amounts to a maximally usitained design (for that part of the system), which can
can subsequently be refined by the designer in order to gige o the design aims of that stage of the development.
In our case study, an automatic procedure would have lefystem’s behaviour in thier case of (the automatically
produced precursor of) theFPOTSRsystem unconstrained, leaving it to a human to decide tdwesloe maximal
nondeterminism in that part of the system by choosing a tilgkup strategy (like we had), as opposed to a pot
luck strategy, or other alternative. The same thinking gdithe partition of th@ial event inCFPOTSinto the two
lower level event®ialRB andDialF. An automated system, insensitive the requirements isswgegd not have had
the wisdom to decide on such a partition (at least not witlguitlance from sophisticated heuristics — the latter
possibility is not excluded). In this paper, it is envisageat the decision to do the partition was made by a human,
while refining the automatically produced precurso€Ce6POTSR

8. Rodin Tool Design Issues

In Section 3 we mentioned that our formulation of retrenchifier Event-B was designed to be compatible with the
Rodin Toolset (as it is at the time of writing). In this sectjave elaborate this observation, and describe some of
the details that such an integration of retrenchment intdiflRevould consist of. (The actual implementation of such
details remains as work for the future.)

The Rodin toolset [Rodb] is built on top of Eclipse [Ecl], agamily of plugins that manage the whole of the
Event-B development process. Since the source code of Rodinthe public domain, the proposed extensions for
retrenchment become unproblematic.

The starting point for the incorporation of retrenchmeia iRodin would be the introduction of the RETRENCH-
MENT syntactic construct into Rodin. Since Rodin already bgtensive facilities for the incremental processing of
syntactic constructs (notably MACHINES), this requirédimore than the adaptation of the existing code. However,
since retrenchment is defined to relate top level machinethdr facilities need to be provided to mechanically trans
late a refinement machine into top level form, as observecoiié 3.3. We note though, that this procedure has a
generic description, eg. as in Chapter 11 of [Abr96], whickes the mechanisation routine in principle.

Once the RETRENCHMENT syntactic construct exists insiddiRahe relevant proof obligations can be gener-
ated. From Section 3 itis clear that these are of a very girftitan to those of refinement, so once more, the adaptation
of the existing proof obligation generator will not be exsiesly challenging.

Retrenchment for Event-B 17

In Rodin, most routine tasks run unprompted in the backgiponce their needed inputs become available via
a SAVE. The same approach will work for retrenchment. Once a RETRHMENT construct is saved, it can be
checked for consistency. Once it is seen to be internallgistent (i.e. it conforms to the grammar outlined in Section
3.3), it can be checked for external consistency. Thisstaytchecking that the machines referred to exist and are
top level machines. If a needed machine doesn'’t exist, aw ean be flagged. If a needed machine turns out not to
be top level, the procedure for generating the equivalgnteeel machine can be invoked, and the system can police
the relationship between the original refinement machimkitrtop level generated counterpart. (For instance, user-
instigated changes to the generated top level machine carebented, and changes to the refinement machine can be
made to cause regeneration of the top level machine, andlaimg-of the subsequent dependent actions.) Once both
needed machines are in a satisfactory state, their intdatails can be checked; in particular whether the varidhles
the RETRENCHMENT construct are indeed variables of the tvacimmes in the required way, and then whether the
events related via the retrenchment’s RAMIFICATIONS indlerist as required. Once everything is in order the proof
obligation generator can be let loose, leading to the suls#gutomatic invocation of the provers which attempt to
discharge the generated POs.

The preceding constitutes basic support for retrenchnmeRbidin. One can use this as a springboard for more
extensive support for the tower. However, whereas mostodttivity surrounding the treatment of the basic retrench-
ment construct can be managed ‘behind the scenes’ in the@ddglodin way just described, when it comes to the
tower, a little more active user control is probably benefici

Thus, in theory, Rodin could be programmed to search forérawpportunities’, typically i~ shape as in Section
4, or a correspondirly shape, whenever a new construct was sawgdwever this might result in the tool discovering
tower opportunities that were in conflict with the develdpsystem architecture aims, especially when there were
many machines and relationships already commited to thénRydtem during some development. A better strategy
would be to enable the user to select three machines fromutiient development (that were already arranged in a
suitable shape via an existing retrenchment and refinepamd)to prompt Rodin to commence tower construction.
This, and the ensuing tower-related activities descriteoMa would be best done in a new Rodin ‘Tower Perspective’.

Assuming that we were dealing with top level machines thhaug (and if not, the situation would be dealt with
as described above), Rodin would then have two tasks. ¥itls checking of any hypotheses needed for the square
completion process to work; this amounts to simply a stash@daut of proof obligation generation and subsequent
discharge. Secondly, the square completion process, itei Rodin would assemble the new system following the
prescription contained in the requisite theorem. Optilgntie proof obligations for the refinement and retrenchimen
that establish the two new edges of the completed squard beudenerated. Since these confirm facts proved gener-
ically in the requisite theorem, they would always be prdeaib principle (regardless of whether any specific prover
was up to the task in any particular instance or not).

An important feature of the tower theorems, is their enclgisun of the constructed system within a universality
class of systems, these being interconnected by relafjpsiat invariably include inter-refinability. This enablthe
replacement of the generically constructed system by catéghmore obviously aligned with the application require-
ments. A Rodin user would thus create a new refinement maginitemded for the purpose), and signal its intended
role as replacement square completion to Rodin. Rodin cinald not only create the standard proof obligations in-
trinsic to the refinement, but also the converse ones, ndededtablishing the refinement in the other direction. @Not
that this may require a mild extension of the Event-B/Rodinvention that an event may be refined by more than
one refinement event but not vice versa; since if an egsptis indeed refined by more than one refinement event,
Evc; andEve, say, then in the converse refinement, the original eepiwill have to refine the disjunction dfvc;
andEvcs.) An alternative to two-way inter-refinability (the truaysificance of which —when considering the system
requirements— depends heavily on the nature of the retredadon used) is conventional one-way refinement. If the
inverse refinement is not provable, it means that some additigenuinedesign towards implementatidras been
incorporated into the refinement step. There is no reasay to prevent this within the tool.

9. Conclusions

Event-B, like all refinement based methodologies, procéguslown. This means that levels of abstraction must be
complete (in terms of what use will ever be made of the vagslthat belong to that level) at the point that they are

7 The other two possible ‘tower opportunities’, correspaigdio shapec1 and | are of largely theoretical rather than practical interestinee
they refer to properties afonverse retrenchmentsorresponding to ‘undeveloping’ an application, whicte @eldom does in practice— thus they
probably do not merit the investment of effort required tcoirporate them into the tool.

18 Banach

introduced® This insistence on the order in which things are introducegfinement based methodologies prevents
their integration with today’s ‘Agile Methods’ and otherstgm construction practices, which are typically much more
flexible about the order in which different pieces of the sgstare brought into the evolving design. Assuming that
bringing the correctness achievable using techniquesHikent-B to such agile (and similar) methods would be a
good thing, we argued that retrenchment, with its toleratibmanipulating the top level state in ngkip ways, and

of even more drastic modifications forbidden by Event-Bypated a means by which we could bridge this gap.

For the sake of being specific, we focused on the UCw apprasgich tends to develop the final system via
vertical columns of functionality rather than horizont@yérs of abstraction. In order to achieve this we refornedlat
retrenchment in a form suitable for Event-B, and for RodietrBnchment bridges the gap via thewer Patterna
commuting arrangement of retrenchments and refinementhwhhn be constructed in a number of ways in order to
suit the desired system construction strategy. We illtestréghe use of the ‘top down’ orientation of the tower as a
means of integrating Event-B correctness with the UCw aggitpby means of a number of small case studies: simple
set manipulation, automatic train braking, and call forirag in telephony. Some of these examples nicely illustrate
the distinction between what could be expected to be actiieyen automatic construction, and what would have to
be added, in terms of design intent, by hand, afterwards.

The same technical considerations that we have been disgLeiso enlarge the scope for Event-B to tackle a
wider variety of ‘real-world’ applications. For exampliegtfact of Event-B’s insistence that all data types are disgr
inhibits (at minimum) its application in real-world sceiwar in which the intrinsic variable types are continuous. Of
course in all such cases, the continuous variables mustualnbe reduced to discrete ones in order to implement
digital controllers, but carrying out the argument to jfysthis replacement within a retrenchment context allows it
to make real contact with the formal development, wherelasratise, it would have to be expelled completely from
the formal considerations. Other ways in which retrenchmeight capture the ‘grey areas’ surrounding a formal
development using Event-B could be easily imagined.

On a technical level, the notion of retrenchment we intredlin Section 3.3 was the natural adaptation of the
generic formulation of retrenchment in [BPJS07a, BJPO&h&Event-B situation. This incorporated the usual three
relations of a generic retrenchment into Event-B. In pat#g it included the output relation in the PO conclusions,
even though this never got used nontrivially in any of ouecstadies. It would be tempting (in the context of Event-B)
to omit the output relation entirely, since Event-B insisitstreating system outputs using normal state variablas, th
enabling all output considerations to be relegated to ttrieve relatior® This certainly suffices for most applications,
including all of ours. Just occasionally though, it is dable in a retrenchment to highlight specific before-after
properties of state variables, or to relate these to vasthlat are performing output roles, in situations where the
retrieve relation is maintained —i.e. strengtherthe retrieve relation— as for example happens in the Mondsg ¢
study in [BPJS07b}° In Event-B (and in general) it would be easy enough to inclaltisuch relevant facts in the
concession, but while the ramifications of the resultingrapens would encapsulate the relevant facts in a provable
way, the strengthening of the retrieve relation would nogbaranteedy the logic. For this reason, we retained the
output relation in this paper, even though we take it as reatit would be a seldom used feature.

A further interesting technical point concerns the granlaf naming of events. In Section 6 we encountered a
situation in which it was reasonable to package newly intoed behaviour into new events, for requirements reasons.
In Section 7 we had the converse situation. There, it was materal to include the new behaviour as a possible
outcome of an existing event, again for requirements reastmboth approaches can be justified. The field here gets
more muddied when we consider developing beyond the purd exeld, getting closer to actual code. This requires
the merging of finegrained events into pieces of sequentide¢ ¢see [Abr]). The fact that retrenchment can equally
easily handle both situations: ones in which new behavi®geparately packaged, and ones in which it is included
with existing behaviour, becomes a strength in also dealitigthese later phases of development.

It would of course be desirable to mechanise the technolofggduced in this paper, and in the immediately
preceding section, we delved into what the main challengaddibe in terms of a Rodin implementation. For this,
as well as the obvious tool development, it would be necgdedormulate precise Event-B versions of the theorems
of [Jes05, BJ]. These would focus on the most useful caselseofower constructions in a manner that made the
subsequent mechanisations as straightforward as pasaibid this remains as work for the future.

8 The clean state of affairs just noted gets a little blurredonsidering thekeep events of Section 5.2, and other techniques achievable via
surreptitious modifications of the abstract machine.

9 In fact the precursor of this paper [Ban08], did develop fussibility in detail.

10 1t might be imagined when output is done via state variakifes, all such considerations could be incorporated into eeretaborate retrieve
relation. However this is not the case when the consideratio question depend on tilame of the event being execut@this is what happens

in [BPJS07b].

Retrenchment for Event-B 19

References

[Abr]
[Abrog]
[ACMO5]

[Ban]
[Ban95]
[Ban08]
[BFO5]

[BJ]
[BJPOS]
[BJPSO05]

[BIPSO06]
[BPYS]

[BPJS]
[BPJSO5]

[BPJSO074]
[BPJSO7b]

[BS96]
[Ecl]
[FBO7]

[Fra08]
[Jes05]
[Kat93]
[Roda]
[Rodb]
[SCWO00]

[2B-05]

J.-R. Abrial. Modeling in Event-B: System and Software Desigrpress.

J.-R. Abrial. The B-Book: Assigning Programs to Meanin@ambridge University Press, 1996.
J-R. Abrial, D. Cansell, and D. Méry. Refinement a@Reachability in Event-B. [iZB 2005: Formal Specification and Development
in Z and B[ZB-05], pages 222-241.

R. Banach. Model Based Refinement and the Design oERetments. Submitted.

R. Banach. On Regularity in Software Desiti. Comp. Prog.24:221-248, 1995.

R. Banach. UseCase-wise Development: RetrenahimeBvent-B. InProc. ABZ-08, LNCS 523®ages 167-180, 2008.

R. Banach and S. Fraser. Retrenchment and the BTodtkZB 2005: Formal Specification and Development in Z arfdB-05],
pages 203-221.

R. Banach and C. Jeske. Retrenchment and Refinemenwémiéng: the Tower Theorems. Submitted.

R. Banach, C. Jeske, and M. Poppleton. Compositiechishisms for Retrenchmernit. Log. Alg. Prog. 75:209-229, 2008.

R. Banach, C. Jeske, M. Poppleton, and S. StepeéeriRhing the Purse: Finite Exception Logs, and Validgtire Small. IrProc.
IEEE/NASA SEW30-0fages 234-245, 2005.

R. Banach, C. Jeske, M. Poppleton, and S. Stepeé&griRhing the Purse: Hashing Injective CLEAR Codes, acdr8g Properties.
In Proc. IEEE ISOLA-Ogpages 82-90, 2006.

R. Banach and M. Poppleton. Retrenchment: An Engingé/ariation on Refinement. In D. Bert, edit@nd International B
Conferencevolume 1393 oL NCS pages 129-147, Montpellier, France, April 1998. Springer

R. Banach, M. Poppleton, C. Jeske, and S. Stepneseritbiment and Promotion in Z. Submitted.

R. Banach, M. Poppleton, C. Jeske, and S. Stepreyerithing the Purse: Finite Sequence Numbers, and ther Rattern. In
Proc. FM-05, LNCS 358%ages 382-398, 2005.

R. Banach, M. Poppleton, C. Jeske, and S. Stegngineering and Theoretical Underpinnings of Retrenchinteci. Comp. Prog.
67:301-329, 2007.

R. Banach, M. Poppleton, C. Jeske, and S. Stefeyenching the Purse: The Balance Enquiry Quandary, aneér@éed and
(1,1) Forward Refinement&und. Inf, 77:29-69, 2007.

R.J.R. Back and K. Sere. Superposition refinementadtive systemd-ormal Aspects of Computing(3):324—346, 1996.
Eclipse. The Eclipse Projecht t p: / / www. ecl i pse. org/ .

S. Fraser and R. Banach. Configurable Proof Obligatio the Frog Toolkit. InProc. Fifth IEEE International Conference on
Software Engineering and Formal MethodEEE Computer Society Press, pages 361-370. IEEE, 2007.

Fraser, SMechanized Support for RetrenchmehD thesis, School of Computer Science, University of Nhaster, 2008.

C. JeskeAlgebraic Integration of Retrenchment and RefinemBhD thesis, University of Manchester, 2005.

S. Katz. A superimposition control construct fostlibuted systemsACM TPLAN 15(2):337-356, April 1993.

Rodin. European project rodin (rigorous open degwalent for complex systems) ist-511588p://rodin.cs.ncl.ac.uk/.

Rodin. The Rodin Platformhttp://sourceforge.net/projects/rodin-b-sharp/.

S. Stepney, D. Cooper, and J. Woodcock. An Eleatrénirse: Specification, Refinement and Proof. Technical REIRG-126,
Oxford University Computing Laboratory, 2000.

Proc. ZB-05 volume 3455 of.NCS Springer, 2005.

