
Under consideration for publication in Formal Aspects of Computing

Atomicity Failure and the Retrenchment
Atomicity Pattern
Richard Banach1, Czesław Jeske1, Anthony Hall2, Susan Stepney3

1School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
{banach,cjeske}@cs.man.ac.uk,
2Independent Consultant,
United Kingdom
anthony@anthonyhall.org,
3Dept. of Computer Science, University of York,
Heslington, York, YO10 5DD, U.K.
susan.stepney@cs.york.ac.uk

Abstract. The issues surrounding the question of atomicity, both in the past and nowadays, are briefly reviewed,
and a picture of an ACID (atomic, consistent, isolated, durable) transaction as a refinement problem is presented.
An example of a simple air traffic control system is introduced, and the discrepancies that can arise when read-only
operations examine the state at atomic and finegrained levels are handled by retrenchment. Non-ACID timing aspects
of the ATC example are also handled by retrenchment, and the treatment is generalised to yield the Retrenchment
Atomicity Pattern. The utility of the pattern is confirmed against a number of different case studies. One is the Mondex
Electronic Purse, its protocol treated as a conventional atomic transaction. Another is the recovery protocol of Mondex,
viewed as a compensated transaction (leading to the view that compensated transactions in general fit the pattern). A
final one comprises various unruly phenomena occurring in the implementations of software transactional memory
systems, which can frequently display non-ACID behaviour.In all cases theAtomicity Patternis seen to perform well.

Keywords: Atomic Actions, Refinement, Retrenchment, Air Traffic Control, Mondex, Compensated Transactions,
Software Transactional Memory.

1. Introduction

Atomicity is by no means a new issue in the design of computer systems: insights about mutual exclusion primitives
and their consequences have developed since the earliest days of the subject [BA82, Ray88, LMWF94, Lyn96]. The
deepening understanding of atomicity mechanisms led to thedevelopment of efficient distributed operating systems
[SBG05, HB03, CDK05], and bolstered with maturing knowledge about data representation, has led to the flowering

Correspondence and offprint requests to: Richard Banach, School of Computer Science, University ofManchester, Oxford Road, Manchester, M13
9PL, U.K. email:banach@cs.man.ac.uk

2 Banach, Jeske, Hall, Stepney

of a database industry offering products which are sufficiently reliable, and sufficiently easily usable, that they now
occupy mission critical positions in many organisations [BHG87, GMUW03, EN03, CB04, Lon04, ZBM03]. The vast
information resources available on the web provide ever increasing opportunities for applications in all spheres to
benefit from a distributed approach.

The watchword of the implementation of an atomic action in these pardigms is the ACID (atomic, consistent,
isolated, durable) transaction [JK97]. This provides the default goal to which implementations now aspire, providing
the maximum possible conceptual clarity for the transaction concept, convenient for higher levels of applications.

At the heart of the atomicity question is some notion of refinement. One has a picture of a task, performed atomi-
cally at the abstract level, but broken up into fragments, usually co-operating via a protocol, at a more concrete level.
The two are supposed to achieve the same ends, so the concretelevel ought to be some sort of refinement of the abstract
level. Now it is not the job of this paper to get embroiled in a discussion of the variety of possibilities for, or optimal
formulation(s) of refinement, for achieving the proposed tieup between abstract and concrete levels. Many formula-
tions exist for capturing one notion of refinement or another, and each can have its merits weighed, when confronted
with the present challenge — in fact many of the possibilities that exist are adequate to the task. In this paper we will,
as needed, make use of the results of one particular detailedstudy of the problem [BS08b,BS08a], one whose precise
results prove to be especially convenient for our purposes since they integrate so well with the problems studied here.

In the ideal ACID-refinement-based formulation, the protocol always either runs to a successful conclusion, or the
whole attempt gets wiped, leaving no trace. Nowadays however, although the ACID ideal is still highly prized, the
necessity to relax some or all of its precepts to avoid excessive performance penalties is widely recognised. This is
prompted by scenarios such as web services [Pap07, WS], long-lived workflows [GG, EL97, SGMA89], and highly
concurrent and highly distributed environments [JK97].

Our aim in this paper is to illustrate the capabilities of retrenchment [RET, BPJS07, BJP08, BP00, BP03, PB03]
in dealing with the various kinds of circumstance which arise that can spoil the ideal ACID based refinement view
of atomicity. On the one hand, the ‘atomic action refined to distributed algorithm’ perspective generates a strong pull
to find common structure across many such situations. On the other, the necessity of departure from the ideal can
arise in a myriad ways, leading to a proliferation of incompatible special cases if a common account is pitched at an
inappropriate level. It turns out that retrenchment can provide a vehicle for capturing a useful degree of commonality
across such situations, while leaving room for incompatibilities regarding specific details.

The commonality arises via the retrenchmentAtomicity Pattern, which we introduce and explore in this paper.
This is an arrangement of refinements and retrenchments thatwe show is common to atomicity situations. The idea is
developed in the remainder of this paper as follows.

We start by outlining the formulation of refinement and retrenchment used in this paper in Section 2. In Section 3
we then introduce our main example, a pidgin air traffic control (ATC) display application, abstracted from the CDIS
development [Hal96], in which critical pieces of information must reach a family of displays in the correct order (and
ultimately in a timely fashion). An ‘ideal specification’ ofthis is atomic; a ‘more realistic specification’ captures some
of the realities of asynchrony and of constraints on timing delays. The gap between them is bridged by a series of small
retrenchments. (The small size of the model evolution stepsis rather reminiscent of the Event-B approach [Abr03,
ACM], and of many practical ASM refinements [BS03, Bör03].)In Section 4 we indicate how one might proceed
towards an implementation from such a starting point. In Section 5 we abstract from the phenomena introduced thus far,
to present a general structure for capturing a whole class ofsimilar situations involving atomicity, its refinement, and its
possible breakdown. This is theAtomicity Patternitself. In Section 6 we confront theAtomicity Patternwith a different
scenario, namely the atomicity issues arising in the refinement development of the Mondex Purse [SCW00,WSC+08],
and we see that the proposed structure can account adequately for the phenomena in Mondex. In Section 7 we explore
compensated transactions, which are (in principle long lived) transactions accompanied by ‘compensations’. The latter
are invoked when the main transaction aborts, in order to nothave to undo potentially large amounts of useful work
accomplished already, and also to deal with the consequences of side effects in the environment that cannot be rolled
back. A reinterpretation of Mondex failed transactions (which in the original Mondex picture are viewed as another
kind of successful transaction), proves to be a nice vehiclefor such compensated transaction notions, and we see that
theAtomicity Patternfits the bill here too. In Section 8 we briefly explore transactional memory models, and see that
some of the phenomena encountered there also fit theAtomicity Patternbill rather well. Section 9 recapitulates and
concludes.

N. B. Aside from when it is occasionally necessary to stray into notational paradigms appropriate to other spe-
cialised application areas, we express all our models usingthe Z notation, for its relative conciseness (which we
amplify by taking occasional notational liberties).

Atomicity Failure and the Retrenchment Atomicity Pattern 3

2. Refinements and Retrenchments

In this section we briefly review the notions of refinement andretrenchment used in the remainder of the paper. We
give these in Z [ISO02, Spi92, WD96, DB01] since that is the vehicle for the majority of the examples we discuss.
For refinement, we adapt slightly the formulation in [CSW02]as used in the Mondex development [SCW00]. The
retrenchment rules are adapted to fit conveniently with the refinement ones. It will suffice to quote the forward rules
for refinement and retrenchment.

The context of the rules for both refinement and retrenchmentis a pair of (abstract and concrete) ADTs:(A, AInit,
{AOp, AIOp, AOOp | Op ∈ OpsA}), and(C, CInit, {COp, CIOp, COOp | Op ∈ OpsC}). HereA is the abstract state
schema,AInit is its initialisation, and forOp∈ OpsA, we have the operation schemas and their input space and output
space schemas:AOp, AIOp, AOOp. Similarly, for the concrete side, we haveC the the concrete state schema, withCInit
its initialisation, and forOp∈ OpsC, we have the operation schemas and their input space and output space schemas:
COp, CIOp, COOp.

For refinement, the two ADTs are related by the retrieve relation RA,C on states, and on a per operation basis, the
input and output relationsRIA,C,Op andROA,C,Op, which relate the abstract and concrete input spaces and output spaces
respectively. For refinement we stipulate thatOpsA ⊆ OpsC, but such that anyOp∈ OpsC −OpsA is a refinement of
a corresponding unstated abstract operation whose definition isskip on the abstract state schemaA.

Forward refinement is given by three main proof obligations (POs),initialisation, applicabilityandcorrectness:

∀C′ • CInit ⇒ ∃A′ • AInit ∧ R′

A,C

∀A; AIOp; C; CIOp • RA,C ∧ RIA,C,Op∧ preAOp⇒ preCOp

∀A; AIOp; C; CIOp; C′; COOp • RA,C ∧ RIA,C,Op∧ preAOp∧ COp⇒ ∃A′; AOOp • AOp∧ R′

A,C ∧ROA,C,Op

For purposes of intuition, we can say the following. The initialisation PO ensures that the starting conditions of the
abstract system correspond appropriately to those of the concrete system. The applicability PO then demands that
if an abstract operation may be called (from some abstract before-state and input), then the corresponding concrete
operation can also be called from a matching concrete before-state and input. Finally, the correctness PO demands
that when a call of a concrete operation completes, yieldinga specific after-state and output, then there is an abstract
after-state and output that matches the concrete ones, and this after-state and output pair could have been yielded by a
call of the abstract operation from the matching before-state and input.

For retrenchment, the two ADTs are related by the retrieve relationRA,C on states as before, and on a per operation
basis, the within, output, and concedes relationsWA,C,Op, OA,C,Op, andCA,C,Op. For retrenchmentOpsA ⊆ OpsC, and
there is no restriction on operations inOpsC − OpsA.

Two POs define a retrenchment between two models:initialisation andcorrectness:

∀C′ • CInit ⇒ ∃A′ • AInit ∧ R′

A,C

∀A; AIOp; C; CIOp; C′; COOp • RA,C ∧ WA,C,Op∧ COp⇒∃A′; AOOp • AOp∧ ((R′

A,C ∧ OA,C,Op)∨CA,C,Op)

Note that applicability issues are subsumed via the within relation, thus we assume also that the followingwell-
behavednessPO holds:

∀A; AIOp; C; CIOp • RA,C ∧ WA,C,Op ⇒ preAOp∧ preCOp

On an intuitive level, we can describe these POs as demandingthe following, which is to be compared with the
above remarks for refinement. Initialisation is identical.For correctness, the within relation, which is a(n otherwise
unrestricted) relation over all before-state variables and inputs, gives the capability of narrowing the focus of whatthe
PO speaks about; this may be appropriate in case the abstractand concrete systems are too different to allow a full
comparison, or a full comparison is inappropriate for some other reason — in any event the use of a within relation
such thatRA,C ∧WA,C,Op is properlystronger than preAOp∧ preCOp(that the former merely implies the latter being
well-behavedness itself) ought to be fully validated against the external requirements. The output relation is over all
variables of the abstract and concrete transitions. The permitted presence ofall of the variables (i.e. outputs and after-
states, and including before-states and inputs, if required) allows properties stronger than the mere conjunction of
the retrieve relation on after-states with a relation on outputs to be expressed — such a possibility plays a vital role
in the RE-Refs of theAtomicity Patternbelow. Finally, the concession allows a description to be made (while still
remaining within the remit of the formal framework) of the state of affairs that results when a pair of corresponding

4 Banach, Jeske, Hall, Stepney

transitionsis unable toreestablish the retrieve relation on after-states — again,the allowed presence of all of the
variables maximises the expressive power.

As well as the POs, which are useful for establishing the retrenchment, we will be interested in the associated
simulation relation for the operationOp, which holds when the hypothesis and conclusion of the correctness PO hold,
avoiding the ‘don’t care’ discharge of the PO.

ΣA,C,Op ≡ RA,C ∧ WA,C,Op∧COp∧ AOp∧ ((R′

A,C ∧ OA,C,Op)∨CA,C,Op)

The truth ofΣA,C,Op implies genuineAOpandCOptransitions that make the retrenchment data true in a suitable way,
unlike the PO itself. Obviously there is an analogous notionfor refinement, but we will not need it.

3. The Abstract Pidgin ATC System

In an air traffic control system, there is (among other things) a family of workstationsWS, at which the air traffic
controllers sit and do their work. The workstations displaya variety of items of information to the controllers, some
of them more critical than others. For the most critical items, correct ordering and timeliness are important issues: the
controllers must be made aware of changes in the critical items as they occur, within a tightly controlledLATENCY,
so that safety in the aerodrome is not compromised.

For simplicity, we assume that there is just one critical item, theQNH value (modelled as a natural number say),
and that this is the only item on the workstation display. Foran air traffic control system this is, admittedly, a rather
drastic simplification.

The system ideal is atomic update of all the displays, so we can build an abstract A model consisting of a single
QNH value, updated by anANewQnhoperation, and observed by anAShowWsoperation which outputs theQNH
value displayed on each workstation:1

Aworld
Aqnh: QNH

ANewQnh
∆Aworld
Aqnh? : QNH

Aqnh′ = Aqnh?

AShowWs
Aworld
Adisp! : WS→ QNH

Adisp! = WS× {Aqnh}

The atomicity of the ideal model is reflected in the fact thatAShowWsalways outputs a constant function. However,
the reality is that the updates to the systemQNH value are broadcast to the individual workstations over a network.
This generates transmission delays, and the various tolerances in the system cause these to be observable, within
limits. These aspects require a more detailed model than theideal A model, and we approach the construction of the
appropriate ‘realistic specification’ in a number of steps.

First we build the AH model, which just includes history information:

AHworld
AHhist : seq

1
QNH

AHNewQnh
∆AHworld
AHqnh? : QNH

AHhist′ = AHhista 〈AHqnh?〉

AHShowWs
AHworld
AHdisp! : WS→ QNH

AHdisp! = WS× {last AHhist}

With suitable initialisations, it is not hard to see that theA and AH models are interrefinable under (equality output
relations and) the retrieve relation:

1 N.B. Each model-specific schema and variable is prefixed by a letter or two indicating the relevant model: A for abstract, AH for A with history,
AA for A with asynchrony, AT for AA with time, C for concrete, and D is the alphabetic successor of C.

Atomicity Failure and the Retrenchment Atomicity Pattern 5

RA,AH
Aworld
AHworld

Aqnh= last AHhist

Next, we build the AA model. This introduces some asynchronyinto the system by allowing theAAShowWsoperation
(which corresponds to theAHShowWsoperation in the previous model) to output a selection of values from the history.
The only restriction on these is that displayingQNH values out of order is forbidden. This constraint is satisfied by
keeping a record of the currentQNH value for each workstation, and allowing it to advance usingthe new operation
AAWsUpdate:2

AAworld
AAhist: seq

1
QNH

AAseq: WS→ N

ran AAseq⊆ domAAhist

AAWsUpdate
∆AAworld
AAws? : WS

(AAseq′ AAws?) ≥ (AAseq AAws?)
RestSame......

AANewQnh
∆AAWorld
AAqnh? : QNH

AAhist′ = AAhista 〈AAqnh?〉
RestSame......

AAShowWs
AAworld
AAdisp! : WS→ QNH

AAdisp! = AAseqo

9 AAhist

Although we managed to relate the A model and the AH model using refinement (as formulated in Section 2), this
time, our conventional refinement notion is too demanding todescribe the relationship between the AH model and
the AA model, since the outputs of the twoShowWsoperations do not match up according to any plausible output
relation that we could imagine drawing up.3 We need the greater flexibility of retrenchment to capture what is going
on. The retrenchment needed is given by the retrieve relation RAH,AA and the output relation forShowWs, with all other
retrenchment data trivial:4

OAH,AA,ShowWs
AHworld′

AAworld′

AHdisp! : WS→ QNH
AAdisp! : WS→ QNH

AAdisp! = AAseq′ o

9 AAhist′

AHdisp! = WS× {last AAhist′}

RAH,AA
AHworld
AAworld

AHhist= AAhist

A retrenchment output relation generalises a refinement one, in the sense that it can refer to the state variables in
relating the observed outputs, whereas a refinement output relation cannot do so. This extra flexibility is needed here:
the AH output is the constant value resulting from the latestatomic update, whereas the AA output is a selection of
potentially older values from the system history, since there may be some workstations which are not completely up
to date.

The retrenchment just introduced is of a special kind, whichwe call a retrenchment-enhanced refinement (RE-Ref)
since it falls short of being a refinement by the smallest of margins, namely that its output relation needs to be more

2 Henceforth, in Z schemas, the phraseRestSame...... means that any other variables in scope but not explicitly assigned to in the schema are to
remain unchanged, something typically handled less tersely in legal Z by including a suitableΞ schema for the unaffected variables inside the main
schema to specify the lack of change of the unaffected variables.
3 Beyond this, the AA operationAAWsUpdate, does not correspond to any AH model operation. However, we can allow this in a refinement if the
new operation refines an (unstated) AH model operation whosebody isskip. Now sinceAAWsUpdateonly manipulates theAA variableAAseq,
which is invisible (via the retrieve relationRAH,AA) to theAH model, theAAWsUpdateoperation will indeed refineskip. See Section 2 for more
details.
4 I.e. given by identities on inputs and outputs,false for concessions.

6 Banach, Jeske, Hall, Stepney

complicated than just a simple relation between the output spaces. Although it is more complicated, the additional
complexity is itself highly constrained. We can define an RE-Ref more precisely thus:

Definition 3.1. A retrenchment-enhanced refinement (RE-Ref) is a retrenchment with data as follows. The retrieve
relation is a relation between the state spaces only (as usual). For all operationsOp the following hold. The within
relation is a relation between input spaces only (i.e. it is given by a predicate that does not mention the before-states).
The concession is trivial (i.e. it is given by the predicatefalse). The output relation is a relation between output spaces
and after-states only, constrained in the following manner. There is a (partial) functionREfA,C,Op from after-states to
outputs, such thatREfA,C,Op is implied byΣA,C,Op, andREfA,C,Op impliesOA,C,Op.

REfA,C,Op : A′; C′ 7→ AOOp; COOp

ΣA,C,Op ⇒ REfA,C,Op

OA,C,Op : AOOp; COOp; A′; C′

REfA,C,Op ⇒ OA,C,Op

In a nutshell, whatever the output relation says, must be derivable from a functional relationship from after-states to
outputs.

We see that if we completely removed the outputs from the systems, we would have a perfectly good refinement,
and the observed relationship between the outputs that we actually have in the two systems would be derivable from
it. Putting it another way, if it is only such asynchrony thata change of model is introducing, then the true information
contained in the state histories of the models is not being lost, and so any disagreement in the outputs of read-only
operations on the states should be explicable from the statehistories themselves; i.e. the change of model indeed ought
to be capable of being described by an RE-Ref as we defined it above.

Of course, similar observations apply when it is the inputs at stake rather than outputs. In that case the asynchrony
considerations mean that corresponding inputs arrive at different times in the two models. This can be handled in
the within relation of the later occurring of the two operations, as follows. The functional relationshipREfA,C,Op :
A′; C′ 7→ AOOp; COOp of Definition 3.1 is removed (the output relation relation reverting to a relation on outputs
alone, as befits a refinement), and the within relation acquires a corresponding functional relationship from before-
states to inputs (which we will also refer to asREfA,C,Op for simplicity): REfA,C,Op : A; C 7→ AIOp; CIOp, with ΣA,C,Op
implying REfA,C,Op as before, andWA,C,Op implying REfA,C,Op. A case in point of such behaviour is to be found in
Section 6.5

The utility of RE-Refs in handling issues of asynchrony is the first contribution that retrenchment makes to the
atomicity arena in situations where atomicity in the very strictest sense does not quite hold up.

The next step in the development of the ATC system is to introduce the time aspect, so that we can bring the
asynchrony under control. This leads to the AT model, containing anATtimenowvariable with values inTIME (which
we model using the naturals in this paper, but which could be any totally ordered set), and whereATtimenowis updated
by anATTickoperation. Also each update of theQNH value is timestamped, with the values being recorded in the
AThisttimevariable (which is thus also totally ordered):

TIME == N

ATworld
AThist: seq

1
QNH

ATseq: WS→ N

ATtimenow: TIME
AThisttime: seq

1
TIME

domAThist= domAThisttime
ran ATseq⊆ domAThist
∀ i, j : domAThisttime• i ≤ j |

AThisttime(i) ≤ AThisttime(j)
last AThisttime≤ ATtimenow

ATTick
∆ATworld

ATtimenow′ = ATtimenow+ 1
RestSame......

ATWsUpdate
∆ATworld
ATws? : WS

(ATseq′ ATws?) ≥ (ATseq ATws?)
RestSame......

5 Although it may seem strange to have inputs (which are normally freely assigned) functionally dependent on state (whichis normally invisible),
we recall that the abstract system, the one synchronising late, is having its behaviour designed to simulate the behaviour of the concrete system, for
which the corresponding ‘freely assigned’ input has occured earlier, and has been appropriately remembered in the state.

Atomicity Failure and the Retrenchment Atomicity Pattern 7

ATNewQnh
∆ATworld
ATqnh? : QNH

AThist′ = AThista 〈ATqnh?〉

AThisttime′ = AThisttimea 〈ATtimenow〉
RestSame......

ATShowWs
ATworld
ATdisp! : WS→ QNH

ATdisp! = ATseqo

9 AThist

Thus far we have a straightforward superposition refinement[BKS83, FF90, Kat93] of the AA model, since we have
just added some new data and operations, and no new observations of the new data. All the old data and operations
remained unchanged. A retrieve relation that simply forgets the time in abstracting from the AT model easily proves
the refinement.

However this is not enough. We need to distinguish well behaved workstations from badly behaved ones. The
former get their updates done withinLATENCYtimesteps, the others don’t. A well behaved workstation satisfies:

ATWellBhWs
ATworld
ws? : WS

∀ sq : domAThist\ (1 .. ATseq ws?) • ATtimenow− (AThisttime sq) ≤ LATENCY

i.e. all its unprocessed updates were introduced at mostLATENCYago. We want the refinement part of the eventual
relationship between the AA and AT models to insist that all workstations are well behaved:6

RAA,AT
AAworld
ATworld

AAworld “ = ” ATworld
∀ws? : WS• ATWellBhWs

To deal with the (small but nonzero) possibility that network delays turn out to be greater than desirable, leading to the
failure of the retrieve relation, we need more of the expressivity of retrenchment. It is actually the innocuousATtick
operation we need to focus on, since it is the passage of time which causes workstations to become badly behaved. At
this point we stub our toe on a small retrenchment pebble.

Since there is noTick operation in the AA model, normal retrenchment policy dictates that there will be no re-
trenchment data (i.e. within, output or concedes relations) associated withTtick. The normal policy is justified by
observing that genuinely new operations introduced duringa model evolution step, will concern aspects absent from
the prior model, and thus any attempt to relate them to the prior model are likely to appear artificial. However, the
passage of time may reasonably be taken as a universal (if usually unstated) feature of models, so that viewing the
present case as a retrenchment of an unstatedskip is entirely justified. This understood, the retrenchment’swithin and
output relations can be trivial, the concession being wherethe interest lies:

CAA,AT,Tick
∆AAworld
∆ATworld

∀ws? : WS• ∃ sq : domAThist\ (1 .. ATseq ws?) • ATtimenow− (AThisttime sq) = LATENCY
⇒ ¬ ATWellBhWs′

This shows that any workstation with aLATENCY-old update outstanding, will become badly behaved at the next tick
unless it is updated beforehand.

We now have a route from the utterly atomic A model, to model AT, which abstracts the inevitable asynchrony of
an implementation, but which allows the quality of that asynchrony to be quantified via a retrenchment. The A model

6 We use“ = ” between schemas to abbreviate a set of equalities between corresponding variables that differ only in the model-identifying prefix.

8 Banach, Jeske, Hall, Stepney

A

C D

U

AH AA AT

∗

Fig. 1. Models, refinements (vertical arrows), retrenchments (horizontal arrows), making up a commuting diagram of the ATC specification devel-
opment.

specifies an unattainable perfection, while the AT model represents a more complex but more realistic specification.
Refinement alone can never reconcile these two widely separated viewpoints, but retrenchment can.

The retrenchment from A to AT itself is the composition of theA-AH refinement with the AH-AA and AA-AT
retrenchments [BJP08]. We omit the details of the calculation, save to say that the situation is sufficiently straight-
forward, that the result is obtained by simply translating the variables occurring in the non-trivial bits of the earlier
retrenchments to those of the A and AT models, in the obvious way.

The retrenchment utilises theLATENCYparameter and permits a stochastic analysis of the circumstances un-
der which the relevant concession becomes valid. Such an analysis would consider a sample space of system runs,
constructed by taking into account the many external factors that influence the behaviour of the system, but that lie
outside of the formal model. The likelihood and severity of timing failures could then be derived. The output of such
an analysis can provide a useful negotiating pivot between customer and supplier — the customer would be interested
in a precise statement of what constituted timing failure and how often it occurred, but the details of what happened
subsequently would be more a matter for the supplier, takinginto account the higher level invariants demanded of
the system. This scenario illustrates in minature the second contribution that retrenchment makes to the atomicity is-
sue, namely the straightforward incorporation into a formal account, of matters that make implementations of atomic
actions insufficiently ACIDic.

What we have so far is the solid arrows of the upper layer of Fig. 1, which is a commuting diagram of vertical
refinements and horizontal retrenchments. These connect a family of models involved in our ATC development, ab-
stracted from CDIS [Hal96]. Customarily, the refinement component of the A-AT retrenchment (i.e. A-AH) would
enable the A-AT retrenchment to be lifted to generate a more abstract model U using results in [BJ09,Jes05]. However
the fact that A and AH are interrefinable, means that nothing useful would be gained by doing this.

4. Towards an Implementation of the Pidgin ATC System

Considering the move towards an implementation of the ATC System, we refine our preceding models. We start with
model AA, since that is the first along the A-AT path which incorporates asynchrony, which is unavoidable in any
implementation. So as not to detract from the main focus of interest of the paper, our remarks will be merely indicative
rather than comprehensive. We sketch model C, a refinement ofAA, and then model D, a refinement of AT, connecting
these two developments afterwards with a suitable retrenchment. Of course if we were doing implementation for
real, we would not do both. The discussion of the various possibilities is intended to highlight the greater flexibility
that the combination of refinement and retrenchment allows (compared with using refinement alone), in treating the
requirements in an order dictated by appropriateness for development rather than theoretical constraint.

Model C’s ‘more realistic’ description of the system contains a family of workstations, each containing its own
portion of the system state; hence the mapCwsqnh.7 The network is modelled as an ‘ether’ of messages containing
QNH updates, to which individual workstations help themselves. To disambiguate and preserve order, we have a
sequence number typeSQNO(modelled as a positive natural number say), and the ether thus becomes a mapCethqnh
from sequence numbers toQNH values. Each workstation keeps track of where it is up to witha local copy of the
latest sequence number it has processed (via the mapCwsseq).

7 This is best captured formally via Z promotion, though for brevity we will not use that here.

Atomicity Failure and the Retrenchment Atomicity Pattern 9

Cworld
Cmaxseq: SQNO
Cwsseq: WS→ SQNO
Cwsqnh: WS→ QNH
Cethqnh: SQNO 7→ QNH

domCethqnh= 1 .. Cmaxseq
Cwsqnh= Cwsseqo9 Cethqnh

CWsUpdate
∆Cworld
Cws? : WS

(Cwsseq′ Cws?) ≥ (Cwsseq Cws?)
RestSame......

CNewQnh
∆CWorld
Cqnh? : QNH

Cmaxseq′ = Cmaxseq+ 1
Cethqnh′ Cmaxseq′ = Cqnh?
RestSame......

CShowWs
Cworld
Cdisp! : WS→ QNH

Cdisp! = Cwsseqo9 Cethqnh

Noting thatSQNO== N1, the reader will quickly realise that the C model that we havejust built is (mathematically)
little more than a slightly verbose restatement of the AA model, with an additional dependent variable,Cwsqnh.
Recognising this, we conclude that the C model will be interrefinable with AA. Obviously we could contemplate more
dramatic refinements of the AA model, but what we have done will suffice for purposes of illustration.

Similarly, we can build a model D, refining AT. It follows the pattern established by the C model. Thus we use the
same sequence number type, and use it to index bothQNH values and their timestamps. Otherwise, the structure is as
in the AT model.

Dworld
Dmaxseq: SQNO
Dwsseq: WS→ SQNO
Dwsqnh: WS→ QNH
Dethqnh: SQNO 7→ QNH
Dtimenow: TIME
Dethtime: SQNO 7→ TIME

domDethtime= domDethqnh= 1 .. Dmaxseq
Dwsqnh= Dwsseqo9 Dethqnh

DTick
∆Dworld

Dtimenow′ = Dtimenow+ 1
RestSame......

DWsUpdate
∆Dworld
Dws? : WS

(Dwsseq′ Dws?) ≥ (Dwsseq Dws?)
RestSame......

DNewQnh
∆Dworld
Dqnh? : QNH

Dmaxseq′ = Dmaxseq+ 1
Dethqnh′ Dmaxseq′ = Dqnh?
Dethtime′ Dmaxseq′ = Dtimenow
RestSame......

DShowWs
Dworld
Ddisp! : WS→ QNH

Ddisp! = Dwsseqo9 Dethqnh

The two refinements AA-C and AT-D will be related not only by the AA-AT retrenchment, but by a retrenchment C-D.
This latter retrenchment will be the obvious counterpart ofthe AA-AT retrenchment at the lower level of abstraction
of C and D. In detail, the retrenchment will depend on the C-D analogue ofATWellBhWs, which asserts that all the
unprocessed updates of a workstation were introduced less thanLATENCYago:

DWellBhWs
Dworld
ws? : WS

∀ sq : (Dwsseq ws?) + 1 .. Dmaxseq• Dtimenow− (Dethtime sq) ≤ LATENCY

10 Banach, Jeske, Hall, Stepney

As before, the refinement part of the C-D retrenchment insists that all workstations are well behaved:

RC,D
Cworld
Dworld

Cworld “ = ” Dworld
∀ws? : WS• DWellBhWs

The concession again polices theDTickevent, singling out those workstations whose updates lag more thanLATENCY
behind the arrival of unprocessedQNH values:

CC,D,Tick
∆Cworld
∆Dworld

∀ws? : WS• ∃ sq : (Dwsseq ws?) + 1 .. Dmaxseq• Dtimenow− (Dethtime sq) = LATENCY
⇒ ¬ DWellBhWs′

We can complete the details of the retrenchment with trivialwithin and output relations. Using the techniques elabo-
rated in [BJP08], we can then calculate the composition of the AA-AT retrenchment with the AT-D refinement, and
compare it with the result of calculating the composition ofthe AA-C refinement with the C-D retrenchment. In the
simple situation that we have here, these turn out to be the same. Thus we have the commuting square of retrenchments
and refinements shown in the lower right half of Fig. 1.

In fact, commuting squares such as this can be built not only by hand, as we indicated above, but also using
generic constructions such as are described in [BJ09,Jes05] — specifically we would need the Postjoin Theorem from
one or other of these references. Typically, the relevant theorem constructs a system that ‘completes the square’ in a
generic way, up to a notion of universality that invariably includes inter-refinability; in other words we can replace the
generically constructed system by one inter-refinable withit without losing any of the properties of the construction,a
useful property that helps keep the ‘square completing’ system looking close to applications level concerns. Obviously,
one could develop the C and D models even further towards implementation by making the modelling increasingly
realistic.

The above takes care of the lower layer of Fig. 1, aside from the model labelled ‘*’. Model ‘*’ refines AH and
is retrenchable to C. It can be obtained via the lowering construction in [BJ09, Jes05] from AH, AA, C and their
relationships, or independently, again yielding a commuting square. The fact that AA and C are interrefinable, means
that ‘*’ contains nothing new beyond AH, and the fact that itsworkstation updates must be atomic, means that it is
unrealistic.8

5. The Retrenchment Atomicity Pattern

The last few remarks indicate that a protocol implementation at the most abstract level possible9 has to be refinable
from the C model, not from the A model. And yet the A model captures the most transparent expression of what
one would like the protocol to do, so it would be regrettable if we had to exclude it from a rigorous development.
The way to reconcile these views, is to pursue the suggestionthat an RE-Ref can indeed be usefully viewed as a
kind of refinement, rather than as a retrenchment, which, strictly speaking, it is. Taking this view straightens out the
composition along the path A-AH-AA-C into an RE-Ref, collapsing the left hand part of Fig. 1 as it does so. The
resulting RE-Ref from A to C now expresses, as an almost-refinement, a useful change in modelling perspective,
depicted in the vertical direction. Moreover, incorporating the ACIDity losing aspects of the retrenchment from model
C to model D via the composition A-C-D, and then performing the lifting construction from [BJ09, Jes05], results
in a model U entirely equivalent to the one constructed before, since the overall composition A-C-D yields the same
composed retrenchment from model A to model D as obtained previously. This is a useful observation since it is often
initially easier to express the ACIDity losing aspects of some development within a more concrete model than in a

8 Unrealistic because of the intepretation of the model as a distributed system, rather than any mathematical difficulty.
9 I.e. incorporating the fewest constraints while retainingimplementability.

Atomicity Failure and the Retrenchment Atomicity Pattern 11

A

C D

U

RE-Ref

Ret

Ret

Ref

Fig. 2.The Atomicity Pattern.

more abstract one, since the ACIDity losing aspects are often centred on lower level details (relatively speaking), and
the way that these are reflected at more abstract levels is notalways entirely obvious. A collection of models A, C, D,
U, and their interconnection via two retrenchments, a refinement and an RE-Ref, as above, constitutes the retrenchment
Atomicity Pattern; see Fig. 2. We claim that this arrangement recurs frequently in situations featuring loss of atomicity,
and thus deserves to be highlighted — a claim we support in therest of the paper.

Referring to Fig. 1, we see that Fig. 1 is an instance of theTower Pattern[BPJS]. This makes theAtomicity Pattern
a special case of theTower. However, a number of features make theAtomicity Patterndeserve to be singled out
specially.

First and foremost, is the use of RE-Refs (specifically avoiding more general kinds of retrenchment) in the left hand
side of the diagram — this collapses the zig-zag that would result if the retrenchment aspects were singled out as such
there. The pure loss of atomicity implicit in the fact that wehave an atomic action at one level of abstraction which is
refined to a multi-step protocol at another, means that the abstract and concrete states will be adrift of the ‘not in the
middle of the protocol’ ideal form when the protocol is actually running. This situation has been thoroughly studied
in [BS08a, BS08b], and the precise relationships between possible abstract and concrete states during a protocol run
are now well understood.10 The fact that the concrete level is still a refinement (in the strict sense) of the abstract level
in the absence of I/O, means that the states differ, but that they differ only in a very controlled way. This close, yet
non-ideal relationship between the states, means that any observed operation inputs and outputs which are related to
those state values will also be in a close, yet non-ideal relationship. For this reason, the very restricted RE-Refs are
sufficient for this kind of situation.

Second, is the fact that the fairly large gap between the A andC models encourages us to take a broad perspective on
how an atomic and a non-atomic model ought to be synchronised. Following the line developed in [BS08a,BS08b], the
synchronisation mechanism is in fact captured in the retrieve relation between the two models. Considering our exam-
ple, the finegrained path A-AH-AA-C strongly suggests an early synchronisation; i.e. in each protocol run,ANewQnh
is synchronised (via the retrieve relation) withCNewQnh,11 with the rest of the concrete protocol following behind.
This gives a refinement from the A model to the C model with retrieve relationRA,Cearly below. However, this is but one
possibility.

In general, the single step of an atomic protocol can be mapped to practically any step of a concrete protocol which
implements the atomic one, provided the various (in generalnondeterministic) outcomes of the two descriptions match
up via the retrieve relation (see [BS08a,BS08b] for details). Different choices merely lead to different retrieve relations
between the two models.12 As an example, consider a late synchronisation option in ourCDIS example. This matches
ANewQnhwith the lastCWsUpdatein a protocol run, identified viaCWsUpdatelast below, and implicitly requires that
CNewQnhand all earlier occurrences ofCWsUpdatebecome refinements of abstractskips. Such a synchronisation is
given by retrieve relationRA,Clate. (N.B. In our example, both early and late formulations of the refinement areforward

10 In [BS08a, BS08b], there was no concept of loss of atomicity,so suitably designed notions of refinement could cope, without any need for
retrenchment. In the present context, the different kinds of synchronisation that refinement permits us to have, informthe kinds of retrenchment one
might need to handle loss of atomicity.
11 Many conventional refinement notions demand that abstract operations are refined by operationswith the same name. However this is just a
technical convenience, and is easily generalised to the case where for each concrete step of interest, one can identify astep ofsomeabstract operation
of which it is a refinement; official Z refinement is like this. Our discussion presupposes this generalisation where necessary.
12 Observe an interesting phenomenon. When a refinement preserves the atomicity, i.e. abstract and concrete steps match up1–1 in related runs, it
is usually the case that the retrieve relation is ‘obvious’ —there is essentially only one choice that makes sense. The situation changes dramatically
when atomicity isnot preserved. Then, the variety of possible synchronisationsleads to a variety of accompanying retrieve relations. Moreover,
rarely is any of them ‘obvious’, even though, according to the results of [BS08a,BS08b], they can all be mechanisticallycalculated from the details
of the chosen synchronisation.

12 Banach, Jeske, Hall, Stepney

simulations, since the broadcast protocol is deterministic; i.e. all the workstations always get successfully updated
(assuming weak fairness). In general, early synchronisation requiresbackwardsimulation to handle nondeterminism
after the synchronisation point. See [BS08a,BS08b] again for the technical details.)

RA,Cearly

Aworld
Cworld

Aqnh= Cethqnh Cmaxseq

RA,Clate

Aworld
Cworld

Aqnh= Cethqnh(minranCwsseq)

CWsUpdatelast
CWsUpdate

∀ws : WS• ws 6= ws? ⇒ (Cwsseq ws) > (Cwsseq ws?)

Third, is a fact prompted by the preceding parenthetic remark. The detailed complexities of simulations in which
the concrete state is matched to the abstract state after each concrete step of the protocol, can be largely avoided if
we take a more coarse grained approach to refinement, à la ASMrefinement [BS03, Bör03, Sch01, Sch05]. Here, the
refinement becomes insensitive to state values in the middleof a concrete protocol run, and the retrieve relation is
only required to match up abstract and concrete states at thebeginning and end. Thisen blocapproach can yield
considerable simplifications in the description of a singlerun of the protocol, but makes the description of interleaved
concurrent protocol runs by independent agents rather moreproblematic.

In our example,ANewQnhtogether with a suitable collection ofAShowWss would be refineden blocto an entire
concrete protocol run with suitableCShowWss interspersed. Done properly, this would make the previously observed
discrepancies between abstract and concrete outputs disappear, since the coarser grain would enable us to schedule the
abstract and concreteShowWss so that they matched up, the details of the scheduling beingconcealed in the interior
of the coarse grained refinement. We do not give the details here, due to the technical complexity of dealing with the
many interleavings of independent updates. This approach gives further encouragement to the view that an RE-Ref is
after all a sensible species of refinement.

6. The Mondex Purse, as Atomic Action

Having developed theAtomicity Pattern, in this section we confront it with a different but nevertheless realistically
grounded example, the Mondex Purse, to verify the genericity of the description of atomicity situations that it furnishes.

The Mondex Purse is a smartcard electronic purse for containing genuine money, and as such, is a security critical
application. The 1990s development of Mondex was the among the first of such developments to achieve the highest
possible ITSEC rating of E6 (see [WSC+08]), equivalent these days to a Common Criteria rating of EAL7 [Dep91].
The ITSEC E6 rating requires there to be an abstract model, a concrete model, and a proof of correspondence between
them. For Mondex, the proof was a manual refinement proof between two Z models, an abstract model and a concrete
model. The details of the Mondex project as a whole are commercially sensitive. However, in a rare departure from
the usual practice regarding commercially sensitive developments, a desensitised public version of the less sensitive
and intellectually more interesting parts of the development was produced in [SCW00]. The development in [SCW00]
remains an impressive achievement, and a trailblazer for showing that fully formal techniques could be applied within
realistic time and cost limitations on industrial scale applications.

More recently, the Mondex refinement proof was adopted as thefirst case study in the Verification Grand Chal-
lenge; see [JOW06, Woo06, WB07]. In this, the objective was to redo the previously hand-done proofs using state of
the art verification tools. The first such attempt to be successfully carried through to completion was by the Augsburg
group [SGHR06,SGH+07]. Reports of successful treatments by other groups soon followed, and the results of a vari-
ety of approaches to the task are reported in [JW08]. These not only attest to the viability of doing such developments
in a fully mechanised manner, but also confirm the solidity ofthe original manual proof.

Despite the above, the exigiencies of refinement caused a number of issues to be treated in a less than ideal manner
in Mondex. In the actual (commercially sensitive version ofthe) development, these were dealt with via informal
arguments, which fully justified the positions taken on the issues in question. Nevertheless, a suitably formal treatment
would obviously have been better, not least because a properformalisation opens the way to mechanically checking
the arguments made, with a consequent improvement in dependability. This being the case, as well as its amply

Atomicity Failure and the Retrenchment Atomicity Pattern 13

To purse

From purse

CStartTo

CStartFrom

idle

idle
epr

epv

epa

idle

idleCReq CAck

CVal

req val ack

Fig. 3. The Mondex Concrete Protocol.

borne out prospects for mechanical verification, Mondex provides a superb platform for testing out the efficacy of the
retrenchment approach to handling situations which turn out to be awkward for refinement — a number of existing
case studies bear this aspect out equally amply [BPJS,BPJS06a,BPJS06b,BJPS07].

Turning to the Mondex development itself, at the top level, there is an abstract A model, which is a model of atomic
funds transfer between purses. According to this, a transaction can do one of the following: (a) complete successfully
(lodging the funds transfered instantaneously in the destination purse),AbTransferOkay; (b) atomically ‘lose’ the funds
(placing them in a special ‘lost’ component of the state, implying that it is known(by the system state) that the funds
are lost, permiting offline recovery later),AbTransferLost; (c) nothing at all happens (at this level of abstraction),
AbIgnore. One absolute requirement that the A model embodies, is the prohibition of failing but non-recoverable
transfers. Considering that real money is involved, this isas we would wish.

Here are the essentials of Mondex in a cut down world of only two purses, theTo purse and theFrom purse,
which are hardwired into the state. Two purses are in fact sufficient for our purposes for the following reason. In a
realistic Mondex world, there are many purses, but the community of purses can be partitioned as follows. There are
(non-intersecting) pairs of purses involved in transactions (and that is where the atomicity issues of interest to us lie);
and there are the remaining purses, which are either idle or are involved —with another purse— in the setting up of a
new non-intersecting pair — and no purse of this kind exhibits any atomicity issue of concern to us. Therefore, looking
at a single pair is adequate.

Abworld
Afrombal: N

Afromlost: N

Atobal : N

Atolost: N

AbIgnore
ΞAbworld

AbTransferOkay
∆Abworld
Avalue? : N

0 < Avalue? ≤ Afrombal
Afrombal′ = Afrombal− Avalue?
Atobal′ = Atobal+ Avalue?
Afromlost′ = Afromlost
Atolost′ = Atolost

AbTransferLost
∆Abworld
Avalue? : N

0 < Avalue? ≤ Afrombal
Afrombal′ = Afrombal− Avalue?
Atobal′ = Atobal
Afromlost′ = Afromlost+ Avalue?
Atolost′ = Atolost

In reality of course, some procedure involving a lot of low level activity takes place. Two purse owners wishing to
participate in a funds transfer insert their purses, theFrom purse and theTo purse, into an interface device, and type in
the instructions. The device then initiates the funds transfer process by informing the two purses of the details of the
required transaction. A protocol, described by the C model (which refines the A model), is then enacted. Fig. 3 shows
how it works.

The protocol starts its run by calling theCStartFromandCStartToevents in the respective purses, assuming that
both purses are in anidle state. These two events prime both purses with the information needed to execute the
protocol, including in particular, for each purse, the information directly pertaining to its counterpart. This puts both
purses in a position to check the extent to which (to the best of the available local knowledge) the playout of a running
protocol instance conforms to what is expected at that point. This reconciling of actual against expected is what gives
the Mondex protocol its recoverability properties in the face of protocol failure and interruption.

14 Banach, Jeske, Hall, Stepney

Once theCStartevents take place, the protocol proper commences. As part ofCStartTo, the To purse issues a
(cryptographically protected)req (request) message to theFrom purse and enters theepv(expecting payment value)
state. On receipt of thereq message, theFrom purse, which has been in theepr (expecting payment request) state
since itsCStartFrom, executes theCReq(Request) event, decrements its balance appropriately, and sends the amount
requested in a (cryptographically protected)val (value) message to theTo purse, itself going into theepa(expecting
payment acknowledgement) state. On arrival of theval message, theTo purse, executes theCVal (Value) event, incre-
ments its balance appropriately, becomesidle again, and sends a (cryptographically protected)ack(acknowledgement)
message back to theFrom purse. When this finally arrives, theFrom purse, executes theCAck(Acknowledgement)
event, and the protocol completes with both purses becomingidle once more. In addition to this just described ideal
protocol run outline, are numerous cases corresponding to failed protocol runs. In reality, any of the messages we
mentioned may get lost in transit, and any of the events that produce and/or consume them may fail to take place.
Tieing off the loose ends in the protocol generated thereby,is theCAbortevent, which unconditionally cleans up any
partially completed protocol run, logging any informationneeded for recovery, and resets the relevant purse to theidle
state. (CAbort is called in each purse at the start of every protocol run, as aprecaution in case the purse is still waiting
for some previous transfer to complete.) The recoverability properties of Mondex are in fact attributable to the rather
subtle properties of theCAbortevent.

Above we described an unproblematic run of the protocol. Of course much can go wrong in practice. The protocol
may get interrupted by accident or by design, and a purse may be subjected to deliberate attack in order to attempt to
subvert its integrity (and in the ideal case, to increase thebalance it contains beyond what is legitimate). The protocol
must be robust against all this. Part of the protection builtinto the protocol is the fact that any time a purse feels like
it, it has the option of doing nothing or of aborting the current transaction: this means that a purse will always respond
to any request to perform any of its actions, but the responsewill be null or aborting if the purse does not consider the
request to be appropriate in the context of its current state. This creates a large number of additional playouts of the
protocol which are not illustrated in Fig. 3. The non-trivial ones end inCAborts by the participating purses. We do not
define theCAbortevent in this paper, primarily because it does not impact on the atomicity issues of interest to us in
this section, but also because it is the most complex elementof the Mondex protocol, and taking the time and space
to describe it properly would entail a considerable detour from our intended aims. Nevertheless it can be shown that
all the possible playouts do indeed do the right thing, because the concrete protocol can be proved to be a refinement
of the abstract A model, both for successful runs (which refine AbTransferOkay) and for aborting runs (which refine
AbTransferLost). See [SCW00] for the original account, and also [BJPS07], which discusses the properties of the
protocol in detail in a manner compatible with the present discussion.

How does the preceding fit theAtomicity Pattern? Well, we have an A model and a C model, and C refines A. Since
A is atomic and C is not, any operation that reads and outputs the state values will exhibit a discrepancy if abstract
and concrete versions are invoked at an inopportune moment.A balance enquiry operation is just such an operation,
and one we would not unreasonably expect to find among the operations that are offered to the user in a banking
application.13

A balance enquiry operation can cause various kinds of trouble, depending on the synchronisation embodied in the
refinement used, and how this interacts with other technicaldetails in the relationship between abstract and concrete
models. In [SCW00] the abstract transfer is synchronised with the concreteCReqoperation, so the discrepancy shows
up in aTo purse enquiry if invoked while the value is in transit, i.e. between the departure and subsequent arrival of
theval message in Fig. 3. In [BJPS07], a different refinement is given which synchronises the abstract transfer with
the concreteCVal operation, which puts the discrepancy on theFrom purse side. (The pros and cons of dealing with
balance enquiries in various different ways are studied in depth in [BJPS07].) Either way, there is scope for an AA
model, introducing asynchrony at the most abstract level possible.

In the original development, [SCW00], in between the A and C models there is a B model. Its purpose is to capture
axiomatically various properties of the state of the C modelthat are useful in discharging the (backwards) refinement
proof between the A and B models — these properties being subsequently proved to be inductive invariants of all C
model runs during the (forwards) refinement proof between the B and C models. In any event, the B model turns out
to be technically very close to the C model, so it could not play the role that we have in mind for the AA model here.
However it is very easy to construct a suitable AA model from scratch. For simplicity, we encode a transaction in
progress viaAAval> 0 in the AA model below.

13 The fact that accounting for outputs which are incompatiblefor atomicity reasons cannot be convincingly done using refinement alone, led,
along with a whole host of other technical issues, to the complete omission of balance enquiry operations from [SCW00].

Atomicity Failure and the Retrenchment Atomicity Pattern 15

AAbworld
AAfrombal: N

AAfromlost: N

AAtobal: N

AAtolost: N

AAval : N

AAbTransferStart
∆AAbworld
AAvalue? : N

AAval= 0
0 < AAvalue? ≤ AAfrombal
AAval′ = AAvalue?
AAfrombal′ = AAfrombal− AAvalue?
RestSame......

AAbTransferOkay
∆AAbworld

AAval> 0
AAval′ = 0
AAtobal′ = AAtobal+ AAval
RestSame......

AAbTransferLost
∆AAbworld

AAval> 0
AAval′ = 0
AAfromlost′ = AAfromlost+ AAval
RestSame......

Note that the above model just separates out the beginning and end of a transaction, by introducing theAAbTransferStart
event; the beginning and end were combined in the A model. Therelationship between the A and AA models is ev-
idently an RE-Ref, but, assuming we choose to synchronise the A model transaction late (i.e. the A model operation
is synchronised withAAbTransferOkayor AAbTransferLost), the RE-Ref needs to relate discrepancies in inputs to the
states via within relations, since late synchronisation implies that the AA model input occurs earlier than the A model
input. In this scenario, we can use the simple retrieve relation RA,AA (whereRestEqual...... has the obvious meaning),
and within relationsWA,AA,TransferOkayandWA,AA,TransferLost(whose bodies are identical). Note that doing it this way
makes essential use of the ability of retrenchment within relations to combine not only input information but also state
information into a single relationship, just as the corresponding ability of retrenchment output relations to combine
not only output information but also state information intoa single relationship was exploited earlier in the relation
OAH,AA,ShowWs.

WA,AA,TransferOkay/Lost
Abworld
AAbworld
Avalue?

Avalue? = AAval

RA,AA
Abworld
AAbworld

AAval= Afrombal− AAfrombal
RestEqual......

(N. B. If we synchronised early rather than late, though the inputs would coincide, we would need a more complex,
nondeterministic, retrieve relation to intercede in what would need to be a backward simulation refinement as in the
original development [SCW00]. See [BS08b,BS08a] for a general treatment.)

Further down the modelling hierarchy, one can relatively straightforwardly synchroniseAAbTransferStartwith
the CReqoperation,AAbTransferOkaycan be synchronised withCVal, and with a little further manipulation of the
concrete state,AAbTransferLostcan be synchronised with a suitableCAbort. (N. B. This general approach, of dealing
with (non-)atomicity issues right away, and then pursuing arelatively conventional refinement approach towards the
lowest level models, is broadly similar to the strategy followed in the RAISE approach to the mechanisation of the
Mondex proofs. See [HGS06], and [GH08] in [JW08] — except that RAISE cannot deal directly with the change
of operation signatures implicit in a splitting of an atomicaction into a protocol, and so the splitting step must be
performed informally at the outset of the development.)

One can delve further into the refinement possibilities permitted by the approach in [BS08b, BS08a]. For exam-
ple, with a more complex retrieve relation, one could synchroniseAAbTransferStartwith the first concreteCStart,
AAbTransferOkaywith CAck, andAAbTransferLostwith a suitableCAbort. In the end, there are many choices, dis-
cussed at length in [BS08a]. In a nutshell, the Mondex development is, in the authors’ view, a superb example of the
Atomicity Patternat work. Moreover, it is a pre-existing example, not one invented specially to put the pattern in a
good light, and for that it is the more convincing.

16 Banach, Jeske, Hall, Stepney

7. The Mondex Purse, as Compensated Transaction

In the previous section we viewed Mondex as an ACID transaction problem, and discussed various refinements and
RE-Refs in that light — we note that Mondex is squarely in the financial world, where the merest whiff of ‘alkalinity’
in financial transactions is utterly intolerable. In fact, the Mondex protocol maintains a sufficiently copious (electronic)
papertrail, that aborted transactions, even though they donot achieve their original objective, can be traced, and the
whereabouts of the funds they involve can ultimately be reconciled with the original intentions of the participants.
In this manner, in the financial world, protocol failure is recategorised as a different kind of success, and ACIDity
emerges as a matter of careful definition.

Of course, there is nothing to stop us using the non-ACID potential of theAtomicity Patternto quantify some
aspects of interest of the protocol, such as the proportion of transactions that might abort under some given set of
assumptions or other, but this is a case of using the possibilities of retrenchment (perfectly reasonably), as a technical
convenience, rather than a pronouncement about a lack of integrity of the protocol. Further possibilities could entail
examining the performance of the protocol under the assumption that one or more of the security hypotheses it rests
on is weakened by some specified amount, etc.

However, there exists another approach to the question of possible alternative matches of theAtomicity Patternto
the Mondex protocol, via a redefinition of success and failure, and we look at this now. It permits the exercise of the
horizontal aspects of Fig. 2, which describe possible lack of ACIDity of the asynchronous protocol.

When a Mondex protocol run fails (by being a refinement ofAbTransferLost, as described above), the following
facts hold, and the sequence of events to be described takes place.

Firstly, a protocol run refinesAbTransferLostif and only if both purses involved in the transaction have the
(authenticated) transactionpaymentdetails ‘pdauth’, logged in their local (i.e. on-purse) exception logCXexlog(where
X ∈ {from, to}), these details having been put there by suitableCAbortevents, which executed on each of theFrom
andTo purses.14 If this is the case, then both purses need to get in contact with the bank underwriting the Mondex
system in order that both log contents can be uploaded to the bank’s central Mondex exception archive, whereupon
the presence of a matching pair of records from theFrom andTo purses of the transaction confirms the loss of the
val message in transit. Since it is only when theval message is in flight that theFrom andTo purse balances do not
add up to the original amount, it follows that only when the the val message is lost in transit, is there any nontrivial
action to be taken to recover lost funds. In this situation the bank can restore the missing funds to theFrom or To purse
according to the purse owners’ wishes.15

According to our original ACID picture, the preceding can beviewed as another kind of transaction present within
the overall Mondex system, and guaranteed to ‘succeed’ in the same way that the core protocol is guaranteed to
succeed, i.e. by definition. Alternatively, we can choose toview theAbTransferLostoutcomes of the core protocol as
failuresof the transaction, followed in time bycompensating actionsengaged in at the bank, which serve to remedy
the preceding protocol failures.

In such a view, the overall process is still guaranteed to be successful, as one would demand of a financial applica-
tion, but its ingredients can consist of an initial failure (implying temporary loss of ACID properties) followed by an
ACIDity-restoring compensation.

Compensation mechanisms for transactions have been studied with interest in recent years [BFH+02, BFN05,
BHF04, BBF+05] as a structured way of avoiding having to abandon the whole of a long-lived transaction (with all
the attendant impact on performance) when some particular part of it fails — especially if that part comes just before
the end, when abona fideabort would entail the loss of a huge amount of useful work, and especially if also, side effects
have been performed in the environment which cannot be undone (such as the sending of irrevocable communications
that may already have been received by their addressees). A compensation undertakes such measures as are needed to
recover ‘ACIDity in the real world sense’ in these situations (insofar as such recovery is indeed possible).

Conventionally, transactions [BHG87,GR93,BN97,WV02] connect with their environment (specifically the trans-
action manager residing in the operating system) via stylised interfaces. For the most simply structured transactions
these amount toTransStart, TransCommit, TransAbort. The transaction starts withTransStartwhich informs the trans-
action manager that the transaction has started and its activities are to be policed via the transaction mechanism. After

14 As hinted above, all of the subtlety of the Mondex protocol resides in the somewhat complicated properties of theCAbort events. We do not
need to plunge into these in detail to make our point in this paper; see [BJPS07] and other cited references for a full discussion. However, we point
up the fact thatbothpurses need to contain matching entries in their logs for there to be a protocol failure — it turns out that a single entry inone
of the two purses does not constitute a protocol failure by itself.
15 We eschew discussion of situations in which one or other of the parties to the transaction neglects, or is uncooperative regarding, the stated
interaction with the bank. Obviously, in reality, pragmatic measures must be in place to deal with such eventualities.

Atomicity Failure and the Retrenchment Atomicity Pattern 17

that, the transaction acquires resources and does its work (ideally, entirely in private, so that it can easily be rolledback
without visible trace if necessary). The work either succeeds or fails. If it succeeds, the transaction manager is askedto
run the correspondingTransCommitoperation, which commits the changes effected by the transaction, making them
visible to the wider environment. If it fails, the transaction manager is asked to run theTransAbortoperation, which
undoes the work provisionally attempted by the transaction, and restores all the resources accessed by the transac-
tion to their previous state. The use of theTransStart, TransCommit, TransAbortinterfaces (and their more complex
analogues in more sophisticated transaction models) is what enables the transaction manager to ensure that the four
ACID attributes are maintained across the community of executing transactions, and is also what enables individual
transactions to be written in isolation from one another.

Compensated transactions elaborate the fixed range of rollback mechanisms implicit in a transaction-manager-
controlledTransAbortoperation, and place the responsiblity for rolling back more complex transactions in the lap of
the transaction writer. This is especially useful when rollback, in the strict system state sense, is impossible for reasons
such as were already noted above. The previously cited references [BFH+02,BFN05,BHF04,BBF+05] illustrate well
the wide range of issues that one has to take design decisionsabout when the structuring and scheduling of compen-
sations interacts with a whole host of familiar semantic issues in an integrated linguistic framework for compensated
transactions.

For the purpose of illustrating the fit between compensated transactions (CTs) and theAtomicity Pattern, we
introduce a tiny CT language. Although some of its combinators resemble those of Z schema calculus, and despite
the fact we actually use Z schemas to define the transactions at the lowest level, the semantics of complex expressions
is closer to the operational nature of process algebras, as we sketch below, and as is the case for the majority of
compensated transaction languages. The productions of ourtiny CT language are:

CT := ǫ | (CT1 ; CT2) | (CT1 ∨ CT2) | (CT1 || CT2) | (CT1
�

� CT2) | ✓ | ✗

In the preceding,ǫ is the null (compensated) transaction, and(CT1 ; CT2), (CT1 ∨ CT2), (CT1 || CT2) are respec-
tively the sequential composition, nondeterministic choice, and parallel composition of compensated transactions.
(CT1

�

� CT2) is the basic compensated transaction pair, withCT1 being the transaction’s primary task andCT2 being
its compensation. We can abbreviate(CT1

�

� ǫ) to just CT1. When(CT1
�

� CT2) is executed, the primary taskCT1

is actually performed, and the compensationCT2 (in effect a kind of continuation) is pushed onto the compensation
stack. The normal execution of transactions is manipulatedby encountering✓ and✗ in the control flow. The symbol
✓ acts as a kind of commit, forcing the emptying of the compensation stack, while✗ interrupts the execution, and
passes control to the compensations stacked on the compensation stack, which are executed in last-in first-out order.
Obviously, a proper semantics would clarify the many questions left unanswered by this outline description, but what
we have said will do for this paper.

Let us now return to the Mondex atomic level. We introduce theIdeal Transaction Abstractmodel (prefixITAb),
defined as:

ITAbTansfer= (ITAbIgnore∨ ITAbTransferOkay)

whereITAbIgnore“=” AbIgnoreandITAbTransferOkay“=” AbTransferOkay. This is a model which does not include
any notion of transaction failure in the sense discussed earlier, i.e. there is no vestige ofAbTransferLost, and it is
derived from the Mondex abstract model of the preceding section by simply omitting theAbTransferLostpossibility.

To cope with the transaction failure implicit inAbTransferLost, we build another model, theCompensated Trans-
action Abstractmodel (prefixCTAb), defined as:

CTAbTansfer= (CTAbIgnore∨ CTAbTransferOkay∨ ((CTAbTransferLost�� CTAbRestoreLost) ; ✗)) ; ✓

whereCTAbIgnore“=” AbIgnore, CTAbTransferOkay“=” AbTransferOkay, CTAbTransferLost“=” AbTransferLost,
andCTAbRestoreLostis given by the schema:

CTAbRestoreLost
CTAbRestoreLost2To∨CTAbRestoreLost2From

where:

18 Banach, Jeske, Hall, Stepney

CTAbRestoreLost2To
∆CTAbworld
CTAval? : N

CTAtobal′ = CTAtobal+ CTAval?
RestSame......

CTAbRestoreLost2From
∆CTAbworld
CTAval? : N

CTAfrombal′ = CTAfrombal+ CTAval?
RestSame......

Clearly, theCTAbTansfermodel allows for transaction failure, and includes a suitable compensation for it in the opera-
tion CTAbRestoreLost. If we now defineCTAbTansferT to be(CTAbIgnore∨CTAbTransferOkay∨CTAbTransferLost),
i.e. it is the portion ofCTAbTansferthat will actually be done as a single atomic action, then we will have a re-
trenchment fromITAbTansferto CTAbTansferT. Most of this is predictably trivial, the only part of interest being the
concession:

CITAbTansfer,CTAbTansferT
∆ITAbworld
∆CTAbworld
CTAval? : N

ITAfrombal′ + ITAtobal′ = ITAfrombal+ ITAtobal= CTAfrombal+ CTAtobal
= CTAfrombal′ + CTAtobal′ + CTAval?

This now expresses the possibility that theCTAbTansferT transaction may lose funds whereas theITAbTansfertrans-
action cannot. PuttingITAbTansferin the place of modelA in Fig. 2 and puttingCTAbTansferT in the place of model
U, we see that the atomic actions of our compensated transaction model fit theAtomicity Patternvery well. Evidently,
the models in this top row of the pattern could now be refined tolower level non-atomic Mondex models in the way
that we have already seen.

Taking a more coarse grained view, we could look at the relationship betweenITAbTansferand the complete
CTAbTansfermodel, allowing the latter to do two steps (CTAbTransferLostand its compensationCTAbRestoreLost)
before we insisted on reconciling its behaviour with that ofITAbTansfer. In such a case we would find nothing amiss,
sinceCTAbRestoreLostis able to compensate completely for the inappropriate consequences ofCTAbTransferLost,
and thusCTAbTansferwould be a refinement ofITAbTansfer. In such a case the top row of theAtomicity Patternin
effect collapses to a single model, theA model of Fig. 2, since the retrenchment from modelA to modelU reduces to a
refinement, and this can be composed with the refinement from modelU to modelD, sidestepping modelU completely
if desired.

In more messy scenarios, such as we have hinted at above, the relevant compensations would not necessarily be
able to completely reverse the effects of their ACIDity-losing primary tasks. In such situations, the top row of the
Atomicity Patternwould be genuinely required, in that it would not be possibleto elide modelU regardless of the
granularity of the viewpoint taken. Our next case study features precisely this kind of behaviour.

8. Transactional Memory

Compared with the previous section, in this section we go theopposite extreme as regards the size of the basic atomic
actions that we deal with, since now, these often reside at the level of individual machine instructions. These however,
are pefectly capable of achieving the messiness alluded to in the previous paragraph.

The contemporary CPU chip scene is dominated by the twin facts that while minaturisation continues apace for the
time being, allowing many processors to be placed on a singlechip, the increase in speed of an individual processor,
so notable from generation to generation in the past, has more or less slowed to a standstill. Tomorrow’s processors
are likely to be no faster than today’s, though we will have many more of them at our disposal. This has spawned a
desire to make greater and more convenient use of the potential power of multi-core CPUs, all in the face of many
years’ experience of the difficulty in making concurrency a true ‘mass’ programming paradigm.

One potentially promising approach to achieving greater usability for concurrent computation is via transactional
memory (TM) [LR06]. The idea is that rather than providing programmers with explicit low level devices (such as
locks etc.) for controlling concurrency, with the well known consequence that most programs making non-trivial
use of these will be replete with bugs of rather exquisite obscurity (and will thus, in effect, be almost useless),16

16 Typical sources on concurrent programming, eg. [BA82,Ray88,LMWF94,Lyn96] stress the fact that the transient aspectsof concurrent program

Atomicity Failure and the Retrenchment Atomicity Pattern 19

programmers would instead be provided with an encapsulation mechanism, a transaction-like atomic action syntactic
primitive (whose optimum semantics were to be determined byfuture research), and the implementation would have
the responsibility of ensuring its correct operation.

TM comes in broadly two flavours, hardware and software. Predictably, the hardware flavour supports the atomicity
primitive via the hardware memory management system [HM93,RG02, HWC+04, YBM+07, RRP+07, KHR+08],
while the software flavour looks to do the same thing via a software layer sitting just above the memory management
system [HF03,HMPJH05,SMAT+07,IB07,ABHI08,MBS+08,DS09]. Recently a hybrid scheme has been considered,
exploiting off-the-shelf memory management hardware in a novel way to implement TM [AHM09]. In this section, we
will, without striving to be in any way comprehensive, consider three typical examples (paraphrased from [ABHI08])
that arise in this fertile and intensively studied area, andhow they relate to theAtomicity Pattern.

Given the amount of research into transaction notions that has been done in recent decades (amply demonstrated
in the references cited in the previous paragraph), TM wouldnot be such an intriguing issue were it not for the fact
that ‘properly transacted’ code is expected to run alongside, and to co-operate sensibly with, ‘non-transacted’ legacy
code. Combining the potential pitfalls of this with the kinds of tricks perpetrated by optimising compilers, such as
code movement and speculative computation, gives rise to copious bug-spawning phenomena that are easy enough
to imagine, and that constitute exactly the kind of scenarios that theAtomicity Patternwas designed to capture. In
contrast to the applications of the pattern in preceding sections, which could all plausibly be carried out in a top-down
manner, in TM, the action is all at the instruction set level,and the challenge is to not only to keep the low level
behaviour under reasonable control, but to find abstractions that are useful to describe it at a higher level.

Values out of thin air. We examine our first example, zombie transactions that produce ‘values out of thin air’. Below,
we see a model A, specified in Z, (and intended to occupy theA position in Fig. 2). It consists of three natural-valued
variables, such that initially, two of them are equal and away from zero, the other being zero. Three operations are
given,AAtomic1, AAtomic2 andAUnprotected1. The first two have transaction semantics, in that either a non-trivial
effect, or no visible change takes place — and furthermore, this is all accomplished atomically (on the understanding
that Z operations specify instantaneous changes of state).In addition, we make use of outputs to model the writing
of information to machine registers. The last,AUnprotected1, is not given a roll-back option — it represents legacy
non-transaction code, and consists of the value assignmentto a single variable, which may be seen as corresponding
to a single machine instruction running alongside the others. The fact that it corresponds to just one instruction, means
that there is no conflict between the implicit atomicity of Z and the normal execution of machine instructions.

Aworld
Au, Av, Ax : N

AAtomic1
∆Aworld

((Au 6= Av∧ Ax′ = 42
∨ Au = Av∧ Ax′ = Ax)
RestSame......

)∨ ΞAworld

AAtomic2
∆Aworld

(Au′ = Au+ 1
Av′ = Av+ 1
RestSame......

)∨ ΞAworld

AUnprotected1
∆Aworld
Ar1! : N

Ar1! = Ax
RestSame......

AInitially
Aworld

Au = Av 6= 0
Ax = 0

Following [ABHI08], we can ask whether, when all three operations are executed,Ar1! can ever acquire the value 42.
Clearly, with the semantics we have described, the answer isno. ProvidedAAtomic1 andAAtomic2 are atomic, the
values ofAu andAv, as seen byAAtomic1, can never differ, so the assignment ofAx to 42 can never take place, and
AUnprotected1 always sees 0 as the value ofAx, regardless of when it runs. Now, provided that we have a reliable
implementation ofbona fidetransactions to use for refiningAAtomic1 andAAtomic2, the A model can be refined
towards an implementation, represented by eg. model C in theAtomicity Pattern.

Next, we see a description of the same scenario in terms more appropriate to a Software Transactional Memory
(STM) system such as Bartok-STM [HPST06]. As regards theAtomicity Pattern, it is intended for theU position of
Fig. 2.

execution, namely the details of the low level instruction schedule, being irreproducible under normal circumstances, make the identification of
errors in faulty concurrent code extraordinarily hard compared with the situation for sequential code.

20 Banach, Jeske, Hall, Stepney

Initially: u == v != 0 , r1 == 0 , r2 == 0 , x == 0

Thread 1 Thread 2 Thread 3

1 // Atomic1 // Atomic2 // Unprotected1
2 atomic{ atomic{ // non-atomic
3 r1 = u; u++;
4 r2 = v; v++; r1 = x;
5 if (r1 != r2) } �

� {
6 {x = 42;} u = ‘u;
7 } �

� { v = ‘v;
8 x = ‘x; }
9 }

Three threads execute instruction level versions of the operations above. The essentials of the semantics are as follows.
Individual instructions (such asr1 = u) execute atomically. Sequential composition ‘;’, is porous in the sense that
it allows the interleaving of the activities of other threads. Theatomic construct is less reliable than a fully ACID
transaction, in that work is done in-place, allowing it to beseen by other threads, and the usual R/W conflicts between
differentatomic blocks are detected lazily (i.e. perhaps after another thread has seen some effect of the block),
and are rolled back asynchronously. We indicate the latter by using our compensation mechanism from the previous
section, since that too is not intended to execute atomically with the primary task. The compensations feature pre-
primed variables to remember variables’ values at the beginning of the transaction for roll-back purposes.

If we now ask, in this new situation, whetherr1 can ever acquire the value 42, the answer becomes yes. A possible
scenario is as follows (cf. [ABHI08]). Thread 2 runs and itsatomic block starts. In between theu++ and thev++
of Thread 2, Thread 1 starts and runs to completion. Sinceu andv are different at this point,x acquires the value 42.
Of course, Thread 1 is in conflict with Thread2, and since it started later, it is the thread whose atomic action must
be aborted. However, before Thread 1 actions the compensation for itsatomic block, Thread 3 runs, picking up the
42 fromx and depositing it inr1. Once the conflicting transaction in Thread 1 has been rolledback, no trace of it
remains, andr1 has acquired the value 42 out of thin air. The possibility of ‘values out of thin air’, created by zombie
transactions thatde factoaccess more data than would be permitted in any serial execution, is one of the classic ills
that STM systems offering less than ACID semantics for theiratomic blocks are heir to.

It is clear now why the instruction level model has to go in theU position of theAtomicity Patternrather than in
a C-like position. While ideally, an implementation remains faithful to the abstraction it is supposed to incarnate, this
one obviously doesn’t. And rather than a refinement relationship from abstraction to code, as we would prefer, we
must be content with a retrenchment. Of course, the model we presented is still an abstraction, but it is an abstraction
of a different kind of behaviour than in theA model. Refining theU model, for instance to make the details of the STM
implementation more explicit, would take us in the direction of theD model of theAtomicity Pattern.

We turn to the retrenchment fromA to U. Disregarding, for simplicity, the fact that Z naturals areunbounded
whereas machine level ones are bounded (something that can be routinely incorporated into the retrenchment without
upsetting our story, so is omitted for simplicity), we will just concentrate on the functional discrepancy between the
A andU models, which amounts to focusing on the errant behaviour ofr1 underUnprotected1. The only item in
the retrenchment data that is relevant to this is the concession CAUnprotected1,Unprotected1, a relatively minimal choice for
which could be as follows, which clearly captures what transpires in our simple scenario:

CAUnprotected1,Unprotected1

∆Aworld
∆Uworld

Ar1! : N

r1! : N

r1! − Ar1! = 42
RestSame......

A wider question that arises, is of course the extent to whichone can reasonably expect to capture more far-reaching
consequences of such lapses in atomicity as we have seen here, but purely on the basis of knowing that the implemen-
tation of atomic actions in an STM system is imperfectly ACIDic.

Unfortunately, it is not hard to see that in general, one could say almost nothing at all beyond the trivialtrue, since
as is well known, a single unexpected value could have the most far-reaching consequences in a discrete transition

Atomicity Failure and the Retrenchment Atomicity Pattern 21

system such as those we are dealing with, since the occurrence of such a single unexpected value could be coupled
to any behaviour whatsoever. Without reasonably incisive knowledge of what threads the system supported, the inter-
dependencies between them, and the higher level invariantsthat the system was expected to uphold, we could predict
almost nothing.

The privatisation problem. We examine our second example, the ‘privatisation problem’in which a piece of data is
accessed, sometimes from within atomic blocks, sometimes directly. Below we see another A model, this time working
on a natural and a boolean. The disposition of the Z schemas isintended to indicate thatAUnprotected1 must always
be executed afterAAtomic1. Besides this, there are no constraints at this level of abstraction, so thatAAtomic2 is free
to be interleaved arbitrarily with respect to the other two operations. Again we ask whetherAx can ever be left with
the value 42. As previously, the answer is no. IfAAtomic2 runs first, thenAxbecomes 42, but it is then guaranteed that
Axwill be incremented byAUnprotected1. On the other hand, ifAAtomic2 does not run first (andAAtomic1 only ever
executes theΞAworld option if it conflicts with an earlier transaction, i.e. not ever in this case sincethere is no earlier
transactionto potentially conflict with), thenAAtomic2 will seeAx sharedasfalse and so will not attempt to assign
Ax to 42, and there will be no possible race between that assignment and the increment inAUnprotected1.

Aworld
Ax shared: B

Ax : N

AAtomic1
∆Aworld

(Ax shared′ = false
RestSame......

)∨ ΞAworld

AUnprotected1
∆Aworld

Ax′ = Ax+ 1
RestSame......

AAtomic2
∆Aworld

((Ax shared∧ Ax′ = 42
∨ ¬Ax shared∧ Ax′ = Ax)
RestSame......

)∨ ΞAworld

AInitially
Aworld

Ax shared= true
Ax = 0

Following [ABHI08] once more, we now look at a code level description of the situation, in the context of Bartok-
STM. Below, we see two threads, the first of which executesAtomic1 followed byUnprotected1, and the other
of which executesAtomic2.

Initially: x shared == true , x == 0

Thread 1 Thread 2

1 // Atomic1 // Atomic2
2 atomic{ atomic{
3 x shared = if (x shared)
4 false; {x = 42;}
5 } �

� { } �

� {
6 x shared = x = ‘x;
7 ‘x shared; }
8 } ;
9 // Unprotected1
10 // non-atomic
11 x++;

As before, we can ask whether in this lower level worldx can ever acquire the value 42. Again the answer is now
yes, and the scenario that shows this runs as follows.Atomic2 starts and runs. In betweenAtomic2’s read from
x shared and its write tox, Atomic1 runs in its entirety. Of course, it will be detected thatAtomic1 is in conflict
with the earlierAtomic2, so it will have to be rolled back, after whichUnprotected1 can run.Unprotected1
now has the opportunity to complete its increment onx beforeAtomic2 gets round to its write of 42 tox. (N. B.

22 Banach, Jeske, Hall, Stepney

As [ABHI08] point out, the preceding is not the only possiblescenario. If writes are buffered, then the write of 42
could get delayed, causing a similar outcome, even without conflicting transactions.) All of this constitutes our U
model.

As before, both the A and the U model can be refined, each using afaithful implementation of their own notion of
atomicity, but the two models can only be related to each other using a weaker notion than refinement, such as retrench-
ment. In the current context, although we know that the incompatible behaviour becomes visible in theAx/x variables,
it is harder to know ‘who to blame’ for this, since bothAAtomic2/Atomic2 andAUnprotected1/Unprotected1
access them. For the sake of having a simple retrenchment, wewill ‘blame’ AUnprotected1/Unprotected1 in this
paper, though a better treatment would utilise a more coarse-grained approach to retrenchment [Ban09] to allow all the
different possibilities to be represented more fairly.17 With this proviso, we can again restrict to just giving a simple
concession for the relevant operation.

CAUnprotected1,Unprotected1

∆Aworld
∆Uworld

Ax 6= x = 42
RestSame......

The publication problem. We move on to our third example, again taken from [ABHI08], the ‘publication problem’
in which a piece of data is initially private to a thread, and then becomes shared. From a serialisability perspective,
this is the most innocuous looking of all our examples. A piece of data is manipulated privately. When the private
manipulation is finished, the owning thread atomically setsa public flag to signal the public availability of the data,
after which, other transactions access it in a disciplined way.

Again, the ideal A model is given in Z below. Once more, the disposition of theAUnprotected1 andAAtomic1
schemas indicates that the latter is to be executed after theformer. The other atomic block,AAtomic2, runs interleaved
with these two. We see that from the vantage point of atomic semantics, nothing can go wrong. Either the atomic
block AAtomic2 is executed afterAAtomic1, whereupon it sees the updatedAx sharedvariable, and knows that it is
permitted to accessAx and thence to updateAr1! accordingly. OrAAtomic2 is executed beforeAAtomic1, whereupon
it does not see the new value ofAx shared, and must relinquish its desire to readAx. Either way,Ar1! ends up as−1
or as 42.

Aworld
Ax shared: B

Ax : N

AUnprotected1
∆Aworld

Ax′ = 42
RestSame......

AAtomic1
∆Aworld

(Ax shared′ = true
RestSame......

)∨ ΞAworld

AAtomic2
∆Aworld
Ar1! : Z

((Ax shared∧ Ar1! = Ax
∨ ¬Ax shared∧ Ar1! = −1)
RestSame......

)∨ ΞAworld

AInitially
Aworld

Ax shared= false
Ax = 0

Next, we see the code level description, in the context of Bartok-STM, constituting our U model. We again see
two threads, the first of which executesUnprotected1 followed byAtomic1, and the other of which executes
Atomic2. Note that the second of these,Atomic2, has an empty compensation in view of the fact that it only writes
to a register, which is regarded as an output variable, and thus there are no memory writes to roll back.

17 This also illustrates well a universal truth about retrenchment, namely that what one wishes toachievein a retrenchment has a crucial effect on
what oneputs intothe retrenchment.

Atomicity Failure and the Retrenchment Atomicity Pattern 23

Initially: x shared == false , x == 0

Thread 1 Thread 2

1 // Unprotected1 // Atomic2
2 // non-atomic atomic{
3 x = 42; r1 = -1;
4 // Atomic1 if (x shared)
5 atomic{ {r1 = x;}
6 x shared = } �

� { }
7 true;
8 } �

� {
9 x shared =
10 false;
11 }

Even given the problems we have seen earlier, there appears to be no problem with this example. The only possible
source of conflict betweenAtomic1 andAtomic2 is the shared variablex shared, and since each atomic block
only accesses it during one instruction, either execution order (for these instructions) defines an acceptable serialisa-
tion. As [ABHI08] point out though, the problem goes deeper.There is no inkling, from the perspective of Thread 2,
that the order of readingx andx shared is significant. An optimising compiler may therefore schedule the read of
x early, beforeUnprotected1 has done its update tox. As a result, the value 0 may be the one used byAtomic2,
if the subsequent execution schedulesAtomic2 afterAtomic1.

Again, the only way of reconciling the ideal behaviour of theA model with the errant behaviour of the U model
is via a retrenchment. In this case, it is clear who we have to ‘blame’. It is theAAtomic2/Atomic2 pair. Here is the
straightforward concession which results.

CAAtomic2,Atomic2

∆Aworld
∆Uworld

Ar1! : N

r1! : N

Ar1! ∈ {−1, 42}
r1 = 0
RestSame......

9. Conclusions

In the preceding sections, we took a particularly simple example, based on an ATC application [Hal96], and via a
series of simple models and small model evolution steps (reminiscent of the Event-B approach [Abr03, ACM], and
of many practical ASM refinements [BS03, Bör03]), teased out how issues arising from non-atomicity of the real
system interacted with the remainder of the development. The step from an atomic to a non-atomic model meant that
inevitably, if one examined the states of the abstract and concrete models at an inopportune moment, some discrepancy
would be observed, which went beyond what traditional substitutivity-based notions of refinement could cope with.
Quite where the discrepancy might be observed, depended on how one chose to synchronise the atomic abstract action
with one of the constituent non-atomic concrete actions which implemented it. (The very non-atomicity of the concrete
model guarantees that there will be more than one such choice.) We showed that the greater flexibility of retrenchment
could account for what was going on in a rather straightforward manner, one moreover, that readily lends itself to
generalisation as a retrenchmentAtomicity Pattern.

We then tested the pattern against a different, and if anything more challenging example, based on the Mondex
Purse [SCW00,BJPS07], and found that it could cope extremely well with all the various possibilities when we viewed
the fundamental Mondex transaction model as an atomic action according to our way of looking at it.

One particularly useful aspect of theAtomicity Patternwas its potential for coping with situations that fell short
of perfect ACIDity in the concrete protocol. We showed this in the relatively simple context of the timing aspects of

24 Banach, Jeske, Hall, Stepney

the ATC application. Admittedly this is an extremely simplescenario, but it showed something of the power of the
Atomicity Patternto generalise across a wide variety of phenomena.

We explored the potential of theAtomicity Patternto capture non-ACID aspects of transactions further, by rein-
terpreting the recovery aspects of Mondex transactions as long-lived compensated transactions. We saw that here too,
theAtomicity Patternwas flexible enough and generic enough to encompass the requisite behaviour.

All of this makes us confident that the pattern will be applicable in much larger application domains where loss of
ACIDity is an issue. Why? Well, all models of the kind we are considering are defined by using a collection of events
or operations — a large complicated model merely has more of them, they may be more complex, and they may be
organised into more layers. Provided though, that the modelis sufficiently comprehensive, and captures enough of the
environment if the environment is implicated in ACIDity losing behaviour, loss of ACIDity will arise through specific
events. Provided we model these events appropriately, the changing properties of interest can be captured in suitable
retrenchment data (i.e. the within, output, and concedes relations) attached to relevant event or operation descriptions,
as we pass from an idealised model to a more realistic and imperfect one.

In this manner we anticipate that ACIDity losing phenomena in other long-lived workflows and their compensated
transactions, and highly concurrent and highly distributed environments, can also be subsumed by the pattern. Let us
briefly sketch how such an example might go. Consider a long-lived workflow containing online purchasing transac-
tions. In an ideal world, items are only sold if they are in stock. However, in the real world, it may occasionally happen
that the system could sell an item that did not exist due to poor stocktaking. Thus the real world could be described us-
ing two stock variables: the ‘nominal stock level’ used by the system, and the ‘true stock level’, accurate, but unknown
to the system. While the latter remained positive all would be well. But as soon as the system (unknowingly) made
a sale that pushed it below zero, the ACID properties would becompromised, since the sale would commit before
it became known that it was invalid. In due course, further events would ensue, that (say) resulted in the purchaser
being refunded. Although thesystemwould not know it had transacted a rogue sale at the moment it happened, there is
nothing to stop amodel of the systemhaving such knowledge, and thus being able to identify loss of ACIDity through
appropriate retrenchment data.

Finally, we leapt to the opposite extreme as regards the sizeof the basic atomic action in our system model, viewing
various unruly phenomena in the code-level implementations of imperfectly ACIDic software transactional memory
systems, as yet other manifestations of the general phenomena captured in the retrenchmentAtomicity Pattern. Here
again we saw that the pattern was able to express the dissonances between the ideal ACIDic view of what the code was
supposed to do and the unpleasant reality of a realistic implementation. Putting it all together, we regard the evidence
accumulated in this paper as a solid vindication of the utility of the retrenchmentAtomicity Pattern.

References

[ABHI08] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of Transactional Memory and Automatic Mutual Exclusion. In Proc. POPL
2008, 2008.

[Abr03] J.-R. Abrial. Event Based Sequential Program Development: Application to Constructing a Pointer Program. In Araki et al. [AGM03],
pages 51–74.

[ACM] J.-R. Abrial, D. Cansell, and D. Méry. Refinement and Reachability in Event-B. InProc. ZB 2005, volume 3455 ofLNCS, pages
222–241.

[AGM03] K. Araki, S. Gnesi, and D. Mandrioli, editors.International Symposium of Formal Methods Europe, volume 2805 ofLNCS, Pisa,
Italy, September 2003. Springer.

[AHM09] M. Abadi, T. Harris, and M. Mehrara. Transactional Memory with Strong Atomicity Using Off-the-Shelf Memory protection Hard-
ware. InProc. PPoPP 2009, 2009.

[BA82] M. Ben-Ari. Principles of Concurrent Programming. Prentice Hall, 1982.
[Ban09] R. Banach. Coarse Grained Retrenchment and the Mondex Denial of Service Attacks. InProc. IEEE TASE-09. IEEE Computer

Society Press, 2009.
[BBF+05] R. Bruni, M. Butler, C. Ferreira, T. Hoare, H. Melgratti,and U. Montanari. Comparing two Approaches to Compensable Flow

Composition. InProc. CONCUR 2005, 2005.
[BFH+02] M. Butler, C. Ferreira, P. Henderson, M. Chessell, C. Griffin, and D. Vines. Extending the Concept of Transaction Compensation.

IBM Systems Journal, 47:743–758, 2002.
[BFN05] M. Butler, C. Ferreira, and M. Ng. Precise Modellingof Compensating Business Transactions and its Applicationto BPEL. J.UCS,

11:712–743, 2005.
[BHF04] M. Butler, T. Hoare, and C. Ferreira. A Trace Semantics for Long-Running Transactions. In25 Years of CSP, Jul. 2004.
[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in Database Systems. Addison-Wesley, 1987.
[BJ09] R. Banach and C. Jeske. Retrenchment and Refinement Interworking: the Tower Theorems. 2009. Available at [RET].
[BJP08] R. Banach, C. Jeske, and M. Poppleton. Composition Mechanisms for Retrenchment.J. Log. Alg. Prog., 75:209–229, 2008.
[BJPS07] R. Banach, C. Jeske, M. Poppleton, and S. Stepney. Retrenching the Purse: The Balance Enquiry Quandary, and Generalised and

(1,1) Forward Refinements.Fund. Inf., 77:29–69, 2007.

Atomicity Failure and the Retrenchment Atomicity Pattern 25

[BKS83] R.J.R. Back and R. Kurki-Suonio. Decentralisationof Process Nets with Centralised Control. In2nd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pages 131–142, 1983.

[BN97] P. A. Bernstein and E. Newcomer.Transaction Processing. Morgan Kaufmann, 1997.
[Bör03] E. Börger. The ASM Refinement Method.Formal Aspects of Computing, 15:237–275, 2003.
[BP00] R. Banach and M. Poppleton. Fragmented Retrenchment, Concurrency and Fairness. InProc. IEEE ICFEM2000, pages 143–151,

York, 2000. IEEE Computer Society Press.
[BP03] R. Banach and M. Poppleton. Retrenching Partial Requirements into System Definitions: A Simple Feature Interaction Case Study.

Requirements Engineering Journal, 8:266–288, 2003.
[BPJS] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Retrenching the Purse: Finite Sequence Numbers and the Tower Pattern. InFM

2005, volume 3582 ofLNCS, pages 382–398. Springer.
[BPJS06a] R. Banach, M. Poppleton, C. Jeske, and S. Stepney.Retrenching the Purse: Finite Exception Logs, and Validating the Small. In

IEEE/NASA Software Engineering Workshop 30, 2006, pages 234–245. IEEE Computer Society Press, 2006.
[BPJS06b] R. Banach, M. Poppleton, C. Jeske, and S. Stepney.Retrenching the Purse: Hashing Injective CLEAR Codes, and Security Properties.

In 2nd IEEE International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, 2006, pages 82–
90. IEEE Computer Society Press, 2006.

[BPJS07] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Engineering and Theoretical Underpinnings of Retrenchment. Science of
Computer Programing, 67:301–329, 2007.

[BS03] E. Börger and R.F. Stärk.Abstract State Machines. A Method for High Level System Design and Analysis. Springer, 2003.
[BS08a] R. Banach and G. Schellhorn. Atomic Actions and their Refinement to Isolated Protocols.Form. Asp. Comp., 22:33–61, 2010.
[BS08b] R. Banach and G. Schellhorn. On the Refinement of Atomic Actions. ENTCS, 201:3–30, 2008. Also in: University of Kent

Computing Laboratory Technical Report 4-07, 168-191.
[CB04] T. Connolly and C. Begg.Database Systems: A Practical Approach to Design, Implementation and Management. Addison Wesley,

2004.
[CDK05] G. Coulouris, J. Dollimore, and T. Kindberg.Distributed Systems: Concepts and Design. Addison Wesley, 2005.
[CSW02] D. Cooper, S. Stepney, and J. Woodcock. Derivation of Z Refinement Proof Rules. Technical Report YCS-2002-347, University of

York, 2002.
[DB01] J. Derrick and E. Boiten.Refinement in Z and Object-Z. FACIT. Springer, 2001.
[Dep91] Department of Trade and Industry. Information Technology Security Evaluation Criteria, 1991.

http://www.cesg.gov.uk/site/iacs/itsec/media/formal-docs/Itsec.pdf.
[DS09] L. Dalessandro and M. Scott. Strong Isolation is a Weak Idea. InProc. Transact 2009, 2009.
[EL97] J. Eder and W. Liebhart. Workflow transactions. InWorkflow Handbook, pages 157–163. John Wiley, 1997.
[EN03] R. Elmasri and S. Navathe.Fundamentals of Database Systems. Addison Wesley, 2003.
[FF90] N. Francez and I. Forman. Superimposition for Interactive Processes. InProc. CONCUR 1990, volume 458 ofLNCS, pages 230–245.

Springer, 1990.
[GG] M. Gore and R. Ghosh. Recovery in Distributed Extended Long-lived Transaction Models. InProc. Sixth International Conference

on Database Systems for Advanced Applications, pages 313–320. IEEE Computer Society.
[GH08] C. George and A. Haxthausen. Specification, Proof, and Model Checking of the Mondex Electronic Purse using RAISE.Form. Asp.

Comp., 20:101–116, 2008.
[GMUW03] H. Garcia-Molina, J. Ullman, and J. Widom.Database Systems: The Complete Book. Prentice Hall, 2003.
[GR93] J. Gray and A. Reuter.Transaction Processing. Morgan Kaufmann, 1993.
[Hal96] A. Hall. Using Formal Methods to Develop an ATC Information System.IEEE Software, 13:66–76, 1996.
[HB03] T. Harris and J. Bacon.Operating Systems: Concurrent and Distributed Software Design. Addison Wesley, 2003.
[HF03] T. Harris and K. Fraser. Language Support for Lightweight Transactions. InProc. OOPSLA 2003, 2003.
[HGS06] A. E. Haxthausen, C. George, and M. Schütz. Specification and Proof of the Mondex Electronic Purse. InProceedings of 1st Asian

Working Conference on Verified Software, AWCVS’06, UNU-IIST Reports 348, Macau, 2006.
[HM93] M. Herlihy and E. Moss. Transactional Memory: Architectural Support for Lock-Free Data Structures. InProc. 20th ISCA, pages

289–300. 1993.
[HMPJH05] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable Memory Transactions. InProc. PPoPP 2005, 2005.
[HPST06] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing Memory Transactions. InProc. PLDI 2006, pages 14–25, 2006.
[HWC+04] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis, B. Hertzberg, Ma. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun.

Transactional Memory Coherence and Consistency. InProc. 31st ISCA, page 102. 2004.
[IB07] M. Isard and A. Birrell. Automatic Mutual Exclusion.In Proc. Workshop on Hot Topics in Operating Systems 2007, 2007.
[ISO02] ISO/IEC 13568.Information Technology – Z Formal Specification Notation – Syntax, Type System and Semantics: International

Standard, 2002.http://www.iso.org/iso/en/ittf/PubliclyAvailableStandards/c021573 ISO IEC 13568 2002(E).zip.
[Jes05] C. Jeske.Algebraic Integration of Retrenchment and Refinement. PhD thesis, University of Manchester, 2005.
[JK97] S. Jajodia and L. Kerschberg.Advanced Transaction Models and Architectures. Kluwer, 1997.
[JOW06] C.B. Jones, P. O’Hearne, and J. Woodcock. Verified Software: A Grand Challenge.IEEE Computer, 39(4):93–95, 2006.
[JW08] C. Jones and J. Woodcock, (eds.). Special Issue on theMondex Verification.Form. Asp. Comp., 20(1):1–139, January 2008.
[Kat93] S. Katz. A Superimposition Control Construct for Distributed Systems.ACM TPLAN, 15(2):337–356, 1993.
[KHR+08] B. Khan, M. Horsnell, I. Rogers, M. Luján, A. Dinn, and I.Watson. An Object-Aware Hardware Transactional Memory. InProc.

ICHPCC, pages 51–58, 2008.
[LMWF94] N. Lynch, M. Merritt, W. Weihl, and A. Fekete.Atomic Transactions. Morgan Kaufmann, 1994.
[Lon04] K. Loney.Oracle Database 10g: The Complete Reference. McGraw-Hill, 2004.
[LR06] J. Larus and R. Rajwar.Transactional Memory. Morgan and Claypool, 2006.
[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[MBS+08] V. Menon, S. Balensiefer, T. Shpeisman, A-R. Adl-Tabatabai, R. Hudson, B. Saha, and A. Welc. Practical Weak-Atomicity Semantics

for Java STM. InProc. SPAA 2008, 2008.

26 Banach, Jeske, Hall, Stepney

[Pap07] M. Papazoglou.Web Services: Principles and Technology. Prentice Hall, 2007.
[PB03] M. Poppleton and R. Banach. Structuring Retrenchments in B by Decomposition. In Araki et al. [AGM03], pages 814–833.
[Ray88] M. Raynal.Distributed Algorithms and Protocols. Wiley, 1988.
[RET] Retrenchment Homepage.http://www.cs.man.ac.uk/retrenchment.
[RG02] R. Rajwar and J. Goodman. Transactional Lock-Free Execution of Lock-Based Programs. InProc. 10th SASPLO, pages 5–17. 2002.
[RRP+07] H. Ramadan, C. Rossbach, D. Porter, Ow. Hofmann, A. Bhandari, and E. Witchel. MetaTM/TxLinux: Transactional Memoryfor an

Operating System. InProc. 34th ISCA, pages 92–103, 2007.
[SBG05] A. Silberschatz, P. Baer, and G. Gagne.Operating System Concepts. Wiley, 2005.
[Sch01] G. Schellhorn. Verification of ASM Refinements UsingGeneralized Forward Simulation.JUCS, 7:952–979, 2001.
[Sch05] G. Schellhorn. ASM Refinement and Generalisations of Forward Simulation in Data Refinement: A Comparison.Theoretical

Computer Science, 336:403–435, 2005.
[SCW00] S. Stepney, D. Cooper, and J. Woodcock. An Electronic Purse: Specification, Refinement and Proof. Technical Report PRG-126,

Oxford University Computing Laboratory, 2000.
[SGH+07] G. Schellhorn, H. Grandy, D. Haneberg, N. Moebius, and W.Reif. A Systematic Verification Approach for Mondex Electronic Purses

using ASMs. InProc. Dagstuhl Workshop on Rigorous Methods for Software Construction and Analysis 2007, LNCS. Springer, 2007.
[SGHR06] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif.The Mondex Challenge: Machine Checked Proofs for an Electronic Purse. In

Proc. FM 2006, volume 4085 ofLNCS, pages 16–31. Springer, 2006.
[SGMA89] K. Salem, H. Garcia-Molina, and R. Alonso. Altruistic Locking: A Strategy for Coping with Long Lived Transactions. InProc.

Second International Workshop on High Performance Transaction Systems, volume 359 ofLNCS, pages 175–199. Springer, 1989.
[SMAT+07] T. Shpeisman, V. Menon, A-R. Adl-Tabatabai, S. Balensiefer, D. Grossman, R. Hudson, K. Moore, and B. Saha. EnforcingIsolation

and Ordering in STM. InProc. PLDI 2007, 2007.
[Spi92] J.M. Spivey.The Z Notation: A Reference Manual. Prentice-Hall, second edition, 1992.
[WB07] J. Woodcock and R. Banach. The Verification Grand Challenge.JUCS, 13(5):661–668, May 2007.
[WD96] J. Woodcock and J. Davies.Using Z: Specification, Refinement and Proof. Prentice-Hall, 1996.
[Woo06] J.C.P. Woodcock. First Steps in the Verified Software Grand Challenge.IEEE Computer, 39(10):57–64, 2006.
[WS] Web Services Org.http://www.webservices.org/.
[WSC+08] J. Woodcock, S. Stepney, D. Cooper, J. Clark, and J. Jacob. The Certification of the Mondex Electronic Purse to ITSEC Level E6.

Form. Asp. Comp., 20:5–19, 2008.
[WV02] G. Weikum and G. Vossen.Transaction Processing. Morgan Kaufmann, 2002.
[YBM +07] L. Yen, J. Bobba, M. Marty, K. Moore, H. Volos, M. Hill, M. Swift, and D. Wood. LogTM-SE: Decoupling Hardware Transactional

Memory from Caches. InProc. 13th ISHPCA. 2007.
[ZBM03] P. Zikopoulos, G. Baklarz, and R. Melnyk.Official Guide to DB2 Version 8. Prentice Hall, 2003.

