Dynamic aspects of retrenchments through
temporal logic

Richard Banach!, Jean-Paul Bodeveix?, Mamoun Filali?, and
Michael Poppleton®

! Department of Computer Science, University of Manchester
Manchester M13 9PL, UK
Email: banach@cs.man.ac.uk
? IRIT Université Paul Sabatier
118 route de Narbonne, F-31062 Toulouse Cedex, France
Email: {bodeveix filali}Qirit.fr
3 Department of Electronics and Computer Science
University of Southampton, Highfield
Southampton SO17 1BJ, UK
Email: mrp@ecs.soton.ac.uk

Abstract. Refinement is used as a way to verify an implementation with
respect to a specification. States of related systems are linked through
a so called gluing invariant which remains always true during the syn-
chronous execution of both systems. Refinement is a sufficient condition
for this property. Retrenchment is a generalization of refinement which
relax the constraints between both systems. This paper propose a tem-
poral logic counterpart for some specific forms retrenchment.

1 Introduction

Usually, the correctness of an implementation with respect to a specification is
defined by the inclusion between the set of concrete traces allowed by the behav-
iors of the implementation and the set of abstract traces allowed by the abstract
specification. Refinement [3,6] is a sufficient condition for trace inclusion. It is
specified using a gluing invariant relating the state space of abstract and con-
crete machines. Refinement establishes by induction that the gluing invariant is
always true. With respect to temporal logic, such a property can be seen as the
expression of a strict synchronization between the abstract specification and the
concrete implementation. If we ignore stuttering steps, the abstract specification
and the concrete implementation appear to be working in a lock step way.

Retrenchment [4] is a weakening of refinement that first allows input/output
conversions and second does not enforce a strict synchronization between the
abstract specification and the concrete implementation. Actually, it does not
require the preservation of the gluing invariant at all. In general, no temporal
counterpart of the always nontrivially valid property associated to refinements
exists for retrenchments.

In this study, we show how temporal properties can be used to specify how the
synchronization between the abstract specification and the concrete implemen-
tation can be lost. We also elaborate a temporal proof process using retrench-
ments similar to the one using refinements. After proposing a temporal relation
that should exist between a specification and a "retrenched" implementation,
we show that retrenchment is a sufficient condition to establish the correctness
of a "retrenched" implementation with respect to it.

This paper is organized as follows. In Section 2, we recall the notions of la-
belled transition systems and their specifications in TLA. Section 3 introduces
the notion of retrenchments over operations and over traces. Section 4 illus-
trates retrenchments through some examples. Section 5 elaborates some trace
properties of retrenchments. Section 6 concludes.

2 Transition systems and refinements in TLA

Retrenchment is defined as a variation of refinement of B machines. In order to
define the semantics of refinement and retrenchment as well as temporal logic
properties of execution traces, we need a lower level formalism and we have cho-
sen the TLA specification language for this purpose. As B, it introduces variables
and before-after relations but does not provide any built-in notion of refinement.
However, it offers linear time temporal operators allowing the expression of trace
properties and supports the definition of refinement or retrenchment. This sec-
tion first presents TLA then how TLA is used to specifiy transition systems.

2.1 A brief introduction to TLA

TLA+ specifications [7] are organized into modules. A module contains con-
stants, variables, assumptions and definitions. TLA+ defines basic set construc-
tors. We will mainly use the following ones:

— opaque set, constructors define sets without knowledge of their elements.

— [D — R] is the set of functions from D to R.

— [851, .., fn: Sp] is the set of records whose fields f; ¢ 1. ,, are elements of
the sets S; ¢ 1., respectively.

We are concerned with transition systems [2]. While their state spaces can be
defined using variables with values in sets as just given, TLA+ definitions are
used to introduce the following:

— The set of initial states, using a predicate usually called Init.

— The set of transitions, using action predicates. An action is a formula con-
taining primed (next state) variables and unprimed (current state) variables.
Such a formula describes the relation between the current state and next
state values of the variables.

For refinement and composition purposes, TLA introduces the notations
[4], for AV v/ = v and (4), for A A v' # v where v is a state function.

[A], expresses that either an A step or a stuttering step with respect to v
occurred, while (A), expresses that an A step actually occurred. The global
transition relation is usually introduced as the Next action predicate.

— The dynamics of a transition system is specified through temporal oper-
ators. Safety properties are specified through the O(always) operator of
temporal logic. In the same way, liveness properties are specified through
the O(eventually) operator of temporal logic. For liveness properties, the
~>(leadsto) operator is also usually used. A ~ B is defined as O(A = OB).

A TLA+ module can be considered to be parameterized by its constants and
variables. A module can be instantiated by setting these, for example:

anlnstance(ey, ..., e,) == INSTANCE module WITH v « e1,...,v, < e,

where ey, ..., e, are expressions which will replace the respective occurrences of
formal parameters vy, ..., v, in the instance.

In TLA, we can hide a variable with the existential quantifier 3 of temporal
logic. The formula Av: F means that there exists a sequence of values that can
be assigned to the variable v that will make the formula F' true.

Last but not least, in a TLA+ module we can state theorems.

2.2 Transition systems in TLA

A transition system is a tuple (@, I, R) where @ is a set, I C @ is the set of
initial states and R C @ x @ is the transition relation. In order to be more
usable in practice, the state space is often modeled by a function over a set of
state variables. Then I and R are respectively specified by a predicate over the
state variables and by a predicate over two copies of the state variables denoting
before and after states. TLA supports the direct encoding of such a transition
system (see module trs).

MODULE trs

CONSTANTS S

isSys =
A S = [data — S.data, init — S.init, next — S.next] shape of the record
A S.init € [S.data — BOOLEAN | predicate characterizing initial states
A S.next € [S.data x S.data — BOOLEAN | transition relation

ASSUME isSys

VARIABLES 4

Init = u € S.data A S.init[u]
Next = S.next[(u, u')]

Spec = Init A O[Negt],
|

The behavior of the system, corresponding to its set of traces, is specified by
the temporal formula Spec which has, in general, the following form:

Spec = Init A O[Next]vars A Liveness

This formula defines a property about the sequence of values taken by the
state variables. The initial value satisfies the Init predicate and the Next predi-
cate is satisfied by consecutive values. The vars index allows stuttering: consec-
utive values may be identical arbitrarily many times, which leaves holes where
other parts of the system can evolve. Infinite stuttering can be avoided, for ex-
ample by stating a liveness property.

in out
Put (v) Trans Get (v)

Fig.1. A transmitter in TLA

Example: A transmitter in TLA A one step transmitter (see fig. 1) can be
descibed by a TLA module communicating through the two shared variables in
and out. in equals empty when the module is ready to consume a new value. out
is not empty when the module is ready to produce a new value. Three operations
are provided:

— Put(v) saves the value v in the variable in if it is empty.
— Trans transfers a non empty value from in to out.
— Get (v) waits for the value v to be in the variable out.

The transition relation of the system, corresponding to the Next predicate,
is defined as the disjunction of these, the elementary transitions.

MODULE transmitter
CONSTANTS Data, empty

ASSUME empty ¢ Data

VARIABLES in, out

Typelnvariant = in € Data U {empty} A out € Data U {empty}
Init 2 in = empty A out = empty

Put(v) = v € Data Ain = empty A in’ = v A UNCHANGED out
Trans = in # empty A out = empty A out’ = in A in' = empty
Get(v) = out # empty A v = out \ out’ = empty A UNCHANGED in
Nezxt (v : Put(v))V (v : Get(v)) V Trans

Spec Init A O[Next] (in, out)

A
A

This system can also be seen as an instance of the meta level of the notion
of a transition system. Due to the lack of space, in the following, the examples
will only be specified at the object level.

2.3 Input-Output transition systems in TLA

Retrenchment was introduced in the B framework, in which a transition is la-
belled by an operation name and its input and output parameters. We therefore
split the label into an input and an output label, the input label modelling both
the operation name and its input arguments. Consequently, the state space con-
tains now three variables: ¢, 0o and u. The signature of the next predicate is
modified accordingly. Note that stuttering is here introduced through the none
operation name which leaves the state unchanged. It has to be noted that Input-
Output transitions systems defined here differ from I/O automata [8] where both
input and output are events to which the automaton reacts by updating its in-
ternal state. The direction of the event in I/O automata is only important for
composition purposes.

MODULE iotrs
CONSTANTS Input, Output, S, none
VARIABLES ¢, u, 0
isTrs =

A S = [data — S.data, init — S.init, next — S.next]

A S.init € [S.data — BOOLEAN]

A S.next € [Input U {none} x S.data x S.data x Output U {none} — BOOLEAN]

ASSUME isTrs A none ¢ Input A none ¢ Output
Init = S.init[u] Ai € Input U {none} A o € Output U {none}

Next =
N € Input U {none} A i’ € Input U {none}
Ao € Output U {none} A o' € Output U {none}
A S.nextli, u, u', o]

Spec = Imit A O(Next V (i = none A o = none A UNCHANGED u))

Remark The conjunct i’ € Input U {none} allows for composition with another
component that will provide the next input.

2.4 Refinements

In the sequel we will use the following notations:

— 0pg,(resp. op.) denotes an abstract (resp. concrete) operation,

— u,u ,(resp. v, v’) denote the before and after states associated to an abstract,
(resp. concrete) operation.

— 14, (resp. j) is the input of the abstract (resp. concrete) operation.

— o, (resp. p) is the output of the abstract (resp. concrete) operation.

These notations are summarized in the following table.

Transition|Before| After|Input| Output

Abstract |op, u o’) 0

Concrete|op. v vy p

Definition 1 (Operation refinement) The abstract operation op, is said to
be refined by the concrete operation op. through the gluing invariant G if op,
can simulate op. starting from a concrete state satisfying the gluing invariant G
and leading to a state where the gluing invariant is preserved.

ops Eg ope

Gu,v) Ni=jAop:(j,v,v",p) = Tu',0: 0pa(i,u,u’,0) ANG(w', v')No=p

Definition 2 (trace of a transition system) Given a transition system S de-
fined as a pair (init, next) where init is its inititialization predicate and next its
transition relation, a trace of S is a sequence of inputs-outputs (i, 0) satisfying
the predicate S where

S(i,0) = 3w : S.init(u) A OS.next(i, u, u', 0)

Definition 3 (Trace refinement) There is a trace refinement between an ab-
stract system S, and a concrete system S., if each trace of the concrete system
is a trace of the abstract system. Formally, we define trace refinement as follows

Se T S.=Vi,0:8.(i,0) = S,(4,0)

Theorem 1 (Sufficient condition for refinement) Operation refinement is
a sufficient condition for trace refinement:

(Vv : Se.init(v) = Ju : G(u,v) A Sq.init(u)) A Sy.next Cg Se.next = S, C S,

3 Retrenchments

Retrenchment [5] was introduced as a weakening of B [1] refinement: input and
output parameters of an operation and its retrenchment are not necessarily equal
and the retrieve relation (called the gluing invariant in the context of refinement)
is not necessarily preserved. In the latter case, the concedes relation must be
satisfied. Retrenchment is a means to define a new behavior as a variant of an
existing one while enlightening the differences between both specifications. For
example, a bounded queue does not refine an unbounded queue except while
it does not overflow. Retrenchment has mainly been used for numerical appli-
cations where retrenchement computes an approximation of the exact solution
specified by the retrenched machine. In these situations, the gluing invariant is
not preserved because of imprecise computations. The difference between both
computations is specified by the concedes relation.

This section introduces retrenchment machines as an extension of the B lan-
guage. Retrenchment being introduced at the operation level, we show how it
can be expressed at the transition system level without loss of generality, opera-
tions being merged into a single relation. Then, we propose a first result relating
input/output traces and retrenchment.

3.1 Retrenchment machines

The following gives a skeleton of a B machine and its retrenchment. Note that
the output and concedes relations are defined in the context of the after-state,
the before-state being mentioned using the $0 suffix.

MACHINE M
VARIABLES U
OPERATIONS 0 «— op(I) £ ...
END

RETRENCHMENT R RETRENCHES M
VARIABLES V
RETRIEVES ¢(U,V)
OPERATIONS P «— op(J) 2
BEGIN

WITHIN W,,(I,J,U,V)
OUTPUT 0,,(1,J,U,V,U$0,V$0,0,P)
CONCEDES C,,(I,J,U,V,U$0,V$0,0,P)
END
END

The machine M is retrenched (via the RETRENCHES M clause and retrieve
relation G(U, V)), to machine R. The operations of the latter machine now
have bodies which are substitutions augmented with the WITHIN, OUTPUT and
CONCEDES clauses. The following definition presents the role of each clause and
also gives the proof obligation associated to each operation of a retrenched ma-
chine. The latter is to be considered as the semantics of retrenchment.

Definition 4 (Retrenchment) Retrenchment is defined with respect to:

— a gluing invariant G,

— an Input relation W, playing the role of a precondition with possible input
translation.

— an Output relation O, enforcing the post gluing invariant and performing

output translation.

a Concedes relation C, weakening the post gluing invariant.

The retrenchment between Op. and Op, is formally defined as follows:

OpC g’vgg Opa = G(’LL, T)) A W(la]a U, U) A OpC(Ua U/vjvp)
= 3u’,0: Opg(u,u’,4,0) A
((G(ul’ 1}/) /\ O(i’j) fu’) v) ul) vl’ Oﬂp)) \/ C(i7j7 u? ’U7 u/) vl’ oﬂp))

Remark Defining default values for W,0 and C as i = j, o = p, FALSE,
respectively, it follows that C 4 reduces to operation refinement.

3.2 Operation retrenchment and transition retrenchment

Retrenchment has been defined in a per operation basis but can be equivalently
defined on the global relation Next. For this purpose, operation names are rep-
resented by a new input argument of the Next operation. Operation dependent
information such as the within, output and concedes relations already take the
input parameters of the current operation as an argument. A global definition
of these relations can thus be given:

W({op,i),j,u,v) = Wep(i,j,u,v)
0({op,i),j,u,v,u0,v0,p) = 0op(i,j,u,v,ud,v0,p)
C(<OP,i>,j,u,V,uO,V0,P) = Cop(isj:u;V:UO;VO,P)

Next_a(op,u,u’,i,o) = op_a(u,u’,i,o)
Next_c(op,v,v’,j,p) = op_c(v,v’,],p)

The proof obligation associated to the retrenchment between concrete and
abstract Next relations is the conjunction of the proof obligations associated to
individual operations:

/\op { G(’U,, 1)) A Wop(i7j7 u, ’U) A 0p6(1}7 v/aj’p)
= Ju’, 0 : ops(u, v, i,0) A
((G(ul7 IU/) /\ Oop(ivjv U, U? Ul, UI? 0,p)) \/ OOP(Z'?]-? U, Uv ulv /Ulv 0,1))) }

op : G(u,v) AN W((op,4),j, u,v) A Nextc(op,v,v",j.p)
Ju’, 0 : Nexty(op, u, u’, i, 0) A
((G(ul’ U/) /\ O(<op’ i>’j’ u’ U’ ul’ IU/’ Oﬂp)) \/ C(<0p7 i>7j7 u7 U7 u/’ IU/) o’p))

o<

Consequently, the operationwise retrenchment of a machine can be repre-
sented by a single retrenchment between global abstract and concrete transition
relations, as is usual in TLA. This property justifies, a posteriori, that the op-
eration name can be handled in the same way as an input parameter.

3.3 Trace retrenchment

Retrenchment, as well as refinement, relates the state of two machines, a concrete
one and an abstract one. As previously stated, refinement is a sufficient condition
for inclusion between the set of traces of two machines. This sufficient condition
gives an induction based proof tactic to establish the inclusion and relies on the
internal state of both machines.

We now try to express a similar result for retrenchment. Trace retrenchment
is defined on sequences of inputs and outputs, while operation retrenchment
depends on the internal states of machines.

Definition 5 (Trace retrenchment) S, is a trace retrenchment of S, iff there
exist trace retrenchment relations Wy, Oy, Cy such that:

Vivjvp : S_C(]ap)/\Wt(Zv.]) =13 Ot : (S_a(i, 0)/\Ot('l:,j, Ovp)) w (_' Wt(l,])\/Ct(Z,], Oap))
where o W 1) is the weak until operator defined as Op V (p U).

As for operation retrenchment, trace retrenchment reduces to trace refine-
ment when default values are taken for Wy, O; and C;.

Theorem 2 Operation retrenchment is a sufficient condition for trace retrench-
ment.

For this, operation retrenchment is used to build the output sequence step by
step while G and W are preserved. The trace retrenchment relations Wy, Oy, Cy
are defined as:

Wt(i,]) :VU,’Ui W(i,j,u,f))
Ot(iaja Oap) = Eluvluvulvlu/ : O(Zaja u, v, ’U,/, Ulv Ovp)
Ct(iaja 0,]7) = 3“‘7“7”/’“/ : C(i,j,u,v,u’, Ula Oap)

Remark In the following, we consider the internal state as hidden. The system
is thus seen as an input/output automaton characterized by input/output trace
properties expressed in temporal logic. Thus, retrenchment will be seen as a
proof method for such properties.

4 Example of retrenchment in TLA

We illustrate the use of retrenchment through the BAG example. Since, we
will reason on operations, first we introduce them and then we define the state
machines that explicitly use them. In order to illustrate refinement and retrench-
ment, we consider an abstract specification of bags and a concrete one based on
sequences.

4.1 The relational operations

The relational operations manage states explicitly through the parameters St1
and St2 containing the before and after states. Additional parameters encode
the operations input and/or output arguments. We consider three operations
on bags in order to illustrate the management of several types of input/output
parameters. put and get take an element as input and as output. diff takes a
bag as input, returns the bag containing the difference of the current and input
bags, and saves the parameter to the current state.

4 The weak until operator W is not part of TLA.

MODULE abs_ops

LOCAL INSTANCE Bags

CONSTANTS Elem

init(St) = St = EmptyBag

Typelnvariant(St) = IsABag(St) A DOMAIN St C Elem

A

put (i, Stl, St2) = i € Elem A St2 = St1 + SetToBag({i})
get(St1, St2, o) = BagIn(o, St1) A St2 = St1 — SetToBag({o})

min(a, b) = IF a > b THEN b ELSE a

A

inter(bl, b2) =
[e € (DOMAIN b1) N (DOMAIN b2) — min(CopiesIn(e, bl), CopiesIn(e, b2))]
diff (i, St1, St2, 0) = St2 = inter(Stl, i) A o = St1 — i
|

The conc_ops module defines the same operations but the state is now a
bounded sequence of size at most 10. Input and output parameters of type Elem
keep the same signature, but bag parameters of the diff operation are now
typed as sequences. The code for the diff operation is not given.

In order to manage the finiteness of the sequence, the put operation may
overflow. For this purpose, the internal state can be denoted either by a sequence
or by the 0flow constant. The value returned by get is unspecified if the stack
has overflowed in the past.

MODULE conc_ops
LOCAL INSTANCE Sequences

LOCAL INSTANCE Bags

CONSTANTS Elem, Oflow

SeqToBag(s) =
LET F[S € Seq(Elem)] =
IF S = () THEN EmptyBag ELSE SetToBag({Head(S)}) + F[Tail(S)]IN
Fs]

nit(St) = St=()

put(e, St1, §t2) =

V Len(St1) <9 A St2 = Append(St1, e)

V Len(St1) = 10 A §t2 = Oflow

V St1 = Oflow A St2 = Stl

A

get(Stl, St2, e) =
V3r € Seq(Nat) : St1 = (e)or ANSt2=1r
V St1 = Oflow N St2 = St1

A

diff (i, St1, St2, 0) = TRUE

10

4.2 The state machines

The state machine use three state variables corresponding to the inputs, the out-
puts and the internal state of the machine. The abstract and concrete behaviors
are defined using the relational operators. The Next transition applies one of
the previously defined operators. As usual, the specification of the behaviors of
the machine is defined using the temporal operator O stating that consecutive
values of legal traces satisfy the Next relation.

The abstract machine The abstract machine use state variables i, U, o to
represent its inputs, its internal state and its outputs.
MODULE abs

EXTENDS abs_ops
LOCAL INSTANCE Bags
VARIABLES %, U, o

Init = init(U)

Put = put(i, U, UYANi' =iNo =0
Get = get(U, U, o')Ni' =i

Diff = diff (i, U, U, o') Ni' =i
Next = PutV Get V Diff

Spec = Init A O[Next](;, U, o)

The concrete machine The abstract machine uses state variables j, V, pto
represent its inputs, its internal state and its outputs.
MODULE conc

EXTENDS conc_ops, Sequences, Naturals
VARIABLES j, V, p
Typelnvariant(W) = W e {v € Seq(Elem) : Len(v) < 10} U { Oflow}
Init = init(V)
Put = put(j, V, V')Ap =p
Get = get(V, V', p)Nj =j
Diff = diff(i, V, V', o)A/ =i
Reset = V = Oflow A V' = ()
Next = GetV Put vV Diff
Spec = Init A O[Nest](; v)
|

Refinement is not sufficient to relate the behaviors of both machines for
several reasons:

11

— the signature of operations has changed: the Diff operation exports the
representation of the buffer.

— the value returned by the concrete get operation is unspecified in case of
overflow.

The substitution property allowed by refinement is lost because of the inter-
face change but performing input/output conversion is enough to keep the syn-
chronisation between concrete and abstract executions. A gluing invariant could
be that abstract and concrete buffers have the same contents when overflow is
false. Now, if the overflow flag is not memorized, a non trivial gluing invariant
could be that the contents of concrete and abstract buffers are the same if size
of the buffer is less than 10. This property is not preserved by the get operation.
The concedes relation of general retrenchment must be introduced.

5 Trace properties and retrenchments

The next paragraphs present several instances of the general definition of re-
trenchment that are close to refinement. Each time, we show how the considered
instance of the retrenchment definition can be seen as a sufficient condition for
some kind of trace refinement. It is then possible to associate temporal properties
to retrenchment.

5.1 Refinement with input/output conversion

The general definition of retrenchment can be instantiated so that a one to one
correspondence is preserved between abstract and concrete steps, but input and
output may change. The correspondence between abstract and concrete input
or output is specified by the relations I and 0. They are weaker than for general
retrenchment: they only depend on input or output values and do not refer to
the abstract or concrete states.

Definition 6 (Operation refinement with input/output conversion)

opa'C Gope = G(u,v) NI (i,5) A ope(v,',5, p)
= 3,0 op (., 0) A G(w', ') A 00,5, 0,)

The two predicates I and 0 can be used to define a trace level notion of
refinement with input/output conversion which extends the usual notion of trace
refinement.

Definition 7 (Trace refinement with input/output conversion)

Sa'C28c=Vij,p: 5:(j,p) A(OI(i,5)) = F0: Sa(i, 0) ANDO(i, f, 0,p)

The following theorem states that operation refinement with input/output
conversion is a sufficient condition for trace refinement with input/output con-
version. It simply extends the usual result.

12

Theorem 3 (Sufficient condition for refinement)

(Vv : Se.init(v) = Ju : G(u,v) A Sy init(u)) A Sy.next Ilgg Se.next
= 5,198,

Example As an example, we can consider the operation diff of the bag example.
The input and the output of diff are redefined as bounded sequences or the
special overflow constant.

We can define I and 0 as follows:

1(i,j) =j # Oflow = i = SeqToBag(j)
0(i,j,0,p) =p # Oflow = 0 = SeqToBag(p)

This correspondence is correct if overflow is observable. The output of the con-
crete diff operation is thus supposed to return overflow if the input or the
internal state has the Oflow value.

5.2 Retrenchments as sufficient conditions for conditional
refinements

This paragraph presents another instance of the general definition of retrench-
ment which defines a notion of conditional refinement. In order to be compatible
with the trace point of view, the condition does not depend on the internal
concrete or abstract states. This notion could be combined with input/output
conversion, but we present it separately.

The following definition introduces trace refinement conditioned by an always
true property. Two equivalent definitions are given, the second one being closer
to retrenchment: it uses a concedes predicate.

Definition 8 (Conditional trace refinement)
SuC 8¢/P=VYi,0: (OP(i,0)) = 5,(i,0) = 5a(i, 0))
=Vi,0:85:(4,0) = S,(i,0) VOP(i, 0)
The following theorem introduces retrenchment as a sufficient condition for
conditional refinement.

Theorem 4 (Sufficient condition for conditional trace refinement)

(Vo : Sc.indt(v) = Ju : G(u,v) A Sq.init(u)) A Sg.0p _pC g Sc.op= Sq C S./P

Ezample The implementation of an infinite bag by a bounded sequence does not
define a refinement, but such an implementation is acceptable if one can establish
that the sequence does not overflow when integrated in the considered system.
This property can be specified by a conditional trace refinement property. For
this purpose, overflow must be observed. We suppose that adding an element to
a bounded sequence returns a status (done, ovf).

Vi, 0: (0o # ovf) = (S.(4,0) = S.(i,0))

13

5.3 Recovering synchronization

We consider an infinite buffer as abstract model and a lossy infinite buffer as
concrete model. The abstract input trace contains put and get operation calls.
The concrete input trace can also contain Loss operations. Given a concrete
execution trace, the following trace level specification claims the existence of an
abstract execution trace obtained by replacing Loss calls by get calls. As losses
take place where get operations could be performed, losses occurs on the output
side of the channel:

Vi j,p:8.(j,p)AO(i = jV(j = LossAi = get)) = o0 : S,(4,0)AO(j # Loss = o = p)

Considering retrenchment, this property can be expressed using the identity
as gluing invariant: the hidden states defining the contents of the abstract and
concrete channels are identical. Input and output conversions are used to refine
a Get into a Loss.

Losing synchronization Consider again the infinite buffer example and its bounded
implementation by a finite sequence. get is supposed to return ovf once an over-
flow has been detected. Thus, synchronization between the concrete and abstract
traces is lost. This can be expressed by the following trace refinement property
with output conversion, using the weak until temporal operator.

Vj,p:Se(j,p)=T0:(p=0W p=ovl) AS,(j,0))

Recovering synchronization. Assume the existence of a reset operation which
empties the bag and thus allows a recovery of synchronization. The new behavior
can be specified as follows:

Vi, p:8S:(j,p) =To:0(=reset = p =0 W p =ovf) A S,(4,0))

The conditional weak until expression can be eliminated with the introduc-
tion of an auxiliary state variable: p = o must be true since j = reset has been
true and until p = ovf becomes true. The auxiliary variable m is defined to be
true during this time interval.

Vi,p,m:S:.(j,p) A\mAO(m' = IF j =reset THEN true
ELSE IF p = ovf THEN false
ELSE m)
=3Jo0:0m=0=p)AS,(4,0))

Once again, refinement with output conversion is a sufficient condition for this
temporal specification. However, the variable m must be added to the concrete
model.

14

Remark The transformation illustrated here becomes a proof method for the
conditional weak until operator that is applicable to B specifications. It amounts
to adding a new state variable.

6 Conclusion

Refinement gives a strategy for specifying and developing a system which con-
forms to its specification: an abstract machine expressing the desired behavior
is defined. Then, by stepwise refinements, a certified implementation is built.
Retrenchment can be seen as a new approach to implement a correct system
which extends refinement: the concrete system is created by specifying permit-
ted differences from the abstract system.

In this paper, this differential technique is used for combining two styles of
specification: abstract machine and temporal specifications. We have explored
some of the potential of this methodology. Starting from a perfect abstract sys-
tem and a temporal formula expressing differences between perfect and effective
input/output traces, a concrete system is proposed together with a gluing invari-
ant relating the abstract and concrete state spaces. Then, retrenchment provides
a proof obligation schema to validate the concrete model. We can see how this
work can be used as a way to specify safety properties of a retrenched imple-
mentation. A natural outgrowth of this work would be to extend it in order to
take into account liveness properties.

References

1. J. Abrial. The B-Book: Assigning programs to meanings. Cambridge University
Press, 1996.

2. A. Arnold. Finite transition systems. Prentice-Hall. Prentice-Hall, 1994.

3. R.-J. J. Back, A. Akademi, and J. V. Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

4. R. Banach and M. Poppleton. Retrenchment. In FM ’99: Proceedings of the Wold
Congress on Formal Methods in the Development of Computing Systems-Volume II,
pages 1864-1865, London, UK, 1999. Springer-Verlag.

5. R. Banach and M. Poppleton. Retrenchment, refinement and simulation. In
J. Bowen, S. King, S. Dunne, and A. Galloway, editors, Proc. ZB2000, volume 1878
of Lecture Notes in Computer Science, York, September 2000. Springer.

6. W.-P. de Roever and K. Engelhardt. Data Refinement Model-Oriented Proof meth-
ods and their Comparison. Cambridge University Press, 1998.

7. L. Lamport. Specifying Systems:The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

8. N. Lynch and M. Tuttle. An introduction to I/O automata. CWI-Quarterly,
3(2):219-246, sept 1989.

15

