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Abstract. The ingredients of typical model based development via refinement
are re-examined, and some well known frameworks are reviewed in that light,
drawing out commonalities and differences. It is observed that alterations in se-
mantics take placede factodue to applications pressures and for other reasons.
This leads to a perspective on tools for such methods in whichthe proof obliga-
tions become programmable and/or configurable, permittingeasier co-operation
between techniques and interaction with an Evidential ToolBus. This is of intrin-
sic interest, and also relevant to the Verification Grand Challenge.
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1 Introduction

Refinement, as a model based methodology for developing systems from abstract spec-
ifications, has been around for a long time [1]. In this period, many variations on the
basic idea have arisen, to the extent that an initiate can be bewildered by the apparently
huge choice available. As well as mainstream refinement methodologies such as ASM,
B, Z, etc., which have enjoyed significant applications use,there are a myriad other re-
lated theories in the literature, too numerous to cite comprehensively. And at a detailed
theoretical level, they are all slightly different.

From a developer’s point of view, this variety can only be detrimental to the wider
adoption of formal techniques in the real world applications arena — in the real world,
developers have a host of things to worry about, quite removed from evaluating the
detailed technical differences between diverse formal techniques in order to make the
best choice regarding which one to use. In any event, such choice is often made on quite
pragmatic grounds, such as the ready access to one or more experts, and crucially these
days, availability of appropriate tool support. Anecdotally, the choice of one or another
formalism appears to make little difference to the outcome of a real world project using
such techniques — success seems to be much more connected with proper requirements
capture, and with organising the development task in a way that is sympathetic to both
the formal technique and to the developers’ pre-existing development practices.

In this paper we examine closely what goes into a typical notion of model based re-
finement by examining a number of cases. As a result, we can extract the detailed simi-
larities and differences, and use this to inform a view on howdifferent techniques ought



2 R. Banach

to relate to one another. This in turn forms a perspective on how different techniques
can meet a contemporary environment in which verification techniques and their tools
can increasingly address mainstream industrial scale problems — determining how to
address the spectrum of technical differences between techniques, in the face of a wider
world prone to see them as intrinsically divisive, remains asignificant challenge. In this
paper, we contend that techniques in this field can be viewed as comprising a number
of features, amongst which, the commonly occuring ones ought to be emphasised, and
the more specific ones deserve to be viewed more flexibly. Thisline is developed to the
point that a landscape can be imagined, in which different techniques, and their tools,
can ultimately talk to one another.

The rest of the paper is as follows. In Section 2 we cover the common features of
model based formalisms. In Section 3 we show how these generalities are reflected in a
number of specific well known approaches. Section 4 reflects on the evidence accumu-
lated in the previous one and draws some appropriate conclusions. Section 5 takes the
preceding material and debates the implications for tools.It is suggested that increased
programmability can substantially help to bridge the gaps between techniques, and the
way that programmability features in some recent tools is discussed. These thoughts
are also in sympathy with the SRI ‘Evidential Tool Bus’ idea [2], and can contribute
positively towards the current Verification Grand Challenge [3–5]. Section 6 concludes.

2 Model Based Refinement Methods: Generalities

A typical model based formal refinement method, whose aim is to formalise how an
abstract model may be refined to a more concrete one, consistsof a number of elements
which interact in ways which are sometimes subtle. In this section we bring some of
these facets into the light; the discussion may be compared to a similar one in [6].

Formal language.All formal refinement techniques need to be quite specific about
the language in which the elements of the technique are formalised. This precision
is needed for proper theoretical reasoning, and to enable mechanical tools with well
defined behaviour to be created for carrying out activities associated with the method.
There are inevitably predicates of one kind or another to describe the properties of
the abstract and concrete models, but technical means are also needed to express state
change within the technique. Compared with the predicates used for properties, there is
much more variety in the linguistic means used for expressing state change, although
each has a firm connection with the predicates used for the modelling of properties.

Granularity and naming. All formal refinement techniques depend on relating con-
crete steps (or collections of steps) to the abstract steps (or collections of steps) which
they refine. Very frequently, a single concrete step is made to correspond to a single ab-
stract one, but occasionally more general schemes (in whichsequences of abstract and
concrete steps figure) are considered. The(1, 1) scheme is certainly convenient to deal
with theoretically, and it is often captured by demanding that the names of operations
or steps that are intended to correspond at abstract and concrete levels are the same.
However, in many applications contexts, such a simple naming scheme is far removed
from reality, and if naively hardwired into the structure ofa tool, makes the tool much
less conveniently usable in practice.
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Concrete-abstract fidelity.All formal refinement techniques demand that the concrete
steps relate in a suitable manner to abstract ones. Almost universally, a retrieve rela-
tion (also referred to as a refinement mapping, abstraction relation, gluing relation, etc.)
is used to express this relationship. It is demanded that theretrieve relation holds be-
tween the before-states of a concrete step (or sequence of steps) and the abstract step
(or sequence of steps) which simulates it; likewise it must hold for the after-states of
the simulating pair. In other words (sequences of) concretesteps must be faithful to (se-
quences of) abstract steps. (A special case, simple refinement, arises when the retrieve
relation is an identity.)

Concrete-abstract fidelity is the one feature that can be found in essentially the same
form across the whole family of model based formalisms. It isalso the case that this
fidelity —usually expressed using a proof obligation (PO), thefidelity PO— is often de-
rived as asufficient conditionfor a more abstract formulation of refinement, concerning
the overall behaviour of ‘whole programs’. These sufficientconditions normally form
the focus of the theory of model based refinement techniques,since they offer what is
usually the only route to proving refinement in practical cases.

Notions of correctness.One of the responsibilities of a formal refinement technique
is to dictatewhenthere should be concrete steps that correspond to the existence of
abstract ones. This (at least implicitly) is connected withthe potential for refinement
techniques to be used in a black-box manner. Thus if an abstract model has been drawn
up which deals adequately with the requirements of the problem, then any refinement
shouldguaranteethat the behaviour expressed in the abstract model should bereflected
appropriately in more concrete models, and ultimately in the implementation, so that
the requirements coverage persists through to code.

There is much variation among refinement techniques on how this is handled, par-
ticularly when we take matters of interpretation into account. Although the mainstream
techniques we discuss below are reasonably consistent about the issue, some variation
is to be found, and more variety can be found among refinement variants in the litera-
ture. The formal content of these perspectives gets captured in suitable POs, and often,
the policy adopted has some impact on the fidelity PO too. A similar impact can be felt
in initialisation (and finalisation) POs.

Interpretation. The preceding referred (rather obliquely perhaps) to elements of model
based refinement theories that are expressed in the POs of thetheory, i.e.via logic.
However, this does not determine how the logical elements relate to phenomena in the
real world. If transitions are to be described by logical formulae (involving before and
after states, say), then those formulae can potentially take the valuefalse as well as
true. And while determining how the logical formulae correspondto the real world is
usually fairly straightforward in thetrue case, determining the correspondence in the
false case can be more subtle. These matters of logical-to-real-world correspondence
constitute theinterpretationaspects of a formal development technique.

Trace inclusion.Trace inclusion, i.e. the criterion that every execution sequence of the
system (i.e. the concrete model) is as permitted by the specification (i.e. the abstract
model), is of immense importance in the real world. When an implemented system
behaves unexpectedly, the principalpost hocmethod of investigation amounts to deter-
mining how the preceding behaviour failed to satisfy the trace inclusion criterion. This
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importance is further underlined by the role that trace inclusion plays in model check-
ing. The ‘whole program’ starting point of the derivation ofmany sufficient conditions
for refinement is also rooted in trace inclusion. Two forms oftrace inclusion are of inter-
est.Weak trace inclusionmerely states that for every concrete trace there is a simulating
abstract one.Strong trace inclusiongoes beyond that and states that ifAstepssimulates
Cstepsand we extendCstepsto Cstepso9Cnxt, thenAstepscan be extended toAstepso9Anxt

which also simulates. With weak trace inclusion, we might have to abandonAstepsand
find some unrelatedAstepsdifferent to recover simulation ofCstepso9 Cnxt.

Composition.It is a given that large systems are built up out of smaller components, so
the interaction of this aspect with the details of a refinement development methodology
are of some interest, at least for practical applications. Even more so than for notions
of correctness, there is considerable variation among refinement techniques on how
compositionality is handled — the small number of techniques we review in more detail
below already exhibit quite a diversity of approaches to theissue.

3 ASM, B, Event-B, Z

In this section, we briefly review how the various elements ofmodel based methods
outlined above are reflected in a number of specific and well-known formalisms. For
reasons of space, we restrict to the ASM, B (together with themore recent Event-B)
and Z methodologies. We also stick to a forward simulation perspective throughout. It
turns out to be convenient to work in reverse alphabetical order.

3.1 Z

Since Z itself [7] is simply a formal mathematical language,one cannot speak defini-
tively of theZ refinement. We target our remarks on the formulations in [8,9].

Formal language: Z uses the well known schema calculus, in which a schema con-
sists of named and typed components which are constrained bya formula built up using
the usual logical primitives. This is an all-purpose machinery; ‘delta’ schemas enable
before-after relations that specify transitions to be defined; other schemas define re-
trieve relations, etc. The schema calculus itself enables schemas to be combined so as
to express statements such as the POs of a given refinement theory.

Granularity and naming: Most of the refinement formulations in [8, 9] stick to a
(1, 1) framework. Purely theoretical discussions often strengthen this to identity on
‘indexes’ (i.e. names) of operations at abstract and concrete levels, though there is no
insistence on such a close tieup in [10, 11].

Concrete-abstract fidelity: In the above context for Z refinement, the fidelity PO
comes out as follows, which refers to the contract interpretation without I/O (while the
behavioural interpretation drops the ‘preAOp’):

∀ AState; CState; CState′ • preAOp∧ R∧ COp⇒ ∃ AState′ • R ′ ∧ AOp (1)

whereAState, CStateare (abstract and concrete) state schemas (primes denote after-
states),AOp, COpare corresponding operations,R is the retrieve relation, and ‘preAOp’,
the precondition, in fact denotes the domain ofAOp.

Notions of correctness: In Z, an induction on execution steps is used in the(1, 1)
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framework to derive trace inclusion. To work smoothly, totality (on the state space) of
the relations expressing operations is assumed. To cope with partial operations, a⊥
element is added to the state space, andtotalisationsof one kind or another, of the rela-
tions representing the operations, are applied. The consequences of totalisation (such as
(1)), got by eliminating mention of the added parts from a standard forward simulation
implication, constitute the POs of, and embody the notion ofcorrectness for, the total-
isation technique under consideration. These turn out to bethe same for both contract
and behavioural approaches, aside from the difference in (1) noted above.

Interpretation: The two main totalisations used, express thecontractandbehavioural
interpretations. In the former, an operation may be invokedat any time, andthe con-
sequences of calling it outside its precondition are unpredictable (within the limits of
the model of the syntax being used), including⊥, nontermination. In the latter,⊥ is
guaranteed outside the precondition (usually called the guard in this context, but still
defined as the domain of the relevant partial relation), which is typically interpreted by
saying the operationwill not executeif the guard is false.

Trace inclusion: Trace inclusion has been cited as the underlying derivation tech-
nique for the POs, and since an inductive approach is used, itis strong trace inclusion.
However, the ‘fictitious’ transitions of operations introduced by totalisation are treated
on an equal footing to the original ‘honest’ ones, so many spurious traces, not cor-
responding to real world behaviour, can be generated. For instance a simulation of a
concrete trace may hit a state (whether abstract or concrete) that is outside the ‘natu-
ral’ domain of thenextpartial operation. Then, in the contract interpretation, the trace
can continue in a very unrestricted manner, despite the different way that one would
view the constituent steps from a real world perspective. Things look a bit better in the
behavioural interpretation, since such a trace is thereafter confined to⊥.

Composition: One prominent composition mechanism to be found in Z ispromo-
tion. In promotion, a component which is specified in a self-contained way is replicated
via an indexing function to form a family inside a larger system; this interacts cleanly
with refinement [8, 9]. However, the schema calculus in general is not monotonic with
respect to refinement without additional caveats [12].

3.2 B

The original B Method was described with great clarity in [13], and there are a number
of textbook treatments eg. [14–16].

Formal language: Original B was based on predicates for subsets of states, written
in a conventional first order language, and on weakest precondition predicate transform-
ers (wppts) for the operations. The use of predicate transformers obviates the need for
explicitly adjoining⊥ elements to the state spaces.

Granularity and naming: Original B adheres to a strict(1, 1) framework; ‘strict’
in the sense that tools for original B demand identical namesfor operations and their
refinements. Abstract models of complex operations can be assembled out of smaller
pieces using such mechanisms as INCLUDES, USES, SEES. However once the com-
plete abstract model has been assembled, refinement proceeds monolithically towards
code. The last step of refinement to code, is accomplished by acode generator which
plugs together suitably designed modules that implement the lowest level B constructs.
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Concrete-abstract fidelity: This is handled via the predicate transformers. Adapting
the notation of [13] for ease of comparison with (1), the relevant PO can be written:

AInv∧ CInv∧ trm AOp⇒ [ COp] ¬ [ AOp] ¬ CInv (2)

In this,AInvandtrm AOpare the abstract invariant and termination condition (the latter
being the predicate of the precondition), whileCInv is the concrete invariant, which in
original B, involves both abstract and concrete variables and thus acts also as a retrieve
relation; all of these are predicates.[ AOp ] and[ COp ] are the wppts for the abstract
and concrete operations, so (2) says that applying the concrete and ‘doubly negated’
abstract wppts to the after-state retrieve relation yieldsa predicate (on the before-states)
that is implied by the before-state quantities to the left ofthe implication.

Notions of correctness: In original B, precondition (trm) and guard (fis) are distinct
concepts (unlike Z), albeit connected by the implication¬ trm ⇒ fis , due to the de-
tails of the axiomatic way that these two concepts are defined. Moreover,trm ∧ ¬ fis
can hold for an operation, permittingmiracles, a phenomenon absent from formalisms
defined in a purely relational manner. In original B,trm is a conjunct of any opera-
tion’s definition, so outsidetrm, nothing is assumed, and when interpreted relationally,
it leads to something like a ‘totalisation’ (though different from the Z ones). During
refinement, the precondition is weakened and the guard is strengthened, the former of
which superficially sounds similar to Z, though it is again different technically.

Interpretation: The interpretation of operation steps for whichtrm andfis both hold
is the conventional unproblematic one. Other steps fire the imagination. Iftrm is false
the stepaborts, i.e. it can start, but not complete normally; modelled relationally by
an unconstrained outcome, a bit like contract Z. Iffis is false the step does not start
normally, but can complete; a miracle indeed, usually interpreted by saying that the
step will not take place iffis is false.

Trace inclusion: In original B, trace inclusion is not addressed directly, but as a
consequence of monotonicity. Refinement is monotonic across the B constructors, in-
cluding sequential composition. This yields a notion of weak trace inclusion, since the
trm andfis of a composition are anoutputof a composition calculation, not an input,
and in particular, cannot be assumed to be thetrm andfis of the first component, as
one would want if one were extending a simulation by considering the next step. And
even though the sufficient condition for fidelity (2) is a strengthening of the natural B
refinement condition, it does not lead to an unproblematic strong trace inclusion, since
in a relational model, we have the additional transitions generated by the ‘totalisation’,
and miracles do not give rise to actual transitions.

Composition: In original B, the interaction of refinement and composition is not a
real issue. The earlier INCLUDES, USES, SEES mechanisms arecertainly composition
mechanisms, but they just act at the top level. Only the finally assembled complete
abstract model is refined, avoiding the possibility of Z-like nonmonotonicity problems.
The IMPORTS mechanism allows the combination of independent developments.

3.3 Event-B

Event-B [17–19] emerged as a focusing of original B onto a subset that allows for both
more convenient practical development, and also an avoidance of the more counterin-
tuitive aspects of the original B formalism, such as miracles.
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Formal language: Event-B is rooted in a traditional relational framework, derived by
restricting original B operations (henceforth called events) to have atrm which istrue,
and controlling event availability purely via the guard, which is the domain of the event
transition relation, as in Z. Distinguishing between guardand event in the syntax enables
event transitions to be defined via convenient notations (such as assignment) which are
more widely defined than the desired guard. Formally, the more exotic possibilities
afforded by predicate transformers are no longer needed.

Granularity and naming: Event-B relaxes the strict(1, 1) conventions of original B.
As in original B, the syntax of the refinement mechanism is embedded in the syntax of
the refining machine, so an abstraction can be refined in more than one way, but notvice
versa. However, a refining event now names its abstract event, so anabstract event can
have several refinements within the same refining machine. New events in a refining
machine areimplicitly understood to refine an abstractskip, something which needed
to be stated explicitly in original B, cluttering incremental development.

Concrete-abstract fidelity: The absence of the more exotic aspects of predicate
transformers gives the Event-B fidelity PO a quite conventional appearance:

∀ u, v, v′ • AInv∧ CInv∧ GCEv ∧ CEv⇒ ∃ u′ • AEv∧ CInv′ (3)

This says that assuming the abstract invariant and the concrete invariant (which is again
a joint invariant i.e. retrieve relation) and the concrete guard and concrete transition re-
lation for the before-states, yields the existence of an abstract event which re-establishes
the joint invariant in the after-states.

Notions of correctness: The absence of preconditions distinct from guards simplifies
matters considerably. The previous ‘weakening of the precondition’ during refinement
of an operation, is now taken over by ‘disjunction of concrete guard with guards of all
new events is weaker than the abstract guard’. This is a quitedifferent criterion, which
nevertheless guarantees that if something can happen at theabstract level, a ‘suitable’
thing is enabled at the concrete level. This is also combinedwith guard strengthening
in the refinement of individual events, and a well foundedness property to prevent new
events from being always enabled relative to old events. Totalisations are no longer
present in any form, which has an impact on trace inclusion (see below).

Interpretation: The absence of preconditions distinct from guards simplifies inter-
pretational matters considerably. There is a firm commitment to the idea that events
which are not enabled do not execute, avoiding the need to engage with miracles and
with spurious transitions generated by totalisation.

Trace inclusion: In the Event-B context, trace inclusion wins massively. Since for a
refined event, the concrete guard implies the abstract one, the implication has the same
orientation as the implication in (3), so the two work in harmony to enable any concrete
step joined to an appropriate abstract before-state, to be unproblematically simulated,
a phenomenon not present in formalisms mentioned earlier — simulated moreover, by
a ‘real’ abstract event, not a fictitious one introduced via totalisation. New events do
not disturb this, since they are by definition refinements ofskip, which can always
effortlessly simulate them. So we have genuine, uncluttered, strong trace inclusion.

Composition: Event-B takes a more pro-active approach to composition than orig-
inal B. Event-B’s top-down and incremental approach means that system models start
out small and steadily get bigger. This allows composition to be instituted viadecompo-
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sition. As a system model starts to get big, its events can be partitioned into subsystems,
each of which containsabstractionsof the events not present. These abstractions can
capture how events in different subsystems need to interact, allowing for independent
refinement, and avoiding the non-monotonicity problems mentioned earlier.

3.4 ASM

The Abstract State Machine approach developed in a desire tocreate an operationally
based rigorous development framework at the highest level of abstraction possible. A
definitive account is given in [6].

Formal language: Among all the methodologies we survey, ASM is the one that
de-emphasises the formality of the language used for modelling the most — in a laud-
able desire to not dissuade users by forcing them to digest a large amount of technical
detail at the outset. System states are general first order structures. These get updated by
applying ASM rules, which modify the FO structures held in one or morelocations. In
a departure from the other formalisms reviewed,all rules with a true guard are applied
simultaneously during an update.

Granularity and naming: The ASM approach tries as hard as it can to break the
shackles of imposing, up front, any particular scheme of correspondence between ab-
stract and concrete steps during refinement. Since a retrieve relation has to be period-
ically re-established, a practical technique that breaks apair of simulating runs into
(m, n) diagrams ofmabstract steps andn concrete ones (for arbitrary finitem+ n > 0),
without any preconceptions about which steps occur, is minimally demanding.

Concrete-abstract fidelity: In striving to be as unrestrictive as possible, ASM does
not prescribe specific low level formats for establishing refinement. However, one tech-
nique, generalised forward simulation, established by Schellhorn [20] (see also [21]),
has become identified as ade factostandard for ASM refinement. This demands that
the(m, n) diagrams mentioned above are shown to be simulating by having a ‘working’
retrieve relation≈, which implies the actual retrieve relation≡, which itself is referred
to as anequivalence. The≈ relation is then used in implications of the form (1)-(3),
except that several abstract or concrete steps (or none) canbe involved at a time. As
many(m, n) diagram simulations as needed to guarantee coverage of all cases that arise
must then be established.

Notions of correctness: It has already been mentioned that≡ is referred to as an
equivalence. While almost all retrieve relations used in practice are in fact partial or
total equivalences [22], knowing thisa priori has some useful consequences. It leads
to a simple relationship between the guards of the run fragments in simulating(m, n)
diagrams, subsuming guard strengthening, and eliminatingmany potential complica-
tions. Refinement is defined directly via a trace-inclusion-like criterion (periodic re-
establishment of≡), and for(0, n) and (m, 0) diagrams, there is a well foundedness
property to prevent permanent lack of progress in one or other system in a refinement.
The analogue of ‘precondition weakening’ (though we emphasise that there is no sepa-
rate notion of precondition in ASM) is subsumed by the notionof ‘complete refinement’
which demands that the abstract model refines the concrete one (as well asvice versa),
thus ensuring that any time an abstract run is available, so is a suitable concrete one,
yielding persistence of coverage of requirements down a refinement chain. Of course
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not all refinements need to be complete, permitting convenient underspecification at
higher levels, in a similar manner to Event-B.

Interpretation: Since states and transitions are defined directly, there are no subtle
issues of interpretation associated with them. Also, ASM rule firing is a hardwiring of
the ‘transitions which are not enabled do not execute’ convention into the formalism.

Trace inclusion: The (m, n) diagram strategy of ASM modifies the notion of trace
inclusion that one can sustain. The ASM(m, n) notion, at the heart of the ASMcorrect
refinementcriterion, can be viewed as a generalisation of the Event-B(1, 1) strategy.

Composition: With the major focus being on identifying the ground model,and on
its subsequent refinement (rather as in original B), the composition of independent re-
finements is not prominent in [6, 21]. On the other hand, if≡ really is an equivalence
(or as we would need to have it between two state spaces which are different, aregu-
lar relation a.k.a. adifunctionalrelation), there is a beneficial effect on any prospective
composition of refinements. Many of the issues noted in [12] arise, because incom-
patible criteria about abstract sets (of states, say) whichare unproblematic due to the
abstract sets’ disjointness, can become problematic due eg. to precondition weakening
when the sets’ concrete retrieve images become non-disjoint via a non-regular retrieve
relation. A regular retrieve relation does much to prevent this, facilitating composition
of refinements.

4 Configurable Semantics

The preceding sections very briefly surveyed a few well knownrefinement paradigms.
Although it might not be as apparent as when one examines moreof the details in
each case, it is easy to be struck by how so many of the issues wehave highlighted,
turn out merely to bedesign decisionsthat happen to have been taken, about some
particular feature, in the context of one or other formalism. Although some such design
decisions are interrelated, one can very easily imagine, that in many cases, a given
design decision about some aspect of a refinement methodology, could just as easily
have been implemented in the context of a methodology different from the one in which
we happen to find it. Here are a few examples.

• Regarding Z, one could easily imagine its notion(s) of correctness being substituted
by the ones from Event-B or ASM. Its notion of trace inclusionwould then be replaced
by one not requiring the use of ‘fictitious’ transitions generated by totalisation.
• For B, one could easily imagine adding⊥ elements to state spaces etc. in order to
obtain a different relational semantics, with fewer ‘fictitious’ transitions.
• For Event-B and ASM one could imagine bringing in some aspects of the Z modelling,
though it appears that little would be gained by doing so.

Of course such ideas are not new. In many cases, for mature methodologies, alternatives
of one kind or another have been investigated, whether in thenormal research literature
or as student research projects — making an even moderately comprehensive list of the
cases covered would swell the size of this paper unacceptably.

Semantic modifications of the kind hinted at can serve a more serious purpose than
mere curiosity. In ProB [23], a model checker and animator for the B-Method first im-
plemented for original B, the original B preconditions are re-interpreted as (i.e. given
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the semantics of) additional guards. The reason for this is that preconditions areweak-
enedduring refinement, whereas guards arestrengthened. As already noted in Section
3.3, the orientation of the latter implication is the same asthat in the fidelity PO, so the
two collaborate in establishing trace inclusion. Precondition weakening is in conflict
with this, so the ProB adaptation is necessary to ensure thatthe theoretical construc-
tions at the heart of model checking remain valid.

Commenting from a real world developer’s perspective, the fewer the extraneous
and counterintuitive elements that a formalism contains, the more appealing it becomes
for real world use. For example, if an applications sphere features operations that are
intrinsically partial, then that is all that there ought to be to the matter, and consequently,
the approach of totalising such operations becomes an artificial distraction, potentially
even a misleading one if the fictitious transitions could be mistaken for real ones.

Such techniques as totalisation can be seen as making the task of setting upthe se-
mantics of a formal framework simpler. However, the real world developer’s priorities
are more focused on accurate modelling of the application scenario, and this can moti-
vate a modification of the semantics, albeit at the price of additional formal complexity.
In the Météor Project [24], the semantics of original B wasmodified to explicitly check
well-definedness conditions for applications of (partial)functions, using techniques go-
ing back to Owe [25], in recognition of this application need. Event-B, a more recent
development, has such checks built inab initio, and its semantics fits model checking
needs much better too, as already noted.

The above thoughts, assembled with the wisdom of hindsight,drive one to the con-
clusion that the semantics of formal development notationswould be better designed
in a moreflexible, or configurableway. The idea that a single pre-ordained semantic
framework can cover all cases in all needed application scenarios is hard to sustain.

Such a viewpoint has consequences of course, both theoretical and practical. Theo-
retically, one would have to structure the theory of a particular formalism so that con-
trasting design decisions could be adopted straightforwardly, in a way that avoided con-
fusing the reader, and so that the consequences of adopting alternatives could easily
be imagined. Moreover, doing this would not constitute a huge overhead since theo-
retical work is relatively cheap. Practically though, it isa different matter. Practically,
formalisms, such as the ones we have discussed, are embodiedin tools; and creating
a good tool requires a considerable investment. We discuss the wider consequences of
our perspective for tools in the next section.

A final thought on the topic of semantic flexibility. One cannot help notice from
the above brief discussion, that the places where semantic modifications have been im-
posed on a technique in order to satisfy application development methodology needs,
have all occurred in the ‘notions of correctness’ and ‘interpretation’ areas. Notably
free from interference has been the ‘concrete-abstract fidelity’ area. This indicates a
strong consensus among approaches that simulation (in one form or another) isthekey
criterion that techniques must establish. Other issues from Section 2, such as ‘formal
language’, ‘granularity and naming’ and ‘trace inclusion’, ‘composition’, can be seen
as either enablers for setting up a framework, or derivable consequences of the design
decisions taken. This in turn suggests a scheme for organising theories in this field: one
sets up the linguistic machinery, one sets up concrete-abstract simulation, one chooses
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additional correctness and accompanying concepts, and then one derives whatever ad-
ditional properties of interest follow from the preceding choices. And when comparing
or combining one formalism with another, it is theintersectionof features rather than
theirunionthat is of greatest importance.

5 Issues for Tools

The considerations of the preceding sections have implications for tool design, as al-
ready noted. Up to now, most tools in this arena have been based on a commitment to
a particular set of design decisions about various semanticissues, and these decisions,
howsoever arrived at, have been hardwired into the structure of the tool, making tools
somewhat monolithic. This has the advantage that with each tool, one knows exactly
what one is getting. However, it also has the disadvantage that it isolates tools from
each other, and makes tool interoperability difficult or impossible.

These days, it is more and more recognised that to best address the risks inherent
in the whole process of a system development, it is desirableto utilise a range of tech-
niques and to interconnect them. A consequence of the isolation between tools is that it
is difficult to simultaneously capitalise on the strengths of more than one. It also means
that when an advance is made in one tool, other tools have to duplicate the work in-
volved before similar ideas can be used in the other contexts. One way of addressing
this difficulty is to not only make the various theoretical frameworks flexible and con-
figurable, as recommended earlier, but to also make the toolsthat support them more
configurableandprogrammable. We now discuss three approaches to this as exempli-
fied within three different tool environments.

TheRodin Toolset[18] for supporting the Event-B methodology, is built on Eclipse
[26], a flexible platform for software development which manages dependencies be-
tween development artifacts and supports a GUI for displaying them. The semantic
content of a methodolgy supported by an Eclipse-based tool is captured via a collec-
tion of Eclipse plugins. Rodin is thus a collection of plugins for introducing Event-B
machines and contexts, editing them, checking them, generating POs, supporting PO
proof, and general housekeeping. Other plugins exist for LATEX printing, ProB support,
and support for additional development activities to aid Event-B development is planned
or can easily be envisaged. Since the source of Rodin is in thepublic domain, one can
integrate such additional activities by simply writing more plugins of one’s own. If
one wished to actuallyalter specific semantic elements of Event-B for any reason, one
might well have toreplacean existing plugin by a different one, since the standard
semantics of Event-B is hardwired into the plugins, if not into Eclipse. This, although
possible, is not trivial, since writing Eclipse plugins, especially ones that would have to
collaborate closely with other existing ones, is not an easytask. Counter to this relative
inflexibility, we note that a certain limited amount of semantic flexibility has been built
into Rodinab initio, since one can configure certain attributes of events, eg. whether
they areordinary, convergent, etc. This influences the verification conditions that are
generated.

The Frog tool [27, 28] is an experimental tool, originally designed for mechan-
ically supporting retrenchment [29], whose inbuilt flexibility addresses our concerns
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very well. In Frog, much of what is hardwired in typical existing proof-driven devel-
opment tools is programmable. Thus there is an intermediatelanguage (Frog-CCL) for
declaring thestructureof the clauses that comprise the usual syntactic constructsthat
constitute a typical formal development framework. Paradigmatically, one has machine
definitions, relationships between machines and the like. In Frog, the mathematical in-
gredients of all the constructs are specified using Z schemas, thus exploiting Z’s essence
as a general purpose formal mathematical notation. Since relationships between con-
structs, such as refinements, are themselves syntactic constructs, the precise nature of
what constitutes a refinement (in terms of the POs that characterise it), can be pre-
cisely specified and configured using Frog-CCL scripts. Designing a complete formal
development methodology in Frog is thus a matter of writing several Frog-CCL scripts,
rather than a major development task. At least that is so in principle. Due to limited time
during Simon Fraser’s doctorate, certain things are still hardwired in Frog, such as: the
use of Z as mathematical language, the use of the Isabelle theorem prover [30], and a
strict (1, 1) naming convention for operations. Evidently, more flexibility could easily
be contemplated for these aspects.

Of course the maximum flexibility for adapting the semantic and/or any other as-
pects of a methodology whilst still within a tool environment, is to work with a fairly
general purpose theorem prover. There are essentially no constraints when one takes this
approach, since, regardless of what features are taken as constituting the foundations of
a given formal development methodology (and there is considerable variation on what is
regarded as fundamental among different methodologies), the verification that a partic-
ular development is correct with respect to that particularmethodology, always reduces
to constructing proofs (of a fairly conventional kind) of a number of posited properties
of the development, the verification conditions. The flexibility of the general purpose
theorem prover approach has been demonstrated with great success in deploying the
KIV Theorem Prover [31] to address system development in the ASM methodology
(and others). The web site [32] gives full details of the mechanical verification of a
number of substantial developments, carried out under mechanical formalisations of a
variety of detailed refinement formalisms. The approach hasenjoyed particular success
in the context of the mechanical verification of Mondex [33, 34]. The generality of KIV
enabled previously investigated refinement strategies to be quickly adapted to the de-
tails of Mondex, and the whole of the verification, done in competition with several
international groups, to be accomplished in record time.

6 Conclusions

In this paper, we have examined some key features of a small number of well known re-
finement methodologies, and commented on their similarities and differences. We noted
that many of their features were not especially specific to the methodologies in which
they were found, and that we could just as easily transplant them into others. We also
observed that applications considerations can influence and adapt such methodologies,
irrespective of first principles, belying the view that their semantics are sacrosanct.

The same considerations impact tool support, but more deeply, given the invest-
ment needed to create a good tool. Accordingly, we turned ourattention to strategies
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for achieving greater tool flexibility: from Rodin’s plugins, to Frog’s scripting approach,
to theorem proving using eg. KIV. While the last of these undoubtedly offers the great-
est flexibility, it also requires the greatest expertise, and for more everyday development
environments, some tool-imposed discipline is probably necessary. The question is how
to achieve an adequate level of tool supervision without compromising openness, inter-
operability and flexibility. In the author’s view, the Frog approach offers great promise
for quick adaptability of the semantic details of a formal methodology, without de-
manding a huge investment in reprogramming the tool. It is easy to imagine that in a
tool such as Frog, for industrial application, the programmable semantic aspects can be
made editable only by senior personnel, and the majority of the development team see a
tool which behaves as though its semantics was conventionally hardwired. In any event,
all the approaches outlined above certainly offer promise,and further experimentation
is to be expected in the near future.

All of the above is certainly in harmony with the call for an Evidential Tool Bus
(ETB) [2], over which tools could communicate. In the ETB, tools are no longer en-
visaged as monolithic entities, isolated from each other, but rather as members of a
community, each responsible for a subset of, or for a particular approach to, the overall
verification task. Tools on the bus could make use of the (partial) evidence for correct-
ness established by other tools on the bus, to enhance what they themselves would be
able to achieve — they in turn publishing their own results onthe bus for successor
tools to benefit from. Thus the community could achieve, by cooperation, far more, far
more cheaply, than any one tool could achieve on its own.

The preceding is also in harmony with the currently active Verification Grand Chal-
lenge [3–5]. This has many aims, from promoting formal techniques in the mainstream
(on the basis of their by now well established capacity to deliver, to standard, on time,
on budget, and overall more cheaply than by the use of conventional techniques), to
establishing cadres of formally verified applications in a repository (as further evidence
to encourage their uptake, and perhaps to provide thereby collections of reusable for-
mally verified components), to encouraging the harmonisation and cooperation of for-
mal techniques. This last aim is squarely aligned with our motivations for carrying out
the analysis of refinement techniques given in this paper.
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