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Formally capturing the transition from a continuous model to a discrete model is investigated using
model based refinement techniques. A very simple model for stopping (eg. of a train) is developed
in both the continuous and discrete domains. The difference between the two is quantified using
generic results from ODE theory, and these estimates can be compared with the exact solutions.
Such results do not fit well into a conventional model based refinement framework; however they can
be accommodated into a model based retrenchment. The retrenchment is described, and the way it
can interface to refinement development on both the continuous and discrete sides is outlined. The
approach is compared to what can be achieved using hybrid systems techniques.

1 Introduction

Conventional model based formal refinement technologies (see for example [37, 19, 38, 1, 34, 43, 2]) are
based on purely discrete mathematical and logical concepts. These turn out to be ill suited to modeling
and formally developing applications whose usual models are best expressed using continuous mathe-
matics. Nevertheless, many such applications, control systems in particular, are these days implemented
using digital techniques. So there is a mismatch between continuous modeling and discrete development
techniques.

In this paper we tackle this mismatch head on. Although traditional model based refinement is too
exacting to straddle the continuous to discrete demarcation line, a judicious weakening of it, retrench-
ment, proves to be adaptable enough to do the job, which we show. Importantly, retrenchment techniques
interface well with refinement, so that a development starting from continuous and ending at discrete can
be captured in an integrated way.

In this paper we tackle the continuous to discrete issue by taking a simple running example, one
that can be solved fully by analytic means in both the continuous and discrete domains, and tracing
it through the critical formal development step. We start with a continuous control problem: bringing
an object (eg. a train) to a halt. This is formulated as a continuous control problem, and given the
(deliberately chosen) simplicity of the problem, an exact solution is presented. In reality, continuous
control is implemented these days via digital controllers. These periodically read inputs and recompute
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outputs at multiples of a sampling interval during the dynamics. In this sense, the control becomes
discretized, although the discretized control is obviously still played out in the continuous real world.
We thus remodel the continuous problem as a discrete control problem, and derive a formal description
of the discretization step via a suitable retrenchment, drawing on rigorous results from the theory of
ordinary differential equations (ODEs) to supply the justification. Given the limited size of this paper, our
technical focus is on this critical step, and the remainder of the development (comprising the associated
refinements either side of it) is sketched rather than treated in detail. The latter is a task for which a fuller
treatment will be given in the extended version of the paper.

The rest of the paper is as follows. We start in Section 2 by describing relevant existing work in the
hybrid systems domain and how it contrasts with our own approach, after which we get down to details.
Section 3 then formulates our train stopping problem as a conventional open loop continuous control
problem. Section 4 then describes the discretization of the control problem using a simple zero order
hold strategy. In Section 5 we review what we need of ASM refinement and retrenchment in a form
suitable for our problem. Section 6 then shows how our earlier discretization process can be captured
using a suitable retrenchment, citing the needed ODE results. Section 7 sketches how all this can fit into
a wider formal development strategy, in which the greater flexibility of retrenchment can be combined
with the stronger guarantees offered by refinement via the Tower Pattern [8, 28]. Section 8 concludes.

2 Related Work

The relationship between continuous and discrete transition systems has long been a topic for investiga-
tion in the hybrid systems field. Earlier work includes [4, 26, 5, 25]; also, the International Conference
on Hybrid Systems: Computation and Control, has been the venue for a large amount of research in this
area. A more recent reference is [42].

Hybrid systems are dynamical systems that mix smooth, continuous transitions with discrete, dis-
continuous ones. The major focus in this field has been the automatic verification of properties of such
systems. Obviously, such verification demands the representation of the systems in question in discrete
and finite terms, whether by means of an explicitly constructed finite state space (which is manipulated
directly), or a state space whose states arise via the symbolic representation of the less tractable state
space of a previously constructed underlying system (which is manipulated symbolically).

The main tool for bringing an intractable state space within the scope of computable techniques is
the equivalence relation. Regions of the state space are gathered into equivalence classes, and a represen-
tation of these equivalence classes (whether as individual elements in a simple approach, or as symbolic
expressions that denote the equivalence class in question) constitutes the state space of the abstraction.
Transitions between these states are introduced to mirror the behaviour of the underlying system. The
properties of interest can then be checked against the abstract system. For instance, properties that can be
expressed as reachability properties fall within the scope of model checking approaches that are applied
to the abstraction.

Of course what has been constructed thereby is a (bi)simulation, and a major strand of hybrid systems
research is the investigation of such (bi)simulations. The same remarks apply when there is an external
control applied to the systems.

One disadvantage of the above approach is the frequent reliance on brittle properties of the studied
systems. Put most simply, a number of techniques rely on the parameters of the problem falling within
a subset of measure zero of the parameter space. Real systems can never hit such small targets reliably.
Equally, the simulation relations studied can also be just as brittle. To alleviate this, and to address
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other issues of interest, the notion of approximate (bi)simulation has been studied in recent years ([42]
gives a good introduction). Here, instead of defining the simulation relation R(u,v) between an abstract
state u and a concrete state v as a simple predicate on states, it is defined via a distance function d as
Rε(u,v)≡ d( f (u),v)≤ ε , where f is a precise relationship between the two state spaces which is in some
sense “semantically natural” (we don’t have space to elaborate on this aspect here). For bisimulation you
need a symmetrical arrangement of course.

(Bi)simulation depends on assuming the appropriate relation between the two before-states and re-
establishing it in the after-states of suitable pairs of transitions. To preserve a relationship based on
distance, the dynamics needs to be inherently stable. The obvious centre of attention thus becomes
stable control systems, normally linear stable control systems, because of their calculational tractability.
These are discussed in very many places, eg. [32, 20, 22, 18, 3, 40, 11, 6].

In a stable system all trajectories converge to a single point, so the distance between two trajectories
decreases monotonically; hence a simulation relation based on distance between trajectories is main-
tained. But although most systems are designed to be stable in this sense, some are not, and there can
be parts of a system phase space in which trajectories diverge rather than converge, without rendering
the system useless. Below, we treat in detail a very simple example which happens to be unstable in the
sense just discussed. We know it is not stable because we solve it exactly.

Also, in the usual hybrid systems literature, it is normal that the discrete approximation to a given
system is manufatured from it (eg. by constructing equivalence classes, as indicated above). In our ap-
proach, by contrast, we take a more “off the shelf” attitude to discretization, analysing a straightforward
“zero order hold” version of the continuous system (in which the new output values to be sent to the
actuators are recalculated at regular intervals, and the new values are “held” for the duration of the next
inteval1) rather than something extracted from an analysis of the original system. In this sense our ap-
proach is closer to conventional engineering practice, since it is directed at the typical practical approach.
Of course these two ways of doing things are not mutually exclusive: the parameters of the zero order
hold may fall within the parameters of a discrete approximation extracted by analysis of the original
system, and vice versa. Finally, our approach is via retrenchment, one consequence of which is that our
analysis is not confined to the purely stable case. In effect, the greater expressiveness of retrenchment
permits (the analogue of) the simulation relation mentioned above, to increase its permitted margin of
error, as well as to decrease it, although this emerges indirectly.

3 Train Stopping: a Continuous Control System

Our target application domain is control problems in the railway sphere. In this paper we have train
stopping as a specific case study. Of course, in reality, train position control is a complex problem
[41, 27], relying on the co-operation of many mechanisms to achieve a reliable outcome, and we do not
have the space to deal with all these aspects and their subtle interactions. Instead we focus on a single
technical issue —the relationship between a continuous control problem and its discrete counterpart—
in a very simple way, commenting on the extreme simplicity below.

Suppose a train, of mass M, is traveling at its cruise velocity V , when it needs to stop. We assume
that a linearly increasing deceleration rate a is appropriate. (It has to be said here that our notion of ap-
propriateness is not quite the usual one. Rather than usability or any similar consideration governing our
choice, simplicity is the priority. A constant deceleration would have been even simpler — unfortunately

1“Zero order” refers here to “holding” the output value constant throughout the interval, in contrast to a higher order hold
which would use a suitably designed higher order polynomial.
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the zero order hold approximation to constant deceleration is identical to it, trivialising our problem.) To
bring the train to a standstill using linearly increasing deceleration, a force F =−Mat (where t is time)
has to be applied, by Newton’s Law. We will assume that M is known, so that we can focus on just the
kinematic aspects.

A cursory knowledge of kinematics is enough to reveal that under linear deceleration, the decelera-
tion, distance and stopping time are linked. We suppose that there is a single stopping episode, which
starts at time 0 and at x position 0, and which ends at time TStop, with the train having traveled to position
x = D. Representing time derivatives with a dot, if v is the velocity, then we know that

v̇ = −at v(0) = V v(TStop) = 0 (1)

Regarding the distance traveled x, we know that

ẋ = v x(0) = 0 x(TStop) = D (2)

Integrating these, rapidly brings us to

V =
1
2

aT 2
Stop D = V TStop−

1
3!

aT 3
Stop =

2
3

V TStop (3)

We now recast the above as a control theory problem. At the introductory level, control theory
is usually developed in the frequency domain [32, 20, 22, 18], because of the relative simplicity and
perspicuity of the design techniques in that domain. However, for results sufficiently rigorous to interface
to formal techniques, we need to go to the state space formulation favoured by more mathematically
precise treatments [3, 40, 15, 14, 11, 6]. In the state space picture, the system consists of a number
of state variables, and their evolution is governed by a corresponding number of first order differential
equations. State variables and differential equations mirror the states and transition systems of model
based refinement formalisms sufficiently closely that we can hope to make a connection between them.

To use the first order framework in our example, the state has to consist of both the position x(t) and
the velocity v(t). So we get the state vector

xxx(t) =
[

x(t)
v(t)

]
(4)

The dynamics of the system is captured in the equation2

ẋxx(t) =
[

ẋ(t)
v̇(t)

]
= fff (ẋ(t),u(t)) =

[
v(t)
u(t)

]
(5)

where

u(t) = −at (6)

is the external control control signal. We also have the initial condition

xxx(0) =
[

0
V

]
(7)

2It is clear that when (5) is expressed as a linear control law (with external control signal), the linear part has only zero
eigenvalues. Thus it is not stable in the usual (Liapunov) sense.
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4 From Continuous Control to Discrete Control

To truly implement a continuous control model, such as our case study, requires analogue apparatus.
In the highly digitized world of today, hardly any such systems are built. Instead, continuous control
designs are discretized, and it is the corresponding digital control systems that are implemented.

The digital approach to control has many parallels with the continuous case — in the frequency do-
main the main difference is the use of the z-transform rather than the Laplace transform. The state based
picture too boasts many parallels, with first order difference equations replacing first order differential
equations [23, 24, 33, 29].

In this section we examine a discrete counterpart of the previous continuous control problem, in
preparation for a formal reappraisal in the next section. One advantage of the extreme simplicity of
our example, is that it admits an analytic solution in both continuous and discrete domains, enabling an
incisive evaluation to be made later, of the reappraisal in Section 6.3.

The starting point for our problem remains as before: the train, traveling at velocity V , needs to stop
after time TStop, having gone a distance DD.3 Instead of doing so continuously though, it will do it in a
number of discrete episodes. For this purpose, let us assume that TStop is divided into N short periods,
each of length T , so that

TStop = NT (8)

Our discretization scheme will be based on a zero order hold, in which the same control input value is
maintained throughout an individual time period. The counterpart of the linear deceleration rate a of the
continuous treatment, will be a piecewise constant deceleration, with the constant rate decreasing by an
additional multiple of a constant aD after each time interval of length T .

Calling the discretized velocity variable vD, we have for the acceleration

v̇D(t) = − kaDT (9)

where

k =
⌈ t

T

⌉
(10)

and k ranges over the values 1 . . .N. If we set, for a general t,

δ tk = t− (k−1)T = t−
⌊ t

T

⌋
T (11)

then recalling that the initial velocity is V , provided (k−1)T < t < kT , the velocity during the k’th period
is

vD(t) = V −aDT 2−2aDT 2− . . .− (k−1)aDT 2− kaDT δ tk (12)

Since the final velocity is zero, we derive

V = aDT 2 +2aDT 2 + . . .+NaDT 2 =
1
2

aDT 2N(N +1) (13)

3We will use a subscript ‘D’ to indicate quantities in the discretized model that differ from their continuous counterparts.
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Knowing the velocity, we can integrate again, and work out the distance traveled. Calling the displace-
ment in the discretized world xD, the contribution to xD during the period (k−1)T < t < kT comes out
as

(V −aDT 2−2aDT 2− . . .− (k−1)aDT 2)δ tk−
1
2

kaDT δ t2
k (14)

Thus for the total distance we find

DD = NV T −aDT 3
N−1

∑
k=1

(N− k)k− 1
2

aDT 3
N

∑
k=1

k

= V TStop−
1
12

aDT 3(2N3 +3N2 +N) (15)

Both (13) and (15) feature aD. Substituting the aD value from (13) into (15) gives

DD = V TStop

[
1− 2N2 +3N +1

6N2 +6N

]
=

2
3

V TStop

[
1− 1

4N
+O(N−2)

]
(16)

We see that (16) for DD contains an O(1/N) correction compared with (3) for D (assuming we keep V
and TStop the same). This is because we have an extra constraint generated by the requirement that TStop

is an integral multiple of T , making the problem overconstrained if we wished D and DD to be the same.
Recasting the preceding as an initial value first order system along the lines of (4)-(7) is not hard.

The state vector is

xxxD(t) =
[

xD(t)
vD(t)

]
(17)

and the dynamics of the system is captured in the equation

ẋxxD(t) =
[

ẋD(t)
v̇D(t)

]
= fff (ẋD(t),uD(t)) =

[
vD(t)
uD(t)

]
(18)

where

uD(t) = v̇D(t) = − kaDT (19)

as given by (9), is the external control. We also have the initial condition

xxxD(0) =
[

0
V

]
(20)

It is hard not to notice how much more complicated the above is compared with (1)-(7). It is always
so with discrete systems — hence the strong desire to model systems in the continuous domain. The
very rapid ramp-up in complexity when we consider the discrete version of a continuous problem is our
justification for restricting to a particularly simple example. The ability to keep the complexity still low
enough to permit an exact solution, is extremely useful in an investigation such as this one, allowing a
comparison between exact and approximate approaches to be made with confidence.
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A

C D

B

RefA,C

RetC,D

RetA,B

RefB,D

Achieve[ComfortableTimelyTrainStopping]

Maintain[LinearDecelerationWhileStopping]

Maintain[StoppingDistanceAppropriate]

Maintain[StoppingTimeAppropriate]

Maintain[LinearAccelerationAppropriate]

Achieve[StopTrainInit]

Achieve[StopTrainFin]

• •

• •

••

• • ••

. . .

. . . . .

m steps

n steps

x x′

y′y

R(x, y) R(x′, y′)

Figure 1: An ASM (m,n) diagram, showing how m abstract steps, going from state x to state x′ simulate
n concrete steps, going from y to y′. The simulation is embodied in the retrieve relation R, which holds
for the before-states of the series of steps R(x,y), and is re-established for the after-states of the series
R(x′,y′).

5 ASM Refinement and Retrenchment

In this section we review what we need of ASM refinement and retrenchment, which will be the vehicles
for formalization in this paper. The standard reference for the ASM method is [13], building on the
earlier [12]. In general, to prove an ASM refinement, one verifies so-called (m,n) diagrams, in which m
abstract steps simulate n concrete ones. The situation is illustrated in Fig. 1, in whch we suppress input
and output for clarity. For this paper, it will be sufficient to focus on the refinement proof obligations
(POs) which are the embodiment of this policy. The first is the initialization PO:

∀y′ •CInit(y′)⇒ (∃x′ •AInit(x′)∧R(x′,y′)) (21)

In (21), it is demanded that for each concrete initial state y′, there is an abstract initial state x′ such that
the retrieve or abstraction relation R(x′,y′) holds.

The second PO is correctness, and is concerned with the verification of the (m,n) diagrams. For
this, we have to have some way of deciding which (m,n) diagrams are sufficient for the application. Let
us assume that we have done this. Let CFrags be the set of fragments of concrete execution sequences
that we have previously determined will permit a covering of all the concrete execution sequences of
interest for the application. We write y :: ys :: y′ ∈CFrags to denote an element of CFrags starting with
concrete state y, ending with concrete state y′, and with intervening concrete state sequence ys. Likewise
x :: xs :: x′ ∈ AFrags for abstract fragments. Also, let is, js,os, ps denote the sequences of abstract inputs,
concrete inputs, abstract outputs, concrete outputs, respectively, belonging to x :: xs :: x′ and y :: ys :: y′,
and let In(is, js) and Out(os, ps) denote suitable input and output relations. Then the correctness PO
reads:

∀x, is,y,ys,y′, js, ps• y :: ys :: y′ ∈CFrags∧R(x,y)∧ InAOps,COps(is, js) ∧
COps(y :: ys :: y′, js, ps)
⇒ (∃xs,x′,os•AOps(x :: xs :: x′, is,os)∧R(x′,y′)∧OutAOps,COps(os, ps)) (22)

In (22), it is demanded that when there is a concrete execution fragment of the form COps(y :: ys ::
y′, js, ps), carried out by a sequence of concrete operations COps, with state sequence y :: ys :: y′, input
sequence js and output sequence ps, such that the retrieve and input relations R(x,y)∧ In(is, js) hold
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A

C D

B

RefA,C

RetC,D

RetA,B

RefB,D

Achieve[ComfortableTimelyTrainStopping]

Maintain[LinearDecelerationWhileStopping]

Maintain[StoppingDistanceAppropriate]

Maintain[StoppingTimeAppropriate]

Maintain[LinearAccelerationAppropriate]

Achieve[StopTrainInit]

Achieve[StopTrainFin]

• •

• •

••

• • ••

. . .

. . . . .

m steps

n steps

x x′

y′y

R(x, y) R(x′, y′)

Figure 2: The Tower Pattern basic square, with refinements vertical, retrenchments horizontal.

between concrete and abstract before-states and inputs, then an abstract execution fragment AOps(x ::
xs :: x′, is,os) can be found to re-establish the retrieve and output relations R(x′,y′)∧Out(os, ps).

The ASM refinement policy also demands that non-termination be preserved from concrete to ab-
stract, but we will not need that in this paper. We now turn to retrenchment.

For retrenchment, [10, 9] give definitive accounts; latest developments are found in [36]. See also
[7] for formulations of retrenchment adapted to several specific model based refinement formalisms in-
cluding ASM. Like refinement, retrenchment is also characterized by POs: an initialization PO identical
to (21), and a “correctness” PO which weakens (22) by inserting within, output and concedes relations,
WOp,OOp,COp respectively into (22), to give extra flexibility and expressivity. In particular, the conces-
sion COp weakens the conclusions of (22) disjunctively, giving room for many kinds of “exceptional”
behaviour. The result is:

∀x, is,y,ys,y′, js, ps• y :: ys :: y′ ∈CFrags∧R(x,y)∧WAOps,COps(is, js,x,y) ∧
COps(y :: ys :: y′, js, ps)
⇒ (∃xs,x′,os•AOps(x :: xs :: x′, is,os) ∧

((R(x′,y′)∧OAOps,COps(x :: xs :: x′, is,os,y :: ys :: y′, js, ps)) ∨
CAOps,COps(x :: xs :: x′, is,os,y :: ys :: y′, js, ps))) (23)

To ensure that retrenchment only deals with well defined transitions, and to ensure smooth retrench-
ment/refinement interworking, we also insist that R∧WOp always falls in the domain of the requisite
operations, though this is another thing not needed here.

The smooth interworking between refinements and retrenchments is guaranteed by the Tower Pattern.
The basic construction for this is shown in Fig. 2. There, refinements are vertical arrows and retrench-
ments are horizontal, and the two paths round the square from A to D (given by composing Re fA,C with
RetC,D on the one hand, and on the other, by composing RetA,B with Re fB,D) are compatible, in the sense
that they each define a portion of a (potentially larger) retrenchment from A to D.

At this point one might legitimately ask what all the above has to do with our case study, in which
the dynamics that we considered is entirely in the continuous domain (albeit taking into account discon-
tinuous control inputs when necessary). The answer lies in the focus on the use of paths through the
system at both abstract and concrete levels in the POs of ASM. With this focus, it is unproblematic to
reconfigure the (m,n) rules (22) and (23) to deal with continuous paths rather than discrete ones. Thus
CFrags and AFrags can now refer to fragements of continuous system trajectories, rather than sequences
of state-to-state hops. Likewise the is and js in WAOps,COps(is, js,x,y) now refer to the continuous input
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signals along the trajectories, and so on for the other terms in (22) and (23). We see this exemplified in
detail in the retrenchment of Section 6.2.

6 Formalizing the Continuous to Discrete Modeling Change

In the control literature, one finds many ways of discretizing continuous designs (see loc. cit.), and the
evaluation of the relationship between continuous and discrete is often based on ad hoc engineering
rules of thumb. While these typically yield perfectly good results in practice, the criteria used fall far
short of the kind of precision needed for a good fit with model based formal development techniques.
As a consequence, when model based formal development techniques are used to support the digital
implementation of the discrete counterpart of some continuous design, the formal modeling inevitably
starts already in the discrete domain. Obviously this yields a weaker formal support for the process than
if the formal modeling had started earlier, at the continuous design stage, and was integrated into all the
subsequent design steps, including the change from continuous to discrete.

Our objective in this paper is to illustrate how to make a judgement about the discretization of a
control problem, that has enough precision to integrate well with model based formal technologies. To
achieve this we have recourse to the rigorous theory of ODEs. It can be shown4 that two instances of a
control problem which differ solely in the input control satisfy an inequality:

||xxxu−xxxuD
D || ≤ K2||u−uD||2 (24)

In (24), ||xxxu−xxxuD
D || is the L ∞ norm of xxxu−xxxuD

D , or, in plain English, the maximum value over the interval
[0 . . .TStop] attained by the difference between continuous and discrete values of any state component.
Likewise, ||u−uD||2 is the L 2 norm of u−uD, or, in plain English, the root integrated square difference
between u and uD, calculated over the interval [0 . . .TStop]. Finally, K2 is a constant.

We note that the continuous and discrete versions of our case study, with initial states (7) and (20),
over the time interval from 0 to TStop, characterize just such a scenario, since (5) and (7) differ from (18)
and (20) only in the use of uD rather than u among the independent variables.

6.1 Rigorous Bounds on Continuous and Discrete Systems

We now flesh out what (24) means for our little case study. We consider the values of the quantities on
the right hand side of (24) in order to obtain a bound for the value of the left hand side. Referring to (24),
theory furnishes an explicit value for the constant K2, namely

K2 = eKfff ||ku||2 (25)

In (25) K f is k f TStop, where k f is the L ∞ norm of fff xxx, or, the absolute maximum value (over the interval
[0 . . .TStop]) of the Lipschitz constant governing the variation of the control law fff with respect to the
state. In our application, the form of the control law is

fff (v(t),u(t)) =
[

v(t)
u(t)

]
(26)

4In the extended version of this paper it is shown.
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and it is clear that there is only one component of fff with a non-zero partial derivative with respect to
either x or v, namely the first

∂ fff 1

∂v
= 1 (27)

With this, the first factor of (25) is just eTStop .
Regarding the second factor, ||ku||2 is the root integrated square value of the Lipschitz constant

governing the variation of the control law with respect to the input control signal. Again there is only
one component of fff with a non-zero partial derivative with respect to u, namely the second

∂ fff 2

∂u
= 1 (28)

so the root integrated square reduces to
√

TStop. So we get

K2 = eTStop
√

TStop (29)

Turning to the second factor on the right hand side of (24), ||u− uD||2, we recall that we know
explicitly what u and uD are from our earlier calculations. From (6) and (19) we know that

u(t) = −at uD(t) = − kaDT (30)

where, from (3) and (13)

a =
2V

T 2
Stop

aD =
2V

T 2
Stop(1+1/N)

(31)

Now (30) shows that u(t) decreases linearly, and that uD(t) is a staircase function, decreasing in equal
sized steps near u(t). It is clear from (30) that in the limit t → 0+, we have u(0+) = 0 and uD(0+) =
−aDT , so that u(0+)− uD(0+) = aDT . It is also clear from (30) that in the limit t → TStop−, we
have u(TStop−) = −aTStop and uD(TStop−) = −NaDT = −aDTStop, so that u(TStop−)− uD(TStop−) =
(aD− a)TStop = aDTStop[1− (1 + 1/N)] = −aDTStop/N = −aDT . Since the staircase has equal sized
steps, it evidently the case that the staircase uD(t) ranges around u(t) within a bound aDT .

|u(t)−uD(t)| ≤ aDT (32)

This furnishes a suitable overestimate for the root integrated square difference between u(t) and uD(t) as
follows

||u−uD||2 ≤

√∫ TStop

t=0
[aDT ]2dt = aDT

√
TStop (33)

Substituting all the values we have obtained into (24), we get

||xxxu−xxxuD
D || ≤ eTStop

√
TStop×aDT

√
TStop = eTStopaDT TStop (34)

We see that despite the potential for the deviation between u(t) and uD(T ) to grow exponentially with the
size of the time interval, a possibility severely exacerbated by our rather crude bound (33), it is always
possible to reduce it by an arbitrary amount by making the discretization, measured by N, fine enough.
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6.2 Turning Rigorous Bounds into Retrenchment Data

Now that we have a precise relationship between the continuous and discrete control systems, we can
look to incorporate this into our model based formal description.

In general, the exigencies of model based formal refinement are too exacting to be able to accom-
modate the kind of relationships just derived. Retrenchment though, has been purposely designed to be
more forgiving in this regard, so that is what we will use.

Regardless though, of which model based formal description technique is adopted, is the issue that
all such techniques are designed for discrete state transitions, and presume a well defined notion of “next
state”, to which an equally clear notion of “current state” can be related.

In continuous dynamics there is no sensible notion of next state that we can immediately use. How-
ever, as we noted above, the (m,n) diagram approach of ASM refinement makes clear that it is paths
at abstract and concrete levels that are being related. Thus, although we avoid technical details in this
paper, we extend the ASM approach to incorporate continuous paths as well as discrete ones. The in-
centive to do this was one strong reason for choosing ASMs in this work. (Note that this perspective on
refinememt between paths is equally applicable to both the continuous and discretized versions of our
control problem. In the continuous problem there is a single continuous path. In the discretized problem
there are N consecutive shorter continuous “zero order held” paths, interleaved, at the instants at kT , by
the discrete recalculations of the output signal, thus constituting a path comprising both continuous and
discrete components.)

Since the rigorous results we use concern the same starting state for the two systems, our formal
statement is constrained to be an end-to-end one. It will express an end-to-end relationship between the
smooth dynamics at the continuous level, and the discretized level’s dynamics (which is continuous too,
though punctuated at every multiple of T by a discontinuous change in the acceleration).

As we saw before, a retrenchment between two specific operation sequences consists of four things:
a retrieve relation between the state spaces, a within relation for the before-states and inputs, an output
relation for the after-states and outputs (and before-states and inputs too if necessary), and a concedes
relation for the after-states and outputs (and before-states and inputs too if needed). In the relations
below, we use some ad hoc notations whose meaning should be obvious from the preceding material.

Regarding the retrieve relation R, there is a very natural one that we might expect to use, namely
the identity between state values in the continuous and discretized worlds. However, even though in our
specific case study the two models start out in the same state thus making such a putative R true in the
hypothesis of the PO (23), in most cases, that assumption will not hold, and so we prefer to follow a more
generic approach, which will be applicable in a wider set of scenarios. A second proposal for R would
see it express a margin of tolerance between the state values in the continuous and discretized worlds, as
discussed in Section 2. This proposal would also work after a fashion, but such a proposal works best
when the relationship between the two system states is stable throughout the dynamics — we have then
a kind of refinement. In our case study, this assumption does not hold since the discrepancy between the
two system states grows steadily through the dynamics.

To accomodate inconvenient situations such as these, retrenchment makes provisions for expressing
the relationship (or just aspects of the relationship) between the states at the before- point of the transition
being discussed in the within relation W instead of (or in addition to) in R. Since the facts expressed in
W do not need to be re-established in the conclusion of the PO (23), this provides the most flexible way
of incorporating appropriate facts about the systems’ before-states in the PO. With this strategy, a global
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retrieve relation is not appropriate, and we set R to true

R(〈x(t),v(t)〉,〈xD(t),vD(t)〉) ≡ true (35)

The job of expressing that the before-states are suitably matched in the PO, taking into account the
input control signals throughout the interval of interest, is thus taken on by the within relation W

W (u(t ∈ [0 . . .TStop]),uD([t ∈ 0 . . .TStop]),〈x(0),v(0)〉,〈xD(0),vD(0)〉) ≡
x(0) = xD(0)∧ v(0) = vD(0) ∧ ||u−uD||2 ≤ aDT

√
TStop (36)

Note that while W relates just the continuous and discrete before-states, it also relates the whole of the
continuous and discrete control inputs.

The output relation O says what happens at the end of the period of interest. In our case, on the basis
of the rather heavy calculations that came earlier, we can use O to say that the after-states diverge by no
more than the bound derived in (34)

O(〈x(TStop),v(TStop)〉,〈xD(TStop),vD(TStop)〉) ≡
|x(TStop)− xD(TStop)| ≤ eTStopaDT TStop ∧ |v(TStop)− vD(TStop)| ≤ eTStopaDT TStop (37)

Note that although O itself speaks explicitly only about the after-states that are attained by the two sys-
tems, the fact that we derived the properties of the after-states in question using an L ∞ analysis, means
that the same bound holds throughout the interval of interest. The advantage of this formulation is that
we automatically get a discreteness of the description in terms of before- and after- states, which will in-
tegrate neatly with discrete system reasoners (in the event that such modeling is eventually incorporated
into mechanised tools), while yet providing guarantees that hold throughout the interval of interest.

Since our system is so simple, O already captures all that we need to say, and the kind of exceptional
behaviour that may need to be taken into account in more realistic engineering situations is not present.
This is also connected wsiyth the fact that we have trivialised the retrieve relation. Accordingly we can
set the concedes relation C to false

C(〈x(TStop),v(TStop)〉,〈xD(TStop),vD(TStop)〉) ≡ false (38)

With these data, the proof obligation (23) becomes provable on the basis of the results cited earlier,
which establishes the formal connection between the continuous and discrete domains in a way that can
be integrated with formal refinements on both the continuous and discrete sides.

Particularly noteworthy is the fact that the discrepancy between the states grows linearly with time;
and that this is a property of the exact solutions and not just an artifact of some approximation scheme.
If we tried to handle this in a pure refinement framework, using a retrieve relation R to capture the rela-
tionship between states in the two models (regardless of whether R was an exact, pointwise relationship,
or an approximate one, analogous to the approximate simulation relations discussed in Section 2), then
assuming such an R for the before-states would not enable us to re-establish it for the after-states, and
the correctness PO could not be proved. The greater flexibiity of retrenchment permits us to handle the
before-states in the within relation and the after-states in the output relation, overcoming the problem.

6.3 Corroboration

In our case study, exact solvability of the control models in both continuous and discrete domains gives
us additional and independent confirmation of the approach we are advocating in this paper.
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Both continuous and discrete models “run” for the same amount of time, TStop, and the output relation
(37) gives an estimate for the discrepancy between the continuous and discrete states reached in the two
models after that time. The states themselves consist of two components, the displacements and the
velocities.

Regarding the velocities, both models come to a standstill after exactly TStop. Consequently both
v(TStop) and vD(TStop) are zero, so that |v(TStop)−vD(TStop)|= 0, and any positive upper bound is bound
to be sound. So (37), which gives the overestimate eTStopaDT TStop for |v(TStop)− vD(TStop)| is correct
regarding the velocities, but in an unsurprising way.

Regarding the displacements, the quantization of TStop in the discrete case, leads to the continuous
and discrete dynamics stopping at slightly different places, D and DD respectively, which we calculated
earlier. On that basis, we can calculate the exact difference (disregarding O(N−2) and beyond):

|x(TStop)− xD(TStop)| =
2
3

V TStop

4N
=

1
2

aDT 2
Stop

(
1+

1
N

)
TStop

6N

=
1
12

aDT T 2
Stop

(
1+

1
N

)
(39)

On the other hand, the output relation (37) gives the estimate eTStopaDT TStop for this quantity. Thus
the exact value falls within the bounds of the estimate, as it should, if and only if (after cancelling the
common factor aDT TStop):

TStop

12

(
1+

1
N

)
≤ eTStop (40)

Since a linear function of TStop of slope less than 1 can never catch an exponential function of TStop with
coefficient 1, (40) is obviously true, and we have our corroboration.

7 Continuous to Discrete Modeling in a Wider Design Process

The previous sections focused in detail on how the rigorous theory of ODEs was capable of yielding re-
sults that could be integrated with existing model based refinement centred development methodologies,
all in the context of a very simple example. The essence of the process is to identify useful results from
the mathematical theory, and then to drill down into the details of the proof to identify explicit values for
the constants etc. that figure in them. The latter process is often required, since it is frequently the case
that the goal of a proof of interest is satisfied by merely asserting the existence of the requisite constant,
without a specific value being calculated, since that is usually enough to enable the existence of some
limit to be proved. By contrast, for us, the existence of the limit is insufficient, since no engineering
process can completely traverse the infinite road required to reach it. Rather, we need the explicit value
of everything, so that we can judge how far down the road we have to go before we can be sure that we
have gone “far enough” to achieve the engineering quality we require.

In this section, we outline how a retrenchment obtained in this way could be placed in the context
of a development methodology of wider scope. For lack of space we touch on a number of technical
issues that are only dealt with properly in the extended version of this paper. The key idea for the
integration is the Tower Pattern, mentioned already in Section 5. This allows the extreme flexibility of
retrenchment with its ability to accomodate a very wide variety of system properties, to be shored up
with the much stricter guarantees that model based refinement offers, the latter coming at the price of
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Figure 3: An overview of a complete development, starting with abstract goals, proceeding through ex-
plicit continuous and discrete deceleration models, and continuing with further low level models. Vertical
arrows are (perhaps successive) model based refinements. Horizontal arrows are retrenchments, suited
to relating models too different to be connected by refinement.

much more restricted expressivity as regards system properties. Although we do not have the space to
discuss the point at length, we claim that a judicious combination of the two techniques can give better
coverage of the route from high level domain centred requirements goals to low level implementation,
than either technique alone. Thus on the one hand, use of refinement alone, forces the consideration
of and commitment to, low level restrictions such as finiteness limits on arithmetic, far too early in the
process, in order that all later models can (in effect) be conservative extensions of their predecessors. On
the other hand, use of retrenchment alone makes it much harder to track how system properties evolve
as the development proceeds, since successive models can be connected to their predecessors in a very
loose manner, requiring much tighter focus on post hoc validation.

In our case, it is appropriate to use retrenchment to capture the properties of the discretization step,
since that is something that has eluded model based refinement techniques.5 However, either side of the
discretization step, we are free to use refinement, since on each side individually, the models display
much more consistency regarding the kind of properties that can be handled with sufficient eloquence
using refinement alone.

The complete process that we have in mind may be summarized in Fig. 3. The thick arrows trace a
path through a family of models that a development route could plausibly take. The left hand side of the
diagram concerns continuous models. At the start, we have high level requirements goals, expressed in a
notation with formal underpinnings. We have in mind a formalism like KAOS [30, 31] (or more precisely,
an adaptation of it to deal more honestly with continuous processes). These requirements goals can then
be formally refined till they can be operationalized, i.e. transformed into the operations of a methodology
such as ASM (again, adapted to deal with continuous evolution). Then comes our discretization step,
necessitating the use of retrenchment. Once we have crossed the continuous/discrete boundary, we are
free to revert to traditional model based refinement techniques for discrete state transition systems — no

5It has to be noted that the introduction of approximate simulations has improved the situation recently with regard to stable
systems, but in a more general context the observation remains true.



R. Banach, H. Zhu, W. Su, R. Huang 15

worries about continuous phenomena any more. In Fig. 3 we indicate how the discrete kinematics that
we investigated earlier might be refined to a model of train braking, in which concern with the dynamics
is replaced by a focus on the actuators that would implement the deceleration increments in practice.

Fig. 3 also features other models, indicated by asterisks. These are models whose existence is guar-
anteed by the Tower theorems [8, 28], making the squares of Fig. 3 commuting in an appropriate sense.
However, we argue that these models are less useful than the others. Thus the lower left model would
be a continuous version of the braking model, an unrealistic overidealisation so close to implementation.
The upper right model would be a discretized version of the highest level requirements goals for train
stopping. Again this would be inappropriate at such a high level, since it clutters what ought to be the
most perspicuous expression of the system goals with a lot of material concerning low level details of
the discretization scheme. This bears out what we said above about a combination of refinement and
retrenchment techniques providing the best coverage of the route from high level requirements to low
level implementation.

Above, we mentioned adaptations of KAOS and ASM to deal with continuous behaviour. We discuss
these briefly now. Regarding ASM, a major part of what we need is already available in the literature,
eg. [16, 39] which deal with (Real) Timed ASM. The essential observation is that in the context of con-
tinuous time, system states should be modeled as persisting over half-open half-closed time intervals,
eg. (t0, t1]. This allows the typical discontinuous state transition in a typical discrete transition system,
say of a state variable v, to be represented as the move from v(t0) (the value of v at t0, which lies outside
(t0, t1] and is the right hand endpoint of the preceding interval), to limε→0+ v(t0 + ε) (the left hand limit
at t0 from the right, of values of v within the interval (t0, t1]). Likewise, a period of continuous evolution
can be understood as persisting over such a half-closed interval, governed by a suitably well posed ODE
initial value problem, and with the truth of the initial conditions for the initial value problem at the end
of the preceding interval being the trigger for the system’s subsequently following a trajectory specified
by the ODE problem. With these conventions, a version of ASM in which discrete steps alternate with
continuous flows can be developed, reflecting many of the characteristics of hybrid automata.

A similar approach can be adopted for KAOS. Although KAOS depends on a notion of time from
the outset, in the normal KAOS formalism, time is discrete, typically indexed by the integers, with
requirements goals expressed as temporal logic formulae over time. For a version over continuous time,
while some temporal operators, eg. always, until, offer no conceptual difficulties, the next operator needs
to be rethought. Again half-open half-closed intervals, with successor states being defined via the limit
from the right at the left hand end of a half-closed interval, can be used. To avoid problems arising due
to an accumulation of next operators, syntactic restrictions have to be imposed on the permitted temporal
formulae. However, the kinds of restrictions that need to be imposed are satisfied by the patterns that
KAOS requirements are normally built out of.

8 Conclusion

In this paper we introduced a small continuous control problem in state space format, and then treated a
discretized counterpart of it, utilising a zero order hold. Then came the main novel contribution of the
paper, a rigorous treatment of the continuous to discrete modeling transformation, based on cited results
from ODE theory. That done, we were able to integrate the results into a retrenchment which related
from continuous and discrete models. As noted earlier, model based formal development normally starts
already in the discrete domain, so the ability to connect this with the continuous world in a reasoned way,
is a significant extension of the potential of model based formal techniques to underpin developments
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of such systems. Equally importantly, in making essential use of retrenchment to forge the connection
between continuous modeling and discrete modeling, this work gives a fresh confirmation of the utility
of the concept as a worthwhile adjunct to refinement in tackling the wider issues connected with real
world formal developments.

Of course, this paper is by no means the last word in developments of this kind. As well as tackling a
control problem that was almost trivial technically, the rigorous result from mathematical control theory
that we utilized was relatively limited, insisting, as it did, that the two behaviours that were compared,
started from the same state, using a rather crude L 2 estimate of the difference in the control inputs to
derive its conclusion, and being based on rather generic properties of the ODEs that govern the dynamics
of the control problem. (These simple contraints also meant that relatively little of the expressive power
of retrenchment was used in this case study.) In more realistic cases, the problem will be less amenable to
analytic solution, and feedback mechanisms will help alleviate the inherent uncertainty that arises. More-
over, while a crude L 2 estimate of the difference in the control inputs allows the two control inputs to get
as far away from each other as the bounds on the control space allow, in practice, feedback mechanisms
will tend to push them together, and this could be exploited to derive more stringent estimates of the
difference between continuous and discrete control. All of this remains to be discussed in future work,
as does the extension of the KAOS and ASM formalisms (or any alternatives that might be contemplated
to act in their place), that can encompass the continuous behaviours that we have described.

Our work is to be contrasted with the possibilities offerd by the hybrid systems approach [42]. There,
the insistence on (approximate) bisimulation between a continuous system and a discrete counterpart
restricts attention to control systems which are stable in the Liapunov sense. In any event, the intense
focus on considerations of algorithmic decidability in that field, with automata homomorphism as such
a prominent relationship between system models, can inhibit design expressivity for the purposes that
concern us. For instance, techniques that rely on stability, are, strictly speaking, not applicable to our
simple case study.

Once a suitable collection of widely applicable and useful results of the kind discussed here have
been established, the way is open for the incorporation of these into appropriate formal development
tools. These would be of a different flavour to those typically developed for the hybrid systems field,
since they would have more emphasis on interactive proving than is typically the case there. One snag
that would have to be overcome is that most proving based tools cope rather badly with the kind of applied
mathematics and rigorous analysis techniques that are required for this work. A notable exception is the
PVS suite [17, 35], for which substantial library support exists to underpin both applied mathematics and
its more rigorous counterparts, eg. [21]. This would be the obvious jumping off point for the development
of tools that aligned well with our approach.
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