Retrenchment and the B-Toolkit

Richard Banach and Simon Fraser

Department of Computer Science, University of Manchester,
Manchester M13 9PL, UK,
{banach,sfraser}@cs.man.ac.uk

Abstract. An experiment to incorporate retrenchment into the B-Toolkit
is described. The syntax of a retrenchment construct is given, as is the
proof obligation which gives retrenchment its semantics. The practical
aspects of incorporating these into the existing B-Toolkit are then inves-
tigated. It transpires that the B-Toolkit’s internal architecture is heavily
committed to monolithic refinement, because of B-Method philosophy,
and this restricts what can be done without a complete rebuild of the
toolkit. Experience with case studies is outlined.

1 Introduction

The B-Method [2, 14, 19, 18, 17] has enjoyed what can only be called spectacular
success in terms of vindicating the view that model based refinement, despite
its theoretical depth, can, via the enabling effects of appropriate mechanisation,
lead to highly significant benefits for the practical engineering of systems of the
highest criticality. By now, B-engineered systems are widespread on the railways
in France, and in other countries, where the French success has convinced the
appropriate authorities [10, 9, 11].

It is well appreciated by practitioners of refinement, that for all its desirable
properties, the technique displays a certain brittleness. The abstract and con-
crete models have to be in just the right relationship before the refinement proof
obligations (POs) can be discharged. Unfortunately this state of affairs takes no
account of the human-centred needs/requirements engineering that must con-
tribute to system design, and depending on circumstances, can be a greater
or lesser impediment to a transparent system construction process. In order to
improve matters in this regard, retrenchment was introduced so that almost-
but-not-quite-refinements could be described within a formal framework similar
to that used for refinement [5, 6, 7, 4, 15, 16]. The ability to describe not-quite-
refinements leads to the capacity to describe and analyse much more general
system evolution scenarios [8, 3]. Needless to say this flexibility comes at a price;
the guarantees offered by refinement are forfeit.

If refinement greatly benefits from mechanisation then so does retrenchment.
The aim of this paper is to describe an experiment to incorporate retrenchment
into the B-Toolkit [1], one of the two commercially available implementations of
the B-Method, the other being Atelier-B. In fact retrenchment was first conceived

in the context of the B-Method [5], precisely so that the impact of the issues
surrounding mechanisation could be taken on board right at the outset.

The rest of this paper is as follows. Section 2 covers the theoretical aspects
of the integration, namely: the syntax and the PO it describes, a small example,
and what it means for a syntactically correct retrenchment construct to be type
correct. Section 3 covers the B-Toolkit’s architecture, and how it interacts with
the theoretical aspects of incorporating retrenchment. Section 4 covers evalua-
tion, and Section 5 concludes.

Acknowledgements and Note. The authors are indebted to BCore (UK)
Ltd. for access to the source of the B-Toolkit. According to the terms under which
the access was granted, the IPR residing in the experimental tool described in
this paper remains the property of BCore (UK) Ltd.

2 Extending The B-Method for Retrenchment

The B-Method [2, 17] is a methodology in which abstract models can be de-
scribed and then refined all the way down to code; all this in a manner that
lends itself to extensive and integrated machine checkability at all stages. As
noted above, retrenchment was introduced to enable the benefits of formal de-
cription and machine checkability to migrate beyond the confines mapped out
by strict refinement. The original retrenchment proposal [5] employed a syntax
that combined the syntax of abstract machines with the flavour of refinement
machines. And while it is adequate for most theoretical investigations into the
system engineering aspects of retrenchment, it proves less convenient for imple-
mentation within an existing toolkit, since it necessitates extensive modification
to the code for processing abstract machines. So for the present experiment, a
different syntactic strategy was employed.

2.1 Syntax, the POs, and an Example

In the B-Method, refinement characterises the target as an extension of the
source abstraction [2]. Retrenchment however, is a relationship between two
abstract machines, and so it was appropriate to introduce a new RETRENCH-
MENT construct, which refers to the relevant machines, but which (conveniently
enough) does not impact their syntax and processing. Table 1 describes the syn-
tax. The RETRENCHMENT keyword introduces the construct, and the FROM
and TO keywords indicate the source and target abstract machines respectively
of the retrenchment. The RETRIEVES predicate gives the desired retrieve rela-
tion between the machines, and the OPERATIONS clause lists the ramifications
of the operations common to source and target abstract machines.

Since [5], a number of different flavours of retrenchment have been investi-
gated, including the original or ‘primitive’ form, the ‘sharp’ form [6], and the

! The choice of the B-Toolkit was dictated principally by familiarity from its use in
teaching the B-Method at Manchester.

Table 1. Syntactic Categories for Retrenchment Relationship

Syntactic Category Definition

RETRENCHMENT
Identifier
FROM
Identifier
Retrenchment TO
Relationship Identifier
RETRIEVES
Predicate
OPERATIONS
Ramifications
END

Ramifications Ramifications ; Ramification_Declaration
Ramification_Declaration

RAMIFICATIONS
Identifier
LVAR
Id_List
WITHIN
Predicate
Ramification_ CONCEDES
Declaration Predicate
OUTPUT
Predicate
NEVERTHELESS
Predicate
END

Id_List Id_List | Identifier
Identifier

‘output’ form [4]. All of these can be viewed as special cases of a common ‘sharp
output’ form, and so the ramifications of the RETRENCHMENT construct were
designed to cater for this more general variant. Thus for a given operation, the
RAMIFICATIONS clause consists of an LVAR clause (allowing the introduction
of ‘logical variables’ for remembering before-values in the context of the after-
state), the WITHIN clause, for constraining the antecedent of the operation PO,

and the CONCEDES, OUTPUT, and NEVERTHELESS clauses for use in the
operation PO consequent. The operation PO itself is:

IC; NIC, A (Qp ARAW) = Qi A[Se]=[Sf]~((R A O) V D) A E)

where ICy,IC; are source/target static contexts, Qf, Q)¢ are source/target pre-
conditions, Sy, S; are source/target predicate transformers, and R,W,0,D, E
are the retrieve, within, output, concedes, and nevertheless relations respectively.

Of the top level clauses, the RETRIEVES and OPERATIONS clauses are
optional, whilst the RETRENCHMENT, FROM and TO clauses are mandatory.
If an operation is ramified, then only the RAMIFICATIONS clause itself is
mandatory, the remaining clauses are optional (although if an LVAR clause is
present, then it is mandatory for a WITHIN clause to also be present that allows
for the type checking of the variables declared).

Of course the operation PO is complemented by the intialisation PO:

IC; NICy = [L]-[If]-(R)

We give a small example of retrenchment in this syntax. The example shows how
some of the clauses of the retrenchment may be omitted, and indirectly, how the
more elaborate structures of the sharp or output forms can increase expressivity:
the two conjuncts of the concession could justifiably be separated, putting the
TRUF case in an output clause.

MACHINE abe MACHINE def

VARIABLES aa, bb, cc SEES Bool TY PE

INVARIANT aa € N A CONSTANTS MaxNum
bbe N A PROPERTIES MaxNum € N

cceN VARIABLES dd
INITTALISATION aa :=0 || INVARIANT dd e N
bb:=1 || INITTALISATION dd := 0
cc =2
OPERATIONS OPERATIONS
my_plus = aa := bb + cc resp «— my_plus(ee, ff) =

PRE eeeNAffeNA
ee < MaxNumA ff < MaxNum
THEN IF ee+ ff < MaxrNum
THEN dd := ee + ff
|| resp :=TRUE
ELSE dd:=0| resp:= FALSE
END
END
END END

The abstract machines abc and def.

RETRENCHMENT abc_to_de f

FROM abc

TO def

OPERATIONS
RAMIFICATIONS my_plus
WITHIN bb=eeNcc=ff
CONCEDES (resp=TRUE Add = aa) V

(resp=FALSE Add =0)

END

END

The retrenchment construct between the abstract machines abc and def.

2.2 Type Checking

The B-Method requires that, before a predicate involving set-theoretic variables
be proved, it must be type-checked. Here we show how the retrenchment con-
struct can be type-checked by extending the ‘check’ predicate of [2]; we use the
same techniques as [2]. We assume that a retrenchment relationship as described
above? holds between a source machine My and a target machine M; (see Ta-
ble 2), with operations opy and op; (see Table 3).

Table 2. Source and Target Abstract Machines

Source Machine Target Machine
MACHINE Mi(Xy5,zy5) MACHINE My (X,)
CONSTRAINTS Cy CONSTRAINTS Cy
SETS Sf,Tf = {af,bf} SETS St;Tt = {at,bt}
CONSTANTS Cr CONSTANTS Ct
PROPERTIES Py PROPERTIES P,
VARIABLES vf VARIABLES Vg
INVARIANT Iy INVARIANT I;
ASSERTIONS Jf ASSERTIONS Ji
INITTALISATION Uy INITIALISATION Uy
OPERATIONS of OPERATIONS ot
END END

2 The fields R, W, D, O and E refer to the RETRIEVES, WITHIN, CONCEDES,
OUTPUT and NEVERTHELESS clauses respectively.

Table 3. Source and Target Operations

Source Machine Target Machine

us «— ops(ws) = PRE Qs | wt «— opi(ws) = PRE Q:+
THEN Vi THEN W,
END END

Table 4. Type Checking Rules for Retrenchment Constructs

Antecedents Consequent

My, My ,N w5, v, rmDup(cy,ct), check (

rmDup(Sy, St),rmDup(Ty, Ty),rmDup(ays, at), RETRENCHMENT

rmDup(bs,b:),Xs,X¢,x 5,24 are all distinct N
FROM

Operation names of oy are identical to operation My

names of o, and are all included in the operation TO

names of o M,
RETRIEVES

given(Xy), given(Xy), R

given(Sy), given(Sy), OPERATIONS

given(Ty), given(Ty), 0

afGTf,ateTt, END

by € Tf, by € Ty)

|_

check(me,mt [(Cf NCy =

Veg,ce o (P APy = Yus, v @ (RAO0))))

Table 4, presents the type checking rule for a retrenchment construct. The valid-
ity of three antecedents implies the validity of the ‘check’ predicate for the whole
construct. The first antecedent asserts the distinctness of the various lexical el-
ements listed. Note that rmDup removes duplicates prior to distinctness check-
ing, therefore permitting limited sharing of identifiers (more details are given
below). The second antecedent checks the inclusion of source operation names
in target operation names. The third antecedent succeeds provided: given the set
parameters, and abstract and declared sets of the source and target machines,
assuming the numerical parameters and the machine constraints, and assuming
the constants and their properties, then the retrieve relation typechecks.

Table 5 presents the type checking rules for the ramifications of operations.
The first rule allows lists of ramifications to be checked elementwise. The second

Table 5. Type Checking Rules for Ramifications

Antecedents Consequent

ENV F check(o)
ENV | check(o ; q)
ENYV F check(q)

S¢ — op(T¥) occurs in of ENV | check (
RAMIFICATIONS
St «— op(T}) occurs in o4 op
LVAR
laug,ug,0op,wyr,we are all distinct l
WITHIN
Lug,ug,opwg,wy \ ENV w
CONCEDES
ENY, D
ur € Sy, wy € Ty OUTPUT
U € St, wy € T} [0)
F NEVERTHELESS
check(VIie (W = D AO A E)) E
END

)

Table 6. Visibility of Abstract Machine Variables

Machine Variables || /

Logical Variables

SRR (=
NN S

Operation Inputs

ANRESIAG N e
LSS S| =

Operation Outputs

rule infers the validity of the ‘check’ predicate for a ramification on the basis
of five antecedents. The first two check the presence of the operation op in the
(previously typechecked) source and target machines, and extract their I/O types
(S¢, St, Ty, Ty). The next two check that I/O variables and logical variables are
distinct from each other and the environment. The final antecedent succeeds
provided: given the environment, and the I/O variables in their types, assuming

the logical constants and the within relation, then the concedes, output, and
neverthless relations all typecheck.

Note that the rules outlined above take no account of the SEES, USES or
INCLUDES mechanisms. These work in the standard way and are not discussed
further here.

2.3 Visibility

The syntactic validation of a retrenchment necessitates the enforcement of a
visibility discipline. Table 6 shows which clauses of a retrenchment can access
which variables.

3 The B-Toolkit and its Support for Retrenchment

The B-Toolkit is proprietary software of B-Core (UK) Ltd. Its architecture is
shown in Fig. 1. The workhorse of the toolkit is the B-Platform (also known as
the B-Tool or B-Kernel). This is a theorem proving assistant,®> whose capabil-
ities include various side effects such as the writing of files. Thus, although it
maintains no state of its own, it can affect externally managed B-Toolkit state.
To this end it is put to work for all sorts of B-Toolkit tasks such as parsing and
typechecking ... which goes some way towards explaining the tool’s sometimes
eclectic responses to syntactic errors etc.

Maintaining a grip on the state of a B-Toolkit development is the job of the
Construct Manager module. And acting as intermediary between the Construct
Manager and the B-Platform is the Process Manager. So: users express their
demands via the User Interface, these get digested by the Construct Manager,
who translates them into a suitable series of commands for the B-Platform, which
then get sent to it via the Process Manager. The B-Platform processes them one
at a time, making appropriate reference to the B-Toolkit Libraries as necessary.

| |
| User Interface | | ‘ Toolkit Binaries ‘ |
| | | |
| |

| |
I'l Construct Manager ’::" Process Manager '___"1 B-Platform '
| ‘ | |

Fig. 1. Architecture of the B-Toolkit

3 So it can perform inferences, but from user-supplied axioms and theories.

3.1 The Machine Development Structure

A B-Toolkit construct is either an abstract machine (AM), a refinement machine
(RM) or an implementation machine (IM). A B-Toolkit machine development is
a collection of such constructs that provide different views of a single model. The
B-Toolkit considers the development of one (main) abstract machine to proceed
linearly from the abstract to the concrete (Fig. 2).

Specification : Implementation

Fig. 2. B-Toolkit Development Structure

Incorporating retrenchment via a separate retrenchment construct (rather than
a retrenchment machine), means that the B-Toolkit’s mechanisms for refinement
and implementation remain unaltered. However the B-Toolkit limits the use of
abstract machines, allowing only one abstract machine per development, and
restricting it to be only at the start. This raises some problems for the sup-
port of the retrenchment construct, as retrenchment fundamentally involves at
least two abstract machines. (Typically, there is an ‘idealised’ abstract model,
that undergoes one or more retrenchments until an abstraction refinable to code
emerges.) A change to the structure of a machine development was thus required
that allowed for at least the structure of machine development as just discussed.
See Fig. 3, in which a retrenchment relation (RR) connects successive pairs of
abstract machines until a machine refinable to an implementation is reached.

Specification : Implementation

......... 433}—4AM}—4RR\ +AM}_§4RM}

1 i i+1 i+2 ioioj+1 k k+1

Fig. 3. Proposed Machine Development Structure

The B-Toolkit’s limitations on the use of abstract machines turn out to be per-
vasive. The integration of the refinement relationship with the target machine
is not just a syntactic convenience, but is maintained in all representations, in-
ternal and external. So the concept of a relationship distinct from (some flavour
of) machine did not exist in the B-Toolkit, necessitating extensive redesign.*

4 For this reason the possibility of allowing the retrenchments to form an arbitrary
(loop-free) directed graph between abstract machines was not entertained.

3.2 Lifecycle of a Retrenchment Construct

Each construct under configuration control in the B-Toolkit has a state, recorded
in the Construct Manager. This can be one of: uncommitted, unanalysed, anal-
ysed, unproved or proved. The state changes as the construct is moved through
the construct lifecycle, and can be altered by changes occurring elsewhere in the
development. This all applies equally to retrenchment constructs.

Introduction. The basic introduction of a retrenchment construct is a straight-
forward extension of the existing introduction mechanism; especially since the
possibility to ‘Introduce a retrenchment of Analysed Machines’ was not pursued.
The latter would have entailed a more extensive reworking of the introduction
mechanism.

Committing and Dependency Analysis. The commit process basically has
two phases. The first determines and resolves any dependencies on the construct,
while the second verifies its syntactic correctness.

In the B-Method, a refinement machine is semantically an extension of the ab-
straction it refines. In the B-Toolkit therefore, when the abstraction is changed,
any refinement of it can no longer be trusted, and it, and any further refinements
are set to unanalysed and removed from the (B-Toolkit’s internal view of the)
state of the machine development.

By contrast, the target of a retrenchment is emphatically not an extension
of its source machine. Both source and target machines need to be self con-
tained consistent machines. Thus an alteration to the data of any retrenchment
construct that connects them need affect neither the source or target machines
themselves, nor the B-Toolkit’s view of their state.

Fig. 4 illustrates a dependency chain starting with a series of retrenchments,
and continuing with a series of refinements beyond machine ¢ + 2. Fig. 5 shows
what happens to this when retrenchment i+1 is altered. This relies on the simple
development structure implemented during this experiment, which allows only
for zero or more retrenchments followed by zero or more refinements.

................ ey ey R e R

1 i i+l i+2 j

Fig. 4. A Retrenchment Construct in a Machine Development

We turn now to abstract machines. There are three distinct types of relationship
that can cause dependency on an abstract machine — refinement, retrenchment
and inclusion/importation. The refinement and retrenchment relationships are
restricted to a single machine development, and are examined first. Fig. 6 shows
the senarios we need to consider.

1 2
@ [AM}e
1+ 2 j
L 1

@D |[aMl—RM]rereeee
1) u

® [amf—]rR]—]AM]} o
1 2 3 ,

© @ e oy B
1 w w+1 w+ 2 w+3 -

@ [AM}ens fAM}—+ RR |- AM|t—+ RR|—+ AM -+
1 Yy y+1 y+2 y+3) .

Fig. 6. Abstract Machines in Machine Developments

Development (D) in Fig. 6 shows an abstract machine at the head of a (possibly
empty) refinement chain. This is a standard B-Toolkit refinement picture, and
needed no alteration in dependency analysis.

Development @) in Fig. 6 shows an abstract machine which is retrenched.
Here the only construct dependent on the abstract machine is the retrenchment
construct. When the machine is altered, it and the retrenchment construct be-
come unanalysed, and the remainder of the chain forms a separate development.
See Fig. 7

Development @) in Fig. 6 shows an abstract machine which is the target of a
retrenchment and the source of a refinement. It is clear that when the machine is
altered, it, its parent retrenchment construct, and all its refinement descendants,
must become unanalysed. Fig. 8 illustrates.

Finally, development @) in Fig. 6 shows an abstract machine which is both
the source and target of retrenchments. In this case, the development splits into

 [av] [re] I

1 w
r-—-—-— - - - - - - - - - - - - - - - - - - - =—-=-—-=—- === 1
| Unanalysed Constructs: I
o]][] [7] |
L___,___,___,__, __________________ J

Fig. 8. Resolution of an Abstract Machine Commit @)

two: the initial part up to the most concrete ancestot of the machine in question
forms one piece, and the other part consists of the most abstract descendant of
the machine in question up to the end. Fig. 9 illustrates.

1 Yy

® P — 77|

y+4 .
L 1

| Unanalysed Constructs: |

\RR\jAM\jRR\

Fig. 9. Resolution of an Abstract Machine Commit @

An abstract machine can also be included in another (via the AMN INCLUDES
clause), and although it can only be included in one other machine, that machine

may itself be included in another . .. and so on indefinitely. Fig. 10 shows a typical
scenario.

1 9 n
ST ey —
includes
PRI — AM}—+ RR | AM |+ RR |- AM J--srs0000000
includes :

Fig. 10. Cross Machine Development Dependencies

The inclusion dependencies must be resolved before the refinement or retrench-
ment dependencies. The machine including the one at issue is located; then the
one including that one, and so on until the end of the chain. All of these machines
must become unanalysed. The last one has its refinement and retrenchment de-
pendencies resolved according the rules above. Then its predecessor, and so on
until the original machine is unanalysed. For example, committing a change in
the indicated machine in Fig. 10 would result in the state shown in Fig. 11.

Importation dependencies are handled in a way similar to this, the only
difference being that an abstract machine may be imported by many different
implementation machines.

1 p
@ [AM|e
p+4 q

: Unanalysed Constructs: :
! ,) e |
! |
! |
! |

‘RR"‘AM

b)

Fig. 11. Resolution of Inclusion Relationship

Once the dependencies of a putative commit of a construct are resolved, the
new definition of the construct is parsed. If it fails to parse, the changes remain
uncommitted and of course any constructs set to unanalysed during dependency
resolution remain unanalysed.

Analysis. The analysis phase consists of three stages: Normalisation, Syntax
Checking and Type Checking. The aim is to ensure that the user’s definition
conforms to the rules of the B-Method, and to produce an internal representation
of it.

Normalisation begins with a parse check of the user’s construct. It should
be noted that this parse check is different to the one in the commit phase, and
can uncover different errors. The commit phase parse check simply determines
whether the user’s definition can be parsed by the B-Platform, and confirms
that all keywords and operators have been used correctly. The parse check of the
analyse phase determines whether the user’s definition satisfies the restrictions
encoded in the toolkit binaries.

It was necessary therefore, to create rules for the parsing of a retrenchment
construct in the toolkit binaries, and to ensure that retrenchment keywords were
not used in other constructs (and vice versa). For example, declaring a FROM
clause in an implementation machine would cause an error as would using a
VARIABLES clause in a retrenchment. Since the construct manager relies on
the file extension of a construct to determine its type, checks were introduced to
ensure that a .rmt extension corresponded to a retrenchment construct.

It was also necessary to introduce an acyclicity check into the normalisation
stage. In principle, two machines can be retrenchments of each other. And while
it is theoretically desirable to permit this and other pathologies, the resulting
breaking of the linear development structure would have required a drastic re-
design of the B-Toolkit due to its extensive internal dependence on linearity, so
it was excluded.

After normalisation, a construct progresses to what the B-Toolkit calls syntax
checking. In this stage, the B-Toolkit checks that the contents of each clause
conform to the expected syntax. For example, each identifier is checked to ensure
that its length is between two and sixty characters. Checks are also performed
to ensure that the rules governing clause-use have been followed. For example,
it is forbidden to have a CONSTANTS clause without a PROPERTIES clause.

Little of the latter is needed for retrenchments. The only clause in which
new variables can be declared is the LVAR clause, and the identifiers of these
variables must be checked in the same way as any other new identifier. If an
LVAR clause is used however, it must have an associated WITHIN clause (so
that the variables declared can be given some before-values and types). All the
clauses consisting of predicates can be assumed to be well-formed (as they would
not otherwise have passed the commit phase parse), but it is still necessary to
check these clauses to ensure that typing errors have not occurred.

Once the basic checks described above have been performed, the list of con-
stants, sets and variables of each construct is examined for duplication. When
checking a machine, the B-Toolkit will fail with any duplication in any of these

clauses. As a retrenchment construct inherits these lists from its source and
target machines however, there is some scope for valid duplication. For exam-
ple, both source and target abstract machine may see a common library ma-
chine which defines a constant used by both machines. Since seen constants
are contained within the internal definition of the CONSTANTS clause, the re-
trenchment relationship will have two instances of this constant in its own list
of constants. However, it is clear that this is not an error but a consequence
of the difference in modelling machines and relationships. When examining the
lists of sets and constants for a retrenchment construct therefore, the B-Toolkit
will produce a warning when finding duplicate declarations. Any errors (where
a constant has the same identifier, but different properties) will be caught in the
type checking stage of the analysis. Duplications in the list of variables, however,
will produce errors as it is necessary to be able to distinguish the variables of
the source machine from those of the target.

For refinement and implementation machines, the B-Toolkit checks that the
set of operation names matches that of their abstraction. For retrenchments,
this is relaxed to an inclusion of source operation names in those of the target,
requiring a slightly different check.

Having survived thus far, a construct passes to the type checking stage. For
a retrenchment construct, the constants, sets, properties and variables clauses
are derived from its source and target machines. The combined lists of sets and
constants are each type checked against the combined properties clause, and it
is at this stage that problems due to the duplication of constant or set identifiers
can be uncovered. For example, if abstract machine aa defines a constant const
with the property const € N, and abstract machine bb also defines a constant
const, but with the property const € N1, then an attempt to relate the two
abstract machines via a retrenchment will cause type checking errors in the
retrenchment as the constant cannot have both type N and N1. Clearly, this
type checking cannot guarantee that duplicate constants or sets are valid when
their types do not disagree. For whilst two constants may have the same type, it is
possible that they can have different values. Within the B-Toolkit’s architecture
there is no simple way to check that this is not the case. It was decided that the
warnings given in the syntactic check and during type checking were sufficient for
the purposes of this experiment, and it is left to the user to spot any erroneous
duplication when attempting to prove their retrenchment relationship correct.
Although this is not ideal, the framework of the B-Toolkit was designed for use
with refinement, and a drastic reworking would have been needed to provide the
complete checking required in this instance.?

The type checking stage results in the production of a file, stored in the TYP
sub-directory of a development, that stores the type information for the variables
and operations of an analysed construct. When type checking a retrenchment,
the B-Toolkit uses the type files of source and target machines to ensure that

5 The arguably preferable option of generating proof obligations to settle such unre-
solved issues was not pursued.

all the variables used in the RETRIEVES clause have been defined (and typed)
in the machines involved.

Likewise, for every operation, the ramifications are checked to ensure that
the variables used, conform to the typing of that operation’s inputs and outputs
in source and target machines (any duplication of inputs and outputs between
source and target machine will again cause errors). It is also necessary to check
that the type of any logical variables declared in an LVAR clause can be derived
from the associated WITHIN clause.

Once type checking is complete, the only task remaining is to add the anal-
ysed object to a machine development. For the existing constructs, this happens
just as before. For retrenchment constructs, the only thing that needs to happen
is to join up the development chains of the source and target machines. For ex-
ample, Fig. 12 shows the state just before, and Fig. 13 shows the state just after,
the moment when source machine AM, and target machine AM, get related via
a retrenchment construct.

1 xr
® TNV T
1 y
o _____ 1

| Unanalysed Constructs: |

I I

1 x z+1 T+ 2 z+y

Fig. 13. Resolution of Retrenchment Construct Analysis

Generation of Proof Obligations. Once a construct has been analysed, proof
obligations can be generated (since being in the analysed state is the only pre-
requisite for PO generation for any construct). The discharge of the POs will
prove that the construct’s definition is consistent. Of course, subsequent change
to a construct discards any previously established proofs regarding it.

In generating the POs for a retrenchment from a source to a target, there are
three sets of obligations to create. Two sets concern the internal consistency of
the source and target machines themselves, and the third concerns the validity
of the claimed retrenchment relationship between them. Each of these PO gen-
eration activities is tied to the requisite syntactic construct; this must be in the
analysed state as noted previously. For the retrenchment relationship, obviously
all three participating constructs must be analysed.

The first stage in PO generation for a retrenchment construct is the creation
of the initialisation PO. This is a simple task, and the form of the obligations
depends only upon the presence of a RETRIEVES clause in the retrenchment
construct. The second stage involves the generation of a PO for each ramified
operation. The precise form of these proof obligations depends on which of the
available clauses (see Table. 1) have been used in the ramifications for the oper-
ation.

Once the proof obligations have been generated, the GSL definitions of the
initialisation and operations are used to replace the jokers within these obliga-
tions. The B-Toolkit then applies its special and implicit tactics to reduce these
obligations to a number of predicates. Typically the substitution tactic will be
used to reduce the proof obligation to a predicate, and then the deduction and
conjunction tactics are used to break the PO into smaller chunks. These putative
lemmas are then written to a file which contains all the obligations that must
be discharged to validate the associated construct.

4 Evaluation

The development of the extended B-Toolkit described above involved the usual
levels of functional and unit testing, which revealed that the basic ingredients
were working satisfactorily. More extensive testing came via two case studies,
one small the other larger.

The small case study was the little example that we saw in Section 2, involv-
ing machines abc and def, and the retrenchment of the addition of unbounded
numbers to the addition of finite numbers. The small size of this example meant
that the extended toolkit dealt with all aspects of it unproblematically.

The larger case study was based on a case study focused on requirements
engineering via retrenchment in the area of telecoms feature interaction [8]. Al-
though, compared to the normal scale of things in real applications this was very
much still a toy, as regards exercising the extended B-Toolkit it proved to be
very much not a toy.

The case study centred on the operations of an atomic call model, with the
inclusion or not of various additional features. Here is the most basic connect
operation:

calls (i, connect,, 0)> calls’ iff
free(n) A
if free(i) A (n #1)
then 0=0K A calls' = callsU {n — i}
else 0=NO A calls' = calls

As is clear, this was written in a transition system notation, and its size is hardly
enormous by today’s standards (enhanced versions of the connect, operation
typically had an additional clause).

A typical concedes relation from one of the retrenchments in [8] is reproduced
below:

CCF,connectn (u,v,o,p;i,j,u,v) =
(busy(j) A j € dom(fortab) A
fortabt(j) =z A free(z) A z#n A
uw'=u A v = (callsU{n - z}, fortab) A
0=NO A p=0K)

(This concession captures the difference in behaviour between the connect oper-
ation in a simple system and in an enhance system incorporating call forwarding,
with the forwarding data held in the fortab function.) Again the size is hardly
excessive, and there are a number of slightly more complicated models and more
complicated retrenchments in [8].

For processing by the extended B-Toolkit, the above were hand translated
into B syntax. After translation, and using the resources of a typical desktop
machine, proving even the simplest of these retrenchments correct, turned out
to be all but beyond the capabilities of the system. Upon closer investigation,
the reason revealed itself to be that the B-Toolkit’s prover took a rather naive
approach to proving statements making heavy use of disjunctions (as retrench-
ment proof obligations invariably do). With a little bespoke optimisation, the
toolkit was eventually persuaded to discharge the POs for the simplest of the
retrenchments in [8] involving the concession above. When the more complex
cases in [8] were attempted, it became clear that available machine resources
were decidedly insufficient and the fully mechanised route was not pursued. Vi-
sual inspection confirmed however, that although it was unable to prove them,
the toolkit had generated appropriate proof obligations, and that these were in
fact true statements. A more extensive treatment of this case study can be found
in [12] and is supported by [13].

5 Conclusions

In the preceding sections we described the essential tasks addressed in incorpo-
rating retrenchment into the B-Toolkit. We gave the syntax of the retrenchment
construct and the proof obligation that that syntax represented, and then de-
scribed how the data was processed within the toolkit’s architecture. The latter
details revealed that various aspects of the B-Toolkit’s internal design were very
heavily tied to its original objective of monolithic refinement, this being a result
of the underlying B-Method philosophy that a refinement machine is really a
kind of extension of its abstraction, rather than an independent entity. The con-
sequences of this were principally that the development structure was restricted
to linear as regards retrenchment/refinement dependencies. Moreover the fea-
sibility of proving nontrivial retrenchments correct on today’s typical desktop

machines turned out to be heavily compromised by the relatively unsophisti-
cated nature of some aspects of the B-Toolkit’s prover.

Thus retrenchment was incorporated in a limited way, and it rapidly became
clear that any attempt to extend this limited integration would yield very much
diminishing returns. For this reason the implementation here described should
be viewed principally as an experiment in the design of mechnical assistance
for retrenchment, rather than an ideal solution. The experience gained quickly
convinced us that addressing the full array of possibilities opened up by retrench-
ment would be much better served by a tool built from scratch. Such a tool is
the objective of the second author’s current doctoral work, for which the present
experiment (described at greater length in [12]) provides valuable experience of
course.

References

[1] J.R. Abrial. The B-Tool Reference Manual, Version 1.1. B-Core (UK) Ltd.

[2] J.R. Abrial. The B Book. Cambridge University Press, 1996.

[3] R. Banach and R. Cross. Safety requirements and fault trees using retrenchment.
In Heisel, Liggesmeyer, and Wittmann, editors, Proc. SAFECOMP-0/4, volume
3219 of Lecture Notes In Computer Science, pages 210-223. Springer, 2004.

[4] R. Banach and C. Jeske. Output retrenchments, defaults, stronger compositions,
feature engineering. Submitted, 2002.

[6] R. Banach and M. Poppleton. Retrenchment: An engineering variation on refine-
ment. Lecture Notes In Computer Science, 1393:129-147, 1998.

[6] R. Banach and M. Poppleton. Sharp retrenchment, modulated refinement and
simulation. Formal Aspects of Computer Science, 11(5):498-540, 1999.

[7] R. Banach and M. Poppleton. Engineering and theoretical underpinnings of re-
trenchment. Submitted, 2001.

[8] R. Banach and M. Poppleton. Retrenching partial requirements into system def-
initions: A simple feature interaction case study. Req. Eng. Journal, 8:266—288,
2002.

[9] P. Behm, P. Desforges, and J-M. Meynadier. Meteor: An industrial success in
formal development. In Bert, editor, Proc. B-98, volume 1393 of Lecture Notes In
Computer Science, page 26. Springer, 1998.

[10] P. Desforges. Using the b-method to design safety-critical software for railway
systems. Recherche et Developpements - Fatis Marquant 97, 1998.

[11] D. Essame. Handling safety critical requirements in system engineering using
the b formal method. In Heisel, Liggesmeyer, and Wittmann, editors, Proc.
SAFECOMP-0/4, volume 3219 of Lecture Notes In Computer Science, page 115.
Springer, 2004.

[12] S. Fraser. Mechanised Support for Retrenchment in the B-Toolkit, 2004. Master’s
thesis, School of Computer Science, University of Manchester.

[13] S. Fraser. Specifications, Proof Obligations and Proofs Supporting a Case Study
of Retrenchment in the B-Toolkit, 2004. Available online at http://www.cs.man.
ac.uk/"frasers/casestudy.

[14] Haughton H. Lano, K. Specification in B: An Introduction Using the B-Toolkit.
Imperial College Press, 1996.

[15] M. Poppleton and R. Banach. Retrenchment: Extending the reach of refinement.
In Proc. ASE-99, IEEE, pages 158-165, 1999.

[16] M. Poppleton and R. Banach. Controlling control systems: An application of
evolving retrenchment. In Bert, Bowen, Henson, and Robinson, editors, Proc.
ZB-02, volume 2272 of Lecture Notes In Computer Science, pages 42—61. Springer,
2002.

[17] S. Schneider. The B-Method: An Introduction. Palgrave, 2001.

[18] E Sekerinski and K. Sere, editors. Program Development by Refinement. Springer,
1999.

[19] J.B. Wordsworth. Software Engineering with B. Addison-Wesley, 1996.

