Controlling control systems: an application of
evolving retrenchment

Michael Poppleton! and Richard Banach?

! Department of Computing, Open University, Walton Hall,
Milton Keynes MK7 6AA, UK,
m.r.poppleton@open.ac.uk,

WWW home page: http://mcs.open.ac.uk/mp529
2 Department of Computer Science, Manchester University,
Manchester M13 9PL, UK,
banach@cs.man.ac.uk,

WWW home page: http://www.cs.man.ac.uk/ banach/

Abstract. We review retrenchment as a liberalisation of refinement,
for the description of applications too rich (e.g. using continuous and
infinite types) for refinement. A specialisation of the notion, evolving
retrenchment is introduced, motivated by the need for an approximate,
evolving notion of simulation. The focus of the paper is the case study,
a substantial second-order linear control system. The design step from
continuous to zero-order hold discrete system is expressible as an evolving
retrenchment. Thus we demonstrate that the retrenchment approach can
formalise the development of useful applications, which are outside the
scope of refinement.

The work is presented in a data type-enriched language containing the
B language of J.-R. Abrial.

1 Introduction

From early concerns about proving correctness of programs such as Hoare’s [23]
and Dijkstra’s [15], a mature refinement calculus of specifications to programs
has developed. Thorough contemporary discussion can be found in [14, 2]. In
particular, the simulation proof method, appearing in inter alia [34, 32], is cen-
tral.

In this context of model-based specifications the term “refinement” has a
very precise meaning; according to Back and Butler [3] it is a “...correctness-
preserving transformation...between (possibly abstract, non-executable) programs
which is transitive, thus supporting stepwise refinement, and is monotonic with
respect to program constructors, thus supporting piecewise refinement.” Rela-
tionally, refinement is characterised as a development step requiring the concrete
precondition to be weaker than the abstract (the applicability, or termination
condition), and the concrete transition relation to be stronger, or less nondeter-
ministic, than the abstract (the correctness, or transition condition). The most
succinct characterisation of refinement is that of “operational indistinguishabil-
ity”, i.e. that every concrete behaviour be a possible abstract one.

Refinement is a strong technique in software development, both in descriptive
power, and in delivering proof obligations that assert strongly coupled structure
between levels of abstraction. So it is not surprising that refinement cannot be
used, without simplifying or approximating assumptions and informal justifica-
tions, in many real-world system situations. Early work on clean termination
of programs [11, 10] shares our concern with refining specifications on abstract,
infinite domains to finite computer-oriented domains. Another approach to this
finiteness problem was Neilson’s thesis [24], which proposed a notion of accept-
ably inadequate design, i.e. that refinement over an infinite domain could be
regarded as a limit of finite refinements. Partial logic approaches have also been
proposed [26].

This work develops and applies the retrenchment method, a liberalisation of
refinement. We argued, when introducing the notion [5, 6], for a weakening of
the retrieve relation over the operation step, allowing concrete non-simulating
behaviour in retrenchment. Concrete I/O may have different type to the abstract
counterpart, and moreover the retrenchment relation may define fluidity between
state and I/O components across the development step from abstract to concrete
model. This early work made a more engineering-oriented than formal case for
moving away from refinement.

[29] reported initial work, using transitivity and monotonicity arguments, on
the development of a calculus of retrenchment in B. This calculus was completed
in [31], which showed all primitive operators of the B GSL, including operation
sequence, to be monotonic with respect to retrenchment. [8, 9] gave a substan-
tial theoretical presentation and development of the retrenchment framework,
exploring the landscape between refinement, simulation and retrenchment. This
was done by means both of B and automata-theoretic formalisms, using spe-
cialised (if widely applicable) further assumptions to nudge the retrenchment
relation closer to refinement-like structure. [7] examined what can be said when
a simulation is partial, or punctured, rather than full. This allows the description
of breaks, or punctures (e.g. failure and reset) in the simulation. [4] addressed the
integration of refinement and retrenchment from a methodological perspective.
In [30] we presented a generalisation, evolving retrenchment.

This paper is squarely in the B setting (albeit with some data-type-enrichment),
and uses the generalisation (rather than specialisation) that is evolving retrench-
ment. The motivation for this variant of retrenchment is the need for an approx-
imate, evolving notion of simulation. In simple retrenchment, a simulation fails
at the point at which an abstract/concrete operation step fails to establish the
retrieve relation. Here we propose that the retrieve relation be allowed to evolve
in the sense that the precision of representation may change over time. We
give a simple supporting example of the transformation of real to floating-point
addition. As an evolving retrenchment, this transformation demonstrates the
approximate nature of the simulation of real by FP addition. It also serves as
a formal bound on error propagation, thus giving a link to classical numerical
analysis. The introductory example is completed with a demonstration of how

the monotonicity of evolving retrenchment with respect to operation sequence
supports an evolving notion of simulation.

The focus of this paper is the case study, a substantial second-order linear
control system. We summarise the classical control engineering design transfor-
mation from continuous- to discrete-time using the zero-order hold approxima-
tion. Two evolving retrenchment descriptions are given for this transformation,
in a B framework enriched with appropriate data types.

The paper contents are as follows. In Sect. 2 we briefly recap syntactic and
semantic definitions for retrenchment. Evolving retrenchment is defined and
demonstrated in a small example. Section 3 introduces the case study, a second-
order linear control system. This is done as two descriptions, a classical contin-
uous control system, and the zero-order hold discrete approximation. Section 4
gives two possible design formulations in terms of evolving retrenchment. We
discuss the limitations of a method such as B for such a formulation. Section 5
concludes.

2 From Simple to Evolving Retrenchment

The notion of an evolving relationship between system models emerges from
the intrinsically approximate nature of modelling real-world systems which are
described with continuous mathematics. For example, to model the motion of a
projectile near to the earth we might use a linear differential equation relating the
acceleration of the projectile to the forces of gravity and air friction. We might
choose to omit, for practical reasons, the Coriolis effect, or the effect of time-
varying crosswinds. So the best mathematical model available to us will always
be approximate, for reasons of cost, practicality, or even lack of mathematical
sophistication.

This work is, however, concerned with the relationship between mathemati-
cal models at adjacent levels of abstraction. In the projectile example we might
(unwisely choosing a large reduction in abstraction level) choose to specify the
next layer of model using some finite set of floating-point numbers appropri-
ate to computer implementation. Clearly, a second level of approximation is
introduced: before any system dynamics are considered, precision is limited to
that determined by the floating-point set chosen. Moreover, when some abstract
(continuous) operation is considered in relation to its concrete (floating point)
counterpart, precision of representation is in general reduced. For simple addi-
tion, precision decays by a factor of two. For a more complex operation and its
retrenchment, say exponentiation, the precision decay is far more complex.

From a refinement point of view this suggests that relaxing the invariant
nature of the retrieve relation between abstract and concrete models, allowing
it to evolve, might give a more expressive development step than either refine-
ment or simple retrenchment. Although retrenchment allows breach of the in-
variant (via establishment of the concession), such breach effectively stops any
simulation of the abstract operation sequence by the concrete. Specialisations
of retrenchment, as indicated before, seek to combine the concession achieved

with application domain structure to re-establish the retrieve relation where the
simulation has failed to establish it. The approach here is more general in re-
laxing the immutability of the retrieve relation, and allowing it to evolve. That
is, if one operation step results under retrenchment in achievement of a weaker,
evolved retrieve relation, this latter relation can serve as a starting point for a
subsequent retrenchment step.

2.1 Simple Retrenchment

Simple retrenchment is, loosely speaking, the strengthening of the precondition,
the weakening of the postcondition, and the introduction of mutability between
state and I/O at the two levels of abstraction.

Figure 1 defines the B syntax. Abstract machine M has parameter a, state
variable u, and invariant predicate I(u). Variable « is initialised by substitution
X (u), and is operated on by operation OpName, a syntactic wrapper for substi-
tution S(u,4,0), with input 4 and output o. Unlike a refinement, which in B is
a construct derived from the refined machine, a retrenchment is an independent
MACHINE. Thus N is a machine with parameter b (not necessarily related to
a), state variable v, invariant J(v), initialisation Y (v), and operation OpNameC
as wrapper for T(v,j,p), a substitution with input j and output p. Viewed as
an independent machine, N cannot refer to M. So the new retrenchment syntax
proposed here must in this case be regarded as null text.

Here we state that machine N RETRENCHES machine M; in general either a
MACHINE or a REFINEMENT may be retrenched. The RETRENCHES clause
(similarly to REFINES) makes visible the contents of the retrenched construct.
We further assume that the name spaces of the retrenched and retrenching con-
structs are disjoint, but admit an injection of (retrenched to retrenching) op-
eration names. An injection allows further, independent dynamic structure in
the retrenching machine. In the retrenching machine N we have state variable
v under invariant J(v), and the RETRIEVES clause G(u,v). The existence of
N as an independent machine requires that its (local) invariant be stated inde-
pendently of the retrieve relation, unlike in B, where the two take the form of a
joint predicate.

The relationship between concrete and abstract state is fundamentally dif-
ferent before and after the operation. We model this by distinguishing between a
strengthened before-relation between abstract and concrete states, and a weak-
ened after-relation. Thus the syntax of the concrete operation OpNameC in N
is precisely as in B, with the addition of the ramification, a syntactic enclosure
of the operation. We call this augmented syntax for the operation a ramified
generalised substitution. Before, the relationship is constrained (precondition is
strengthened) by the new WITHIN condition P(u, v, 4,5, A) which may change
the balance of components between input and state, and may further define an
optional “memory” variable LVAR A for reference in the after-state. The after-
relation is weakened (postcondition is weakened) by the CONCEDES clause
(the concession) C(u,v,0,p, A), which specifies what the operation guarantees
to achieve (in terms of after-state, output and logical variable A) if it cannot

MACHINE M(a) MACHINE N(b)
RETRENCHES M
VARIABLES u VARIABLES v
INVARIANT I(u) INVARIANT J(v)
RETRIEVES G(u, v)
INITIALISATION X (u) INITIALISATION Y (v)
OPERATIONS OPERATIONS
0 <— OpName(i) = p «— OpNameC(j) =
S(u,1,0) BEGIN
END T(v,5,p)
[LVAR
4]
WITHIN
P(i,j,u,v,A)
CONCEDES
C(u,v,0,p,A)
END
END

Fig. 1. Syntax of simple retrenchment

maintain the retrieve relation G. The concession will describe the weaker state
of representation after the operation, or preserve exception information if repre-
sentation fails completely.

The operation retrenchment POB is central in this theory since it serves
as the semantic definition of retrenchment. Analogously to the operation re-
finement POB, although with more predicate information, concrete OpNameC
(substitution T') retrenches abstract operation OpName (substitution S) if:

I(u) A G(u,v) A J(v) A P(i,5,u,v,A) Atrm(T(v,7,p))
= trm(S(u, i, 0)) A [T(v,5,p)]~ [S(u, 1, 0)]-~ (G(u,v) V C(u,v,0,p, 4)) (1)

The retrenchment initialisation POB is as for refinement, guaranteeing a joint
starting state satisfying G(u, v).

Definition (1) is justified by comparison with the refinement proof obligation.
In refinement, “operational indistinguishability” of the refined operation is the
central issue. When the abstract operation terminates, so does the concrete one:
this is precondition weakening. In retrenchment we invert this relationship. The
retrenching machine is different from the retrenched machine and more faithful
to the system being built. It can contain features incompatible with those of the
abstract machine. These are described explicitly in the CONCEDES clause, and
implicitly in the WITHIN clause which restricts the portions of the two models
being related. To the extent that the retrenching machine might not terminate in

places that the retrenched machine is guaranteed to do so, we must consciously
exclude such possibilities in the WITHIN clause from the relationship asserted
between the two machines. Thus we strengthen the precondition by swapping
the two termination clauses in the POB, and use the WITHIN clause to tailor
the scope of the POB over and above what is already stated in the RETRIEVES
clause.

2.2 Evolving Retrenchment

We now propose that the retrieve relation G becomes “variant” (i.e. evolves),
in the sense that it becomes mediated by some “precision” parameters a and 3.
That is, Ga(u, v) is required to start the retrenchment step, and Ga(v',v') is a
possible outcome. The intuition behind this is that a, 8 belong to some ordered
set, where increasing a denotes decreasing precision of the representation of
abstract u by concrete v in G, (u,v). That is, we will usually (but not always)
expect that

a<f=2 (G = Gp)

This formulation describes a typical precision-decay situation over a simulation,
for example in a sequence of arithmetic steps (real to floating point). We choose
the notion of evolving rather than decaying retrenchment as this suggests, be-
cause it is quite possible for precision to increase over a simulation step. In a
control system, sensor readings provide the software with the inputs necessary to
model the real system state. In control systems with a large number of sensors,
it is quite likely that, at a given point in time, some sensors have failed, and
that the modelled state is representing the real system state in some degraded
mode'. Some algorithm extrapolating the failed sensor value from neighbouring
sensors may be applied, to make the best of things, but accuracy is nonetheless
lost. Assuming it is possible for sensors to be repaired in-flight, and for repair
status to be detectable, it is manifestly possible for precision of the system state
representation to improve.

The extension to syntax for evolving retrenchment involves some subscripting
of clauses G, P, C in Fig. 1. Semantically, evolving retrenchment is defined:

I(u) A Ga(u,v) A J(v) A Po(i,j,u,v, A) Atrm(T)(v,5) ANae < 8
= trm(8)(u,) A [T(v,4,p)]= [S(u, i, 0)]= (Gg(u,v) V Cs(u,v,0,p, 4)) (2)
The following shorthand form will be more convenient:

S<T wrt. (G, Py — Gg, Cg)

Thus the (u,v) relationship is now mediated through evolving precision pa-
rameters a and 3. Notice that WITHIN and CONCEDES predicates are also
parameterised: this is necessary since each of these further constrain the (u, v)

! This assumes reliable sensor failure determination, an issue we will not pursue here.

relationship, in context of inputs and outputs respectively. Generalising these
predicates also allows these relations between abstract/concrete I/O and state
to evolve. Note that the precision parameters are not free variables, they are more
akin to B machine parameters. A relation of evolving retrenchment between two
machines M and N(a,3) can be interpreted as a collection of simple retrench-
ments indexed on the carrier sets of precision parameters a, 3. This collection
describes the (usually decaying) evolution of the RETRIEVES relationships in-
volved at each step.

2.3 From an Example to Simulation

A simple arithmetic example will demonstrate the use of evolving retrenchment.
Floating point arithmetic is well understood, e.g. [19]. We choose the retrench-
ment of real to floating-point addition, simplifying the scenario to highlight the
evolving approximation of representation that we wish to describe. Figure 2
shows the example: the upper line of numbers represents a sequence of three
real additions and the lower line represents the corresponding floating point
sequence. A represents the error bound at each step.

Abstract model: R

+r(u, 1) 1.004 +1.004 2.008 +1.004 3012 +1.004

Go| P G| P G| P
+rp(v,j) 100 *+1.00 2.00 +1.00 3.00 +1.00
A= 0.005 0005 0.010 0-005 0.015 0-005

Concrete model: floating point FP(10,4, ¢)

Fig. 2. Evolving retrenchment of real to floating point addition

We restrict ourselves, using the WITHIN clause, to (abstract state and input
variables u, i) the real interval [1,9.9995)2, and the corresponding set of base-
ten floating point numbers with four decimal places (concrete state and input
variables v, 7). e is the limiting exponent value for FP representation. We use a

2 This overloaded syntax is the classical real notation for a semi-open interval including
1 and excluding 9.9995

rounding regime for FP addition. We have (using some syntactic shorthand for
clause P):

I(u)=ueR J(v) = v € FP(10,4,¢)

OpA(u, i) = u := +r(u, 1) OpC(v,j) = v = +rp(v,])

Ge(u,v) S |u—v|<5x(k+1)%x1073 for k €N

P(i,j,u,v) = u,4,u+ i € [1,9.9995)

Av,j>1A0,5<9999A|i—j|<5%x1073

Cr(u,v) = Gy (u, v) 3)
Because these are simple assignment operations, the operations terminate uni-
versally. Initial error Gy is the standard state representation error 5 % 10~2 for
these FP parameters; the evolving error results from the accumulation of the
constant input representation error 5% 10~3. So the evolving retrenchment POB

is a succinct formal statement that the retrieve relation will degrade by at most
5% 1072 every step:

I(u) A Gp(u,v) A J(v) A P(3,5,u,v)
= [+re(0,5)] [+r(u, i)]7 (Gr(u, v) V Cp(u,v)) (4)

The apparently curious concession definition is explained by the POB: the last
subclause could more clearly be written (Gi(u,v) V Giy1(u, v)).

From [30], we repeat the monotonicity statement for operation sequence with
respect to evolving retrenchment. This is a simpler form for universally substi-
tuting operations:

S1<T1 wrt. (Ga,Ply(ia,d,u,v) — Gg, Clg(u,v,01,p1))

ANS2S T2 wrt. (Gg, P2g(d2, j2, u,v) — Gy, C2,(u, v, 02, p2))

ANIANGy,NJT

A P1A[T1]-[S1]- (Gs A P2p)

F[T1;T2]- [S1;52]- (G, v C2,)
...that is

51,82 < T1;T2 wrt. (Go, Ps — Gy, C2,) (5)
...where Pg’ denotes last line of hypothesis

The POB (4) shows that starting from Gy, we might achieve Gy, but certainly
will achieve the weaker Gj1. Hence the monotonicity property is directly ap-
plicable to guarantee a two-step transition from Gy, to at least Ggy2, and so on,
inductively.

This formalises the sequential composition of the OpA/OpC retrenchments
into what we might call an evolving simulation. This precisely describes the
evolution of the representation. This is a formal statement of error propagation,
a subject thoroughly analysed in classical numerical analysis such as [1]. Thus
evolving retrenchment points the way to the exploitation of numerical analysis
in prover-supported verification of continuous system development.

3 Case Study: Second-order Linear Control System

We now test the intuition of evolving retrenchment against the kind of continuous
application it is intended for. The case study is based on a classical second-order
linear control system. Typical control engineering practice [27] is to design a dis-
crete, computer based system (“digital system”, in control engineering parlance)
by approximation to the continuous. We will describe this approximate design
step as a retrenchment.

A continuous control system is analogue in structure, and has analogue con-
nections to the plant under control. System dynamics and control vary contin-
uously in time. On the other hand, a digital system emphasises the discrete
computer and interfaces with the continuous plant through sensors and A-D
converters. These interfaces are discrete by virtue of being sampled, say every
T seconds.

The discrete system is inevitably an approximation of the continuous, los-
ing all information about state and input dynamics between the sample points.
The precision of the approximation is a function of time. The design step from
continuous to discrete control is thus an obvious candidate for description as a
retrenchment.

We will use the “zero-order hold”, or ZOH approximation [27, 18]. In practice
this is the preferred choice over a number of approximation methods. It is named
after the fact that the discrete controller output y4(kT), available only at discrete
sample times, is converted into continuous y(t) by the ZOH chip as follows:

y(t) = ya(kT) for kT <t<kT+T (6)

The aim of the retrenchment to be presented is to give a precise formal de-
scription of the precision of approximation of a continuous by a discrete control
system. Such a description is typical of the style sought by formal methods
practitioners, i.e. capable of formal verification. Such a description cannot be
provided by refinement.

Figure 3 shows a second-order linear system describing the control of a simple
industrial process. A mass m is attached to a wall by a spring k; /dashpot &,
damper assembly. It is constrained to move horizontally, in one dimension only.
The mass is also subject to external disturbance d(t) and an operator input z; (%),
representing the desired reference position of the mass. The actual position (of
the centre of gravity of the mass) is the system output z,(¢). The uncontrolled
acceleration of m, by elementary physics, then depends on ki z,(t), k2%, (t), and
d(t). A controller force is required to counteract the disturbance and to move
the mass towards the reference position; a typical such force is defined by the
equation:

controller force = k3(z,(t) — z;(t)) + ko (t) (7
The system is described by the equation:

mfio(t) = _k1$o(t) - kZi'o(t) - k3(xo(t) - xi(t)) - k4~'io(t) + d(t) (8)

10

controller
force k
,,,,,,,,, S — —
ay | ™ K

X () % (1)

Fig. 3. A second-order linear control system

For reasons of space, only those results of the control-theoretic analysis necessary
for understanding and for the retrenchment description are given; see [31] for a
full analysis.

3.1 A Continuous State Space Model

We describe the case study using the state-space formulation of modern control
theory. The (control-theoretic) state of a dynamic system is defined to be the
vector of minimum dimensionality of variables y(¢), such that knowledge of y (%)
and all system inputs for all time after ¢, completely characterises the system
behaviour.

To describe a model such as the above in state-space, we “flatten” an nth
order linear differential equation into n first order equations (here n=2). Part
of this process is renaming output and input variables and their derivatives
to facilitate the matrix presentation below. For our example we assign state
variable y; to each derivative méiil). Thus 3, represents mass position z, and ¥,
represents mass velocity z,. Inputs are renamed as components of a vector u.
Here, the following system of equations is generated:

Y1 =12

Yo = To = Y1

o =% = =% ((ky + ks)yr + (k2 + ka)y2) + = (ksur + u2) 9)
... where

u(t) = zi(t) wp(t) = d(t)
Thus the system can be described by the following matrix equation:

y = Ay + Bu ... that is

[Z;] B [—%(k? +ks) —%(kﬁ + k4)] Bﬁ] * [é} ;] [Z;] (10)

Laplace transformation, e.g. [13, 16], gives

Y (s) = $(s)y(0) + &(s)BU(s) ... where (11)
B(s) = (sT—A)! (12)

Y(s),®(s), U(s) are the Laplace transforms of y (), #(t), u(t) respectively, where
&(t) is called the transition matriz of the system. For all ¢ > 0, it is convenient
that &(t) = eAt. &(t) is calculated by inverse Laplace transformation of &(s),
one element at a time, by recourse to a table of Laplace transforms such as [13].

The important point here is that output y(t) is the sum of an initial-conditions
term independent of input, and an integral term over the input. The time-domain
solution for the linear system (10) is

y(t) = 3(t)y(0) + /0 "S(t — 1) Bu(r) dr (13)

3.2 A Discrete State Space Model

The discrete model is conceptually closer to being implementable, since it as-
sumes input u(¢) is only available at sampling points of interval T. Information
is only needed at these discrete time points: the state trace is now a sequence
rather than a function of real-valued time.

The approximation lies in assuming the input to be piecewise constant, with
value u(kT) across the sampling interval [kT', kT+ T'). [27] shows that continuous
system (10), with input piecewise constant in this way, can be described exactly
as the following difference equation in state space. We call the discrete state y4
to distinguish it from continuous state y. For our purposes y, is only defined
at sample times kT for £ € N, although for practical purposes y4 is piecewise
constant in continuous time by use of the ZOH chip.

T
Ay(T)=&(T) = eAT Bd(T):/O &(r)Bdr (14)

This picture is “local” to the k’th sampling interval. A straightforward derivation
gives an analogous local expression to (14) for the continuous model, over an
interval of length T', from (13). We give the continuous and discrete state space
equations over interval [kT — T, kT) for comparison:

y(kT) = eATy (kT — T) + /T eA"Bu(kT — 1) dr (15)
0

ya(kT) = eATy (kT — T) + By(T)u(kT — T) (16)

12

Given an input function u(t), then, we are interested in the approximation of
continuous by discrete state, and its description as a retrenchment. That is, we
seek an explicit expression for the difference function A(t) = y(t) —ya(t), where
from (15,16) we have

AKT) = eATAKT — T)

+ /T eA"Bu(kT — 1) dr — By(T)u(kT — T) (17)
0

3.3 Making the Approximation Explicit

Provided A is nonsingular (as is required by a nontrivial system (10)), then we
have

T T
B,(T) = / eATBdr = A‘leATB|0 =AHAT -1)B (18)
0

Thus the discrete contribution to error A(kT) from the k’th interval can be
calculated exactly, giving a matrix of exponential-sinusoidal expressions in 7" and
model parameters. The matrix B4(t) (which we do not give here) is independent
of k. Judicious Taylor expansion gives

/T eA"Bu(kT — 7)dr — By(T)u(kT — T)

0(T?)

"L (kyin (kT - T) + (kT — T)) + O(T?) (19)

To O(T?), we see that for step k the discrete model approximates the continuous
Y1, i.e. the system output z,, exactly. The step k contribution to the error in
Y2, i.e. velocity ,, is a term in T2 and the first derivatives of the inputs. If the
expansion is performed to O(T*) then the derivatives of the inputs can be seen
to contribute to error in z,.

4 Control System Design as an Evolving Retrenchment

The basis of arguing that this is a case for retrenchment is now clear: (17) and
(19) provide the means, given error of approximation A(kT — T') at start of step
k, to describe the error A(KT) at the end of that step.

We describe the retrenchment in the B framework of this paper, but again
need to imagine the language is further enriched. As a minimum we need the
reals, differentiable functions on the reals, vectors and matrices, and the asso-
ciated tools of real and complex analysis implicit in this work. The syntax and
semantics of B predicates and formulas needs enrichment to make statements
about such types, e.g. (10) and (15).

Note that in this section, as we discuss the composition of the difference
vector A(KT) at time kT (17), we will refer to its two summands as the history

13

A-vector eATA(KT — T) and the previous A-vector (19). We will call A(kT)
the current A-vector. Also note that from here we will use the term “state” in
the sense of state variables in a retrenchment model, rather than in the control-
theoretic sense.

The abstract, extended-B model is the continuous state-space model (10).
State variables are given by the 2-vector y(t) = {y1(t), y2(¢)}® of real-valued
functions, which describe system output z,(¢) and its derivative. Operationally,
y will be defined in terms of the solution (13) to the linear system (10). The
retrenchment relation will represent that continuous behaviour at the discrete
sample points (multiples kT of sample time T) of the concrete model®. The
abstract model respects the granularity of the discrete in the sense that, for step
k,y is only defined over time interval [T — T, kT]. Abstract inputs for step k are
given by the input vector u = {u;(t), u2(¢)} and its derivative 0 = {1 (), 42(t)}
over [((k—1)T,kT).

Since the system behaviour is defined in terms of the solution (13) to dif-
ferential equation (10), the latter is clearly appropriate as abstract invariant,
conjoined with a suitable typing statement:

Iy)2y=Ay+BuAyel[kT — T,kT] - R? (20)
The abstract operation OpA(k) for step k is defined in terms of the solution®
(13). The abstract initialisation is simply OpA(1):
OpA(k) = y:=At:[kT — T,kT) e A FT+ Dy (kT — T)

t—kT+T
+/ eA"Bu(t —7)dr (21)
0

InitA = OpA(1) (22)

Operations OpA and its concrete counterpart OpC (26) are assignments and
therefore terminate universally. In retrenchments like this we can thus dispense
with concern about termination.

The usual operation consistency obligation for OpA is

I(y) = [OpA(K)(y) (23)

This is straightforwardly discharged by differentiating the OpA definition (21)
with respect to ¢ by use of the Leibnitz rule [22] for differentiating across an
integral:

B(t)
L If F(t):/A(t) £(t,2) dA

3 We enclose horizontally displayed vectors in parentheses {}.

4 As in Sect. 2.2, we really mean a collection of k-indexed simple retrenchments.

% Note the logical close coupling that differentiation gives to invariant and behaviour;
this is unusual in B models.

14

d [B® B sf(t,N) dB dA

— = A A B)— — A)—

ten 5 [e /A S an 1, B) T - 0,0
(24)

The rule is valid over an interval (a,b) for ¢t provided f, % are continuous on

[a,b], A'(t),B'(t) are continuous on (a,b), and A(t) < A < B(t). f(t,) is
the integrand term in (21), including the input term u(#). This rule imposes
conditions on the input, but these are no more onerous than those imposed by
our use of Taylor’s theorem in Sect. 3.3.

The concrete model is given by the discrete state-space model (16). We call
the state vector y4 = {y41, ya2}. Concrete inputs are given by the input vector
u; assume for now these are identical to the abstract input values at times k7.

It is a feature of the ZOH design method that (10) is approximately satisfied
by the discrete model (16). The discrete world is not rich enough to state this
in the discrete invariant; indeed, to attempt to do so would breach separation of
concerns in design. The retrenchment will describe this approximation. For the
concrete invariant a simple bounding constraint (for some Ly, Uy, L, Us € R),
which serves as a typing predicate, will suffice:

J(ya) = yar € [L1, U] A yaz € [L2, U] (25)
The concrete operation is defined in the obvious way from (16):
OpC(k) 2 yq:= ATy + By(T)u(kT — T) (26)

Initialisation is in terms of user-defined initial conditions y 4;n;7 at time 7', not
necessarily the same as y(7T). However, the refinement of initialisations POB
(30) dictates how close y(T) and initial-state y4 should be.

InitC = yq := yanir (27)

The operation consistency obligation for OpC' is established trivially from the
OpC definition (26):

J(ya) = [0pC(K)]J(va) (28)

The retrieve relation G decomposes the current A-vector A(kT) into its two
elements, and does not refer to A(kT—T'). G bounds A(kT) in terms of constants
€r,Ex%: the designer chooses bounds e1,&1, and we will shortly see how the
evolving bounds are defined inductively. For k € Nj :

G(y,ya k,er,€x) = |1(kT) — yar| < ex A |12(kT) — yaz| < € (29)

We require refinement of initialisations to state the precision of approximation
at start time T':

[InitC]— [InitA]~ G(y,y4,1,e1,81) (30)

5 We use a little lexical licence in naming the error bound on the derivative term éj.

15

Next we seek the remaining syntactic components of the evolving retrenchment
of OpA(k) by OpC(k), as defined by (2) - WITHIN clause P and CONCEDES
clause C:
I(y) A G(y7Yd,k - 17519—17[3:’6—1) A J(yd) A P(yaydaua ﬁak - 1)
= [OpC(k)]- [OpA(k)]
- (G(y7 Yd, k — 17 Ek—1, ékfl) \ C(y7 Yad,u, 1.17 k: €k, Ek)) (31)
We will not use the logical variable A and expect that the concession will state
different error bounds e, €y to those of G(k — 1). For the WITHIN clause it
suffices to define:
P(y,yq,u, 0,k —1) = true (32)
Given (29), at time kT — T we have for each element of the history A-vector
{eATART - T)}i| < el ||AKT — T)i| + [ef3" [|AGKT — T)2|
< |6;}T|6k71 + |€£T| Ek_1 (33)
For the previous A-vector we have, from (19), for some constant My, Ma:
|{previous A-vector};| < M; T®
1
|[{previous A-vector}s| < %m |ksiy (kT — T) + (kT — T)| T* + Mo T? (34)

The CONCEDES clause C' will bound the current difference vector A(kT) ac-
cording to (33, 34). That is, C' has effectively been derived in the (implicit, in
this paper) error analysis (19) of difference function (17). Hence C will always
be derivable by a prover sufficiently rich in theory and strategy to reproduce this
reasoning.

C is free in all state variables and abstract input derivatives u:

C(yaYdaﬁak) =
ly1(ET) — ya1| < |€1A1T| €g—1t+ |61A2T| Ep1 + M T?

Ay (kT) = yaz| < |esi” |ex—1 + |35 | €k
1
+5 |ksin (kT — T) + i (kT — T)| T?> + Mo T (35)

The RHS’s of the two inequalities in (35) are renamed to €, £ respectively. Any
concern about defining ¢4 and thus Gy, in terms of input values can be addressed
by reading the last line of (35) in terms of the maximum absolute values, over
all time of interest, of 4 (t), ita(t)7. The concession is then in the right form to
be read as retrieve relation G for step k. This yields a neat description in terms
of evolving retrenchment. Since the two bounding expressions ey, € of (35) are
functions only of €j_1,€,—1 (and fixed model parameters) respectively, we can
define for all & > 1:

G(yayda kaEkaék) = C(y;yd,ﬁmax; k — 1) (36)

" The assumption of such maxima is typical control engineering practice.

16

and this gives the inductive definition of €, €. Therefore the retrenchment state-
ment (31) becomes:

I(y) A G(yayd7k - 1a5k717ék71) A ‘](yd) (37)
= [OpC (k)] [OpA(K)]—~ (G(y,¥a,k — 1,ek—1,€k—1) V G(¥,¥d, k, €k, ER))

This is precisely the type of scenario that the evolving variant of retrenchment
was devised to describe. Retrieve relation G(k — 1) of predetermined error may
be preserved by step k; the concession G (k) certainly will be. Thus (37) recasts
the concession of (31) as an evolved retrieve relation®, which is available for use
as the basis for the step k£ + 1 retrenchment.

We briefly analyse the various sources of error contributed by step k, which
the concession describes. Taylor expansion error is small at O(T3). The error
from abstract input derivatives iy, i, having a T?-factor, is only significant
for rapidly varying inputs. In the real world of the model, this is only possible
for the disturbance force d(t) = ua(t). Usual engineering practice is to assume
disturbance inputs have bounded (if large) derivatives.

The significant factors which multiply start-of-step error G(k — 1) are the
elements of transition matrix e’ i.e. constant expressions in the model pa-
rameters. It is thus the transition matrix, independent of external inputs, which
will usually determine improvement or decay in the error evolution A(kT). A
lower bound on sample time T is determined by the target hardware, but the
designer has some freedom in fixing the other model parameters. There are
standard control engineering design constraints on parameter-setting, concerned
with required system response to representative input signals [25, 27]. It may
be the case that sufficient design freedom exists to enable model parameters to
be chosen such that every |69T| is sufficiently less than 1. In this situation the
approximation error of the retrenchment can be guaranteed to improve.

4.1 Another retrenchment

An appealing fact about this ZOH discrete approximation to a continuous con-
trol system is that the difference vector A(kT) (17, 19) depends only on deriva-
tives of system inputs (at least to O(T?)). This fact makes it easy to generalise
the example to distinguish between abstract and concrete inputs u and ug.
Typically, precision would be lost in moving from an analogue specification in
continuous variables and inputs, to digital hardware-based input sensors with
finite precision. Revisiting (19) with input approximation, we have a bigger ex-
pression in wug41, uge. Defining difference vectors for the input representations
Au;(kT) = ui(kT) — ug; (kT) for i € {1,2}, we have®:

/T eA"Bu(kT — 1) dr — By(T)u(kT — T)
0

8 This retrenchment suggests a definition of evolving refinement.
9 p,w are derived parameters from the model (8)

17

T2 (ks Auy (kT — T) + Aus (kT — T)) + O(T?)

= | [=0T (5 Ay (BT - T) + AT - T)) | (39)
+LZ (ks in (kT — T) + in(kT — T)) + O(T?)

The extra error introduced by input approximation is a linear combination of
the Au;(kT — T) terms, with factors in powers of T. We can therefore choose
WITHIN bounds to input error Au;(kT — T') that make the overall extra error
contributed insignificant. For example, to make

|[{previous A-vector};| < i—g + i—g + M, T? (39)
A |{previous A-vector}s| < i—g + i—g (40)

1
+o |ksin (kT — T) + (kT — T)| T? + My T?

bound the input error to reduce the new error terms in (38) as follows:

. Epm Exm
Au (kT — T)| <
| Aug (K)|—mm{5k3T2’5k3(T—pr2)}
. [éxm Epm
Aw(kT — T)| < 4
A |Aus(k)|—mm{5T2’5(T—pr2)} w

The retrenchment description of this approximated-input scenario is that al-
ready given, with P strengthened to specify the input error bounds (41), and C

weakened in its error bounds by T + & as per (39, 40).

5 Conclusion

Retrenchment was devised as a method to support the formal description of
design transformations too rich for refinement. In this paper we introduce a
generalisation, evolving retrenchment, to enable description of simulation-like
behaviour through an evolving representation relation.

The retrenchment approach, like refinement, takes the abstract system model
as given. The case study retrenchment in this paper has been developed on that
assumption. The suggestion following the retrenchment (37) suggested another,
more intricate and ambitious use for retrenchment. We indicated the possibility
of exploiting design freedom (i.e. freedom of choice of model parameters) in the
abstract description in order to “improve” the retrenchment. Improvement in the
case study constituted a decreasing (as opposed to increasing) sequence of error
bounds, i.e. an increasingly precise retrieve relation G(k) over the k-indexed
evolving retrenchment. Of course, the notion of improvement of retrenchment
must be application-specific, and in any event about getting logically closer to
some ideal refinement.

A more ambitious use of retrenchment in formal development, then, is one
that exploits underspecification or nondeterminism in the abstract specification,

18

in order to reduce the logical distance from pure refinement. Such a usage would
contribute to two obvious methodological questions about retrenchment:

“How closely does the program approximate the requirement? If you
can’t refine, how close can you get to refinement?”.

These questions relate to nontrivial developments involving the composition of
retrenchment and refinement steps, from abstract model to compilable code.

The first question is answered by the transitivity property of retrenchment
[5, 29]: the composite concession of two composed retrenchments can be calcu-
lated mechanically. A more sophisticated answer is given by mazimally abstract
retrenchment [4] to the related question “Given a retrenchment from abstract
model M4 to concrete model M, what is the corresponding abstract model
My which is refinable to Mc?”. In a theoretical sense, this gives requirements
validation by constructing the abstract counterpart to the implemented system,
for comparison with original requirements.

The second question is addressed, but not answered, by two pieces of work.
The notion of weakest retrenchment [31] derives from the intuition that a weaker
WITHIN clause is preferred where possible. The dual notion of strongest re-
trenchment, in terms of logical proximity of the CONCESSION and RETRIEVES
clauses has been proposed [31], and is more relevant to the second question.

The focus of the paper is the description of the design step from continuous to
ZOH-discrete linear system as an evolving retrenchment. This is set in a version
of B much enriched with appropriate types, axioms and analysis. For practical
work supported by theorem provers, it is straightforward to describe the models
and their retrenchment in a language such as PVS [12] or HOL [20]. These
provide some real analysis support: typically, prover support outside the usual
discrete types and logics is scarce. However, current interest in the integration
of theorem prover and computer algebra technologies such as [21, 17, 33, 28],
therefore holds great potential for support of applications such as ours.

References

[1] K.E. Atkinson. An Introduction to Numerical Analysis. Wiley, 1989.

[2] R.J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer, 1998.

[3] R.J.R. Back and M. Butler. Fusion and simultaneous execution in the refinement
calculus. Acta Informatica, 35:921-949, 1998.

[4] R. Banach. Maximally abstract retrenchments. In Proc. IEEE ICFEM2000, pages
133-142, York, August 2000. IEEE Computer Society Press.

[6] R. Banach and M. Poppleton. Retrenchment: An engineering variation on refine-
ment. In D. Bert, editor, 2nd International B Conference, volume 1393 of LNCS,
pages 129-147, Montpellier, France, April 1998. Springer.

[6] R. Banach and M. Poppleton. Retrenchment: An engineering variation on refine-
ment. Technical Report Report UMCS-99-3-2, University of Manchester Com-
puter Science Department, 1999.

[7]

(8]
[9]

[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]
23]

[24]
[25]
[26]
[27]

(28]

[29]

19

R. Banach and M. Poppleton. Retrenchment and punctured simulation. In
K. Araki, A. Galloway, and K. Taguchi, editors, Proc. IFM’99:Integrated Formal
Methods 1999, pages 457-476, University of York, June 1999. Springer.

R. Banach and M. Poppleton. Sharp retrenchment, modulated refinement and
simulation. Formal Aspects of Computing, 11:498-540, 1999.

R. Banach and M. Poppleton. Retrenchment, refinement and simulation. In
J. Bowen, S. King, S. Dunne, and A. Galloway, editors, Proc. ZB2000, volume
1878 of LNCS, York, September 2000. Springer.

A. Blikle. The clean termination of iterative programs. Acta Informatica, 16:199—
217, 1981.

D. Coleman and J.W. Hughes. The clean termination of pascal programs. Acta
Informatica, 11:195-210, 1979.

J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction
to PVS. In R. France, S. Gerhart, and M. Larrondo-Petrie, editors, WIFT’95:
Workshop on Industrial-Strength Formal Specification Techniques, Boca Raton,
Florida, April 1995. IEEE Computer Society Press.

J.J. D’Azzo and C.H. Houpis. Linear Control System Analysis and Design.
McGraw-Hill, 4 edition, 1995.

W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof
Methods and their Comparison. Cambridge University Press, 1998.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

R.C. Dorf and R.H. Bishop. Modern Control Systems. Addison-Wesley, 1998.

M. Dunstan, T. Kelsey, U. Martin, and S. Linton. Lightweight formal methods for
computer algebra systems. In ISSAC’98: Proceedings of the 1998 International
Symposium on Symbolic and Algebraic Computation, Rostock, 1998. ACM Press.
G.F. Franklin, J.D. Powell, and M.L. Workman. Digital Control of Dynamic
Systems. Addison-Wesley Longman, 3rd edition, 1998.

D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 1991.

M.J.C. Gordon and T.F. Melham. Introduction to HOL: A theorem proving en-
vironment for higher order logic. Cambridge University Press, 1993.

John Harrison and Laurent Théry. A skeptic’s approach to combining HOL and
Maple. Journal of Automated Reasoning, 21:279-294, 1998.

F.B. Hildebrand. Advanced Calculus for Applications. Prentice-Hall, 1962.
C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-583, October 1969.

D.S. Neilson. From Z to C: Illustration of a Rigorous Development Method. PhD
thesis, Oxford University Programming Research Group, 1990. Technical Mono-
graph PRG-101.

K. Ogata. Modern Control Engineering. Prentice-Hall, 1997.

O. Owe. Partial logics reconsidered: A conservative approach. Formal Aspects of
Computing, 3:1-16, 1993.

P.N. Paraskevopoulos. Digital Control Systems. Prentice-Hall, 1996.

E. Poll and S. Thompson. Adding the axioms to Axiom: Towards a system of
automated reasoning in Aldor. Technical Report 6-98, Computing Laboratory,
University of Kent, May 1998.

M. Poppleton and R. Banach. Retrenchment: extending the reach of refinement.
In ASE’99: 14th IEEE International Conference on Automated Software Engi-
neering, pages 158-165, Cocoa Beach, Florida, October 1999. IEEE Computer
Society Press.

20

[30]

31]

32]

[33]

34]

M. Poppleton and R. Banach. Retrenchment: Extending refinement for contin-
uous and control systems. In Proc. IWFM’00, Springer Electronic Workshop
in Computer Science Series http://ewic.org.uk/ewic, NUI Maynooth, July 2000.
Springer.

M.R. Poppleton. Formal Methods for Continuous Systems: Liberalising Refine-
ment in B. PhD thesis, Department of Computer Science, University of Manch-
ester, 2001.

S. Stepney, D. Cooper, and J. Woodcock. More powerful Z data refinement:
Pushing the state of the art in industrial refinement. In J.P. Bowen, A. Fett, and
M.G. Hinchey, editors, 11th International Conference of Z Users, volume 1493 of
LNCS, pages 284-307, Berlin, Germany, September 1998. Springer.

S. Thompson. Integrating computer algebra and reasoning through the type sys-
tem of Aldor. In H. Kirchner and C. Ringeissen, editors, Frontiers of Combining
Systems: Frocos 2000, volume 1794 of LNCS, pages 136-150. Springer, March
2000.

J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof.
Prentice-Hall, 1996.

