
Under consideration for publication in Formal Aspects of Computing

Atomic Actions, and their Refinements to
Isolated and Not-So-Isolated Protocols
Richard Banach1 and Gerhard Schellhorn2

1School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
2Lehrstuhl für Softwaretechnik und Programmiersprachen,
Universität Augsburg, D-86135 Augsburg, Germany

Abstract. Inspired by the properties of the refinement development of the Mondex Electronic Purse, we view an
isolated atomic action as a family of transitions with a common before-state, and different after-states corresponding
to different possible outcomes when the action is attempted. We view a protocol for an atomic action as a computation
DAG, each branch of which achieves in several steps, one of the outcomes of the atomic action. We show that in this
picture, the protocol can be viewed as a relational refinement of the atomic action in a number of ways. Firstly, it yields
a ‘big diagram’ simulation à la ASM. Secondly, it yields a ‘small diagram’ simulation, in which the atomic action is
synchronised with an individual step along each path through the protocol, and all the other steps of the path simulate
skip. We show that provided each path through the protocol contains one step synchronised with the atomic action,
the choice of synchronisation point can be made freely. We describe the relationship between such synchronisations
and forward and backward simulations. We relate this theoryto serialisations of system runs containing interleaved
multiple transactions, and show how existing Mondex refinements embody the ideas developed.

We then generalise the picture to encompass not-so-isolated atomic actions, exemplified by another motivating
example, the lock-free stack, in which arbitrary numbers ofagents may collaborate and/or interfere as the protocol
runs. The working of the lock-free stack (and its enhancement to the elimination stack) are described using event
structures. We then give an elaboration of the preceding framework, enriched with additional detail concerning agents,
and aimed at capturing the new phenomena in not-so-isolatedatomic actions. We revisit the earlier results in the new
setting. Not only do the generalisations adequately describe the lock-free and elimination stack scenarios, but they
also cope well with certain non-2-phase aspects of Mondex.

Keywords: Atomic Actions, Protocols, Synchronisation, Serialisation, 2-Phase Protocols, Non-2-Phase Protocols,
Forward and Backward Simulation, Refinement, Mondex, Lock-Free Stack, Elimination Stack.

Correspondence and offprint requests to: Richard Banach, School of Computer Science, University ofManchester, Oxford Road, Manchester, M13
9PL, U.K. email:banach@cs.man.ac.uk

2 Banach and Schellhorn

1. Introduction

The Mondex Electronic Purse was developed formally in the mid-1990s using Z refinement. It was one of the first
developments to achieve an ITSEC E6 security rating [DoTaI91].1 Rather unusually for a commercial product, a
sanitised version of the core of the formal development was made publicly available [SCW00]. Since then it has been
a fertile ground for formal methods researchers — the original, human-built proofs of the security properties have been
subjected to re-examination by contemporary techniques, and have stood up extremely well to the fiercest tool-based
scrutiny achievable today, the first such mechanical verification being [SGHR06b].

The Mondex formal development featured a refinement proof from an atomic abstract model to a multi-step pro-
tocol at the concrete level. The principal component of thisrefinement proof was a backward simulation from abstract
to concrete. At the time of the original development, the development team did try to construct a forward simulation,
but were not successful — for a long time it was believed that aforward simulation refinement was impossible. It is
nowadays known that a forward simulation is entirely possible, and more than one of them is now available in the
literature [BPJS07,SGH+07,HGS06].

In this paper we explore the wider question regarding possible kinds of simulation for the refinement of an atomic
action into a multi-step protocol, in order to settle the matter in the general case. We do this in the simplest possible
relational framework in order to avoid complications that would distract from the main point.

In Mondex, the original refinement was done in a(1, 1) manner, i.e. single concrete steps were made to refine
single abstract ones. Consequently, since overall, there are more concrete steps than abstract ones, many concrete
steps had to refineskip. Of course, one advantage of the(1, 1) strategy is that, in the face of malevolent users or an
unpredictable environment, the concrete protocol can be proved to refine the abstract atomic action, no matter how
such a user might interrupt the intended playing out of the protocol — since every possible sequence of concrete steps
that can be executed, corresponds tosomeabstract execution, even if it is one consisting entirely ofskips.

In this, the original framework, the backward simulation correlated with anearly synchronisation, i.e. the single
non-trivial abstract step was(1, 1) matched with a step that occurred early in protocol runs. By contrast, the more
recently discovered forward simulations correlate with alatesynchronisation, namely, the various possible non-trivial
abstract steps are(1, 1) matched with steps that occur late in protocol runs. Given the past uncertainty regarding
forward and backward simulations in such contexts, one of our aims in this paper is to give a general treatment.

Mondex has theisolated protocolproperty. In other words, once the protocol has started, it can be viewed as
running to its conclusion in a manner free from outside interference. But these are not the only protocols in town.
Another of our aims in this paper is to extend the theoreticalapproach we develop for Mondex, to also deal with
not-so-isolated protocols. In a not-so-isolated protocol, various agents, other thanthe ones engaged in achieving the
protocol’s goals, can interfere in the running of the protocol, because they too wish to achieve similar goals and the
protocol’s design itself permits such interference. Very often such permissive designs arise because the steps of the
protocol are at the granularity of individual machine instructions (or very small runs of machine instructions), so that
the overhead of installing proper locking mechanisms to ensure true isolation of such instructions from one another is
completely inappropriate.

One aspect of not-so-isolated protocols that makes them different from isolated protocols is that we have to take
more note of the agents performing various actions. If a protocol is isolated, it is not so urgent to know which agent is
doing what — after all, they are all co-operating towards thesame goal. However with not-so-isolated protocols, while
some agents are working towards the protocol’s goals, others may be detracting from them (albeit quite innocently and
in a well understood manner), so knowing what is going on at any point is more pressing, and the theory needs to be
more sensitive to these aspects.

Another issue that gains a different slant in the not-so-isolated protocol arena is serialisability. Thus if a protocol
is isolated, the same mechanisms that ensure isolation can usually be deployed to ensure that any interleavings that a
system run permits, have good serialisability properties.However, if there is potential for interference in a protocol,
there exists the potential for more subtle issues surrounding serial semantics too, since the locking mechanisms that
are available are, almost by definition, weaker.

We base our work on not-so-isolated protocols on another example from the literature, the lock-free stack, and
its enhacement the elimination stack, specifically as formulated in [CG07,CG06]. In these protocols, interference can
occur, but it happens in a controlled way, and we develop our extended theory with an eye to giving a good account
of them. Interestingly enough, the serialisability properties of the stack examples are stronger than those of (certain

1 Nowadays, national standards like ITSEC have been superseded by the ISO Common Criteria standard [Int05]. The highest ITSEC level, E6,
corresponds to the highest Common Criteria level, EAL7.

Atomic Actions, and their Refinements 3

•

•

•

•

AbTransferOK

AbTransferLost

AbIgnore

Fig. 1. The Mondex atomic actions.

parts of) the Mondex protocol. This is because in the days that Mondex was developed, the computational power of
smartcards was much less than now, and it was judged acceptable for certain null parts of the protocol to fall short of
the conventional 2-phase locking discipline, for efficiency’s sake. Thus the most extreme extensions of our theory are
brought to bear on Mondex once more.

The rest of this paper is as follows. In Section 2 we outline the operation of our motivating example, the Mondex
Purse. In Section 3 we develop a theory of the refinement of a non-deterministic atomic action to a multi-step protocol
in terms of computation DAGs. This explores the way that the single atomic action can be synchronised with an
individual step of the protocol in a(1, 1) refinement, and we see that there are a large number of possibilities for
this which we call synchronisation assignments (SAs). We see that SAs are related to the possible choices of forward
or backward simulations, according to the manner in which abstract outcomes are related to the details of the SA.
In Section 4 we relate the rather abstract computation DAG view of protocols to a more conventional one, using
event structures, and show that the histories generated by event structures yield computation trees in a natural way.
In Section 5 we relate the preceding theory of an isolated protocol run to the more global picture needed to embed
protocol runs into system runs, and we explore serialisability and the 2-phase property. In the following Section 6 we
apply the theory developed to the various refinements of Mondex available today, noting finally that there are in fact
some non-2-phase corners of the original Mondex protocol (though none of them achieve anything observable at the
abstract level, and are thus tolerated).

In Section 7 we start the work of extending our theory by describing the lock-free and elimination stacks. The
event structure formulation introduced in Section 4 is extended, and provides the most compact way of describing
these examples without descending to the level of actual code. Section 8 reflects on the properties of such protocols,
and comes up with a generalisation of the formulation of Section 3 which encompasses the new features. As noted
above, this is a much more agent-aware formulation in which ‘template’ serialisation properties of the protocol can
be formulated. The serialisation of actual system runs is considered in Section 9, being an elaboration of the 2-phase
version in Section 5. In Section 10 we apply the extended theory to the lock-free and elimination stacks, and to the
non-2-phase Mondex fragments.

A portion of the preceding theory has been mechanically verified using KIV, and in Section 11 we review what has
been achieved here. The final section concludes.

2. Mondex: A Motivating Example

Fundamentally, Mondex is asmartcard purse. Since it is apurse, it contains real money, and since it is asmartcard, it
contains the money in digital form. This money is designed tobe transferable from purse to purse. As for real money,
the intention is that such transfers are normally performedin exchange for some desired purpose such as the purchase
of goods or services, but equally —just as for real money— it is not the responsibility of the money itself to ensure
that the transfer in which it engages is of a genuine nature. The only concern of money in general and of Mondex
money in particular, is that it should beunforgeable.

The major objective of the original Mondex development was to develop a protocol for money transfer that ensured
that:

1. Mondex money was unforgeable, even in the face of incomplete execution of the protocol or of malicious behaviour
of the environment;

2. any full or partial run of the protocol is equivalent to either a successful money transfer, or a traceably (and thus
recoverably) lost-in-transit money transfer, or a null action.

These two properties are what make Mondex credible in the face of customer requirements: the first property, unforge-
ability, gives confidence in the value of Mondex money; whilethe second property, atomicity, gives comprehensibility

4 Banach and Schellhorn

To purse

From purse

StartTo

StartFrom

idle

idle
epr

epv

epa

idle

idleReq Ack

Val

req val ack

Fig. 2.The Mondex concrete protocol.

when compared with the behaviour of conventional financial transactions. Fig. 1 shows the atomic abstraction that the
Mondex protocol ensures, reflecting the three possibilities given in (ii) above. In Fig. 1 the nodes are states, and the
arrows are the different atomic actions that the concrete protocol refines.

The essence of the Mondex concrete protocol is illustrated in Fig. 2 in activity diagram style. The source purse is
theFrom purse while the destination purse is theTo purse. The protocol begins with the twoStart events (initiated
from the environment as a result of the purses’ owners typingin appropriate instructions at the interface device (the
wallet) into which the two purses have been inserted). Theseare theStartToevent, performed by theTo purse, and
StartFromevent, performed by theFrom purse, both of which take their respective purse from the idle state to a ‘busy’
state: theepr state (expecting payment request) for theFrom purse, and theepvstate (expecting payment value) for
theTo purse. TheStartToevent sends areq message to theFrom purse. Upon arrival of thereq message, theFrom
purse performs aReqevent and dispatches the money in aval message to theTo purse, itself passing into theepa
(expecting payment acknowledgement) state. Upon arrival of the val message, theTo purse performs aVal event and
sends anackmessage to theFrom purse, itself passing back into the idle state. Receipt of the ackmessage in theAck
event by theFrom purse completes the protocol, and theFrom purse too passes back into the idle state. Note that in
Fig. 2, the nodes are now events, edges are states, and arrowsare messages.

The preceding described the workings of a successful run of the protocol. Beyond that, all events after theStart
events can be replaced byAbort events, corresponding to runs of the protocol that are unsuccessful for whatever
reason. The fact that despiteAbortevents, the protocol still enjoys the unforgeability and atomicity properties, is what
makes Mondex non-trivial theoretically. However, the details of how this comes about do not concern us in this paper.

A further issue is that the Mondex protocol isisolated, i.e. once the protocol has commenced, the two purses take
note only of the arrival of the next message expected in the playout of the protocol, and of calls toAbort, ignoring all
other messages or calls from the environment and reserving the option of responding to such unexpected events by
performing a self-initiatedAbort whenever appropriate.

In this paper, rather than being concerned withprovingthat the atomicity and isolatedness properties are enjoyedby
the protocol, we take properties such as these for granted, and instead, take an interest in simulation-theoretic properties
—in a general sense, and for their own sake— of the refinement of an atomic action to a protocol with characteristics
such as Mondex’s. The isolated property makes these simulation-theoretic properties particularly convenient to study.

3. Isolated Atomic Actions and their Protocols

For both protocols and atomic actions, we will specify the transitions involved using a relational approach. The fol-
lowing statements summarise the assumptions we make about this setup.

Assumptions 3.1.

1. Relations are represented by predicates whose variablestake values in suitable types.
2. Each relation used is deterministic, i.e. for each collection of values for the domain variables of the predicate

representing the relation, there is a unique collection of values for the codomain variables that makes the relation
true.

3. For each relation, for all values of domain and codomain variables that make the relation true, the domain values
are reachable from an initial state.

4. Where nondeterminism (whether at the atomic or the protocol level) is needed, it is handled by having different
relations for different outcomes. We assume nondeterminism is always finite.

5. Both atomic actions and protocols are represented by transition systems. At the atomic level, atomic actions are

Atomic Actions, and their Refinements 5

given by a collection of predicates whose interpretations are restricted to shallow computation forests (i.e. all max-
imal paths of length 1). At the protocol level, protocols aregiven by a collection of predicates whose interpretations
are restricted to DAGs, all of whose paths are finite. A choiceof initial state for a root of the interpreting forest of
an atomic action picks out a unique tree, called the valid tree. A choice of an initial state for a root of the protocol
DAG picks out a unique (maximal reachable) subDAG of the interpreting DAG, called the valid DAG.

Thus an atomic action will be specified by a finite collection of deterministic predicatesAtk(u, i, o, u′) k = 1 . . ., in
which u andu′ are (variables denoting) the before- and after- states of the atomic action,i ando are the input and
output of the action (these may in fact denote sequences (or more complex structures) of input and output values
corresponding to the finer grained events in the protocol, ifconvenient), and the labelk distinguishes the different
deterministic outcomes for the same starting conditions. All together, the complete atomic specification of the protocol
becomes:

Atomic(u, i, o, u′) ≡ At1(u, i, o, u′) ∨ At2(u, i, o, u′) ∨ . . . (1)

where

(∀u, i • Atk(u, i, o1, u′1) ∧ Atk(u, i, o2, u′2) ⇒ o1 = o2 ∧ u′1 = u′2) (2)

(and where it turns out that (2) is not actually needed in the ensuing mathematics, but helps for a convenient mental
picture).

At the protocol level, the individual steps are described bya collection of deterministic predicatesStρ(v, j, p, v′)
wherev andv′ are the before- and after- states of the step, andj andp are the input and output of the step. The label
ρ is an identifier which discriminates between different nondeterministic outcomes from the same before-state and
input, and is required to be different for each step along a path through the protocol DAG,2 but is otherwise available
to conveniently label steps from an applications perspective.

(Forward) paths through the protocol computation DAG are described by compound predicates:

FPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt, vt) ≡

Stα(vI , j1, p1, v1) ∧ Stβ(v1, j2, p2, v2) ∧ . . . ∧ Stγ(vt−1, jt, pt, vt) (3)

in which vI is a possible initial state of the protocol,α labels a possible first step of the protocol,β labels a possible
successor step of theα step of the protocol, and so on. As (3) indicates, if a step hasa successor, the before-state of
the successor must match the after-state of its predecessor. The length of the sequence of labels in the subscript of
FPath〈α,β,...,γ〉 must match both the number of inputs and outputs, and be one less than the number of states, in the
argument list.

Maximal paths arise in the obvious way:

MPath〈α,β,...,γ〉(. . .) ≡

FPath〈α,β,...,γ〉(. . .) ∧ (〈α, β, . . . , γ〉 has no proper extension in the computation graph) (4)

From maximal and non-maximal paths, we can implicitly definea predicateBPath(backward paths) that describes
extensions of non-maximal forward paths:

MPath〈α,β,...,γ,δ,ǫ...,ζ〉(vI , j1, p1, v1, . . . , jt, pt, vt, jt+1, pt+1, vt+1 . . . , vF) ≡

FPath〈α,β,...,γ〉(vI , j1, p1, v1, . . . , jt, pt, vt) ∧ BPath〈δ,ǫ...,ζ〉(vt, jt+1, pt+1, vt+1 . . . , vF) (5)

In (5), vF is a possible final state of the protocol.
Finally, maximal paths give rise to the predicateProtocol(vI , js, ps, vF), wherevF is a possible final state of the

protocol,3 given by taking the disjunction over all maximal paths, existentially quantifying all intermediate states, and
repackaging the inputs and outputs into sequences:

Protocol(vI , js, ps, vF) ≡
∨

n

maximal
〈α,β,...,γ〉

o

(

(∃ j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt •
MPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt, vF)
∧ js = 〈j1, j2, . . . , jt〉 ∧ ps= 〈p1, p2, . . . , pt〉)

)

(6)

2 As for (2), determinism and path-uniqueness are not strictly necessary forρ, but are conceptually convenient.
3 Initial and final states of the protocol coincide exactly with the root and leaf states of the protocol computation graph.

6 Banach and Schellhorn

The fact that the protocol implements the atomic action is captured by relating the two via a retrieve relationR, input
and output relationsInput andOutput, and demanding that an ASM-style [BS03] ‘big-step’ proof obligation holds.
The retrieve relation is required to satisfy:

Assumptions 3.2.
1. R(u, v) is a function from protocol statesv to atomic statesu. (7)

2. If v is a protocol state andvI1 andvI2 are initial protocol states, then

FPath〈...〉(vI1 . . . v) ∧ FPath〈...〉(vI2 . . . v) ⇒ (∃ uI • R(uI , vI1) ∧ R(uI , vI2)) (8)

(whereuI is obviously unique because of (7)).

3. R(u, v) is ‘not too big,’ i.e. it concerns just the ‘states of interest’ for the overall protocol,

i.e. the initial and final states:

R(u, v) ⇒ (∃ js, ps, ṽ • Protocol(v, js, ps, ṽ) ∨ Protocol(ṽ, js, ps, v)) (9)

(As for (2), it turns out that (9) is not needed later, but helps for a convenient mental picture.) The big-step PO is now:

Protocol(vI , js, ps, vF) ⇒

(∃ uI , i, o, uF • R(uI , vI) ∧ Input(i, js) ∧ Atomic(uI , i, o, uF) ∧ Output(o, ps) ∧ R(uF, vF)) (10)

Conditions (9) and (10) ensure that the hypotheses and conclusions of the big-step PO are valid exactly when the
simulation predicateΣ:

Σ(uI , i, o, uF, vI , js, ps, vF) ≡

Atomic(uI , i, o, uF) ∧ Protocol(vI , js, ps, vF) ∧ R(uI , vI) ∧ Input(i, js) ∧ Output(o, ps) ∧ R(uF, vF) (11)

is true in the given types.
Now that we have connected together the atomic and finegrained descriptions of the protocol, our aim is to develop

a general way of seeing howsome individual stepof a maximal path may be viewed as refining the atomic action, and
the consequences of such a view. First we develop some technical machinery in the shape of past and future oriented
retrieve relations. Then we introduce synchronisation assignments, which delimit exactly how the choices of individual
step within the protocol computation graph may be made. Finally we explore the consequences of these choices for
proving the refinement via forward and backward simulation.

First we get the ‘past oriented’ retrieve relationRP:

RP(uI , vt) ≡ (∃ vI , j1, p1, v1, . . . , jt, pt, 〈α, β, . . . , γ〉 • R(uI , vI) ∧ FPath〈α,β,...,γ〉(vI , j1, p1, . . . , jt, pt, vt)) (12)

and the ‘future oriented’ retrieve relationRF:

RF(uF, vt) ≡ (∃ jt+1, pt+1, vt+1 . . . , vF, 〈δ, ǫ, . . . , ζ〉 • BPath〈δ,ǫ...,ζ〉(vt, jt+1, pt+1, vt+1 . . . , vF) ∧ R(uF, vF)) (13)

It is now easy to show the following:

Proposition 3.3.

RP(uI , vt) ∧ RF(uF, vt) ⇒ (∃ i, o • Atomic(uI , i, o, uF)) (14)

RP(uI , vt) ⇒ (∃ i, o, uF • Atomic(uI , i, o, uF) ∧ RF(uF, vt)) (15)

RF(uF, vt) ⇒ (∃ uI , i, o • RP(uI , vt) ∧ Atomic(uI , i, o, uF)) (16)

The proofs are similar to the proofs of the more interesting following result:

Theorem 3.4.

RP(uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ∧ RF(uF, vt) ⇒ (∃ i, o, jsP, jsF, psP, psF •

Input(i, jsP::〈jt〉::js
F) ∧ Atomic(uI , i, o, uF) ∧ Output(o, psP::〈pt〉::psF)) (17)

RP(uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ⇒ (∃ i, o, uF, jsP, jsF, psP, psF •

∧ Input(i, jsP::〈jt〉::js
F) ∧ Atomic(uI , i, o, uF) ∧ Output(o, psP::〈pt〉::psF) ∧ RF(uF, vt)) (18)

Stρ(vt−1, jt, pt, vt) ∧ RF(uF, vt) ⇒ (∃ uI , i, o, jsP, jsF, psP, psF •

RP(uI , vt) ∧ Input(i, jsP::〈jt〉::js
F) ∧ Atomic(uI , i, o, uF) ∧ Output(o, psP::〈pt〉::psF)) (19)

Atomic Actions, and their Refinements 7

•
•

•
•

•
•

•

•

•
•

• •

•

• •

•

•

•

…

R
R

RRP F

…

Fig. 3.A synchronisation assignment for a computation tree. The elements of the synchronisation assignment are shown bold.

Proof. For (17), fromRP(uI , vt−1) we know that there is a path through the computation tree froman initialvI to vt−1,
satisfying (3), and such thatR(uI , vI) holds. EvidentlyStρ(vt−1, jt, pt, vt) extends that path. FromRF(uF, vt) we know
that there is a completion of this path to a maximal path fromvI to some finalvF. This maximal path enables us to
deriveR(uF, vF), and provides the witnessingjsP, jsF, psP, psF so that withjt, pt we can assemblejs = jsP::〈jt〉::jsF and
ps= psP::〈pt〉::psF , and then assertProtocol(vI , js, ps, vF).

Since we haveProtocol(vI , js, ps, vF), we can apply (10). The conclusions of (10) yieldR(ũ, vI) for someũ; and
sinceR is functional (7), we must haveuI = ũ. The conclusions of (10) also yieldAtomic(uI , i, o, ũ′) andR(ũ′, vF)
for someũ′. Again, sinceR is functional, we must haveuF = ũ′. From Protocol(vI , js, ps, vF) we can also deduce
Input(i, js) andOutput(o, ps).

For (18), the argument is similar except that we do not have touse the functional nature ofR to argueuF = ũ′,
sinceuF is existentially quantified in the conclusion.

For (19), we note first that by Assumptions 3.1.3,vt is reachable from some initialvI . We use this to assert auI
such thatRP(uI , vt) holds, after which we argue as for case (17). We are done. �

Proposition 3.4 is a crucial observation, since it enables an arbitrary protocol stepStρ(vt−1, jt, pt, vt) to be singled
out and made to correspond with a suitable abstract oneAtomic(uI , i, o, uF). For such aStρ(vt−1, jt, pt, vt) step, let
Outcomes(Stρ, uI) (with vt−1, jt, pt, vt understood) be given by:

Outcomes(Stρ, uI) = {uF | (∃ vF • RP(uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ∧ RF(uF, vt))} (20)

and OD(Stρ, uI) (outcome determinism ofStρ, givenuI) be given by:

OD(Stρ, uI) = | Outcomes(Stρ, uI) | (21)

If OD(Stρ, uI) = 1 we say thatStρ is outcome deterministic atuI (Stρ is OD atuI), whereas if OD(Stρ, uI) > 1 we say
thatStρ is outcome nondeterministic atuI (Stρ is ON atuI).

Definition 3.5. Given an initialvI , a synchronisation assignment (SA(vI)) for the relevant valid DAG of a protocol
computation DAG is a subset of its steps, such that for each maximal path through the valid DAG fromvI , exactly one
of its steps is in SA(vI). Steps in SA(vI) are called SA steps.

Fig. 3 shows a synchronisation assignment. The many-level computation graph at the bottom (which happens to be
a tree) has thickened arrows which are the elements of the SA.The atomic action is at the top and plays no specific
part in the SA itself. Dashed arrows show the functional big-step retrieve relationR, while the dotted lines show some
pieces from theRP andRF relations, for convenience below.

Definition 3.6. Given a protocol computation graph, an intial statevI for the protocol, the atomic intial stateuI such
thatR(uI , vI) holds, and a synchronisation assignment for the valid DAG determined byvI , the steps of the valid DAG
are classified as follows:

1. If a step is in the SA and is OD atuI , it is called an outcome deterministic forward synchronisation (ODFS) step.
2. If a step is in the SA and is ON atuI , it is called an outcome nondeterministic forward synchronisation (ONFS)

step.
3. If a step is an immediate or later successor of an ONFS step,it is called a backward skip (BS) step.

8 Banach and Schellhorn

4. Every step not covered by 1-3 is called a forward skip (FS) step.

This definition shows that every path through the protocol computation tree can be described by the following regular
expression:

FS∗ ; (ODFS; FS∗ + ONFS) ; BS∗ (22)

Our aim is to show that when given a big-diagram refinement of an atomic action to a protocol of the kind we have
described, if we wish to break the big-diagram refinement down into a collection of small-diagram refinements of zero
or one atomic action steps to individual steps of the protocol, one can always use forward simulation reasoning, except
for the BS steps. In fact one can use forward simulation reasoning for all steps exceptbranching BS steps(a term
explained below), though it comes at a price. Likewise, we have the option of using backward simulation reasoning
for all steps if we so wish. We discuss these points later.

Definition 3.7. Assume given an abstract operationAOp(u, i, o, u′), a concrete operationCOp(v, j, p, v′), and retrieve,
input and output relations,R1(u, v), In1(i, j) andOut1(o, p). ThenAOpforward simulatesCOp iff:

R1(u, v) ∧ COp(v, j, p, v′) ⇒ (∃ i, o, u′ • In1(i, j) ∧ AOp(u, i, o, u′) ∧ Out1(o, p) ∧ R1(u′, v′)) (23)

And AOpbackward simulatesCOp iff:

COp(v, j, p, v′) ∧ R1(u′, v′) ⇒ (∃ u, i, o • R1(u, v) ∧ In1(i, j) ∧ AOp(u, i, o, u′) ∧ Out1(o, p)) (24)

In both cases,In1(i, j) and/orOut1(o, p) can be omitted where there is no input and/or output fromAOpand/orCOp,
as applicable.

Theorem 3.8. Let there be a big-step refinement of an atomic actionAtomicto a protocolProtocol, given by a retrieve
relationR and input and output relationsInput andOutput, so that (10) holds. LetvI be a fixed initial state such that
R(uI , vI) holds, and let SA(vI) be a synchronisation assignment for the valid DAG rooted atvI . Then the refinement of
Atomicto Protocolcan be decomposed into single step simulations such that:

1. If an FS step occurs before an SA step, it is forward simulated by the identity operation onuI .
2. If an FS step occurs after an SA step, it is forward simulated by the identity operation onuF, whereuF is some

outcome ofAtomic.
3. If Stρ is an SA step, it is forward simulated byAtomic(uI , i, o, uF) for everyuF in Outcomes(Stρ, uI).
4. Every BS step is backward simulated by the identity operation on someuF.

Proof. We start by definingR1, which is:

R1(u, v) ≡ (∃ a maximal path from some initial̃vI , and

((v precedes an SA step along this path, andRP(u, v) holds),∨

(v follows an SA step along this path, andRF(u, v) holds))) (25)

Also we must define the single step input and output relationsIn1 andOut1; these however are only needed for the SA
steps themselves.

In1(i, j) ≡ (∃ an SA stepStρ(vt−1, j, pt, vt), jsB, jsF • Input(i, jsP::〈j〉::jsF)) (26)

Out1(o, p) ≡ (∃ an SA stepStρ(vt−1, jt, p, vt), psB, psF • Output(o, psP::〈p〉::psF)) (27)

In fact we prove slightly more than we strictly need.
For 1, letStρ(vt−1, jt, pt, vt) be the FS step in question. Since the SA is defined with respectto paths reachable

from vI , and FS steps are defined with respect to the SA,vt−1 must be reachable fromvI . To prove forward simulation,
assumeR1(u, vt−1) holds. Then there is a maximal path from some initialṽI that reachesvt−1 such thatRP(u, vt−1)

holds. From (12) there is a path from some initial˜̃vI that reachesvt−1 such thatR(ũI , ˜̃vI) holds for some initial̃uI . By
(7) and (8),̃uI = u = uI . So in factR1(uI , vt−1) andRP(uI , vt−1) both hold. SinceStρ(vt−1, jt, pt, vt) obviously extends
the paths that witnessRP(uI , vt−1), the extensions witnessRP(uI , vt) andR1(uI , vt) too, which is what is required for
forward simulation of the identity onuI .

For 2, letStρ(vt−1, jt, pt, vt) be the FS step in question. Since it occurs after an SA step, itmust again be reachable
from vI . To prove forward simulation, assumeR1(u, vt−1) holds. Then there is a maximal path from some initialṽI that
reachesvt−1 such thatRF(u, vt−1) holds. From (13) there is a path fromvt−1 to some finalvF such thatR(uF, vF) holds,

Atomic Actions, and their Refinements 9

whereuF is the unique abstract outcome, that witnesses that the SA step thatStρ(vt−1, jt, pt, vt) follows, is outcome
deterministic. By (7),u = uF, so thatRF(uF, vt−1) holds, wherebyR1(uF, vt−1) holds too. Truncating the first step of
the path fromvt−1 to vF that witnessesR(uF, vF), gives a path that witnessesRF(uF, vt) and henceR1(uF, vt), which is
what is required for forward simulation of the identity onuF.

For 3, let Stρ(vt−1, jt, pt, vt) be the SA step in question. Obviously it is reachable fromvI . To prove forward
simulation, assumeR1(u, vt−1). Then we can deduceR1(uI , vt−1) andRP(uI , vt−1) exactly as in case 1. For anyuF
in Outcomes(Stρ, uI), we know thatAtomic(uI , i, o, uF) holds. Also, we can deduceRF(uF, vt) and henceR1(uF, vt)
exactly as in case 2. SinceStρ(vt−1, jt, pt, vt) occurs on a maximal path fromvI to vF, the totality of inputs along the
path, bothjsP beforejt, and jsF after jt, will witness thatInput(i, jsP :: 〈jt〉 :: jsF) holds, givingIn1(i, jt) as required.
The reasoning for outputs is similar. So we have all the conclusions of (23), which is what is required for forward
simulation ofAtomic(uI , i, o, uF).

For 4, letStρ(vt−1, jt, pt, vt) be the BS step in question. Since it occurs after an SA step, itmust be reachable fromvI .
To prove backward simulation, assumeR1(u, vt) holds. Then there is a maximal path from some initialṽI that reaches
vt such thatRF(u, vt) holds. From (13) there is a path fromvt to some finalvF such thatR(uF, vF) holds, whereuF is
some abstract outcome, that witnesses that the SA step thatStρ(vt−1, jt, pt, vt) follows, is outcome nondeterministic.
By (7), u = uF for some suchuF, so let us assume thatRF(uF, vt) holds, wherebyR1(uF, vt) holds too. Prepending
Stρ(vt−1, jt, pt, vt) to the path fromvt to vF that witnessesR(uF, vF), gives a path that witnessesRF(uF, vt−1), and hence
R1(uF, vt−1), which is what is required for backward simulation of the identity onuF. �

Since at both abstract and protocol levels, the transpose ofthe step relation is a partial function, backward simulation
is always aligned with a decrease of nondeterminism in both abstract and protocol transition functions. Therefore we
get the following (cf. [LV93]).

Corollary 3.9. Under the assumptions of Theorem 3.8, one can always use single step backward simulations through-
out.

Corollary 3.9 might seem strange in the light of the well known fact that backward simulation alone is not complete
for data refinement. The explanation comes from the fact thatwe have an asymmetry between forward and backward
directions in our setup. While we can never lose ‘abstract backward nondeterminism’ by simulating the protocol
backward (due to (8)), wecanlose ‘abstract forward nondeterminism’ by simulating the protocol forward.

We also have the following.

Corollary 3.10. Under the assumptions of Theorem 3.8, suppose there are no BSsteps (i.e. all SA steps are OD).
Then single step forward simulations can be used throughout.

Obviously, choosing the SA as the last step of each maximal path through the protocol satisfies the hypotheses of
Corollary 3.10.

Corollary 3.11. Let MPath(vI , . . . , vF) be a maximal path from an initialvI to a finalvF, such that (10) holds (for suit-
ably chosen other quantities). LetStρ(vt−1, jt, pt, vt) be the SA(vI) step alongMPath(vI , . . . , vF). Then the simulation
of MPath(vI , . . . , vF) by Atomic(uI , i, o, uF) can be decomposed as follows:

1. If Stρ(vt−1, jt, pt, vt) is an ODFS step, the simulation ofMPath(vI , . . . , vF) may be established by inductively for-
ward simulating the steps ofMPath(vI , . . . , vF) from vI up to a stateṽt (which does not precedevt), and backward
simulating the steps ofMPath(vI , . . . , vF) from vF up to ṽt (if ṽt 6= vF), such that:

(a) predecessors ofStρ(vt−1, jt, pt, vt) are forward simulated by the identity operation onuI ,
(b) Stρ(vt−1, jt, pt, vt) is forward simulated byAtomic(uI , i, o, uF) whereuF is the unique element of Outcomes(Stρ, uI),

establishingRF(uF, vt),
(c) FS successors ofStρ(vt−1, jt, pt, vt) are forward simulated fromvt by the identity operation onuF, establishing

RF(uF, ṽt),
(d) BS successors ofStρ(vt−1, jt, pt, vt) are backward simulated fromvF by the identity operation onuF, establish-

ing RF(uF, ṽt).

2. If Stρ(vt−1, jt, pt, vt) is an ONFS step, the simulation ofMPath(vI , . . . , vF) may be established by inductively
forward simulating the steps ofMPath(vI , . . . , vF) from vI up to and includingStρ(vt−1, jt, pt, vt), and inductively
backward simulating the steps ofMPath(vI , . . . , vF) from vF up tovt, such that:

(a) predecessors ofStρ(vt−1, jt, pt, vt) are forward simulated by the identity operation onuI ,

10 Banach and Schellhorn

(b) Stρ(vt−1, jt, pt, vt) is forward simulated byAtomic(uI , i, o, uF), for eachuF in Outcomes(Stρ, uI), establishing
RF(uF, vt),

(c) successors ofStρ(vt−1, jt, pt, vt) are backward simulated fromvF by the identity operation onuF, establishing
RF(uF, vt).

Why are the above results useful? We can give a couple of reasons.
Firstly, they are illuminative. One can be convinced of the correctness of a protocol with respect to an atomic

action, without having the details of a refinement already worked out. In such a situation, it may not be clear how to
synchronise the atomic action with the lower level description. Theorem 3.8 shows that one can choose this synchro-
nisation relatively freely, within the parameters of allowable synchronisation assignments.

Secondly, once having chosen a synchronisation, it is much easier to write down the ‘big-step’ retrieve relation and
associated input and output relations, than to discover themore finegrained single step ones. Theorem 3.8 shows that
with the big-step retrieve relation fixed, the single step ones,RP andRF may simply becalculated. Their generic form
needs to be instantiated with the details of the protocol andbig-step retrieve relation, and then one must eliminate as
many existential quantifiers as possible in order to arrive at a closed form. Making clear that thereis such a strategy
to follow is a considerable improvement over the hit-and-miss approach one would otherwise need, especially when
combined with uncertainty regarding synchronisation.

The theorem and its corollaries also provoke the following considerations.

One can replace some backward simulation by forward simulation. Given a synchronisation assignment, a branching
BS step is a BS stepStθ(vs, . . . , v′s,1) for which there is another BS stepStφ(vs, . . . , v′s,2) (with v′s,1 6= v′s,2) such
that the abstract outcomesuF,1, uF,2 corresponding to the completions of the paths fromv′s,1 andv′s,2 are different,
uF,1 6= uF,2.4 In such a case, onecannotmake a forward simulation inference succeed.

To see this, suppose the first hypothesis of (23) is made true by R1(uF,1, vs), and the second hypothesis is made
true byStφ(vs, . . . , v′s,2). Then the first hypothesis demands thatuF be chosen to beuF,1, while the second hypothesis
demands thatuF be chosen to beuF,2, a contradiction. This is the standard backward simulationcounterexample.

In Fig. 3, the SA element along the upper thread of the computation tree is an ONFS step, since it can reach
two concrete final states that retrieve to two different abstract outcomes. Accordingly, the two BS steps immediately
following it (and the two following the topmost of them alongthe upper thread) are branching BS steps, since they
too can individually reach different concrete final states that retrieve to the two different abstract outcomes. With the
dotted lines depictingRF, it is easy to see that these steps illustrate what we have just discussed.

However, if a BS step isnot branching, i.e. there is only one protocol successor statev′s to vs, then the preceding
problem cannot arise since the unique successor cannot force a distinction between the choices foruF. So for non-
branching BS steps, a forward simulation inference will succeed. However, it comes at a price. If a forward simulating
BS step immediately follows a backward simulating BS step, theR1(uF, v) value at thev state that they share, occurs as
a hypothesis in both the backward PO (24) and the forward PO (23). It thus remains as an unproved assumption in the
overall single-step verification of the big-step refinement. As such it allows the verification to succeed vacuously. For
this reason we phrased Corollary 3.11.2 as two inductive processes that meet in the middle, since it is much better to
verify someR1(uF, v) twice independently, than to leave some otherR1(uF, v) unproved, thus undermining the whole
verification.

Lastly, Theorem 3.8 offers a different strategy for addressing global correctness (see Section 5). Normally, to
prove a protocol such as the one we have been considering globally correct, one chooses either forward or backward
simulation, establishes that each protocol step refines some atomic option orskip, and this then extends to an inductive
proof for global executions as a whole. With Theorem 3.8, we can envisage a different approach, structured as follows.

1. We first study the ‘big-step’ refinement of atomic action toprotocol, determining the protocol computation DAG
and the big-step retrieve relation.

2. Next we choose a suitable synchronisation assignment.
3. Next we determine which combination of forward and backward simulations are appropriate for the synchronisa-

tion assignment.
4. Next we calculate the necessary single step retrieve relation, breaking down the big-step refinement into single

step refinements.

4 Since we speak of a BS step, there must be suchuF,1 6= uF,2, as the nondeterminism inAtomic(uI , i, o, uF) has been resolved earlier than at this
BS step.

Atomic Actions, and their Refinements 11

StartTo StartFrom

Req

Val

AbortR

AbortV

AbortAAck

#

#

#

AbortT # AbortF#

Fig. 4. An event structure for the Mondex protocol.

5. Finally, we determine how runs of the protocol can interleave to make global executions.

This alternative approach separates concerns, and in caseswhere a complex protocol is concerned, may offer some
advantages. In any event, the mere awareness of the possibility of such an approach may make the more monlithic
standard approach more tractable, since it can show that certain subgoals of the standard approach are achievable in
advance.

4. Event Structures and Protocol Computation Trees

Step 1 of the alternative verification strategy just suggested relies on determining the protocol computation DAG.
Usually, consideration of this computation structure is not itself the means by which a protocol is invented, so the
computation DAG might well be derived from alternative starting points.

A common way of inventing a protocol is to say ‘this happens after that’ for a sufficiently large number of cases.
Such a train of thought can be formalised quite effectively using event structures of various kinds [WN95, Bou90,
NPW81,Win86,Win88,BC88,PP95]. Accordingly, we use eventstructures with symmetric conflict relations to encode
possible playouts of a protocol, and show how to derive a computation tree from an underlying event structure of this
kind. Once there, one can map the tree to a more convenient DAGif one wishes.

Definition 4.1. An (symmetric flow) event structureE is a triple(E,≺, #) such that:

1. E is a set (of events).
2. ≺ is an asymmetric causal flow relation onE (whose transitive (resp. reflexive transitive) closure is written< (resp.

≤)).
3. # is an irreflexive symmetric conflict relation onE compatible with≤, i.e. such thatx # y ≤ z⇒ x # z.

The preceding is a very simple definition which will do for ourimmediate purposes. Generalisations arise by eg. al-
lowing the conflict relation to be asymmetric; see some of thecited literature. Since we need asymmetric conflict later
(see Section 7), we formulate the semantics of symmetric flowevent structures in nonsymmetric terms right away.

Definition 4.2. Let E = (E,≺, #) be a symmetric flow event structure. Let the associated nonsymmetric conflict
relation #a be the smallest relation onE closed under:

1. x # y ⇒ x #a y ∧ y #a x.
2. x #a y ∧ y ≤ z⇒ x #a z.

The point of Definition 4.2 is that #a is not deemed to be symmetrica priori, allowing us to introduce more elaborate
notions later in terms of enhancements of #a that are not symmetric.

An event structure defines which events may occur once other events have already occurred. Collections of events
are called configurations, and the legal configurations and legal ways of passing from one configuration to a successor
configuration are packaged up in the following definition.

Definition 4.3. Let E = (E,≺, #) be an event structure with associated nonsymmetric conflictrelation #a. The set

12 Banach and Schellhorn

XE ⊆ P E of (legal) configurations ofE , and the legal ways of moving from a legal configurationX of E to a successor
legal configurationY are given by the following rules.

1. ∅ ∈ XE .
2. X ∈ XE ,

x ∈ E− X,
(∀ x′ ∈ E • x′ ≺ x ⇒ x′ ∈ X),
(∀ x′ ∈ E • x′ #a x ⇒ x′ 6∈ X),
⊢ X ∪ {x} ∈ XE .

In Fig. 4 we show an event structure for the Mondex protocol, adapted from the activity diagram of Fig. 2 to include all
the ‘abnormal’ ways theat the protocol can play out, and flowing up the page. The constituent events are in the labelled
nodes, while the arrows show the elements of the flow relation≺, and the #-labelled edges show a generating set for
the conflict relation. In the Mondex documentation [SCW00] the variousAbortx events are all part of a singleAbort
operation, which has been split into five pieces in Fig. 4 according to which ‘normal’ event theAbort is in conflict
with.

In Fig. 4 there are two root events,StartFromandStartTo, either of which can start an ‘execution’ of the event
structure. (For the time being, we ignore the possibility ofstarting with one or both of theAbortT or AbortF events,
which lead to ‘stillborn’ executions; they are included in Fig. 4 for later convenience.) Once the first event has taken
place, we have a (different) choice of two next events (depending on whichStart event went first). If the next event
is the otherStartevent, then we have a choice of three subsequent events. . . and so on. Working out all the possible
orderings of events yields a quite complex structure, and itis clear that the event structure formalism captures all these
possibilities in a compact and convenient way.

In general, an event structure is executed by starting with the empty configuration, and then one executes one
event at a time, adding a new eventx to the existing configurationX, as sanctioned by the rules in Definition 4.3. So
Definition 4.3 provides a proof system that enables us to derive sequences of event occurrences. The set of sequences
obtained thereby can be turned into DAG-shaped and forest-shaped transition relations as follows.

Definition 4.4. Let E = (E,≺, #) be an event structure. The transition systemEDAG associated withE is defined by:

1. the states are the configurationsX ∈ XE , with ∅ as intial state,

2. the transitions are the stepsX
x
→ X′ iff X ∈ XE . . . ⊢ X′ = X ∪ {x} ∈ XE is a valid inference according to

Definition 4.3.

EvidentlyEDAG is a DAG.

Definition 4.5. LetE = (E,≺, #) be an event structure andEDAG its associated transition system. The transition forest
EFOR associated withE is defined by:

1. the states are the paths〈∅, . . . , X〉 in EDAG which start at the initialEDAG state, with the empty path as initialEFOR

state,
2. the transitions are the steps〈∅, . . . , X〉

x
→ 〈∅, . . . , X, X′〉 iff X

x
→ X′ is a step ofEDAG.

The preceding gets us some way towards the provisions of Section 3. However we are not there yet. Section 3 is
couched in relational terms. So events have to correspond torelations, and the enabledness or otherwise of these
relations in any state must correspond to what the flow and conflict relations of the event structure permit in given
configurations. In general, the process will be applicationspecific, since it will depend on many factors, such as how
many protagonists participate in the protocol, what their local state is envisaged to be, what knowledge of the global
state they have, the role of I/O, etc. However, in the contextof designing a protocol to accomplish some identified
atomic goal, the process of reconciling these two approaches can provide a useful consistency/correctness check on
the design activity.

Beyond that, our event structure account of Mondex left out certain state components, such as the details of purse
balances and amounts transfered etc., that a full account must include — i.e. the event structure was deliberately in-
tended to be generic. Reinstating the omitted components generates a replication of the forest indexed by the reinstated
values, corresponding to the full computation forest.5

5 N. B. This picture incidentally yields one useful convention for theρ labels of the step relationsStρ of Section 3: namely to tag each edge of the
‘generic’ forest by a distinct label, and then to retain these labels in each replicated forest, making the labels akin tonames of ‘operations’ at what
would be the code level.

Atomic Actions, and their Refinements 13

Once the event description is in place, and one is confident that it properly corresponds to the relational picture,
we can extract a computation forest via the constructions ofDefinitions 4.4 and 4.5.

By construction, the nodes of our forest shaped computational DAG incorporate the full history of the protocol up
to the given point. Such history information is often neededin reasoning about protocols, since protocol properties
frequently depend not only on knowing that the protocol has arrived at a certain point, but that certain other things
must have necessarily happened prior to that point. Such facts can be trivially extracted from the full history, so our
formulation may be regarded as a multipurpose canonical description, useful for things other than just the concerns
of this paper. However, since different paths can often arrive at ‘essentially the same’ state eg. via interchanges of
causally independent steps somewhere in the interior of theprotocol, it is just as useful to be able to forget aspects of
history, and eg. identify common suffixes of certain paths. The duality betweenEDAG andEFOR (given in one direction
by the construction ofEFOR from EDAG, and in the other by forgetting all but the last component of each state inEFOR)
bears out the compatibility of these different points of view.

Another aspect that should be discussed is I/O. At the atomiclevel, the I/O for the single step that takes place
must inevitably concern the environment, since there is no internal structure to engage in internal communication. At
the protocol level however, I/O can either be between the environment and the protocol, or be purely internal to the
protocol. In the latter case, the only restriction is that messages must be produced before they can be consumed. There
is of course the option of representing messages in flight within a suitable state component —such a state component
can model properties of the communication medium, eg. unreliablity— however we do not need to insist on that for
the serialisation discussed in the next section.

5. Interleaving Individual Protocol Runs

Thus far, although using language such as ‘protocol,’ in reality we have only discussed some properties of acyclic
transition systems. In genuine protocols, various agents interact by performing events and sending/receiving messages
etc. We must connect our theory to this world.

The basic idea is that the previous section should be understood as describing (the various possibilities for) a
single isolated protocol run, performed by however many agents would be appropriate in practice, with the proto-
col state recording in principle the full history of the protocol so far (regardless of whether such knowledge can
indeed be posessed by the individual agents), and ignoring the rest of the universe. The latter not only regarding other
agents/activities in the rest of the universe, but also regarding what the agents of the single protocol run might do both
before and after the run itself. So the previous section described an idealisedpatternor templatefor what collections
of agents might do over some period of time towards the achievement of some goal described by the atomic action
that the protocol implements.

Patterns or templates are normally made to correspond with what happens in the real world by some process of
matching, and that is the basis of our approach too. Since we have remarked that our protocol states can in principle
include unrealistically detailed history information, our matching process must include a projection mechanism to
allow the unrealistic parts to be forgotten. In such a scenario, protocol states that were previously distinct can be
matched to the same system state, just as we described in the previous section.

Definition 5.1. A systemconsists of a number ofagents, Aa, Ab, . . . each with its agent state subspaceWa, Wb,
The system state space isW = Wa × Wb × So agentAa’s instantaneous state is somewa ∈ Wa, and the system’s
instantaneous state isw ≡ (wa, wb, . . .).

Each agent is a transition system, i.e. the agent can move between different elements of its state space in discrete
steps, leaving the state of every other agent unaffected. The enabledness of any agent’s transitions is independent of
the state of any other agent. Each step can also consume inputand produce output, and the I/O policy described in the
previous section applies again: i.e. I/O may either be with the environment, or it may be internal to the system, and
any internal message that is consumed must earlier have beenproduced.

The system’s transitions are described by a predicateSyA similar to St in the Section 3, where the subscript ‘A’
refers to the agent performing the step, and eachSyA step modifies only its own agent’s state subspace. The transitions
of the system as a whole are the interleaved agent transitions of the system’s agents, each extended withskip on the
irrelevant part of the total system state. Theskip-extended transitions are writtenSyA.

Definition 5.2. LetSbe a system with agentsAa, Ab, The sequenceT ≡ 〈wI , (k1, A1, q1), w1, (k2, A2, q2), w2, . . .〉
is a run of the system iff:

1. wI is an initial state of the system,

14 Banach and Schellhorn

2. A1 is the agent that performs the first step,
3. k1 is the input consumed byA1 during the first step,
4. q1 is the output produced byA1 during the first step,
5. w1 is the result state of the first step,
6. the change of statewI → w1 involves change to the state spaceW1 of A1 only; the state spaces of agents other than

A1 remain unchanged,
7. . . . and analogously for subsequent system transitions.

Definition 5.3. LetProtocolbe a protocol in the sense of the previous section. An agent decomposition for the protocol
is a decomposition of the protocol state spaceV into a cartesian product of agent subspacesV = V1 × V2 × . . ., such
that each step of the protocol modifies6 at most one component in the product, leaving the other components unaltered.

The decomposition into agent subspaces just described, represents the fact that an instantiation of a protocol is nor-
mally executed by a number of agents inside a real system. However a real agent in a real system can play many roles
during the running of the system, including acting out different roles in different instances of the same protocol at dif-
ferent times. So we need to distinguish the various agent roles in a protocol definition from the different instantiations
of these during system runs. The next definition introduces the technical machinery for this.

Definition 5.4. Let Atomic, Protocol, . . . (with all the attendant machinery) be a protocol implementing an atomic
action in the sense of the previous section. We say that system runT instantiatesProtocoliff there is a maximal path
through the protocolMPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vF−1, jF, pF, vF) and there are two maps:τA andτS
such that:

1. there is a cartesian product of disjoint functionsτA,l : Vl → Wal from all of the agent components ofV to a
(possibly proper) subset of distinct agent subspaces ofW, andτA = Πl τA,l ,

2. τS is an injective function from the steps of the maximal pathMPath〈α,β,...,γ〉 to steps ofT ,

3. τS is order preserving, i.e. ifStβ precedesStγ in MPath〈α,β,...,γ〉, thenτS(Stβ) precedesτS(Stγ) in T ,

4. for each protocol stepStβ(vt−1, jt, pt, vt) in the domain ofτS, if Vl is the agent component ofV modified during the
step, thenτA,l(Vl) is the agent subspace modified during the stepτS(Stβ(vt−1, jt, pt, vt)),

5. for each protocol stepStβ(vt−1, jt, pt, vt) in the domain ofτS, if τS(Stβ(vt−1, jt, pt, vt)) = SyAl(ws−1, ks, qs, ws),
thenτA,l(vt−1) = ws−1, jt = ks, pt = qs, τA,l(vt) = ws,

6. if protocol stepStβ modifiesVl and protocol stepStγ is the next protocol step alongMPath〈α,β,...,γ〉 that modifies
Vl , then no step ofT betweenτS(Stβ) andτS(Stγ) modifiesτA,l(Vl).

When we want to emphasise the details, we say that system runT instantiatesProtocol via τ ≡ (τA, τS) at step
τS(Stα(vI , j1, p1, v1)) of T , whereStα(vI , j1, p1, v1) is the initial step inMPath〈α,β,...,γ〉.

In Fig. 5 we show how a particular maximal path,M say, through the protocol illustrated in Fig. 3, might be mapped,
via an instantiation functionτ , to a selection of steps in a system run. The system state in the run is now ‘real world’
state, eschewing the maximal knowledge that the idealised protocol formulation allows. In between the steps ofτ(M),
other protocols are being instantiated by other agents, though without interfering with the state ofτ(M), by Definition
5.4.6.

Definition 5.5. Let MPath〈α,β,...,γ〉 be a maximal path inProtocol. StepStβ(vt−1, jt, pt, vt) of MPath〈α,β,...,γ〉 is
a first use of agent subspaceVl iff: it modifies Vl , and no earlier step ofMPath〈α,β,...,γ〉 modifiesVl . Similarly
Stβ(vt−1, jt, pt, vt) is a last use ofVl iff: it modifies Vl , and no later step ofMPath〈α,β,...,γ〉 modifiesVl . We say
thatProtocolis 2-phase (2P) alongMPath〈α,β,...,γ〉 iff all first uses of all agent subspaces ofProtocolprecede any last
use of any agent subspace ofProtocolalongMPath〈α,β,...,γ〉.

Definition 5.6. Let SyA(ws−1, ks, qs, ws) andSyB(ws, ks+1, qs+1, ws+1) be two successive steps of a runT of the sys-
tem. We say thatSyA(. . .) andSyB(. . .) can be commuted iff there is a statew̃s such thatSyA(w̃s, ks, qs, ws+1) and
SyB(ws−1, ks+1, qs+1, w̃s) are valid steps of the system, and the pairSyA(ws−1, ks, qs, ws) ; SyB(ws, ks+1, qs+1, ws+1)
can be replaced inT by SyB(ws−1, ks+1, qs+1, w̃s) ; SyA(w̃s, ks, qs, ws+1), yieldingT ′, whereT ′ is a valid run.

6 Here, and in the remainder of the paper, ‘modifies’ should be understood to mean ‘is deemed to modify’ or, ‘is permitted to modify in the syntactic
description of the step,’ since it is intended to cover not only non-trivial update, but also cases of read-only access, and cases in which the agent in
fact chooses not to access the state at all (even though the syntactic description, of which the step is a specific instantiation, permits it).

Atomic Actions, and their Refinements 15

•
•

•
•

•
•

•

•

•
•

• •

•

• •

•

•

•

…

…

R
R

RRP F

• • • • • • • • • • • • • • • •

ττ

M

Fig. 5. An atomic action, a protocol which implements it, and a system run containing an instance of a maximal path through the protocol. The
steps of the instance are shown bold.

Lemma 5.7. If SyA(. . .) andSyB(. . .) as in Definition 5.6, are two successive steps performed by two different agents,
then, provided both inputs are available in statews−1, SyA(. . .) andSyB(. . .) can be commuted.

Proof. SinceSyA(. . .) andSyB(. . .) are performed by different agents, the two agent subspaces modified by these
steps are disjoint, so the changes of state can be swapped, easily yielding the statẽws required by Definition 5.6. If
both inputs are available in statews−1, then theSyB(. . .) is enabled in statews−1 and can be performed first. Since the
input to SyA(. . .) is not removed by doingSyB(. . .), SyA(. . .) can followSyB(. . .). That this generates a valid run is
now straightforward. �

Since our formulation of a protocol does not consider the protocol’s context, the only way that a protocol, as formulated
in Section 3, can interact with the rest of the universe is viaI/O with the environment. In the system context, this leads
to a distinction within the internal system messages, between messages that are produced and consumed by the same
protocol instance (which should thus correspond to internal communications of the protocol itself), and those which
are produced and consumed by different protocol instances (which should thus correspond to communications with
the environment in the protocol model). (System level communications with the environment must of course also
correspond with protocol communications with the environment.) Since inter-protocol communications must comply
with normal causality considerations, these communications must fit well with the 2-phase property for protocol state
components. The next definition introduces the needed technicalities.

Definition 5.8. Suppose given a maximal pathMPath〈α,β,...,γ〉 of a protocol, which is 2P. An external dependency
definition (XDD) for it is a pair of (not necessarily disjoint) sets(IDS, ODS) of steps ofMPath〈α,β,...,γ〉. IDS is the
input dependency set: the set of steps ofMPath〈α,β,...,γ〉 during which an external input (i.e. one originating from
outsideMPath〈α,β,...,γ〉) is received; andODSis the output dependency set: the set of steps ofMPath〈α,β,...,γ〉 during
which an external output (i.e. one destined to outsideMPath〈α,β,...,γ〉) is delivered. A protocol is 2PXDD-normal iff:

1. all IDS steps occur no later than anyODSstep alongMPath〈α,β,...,γ〉,
2. the producer of every input of every protocol step other than anIDS step is some other step ofMPath〈α,β,...,γ〉,
3. the consumer of every output of every protocol step other than anODSstep is some other step ofMPath〈α,β,...,γ〉,
4. eachIDS step occurs no later than any last use of the state,
5. eachODSstep occurs no earlier than any first use of the state.

Definition 5.9. An instantiation of a 2PXDD-normal protocol is called a (2PXDD-normal) transaction.

For the rest of this section all transactions will be 2PXDD-normal.

16 Banach and Schellhorn

Theorem 5.10. LetT0 be a run of a system which consists entirely of the steps of transactions of a family of protocols.7

Then there is a serialisationT∞ of T0, generated by commuting adjacent steps, in which each instantiation occurs as a
contiguous series of steps.

Proof. Consider the directed graphDep0 whose nodes are the transactions ofT0, and whose edges are given by:
τ1 → τ2 iff:

1. an output of anODSstep ofτ1 is an input of anIDS step ofτ2, or,
2. an agent subspaceVl is used by bothτ1 andτ2, butτ1’s modifications ofVl occur earlier inT0 thanτ2’s.

Claim 5.10.1Dep0 is acyclic.

Proof of Claim.Let V be the state space of a transactionτ . Since the last first use ofV precedes the first last use of
V in τ , and all allIDS steps precede allODSsteps inτ , by Definition 5.8.4-5, we can deduce that there is a step inτ
(which we will call the pivot), that precedes neither the last first use ofV nor anyIDSstep, and simultaneously follows
neither the first last use ofV nor anyODSstep (there are four cases). We identify each transaction inT0 with (some
choice for) its pivot. Since steps are interleaved, there isa total order on the transactions, inherited from that on their
pivots.

We show thatDep0 can be interpreted in the set of pivots, and that each edge in the interpretation is oriented
towards the future, yielding the acyclicity ofDep0 immediately. For aDep0 edge of type 1, note that it is oriented
towards the future by straightforwards causality. So pretending that the requisite message was sent during the produc-
ing transaction’s pivot step, and pretending that it arrived during the consuming transaction’s pivot step can increase
its time of flight, but not change its orientation towards thefuture. For aDep0 edge of type 2, since the pivot steps
are contained within the uses of transactions’ state, and these are oriented towards the future by 2, the orientation is
preserved in the interpretation. We have our claim. � �

We serialiseT0 stage by stage. At each stage there are serialised and unserialised transactions. We call the boundary
between the serialised and unserialised transactions the horizon. So at the beginning there are no serialised transac-
tions, and the horizon lies just before the first step ofT0. At the n’th stage, which starts withTn, whose unserialised
transactions compriseDepn (a subgraph ofDep0), we choose an unserialised transaction which is a root ofDepn, and
we serialise it, whereupon its steps —in contiguous sequence— are both appended to the serialised part, and removed
from the unserialised part of the partly serialised run, moving the horizon to just beyond the newly serialised steps, and
yieldingTn+1 andDepn+1. If T0 is infinite, then the serialisation process continues forever, and every finite prefix of
T0 has all its steps eventually included in the serialised part. If T0 is finite, the process stops when the last transaction
of T0 has been serialised.

Stage n: A root transactionτn of Depn is chosen. By assumption, all transactions on whichτn is dependent, whether
through the state space, or viaτn’s IDS messages, have been serialised, i.e. their steps lie beyondthe horizon. So any
step ofTn that lies between the horizon andτn’s first step neither uses any state used byτn’s first step, nor produces a
message consumed byτn’s first step. So there is no obstacle to commuting the first step of τn towards the past until it
it arrives immediately after the horizon. Similarly the dependencies for the second step lie either beyond the horizon,
or arise from the first step, so the second step ofτn can be commuted towards the past until it arrives immediately
after the first. The process continues until the last step ofτn has been commuted until it arrives immediately after its
predecessor. This yieldsTn+1. Transactionτn is removed fromDepn, yielding Depn+1, and the horizon is moved to
just afterτn’s last step.End Stage n. �

The preceding amounts to a sketch of a relatively standard 2-phase serialisation proof process [BHG87,GR93,BN97,
WV02]. And once the run has been serialised, it is clear that each transaction of the serialised run is a refinement
of its corresponding atomic action via a retrieve function that forgets the part of the system state not relevant to the
transaction.

6. Mondex and its Refinements

In this section we reflect on the Mondex protocol, and the extent to which its refinement possibilities correspond to
the preceding theory. There are a number of points to be bornein mind.

7 So there is a set of maximal paths through a set of 2PXDD-normal protocols, and a set of instantiations of them inT0, and the set of steps ofT0

is the disjoint union of these instantiations.

Atomic Actions, and their Refinements 17

First of all, our theory has been couched in terms of single transitions (which is less cluttered), whereas Mondex
is couched in terms of Zoperations[Spi92,DB01, ISO02]. The distinction is the same as the one discussed in Section
4 between the generic event structure and its replication inthe detailed computational structure by all the permitted
values of the generically omitted state. Therefore when we say below that such and such an operation is synchronised
with such and such an atomic action, we are referring in bulk to all the transitions of the operation being suitably
synchronised with appropriate instantiations of the atomic action.

Secondly, we will restrict our attention for now to runs of the protocol which commence with the twoStart op-
erations,StartFromandStartTo, in either order, (returning to other possibilities at the end of this section). Referring
to Fig. 2, this means that after the twoStart operations, the protocol, which is henceforth serial (as isobvious from
the causal dependencies of thereq, val andackmessages), executes some prefix of theReq-Val-Acksequence of op-
erations. If it does not complete that sequence, each purse that still has elements of theReq-Val-Acksequence left to
do, performs anAbortoperation (which replaces the first such unperformedReq-Val-Ackoperation left on that purse’s
agenda), completing the protocol abnormally. Note howeverthat unlike theReq-Val-Ackoperations which are causally
constrained by thereq, val, ackmessages,Abortoperations are not causally constrained and can occur at anytime. Ev-
ery variation in the order of performing the protocol’s operations whenAbort events are involved, causes a branching
of the computation tree structure, and leads overall, to quite a complex protocol computation tree. All of this concurs
with the possibilities offered in the event structure of Fig. 4.

6.1. The Original Mondex Refinement [SCW00]

In [SCW00], the refinement is constructed to synchronise with the atomic description as early as possible, given the
assumptions above. Thus the atomic action is synchronised with theReqoperation, which refines bothAbTransferOK
andAbTransferLost. Since the protocol still has plenty of opportunity to fail after theReqoperation, theReqoperation
itself does not fix the outcome, so the refinement, achieved onthe basis of a global inductive proof, has to be a
backward one. We can visualise to some extent the substructure of Fig. 3 that forces a backward simulation (referred
to at the end of Section 3), from Fig. 2, if we add an edge fromReqto anAbort, as an alternative to the message
towardsVal, since the two abstract outcomes are already available at the end of theReqoperation. Furthermore, since
for a failing transaction the protocol has already angelically chosen to refineAbTransferLost, theAbort operation(s),
which actually signal the failure at the protocol level, allrefineAbIgnore(which is Mondex-speak for an abstractskip).

6.2. The Refinement of Banach et al. [BPJS07]

In [BPJS07], amongst other things, a synchronisation with the atomic description that occured late was sought, in
order to try to get a forward simulation.8 The natural operation to refineAbTransferOKto is Val, since that is the
moment that the money safely arrives at the recipient. However, if the refinement ofAbTransferOKis ‘obvious,’ then
the refinement ofAbTransferLostis less so. The subtlety lies within theAbort operation. The deeper structure of the
Mondex protocol implies that if only oneAbort occurs in a transaction, it is harmless, and such anAbort can refine
AbIgnore. Only if two Abort operations occur for a transaction, each while its respective purse is in a critical state,
has the transaction failed non-trivially, whereupon the transaction needs to refineAbTransferLost. This leads to the
decomposition of theAbort operation into cases, depending on the precise role of the operation in the transaction.
In the formalism of this paper, theAbort operation of Mondex corresponds to a collection of events which occur at
different places in the computation tree of the protocol, and are thus distinguishable.

The case analysis is interesting. The distinction between benign and non-benign instances ofAbort is made on the
basis of a purse’s local state (specifically, on whether the purse is in stateepvor epa(non-benign), or in some other
state (benign)). However, since twoAborts make oneAbTransferLost, we can only refineAbTransferLostto one of the
pair — and it has to be the second of the pair, since if only oneAbort in a critical state happens, then it turns out to be
benign nonetheless. In [BPJS07]non-localstate information is used to distinguish the first non-benign Abort from the
second, and the first is then made to refineAbIgnorewhile the second refinesAbTransferLost.

8 Looking forward to some extent to the specific results of the present paper —which show that the essentials of a protocol can be understood by
discussing the protagonists in isolation— the discussion in [BPJS07] was restricted to a world of just two purses, a single From purse and a single
To purse.

18 Banach and Schellhorn

6.3. The Refinement of Schellhorn et al. [SGH+07]

In [SGH+07] we have the second mechanized verification of Mondex using the the KIV theorem prover [RSSB98].
While the first [SGHR06b] used the original backward simulation and data refinement, the second uses abstract state
machines (ASMs, [Gur95], [BS03]) together with ASM refinement and generalized forward simulations [Sch01].

The refinement, like [BPJS07], synchronizes successful transfers by havingVal implementAbTransferOK. But
it chooses to synchronize failed transfers at the earliest point possible. This gives two cases for theReqoperation,
which is the point where theFrom purse sends money. In the first, theTo purse is still ready to receive the money, in
which caseReqimplementsAbIgnore. But if theTo purse has already aborted then the second case applies, andReq
implementsAbTransferLost.9 Instead of having two cases (as in [BPJS07]) in which theAbort operation implements
AbTransferLost, the design of [SGH+07] leaves only one: the case where theTo purse aborts inepvafter money has
been sent.

The different choices for the synchronisation points was one motivation for us to study the general possibilities
here. Another one was to provide a general formalization of using past and future simulation relations (RP andRF). In-
stances of such relations with a schematic encoding into Dynamic Logic are not only used in the case study [SGH+07]
but also in earlier work. Future simulation relations occurin the correctness proof of ASM refinement [Sch01]. Past
simulation relations are used in coupled refinement [DW03] as noted in [Sch05].

6.4. The Refinements of Haxthausen, George et al. [HGS06]

The two refinements of [HGS06] use the RAISE specification language [The92]. They are another mechanized verifi-
cation of Mondex using the theorem prover PVS [ORS92]. This case study is slightly out of scope of our theory, since
it does not start with atomic actions, but with a two step protocol: the first step (calledTransferLeft) is a send operation,
which nondeterministically chooses between a success and failure, and we call the two casesSendOKandSendFail.
After SendOK, there are again two possibilities: receiving may succeed or fail. For symmetry, we call these operations
ReceiveOKandReceiveFail, [HGS06] calls themTransferRightandAbort. Already, the splitting of transactions at the
abstract level into send and receive, allows us to keep the balances of abstract and concrete level in perfect synchrony,
as is required by RAISE refinement. The two refinements implementTransferLeftwith ReqandReceiveOKwith Val.

To compare the synchronisation points with our proofs, we have to add an additional refinement of the original
abstract Mondex level to the abstract RAISE level. The refinement would have to implementAbTransferOKby the
sequenceSendOK;ReceiveOK. AbTransferLostwould be implemented by bothSendFailandSendOK;ReceiveFail.
BecauseSendOKis ON, a forward simulation proof would have to synchronize with the last operation of every
sequence. Composing the resulting simulation relation with the existing refinements, we find that the synchronization
is the one used in [SGH+07].

6.5. The refinements of Butler and Yadav

These refinements develop a Mondex-like money transfer protocol using the B4free tool [B4f]. They will be published
as a contribution to [JWe07]. In accordance with the Event-B[AH06] methodology, the protocol is developed in many
small, but easily mechanically provable refinement steps, the simulations being forward simulations. The strategy
decomposes the abstract events to facilitate separate refinement of distinct pieces to distinct protocol level operations.
Aside from that, it is similar to that of [BPJS07] in that failing transfers are refined byAborts.

Note that with the exception of the original (backward) one,the preceding refinements are all forward simulations
when viewed at the individual protocol instance level (cf. Corollary 3.10). As such, and particularly when they are
based on(1, 1) refinements, they all readily extend to forward simulation refinements of full system runs — just as the
original (1, 1) backward simulation readily extended to a backward simulation refinement for full system runs.

6.6. Other Possibilities

Our general theory shows that even more possibilities than have been discussed above are actually possible. For
example, the refinement of [BPJS07] could have chosen to refine AbTransferOKto Ack instead ofVal, sinceAck

9 This differs from [BPJS07], where theAbort of theFrom purse that is bound to happen in this situation implementsAbTransferLost.

Atomic Actions, and their Refinements 19

occurs as the last operation of a successful transaction. However, since in general there is a possibility that a transaction
succeeds but that theackmessage is lost, causing theAckoperation to be replaced by anAbort (which as it turns out is
harmless), we infer that in such a refinement there would be a case in whichAbTransferOKwould have to be refined
by Abort!

An alternative to the preceding is to synchronise right at the beginning, with the first (or second)Start event —
and there are plenty of hybrid cases, combining aspects fromseveral of the described or suggested refinements arising
from the rich structure of the protocol computation tree. Weleave the curious reader to work out such scenarios for
himself.

6.7. The Non-2-Phase Fragments

In discussing the preceding refinements, we have always assumed that the twoStart operations are performed first.
But it could happen that one purseStarts and immediately afterwardsAborts, before the second purse hasStarted.
This spoils the 2P property since the first purse has relinquished its use of its local state before the second purse has
claimed its first use. In such a case, either purse may engage in other transactions, changing the local state, after the
first purse’sAbort and before the second purse’sStart.

A remaining possibility is that only one purseStarts, and the other purse merelyAborts (as explicitly permitted in
the event structure of Fig. 4), or indeed does nothing (a possibility allowed for in the definitions of [SCW00] though
not shown in Fig. 4). In such a case, even if the other purse’sAbort happens after the (inevitable)Abort of the first
purse, it is arguable that the protocol is nevertheless 2P, since the other purse’s use of its state amounts to no more than
skip. Even if one does not accept this argument, it is evident thatthe breakdown of the 2P property is rather mild.

Dealing formally with such situations requires an extension of our theory and provides a major motivation for
the meterial developed in Sections 8 and 9. Note though, thateven if these situations are not serialisable via the
standard 2P technique, the fact that we have(1, 1) refinements of the protocol, guarantees nonetheless that these
‘rogue’ interleavings preserve atomic semantics.

7. Another Motivating Example: Lock-Free Stacks

Up till now, we have considered protocols in which a fixed number of agents engaged in a set of events that together
implemented some atomic action, and in which they did soin peace, unmolested by other agents — so called isolated
protocols. In truth, the isolated protocol concept is of course an idealisation, and in reality, isolated protocols execute
within an environment containing other agents.

Isolated protocols are characterised by the fact that interference by other agents can be ignored as soon as the
protocol has started, i.e. as soon as each protagonist has executed his first event. In the context of event structures,
the mutual exclusion among all the different possibilitiescan be reflected in a structure that has conflict between the
root eventsof every incompatible pair of possibilities. Doing this faithfully for Mondex would result in a truly messy
structure, since a choice of (pair of purses, direction of transfer, amount of transfer) cannot be concurrent with another
iff at least one of the purses is in common. In real life, the complex control over the possibilities, is of course handled
from the environment — and conventional event structures are rather poor at representing efficiently such choices
between complex overlapping options.

For Mondex, the preceding difficulty is alleviated by the isolated nature of the protocol, permitting the transparent
account of a single protocol run that we gave earlier. However, isolated protocols are not the only protocols of interest
in practice, and to maximise the applicability of our earlier theory, we now examine non-isolated protocols, encouraged
also by the desire to encompass the non-2P fragments of Mondex noted above.

7.1. Lock-Free Stacks

We introduce a motivating example for non-isolated protocols: lock-free stacks. Lock-free stacks were introduced
in [HSY04]. However our treatment will be based on the more recent account in [CG07, CG06]. The operation of a
lock-free stack is simple to describe. There arePushandPopoperations as usual. However their implementation is
optimistic. BothPushandPopare implemented as loops that repeatedly attempt possibly failing proceduresTryPush
andTryPoprespectively, until success is obtained.

The stack itself is a linked list of cells, with the top pointed at by a globalTopOfStackpointer, and with each cell

20 Banach and Schellhorn

RdTop0 RdTop1 RdTop2 RdTopk

Fail0

Comm0 Comm1 Comm2 Commk〈〈#〉〉 〈〈#〉〉〈〈#〉〉 …… ……

Inter0

#
→

#〉……

Fail1

Inter1

#
→

#〉……

Fail2

Inter2

#
→

#〉……

Failk

Interk

#
→

#〉……

Fig. 6. An event structure that abstracts theTryPushandTryPopoperations in a non-locking stack protocol.

holding a value, and pointing to the next cell down the stack via a .nextpointer. Each ofTryPushandTryPopworks
as follows. The globalTopOfStackpointer is first read. Next, local code prepares the ground: for aPush, a new cell is
prepared, containing the new value and pointing to the previously readTopOfStack; for a Pop, the value is extracted
from the previously readTopOfStackcell, and its.nextpointer is noted. Finally an attempt is made to atomically update
the globalTopOfStackpointerprovided no other agent has updated it in the meantime: for Push, TopOfStackis made
to point to the new cell; forPop, it is overwritten with the.nextpointer.

The atomicity is achieved via the CAS(loc, oldv, newv)10 instruction. In an indivisible operation, this compares the
contents of locationloc with oldv, and if they are the same, overwritesloc with newv, returning success. If they are
not the same, no overwrite happens, and failure is returned.Assuming thatoldv is indeed a value thatloc previously
contained at some point, the atomicity of overwriting is evidently not itself sufficient to guarantee that no other agent
has updatedloc in the meantime, since it might have been altered tosomeothervand then altered back again, the ‘ABA’
problem. However, additional mechanisms can be put in placeto prevent this, and we will assume that this has been
done henceforth. All together, a successful CAS thus guarantees atomicity between the earlier reading ofoldv and its
overwriting bynewv.

So, when an attempt atTryPushor TryPopreturns, its return value is examined. If it succeeded,Pushor Pop itself
returns. If it failed,TryPushor TryPop is retried. Of course, this permits an infinite sequence of failed attempts, but
that’s the price of optimism.11

Once a newTopOfStackvalue is established via a successful CAS, it can be read by any number of agents, each in
the course of preparing his own stack operation, in optimistic anticipation of subsequently committing it via the next
CAS — this is what makes the protocol non-isolated. Such a collection of agents, all sharing a commonTopOfStack
value will be called a clan. Obviously, only one member of a clan —the first to try his CAS— can commit his update;
the rest will fail. The fact that clans can be non-singletonsis what makes the lock-free stack a non-isolated protocol.
The fact that each member of a clan acts largely alone, using instructions whose effects are relatively local, and whose
conflicts are simple, is what makes the operation of the clan easy to represent using event structures.

Fig. 6 is an event structure that represents the working of a clan, and introduces some new conflict notations.
As well as the elements described in Definition 4.1 we have thetransitivesymmetric conflict relation〈〈#〉〉 (so that
a 〈〈#〉〉b 〈〈#〉〉 c ⇒ a 〈〈#〉〉 c, and if x 〈〈#〉〉 y, then the occurrence of either blocks the other, as for #); wehave the
asymmetric conflict relation #〉 (for which x #〉 y means that the occurrence ofx blocks the subsequent occurrence of
y, but the occurrence ofy does not block the subsequent occurrence ofx); and we have the prioritised flow conflict
relation

→

(so that(a ≺ x)
→

(a ≺ y) means thatx andy are in (symmetric) conflict, and oncea is in the current
configuration, thenx can only be executed providedy is blocked (so thaty has priority overx, provideda) — this
captures the effects of IF statements in code particularly well).

More formally, we enhance the definitions of Section 4 to the following.

Definition 7.1. A general flow event structureE (with symmetric, transitive symmetric, asymmetric and prioritised
conflict), is a tuple(E,≺, #, 〈〈#〉〉, #〉,

→

#) such that:

1. E is a set (of events).

10 CAS stands for Compare And Set.
11 However, an infinite sequence of failures witnesses that an infinite sequence of attempts byotheragents succeeded, as becomes clear below, so
that the system as a whole makes progress.

Atomic Actions, and their Refinements 21

2. ≺ is an asymmetric causal flow relation onE (whose transitive (resp. reflexive transitive) closure is written< (resp.
≤)).

3. # is an irreflexive symmetric conflict relation onE.
4. 〈〈#〉〉 is an irreflexive symmetric and transitive conflict relationonE.
5. #〉 is an asymmetric conflict relation onE (we write〈# for its transpose where convenient).

6.
→

is an asymmetric prioritised flow conflict relation on≺ (we write
←

for its transpose where convenient).

Definition 7.2. Let E = (E,≺, #, 〈〈#〉〉, #〉,
→

#) be a general flow event structure. Let the associated nonsymmetric
conflict relation #a be the smallest relation onE closed under:

1. x # y ⇒ x #a y ∧ y #a x.
2. x #a y ∧ y ≤ z⇒ x #a z.
3. x 〈〈#〉〉 y ∧ y 〈〈#〉〉 z⇒ x 〈〈#〉〉 z.
4. x 〈〈#〉〉 y ⇒ x # y.
5. x #〉 y ⇒ x #a y.

6. (a ≺ x)
→

(a ≺ y) ⇒ x # y

Definition 7.3. LetE = (E,≺, #, 〈〈#〉〉, #〉,
→

#) be a general flow event structure with associated nonsymmetric conflict
relation #a. The setXE ⊆ P E of (legal) configurations ofE , and the legal ways of moving from a legal configuration
X of E to a successor legal configurationY are given by the following rules.

1. ∅ ∈ XE .
2. X ∈ XE ,

x ∈ E− X,
(∀ x′ ∈ E • x′ ≺ x ⇒ x′ ∈ X),
(∀ x′ ∈ E • x′ #a x ⇒ x′ 6∈ X),

(∀a, x′ ∈ E • (a ≺ x)
→

(a ≺ x′) ⇒ (∃ z∈ X • z#a x′))
⊢ X ∪ {x} ∈ XE .

Obviously these richer general flow event structures also permit the constructions that appear in Definitions 4.4 and
4.5.

The new notations enable Fig. 6 to explain the working of a clan in a compact way. Thus agentsk join the clan
by executing aRdTopk event, recording the currentTopOfStackvalue; this is regardless of whether they want to do
a TryPushor a TryPop. Each subsequently executes hisInterk event; this is an abstraction of all the local working
done prior to the commit attempt, and in reality correspondsto a large number of individual instructions that give
rise to an exponentially large number of interleavings in a concurrent context. Finally comes the commit attempt, the
CAS instruction, whose two outcomes are represented byCommk andFailk. The rules for prioritised flow mean that
whichever agent is the first to try his CAS, must execute hisCommk event. The rules for transitive symmetric conflict
mean that as soon as he does, all otherComml (l 6= k) events become blocked, forcing their agents to execute their
Fail l events in due course.12 The rules for asymmetric conflict also imply that all remaining RdTopl events become
blocked, so that the next agent to read theTopOfStackpointer starts a fresh clan.

7.2. Elimination Stacks

The preceding section gave a simple example of a not-so-isolated protocol, which was easily described using a suitably
enhanced event structure. The authors of [CG07,CG06] develop their account of non-locking stacks further by giving
an improved account of theeliminationmechanism, which is of interest for us too.

Basically, when contention for the stack is high, there willbe many failed operations on the stack. In such a
case, there will be manyPushers and manyPopers struggling to access theTopOfStackpointer. If we could pair up a
Pusher with aPoper, the former could simply give his data to the latter, avoiding stack contention, and achieving serial
semantics. This is what the elimination mechanism tries to do. To achieve it thePushloop, whose body previously
contained justTryPush, now containsTryPush; TryElimination. Similarly the body of thePop loop now contains

12 For later convenience, we note that all failures occurafter the successful CAS.

22 Banach and Schellhorn

TryPop;TryElimination. TryElimination is a symmetric procedure that tries to swap aPoper’s placeholder piece of
dummy data with thePusher’s real data. The contention inherent in a non-locking approach means that success is not
guaranteed.

The elimination mechanism consists of two tasks, which do not get completely separated in the implementation:
pairing upPushers withPopers; and actually carrying out swaps.

To allow Pushers andPopers to meet, clans are formed. The workings of different clans do not interfere, so we
only consider a single clan.

Access to the clan is via a locationClanLoc.13 ClanLoccontains an agent id. A new agent with idk wishing to
join the clan reads the agent id inClanLoc(subsequently referred to as′k) and attempts to atomically overwrite it with
his own idk, via the CAS mechanism described earlier. If he is unsuccessful (which means that someotheragent has
overwrittenClanLocwith his ownid), he retries, repeating the read-CAS cycle until he succeeds.

The preceding ensures that agents joining the clan form a chain, and that each joining agentk is aware of the id
of his predecessor′k. The chain condition is not necessary for what follows, but consider the following. If we had a
more tightly connected structure than a chain, with more than one successor of some agenta, then if both successors
tried to swap witha, then the failure of at least one of them is guaranteed. Whilea chain arrangement does not in itself
guarantee the absenceof failures, it does at leastpermit their absence as we show below.

As well asClanLoc, there is another critical global data structure,AgD, of agent data.AgD is an array indexed by
agent id’s. Each entry in the array is a pair(INST, data), constrained to be of such a size that a single CAS instruction
can update the pair atomically.INST can be one ofPUSH, POP, NONE, and reflects the agent’s intentions. For the
PUSHcase,data is the value to be pushed; forPOP, data is a placeholder for the value to be received; forNONE,
datais either dummy data that aPusher has acquired, or the desired data that aPoper has acquired.

An agentk updates his entry inAgDprior to CAS-ingClanLoc, so thatAgD(k) is accurate as soon as he has joined
the chain. Suppose thatGetHimk is the event of successfully joining the chain by agentk, acquiring the id′k of k’s
predecessor, referred to ashim in [CG07], in the process. Fig. 7 gives an event structure forthe ensuing possibilities.

Agent k then readsAgD(′k) to see if the two agents form a complementary pair (i.e. one ofthem aPUSH, the
other aPOP). Suppose that check fails (eventMPrk (fail to Match Pair byk)). Then there is no point in agentk trying
to implement a swap with′k. However,k may by now have acquired, or in the near future may acquire, a successork′.
Sincek is unaware ofk′’s existence, all he can do is wait a while, in the hope that such ak′ might implement a swap on
his behalf. After a delay,k performs a CAS onAgD(k), comparing with its previous value, and attempting to overwrite
it with (NONE, . . .). If the CAS succeeds (eventSwPk (fail to Swap Passive byk)), then there was after all nok′, no
swap, andk exits the clan unsuccessfully; and whichever ofTryPush; TryEliminationor TryPop; TryEliminationwas
under way fork is retried. If the CAS fails (eventSwPk (Swap Passive byk)), then thereis new data inAgD(k), which
must have been put there by some genuinek′ who detected a complementary pair and was able to implement the swap.
Agentk takes the appropriate action with the data and theTryElimination(and hence its calling operation) succeeds.

Suppose, by contrast, that the complementary pair check performed byk succeeded (eventMPrk (succeed to Match
Pair byk)). Thenk will try to actively implement a swap with′k’s data,AgD(′k), which he remembers from before.

To implement a swap of two items requires at least three locations and as many updates. For agentk, locations
AgD(k), AgD(′k) and local data provide the locations, the intention being toexchange the data inAgD(k) andAgD(′k).
The updates toAgD(k) andAgD(′k) must be atomic to prevent interference byk′ and′k respectively, who may also be
trying to access these locations during their own attempts to implement swaps.

Agentk first tries to overwriteAgD(k) with (NONE, . . .) using a CAS, and comparing with its previous value. If
this fails (eventSwElMek (Swap despite failing to Eliminate Me byk)), then there is new data inAgD(k), put there by
k′, who accessedAgD(k) earlier, having detected a complementary pair withk. Therefore, ifk is aPusher, his data has
already been taken, and ifk is aPoper, he can extract the new data fromAgD(k), exiting successfully in both cases.

If the CAS succeeds (eventElMek (Eliminate Me byk)), k has preventedk′ from interfering with his swap, and
must now complete his swap process by overwritingAgD(′k) with (NONE, datak) (wheredatak is k’s original data,
previously stored in the second component ofAgD(k)), comparingAgD(′k) with its previous value. If this last CAS
fails (eventElHimk (fail to Eliminate Him byk)), then′k must have performed hisElMe′k earlier onAgD(′k), andk’s
swap attempt fails;k exits and must retry from the beginning.

If this last CAS succeeds (eventSwElHimk (Swap achieved via Eliminate Him byk)), thenk has installed his own
datadatak in AgD(′k) while simultaneously preventing′k from completing his own swap attempt. Therefore, ifk is a

13 Thus by having as manyClanLocs as is considered useful, as many clans as is considered useful can be run in parallel, reducing contention, and
maximising concurrency. The mechanisms for determining how manyClanLocs should be maintained is beyond the scope of this paper.

Atomic Actions, and their Refinements 23

GetHimk

SwP0

MPr0

#
←

#
→

GetHimk′GetHim′kGetHim0

SwP0 SwPk′

MPrk′

#
←

SwPk′

SwElMek′

MPrk′

ElMek′

#
→

SwElHimk′

〈#… 〈#…

ElHimk′

#
→

#
→

SwPk

MPrk

#
←

SwPk

SwElMek

MPrk

ElMek

#
→

SwElHimkElHimk

#
→

#
→

SwP′k

MPr′k

#
←

SwP′k

SwElMe′k

MPr′k

ElMe′k

#
→

SwElHim′kElHim′k

#
→ #

#…##…

〈#〈#

〈#…

Fig. 7. An event structure illustrating the working of a clan in the elimination part of a non-locking stack protocol.

Pusher, he has succeeded in passing his data toPoper ′k, and ifk is aPoper, he already hasPusher ′k’s data which he
read earlier. In either casek can exit successfully.

The above account of the ‘main path’ through the behaviour ofa clan leaves a few loose ends to be tied up.
Firstly, the first agent in the clan, agent0, has no predecessor to work on; his only hope therefore is to be swapped
passively, and Fig. 7 shows the simpler event tree that he consequently has. Secondly, the growth of the clan, i.e. the
accumulation of agents attaching themselves to the chain, stops as soon as the current last agent executes his last CAS,
i.e. as soon as hisSwElHimor ElHim takes place. The effect of either of these is to set the instruction field in his
AgD slot toNONE, preventing any new arrival from having a viable predecessor to actively swap with, i.e. any new
arrival becomes a new agent0. Thirdly, any member of the chain similarly completing hisSwElHimor ElHim breaks
the chain into independent pieces, since swapping actvity among predecessors lower down the chain can no longer be
interfered with by swapping actvity among successors higher up the chain. Consequently, if the chain happens to be
of even length, and all the odd-numbered agents happen to successfully complete aSwElHimevent, then all agents in
the chain succeed. It is in this sense that the chain arrangementpermitsthe absence of failures, while neverthelessnot
guaranteeingtheir absence, since nothing guarantees that the dynamics of a clan will generate as ideal outcome as just
described.

8. Not-So-Isolated Atomic Actions and their Protocols

The preceding section described two not-so-isolated protocols, the non-locking stack, and its enhancement, the elim-
ination stack. In the case of the former, we gave a straightforward description of the protocol via an (enhanced kind
of) event structure, as in Section 4. This means that we can generate a protocol computation DAG for the non-locking
stack simply by generating all the configuration sequences of a suitable relational model of the event structure in the
manner described in Section 4.

In the case of the elimination stack however, matters are a bit more complicated. The reader will have observed
that the description of the working of the elimination stack, effectively breaks up into three separate event structures,
one of them not mentioned at all. The first is the event structure that describes the non-locking stack in Fig. 6, since the
originalTryPushandTryPopform the first (and if successful, only) step of the more elaborate mechanism. The second,
not described, captures how various agents compete to attach themselves to an elimination clan via the read-CAS loop
whose success is aGetHimevent, once theTryPushor TryPophas failed. Thirdly, we have the event structure that
describes the elimination mechanism itself, Fig. 7, once anagent has successfully attached to a clan.

The event structure account was structured thus, because anintegrated description, unifying all the features in a
single event structure, would be unhelpfully complicated.The full working of the elimination stack, contains, like the
global description of the Mondex protocol in a context of many purses and many transactions, a lot of overlapping
complex possibilities, hard to capture succinctly by meansof event structures.

So, as before, our event structure account was generic, bringing out certain aspects while suppressing others (par-
ticularly low level state details). When these are reinstated, we get a replication of the forest (or DAG) of sequences
of configurations generated by the various event structures, and indexed by the reinstated data values. In a multi-stage
protocol, such as our description of the elimination stack,once this is done, it then becomes relatively easy to glue to-

24 Banach and Schellhorn

• •

• • • •

RRP F

• • • • • • • • •

RA RA

RDRD

RI

……

RII

Fig. 8. A ‘slice’ through the factorisation of the refinement of an atomic action to a protocol, through the agent (middle) layer.The middle layer
contains actions that characterise, in an atomic fashion, what each agent participating in the protocol achieves. The protocol layer below, contains a
multiple synchronisation assignment, with a selected protocol step for each agent atomic step. The thin dark-hatched triangles are ‘jolts,’ in which
agents other than the ones participating non-trivially in the protocol are able to interfere with the protocol state in acontrolled manner. The two jolts
shown are both trivial at the agent level since the protocol state changes both abstract to the identity.

gether appropriate copies of the DAGs corresponding to the different stages, to get an overall description, and thereby
a computation DAG for the whole protocol.

Two issues —granularity and multiple agents— now need to be considered. Both affect the refinement relationship
between atomic and protocol levels.

Regarding granularity, unlike Mondex, for which all paths through the protocol are finitea priori, the non-blocking
nature of the stack algorithms opens the possibility that some activity may be repeated indefinitely without ever meet-
ing with success. In part, such possibilities may be avoidedby drawing the boundaries of the protocol appropriately.
For example, in the case of the non-blocking stack, one can say that the protocol consists of theTryPushandTryPop
routines themselves, each with two finite outcomes (successand failure), rather than the enclosingPushandPopop-
erations that only have a single finite outcome (success), but also the possibility of non-termination. However this
approach is not fireproof. In the case of the elimination stack, the loop body ofPush is TryPush; TryElimination,
and similarly forPop. Considering the loop body alone does not avoid non-termination, since the middle stage of
TryElimination, joining the chain via theGetHimevent, is not guaranteed to succeed in a finite number of steps. So,
even though choosing the granularity of a protocol description in a convenient way may avoid some cases in which
infinite paths arise, we neverthless cannot completely avoid dealing with protocols that have infinite paths. On the
other hand, note that an infinite sequence of failed attemptsto achieve some goal is inevitably unfair. This gives us
grounds for according infinite paths that arise in this way a different status to finite paths.

We can divide infinite paths into three categories. An infinite path can: (1) consume input and or generate out-
put, (and perhaps also manipluate the state in a nontrivial way); (2) neither consume input nor generate output, but
manipluate the state in a nontrivial way; (3) do no I/O and furthermore manipluate the state in a way that (according
to a suitable notion of observation) is observably trivial.Our contention is that all the infinite paths that arise in our
study of protocols fall into the third category. Certainly that is the case for the examples considered in Section 7 — the
infinite paths that arose there consisted of indefinitely repeated attempts to access some resource via an action whose
effects were null if unsuccessful. Given that protocols (aswe have them in this paper) are intended to accomplish (one
of) a finite number of outcomes in a finite amount of time, a sequence of steps that accomplishes an infinite number
of observable state changes or I/O actions cannot really be regarded as belonging to a single protocol instance. This
forces option (3) in the classification above, and furthermore forces the conclusion that an unobservable state change
must necessarily bedefined bythe property that it maps (under the retrieve relation of therefinement between atomic
and protocol levels) to an identity on the atomic state. In its turn, this then opens the way to two approaches to dealing
with such, relatively innocuous, infinite paths. In the first, we allow protocols to have ‘jolts’ in them, modelled by a
special purpose agentJolt, whose transitions trivialise under abstraction — an infinite path then becomes an infinite
sequence of jolts in an infinite sequence of finite protocol executions by other agents. In the second, we develop ex-
tensions of the theory of Section 3 to accomodate these very special infinite paths. We develop the tools for the first
approach below.

Regarding multiple agents, unlike Mondex once more, in which all participating agents cooperate towards the
achievement of a single goal, making it sensible to represent the various possible collective outcomes as single actions
at the atomic level, for the non-blocking protocols, the agents compete for resources in order to achieve their own
individual goals, and a representation of various possiblecollective outcomes as single actions at the atomic level
is (while perfectly possible) considerably less useful. However, multiple agents are not hard to incorporate into the

Atomic Actions, and their Refinements 25

framework of Section 3. One can take the setup in Section 3, and factor the refinement from atomic to protocol levels
via an intermediate level. Let us call it the agent level. Fig. 8 shows a ‘vertical slice’ through the arrangement that
ensues.

At the top we have the usual shallow tree description of all the possible collective outcomes as single atomic
actions — Fig. 8 shows one of the possibilities. The next layer down is a computational DAG, as in Section 3, but to
enable the maximum reuse of the results of Section 3, it is restricted to be a forest — Fig. 8 shows one path through
it, and the ‘big step’ abstraction functionRA that maps the endpoints of the path to the before- and after- states of the
single atomic action above that the path refines. At the bottom, the protocol layer is as before. Fig. 8 shows a single
path through it, and the ‘big step’ abstraction functionRD that maps the endpoints of the path to the before- and after-
states of the agent level path above.

Fig. 8 also shows how several individual steps of a path through the protocol DAG are mapped, in a 1-1 order-
preserving manner, to (all) the steps in the agent level pathitself. This is a multiple synchronisation assignment (MSA).
Obviously the 1-1 order-preserving property has to be consistently maintained across all protocol DAG paths and their
mapping to agent level paths above.14

Fig. 8 also shows how in the presence of an MSA we not only have the past oriented and future oriented retrieve
relationsRP andRF that we had before, but various intermediate retrieve relationsRI , RII , . . . too. It is not hard to see
that these can be calculated via formulae very similar to (12) and (13). It is equally easy to see that the results in the
latter part of Section 3 have analogues for this more generalworld.

Finally, the dark-hatched shapes in Fig. 8 are the jolts of which we spoke earlier. Jolts are points in the running of
the protocol in which agents other than those deemed to be participating in the current protocol run can interfere with
it, i.e. they can modify the current protocol state. Such jolt-attributed state changes must be dealt with by the protocol
in an appropriate fashion. Ideally, jolts map to the identity at the agent level, but not always. When they do, the agent
level clearly abstracts cleanly back to the abstract level,and this yields a rationale for allowing such jolts to be (almost)
ignored altogether — certainly in the abstraction from agent level to abstract level. When they don’t, the relationship
between the abstract and agent levels becomes more complicated, since the interference is no longer invisible there,
and appropriate arguments have to be advanced about the way in which the agent level paths with non-trivial jolts
relate to the abstract level. We will see instances of both types of behaviour below.

In a world of not-so-isolated protocols, tangles of protocol instances that are unbounded in time and space may
potentially arise. Jolts give us the capability of cutting such tangles into finite pieces. Given our earlier insistancethat
a protocol instance must consist of a finite sequence of steps, the infinite number of steps inherent in an unbounded
tangle of instances must be capable of being cut up into finitepieces that do not interfere destructively with each other,
if our approach is to make sense in the not-so-isolated world.

We now look at the details of the approach proposed above. Where the changes from the treatment of Section 3 are
relatively few, we just list them explicitly, and describe their consequences for the theory as a whole. Where there are
more extensive differences, we give fuller details. As a meta level notational device, we distinguish previous concepts
from their current versions using a ‘△’ superscript. SoAtomic△ refers to the definition of the atomic level in Section 3,
whereasAtomicrefers to the atomic level here.

The Atomic Level

• The atomic level is defined as in Section 3. SoAtomic(here) has the same properties asAtomic△ (there);
i.e. it is a shallow computation tree.

(28)

The Agent Level

The agent level captures the decomposition of the purely atomic level (in which the state changes capture the various
alternative overall goals of the protocol), into atomic steps of individual agents participating in the protocol, capturing
the protocol’s overall goals as seen from individual agents’ perspectives. This admirably clean picture is made more
cluttered by needing to allow for agent level jolts.

• The agent levelAgentis defined like a special case ofProtocol△; i.e. it is a computation DAG with all paths
finite, but in addition, it is restricted to be a forest.

(29)

• The agent state spaceVA factors into a product of subspacesVA = VA1 ×VA2 × . . ., as in Definition 5.3, so
that each step of theAgenttransition relation modifies (in the sense of footnote 6) at most one of them.

(30)

14 N. B. Recalling Mondex, despite it being an isolated protocol and having an overall goal, the agent level makes sense. There are evidently two
agents, theFrom purse and theTo purse, and a run of Mondex accomplishes either: (1) aSendby theFrom purse followed by aReceiveby theTo
purse, or (2) aSendby theFrom purse followed by anAbort by theTo purse, or (3)Aborts by both purses. Cf. Section 6.4.

26 Banach and Schellhorn

• There is a set ofprotocol agents. There is a bijection between the subspaces ofVA and the protocol agents,
so thatVAPA is the subspace associated toPA.

(31)

• There is an additional agent,Jolt, distinct from all the protocol agents in (31). (32)

• Each step of theAgenttransition relation is executed either by a protocol agentPA, in which case it modifies
the subspace associated withPA, or byJolt, in which case it may modify any subspace.

(33)

• No protocol agentPA may execute more than one step of a maximal path through theAgent transition
relation, and no pair of consecutive steps is executed byJolt.

(34)

To connect the jolted agent level with the abstract level, weneed to disregard the jolts in a suitable way.

• Let AgentJ be the subforest ofAgentconsisting of all itsJolt-free paths. (35)

• Then there is a functional ‘big step’ retrieve relationRA betweenAtomicandAgentJ, andRAP andRAF are
the related past and future retrieve relations. Using theseretrieve relations, all the results of Section 3 hold
betweenAtomicandAgentJ.

(36)

The jolted and non-jolted parts ofAgentneed to be connected.

• There is a functionJ which maps any maximal path ofAgentwhich contains aJolt-executed step as initial
step or final step (or both) but which contains noJolt-executed step in its interior, to a path ofAgentJ, and
such thatJ is injective on the non-Jolt steps and the nodes of the non-Jolt steps and preserves the agent that
executes each staep.

(37)

The functionJ relates anAgentpath in which jolts occur only at the extremities, to anAgentJ path in which such
jolts are disregarded, allowing theAgentJ path to be abstracted to an atomic transition, and relating the originalAgent
path to that abstraction.Agentpaths with jolts in arbitrary places must be transformed into paths with jolts only at
extremities before they can be abstracted, a matter to whichwe attend below.

One way of generating suitable functionsJ on paths in a systematic way is to view theAgenttransition relation as
being generated via the unwinding of the paths of a suitable DAG transition relation, similar to the way that Definition
4.5 is related, by unwinding, to Definition 4.4 in the event structure world. With a suitable DAG, the paths without any
Jolt-executed step can arise as the interior portions of pathswith Jolt-executed steps at their extremity (or extremities),
and the unwinding can unambiguously relate the latter to theformer.

The Protocol Level

• The protocol levelProtocolis defined likeProtocol△; i.e. it is a computation DAG with all paths finite. (38)

To handle multiple synchronisation assignments and other modelling aspects properly, the agents and their properties
need to be reflected in the protocol level.

• The protocol state spaceV factors into a product of subspacesV = V1 × V2 × . . ., as in Definition 5.3. (39)
• For each protocol agentPA, there is a subsetVPA = {VPA,1, VPA,2, . . .} of the subspaces ofV. For distinct

PA1 andPA2, VPA1
∩ VPA2

need not be empty.

• For each stepStγ of theProtocoltransition relation, there is a protocol agentPA, or Jolt, that executes it.
◦ If Stγ is executed by a protocol agentPA, then it modifies at most one state subspaceVk, Vk ∈ VPA, and

Stγ may do I/O in the usual manner.
◦ If Stγ is executed byJolt, thenStγ maynot do I/O.

(40)

We use the machinery of Section 3, superscripting with ‘A’ or ‘ P’ to indicate the agent or protocol level where needed.
The refinement fromAgentto Protocol is then captured by (7)-(11) with uses ofAtomic△ replaced byMPathA, and
other obvious notational changes.

Definition 8.1. Let PathA(. . .) be a contiguous fragment of an agent path, andPathP(. . .) be a contiguous fragment of
a protocol path. We say thatPathA(. . .) andPathP(. . .) areΣ-completable iffPathA(. . .) andPathP(. . .) are exendable
(in either direction or both) to maximal pathsMPathA(. . .) andMPathP(. . .) which witness the obvious analogue of
(11). Any such extension is called aΣ-completion ofPathA(. . .) andPathP(. . .).

Definition 8.2. Let vI be an initial state ofProtocol, and letRD be the (functional) ‘big step’ retrieve relation between
theAgentandProtocoltransition relations. A multiple synchronisation assignment (MSA(vI)) for the valid DAG from

Atomic Actions, and their Refinements 27

vI is a subset of its non-Jolt steps, such that for each maximal pathMPathP(vI , . . . , vF) through the valid DAG from
vI : if RD(avI , vI) whereavI is an initial state ofAgentandRD(avF, vF) whereavF is a final state ofAgentboth hold,
and if MPathA(avI , . . . , avF) is a(ny) maximal path of the valid DAG inAgentfrom avI to avF, then there is an order
preserving bijectionθ from all the non-Jolt steps ofMPathA(avI , . . . , avF) to the MSA(vI) steps ofMPathP(vI , . . . , vF),
such that for everyStAγ in MPathA(avI , . . . , avF), the same protocol agent executes bothStAγ andθ(StAγ). An MSA(vI)
for everyvI constitutes an MSA forProtocol.

Definition 8.3. Let an MSA forMPathP(vI , . . . , vF) andMPathA(avI , . . . , avF) etc., be as in Definition 8.2. If the bi-
jectionθ extends toθJ, in which the order preserving bijection on non-Jolt steps of extends to an order preserving inclu-
sion of all theJolt steps ofMPathA(avI , . . . , avF) also, then we say thatMPathP(vI , . . . , vF) andMPathA(avI , . . . , avF)
areJolt-compatible. An MSA forProtocol, which isJolt-compatible for everyMPathP and any abstractionMPathA of
it is a Jolt-compatible MSA forProtocol.

Definition 8.4. We define the ‘past oriented’ retrieve relationsRγP
ρ :

RγP
ρ (avs, vt) ≡ (∃ avI , aj1, ap1, av1, . . . , ajs, aps, 〈α, . . . , γ〉, vI , j1, p1, v1, . . . , jt, pt, 〈π, . . . , ρ〉 •

RD(avI , vI) ∧ FPathA
〈α,...,γ〉(avI , aj1, ap1, . . . , ajs, aps, avs) ∧ FPathP

〈π,...,ρ〉(vI , j1, p1, . . . , jt, pt, vt) ∧

R(avI , vI), FPathA
〈α,...,γ〉, FPathP

〈π,...,ρ〉 areΣ-completable with allΣ-completionsJolt-compatible∧

the number of steps in〈α, . . . , γ〉 and the number of MSA(vI) steps in〈π, . . . , ρ〉 are equal) (41)

and the ‘future oriented’ retrieve relationsRγF
ρ :

RγF
ρ (avs, vt) ≡ (∃ ajs+1, aps+1, avs+1 . . . , avF, 〈γ, . . . , δ〉, jt+1, pt+1, vt+1 . . . , vF, 〈ρ, . . . , τ〉 •

FPathA
〈γ,...,δ〉(avs, ajs+1, aps+1, avs+1 . . . , avF) ∧ FPathP

〈ρ,...,τ〉(vt, jt+1, pt+1, vt+1 . . . , vF) ∧ R(avF, vF) ∧

FPathA
〈α,...,γ〉, FPathP

〈π,...,ρ〉, R(avF, vF) areΣ-completable with allΣ-completionsJolt-compatible∧

the number of steps in〈γ, . . . , δ〉 and the number of MSA(vI) steps (for somevI) in 〈ρ, . . . , τ〉 are equal) (42)

With these tools in place, we can prove evident analogues of (14)-(19) in which arbitraryProtocolsteps can figure
in various simulation-related POs, featuring appropriately chosenR relations from the family just defined. One can
then complete the programme of Section 3 in this more complicated setting. There are minor changes of notation
and terminology, but insisting that theAgenttransition relation is a forest ensures that even Corollary3.9 survives in
an appropriate form. Also helpful, is the fact that the additional detail we introduced concerning protocol agents is
essentially irrelevant to the mathematical requirements of the refinement proofs.

We now turn our attention from refinement proofs to serialisation, which is inevitably going to be more complicated
in the presence of jolts. Unlike the situation in Sections 3 and 5, where serialisation was purely a matter for concern
at system run time, we now need to lift some of the reasoning tothe atomic-agent-protocol world. First we introduce
some terminology.

Definition 8.5. Suppose given anAgenttransition system and a correspondingProtocol transition system, and the
refinement machinery given byRD. Suppose also given aJolt-compatible MSA forProtocolas in Definition 8.3. A
contiguous subsequence of steps of a maximal path through the protocol DAG not including aJolt step is called a
portion. A portion is called a:

1. skip equivalent no external output portion (SENXOP) iff the before-state of its first step equals the after-state of
its last step, and no step produces an output which is not input by another step in the same portion,

2. skip equivalent no external input portion (SENXIP) iff the before-state of its first step equals the after-state of its
last step, and no step consumes an input which has not been output by another step in the same portion,

3. general no external output portion (GNXOP) iff it is not a SENXOP and no step produces an output which is not
input by another step in the same portion,

4. general no external input portion (GNXIP) iff it is not a SENXIP and no step consumes an input which has not
been output by another step in the same portion,

5. complex portion (CP) iff it is not a SENXOP, SENXIP, GNXOP or GNXIP.

In addition, any contiguous subsequence ofJolt steps is called a:

6. complex jolt (CJ) iff it includes the image under theθJ function of aJolt step ofAgent,

28 Banach and Schellhorn

•

• •

Rγ′

…

•

•

ATJ

CP

ρ′Rγ′
ρ′Rγ

ρRγ
ρ

⇐ATJ

SENXOP

• •

SENXOP
• …

•

•

Rγ′

•

•

ATJ

ρ′Rγ′
ρ′Rγ

ρRγ
ρ

⇒ATJ

SENXIP

• •

SENXIP

CP

Fig. 9. The shifting of abstractly trivial jolts past SENXOPs and SENXIPs. On the left, the past of a CP contains an ATJ which occurs after a
SENXOP, so the ATJ is pushed further into the past. On the right, the future of a CP contains an ATJ which occurs before a SENXIP, so it is pushed
further into the future.

7. abstractly trivial jolt (ATJ) iff the before-state of itsfirst step differs from the after-state of its last step, but it does
not include the image under theθJ function of aJolt step ofAgent,

8. skip equivalent jolt (SEJ) iff the before-state of its first step equals the after-state of its last step, and it does not
include the image under theθJ function of aJolt step ofAgent.

Evidently the status of jolt atProtocol level depends critically on the synchonisation assignmentand on its extension
to Agentjolts via θJ. Of the three kinds of jolt, SEJs are the least objectionableas regards disturbing serial semantics
— they are not even observable withinProtocolmaximal paths. This is not to say that they can be dismissed entirely,
since a read-only access to some state that is being used by another transaction can reveal information which can
subsequently be used to influence a system run in a way that violates serial semantics. However we will assume that
this is not the case for SEJs. In other words:

• Weassumethat the fact that theProtocollevel paths that SEJs intrude into cannot observe them, is mirrored
by a corresponding inability of any system run as a whole to observe them.

(43)

What (43) says is that there arehigher level system invariantsthat maintain serial semantics despite the intrusions of
SEJs.

The other kinds of jolt are more drastic than SEJs. Both CJs and ATJs can be observed withinProtocollevel and/or
Agentlevel paths, so, if we are to recover any semblance at all of serial semantics, we must somehow get rid of such
jolts from the interior ofProtocolandAgentpaths. We adapt some concepts from 2P theory.

Definition 8.6. (Assuming the preceding machinery) a maximal path in a protocol DAG is jolt-normal iff:

1. it contains exactly one (real or deemed) CP — if there is no real CP (as given in Definition 8.5.5), either the
before-state of the first step of a SENXIP or GNXIP, or the after-state of the last step of a SENXOP or GNXOP,
may be called thedeemedCP; both eventualities are covered by the phrase ‘(deemed) CP’,

2. before the (deemed) CP, the only kinds of portion that precede a CJ or ATJ are SENXOPs and GNXOPs,
3. after the (deemed) CP, the only kinds of portion that follow a CJ or ATJ are SENXIPs and GNXIPs,
4. the steps of the path are partitioned into contiguous subsequences, each of which is a (deemed) CP, SENXIP,

GNXIP, SENXOP or GNXOP.

In addition:

5. a protocol DAG is jolt-normal iff every path is jolt-normal.

We now describe how we can exploit the preceding for serialisation.
In Lemma 5.7 and in Theorem 5.10 we felt able to interchange steps because the state components they affected

were disjoint. Innocuous though this interchange of steps may be, the serialisability that it leads to is still a definition of
a notion of correctness, which exists independently of, andcannot be derived from, other considerations (in particular
from the notions of refinement that we have worked with). In the current context, we will be forced to adopt an even
weaker notion of correctness connected with serialisation, and we make up for the laxitude this introduces by assuming
that what it permits is acceptable when measured against therequirements of the system. This again brings us back to
the presence of higher level system invariants, without which the semantics of the kind of ‘porous’ transactions we are
contemplating becomes potentially nonsensical.

For protocol paths containing non-trivial jolts (i.e. ATJsand CJs) in their interior, our goal is to push the ATJs and
CJs to the extremities of the path, after which they can be reasonably disregarded as far as the current atomic goal is
concerned.

Atomic Actions, and their Refinements 29

Let us look at the elimination of an ATJ adjacent to a SENXOP. If an occurrence of an ATJ (with before-statev
and after-statev′) in a path of a jolt-normal protocol is preceded by an SENXOP (with before- and after- states both
v′), we can hope that we could shift the ATJ past the SENXOP, replacing the SENXOP with one that has before- and
after- states bothv, generating thereby some other path in the protocol DAG which was semantically acceptable as
a substitute for the original one, according to the requirements of the system. If such a thing is possible we say that
the ATJ has beenshiftedinto the past. The left hand side of Fig. 9 illustrates this for the case that the SENXOP is
a refinement of an agent level transition (according to suitable RγP

ρ or RγF
ρ retrieve relations); the right hand side of

Fig. 9 illustrates the dual case of pushing an ATJ into the future past a SENXIP. There are degenerate cases in which
the SENXOP refines the identity and the agent level consists of just a single state, of course. Pushing into the past is
desirable for ATJs occurring before the CP of a jolt-normal protocol, and pushing into the future is desirable for ATJs
after the CP.

At this point we emphasise one thing. Unlike the case of Definition 5.6 and Lemma 5.7, in which individual steps
were interchanged, the shifts of Fig. 9 (and of Fig. 10 below)involve the interchange of contiguous sequences of steps
en bloc. Since the states involved are in principle shared, the detailed interchange of a step at a time would almost
inevitably break many detailed low level invariants while it is in progress, so we do not even contemplate such an
approach. Instead, theen blocshifting approach, albeit avoiding such pitfalls, nevertheless needs to be approached
with care, since the applicability of a shift may well dependon a global property of the protocol transition system as a
whole. Thus it must be the case that in all system runs, the adjacent presence of the two continguous subsequences of
the before-side of the shift, can in all cases, be replaced bythe two continguous subsequences of the after-side of the
shift, and the result is still a valid system run, before the use of the shift can be sanctioned as a local transformation.
This departure from purely local reasoning, while obviously regretable, is a more or less unavoidable consequence of
interfering with the differing uses by different agents of shared state.

Let us now replay the above for a CJ. The analogue here would beto shift the CJ past a SENXOP. Since a CJ
abstracts to a non-trivial step at agent level, the analogueof Fig. 9 would have a quadrilateral not only at the lower
protocol level, but also at the higher agent level. Unfortunately the agent transition relation has been stipulated to be a
forest, so it containsno quadrilaterals. Thus instead of being able to argue about purely local modifications to paths,
moving jolts and replacing SENXOPs in a small portion of the path, we must introduce mappings on paths as a whole,
and to say that one agent path is the CJ-shifting of another.

One way of generating such mappings on paths in a systematic way is to again view theAgenttransition relation
as being generated via the unwinding of the paths of a suitable DAG transition relation, as for Definition 4.5 and
Definition 4.4 in event structures, as noted earlier. With such a DAG, and the mapping on paths round one of its
quadrilaterals available, the required mapping on paths inthe forest is then generated by relating the two DAG paths
to their forest representatives, and extending to every maximal path that enters and leaves that quadrilateral.

We note moreover that a functional big step retrieve relation between agent and protocol levels also means that
distinctAgentfinal states must refine to distinctProtocolstates, so that the absence of a quadrilateral at theAgentlevel
implies a corresponding absence atProtocol level. Thus the necessity for mappings on paths as a whole propagates
down a refinement hierarchy when retrieve relations are functional.

Thus far we have explored shifting ATJs and CJs past skip equivalent portions, since that leads to quadrilaterals
in theProtocoltransition relation with the same state along two of its sides, which is the easiest situation to visualise
and describe. But there is no reason to stop there. Obviously, when shifting a CJ which starts with before-statev
say, and ends with after-statev′ say, its source and destination positions in the shift must both start withv, and must
both end inv′. After all, a CJ describes activity specificallyoutsidethe control of the current protocol path, so there
is no possibility to change any aspect of it by arguing locally from inside the current protocol path. However, that
is not to say the lead-in tov must be of a prescribed form before and after the shift, nor that the lead-out fromv′

must be of a prescribed form before and after the shift. Obviously, if we are going to reason locally (or in a manner
that at least corresponds to local reasoning after unwinding, as above — and as is highly preferable), then the before
and after paths must diverge at some common statevdiv say, and (in the DAG picture) must converge again at some
common statevcon say. This yields a formulation of shifting past GNXOPs and GNXIPs, illustrated in Fig. 10. There,
the CJ is shifted, in a manner that presumes to make progress towards expelling the CJ to one end or the other of
the resulting maximal path, but no assumptions are made about the segments of protocol path that act as lead-in tov
after divergence fromvdiv, or that act as lead-out afterv′ until convergence tovcon, save the absence of external input
or output, as appropriate. In fact, once a CJ is sufficiently close to one or other extremity of a maximal path, there is
nothing to prevent the interpretation of all or part of some remaining outlying GNXOP or GNXIP as itself a jolt (from
the point of view of the current protocol), and thus to expel it from the current transaction. In Section 10.3 we will see
an example in which this flexibility is exploited to maximum effect.

30 Banach and Schellhorn

•

•

•…

•

•⇐

CJ

• …

CJ

••
vdiv

vcon

v′v

v v′

Fig. 10.A general shift of a CJ.

Definition 8.7. A Protocoltransition relation isresolvableiff, via series of shifts, any maximal path can have its ATJs
and CJs moved to the beginning and/or end of the resulting path, modulo the reinterpretation of any remaining GNXOP
or GNXIP as itself a jolt.

The end result of resolving all the ATJs and CJs need not be a completely jolt-free protocol path: SEJs may remain in
its interior. Such interruptions, which amount to ‘subliminalskips’ during the protocol path, are tolerated (modulo the
assumption of global unobservability), since they are bothunobservable at protocol level, and also furnish a mechanism
whereby a potentially unbounded (in space and or time) tangle of interfering transactions may be cut up into finite
pieces, as noted earlier.

9. Serialisation of Resolvable Jolted Transactions

In this section we present a serialisation construction appropriate to the ‘jolted’ protocols of Section 8. We reiterate
that shifting amounts to a notion of correctness. Thereforethe serialisability property that rests on it is also a notion of
correctness. As before, we just refer to the earlier treatment where the differences are slight, giving more detail where
it is more important to do so.

• As in Definition 5.1, a system has a number of system state subspacesW1, W2, . . . and the the total system
state spaceW = W1 × W2 × . . . is the product of all of them. There is also a number ofsystem agents,
Aa, Ab, . . ., each associated with one or more of the system state subspaces, eg.Wa = {Wa1

, Wa2
, . . .} for

Aa etc.

(44)

Note the distinction betweensystem agentsandprotocol agentsintroduced in the previous section. The latter will
shortly be matched to the former.

The definition of an instantiation of aProtocolmaximal path, Definition 9.1 next, is comparable to Definition 5.4
above, but is more complicated for a number of reasons: (1) werepresent agents at both protocol and system levels,
to model the various agents active in (especially) not-so-isolated protocols; (2) we give each agent the possibility
of having several distinct state subspaces, to conveniently model both shared and private local state; (3) we allow
distinct agents to have state subspaces in common, to model shared state; (4) in Definition 9.1 we utilise more of the
‘runtime information’ contained within the image of the matching compared with Definition 5.4, in order to allow
more flexibility for the jolts.

• A system run is defined as in Definition 5.2, except that re. point 6, each step involves change toone of the
system state subspaces associated with the agent who executes it.

(45)

Definition 9.1. Let Atomic, Agent, Protocol, . . . (with all the attendant machinery) be a protocol implementing an
atomic action in the sense of the previous section. We say that system runT instantiatesProtocoliff there is a maximal
path through the protocolMPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vF−1, jF, pF, vF) and three maps:τAg, τA andτS
such that:

1. τAg is an injective function from the set of protocol agents ofAgentto the set of system agents,15

2. for each protocol agentPA, there is an injectionτss(PA,−) from the setVPA (of the subspaces ofV associated with
PA) to the setWτAg(PA) (of the subspaces ofW associated withτAg(PA)),

3. for each protocol agentPA, for each subspaceVPA,l in VPA, there is a mapτPA,l : VPA,l → Wτss(PA,l), andτA =
ΠPA,VPA,l τPA,l (where the product ranges over the subspacesVPA,l, for eachPA),

15 In particular,Jolt is never in the domain ofτAg.

Atomic Actions, and their Refinements 31

4. τS is an injective function defined on (all) steps ofMPath〈α,β,...,γ〉 — if a step is executed by a protocol agentPA,
thenτS maps it to a single step ofT , executed by system agentτAg(PA); if a step is executed byJolt, thenτS maps
it to a (not necessarily contiguous) subsequence ofT steps,

5. τS is order preserving, i.e. ifStβ precedesStγ in MPath〈α,β,...,γ〉, thenτS(Stβ) precedesτS(Stγ) in T ,

6. for each stepStβ(vt−1, jt, pt, vt) in the domain ofτS executed by a protocol agentPA, if VPA,l is the agent component
of V modified duringStβ(vt−1, jt, pt, vt), thenWτss(PA,l) is the system agent subspace modified during the step
τS(Stβ(vt−1, jt, pt, vt)),

7. for each stepStβ(vt−1, jt, pt, vt) in the domain ofτS executed by a protocol agentPA, if τS(Stβ(vt−1, jt, pt, vt))
= SyτAg(PA)(ws−1, ks, qs, ws), and the transitionws−1 → ws modifies system subspaceWe, thenWe = Wτss(PA,l) ∈
WτAg(PA) for somel (reiterating 6 above),τPA,l(vt−1) = ws−1, jt = ks, pt = qs, τPA,l(vt) = ws,

8. if Syρ is a step ofT in the image ofτS that modifies a system state subspaceWz whereWz = τA(VPA,l) for some
protocol agentPAandl, andSyσ is also a step ofT in the image ofτS that modifiesWz, then no step ofT between
Syρ andSyσ may modifyWz unless it too is in the image ofτS.

When we want to emphasise the details, we say that system runT instantiatesProtocolvia τ ≡ (τAg, τA, τS) at step
τS(Stα) of T , whereStα is the initial step inMPath〈α,β,...,γ〉.

• Suppose a shift of an ATJ or CJ is represented atProtocollevel by transformingMPathintoMPath′, such that
there is a corresponding transformation fromMPathDAG to MPath′DAG in the DAG picture, andMPathDAG

andMPath′DAG have a common suffixMPathDAG(vcon . . .) after the local transformation. IfMPath(vcon . . .)
andMPath′(vcon . . .) are the corresponding suffixes inMPathandMPath′, weassumethatMPath(vcon . . .)
can be instantiated within a system runT on a given subsequenceη of T iff MPath′(vcon . . .) can also be
instantiated inT onη.

(46)

Lemma 9.2. Suppose that system runT instantiates a maximal pathMPath of Protocol via τ ≡ (τAg, τA, τS), so
that a shiftable ATJ or CJ and an immediately preceding SENXOP or GNXOP are mapped byτS into anadjacent
pair τS(-NXOP) andτS(-J) of contiguoussubsequences ofT . Let MPath′ shift τS(-J) into the past inProtocol. Then
τS(-NXOP) andτS(-J) can be interchanged inT , to yield an instantiation ofMPath′ in a system runT ′ via τ ′ ≡
(τ ′

Ag, τ
′
A, τ ′

S) constructed in the obvious way. Dually for an ATJ or CJ and an immediately following SENXIP or
GNXIP. We say thatτS(-J) has been shifted inT to yieldT ′.

Proof. We have to show thatT ′, as described, is a valid system run, and that it instantiatesMPath′ as claimed. But this
is easy. Since a SENXOP or GNXOP produces no outputs, pushingit into the future past an ATJ or CJ inMPath, does
not threaten to demand that any input of the ATJ or CJ is consumed before the corresponding output has been produced.
Also the instantiationτ merely instantiates any external I/O of SENXOP or GNXOP and of ATJ or CJ, and extends
the protocol state by the remainder of the system state. Because of the contiguity and adjacency ofτS(-NXOP) and
τS(-J), this additional system state remains unchanged throughout τS(-NXOP) andτS(-J), and therefore interchanging
τS(-NXOP) andτS(-J) results in a valid system runT ′, which evidently instantiatesMPath′ via aτ ′, constructed in the
obvious way, using (46). �

Definition 9.3. Suppose given a maximal pathMPath in a jolt-normal protocol, and assume the notions of external
dependency definition (XDD), and of input and output dependency sets(IDS, ODS) as in Definition 5.8. Then the
protocol is 2PJXDD-normal iff the following holds: ifMPathcontains a real CP, then the CP, considered in isolation,
is 2PXDD-normal according to Definition 5.8.

Definition 9.4. An instantiation of a 2PJXDD-normal protocol is called a (2PJXDD-normal) transaction.

For the remainder of this section all transactions will be 2PJXDD-normal.

Theorem 9.5. Let T0 be a run of a system which consists entirely of the steps of transactions of a family of resolvable
2PJXDD-normal protocols16 such that:

1. each instantiation of a protocol path is partitioned intoSENXIP, GNXIP, SENXOP, GNXOP, CJ, ATJ, SEJ pieces,
2. every step ofT0 is in a SENXIP, GNXIP, SENXOP, GNXOP or CP of some transaction,
3. the steps of the instantiation of any SENXIP, GNXIP, SENXOP, GNXOP belong to a single transaction.

16 So there is a set of maximal paths through a set of resolvable 2PXDD-normal protocols, and a set of instantiations of them in T0, and the set of
steps ofT0 is the (not necessarily disjoint) union of these instantiations.

32 Banach and Schellhorn

Then there is a serialisationT∞ of T0, generated by commuting adjacent steps and shifting instantiations of jolts and
portions, in which each instantiation occurs as a contiguous series of steps, interrupted, at worst, by SEJs.

Proof. For each transaction inT0 choose a pivot as follows:

1. if the transaction instantiates a real CP, choose a pivot as in Claim 5.10.1,
2. if the transaction instantiates a deemed CP, choose the step whose before-state or after-state is the deemed CP.

Consider the directed graphDep0 whose nodes are the transactions ofT0, and whose edges are given by:τ1 → τ2 iff:

1. an output of anODSstep ofτ1 is an input of anIDS step ofτ2, or,
2. there is a system state subspace modified by bothτ1 andτ2 andτ1’s pivot occurs earlier inT0 thanτ2’s.

Claim 9.5.1Dep0 is acyclic.

Proof of Claim.As in the proof of Claim 5.10.1, we can interpretDep0 in the set of pivots. For clause 1, external I/O
can be interpreted as arriving at or issuing from the pivot ofa transaction, and for clause 2, well it refers directly to
pivots anyway. Since all the edges ofDep0, thus interpreted, are oriented towards the future, and thepivots are linearly
ordered by time, the claim follows. � �

The remainder of the serialisation splits into three phases: Portion Coalescence, Jolt Redefinition, Resolution. In all
cases we proceed in stages, each of which affects only a finiteportion of the system run as in Theorem 5.10, following
the structure ofDep0 from its root nodes. Of course ifT0 is infinite, we can never complete any of the phases before
starting the next. In such cases we assume that the working ofthe various stages of the various phases is interleaved in
such a way, that whenever some stage of some phase is performed, any preceding stages of any preceding phases that
it depends on in order to see the context it expects, have already been done. Since each stage has only a finite ‘reach,’
this will always be possible. We do not dwell on the technicaldetails of the scheduling needed to achieve this.

Portion Coalescence.Working on the transactions in an order compatible withDep0, we move steps of the system
run until, for each portion of any transaction, the steps of the portion are contiguous. For a given transaction, we start
with the CP, and move all its steps inwards towards the pivot.Thus the CP’s last step before the pivot is swapped with
its successor steps, in turn, until it arrives just before the pivot itself. The assumption that the CP is 2PXDD-normal
and condition Definition 9.1.8 ensure that this process succeeds. Once all the pivot’s CP predecessors come just before
it, the pivot’s CP successors are moved to just after it. Thusthe CP’s next step after the pivot is swapped with its
predecessor steps, in turn, until it arrives just after the pivot, and similarly for the remaining steps of the CP.

There remain the SENXIP, GNXIP, SENXOP, GNXOP portions. Fora SENXOP or GNXOP, all the portion’s steps
except the last one are moved into the future until they abut the last one in a contiguous order-preserving sequence.
Once more, Definition 9.1.8 ensures that this works. For a SENXIP or GNXIP, all the portion’s steps except the first
one are moved into the past until they abut the first one in a contiguous order-preserving sequence. Definition 9.1.8
ensures that this works. We call the last steps of SENXOPs, GNXOPs, and the first steps of SENXIPs, GNXIPs, the
subpivots of the transaction.

Jolt Redefinition.In the previous phase, due to movement of individual steps, the gap between two consecutive
non-Jolt portions of a transaction may have acquired steps other thanthose originally matched to the intervening jolt.
Jolt Redefinition is simply the process of redefining any such‘infiltrated’ jolt between two portions to includeall the
steps that now fall between them, and to maintain this condition dynamically through the resolution phase, next.

Resolution.Since the preceding phases did not move any pivots or subpivots (relative to each other), the system
run, as it now appears, is a sequence of non-overlapping transaction portions which embody the original dependencies
of Dep0. Moreover, each transaction’s jolts now consist of some sequences of portions belonging to other transactions.
Since we assumed that all the protocols figuring in the original system run were resolvable, we can now apply the
resolution strategy of Definition 8.7et seq. Sweeping through the transactions in an order compatible with Dep0, we
apply for each, a series of shifts which moves all its SENXIP,GNXIP, SENXOP, GNXOP portions until they (or what-
ever similar portions supersede them in the process) abut the transaction’s CP (which is not moved throughout). The
result is a sequentialisation ofT0 in which only those SEJs that occur between the CP and its innermost surrounding
SENXOP, GNXOP and SENXIP, GNXIP portions, survive to interrupt the otherwise completely sequential execution.
We are done. �

Given that after the above serialisation, there are only SEJs embedded in the interior of any transaction, and that we
have a global assumption that any state that they might observe is not used to violate serial semantics, it might be
possible to argue that such SEJs can be replaced by trueskips, and these may then be moved to outside the transaction
in which they occur, achieveing a fully serial execution.

Atomic Actions, and their Refinements 33

10. Examples of Serialisation of Resolvable Jolted Transactions

In this section we make a few remarks about some situations, drawn from our motivating examples, which embody
some of the more elaborate serialisation techniques discussed above. We start with the simplest case, lock-free stacks.

10.1. Lock-Free Stacks

The straightforward lock-free stacks of Section 7.1 are relatively easy to interpret in the framework we built. The
overall protocol DAG decomposes into a set of cases that describe the workings of clans of all possible sizes.17 Above
it, the agent forest summarises this for the sets of agents involved, and above that, the atomic shallow forest captures
in a single transition, what each more detailed outcome accomplishes overall.

Thus for a clan of sizen, at the atomic level, there will ben atomic transitions, each representing the fact that agent
k succeeded in his update while the others failed, fork ∈ {0 . . .n− 1}. Descending to the agent level, the agent forest
will contain, for a clan of sizen, a subtree containingn! branches emerging from a common root, and each branch
will consist of aCommk step representing the success of agentk, followed by(n− 1) moreFail steps representing the
failure of the other agents, ordered in some way. Since thereis no restriction on the order in which the(n− 1) other
agentsFail, there will be(n− 1)! permutations of these, and alln! branches gather into a tree with a branching factor
that starts atn and decreases by1 at each level, by identifying common prefixes. Note that we have not mentioned any
Jolt steps in the agent transition relation. There are none; we donot need them.

At the protocol level there will be more complexity. Each maximal path will start with theRdTopl step for the agent
l that initiates the clan (assuming we are not numbering agents in the order they join the clan, which always remains
an option). This step is then followed by a series ofRdTopandInter steps representing the arrivals and local workings
of other agents that take place prior to theCommk step of the successful agent. (The only restriction on theseRdTop
andInter steps, is that for anyInter step there must have been an earlierRdTopstep.) At some point i this activity,
agentk succeeds. Once agentk has succeeded, there are no moreRdTopsteps, and the maximal path is completed by
whatever outstandingInter steps andFail steps there are for all agents other thank, these steps being interleaved in
some causally valid order. Note that as for the agent transition relation, we have not mentioned anyJolt steps; there
are none, we do not need them at protocol level either.

The models we have described at the various levels of abstraction are more or less fixed. Certainly that is the
case for the atomic and protocol levels. The agent level potentially allows a little more flexibility, but given our
understanding of the protocol, there is little scope for inventing an agent model that appears as ‘natural’ as the one we
have sketched.

Having fixed the models, we can contemplate possible refinements between them. Again there are some ‘obviously
natural’ refinements. As regards the atomic to agent refinement, all playouts of the protocol event structure feature suc-
cess for one agent, and failure for the remainder, and the success always comes first. So an atomic to agent refinement
that captures this in the most natural way is the most convincing: synchronising the atomic action with the successful
agent’s step (which always comes first) does the trick. This is a simple synchronisation assignment, as in Section 3.
But of course, the refinement theory of Section 3 allows plenty of other possibilities, which we do not dwell upon here.

The agent to protocol refinement is constrained by the need tomatch the order of agent names appearing in any
maximal pathMPathA of the agent model, with the order of agent names that are executing the steps synchronised with
them in the MSA for any corresponding maximal pathMPathP in the protocol model that refinesMPathA. This is a
modelling constraint rather than one forced by any faeture of the refinement theory. It is simplest and most transparent
if we synchronise the protocol level success or failure event for agentag in MPathP with the relevant agent level
success or failure event forag in MPathA. Thus for anyMPathP, we have to choose the right agent level pathMPathA

for it to refine: the successful agentk of MPathP has to execute the agent level success event, the first step ofMPathA,
and the remaining fail events ofMPathA must be executed by the same ordering of agents as occurs for the failing
events inMPathP. This gives us a multiple synchronisation assignment as demanded by Definition 8.2. The absence of
jolts at either agent or protocol level implies that we do nothave to worry about the additional constraints in achieving
a Jolt-compatible MSA as per Definition 8.3. Of course, there are numerous alternative possibilities for refinement,
as permitted by the theory of Section 8, immeasurably amplified if we decompose theInter steps into the low level
sequences of local instructions that they represent for each agent and then consider all the possible valid interleavings
that result.

17 This will make the protocol DAG infinitely wide and it will have paths of arbitrary length, but all paths will still be finite.

34 Banach and Schellhorn

Concerning the serialisation properties of the above protocol model and accompanying refinements, we note that
aside from the additional structure imposed by taking note of agent names, we have not deviated from the framework
of Section 5 at all. We have managed to design the descriptionof lock-free stacks so that that any agent that impacts a
clan becomes a member of it, and thus the the entire working ofthe clan becomes a finite piece of the overall protocol.
In particular, the entire model enjoys the full 2P serialisability property.

10.2. Elimination Stacks

Let us now consider the extension of the lock-free stack to the elimination stack. One aspect of our earlier treatment,
was the decoupling of the lock-free initial part of the more elaborate mechanism from the elimination part itself. One
justification for this, and a perfectly adequate one, is thatthe complete protocol, as described in [CG07,CG06], features
an unspecified and completely non-deterministic mechanismfor assigning lock-free-failing agents to clan locations.
This in turn allows subsequent refinement to mechanisms which are optimised to system-specific desiderata. For this
reason we will continue to discuss the two parts separately.

In the elimination mechanism, the workings of a clan are delineated by the circumstance of the last successful
joiner (i.e. the agent at the end of the chain) executing hisElMe event before any other agent has successfully joined
the clan. Obviously clans of arbitrary size are possible, again leading to protocol DAGs of unbounded width and depth,
but still with all paths finite.

At the atomic level, the single transitions will represent the various possible global outcomes: since the critical
actions of the protocol are swaps, each involving two adjacent agents in the chain, overall, some even number of
agents which happen to be adjacent in pairs in the chain and have complementary operations can succeed, the rest will
fail; this will summarise the global outcome of the working of the clan.

At the agent level, the global outcome is reflected in individual agent steps, so for a clan of sizen, there will ben
steps in any agent level maximal path. In such an agent level maximal path, successful pairs have aPushstep followed
(either immediately or later) by the correspondingPopsteps. Failing agents have aFail step. These step names may
be made more elaborate, to record eg. who was the active and who the passive partner of a successful pair, or the
mechanism by which aFail came about. And not all naively conceivable interleavings of the steps need be possible
since causality (as partly captured in the asymmetric features of the general event structures) must be respected. For
instance, if two contiguous adjacent pairs both succeed, then the order of events must not be such that the middle pair
of the four agents involved is forced to succeed. The possibilities depend, at least partly, on the level of detail recorded
in the agent level steps. To make the remaining discussion more concrete, we will assume that we merely model, for a
given agent, whether its step wasPush, Popor Fail, and that the state modelled at agent level just concerns thesingle
local data item that was pushed or popped in a successful case, or that was to be pushed or popped in an unsuccessful
case. As for the lock-free stack, we have no need forJolt steps at agent level.

At the protocol level, we have steps corresponding to the events in (a finite subset, corresponding to a finite number
of clan members, of) Fig. 7, again interleaved in a large number of possible ways, commensurate with causality. In
addition, we have the option of including events corresponding to those concurrent attempts to join the clan while the
possibility to do so is still open, but that fail, events (whose successful couterparts are theGetHimevents of Fig. 7)
which are not represented in Fig. 7. Regarding these, if we assume weak fairness, then for any finite size of clan, there
will be a finite (but potentially unbounded) set of them.

Rather than clutter the protocol definition itself by including these failed joining attempts as the acts of agents
involved in the protocol, we can conveniently represent them as SEJs interleaved into the paths of the protocol. This
makes the agents and steps of the protocol transition relation correspond to the events in Fig. 7, with the interjection of
finite numbers of SEJs into the protocol’s paths. This is economical in terms of representing the important aspects of the
protocol. Moreover, since failing clan joiners do not affect their subsequent behaviour on the basis of the information
they gain, the higher level atomicity invariant is maintained, as is appropriate for modelling such interruptions as SEJs.
So at the protocol level, we do have jolts, but only of the simplest kind, those that are refinements of the identity at the
agent level.

Concerning refinement, since there is no common feature of all global outcomes to fasten onto (since,in extremis
all agents of the clan canFail, eg. by executing theirSwPevents in numerical order), we have no ‘natural’ refinement
between abstract and agent levels to focus on. Any of the manyrefinements permitted by Section 3 is as good as any
other. Each simply makes the single atomic level step correspond to one of the agent level steps in an agent level
maximal path that refines it.

For the agent level to protocol level refinement we can do a little better, in that the presence of agent names at both
levels of abstraction and the necessity to match the order ofagent names in a maximal agent level path with the order

Atomic Actions, and their Refinements 35

of agent names occurring in the MSA for any maximal protocol level path that refines it enables us to construct a more
‘natural’ refinement. Thus we can synchronise the sequence of success or failure events at protocol level, as they occur
along a maximal path for the relevant listing of the protocolagent names, with the agent level sequence of abstract
agent successes or failures for the same ordering of protocol agents. But, as ever, the extension of the refinement theory
of Section 3 potentially offers many more possibilities.

Concerning serialisation, we have already noted the availability of SEJs to succinctly record innocuous interference
in the protocol state by agents extraneous to the protocol (i.e. unsuccessful clan joiners). Since these SEJs consist of
reads and CAS operations, they reveal information (namely the identities if the last two successful joiners) that could,
in principle, be used to destroy serial semantics. However the discipline adhered to by protocol agents is such that no
such violation occurs, and these extraneous accesses to thestate in the middle of a protocol run, indeed prove to be
innocuous.18

Noting this, we can regard the semantics of the protocol as ‘near serial,’ with the only departures from ‘true
seriality’ being these SEJs. Whether near seriality can in fact be converted to true seriality hinges on a small modelling
detail. Is the sematics of joining a clan a non-deterministcchoice between success and failure, or is it specified so that
success always has priority over failure (as modelled in Fig. 7)? If the former, then we always have the option of moving
an SEJ to the beginning or end of the transaction it interrupts, replacing it there by an event non-deterministcally
chosen to be null. However, if success always has priority over failure, then at the beginning or end of the transaction,
it may not be possible to find a place for a null event, since theprevailing circumstances there may not be capable of
preventing success. The account in [CG07,CG06] inclines somewhat to the former view.

As a final word on these two examples, we should not forget thatin reality, these protocols run as sequences of
individual machine instructions, the critical parts beinghandled by CASs. The number of possible interleavings that
this generates is truly enormous; much greater than even thenumber of interleavings that we noted existed at protocol
level.

10.3. Non-2P Fragments of Mondex

The previous examples showed no, or almost no, departure from the straightforward refinement and serialisation
proposals described in Sections 3 and 5. Even the failed clanjoiners of the elimination stack could be accomodated,
if desired, in the standard framework, at the cost of a fair amount of clutter. The situation with the non-2P fragments
of Mondex is rather different, since the 2P discipline is palpably broken from the outset, and requires the stretching of
our theory as described in Sections 8 and 9. In the ensuing, will describe one particular non-2P scenario, and how it
is dealt with, in detail. Other related possibilities, suchas are indicated in Section 6.7, can be dealt with in a similar
manner.

To appreciate the nature of the problem properly, we will need more detail about the protocol level of Mondex than
we have presented hitherto. We will introduce what we need aswe go.

At the protocol level of Mondex, consider two purses, theFrom purse and theTo purse, as before. The local
state we need to consider for each purse involves its balance, and its sequence number. (There are of course other
components of local state present, such as the prospective transaction amount, the purses’ unique identifiers, and the
purses’ local logs, not to mention the local state of every other purse in the Mondex community and the global ‘aborted
transaction archive,’ but they will not affect our discussion so we can ignore them.) So, as far as we are concerned, the
state will consist ofFromSN, FromBal, ToBal, ToSN.

Consider the non-2P run of steps in the fragment below. Particular state values are refered to by the series of
superscripts onFromSN, FromBal, ToBal, ToSNon various lines. In between citing the state values, various purse
operations are mentioned. TheFrom purse’s steps occur towards the left, and theTo purse’s steps occur towards the
right.

In Mondex, the environment correlates its view of a transaction which is about to start, with the two protagonist
purses’ internal view of it, by parameterising the twoStartoperations with (what should be) the two purses’ sequence
numbers at that point (information which the environment can obtain by simply asking the purses). For the fragment
below, let us assume these sequence numbers areFromSNA andToSNA , as in the first state.

18 How unlike quantum mechnics then, in which the mere presenceof the means to reveal information is enough to alter the physical state.

36 Banach and Schellhorn

FromSNA , FromBalA , ToBalA, ToSNA

StartFrom
AbortFrom

FromSNA′ , FromBalA, ToBalA , ToSNA

. . . other stuff. . .
FromSNB, FromBalB, ToBalB, ToSNB

StartTo(∗)
AbortTo

FromSNB, FromBalB, ToBalB, ToSNB′

The first pair of steps,StartFromandAbortFrom, does not alter the balance, but theStartFromoperation does increment
the From purse’s sequence number (in the hope that the transaction turns out to be a useful one, needing therefore
to be isolated from any future activity), moving it fromFromSNA to FromSNA′ . The ‘other stuff’ represents other
unspecified transactions that involve theFrom purse and perhaps theTo purse too, and moves the local state to
FromSNB, FromBalB, ToBalB, ToSNB. The story now depends on whether ‘other stuff’ really did involve theTo purse
or not. If not, thenToBalA , ToSNA = ToBalB, ToSNB and theStartTostep can run since it is parameterised by the
correctTo purse sequence number, namelyToSNA . If yes, then theStartTostep cannot run, and only theAbort step
can run. This is indicated by the asterisk against theStartTostep.

To serialise this non-2P scenario, one possibility to consider is to move theStartFromandAbortFrompair, so that
it occurs just before theStartTo(∗) andAbortTopair. Unfortunately, the sequence number for theFrom purse will be
wrong by this point. However we can replace the earlierStartFromandAbortFromcombination by a laterAbortFrom
step alone (as we argued for theStartTo(∗) step). This is doubly fortunate, since anAbortFromstep alone will not
increase theFrom purse sequence number, and thus cause no disagreement with theFromSNB at the end of the run,
whereas a successful laterStartFromwould give us this additional headache to contend with.19

But this is not the worst of it. Removing theStartFromandAbortFrompair from its earlier position leaves an incon-
sistency in theFrom purse sequence number, which now has no means of progressingfrom FromSNA to FromSNA′ .
Fortunately the protocol level of Mondex provides an operation Increasewhose only effect is to increase the current
purse’s sequence number (at this level of abstraction). So we can plug the gap with anIncreaseFromstep, arriving at
the run below.

FromSNA , FromBalA , ToBalA, ToSNA

IncreaseFrom
FromSNA′ , FromBalA, ToBalA , ToSNA

. . . other stuff. . .
FromSNB, FromBalB, ToBalB, ToSNB

AbortFrom
StartTo(∗)
AbortTo

FromSNB, FromBalB, ToBalB, ToSNB′

Let us now discuss how the above transformation can be viewedas the shifting of a jolt in the serialisation formalism
of Section 9.

To start with, since neitherStartFrom; AbortFromnor StartTo(∗) ; AbortTodoes any I/O, we can view the first
as a GNXOP and the second as a GNXIP. Since we serialised toStartTo(∗) ; AbortTo, the before-state of its its
first step makes for an appropriate deemed CP. The ‘other stuff’ constitutes a jolt, and since the purse balances can
change during it, something that will be observable at the agent level, it constitutes a CJ. Clearly the replacement of
StartFrom;AbortFromby anAbortFromworking on a different state later, is not the mere displacement of a step past
other steps that are independent of it, so we must justify themove on requirements grounds. However, both portions
are null transactions as far as the abstract and agent levelsare concerned, so we judge the replacement appropriate,
satisfying the higher level invariant that demands that whatever we alter, the sequence of non-trivial transactions that
take place remains the same.

Finally, the shift that implements the replacement, replaces the GNXOP ; CJ sequence by a CJ ; GNXOP′ sequence
which is itself prefixed by theIncreaseFrom. Despite the fact that theIncreaseFromis executed by the sameFrom

19 Besides this, the balance of theFrom purse might have been depleted during the ‘other stuff,’ to an extent that makes starting the previously
scheduled transaction properly at the later time, impossible.

Atomic Actions, and their Refinements 37

purse that executed the GNXOP ; CJ sequence, theIncreaseFromhas nothing to do with the current transaction, so,
from the point of view of the current transaction, it is a joltthat occurs outside of it. In fact it is an example of the
expulsion of a ‘remaining piece’ of GNXOP from the current transaction, as sketched at the end of Section 8, and it
is perfectly reasonable to view it as a fresh trivial transaction in its own right. Thus the current transaction has been
reduced to theAbortFrom;StartTo(∗) ;AbortTosequence, a contiguous sequence, as was our aim.

11. Mechanical Verification

To gain assurance in the relatively informal account of protocol theory given above, some mechanical verification
has been undertaken, using the KIV theorem prover. As well assupporting the preceding theory, this constitutes an
interesting exercise in formal verification in its own right.

KIV [RSSB98, KIV] is an interactive theorem prover for many-sorted many-sorted higher-order logic. There are
several extensions to this logic (Dynamic Logic, Temporal Logic and a logic for Java programs), but they are not used
here. Structured algebraic specifications can be built fromelementary theories using the standard operators (similarto
CASL [CoF04]): union, enrichment, renaming and actualization of parametric specifications. Theorem proving uses
sequent calculus.

As a first step towards a formalized theory of protocols, KIV specifications and proofs have been developed for
the isolated protocols of Section 3. The results are available on the Web [KIV07]. Checking theorems with KIV led
to small improvements which are already incorporated in Section 3, so in this section we only discuss a few topics,
which are relevant when transferring pencil-and-paper proofs to an interactive theorem prover, and we give a lemma
used in Theorem 3.8, that shows a modularization of the proof.

When formalizing the notion of execution paths a first difficulty is of course that no ‘three dots notation’ is available
in formal specifications. Instead a free data has been definedin KIV. Using Z notation this data type can be written as:

path ::= mkV〈〈V〉〉 | mkpa〈〈V × J × P× path〉〉 (47)

A number of operations are needed for paths.#pa is the number of steps of pathpa, its nth node ispa[n] for 0 ≤
n ≤ #pa, and its first and last nodes arepa.first := pa[0] andpa.last := pa[#pa]. The concatenationpa + pa′

of two pathspa andpa′ is defined whenpa′.first = pa.last. We also need the firstn stepspa to n (written infix)
of a path, and the restpa from n. inputs(pa) andoutputs(pa) are the inputs resp. outputs done on a path. Finally,
Step(pa, n) ∈ V × J × P × V is then’th step ofpa. A predicatePath(pa) is defined recursively, which holds, iff
every step satisfies someSt(ρ)(Step(pa, n)). An argumentρ from some index typeCIx replaces the subscript inStρ;
the (higher-order) type ofStbeing:

St : CIx → V × J × P× V → bool (48)

To give formal definitions ofFPath (3), BPathandMPath, two unspecified predicatesinit andfinal characterizing
initial and final states are used. Around 40 lemmas are provedover this theory and used as rewrite rules to get some
basic automation for the main proofs.

The definition of protocol (cf. (6)) becomes:

Protocol(v, js, ps, v′) == ∃pa • MPath(pa) ∧ inputs(pa) = js ∧ outputs(pa) = ps (49)

A synchronization assignment is defined as a functionSA: path→ nat. The idea is that the synchronization step of a
path isStep(pa, SA(pa)). FunctionSAis specified by two constraints:

MPath(pa) ⇒ SA(pa) < #pa (50)

MPath(pa) ∧ MPath(pa′) ∧ n ≤ #pa∧ m≤ #pa′ ∧ pa[n] = pa′[m] ⇒ (SA(pa) < n ⇔ SA(pa′) < m) (51)

The first axiom should be obvious, the second is a consistencycondition: for two maximal paths, which have a state in
common, the synchronization point must either be before that node in both paths, or both synchronization steps must
follow the common node. Based on this definition we can characterize the steps of a maximal path to be the disjoint
union of FS, BS and SA steps. As an example, then’th step of pathpa is a forward skip step iffFS(pa, n) holds:

FS(pa, n) == MPath(pa) ∧ (n < SA(pa) ∨ SA(pa) < n < #pa∧ OD(pa to SA(pa)) (52)

where

OD(pa) == FPath(pa) ∧ ∀pa1, pa2 • MPath(pa+ pa1) ∧ MPath(pa+ pa2) ⇒ pa1.last = pa2.last (53)

38 Banach and Schellhorn

As Lemmas for Theorem 3.8 and Corollary 3.9 we then prove thatall steps can be simulated forwards and backwards,
the only exception being BS steps, which can only be simulated backwards:

BS-BW : MPath(pa) ∧ BS(pa, n) ∧ R1(u, v′) ∧ pa[n] = v ∧ pa[n + 1] = v′ ⇒ R1(u, v) (54)

FS-FW: FS(pa, n) ∧ R1(u, v) ∧ pa[n] = v ∧ pa[n + 1] = v′ ⇒ R1(u, v′) (55)

SA-FW : MPath(pa) ∧ R1(u, v) ∧ Step(pa, SA(pa)) = (v, j, p, v′)

⇒ ∃u′, i, o, k • At(k)(u, i, o, u′) ∧ R1(u′, v′) ∧ Input1(i, j) ∧ Output1(o, p) (56)

SA-BW : MPath(pa) ∧ R1(u′, v′) ∧ Step(pa, SA(pa)) = (v, j, p, v′)

⇒ ∃u, i, o, k.At(k)(u, i, o, u′) ∧ R1(u, v) ∧ Input1(i, j) ∧ Output1(o, p) (57)

FS-BW : MPath(pa) ∧ FS(pa, n) ∧ R1(u, v′) ∧ pa[n] = v ∧ pa[n + 1] = v′ ⇒ R1(u, v) (58)

BS-BW : MPath(pa) ∧ R1(u, v′) ∧ pa[n] = v ∧ pa[n + 1] = v′ ⇒ R1(u, v) (59)

The proof of the last two lemmas requires Ass. 3.2.2, the others do not. The lemmas are independent of Ass. 3.1.3
which require all concrete states to be reachable. Based on the characterization of steps on paths, we can now define a
global characterization of steps:

BS(v, j, p, v′) == ∃pa, n • BS(pa, n) ∧ Step(pa, n) = (v, j, p, v′) (60)
FS(v, j, p, v′) == ¬BS(v, j, p, v′) ∧ ∃pa, n • FS(pa, n) ∧ Step(pa, n) = (v, j, p, v′) (61)

SA(v, j, p, v′) == ∃pa.MPath(pa) ∧ Step(pa, SA(pa)) = (v, j, p, v′) (62)

Note that a step which is an FS step on one path and a BS step on another, must be classified as a BS step, since it is the
successor of an OD step onsomepath. The three classes of steps are proven to be disjoint, and provided all states are
reachable every stepSt(ρ)(v, j, p, v′) falls into one of the three classes. This allows us to prove Theorem 3.8 formally.
As an example, the definition of Clause 4 of Theorem 3.8 is proven formally as:

R1(u′, v′) ∧ BS(v, j, p, v′) ⇒ R1(u′, v) (63)

using Lemma (59). The four clauses (58), (57) and (59) together imply Corollary 3.9. We also prove that forward
simulation is always possible by choosing the synchronization step as the last step of every maximal path:

(∀pa • MPath(pa) ⇒ SA(pa) = #pa− 1) ∧ St(ρ)(v, j, p, v′) ∧ R1(u, v)

⇒ ∃u′ • R1(u′, v′) ∧ (u = u′ ∨ ∃ i, o • Atomic(u, i, o, u′)) (64)

The KIV proofs for the theorems of Section 3 are relatively small compared to other KIV case studies (eg. the Mondex
case study [SGHR06b, SGH+07] already mentioned). The tricky bit about them is mainly to get all the assumptions
right for all the cases. As an example, the borderline case ofanMPathconsisting of a single node must be forbidden,
since then constraint (50) is not satisfiable.

12. Conclusions, and Further Work

In the preceding sections we took the Mondex Electronic Purse —a prime example of a protocol enacted between a
number of parties that was designed to achieve the effect of an atomic action— and we looked for a generalisation.
We developed a refinement framework based on seeing the atomic action as a shallow computation tree and the
protocol as a computation DAG, and saw that we could choose the way that the atomic action was synchronised
with the protocol in a ‘small diagram’ refinement relativelyfreely. The properties of the choice, in particular how
potential abstract outcomes were related to synchronisation points, was closely related to the prospects for forward
and backward simulation at the small diagram level.

We then embedded this formulation of an isolated protocol run in a framework enabling different runs of perhaps
different protocols to be interleaved in a natural way. Whencombined with a fairly standard 2-phase property, these
system runs could be serialised, showing that the atomicityabstraction survives.

We then confronted the theory with various refinements for Mondex that have been created in the recent past, and
showed that the flexibility regarding synchronisation points was well borne out in these various refinements.

However, although the majority of ‘normal’ Mondex transactions (including not only successful ones, but also
ones that fail in a ‘normal’ kind of way) are 2-phase —and the modification of the protocol suggested by Schellhorn

Atomic Actions, and their Refinements 39

et al. in [SGH+07] in order to design out the possibility of a certain kind ofdenial of service attack is 2-phase in its
entirety— the original Mondex protocol has some (in practice rare, but in theory interesting) non-2-phase parts. A
more sophisticated theory was required to handle those situations.

Besides these issues, Mondex is what we called an isolated protocol. That is to say, once the protocol has com-
menced, the parties engaging in it are fixed, and no intrusionby other agents is contemplated. (In practice, the Mondex
purse’s local state determines how much notice is taken of which messages from which agents.) Thus it is natural to
ask how the theory develops for protocols having state that is genuinely shared between a number of agents, including
cases where the number is not necessarily determined at the start of the protocol.

To this end, we examined an example of a not-so-isolated protocol, the lock-free stack and its more elaborate
relative, the elimination stack. These are protocols that are designed to run at a very fine level of granularity and
interleaving, precluding the use of any kind of powerful locking mechanism to enforce atomic semantics. The lock-
free and elimination stacks were introduced via an elaborated notion of event structure, the straightforward version of
which supported various aspects of the discussion of the Mondex protocol.

In the not-so-isolated world, the relatively straightforward theory that catered for the Mondex protocol, becomes
more cluttered due to the necessity of credibly reflecting the structure of the various participating agents and their
different interactions, an aspect that could be safely downplayed in the isolated protocol case because of its statically
determined structure. These aspects do not really interfere with the main ideas of the refinement proofs since those
were already available in their absence.

However the inclusion of agent structure at this level permits such things as the direct modelling of more sophisti-
cated behaviour by the I/O environment than we have contemplated in this paper. (To capture, using the techniques of
this paper, I/O behaviour more subtle than the simple delivery of messages injected into the environment, one would
have to regard the environment as an agent in its own right, participating in an esential way in protocols.)

The inclusion of agent structure at this level also permits the formulation of the notion of jolted protocol: a protocol
whose normal running could be interrupted by ‘rogue agents’not regarded as belonging to the current family of agents
executing the protocol. Such flexibility is useful to enablea tangle of agents, potentially unbounded in time and space,
all interfering with one another, each in pursuit of his individual protocol aims, to be separated into finite pieces in
order to apply our theory.

With the jolted protocol ideas in place, the instantiation of such protocols in system runs could be considered,
and thence their serialisation. We saw that provided enoughlocal transformations of the running of a protocol could
be found, interchanges of portions of protocols larger thanthe single steps usually moved around during serialisation
arguments, enabled system runs that departed rather more drastically from the 2-phase property to nevertheless be
serialised.

We then revisited our running examples. The lock-free and elimination stacks yielded rather easily to the new
techniques, requiring little departure from the earlier formulation in fact. The aforementioned non-2-phase aspectsof
Mondex did however need the full power of the new theory, and we illustrated this by discussing one example in detail.

It is inevitably the case that the mechanical verification ofthe entire theoretical framework presented in this paper
would be a considerable undertaking. As such it has not been attempted yet. However, the experience in verifying
formulations of refinement gained by the second author and colleagues, enabled the results of Section 3 to be for-
malised and mechanically proved using KIV without the investment of excessive effort. The fuller mechanisation of
the techniques we have presented remains an intriguing challenge for the future.

References

[AH06] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition, and Instantiation of Discrete Models:Application to
Event-B.Fundamenta Informaticae, 21, 2006.

[B4f] Clearsy. b4free tool home page.www.b4free.com .
[BC88] G. Boudol and I. Castellani. Concurrency and Atomicity. Journal of Theoretical Computer Science, 59:25–84, 1988.
[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in Database Systems. Addison-Wesley, 1987.
[BN97] P. A. Bernstein and E. Newcomer.Transaction Processing. Morgan Kaufmann, 1997.
[Bou90] G. Boudol. Flow Event Structures and Flow Nets. In Guessarian, editor,Semantics and Systems of Concurrent Processes, Proc.

LITP-90, pages 62–95. Springer LNCS 469, 1990.
[BPJS07] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Retrenching the Purse: The Balance Enquiry Quandary, and Generalised and

(1,1) Forward Refinements.Fund. Inf., 77:29–69, 2007.
[BS03] E. Börger and R.F. Stärk.Abstract State Machines. A Method for High Level System Design and Analysis. Springer, 2003.
[CG06] R. Covin and L. Groves. Verification of a Scalable Lock-Free Stack Algorithm. Technical Report CS-TR-06-14, Victoria University

of Wellington, 2006.

40 Banach and Schellhorn

[CG07] R. Covin and L. Groves. A Scalable Lock-Free Stack Algorithm and its Verification. In Hinchey, M. and Margaria, T.,editor,Proc.
SEFM-07, pages 339–348. IEEE Computer Society Press, 2007.

[CoF04] CoFI (The Common Framework Initiative). CASL Reference Manual. LNCS 2960 (IFIP Series). Springer, 2004.
[DB01] J. Derrick and E. Boiten.Refinement in Z and Object-Z. FACIT. Springer, 2001.
[DoTaI91] Department of Trade and Industry. Information Technology Security Evaluation Criteria, 1991.

http://www.cesg.gov.uk/site/iacs/itsec/media/formal -docs/Itsec.pdf .
[DW03] J. Derrick and H. Wehrheim. Using Coupled Simulations in Non-atomic Refinement. In D. Bert, J. Bowen, S. King, and M. Walden,

editors,ZB 2003: Formal Specification and Development in Z and B, pages 127–147. Springer LNCS 2651, 2003.
[GR93] J. Gray and A. Reuter.Transaction Processing. Morgan Kaufmann, 1993.
[Gur95] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor,Specification and Validation Methods, pages 9–36.

Oxford Univ. Press, 1995.
[HGS06] A. E. Haxthausen, C. George, and M. Schütz. Specification and Proof of the Mondex Electronic Purse. In M. Reed C. Xin, Z. Liu,

editor,Proceedings of 1st Asian Working Conference on Verified Software, AWCVS’06, UNU-IIST Reports 348, Macau, Nov. 2006.
[HSY04] D. Hendler, N. Shavit, and L. Yerushalmi. A ScalableLock-Free Stack Algorithm. InProc. SPAA-04, pages 206–215. ACM Press,

2004.
[Int05] International Standards Organisation. Common criteria for information security evaluation, 2005. ISO 15408, v. 3.0 rev. 2.
[ISO02] ISO/IEC 13568.Information Technology – Z Formal Specification Notation – Syntax, Type System and Semantics: International

Standard, 2002.
http://www.iso.org/iso/en/ittf/PubliclyAvailableSta ndards/c021573 ISO IEC 13568 2002(E).zip .

[JWe07] C. Jones and J. Woodcock (eds.). (title to be confirmed). Formal Aspects of Computing, 2007. (to be published).
[KIV] The Karlsruhe Interactive Verifier. http://i11www.iti.uni- karlsruhe.de/˜kiv/KIV-KA.html .
[KIV06] Web presentation of the Mondex case study in KIV, 2006.

URL: http://www.informatik.uni-augsburg.de/swt/projects/ mondex.html .
[KIV07] Web presentation of isolated protocol refinement inKIV, 2007.

URL: http://www.informatik.uni-augsburg.de/swt/projects/ Refinement/protocolrefine.html .
[LV93] N. A. Lynch and F. W. Vaandrager. Forward and BackwardSimulations — Part I: Untimed Systems. Technical Report CS-R9313,

C. W. I., 1993.
[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains.Journal of Theoretical Computer Science,

13:85–108, 1981.
[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A Prototype Verification System. In D. Kapur, editor,Automated

Deduction - CADE-11. Proceedings, LNAI 607, pages 748–752, Berlin, 1992. Saratoga Springs, NY, USA, Springer.
[PP95] G. Pinna and A. Poigne. On the nature of Events: Another Perspective in Concurrency.Journal of Theoretical Computer Science,

183:425–454, 1995.
[RSSB98] Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel,and Michael Balser. Structured Specifications and Interactive Proofs with KIV.

In W. Bibel and P. Schmitt, editors,Automated Deduction — A Basis for Applications, volume II: Systems and Implementation
Techniques ofApplied Logic Series, chapter 1: Interactive Theorem Proving, pages 13–39. Kluwer Academic Publishers, Dordrecht,
1998.

[Sch01] G. Schellhorn. Verification of ASM Refinements UsingGeneralized Forward Simulation.Journal of Universal Computer Science
(J.UCS), 7(11):952–979, 2001. URL:http://www.jucs.org .

[Sch05] G. Schellhorn. ASM Refinement and Generalizations of Forward Simulation in Data Refinement: A Comparison.Journal of Theo-
retical Computer Science, vol. 336, no. 2-3:403–435, May 2005.

[SCW00] S. Stepney, D. Cooper, and J. Woodcock. An Electronic Purse: Specification, Refinement and Proof. Technical Report PRG-126,
Oxford University Computing Laboratory, 2000.

[SGH+07] G. Schellhorn, H. Grandy, D. Haneberg, N. Moebius, and W.Reif. A Systematic Verification Approach for Mondex Electronic Purses
using ASMs. In U. Glsser J.-R. Abrial, editor,Proceedings of the Dagstuhl Seminar on Rigorous Methods forSoftware Construction
and Analysis, LNCS. Springer, 2007. (submitted, extended version available as [SGHR06a]).

[SGHR06a] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif. A Systematic Verification Approach for Mondex Electronic Purses using
ASMs. Technical Report 27, Universität Augsburg, Fak. für Informatik, 2006. available at [KIV06].

[SGHR06b] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif. The Mondex Challenge: Machine Checked Proofs for an Electronic Purse. In
J. Misra, T. Nipkow, and E. Sekerinski, editors,Proc. FM 2006, volume 4085 ofLNCS, pages 16–31. Springer, 2006.

[Spi92] J.M. Spivey.The Z Notation: A Reference Manual. Prentice-Hall, second edition, 1992.
[The92] The RAISE Language Group.The RAISE Specification Language. The BCS Practitioners Series. Prentice-Hall, 1992.
[Win86] G. Winskel. Event Structures. In Brauer and Reisig and Rozenberg, editor,Advances in Petri Nets, pages 325–392. Springer LNCS

255, 1986.
[Win88] G. Winskel. An Introduction to Event Structures. Inde Bakker, de Roever, and Rozenberg, editors,Proc. REX Workshop, pages

364–397. Springer LNCS 354, 1988.
[WN95] G. Winskel and M. Nielsen. Models for Concurrency. InS. Abramsky, D. Gabbay, and T. Maibaum, editors,Handbook of Logic in

Computer Science Volume 4 Semantic Modelling, pages 1–148. Oxford Univ. Press, 1995.
[WV02] G. Weikum and G. Vossen.Transaction Processing. Morgan Kaufmann, 2002.

