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1. Introduction

The Mondex Electronic Purse was developed formally in thd-&90s using Z refinement. It was one of the first
developments to achieve an ITSEC E6 security rating [DalllfiRather unusually for a commercial product, a
sanitised version of the core of the formal development wadewpublicly available [SCWO0O]. Since then it has been
a fertile ground for formal methods researchers — the odfjimuman-built proofs of the security properties have been
subjected to re-examination by contemporary techniguatshave stood up extremely well to the fiercest tool-based
scrutiny achievable today, the first such mechanical vatifio being [SGHRO06b].

The Mondex formal development featured a refinement praohfan atomic abstract model to a multi-step pro-
tocol at the concrete level. The principal component of tefsnement proof was a backward simulation from abstract
to concrete. At the time of the original development, thealegment team did try to construct a forward simulation,
but were not successful — for a long time it was believed thatraard simulation refinement was impossible. It is
nowadays known that a forward simulation is entirely pdssibnd more than one of them is now available in the
literature [BPJS07, SGHO7,HGSO06].

In this paper we explore the wider question regarding pdssilnds of simulation for the refinement of an atomic
action into a multi-step protocol, in order to settle the t@@ain the general case. We do this in the simplest possible
relational framework in order to avoid complications thatukd distract from the main point.

In Mondex, the original refinement was done irflal) manner, i.e. single concrete steps were made to refine
single abstract ones. Consequently, since overall, theren@re concrete steps than abstract ones, many concrete
steps had to refinskip. Of course, one advantage of tfie 1) strategy is that, in the face of malevolent users or an
unpredictable environment, the concrete protocol can beeut to refine the abstract atomic action, no matter how
such a user might interrupt the intended playing out of tleéqmol — since every possible sequence of concrete steps
that can be executed, correspondsameabstract execution, even if it is one consisting entirelgldps.

In this, the original framework, the backward simulationretated with arearly synchronisation, i.e. the single
non-trivial abstract step wagd, 1) matched with a step that occurred early in protocol runs. 8ytiast, the more
recently discovered forward simulations correlate witata synchronisation, namely, the various possible non-trivia
abstract steps arél, 1) matched with steps that occur late in protocol runs. Givenghst uncertainty regarding
forward and backward simulations in such contexts, one o&ous in this paper is to give a general treatment.

Mondex has thésolated protocolproperty. In other words, once the protocol has startedait loe viewed as
running to its conclusion in a manner free from outside ifiei@nce. But these are not the only protocols in town.
Another of our aims in this paper is to extend the theoretiggdroach we develop for Mondex, to also deal with
not-so-isolated protocoldn a not-so-isolated protocol, various agents, other tharones engaged in achieving the
protocol’s goals, can interfere in the running of the pralpbecause they too wish to achieve similar goals and the
protocol’s design itself permits such interference. Veftgin such permissive designs arise because the steps of the
protocol are at the granularity of individual machine imstions (or very small runs of machine instructions), sd tha
the overhead of installing proper locking mechanisms taengue isolation of such instructions from one another is
completely inappropriate.

One aspect of not-so-isolated protocols that makes thefierelift from isolated protocols is that we have to take
more note of the agents performing various actions. If agmitis isolated, it is not so urgent to know which agent is
doing what — after all, they are all co-operating towardsdhme goal. However with not-so-isolated protocols, while
some agents are working towards the protocol’s goals, stier be detracting from them (albeit quite innocently and
in a well understood manner), so knowing what is going on gtpint is more pressing, and the theory needs to be
more sensitive to these aspects.

Another issue that gains a different slant in the not-stated protocol arena is serialisability. Thus if a protocol
is isolated, the same mechanisms that ensure isolationsteilyibe deployed to ensure that any interleavings that a
system run permits, have good serialisability propertiamwvever, if there is potential for interference in a prothco
there exists the potential for more subtle issues surragnsierial semantics too, since the locking mechanisms that
are available are, almost by definition, weaker.

We base our work on not-so-isolated protocols on anothempiafrom the literature, the lock-free stack, and
its enhacement the elimination stack, specifically as fdated in [CG07, CGO06]. In these protocols, interference can
occur, but it happens in a controlled way, and we develop stemgled theory with an eye to giving a good account
of them. Interestingly enough, the serialisability prdjesr of the stack examples are stronger than those of (nertai

1 Nowadays, national standards like ITSEC have been suptdadthe ISO Common Criteria standard [Int05]. The high&SHC level, ES,
corresponds to the highest Common Criteria level, EAL7.
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Fig. 1. The Mondex atomic actions.

parts of) the Mondex protocol. This is because in the dayshttmdex was developed, the computational power of
smartcards was much less than now, and it was judged actefalertain null parts of the protocol to fall short of
the conventional 2-phase locking discipline, for efficigasake. Thus the most extreme extensions of our theory are
brought to bear on Mondex once more.

The rest of this paper is as follows. In Section 2 we outlireedperation of our motivating example, the Mondex
Purse. In Section 3 we develop a theory of the refinement ohadeterministic atomic action to a multi-step protocol
in terms of computation DAGs. This explores the way that tilgle atomic action can be synchronised with an
individual step of the protocol in &l,1) refinement, and we see that there are a large number of passsbior
this which we call synchronisation assignments (SAs). Véetkat SAs are related to the possible choices of forward
or backward simulations, according to the manner in whicstralot outcomes are related to the details of the SA.
In Section 4 we relate the rather abstract computation DA&vwf protocols to a more conventional one, using
event structures, and show that the histories generateddnt structures yield computation trees in a natural way.
In Section 5 we relate the preceding theory of an isolatetopas run to the more global picture needed to embed
protocol runs into system runs, and we explore serialigglzihd the 2-phase property. In the following Section 6 we
apply the theory developed to the various refinements of Mgradailable today, noting finally that there are in fact
some non-2-phase corners of the original Mondex protobalugh none of them achieve anything observable at the
abstract level, and are thus tolerated).

In Section 7 we start the work of extending our theory by déstg the lock-free and elimination stacks. The
event structure formulation introduced in Section 4 is egexl, and provides the most compact way of describing
these examples without descending to the level of actua.cdection 8 reflects on the properties of such protocols,
and comes up with a generalisation of the formulation of iBac® which encompasses the new features. As noted
above, this is a much more agent-aware formulation in whiemplate’ serialisation properties of the protocol can
be formulated. The serialisation of actual system runs isicered in Section 9, being an elaboration of the 2-phase
version in Section 5. In Section 10 we apply the extendedrtheothe lock-free and elimination stacks, and to the
non-2-phase Mondex fragments.

A portion of the preceding theory has been mechanicallyfieerusing KIV, and in Section 11 we review what has
been achieved here. The final section concludes.

2. Mondex: A Motivating Example

Fundamentally, Mondex isemartcard purseSince it is gourse it contains real money, and since it ismartcard it
contains the money in digital form. This money is designeleadransferable from purse to purse. As for real money,
the intention is that such transfers are normally perforinezkchange for some desired purpose such as the purchase
of goods or services, but equally —just as for real money-s itat the responsibility of the money itself to ensure
that the transfer in which it engages is of a genuine natune. dnly concern of money in general and of Mondex
money in particular, is that it should hmforgeable

The major objective of the original Mondex development veeddvelop a protocol for money transfer that ensured
that:

1. Mondex money was unforgeable, even in the face of incatmpbeecution of the protocol or of malicious behaviour
of the environment;

2. any full or partial run of the protocol is equivalent toreit a successful money transfer, or a traceably (and thus
recoverably) lost-in-transit money transfer, or a nuliaat

These two properties are what make Mondex credible in thedécustomer requirements: the first property, unforge-
ability, gives confidence in the value of Mondex money; witile second property, atomicity, gives comprehensibility
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Fig. 2. The Mondex concrete protocol.

when compared with the behaviour of conventional financsidactions. Fig. 1 shows the atomic abstraction that the
Mondex protocol ensures, reflecting the three possilsligien in (ii) above. In Fig. 1 the nodes are states, and the
arrows are the different atomic actions that the concretéogol refines.

The essence of the Mondex concrete protocol is illustratdeld. 2 in activity diagram style. The source purse is
the From purse while the destination purse is the purse. The protocol begins with the tiart events (initiated
from the environment as a result of the purses’ owners typirgppropriate instructions at the interface device (the
wallet) into which the two purses have been inserted). TlagsdgheStartToevent, performed by th&o purse, and
StartFromevent, performed by therom purse, both of which take their respective purse from the stite to a ‘busy’
state: theepr state (expecting payment request) for #rem purse, and thepvstate (expecting payment value) for
the To purse. TheStartToevent sends s&eq message to thErom purse. Upon arrival of theeq message, thErom
purse performs &egevent and dispatches the money inad message to th&o purse, itself passing into thepa
(expecting payment acknowledgement) state. Upon arrividleoval message, th@ purse performs &al event and
sends amckmessage to thErom purse, itself passing back into the idle state. Receipt@athkmessage in thAck
event by thé=rom purse completes the protocol, and #rem purse too passes back into the idle state. Note that in
Fig. 2, the nodes are now events, edges are states, and an@wessages.

The preceding described the workings of a successful ruheoptotocol. Beyond that, all events after Biart
events can be replaced Bbort events, corresponding to runs of the protocol that are wessful for whatever
reason. The fact that despivortevents, the protocol still enjoys the unforgeability anahaitity properties, is what
makes Mondex non-trivial theoretically. However, the detaf how this comes about do not concern us in this paper.

A further issue is that the Mondex protocolis®lated i.e. once the protocol has commenced, the two purses take
note only of the arrival of the next message expected in thgquit of the protocol, and of calls #&bort, ignoring all
other messages or calls from the environment and reserkimgption of responding to such unexpected events by
performing a self-initiatedbort whenever appropriate.

In this paper, rather than being concerned withvingthat the atomicity and isolatedness properties are enjoyed
the protocol, we take properties such as these for granteldnatead, take an interest in simulation-theoretic prriige
—in a general sense, and for their own sake— of the refinenfeart atomic action to a protocol with characteristics
such as Mondex’s. The isolated property makes these siimuititeoretic properties particularly convenient to stud

3. Isolated Atomic Actions and their Protocols

For both protocols and atomic actions, we will specify thangitions involved using a relational approach. The fol-
lowing statements summarise the assumptions we make dhesetup.

Assumptions 3.1.

1. Relations are represented by predicates whose vari@iesalues in suitable types.

2. Each relation used is deterministic, i.e. for each ctitbecof values for the domain variables of the predicate
representing the relation, there is a unique collectionadfi@s for the codomain variables that makes the relation
true.

3. For each relation, for all values of domain and codomairatées that make the relation true, the domain values
are reachable from an initial state.

4. Where nondeterminism (whether at the atomic or the podtievel) is needed, it is handled by having different
relations for different outcomes. We assume nondetermiigsalways finite.

5. Both atomic actions and protocols are represented bgitian systems. At the atomic level, atomic actions are
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given by a collection of predicates whose interpretatiogrsestricted to shallow computation forests (i.e. all max-
imal paths of length 1). At the protocol level, protocols gieen by a collection of predicates whose interpretations
are restricted to DAGs, all of whose paths are finite. A choiciitial state for a root of the interpreting forest of
an atomic action picks out a unique tree, called the valigl thechoice of an initial state for a root of the protocol
DAG picks out a unique (maximal reachable) subDAG of therprieting DAG, called the valid DAG.

Thus an atomic action will be specified by a finite collectidmeterministic predicateAt,(u,i,o,u’) k= 1...,in
which u andu’ are (variables denoting) the before- and after- stateseftbmic actionj ando are the input and
output of the action (these may in fact denote sequences ¢oe complex structures) of input and output values
corresponding to the finer grained events in the protocalpifvenient), and the lab&ldistinguishes the different
deterministic outcomes for the same starting conditiotigo§jether, the complete atomic specification of the protoc
becomes:

Atomidqu,i,o,u’) = Aty (u,i,o,u’) V Aty (u,i,o,u’) v ... (1)
where
(Vu,i .Atk(ua i7017 ull) A Atk(u7 i7027 u/2) = 01 = 09 A ull = u/2) (2)

(and where it turns out that (2) is not actually needed in theuang mathematics, but helps for a convenient mental
picture).

At the protocol level, the individual steps are describedalmollection of deterministic predicat&s, (v, j, p, V')
wherev andV are the before- and after- states of the step,jaamtlp are the input and output of the step. The label
p is an identifier which discriminates between different netedministic outcomes from the same before-state and
input, and is required to be different for each step alongth fraough the protocol DAG but is otherwise available
to conveniently label steps from an applications perspecti

(Forward) paths through the protocol computation DAG argcdbed by compound predicates:

FPath(oz.ﬂ,...,'y) (Vl7j17 plavl7j27 P2,Va, ... 7Vt717jt7 ptav'() =
St(Vi,j1,P1, Vi) A Sta(Vi,j2, P2, Vo) A ... A St (Vi—1,jt, Pr, V) (3

in which v, is a possible initial state of the protocal,labels a possible first step of the protocéllabels a possible
successor step of the step of the protocol, and so on. As (3) indicates, if a stepahsisccessor, the before-state of
the successor must match the after-state of its predecdd$sotength of the sequence of labels in the subscript of
FPath, s, .., must match both the number of inputs and outputs, and be sadtian the number of states, in the
argument list.

Maximal paths arise in the obvious way:

MPat}"ka,ﬁww)(. . ) =
FPath, ... (...) A ({o, B, ..., 7) has no proper extension in the computation graph) 4)
From maximal and non-maximal paths, we can implicitly defingredicateBPath (backward paths) that describes
extensions of non-maximal forward paths:
MPath, g, ~.5.e....c) (V5015 P1s Vi, - -5 Jt P Ve Jtrt, Prrts Vern - -, VE) =
FPath, g,y (Vi 1, P1, Vi, -, Jt, P, i) A BPathys o oy (Ve jea 15 Pea1, Vet - - -5 VE) 5)

In (5), ve is a possible final state of the protocol.

Finally, maximal paths give rise to the predic@mtocolvi, js, ps Vi), whereve is a possible final state of the
protocol? given by taking the disjunction over all maximal paths, eigially quantifying all intermediate states, and
repackaging the inputs and outputs into sequences:

Protocol v, js,ps Vi) =
\/ (3 J1, P, Visj2, P2, Vo, - Vie, s Pr e .
maximal MPatWa,ﬂ-,--_-,'y)(Vlalllap17V1,J27p2,V2,...,Vt71,Jt,p[,V|:) (6)
<0“ﬂ""’7 A JS = <J13]27 ... 7Jt> A pS: <pla p27 R pt>)

2 As for (2), determinism and path-uniqueness are not striwtessary fop, but are conceptually convenient.
3 Initial and final states of the protocol coincide exactlytwite root and leaf states of the protocol computation graph.
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The fact that the protocol implements the atomic action gwad by relating the two via a retrieve relatiBninput
and output relationinput and Output and demanding that an ASM-style [BS03] ‘big-step’ proofigdition holds.
The retrieve relation is required to satisfy:

Assumptions 3.2.

1. R(u,v) is a function from protocol statesto atomic states. @)
2. If vis a protocol state ang; andv,, are initial protocol states, then
FPath<___> (V|1 .. .V) A FPath<> (V|2 .. .V) = (3 u e R(U|,V|1) AN R(U|,V|2)) (8)

(whereuy, is obviously unique because of (7)).
3. R(u,v) is ‘not too big,’ i.e. it concerns just the ‘states of intetésr the overall protocol,
i.e. the initial and final states:
R(u,v) = (3 js,ps V e Protocolv, js, ps V) vV Protocol¥V, js, ps v)) (9)
(As for (2), it turns out that (9) is not needed later, but Isdlpr a convenient mental picture.) The big-step PO is now:

Protocolv, js, ps Ve) =
(3 u,i,0,ur e R(u;,vi) A Input(i,js) A Atomidu,, i, 0, ug) A Outpufo, ps) A R(Ug, Vg)) (10)
Conditions (9) and (10) ensure that the hypotheses and usinnk of the big-step PO are valid exactly when the
simulation predicate:
2(ur, 1,0, Ur, i, JS, PS VE) =
Atomidqu,, i, 0, Ug) A Protocolv,js, ps ve) A R(ui, vi) A Input(i, js) A Outpuio, ps) A R(Ug, Vr) (11)
is true in the given types.
Now that we have connected together the atomic and finegtaiescriptions of the protocol, our aim is to develop
a general way of seeing haseame individual stepf a maximal path may be viewed as refining the atomic actiod, a
the consequences of such a view. First we develop some tatimachinery in the shape of past and future oriented
retrieve relations. Then we introduce synchronisatiorgassents, which delimit exactly how the choices of indivadiu
step within the protocol computation graph may be made.llyimae explore the consequences of these choices for

proving the refinement via forward and backward simulation.
First we get the ‘past oriented’ retrieve relatigh:

RP(u, ) = (3 Vi,j1, P1, Vi, - -0t P (@, By, y) @ R(UL V) A FPath, g,...4)(Vi,j1,P1, -+ jt, P, V) (12)
and the ‘future oriented’ retrieve relatid?:

RE(UE, V) = (3 Jirt, P 1s Vi1 -« -, Ve, (06, ..., ) @ BPaths ey (Vis Ji1, P15 Vet - - -, VE) A R(Ug, Vi) (13)
It is now easy to show the following:
Proposition 3.3.

R°(u,v) A RT(Ug, ) = (3 i,0 e Atomidu, i, 0, Ur)) (14)
R°(u,w) = (3 i,0,ur e Atomiduy,i,o,us) A R (Ug,W)) (15)
RT(Us,vt) = (3 uy,i,0 @ R°(u, ) A Atomidu;, i, 0, Ug)) (16)
The proofs are similar to the proofs of the more interestwitpiving result:
Theorem 3.4.
RP(ur, Vi—1) A St (Vi—1,jt, P, o) A RE(UR,v) = (3 i,0,js7,js", ps, ps o
Input(i, js”::(jt):js7) A Atomidu, i, 0,ur) A Outputo, ps::(p)::ps ) (17)
RP(ur, Vi—1) A St (Vi—1,jt, P, ) = (3 1,0, U, js7, js7, pS, ps o
A Input(i, jsP::(jt)=jsT) A Atomidu, i, 0,ug) A Outputo, ps::(p)::ps ) A R (Ug, ) (18)

Sto(vtflajta ptavt) A RF(UFavt) = (3 U|,i, oajspajSFv pé:v pé: L4
RP(u, v) A Input(i, jsP::(j)=js7) A Atomidu, i, 0,ur) A Outpuio, ps ::(py)::ps ) (19)
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Fig. 3. A synchronisation assignment for a computation tree. Temehts of the synchronisation assignment are shown bold.

Proof. For (17), fromRP(u;, v;_1) we know that there is a path through the computation tree fionmitial vi to v;_1,
satisfying (3), and such th&(u;, v|) holds. EvidentlySt,(vi_1, i, P, \t) extends that path. Frof (Ug, vt) we know
that there is a completion of this path to a maximal path fiprto some finalv. This maximal path enables us to
deriveR(Ur, Vg ), and provides the witnessing’, js™, ps”, ps™ so that withj;, p; we can assembis = js™::(j;):;js™ and
ps= ps::(p)::ps, and then asseRrotocol v, js, ps V).

Since we havérotocolvi, js, ps, ve ), we can apply (10). The conclusions of (10) yi&, v;) for some(; and
sinceRis functional (7), we must havg = 0. The conclusions of (10) also yieltomiduy,i,0, o) andR(U, v¢)
for somell. Again, sinceR is functional, we must haver = . From Protocolvi, js, ps vg) we can also deduce
Input(i, js) andOutpufo, ps).

For (18), the argument is similar except that we do not hauwgsmthe functional nature & to argueur = I,
sinceur is existentially quantified in the conclusion.

For (19), we note first that by Assumptions 3.1v3is reachable from some initia|. We use this to asserta
such thaR"(u;, v) holds, after which we argue as for case (17). We are done. O

Proposition 3.4 is a crucial observation, since it enablesidbitrary protocol stefst, (vi—1, jt, Pt, \t) to be singled
out and made to correspond with a suitable abstractAipeniquy,i, o, ug). For such aSt,(vi—1, ji, P, vt) step, let
OutcomesSt,, uy) (with vi_1, ji, pr, Vi understood) be given by:

OutcomegSt,, u) = {Ur | (3 Ve o RO(U,Vi_1) A St (Viz1,ji, P Vo) A RE(Ug, W)} (20)
and OOSt,, uy) (outcome determinism @t,, givenu,) be given by:
OD(St,, u) = | OutcomesSt,, u;) | (21)

If OD(St,, u;) = 1 we say thaBt, is outcome deterministic ai (St, is OD atu,), whereas if ODSt,, u;) > 1 we say
thatSt, is outcome nondeterministic et (St, is ON atu;).

Definition 3.5. Given an initialv;, a synchronisation assignment (&) for the relevant valid DAG of a protocol
computation DAG is a subset of its steps, such that for eactimahpath through the valid DAG from, exactly one
of its steps is in SAv,). Steps in SAv,) are called SA steps.

Fig. 3 shows a synchronisation assignment. The many-l@rapatation graph at the bottom (which happens to be
a tree) has thickened arrows which are the elements of thelB&atomic action is at the top and plays no specific
partin the SA itself. Dashed arrows show the functionaldtiep retrieve relatioR, while the dotted lines show some
pieces from th&R” andR" relations, for convenience below.

Definition 3.6. Given a protocol computation graph, an intial stgtéor the protocol, the atomic intial statg such
thatR(u;, vi) holds, and a synchronisation assignment for the valid DA@rdeined byv,, the steps of the valid DAG
are classified as follows:

1. Ifastepisinthe SA andis OD s, it is called an outcome deterministic forward synchrotisa(ODFS) step.

2. If a stepis in the SA and is ON &, it is called an outcome nondeterministic forward synclsation (ONFS)
step.
3. If a step is an immediate or later successor of an ONFS isismalled a backward skip (BS) step.
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4. Every step not covered by 1-3 is called a forward skip (F&).s

This definition shows that every path through the protocahpotation tree can be described by the following regular
expression:

FSt; (ODFS; FS* + ONFS) ; BSk (22)

Our aim is to show that when given a big-diagram refinemennaditamic action to a protocol of the kind we have
described, if we wish to break the big-diagram refinementrdimto a collection of small-diagram refinements of zero
or one atomic action steps to individual steps of the prdtaree can always use forward simulation reasoning, except
for the BS steps. In fact one can use forward simulation m&agofor all steps excegiranching BS step& term
explained below), though it comes at a price. Likewise, weetthe option of using backward simulation reasoning
for all steps if we so wish. We discuss these points later.

Definition 3.7. Assume given an abstract operat&d@p(u, i, 0, U’), a concrete operaticBOp(v, j, p, V'), and retrieve,
input and output relation&! (u, v), In'(i,j) andOut! (o, p). ThenAOpforward simulate<Opiff:

R'(u,v) A COp(v,j,p,V) = (3 i,0,u e In'(i,j) A AOp(u,i,o0,u’) A Out'(o,p) A R (U, V)) (23)
And AOpbackward simulate€Opiff:
copv,j,p, V) ARY(U,V) = (3 u,i,0 e RY(u,v) Aln'(i,j) A AOp(u,i,o,u’) A Out(o,p)) (24)

In both casesdn'(i,j) and/orOut! (o, p) can be omitted where there is no input and/or output fAs@pand/orCOp,
as applicable.

Theorem 3.8. Let there be a big-step refinement of an atomic acfitomicto a protocoProtocol given by a retrieve
relationR and input and output relationsput andOutput so that (10) holds. Let; be a fixed initial state such that
R(u, v) holds, and let SAv) be a synchronisation assignment for the valid DAG rootegl.athen the refinement of
Atomicto Protocolcan be decomposed into single step simulations such that:

1. If an FS step occurs before an SA step, it is forward sinedléty the identity operation an.

2. If an FS step occurs after an SA step, it is forward simdldye the identity operation otg, whereug is some
outcome ofAtomic

3. If St, is an SA step, it is forward simulated Bytomiquy, i, 0, ug) for everyug in Outcomes$St,, u; ).

4. Every BS step is backward simulated by the identity op@main somelg.

Proof. We start by definindgR', which is:
R'(u,v) = (3 a maximal path from some initia, and
((v precedes an SA step along this path, i, v) holds),Vv
(v follows an SA step along this path, aRfi(u, v) holds)) (25)

Also we must define the single step input and output relatiohandOut! ; these however are only needed for the SA
steps themselves.

In'(i,j) = (3 an SA stepSt,(vi—1,], P, V), js°, js"” e Input(i, js"::(j):js")) (26)
Out'(0,p) = (3 an SA stefSt, (Vi—1,jt, p, %), pS’, pS_ e Outpuio, ps::(p)::ps )) (27)

In fact we prove slightly more than we strictly need.

For 1, letSt,(vi—1,jt, P, i) be the FS step in question. Since the SA is defined with respgmths reachable
fromv;, and FS steps are defined with respect to thevgA, must be reachable from. To prove forward simulation,
assumeR! (u,v;_1) holds. Then there is a maximal path from some iniiathat reaches;_; such thaR”(u,v;_1)
holds. From (12) there is a path from some initiathat reaches;_; such thaR(Qy, v;) holds for some initiali;. By
(7)and (8); = u= u. Soin factR! (uj, ,—1) andRP(uy, v_1) both hold. Sinc&t, (vi—1, jt, pt, Vt) obviously extends
the paths that witnes®”(u;, vt_1), the extensions witnes®’(u, ) andR! (u;, ) too, which is what is required for
forward simulation of the identity on.

For 2, letSt,(vi—1, jt, P, ) be the FS step in question. Since it occurs after an SA stapyst again be reachable
fromv;. To prove forward simulation, assurRé(u, v;_1 ) holds. Then there is a maximal path from some initjiahat
reaches;_; such thaR™ (u, v_;) holds. From (13) there is a path from ; to some finalr such thaR(ur, vr) holds,
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whereur is the unique abstract outcome, that witnesses that the &AtisatSt, (vi—1, ji, pr, vt) follows, is outcome
deterministic. By (7)u = Ur, so thatR™ (ug, v;_1) holds, Wherebﬁl(up,vtgg holds too. Truncating the first step of
the path fromv;_; to vr that witnesse®(Ur, Vi), gives a path that witnessBS (ug, vt) and henc&! (Ug, ), which is
what is required for forward simulation of the identity agp.

For 3, letSt,(vi—1,jt, P, t) be the SA step in question. Obviously it is reachable frgmTo prove forward
simulation, assum&! (u, v_1). Then we can dedud®' (u;,v;_1) andR”(u;,_1) exactly as in case 1. For any
in Outcome$St,, u;), we know thatAtomiquy, i, 0, ug) holds. Also, we can dedud® (ug,v;) and henceR! (Ug, )
exactly as in case 2. Sin@&, (vi—1, jt, pt, Vt) occurs on a maximal path from to ve, the totality of inputs along the
path, bothjs® beforej;, andjs™ after j;, will witness thatinput(i, js”:: (j;) :: js7) holds, givingIn'(i, j;) as required.
The reasoning for outputs is similar. So we have all the agichs of (23), which is what is required for forward
simulation ofAtomidu;, i, 0, Ug).

For 4, letSt, (v—1, jt, pt, Vi) be the BS step in question. Since it occurs after an SA stequst be reachable from.
To prove backward simulation, assuiREu, v;) holds. Then there is a maximal path from some initjiahat reaches
Vvt such thaR™ (u, v) holds. From (13) there is a path fromto some finalr such thaR(ur, v¢) holds, wherau is
some abstract outcome, that witnesses that the SA steifat 1, ji, pr, t) follows, is outcome nondeterministic.
By (7), u = ur for some suchug, so let us assume th& (ug, v) holds, wherebyR! (ug, vt) holds too. Prepending
St,(Vi—1,]t, pr, v) to the path fronv; to v that withesseR(ur, vr ), gives a path that witnessBS (U, 1), and hence
R! (U, vi_1), which is what is required for backward simulation of theritigy on ug. O

Since at both abstract and protocol levels, the transpodeeditep relation is a partial function, backward simulatio
is always aligned with a decrease of nondeterminism in bbstract and protocol transition functions. Therefore we
get the following (cf. [LV93]).

Corollary 3.9. Under the assumptions of Theorem 3.8, one can always ude sieg backward simulations through-
out.

Corollary 3.9 might seem strange in the light of the well kmofact that backward simulation alone is not complete
for data refinement. The explanation comes from the factwieahave an asymmetry between forward and backward
directions in our setup. While we can never lose ‘abstrackbard nondeterminism’ by simulating the protocol
backward (due to (8)), weanlose ‘abstract forward nondeterminism’ by simulating thetpcol forward.

We also have the following.

Corollary 3.10. Under the assumptions of Theorem 3.8, suppose there are sepS (i.e. all SA steps are OD).
Then single step forward simulations can be used throughout

Obviously, choosing the SA as the last step of each maxinthl thaough the protocol satisfies the hypotheses of
Corollary 3.10.

Corollary 3.11. LetMPath(v, ..., Vg) be a maximal path from an initial to a finalve, such that (10) holds (for suit-
ably chosen other quantities). L8t,(vi_1, ji, pr, ) be the SAv) step alongMPath(v;, . .., vg). Then the simulation
of MPath(v, ..., vg) by Atomiduy, i, 0, ug) can be decomposed as follows:

1. If St,(vi—1,]t, Pt, W) is an ODFS step, the simulation BfPath(v, . . ., ve) may be established by inductively for-
ward simulating the steps dMPath(vi, ..., vg) from v, up to a state; (which does not precedg), and backward
simulating the steps dflPath(vi, . . ., vg) from ve up tov; (if vi # Vi), such that:

(a) predecessors &it,(vi—1, jt, P, \t) are forward simulated by the identity operationgn

(b) St,(Vt—1,]t, b, vt) is forward simulated byAtomiqu;, i, 0, ug) whereug is the unique element of Outcont&s,, u; ),
establishindR™ (Ug, ),

(c) FS successors &8ft,(vi—1, ], pr, vi) are forward simulated fron by the identity operation oug, establishing
RF(UF7 Vf):

(d) BS successors &t,(vi—1, jt, b, &) are backward simulated fromg by the identity operation oug, establish-
ing R” (Ur, V).

2. If St,(vi—1,]Jt, P, &) is an ONFS step, the simulation tdfPath(vi, ..., ve) may be established by inductively

forward simulating the steps ddPath(vi, ..., ve) fromv; up to and includingst, (i1, j, Pt, vt), and inductively
backward simulating the stepsMPath(v;, . .., vg) from ve up tow;, such that:

(a) predecessors &it,(vi—1, jt, P, \t) are forward simulated by the identity operationgn
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(b) St,(Vi—1,]t, pr, vt) is forward simulated byAtomiqu, i, 0, ug), for eachur in OutcomesSt,, u; ), establishing
R (Ur, W),

(c) successors dt,(vi—1, jt, Pr, V) are backward simulated from by the identity operation oo, establishing
R (U, Wt).

Why are the above results useful? We can give a couple ofmeaso

Firstly, they are illuminative. One can be convinced of tloerectness of a protocol with respect to an atomic
action, without having the details of a refinement alreadyked out. In such a situation, it may not be clear how to
synchronise the atomic action with the lower level desmiptTheorem 3.8 shows that one can choose this synchro-
nisation relatively freely, within the parameters of alkle synchronisation assignments.

Secondly, once having chosen a synchronisation, it is masieeto write down the ‘big-step’ retrieve relation and
associated input and output relations, than to discovemihre finegrained single step ones. Theorem 3.8 shows that
with the big-step retrieve relation fixed, the single stepgR” andR™ may simply becalculated Their generic form
needs to be instantiated with the details of the protocolldgestep retrieve relation, and then one must eliminate as
many existential quantifiers as possible in order to arrive elosed form. Making clear that theiesuch a strategy
to follow is a considerable improvement over the hit-andsgrapproach one would otherwise need, especially when
combined with uncertainty regarding synchronisation.

The theorem and its corollaries also provoke the followingsiderations.

One can replace some backward simulation by forward siemaGiven a synchronisation assignment, a branching
BS step is a BS stefy(vs, ...,V ;) for which there is another BS stefty (s, ..., Vs,) (With v, # Vi,) such
that the abstract outcomes 1, Ur 2 corresponding to the completions of the paths frdm andvg , are different,
Ur,1 # Ur 2.% In such a case, ormannotmake a forward simulation inference succeed.

To see this, suppose the first hypothesis of (23) is made §rW® fur 1, V), and the second hypothesis is made
true bySt, (vs, . . ., Vs 5). Then the first hypothesis demands thabe chosen to ber ;, while the second hypothesis
demands thatr be chosen to ber 5, a contradiction. This is the standard backward simulatimmterexample.

In Fig. 3, the SA element along the upper thread of the contiputéree is an ONFS step, since it can reach
two concrete final states that retrieve to two different etrdtoutcomes. Accordingly, the two BS steps immediately
following it (and the two following the topmost of them alottte upper thread) are branching BS steps, since they
too can individually reach different concrete final statest retrieve to the two different abstract outcomes. With th
dotted lines depicting’, it is easy to see that these steps illustrate what we havdigmissed.

However, if a BS step isot branching, i.e. there is only one protocol successor staievs, then the preceding
problem cannot arise since the unique successor cannat &odistinction between the choices fgr. So for non-
branching BS steps, a forward simulation inference willcaed. However, it comes at a price. If a forward simulating
BS step immediately follows a backward simulating BS stepRt (Ur, v) value at they state that they share, occurs as
a hypothesis in both the backward PO (24) and the forward BQ 2hus remains as an unproved assumption in the
overall single-step verification of the big-step refineméstsuch it allows the verification to succeed vacuously. For
this reason we phrased Corollary 3.11.2 as two inductivegsses that meet in the middle, since it is much better to
verify someR! (ug, v) twice independently, than to leave some otRE{ur, v) unproved, thus undermining the whole
verification.

Lastly, Theorem 3.8 offers a different strategy for addresglobal correctness (see Section 5). Normally, to
prove a protocol such as the one we have been consideringllylaorrect, one chooses either forward or backward
simulation, establishes that each protocol step refineg swamic option oskip, and this then extends to an inductive
proof for global executions as a whole. With Theorem 3.8, aeenvisage a different approach, structured as follows.

1. We first study the ‘big-step’ refinement of atomic actiorptotocol, determining the protocol computation DAG
and the big-step retrieve relation.

2. Next we choose a suitable synchronisation assignment.

3. Next we determine which combination of forward and baakisamulations are appropriate for the synchronisa-
tion assignment.

4. Next we calculate the necessary single step retrievéiar|abreaking down the big-step refinement into single
step refinements.

4 Since we speak of a BS step, there must be sHCh# Ur 2, as the nondeterminism #tomidu;, i, 0, ur) has been resolved earlier than at this
BS step.
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Fig. 4. An event structure for the Mondex protocol.
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5. Finally, we determine how runs of the protocol can intevketo make global executions.

This alternative approach separates concerns, and in edsas a complex protocol is concerned, may offer some
advantages. In any event, the mere awareness of the pitggibisuch an approach may make the more monlithic
standard approach more tractable, since it can show thi@iteubgoals of the standard approach are achievable in
advance.

4. Event Structures and Protocol Computation Trees

Step 1 of the alternative verification strategy just sugerkselies on determining the protocol computation DAG.
Usually, consideration of this computation structure i$ iteelf the means by which a protocol is invented, so the
computation DAG might well be derived from alternative teg points.

A common way of inventing a protocol is to say ‘this happensrahat’ for a sufficiently large number of cases.
Such a train of thought can be formalised quite effectiveding event structures of various kinds [WN95, Bou90,
NPW81,Win86,Win88,BC88,PP95]. Accordingly, we use ewantctures with symmetric conflict relations to encode
possible playouts of a protocol, and show how to derive a agatin tree from an underlying event structure of this
kind. Once there, one can map the tree to a more convenientiDé@ wishes.

Definition 4.1. An (symmetric flow) event structu@is a triple(E, <, #) such that:

1. Eis a set (of events).
2. <is an asymmetric causal flow relation Briwhose transitive (resp. reflexive transitive) closure igten < (resp.
<)

3. #is anirreflexive symmetric conflict relation &compatible with<, i.e. such thak#y < z= x#z

The preceding is a very simple definition which will do for donmediate purposes. Generalisations arise by eg. al-
lowing the conflict relation to be asymmetric; see some oftited literature. Since we need asymmetric conflict later
(see Section 7), we formulate the semantics of symmetricélemt structures in nonsymmetric terms right away.

Definition 4.2. Let £ = (E, <, #) be a symmetric flow event structure. Let the associated momsatric conflict
relation # be the smallest relation dbclosed under:

1. x#y = x#yAy# x
2. Xty Ny<z=x#z
The point of Definition 4.2 is that¥is not deemed to be symmetagpriori, allowing us to introduce more elaborate
notions later in terms of enhancements dtkat are not symmetric.
An event structure defines which events may occur once otlegrte have already occurred. Collections of events

are called configurations, and the legal configurations agdllways of passing from one configuration to a successor
configuration are packaged up in the following definition.

Definition 4.3. Let & = (E, <, #) be an event structure with associated nonsymmetric condliation #. The set
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Xe C PE of (legal) configurations of, and the legal ways of moving from a legal configuratioaf £ to a successor
legal configuratiorY are given by the following rules.

1. o€ Xe.

2. X € X,
xe E-X
(VX e EexX <x= X €X),
(VX c EeX # x= X & X),
F XU{X} € Xe.

In Fig. 4 we show an event structure for the Mondex protoatdjried from the activity diagram of Fig. 2 to include all
the ‘abnormal’ ways theat the protocol can play out, and fhguip the page. The constituent events are in the labelled
nodes, while the arrows show the elements of the flow relatipand the #-labelled edges show a generating set for
the conflict relation. In the Mondex documentation [SCW0@ variousAbort, events are all part of a singkbort
operation, which has been split into five pieces in Fig. 4 ediog to which ‘normal’ event thébortis in conflict
with.

In Fig. 4 there are two root eventStartFromand StartTq either of which can start an ‘execution’ of the event
structure. (For the time being, we ignore the possibilitystafrting with one or both of thAbortr or Abort events,
which lead to ‘stillborn’ executions; they are included iigF4 for later convenience.) Once the first event has taken
place, we have a (different) choice of two next events (ddjmgnon whichStartevent went first). If the next event
is the otheiStartevent, then we have a choice of three subsequent everdaad so on. Working out all the possible
orderings of events yields a quite complex structure, aigddlear that the event structure formalism captures afiehe
possibilities in a compact and convenient way.

In general, an event structure is executed by starting vighempty configuration, and then one executes one
event at a time, adding a new evertb the existing configuratioX, as sanctioned by the rules in Definition 4.3. So
Definition 4.3 provides a proof system that enables us tordequences of event occurrences. The set of sequences
obtained thereby can be turned into DAG-shaped and folegies transition relations as follows.

Definition 4.4. Let& = (E, <, #) be an event structure. The transition syst&i® associated witlf is defined by:

1. the states are the configuratiofg X, with & as intial state,

2. the transitions are the stepis= X' iff X € Xe... - X' = XU {x} € X is a valid inference according to
Definition 4.3.

Evidently£PAC is a DAG.

Definition 4.5. Let€ = (E, <, #) be an event structure ag®”C its associated transition system. The transition forest
EFOR associated witlg is defined by:

1. the states are the pat{ws, . .., X) in £PAC which start at the initiafPA® state, with the empty path as initi&foR
state,
X

2. the transitions are the steps, ..., X) = (@, ..., X, X) iff X 5 X' is a step ofPAC,

The preceding gets us some way towards the provisions ofdBe8t However we are not there yet. Section 3 is
couched in relational terms. So events have to correspomélations, and the enabledness or otherwise of these
relations in any state must correspond to what the flow andicorelations of the event structure permit in given
configurations. In general, the process will be applicasipacific, since it will depend on many factors, such as how
many protagonists participate in the protocol, what thedal state is envisaged to be, what knowledge of the global
state they have, the role of 1/0O, etc. However, in the contéxtesigning a protocol to accomplish some identified
atomic goal, the process of reconciling these two appraache provide a useful consistency/correctness check on
the design activity.

Beyond that, our event structure account of Mondex left eutain state components, such as the details of purse
balances and amounts transfered etc., that a full accousttimtlude — i.e. the event structure was deliberately in-
tended to be generic. Reinstating the omitted componentrgtes a replication of the forest indexed by the reindtate
values, corresponding to the full computation forest.

5 N.B. This picture incidentally yields one useful conventior thep labels of the step relatiort, of Section 3: namely to tag each edge of the
‘generic’ forest by a distinct label, and then to retain th&bels in each replicated forest, making the labels akiratoes of ‘operations’ at what
would be the code level.
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Once the event description is in place, and one is confidatttiproperly corresponds to the relational picture,
we can extract a computation forest via the constructioidafinitions 4.4 and 4.5.

By construction, the nodes of our forest shaped computatiDAG incorporate the full history of the protocol up
to the given point. Such history information is often neettedeasoning about protocols, since protocol properties
frequently depend not only on knowing that the protocol haiwed at a certain point, but that certain other things
must have necessarily happened prior to that point. Sudh &m be trivially extracted from the full history, so our
formulation may be regarded as a multipurpose canonicalrigiti®n, useful for things other than just the concerns
of this paper. However, since different paths can oftervarat ‘essentially the same’ state eg. via interchanges of
causally independent steps somewhere in the interior ghthi@col, it is just as useful to be able to forget aspects of
history, and eg. identify common suffixes of certain pattge @uality betwee&PA¢ and£OR (given in one direction
by the construction af™OR from £PA®, and in the other by forgetting all but the last componentatestate i€ OR)
bears out the compatibility of these different points ofwie

Another aspect that should be discussed is I/0O. At the atdemi, the I/O for the single step that takes place
must inevitably concern the environment, since there iswermal structure to engage in internal communication. At
the protocol level however, I/O can either be between thérenment and the protocol, or be purely internal to the
protocol. In the latter case, the only restriction is thassages must be produced before they can be consumed. There
is of course the option of representing messages in flightiwé suitable state component —such a state component
can model properties of the communication medium, eg. iairily— however we do not need to insist on that for
the serialisation discussed in the next section.

5. Interleaving Individual Protocol Runs

Thus far, although using language such as ‘protocol,’ ilitseawe have only discussed some properties of acyclic
transition systems. In genuine protocols, various agegsact by performing events and sending/receiving messag
etc. We must connect our theory to this world.

The basic idea is that the previous section should be urdetsis describing (the various possibilities for) a
single isolated protocol run, performed by however manynégy@ould be appropriate in practice, with the proto-
col state recording in principle the full history of the poobl so far (regardless of whether such knowledge can
indeed be posessed by the individual agents), and igndragest of the universe. The latter not only regarding other
agents/activities in the rest of the universe, but alsondigg what the agents of the single protocol run might do both
before and after the run itself. So the previous sectionrilest an idealisegatternor templatefor what collections
of agents might do over some period of time towards the aehi@nt of some goal described by the atomic action
that the protocol implements.

Patterns or templates are normally made to correspond whtit Wappens in the real world by some process of
matching, and that is the basis of our approach too. Sinceawve femarked that our protocol states can in principle
include unrealistically detailed history information,ramatching process must include a projection mechanism to
allow the unrealistic parts to be forgotten. In such a sdeng@rotocol states that were previously distinct can be
matched to the same system state, just as we described irethieys section.

Definition 5.1. A systenmconsists of a number afgents Ay, Ay, . .. each with its agent state subspatig W, . . ..
The system state spacels= W, x W, x . ... So agenf\,’s instantaneous state is somg € W,, and the system'’s
instantaneous state\us= (W, Wp, . . .).

Each agent is a transition system, i.e. the agent can mowebatdifferent elements of its state space in discrete
steps, leaving the state of every other agent unaffecteel eflabledness of any agent's transitions is independent of
the state of any other agent. Each step can also consumeaingptroduce output, and the I/O policy described in the
previous section applies again: i.e. /O may either be with@nvironment, or it may be internal to the system, and
any internal message that is consumed must earlier havepbeduced.

The system’s transitions are described by a prediSstesimilar to Stin the Section 3, where the subscript °
refers to the agent performing the step, and élstep modifies only its own agent’s state subspace. The ti@msi
of the system as a whole are the interleaved agent transitibthe system’s agents, each extended wktip on the
irrelevant part of the total system state. Tiép-extended transitions are writtSy,.

Definition 5.2. LetSbhe a system with agemtg, Ay, . . .. The sequencg = (wi, (Ky, A1, 1), W, (Ko, Az, O2), Wa, . . .)
is a run of the system iff:

1. w is an initial state of the system,
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. A is the agent that performs the first step,

. kq is the input consumed b4 during the first step,

. Q; is the output produced b4; during the first step,

. Wy is the result state of the first step,

. the change of statg — w; involves change to the state spageof A; only; the state spaces of agents other than
A; remain unchanged,

7. ... and analogously for subsequent system transitions.

Definition 5.3. LetProtocolbe a protocolin the sense of the previous section. An ageotdposition for the protocol
is a decomposition of the protocol state sp¥dato a cartesian product of agent subspa¢es V; x Vs x ..., such
that each step of the protocol modifieg most one component in the product, leaving the other commis unaltered.

The decomposition into agent subspaces just describeises the fact that an instantiation of a protocol is nor-
mally executed by a number of agents inside a real systemeki@va real agent in a real system can play many roles
during the running of the system, including acting out d#f& roles in different instances of the same protocol at dif
ferent times. So we need to distinguish the various ageestiola protocol definition from the different instantiatson

of these during system runs. The next definition introdubegséchnical machinery for this.

Definition 5.4. Let Atomic Protocol . .. (with all the attendant machinery) be a protocol implensgtn atomic
action in the sense of the previous section. We say thatreyste 7 instantiates?rotocoliff there is a maximal path
through the protocoMPathy, g, 1, (Vi,J1, P1, V1,j2, P2, V2, - - -, VE—1, jF, PF, Ve ) @and there are two mapsa andrs
such that:

1. there is a cartesian product of disjoint functiong : V| — W, from all of the agent components dfto a
(possibly proper) subset of distinct agent subspac¥,aindra = II; 7a),

2. 1sis an injective function from the steps of the maximal piithath, 5 ... .y to steps of7,

3. 7sis order preserving, i.e. B3 precedest, in MPath, 5 .. thenTs(Sgg) precedess(St,) in 7,

4. for each protocol stepts (i1, jt, Pt, Vi) in the domain ofrs, n‘ V| is the agent component ¥fmodified during the
step, thera (V1) is the agent subspace modified during the st¢Bts (vi_1, ji, Pr. Vi),

5. for each protocol steﬁgg(vt 1,t, P, Vt) in the domain ofrs, if 75(Stz(Vt—1,]Jt, P, V1)) = SWa (Ws—1, Ks, Os, Ws),
then7a (i—1) = Ws—1, jt = Ks, Pt = 0s, 7a1(Vt) = W,

6. if protocol stegSt; modifiesV| and protocol steft, is the next protocol step aloridPathy, g,
V), then no step of betweenrs(Stz) andrs(St,) modifiesra (V).

When we want to emphasise the details, we say that systeri’ rlmstantiateSDrotocoI viaT = (7a,7s) at step
7s(St(Vi,j1, P1, V1)) of 7, whereSt, (v, j1, p1, V1) is the initial step inMPath, 5 .

In Fig. 5 we show how a particular maximal pat,say, through the protocol |IIustrated in Fig. 3, might be imeqb,
via an instantiation functiom, to a selection of steps in a system run. The system state iruthis now ‘real world’
state, eschewing the maximal knowledge that the idealisgtdqol formulation allows. In between the steps-0f1),

other protocols are being instantiated by other agentsighavithout interfering with the state @{M), by Definition
5.4.6.

Definition 5.5. Let MPath, 3 . be a maximal path ifProtocol StepSts(Vi—1,jt, pt, &) of MPath, 5. ) is
a first use of agent subspave |12f it modifies V|, and no earlier step dfPath,, 5 . .y modifiesV,. Similarly
Sts(Vi—1,jt, P, vt) is a last use ol iff: it modifies V|, and no later step oMPathmﬁ _____ -y modifiesV,. We say
thatProtocolis 2-phase (2P) alongPath,, 3. ... ., iff all first uses of all agent subspacesRIbtocolprecede any last
use of any agent subspaceRrbtocoIanngMPatma Broy)-

O Ul WN

) that modifies

Definition 5.6. Let Sy, (Ws_1, Ks, 0s, Ws) andSys(Ws, Ks11, 0s+1, Ws11) be two successive steps of a rfinof the sys-
tem. We say thaBy,(...) andSy(...) can be commuted iff there is a stake such thatSy, (Ws, ks, gs, Ws; 1) and
Sy (Ws—1, Kst1,Gs 1, Ws) are valid steps of the system, and the [@y((Ws_1, Ks, Gs, Ws) ; Sy (Ws, Kst-1, Os+-1, Wst1)

can be replaced iff by Sy (Ws_1, Kst1, Gst1, Ws) ; SYa(Ws, Ks, 0s, Ws1-1), YieldingZ”, where7” is a valid run.

6 Here, and in the remainder of the paper, ‘modifies’ shouldrizietstood to mean ‘is deemed to modify’ or, ‘is permitted tadify in the syntactic
description of the step,’ since it is intended to cover ndy @ron-trivial update, but also cases of read-only access cases in which the agent in
fact chooses not to access the state at all (even thoughritectiy description, of which the step is a specific instith, permits it).
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Fig. 5. An atomic action, a protocol which implements it, and a systan containing an instance of a maximal path through théopod. The
steps of the instance are shown bold.

Lemma 5.7. If Sy,(...) andSy(. . .) as in Definition 5.6, are two successive steps performed bydffferent agents,
then, provided both inputs are available in stage;, Sy, (. ..) andSy(. . .) can be commuted.

Proof. SinceSy,(...) andSy(...) are performed by different agents, the two agent subspaceified by these
steps are disjoint, so the changes of state can be swapsig,yg@elding the statavs required by Definition 5.6. If
both inputs are available in statg_;, then theSy(. . .) is enabled in staté;s_; and can be performed first. Since the
input to Sy, (. . .) is not removed by doin@y(. . .), Sy(...) can followSy(...). That this generates a valid run is
now straightforward. O

Since our formulation of a protocol does not consider theéqural’s context, the only way that a protocol, as formulated

in Section 3, can interact with the rest of the universe idAdawith the environment. In the system context, this leads

to a distinction within the internal system messages, betweessages that are produced and consumed by the same
protocol instance (which should thus correspond to infesammunications of the protocol itself), and those which
are produced and consumed by different protocol instangbgll should thus correspond to communications with
the environment in the protocol model). (System level comitations with the environment must of course also
correspond with protocol communications with the enviremtn) Since inter-protocol communications must comply
with normal causality considerations, these communioatiaust fit well with the 2-phase property for protocol state
components. The next definition introduces the needed iealities.

Definition 5.8. Suppose given a maximal pafiPath, s .. ., of a protocol, which is 2P. An external dependency
definition (XDD) for it is a pair of (not necessarily d|SJo)m;ets(IDS ODS) of steps ofMPath, 5 ... . IDSis the
input dependency set: the set of stepsviifath, 5.y during which an external input (i.e. one ‘originating from
outsideMPath, s, .. ) is received; an@®DSis the output dependency set: the set of stepﬂl@sﬁt% 3....,) during
which an external output (i.e. one destined to outéidRath, s, .. ) is delivered. A protocol is 2PXDD- normal iff:

1. allIDS steps occur no later than a@DSstep alonngPath<a Brory)s

2. the producer of every input of every protocol step othantanIDS step is some other step bfPath, 5 ... ),

3. the consumer of every output of every protocol step otfien anODSstep is some other step bPath, 5. -,

4. eachDS step occurs no later than any last use of the state,

5. eachODSstep occurs no earlier than any first use of the state.

Definition 5.9. An instantiation of a 2PXDD-normal protocol is called a (ZPD-normal) transaction.

For the rest of this section all transactions will be 2PXDarmal.
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Theorem 5.10. Let 7, be a run of a system which consists entirely of the steps né#retions of a family of protocofs.
Then there is a serialisatidh,, of 7, generated by commuting adjacent steps, in which eachitiestian occurs as a
contiguous series of steps.

Proof. Consider the directed grafbep, whose nodes are the transactionsZpf and whose edges are given by:
T — To Iff:

1. an output of a®®DSstep ofr; is an input of arlDS step ofr,, or,
2. an agent subspatgis used by both; andr;, butr;'s modifications otV occur earlier in7; thanr;’s.

Claim 5.10.1Dep, is acyclic.

Proof of Claim.Let V be the state space of a transactiorSince the last first use &f precedes the first last use of
Vin 7, and all alllDS steps precede aDDSsteps inr, by Definition 5.8.4-5, we can deduce that there is a step in
(which we will call the pivot), that precedes neither the kst use ofV nor anylDS step, and simultaneously follows
neither the first last use &f nor anyODSstep (there are four cases). We identify each transactidp imith (some
choice for) its pivot. Since steps are interleaved, theeetmal order on the transactions, inherited from that oir the
pivots.

We show thaDep, can be interpreted in the set of pivots, and that each eddeeiiinterpretation is oriented
towards the future, yielding the acyclicity @fep, immediately. For @Dep, edge of type 1, note that it is oriented
towards the future by straightforwards causality. So preteg that the requisite message was sent during the produc-
ing transaction’s pivot step, and pretending that it adidering the consuming transaction’s pivot step can ina@eas
its time of flight, but not change its orientation towards theire. For aDep, edge of type 2, since the pivot steps
are contained within the uses of transactions’ state, agsktlare oriented towards the future by 2, the orientation is
preserved in the interpretation. We have our claim. oo

We serialisel, stage by stage. At each stage there are serialised andalissgtiransactions. We call the boundary
between the serialised and unserialised transactionsattizon. So at the beginning there are no serialised transac-
tions, and the horizon lies just before the first ste@@fAt the n'th stage, which starts witll,, whose unserialised
transactions comprideep, (a subgraph obep,), we choose an unserialised transaction which is a robeg,, and
we serialise it, whereupon its steps —in contiguous secgienare both appended to the serialised part, and removed
from the unserialised part of the partly serialised run, mgthe horizon to just beyond the newly serialised stepd, an
yielding 7,11 andDep.y1. If 7j is infinite, then the serialisation process continues fereand every finite prefix of
7Ty has all its steps eventually included in the serialised. plat, is finite, the process stops when the last transaction
of 7Ty has been serialised.

Stage nA root transactior, of Dep, is chosen. By assumption, all transactions on whijglks dependent, whether
through the state space, or vigis IDS messages, have been serialised, i.e. their steps lie béyetbrizon. So any
step of7, that lies between the horizon anmgls first step neither uses any state used-{}y first step, nor produces a
message consumed hys first step. So there is no obstacle to commuting the firgt sfe;, towards the past until it
it arrives immediately after the horizon. Similarly the @eyplencies for the second step lie either beyond the horizon,
or arise from the first step, so the second stepryofan be commuted towards the past until it arrives immediatel
after the first. The process continues until the last step, dfas been commuted until it arrives immediately after its
predecessor. This yieldg,. ;. Transactionr, is removed fromDep,, yielding Dep,.1, and the horizon is moved to
just afterr,'s last stepEnd Stage n O

The preceding amounts to a sketch of a relatively standanilae serialisation proof process [BHG87, GR93,BN97,
WV02]. And once the run has been serialised, it is clear thahdransaction of the serialised run is a refinement
of its corresponding atomic action via a retrieve functibattforgets the part of the system state not relevant to the
transaction.

6. Mondex and its Refinements

In this section we reflect on the Mondex protocol, and therexie which its refinement possibilities correspond to
the preceding theory. There are a number of points to be bommeénd.

7 So there is a set of maximal paths through a set of 2PXDD-niguna¢ocols, and a set of instantiations of thentif and the set of steps @
is the disjoint union of these instantiations.
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First of all, our theory has been couched in terms of singladitions (which is less cluttered), whereas Mondex
is couched in terms of AperationdSpi92, DB01, ISO02]. The distinction is the same as the dseudsed in Section
4 between the generic event structure and its replicatidhérdetailed computational structure by all the permitted
values of the generically omitted state. Therefore whenayebglow that such and such an operation is synchronised
with such and such an atomic action, we are referring in baolklt the transitions of the operation being suitably
synchronised with appropriate instantiations of the atoaaition.

Secondly, we will restrict our attention for now to runs oétprotocol which commence with the tv&iart op-
erations StartFromandStartTq in either order, (returning to other possibilities at thelef this section). Referring
to Fig. 2, this means that after the tv&art operations, the protocol, which is henceforth serial (asbigious from
the causal dependencies of tieg, val andack messages), executes some prefix ofRegVal-Ack sequence of op-
erations. If it does not complete that sequence, each plasetill has elements of thHRegVal-Acksequence left to
do, performs al\bortoperation (which replaces the first such unperforiRedVal-Ackoperation left on that purse’s
agenda), completing the protocol abnormally. Note howthatrunlike theRegVal-Ackoperations which are causally
constrained by theeq, val, ackmessage#bortoperations are not causally constrained and can occur diraayEv-
ery variation in the order of performing the protocol’s oggtons whembort events are involved, causes a branching
of the computation tree structure, and leads overall, ttecucomplex protocol computation tree. All of this concurs
with the possibilities offered in the event structure of .Fg

6.1. The Original Mondex Refinement [SCWO0O0]

In [SCWO00], the refinement is constructed to synchronisé Wit atomic description as early as possible, given the
assumptions above. Thus the atomic action is synchronigbdive Reqoperation, which refines bothbTransferOK
andAbTransferLostSince the protocol still has plenty of opportunity to fdilea theRegoperation, th&Reqoperation
itself does not fix the outcome, so the refinement, achievetherbasis of a global inductive proof, has to be a
backward one. We can visualise to some extent the substeustirig. 3 that forces a backward simulation (referred
to at the end of Section 3), from Fig. 2, if we add an edge fRegto anAbort, as an alternative to the message
towardsVal, since the two abstract outcomes are already availablearttl of theReqoperation. Furthermore, since
for a failing transaction the protocol has already angéliczhosen to refinAbTransferLostthe Abort operation(s),
which actually signal the failure at the protocol level,rafineAblgnore(which is Mondex-speak for an abstrakip).

6.2. The Refinement of Banach et al. [BPJS07]

In [BPJS07], amongst other things, a synchronisation withdtomic description that occured late was sought, in
order to try to get a forward simulatichThe natural operation to refingbTransferOKto is Val, since that is the
moment that the money safely arrives at the recipient. Hewéfthe refinement oAbTransferOKis ‘obvious,’ then
the refinement oAbTransferLosts less so. The subtlety lies within tidort operation. The deeper structure of the
Mondex protocol implies that if only on&bort occurs in a transaction, it is harmless, and suct\hart can refine
Ablgnore Only if two Abort operations occur for a transaction, each while its respegturse is in a critical state,
has the transaction failed non-trivially, whereupon ttensaction needs to refidTransferLostThis leads to the
decomposition of thé\bort operation into cases, depending on the precise role of tkeatipn in the transaction.
In the formalism of this paper, th&bort operation of Mondex corresponds to a collection of eventlwbccur at
different places in the computation tree of the protocot] are thus distinguishable.

The case analysis is interesting. The distinction betwesigm and non-benign instancesAdjortis made on the
basis of a purse’s local state (specifically, on whether tiragis in statepvor epa(non-benign), or in some other
state (benign)). However, since twdborts make onébTransferLostwe can only refindbTransferLosto one of the
pair — and it has to be the second of the pair, since if onlyAinertin a critical state happens, then it turns out to be
benign nonetheless. In [BPJSO0%n-localstate information is used to distinguish the first non-bewigort from the
second, and the first is then made to refiddgnorewhile the second refinesbTransferLost

8 Looking forward to some extent to the specific results of tresent paper —which show that the essentials of a protocobeainderstood by
discussing the protagonists in isolation— the discussidBPJS07] was restricted to a world of just two purses, alsifgpm purse and a single
To purse.
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6.3. The Refinement of Schellhorn et al. [SGHO07]

In [SGHT07] we have the second mechanized verification of Mondexgusia the KIV theorem prover [RSSB98].
While the first [SGHRO6b] used the original backward simiolatind data refinement, the second uses abstract state
machines (ASMs, [Gur95], [BS03]) together with ASM refinarthand generalized forward simulations [Sch01].

The refinement, like [BPJS07], synchronizes successfokfeas by having/al implementAbTransferOK But
it chooses to synchronize failed transfers at the earliesttgpossible. This gives two cases for tReqoperation,
which is the point where thErom purse sends money. In the first, th@purse is still ready to receive the money, in
which caseRegimplementsAblgnore But if the To purse has already aborted then the second case applieRegnd
implementsAbTransferLos? Instead of having two cases (as in [BPJS07]) in whichAbert operation implements
AbTransferLostthe design of [SGH07] leaves only one: the case where Tloepurse aborts irpvafter money has
been sent.

The different choices for the synchronisation points was motivation for us to study the general possibilities
here. Another one was to provide a general formalizatiorsafgipast and future simulation relatiof® @ndR"). In-
stances of such relations with a schematic encoding int@ByaLogic are not only used in the case study [SGH]
but also in earlier work. Future simulation relations ocituthe correctness proof of ASM refinement [Sch01]. Past
simulation relations are used in coupled refinement [DW@&3ja@ted in [Sch05].

6.4. The Refinements of Haxthausen, George et al. [HGSO06]

The two refinements of [HGS06] use the RAISE specificatioguage [The92]. They are another mechanized verifi-
cation of Mondex using the theorem prover PVS [ORS92]. Thiecstudy is slightly out of scope of our theory, since
it does not start with atomic actions, but with a two step gcot: the first step (calle@ransferLeft is a send operation,
which nondeterministically chooses between a successadindef, and we call the two cas€&endOKandSendFail
After SendOKthere are again two possibilities: receiving may succeddib For symmetry, we call these operations
ReceiveOKandReceiveFail[HGS06] calls thenTransferRighandAbort Already, the splitting of transactions at the
abstract level into send and receive, allows us to keep tlmbas of abstract and concrete level in perfect synchrony,
as is required by RAISE refinement. The two refinements implaifransferLeftwith RegandReceiveOKwith Val.

To compare the synchronisation points with our proofs, weehta add an additional refinement of the original
abstract Mondex level to the abstract RAISE level. The refieiet would have to implemertbTransferOKby the
sequencesendOKReceiveOKAbTransferLostwould be implemented by bot8endFailand SendOKReceiveFail
BecauseSendOKis ON, a forward simulation proof would have to synchronizgéhvthe last operation of every
sequence. Composing the resulting simulation relatioh thi¢ existing refinements, we find that the synchronization
is the one used in [SGFD7].

6.5. The refinements of Butler and Yadav

These refinements develop a Mondex-like money transfeopobtising the B4free tool [B4f]. They will be published
as a contribution to [JWe07]. In accordance with the EvepAB06] methodology, the protocol is developed in many
small, but easily mechanically provable refinement steps,simulations being forward simulations. The strategy
decomposes the abstract events to facilitate separatemedint of distinct pieces to distinct protocol level openasi.
Aside from that, it is similar to that of [BPJSO07] in that fai transfers are refined Aborts.

Note that with the exception of the original (backward) athe, preceding refinements are all forward simulations
when viewed at the individual protocol instance level (chr@lary 3.10). As such, and particularly when they are
based or{1, 1) refinements, they all readily extend to forward simulatiefirfements of full system runs — just as the
original (1, 1) backward simulation readily extended to a backward sinaraefinement for full system runs.

6.6. Other Possibilities

Our general theory shows that even more possibilities thare bbeen discussed above are actually possible. For
example, the refinement of [BPJS07] could have chosen toeréfifransferOKto Ack instead ofVal, since Ack

9 This differs from [BPJS07], where th&bort of the From purse that is bound to happen in this situation implemabfransferLost
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occurs as the last operation of a successful transactiomeirr, since in general there is a possibility that a trati@ac
succeeds but that tleskmessage is lost, causing tAekoperation to be replaced by @ort (which as it turns out is
harmless), we infer that in such a refinement there would kesa m whichAbTransferOKwould have to be refined
by Abort

An alternative to the preceding is to synchronise right athieginning, with the first (or secon8}artevent —
and there are plenty of hybrid cases, combining aspects$ewvaral of the described or suggested refinements arising
from the rich structure of the protocol computation tree. Méve the curious reader to work out such scenarios for
himself.

6.7. The Non-2-Phase Fragments

In discussing the preceding refinements, we have alwaysresbsthat the twdStart operations are performed first.
But it could happen that one purSgars and immediately afterwardsborts, before the second purse Iaisried.
This spoils the 2P property since the first purse has relstopd its use of its local state before the second purse has
claimed its first use. In such a case, either purse may engagi@ér transactions, changing the local state, after the
first purse’sAbortand before the second purs€tart
A remaining possibility is that only one pur&garts, and the other purse merelports (as explicitly permitted in
the event structure of Fig. 4), or indeed does nothing (aipitisg allowed for in the definitions of [SCWO00] though
not shown in Fig. 4). In such a case, even if the other pusk&t happens after the (inevitabl&port of the first
purse, it is arguable that the protocol is neverthelessi@€e she other purse’s use of its state amounts to no more than
skip. Even if one does not accept this argument, it is evidentttieabreakdown of the 2P property is rather mild.
Dealing formally with such situations requires an extensid our theory and provides a major motivation for
the meterial developed in Sections 8 and 9. Note though,aben if these situations are not serialisable via the
standard 2P technique, the fact that we haue) refinements of the protocol, guarantees nonetheless thag th
‘rogue’ interleavings preserve atomic semantics.

7. Another Motivating Example: Lock-Free Stacks

Up till now, we have considered protocols in which a fixed nemiif agents engaged in a set of events that together
implemented some atomic action, and in which they dithgeeace unmolested by other agents — so called isolated
protocols. In truth, the isolated protocol concept is ofrseuan idealisation, and in reality, isolated protocolseke
within an environment containing other agents.

Isolated protocols are characterised by the fact thatfertence by other agents can be ignored as soon as the
protocol has started, i.e. as soon as each protagonist leasted his first event. In the context of event structures,
the mutual exclusion among all the different possibilitas be reflected in a structure that has conflict between the
root eventf every incompatible pair of possibilities. Doing thistfgully for Mondex would result in a truly messy
structure, since a choice of (pair of purses, directionarfisfer, amount of transfer) cannot be concurrent with aoth
iff at least one of the purses is in common. In real life, thenptex control over the possibilities, is of course handled
from the environment — and conventional event structuresrather poor at representing efficiently such choices
between complex overlapping options.

For Mondex, the preceding difficulty is alleviated by thelgged nature of the protocol, permitting the transparent
account of a single protocol run that we gave earlier. Howeselated protocols are not the only protocols of interest
in practice, and to maximise the applicability of our earieeory, we now examine non-isolated protocols, encouwtage
also by the desire to encompass the non-2P fragments of Maraded above.

7.1. Lock-Free Stacks

We introduce a motivating example for non-isolated protsclock-free stacks. Lock-free stacks were introduced
in [HSYO04]. However our treatment will be based on the mokend account in [CG07, CGO06]. The operation of a
lock-free stack is simple to describe. There Breshand Pop operations as usual. However their implementation is
optimistic Both PushandPopare implemented as loops that repeatedly attempt possibilyg procedure§ryPush
andTryPoprespectively, until success is obtained.

The stack itself is a linked list of cells, with the top poidtat by a globalfopOfStackpointer, and with each cell
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Fig. 6. An event structure that abstracts fiiyPushand TryPopoperations in a non-locking stack protocol.

holding a value, and pointing to the next cell down the staekavnextpointer. Each offryPushand TryPopworks
as follows. The globalopOfStaclpointer is first read. Next, local code prepares the groumdaPush a new cell is
prepared, containing the new value and pointing to the presly readTopOfStackfor a Pop, the value is extracted
from the previously reafiopOfStackell, and itsnextpointer is noted. Finally an attempt is made to atomicallgatp
the globalTopOfStaclpointerprovided no other agent has updated it in the meantimePush TopOfStacks made
to point to the new cell; foPop, it is overwritten with thenextpointer.

The atomicity is achieved via the CAIBc, oldv, newy)1° instruction. In an indivisible operation, this compares th
contents of locatiofoc with oldv, and if they are the same, overwriteg with newy returning success. If they are
not the same, no overwrite happens, and failure is retussliming thabldv is indeed a value thabc previously
contained at some point, the atomicity of overwriting isdaritly not itself sufficient to guarantee that no other agent
has updatetbc in the meantime, since it might have been alteresbtmeotherand then altered back again, the ‘ABA
problem. However, additional mechanisms can be put in glageevent this, and we will assume that this has been
done henceforth. All together, a successful CAS thus gueesratomicity between the earlier readinglafv and its
overwriting bynewv

So, when an attempt atyPushor TryPopreturns, its return value is examined. If it succeedaashor Popitself
returns. If it failed, TryPushor TryPopis retried. Of course, this permits an infinite sequence iddaattempts, but
that's the price of optimism!

Once a newlopOfStackialue is established via a successful CAS, it can be readyog@mber of agents, each in
the course of preparing his own stack operation, in optimastticipation of subsequently committing it via the next
CAS — this is what makes the protocol non-isolated. Such ectidn of agents, all sharing a commdopOfStack
value will be called a clan. Obviously, only one member ofancithe first to try his CAS— can commit his update;
the rest will fail. The fact that clans can be non-singletisnghat makes the lock-free stack a non-isolated protocol.
The fact that each member of a clan acts largely alone, usstgictions whose effects are relatively local, and whose
conflicts are simple, is what makes the operation of the ciesy & represent using event structures.

Fig. 6 is an event structure that represents the working daa, @nd introduces some new conflict notations.
As well as the elements described in Definition 4.1 we havertesitive symmetric conflict relatiorq(#)) (so that
a (#)b (#) c = a ((#) c, and ifx {(#) vy, then the occurrence of either blocks the other, as for #)haee the
asymmetric conflict relation}#{(for which x #) y means that the occurrencexoblocks the subsequent occurrence of
y, but the occurrence of does not block the subsequent occurrencg)pfind we have the prioritised flow conflict

relation# (so that(a < x) # (a < y) means thak andy are in (symmetric) conflict, and oneeis in the current
configuration, therx can only be executed providgds blocked (so thay has priority overx, provideda) — this
captures the effects of IF statements in code particulaglj)w

More formally, we enhance the definitions of Section 4 to thiefving.

Definition 7.1. A general flow event structur€ (with symmetric, transitive symmetric, asymmetric andoptised
conflict), is a tuplgE, <, #, (#), #), #) such that:

1. Eis a set (of events).

10 CAS stands for Compare And Set.
11 However, an infinite sequence of failures witnesses thanfamite sequence of attempts byher agents succeeded, as becomes clear below, so
that the system as a whole makes progress.
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N

. < is an asymmetric causal flow relation Brfwhose transitive (resp. reflexive transitive) closure igten < (resp.
<).

. #is an irreflexive symmetric conflict relation &n

. {(#) is an irreflexive symmetric and transitive conflict relatimmE.

. # is an asymmetric conflict relation dbi(we write (# for its transpose where convenient).

. #isan asymmetric prioritised flow conflict relation en(we write# for its transpose where convenient).

o 01~ W

Definition 7.2. Let £ = (E, <, #, ((#), #), #) be a general flow event structure. Let the associated nongyriem
conflict relation # be the smallest relation daclosed under:

1. x#y=x#yAy#x
X#HYANYy<z=x#1z

2.

3. X(#H) YAy (#) z=x(#) z
4. X (#) y = x#y.

5. x#)y= x#y.

6.

—

(a<x)#(@a<y) = x#y

Definition 7.3. Let€ = (E, <, #, (#)), #), #) be a general flow event structure with associated nonsyrimeemflict
relation #. The setts C PE of (legal) configurations of, and the legal ways of moving from a legal configuration
X of £ to a successor legal configuratigrare given by the following rules.

1. o€ Xe.

2. X € Xe,
xe E-X
(VX € EexX' <x=X € X),
(VX e EeX # x= X ¢ X),
(VaX eEe(a<x)#(a=<X)= (Jze Xez# X))
F OXU{X} € Xe.

Obviously these richer general flow event structures alsmjpeéhe constructions that appear in Definitions 4.4 and
4.5,

The new notations enable Fig. 6 to explain the working of & @hea compact way. Thus ageritgoin the clan
by executing &RdTop event, recording the currefopOfStackvalue; this is regardless of whether they want to do
a TryPushor a TryPop Each subsequently executes hitery event; this is an abstraction of all the local working
done prior to the commit attempt, and in reality correspotada large number of individual instructions that give
rise to an exponentially large number of interleavings imaarrent context. Finally comes the commit attempt, the
CAS instruction, whose two outcomes are represente@doym andFail,. The rules for prioritised flow mean that
whichever agent is the first to try his CAS, must executedasm event. The rules for transitive symmetric conflict
mean that as soon as he does, all otbemm (I # k) events become blocked, forcing their agents to execute thei
Fail; events in due cours&.The rules for asymmetric conflict also imply that all remamRdTop events become
blocked, so that the next agent to read ThpOfStaclpointer starts a fresh clan.

7.2. Elimination Stacks

The preceding section gave a simple example of a not-satembprotocol, which was easily described using a suitably
enhanced event structure. The authors of [CG07, CGO06] dpikeir account of non-locking stacks further by giving
an improved account of theiminationmechanism, which is of interest for us too.

Basically, when contention for the stack is high, there W@l many failed operations on the stack. In such a
case, there will be manjuskers and manyPopers struggling to access tAepOfStaclpointer. If we could pair up a
Puster with aPoper, the former could simply give his data to the latter, airmidstack contention, and achieving serial
semantics. This is what the elimination mechanism triesotoTd achieve it thé?ushloop, whose body previously
contained jusfTryPush now containsTryPush TryElimination Similarly the body of thePop loop now contains

12 For later convenience, we note that all failures ocaftier the successful CAS.
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TryPop; TryElimination TryEliminationis a symmetric procedure that tries to swapa@er's placeholder piece of
dummy data with th@uster’s real data. The contention inherent in a non-lockingagph means that success is not
guaranteed.

The elimination mechanism consists of two tasks, which dagebcompletely separated in the implementation:
pairing upPusters withPopers; and actually carrying out swaps.

To allow Pusters andPopers to meet, clans are formed. The workings of differentlda not interfere, so we
only consider a single clan.

Access to the clan is via a locati@lanLoc!® ClanLoccontains an agent id. A new agent withkdvishing to
join the clan reads the agent id@lanLoc(subsequently referred to d9 and attempts to atomically overwrite it with
his own idk, via the CAS mechanism described earlier. If he is unsuégigsghich means that somatheragent has
overwrittenClanLocwith his ownid), he retries, repeating the read-CAS cycle until he sedse

The preceding ensures that agents joining the clan form mchad that each joining agektis aware of the id
of his predecessdk. The chain condition is not necessary for what follows, artsider the following. If we had a
more tightly connected structure than a chain, with more thrae successor of some aganthen if both successors
tried to swap witha, then the failure of at least one of them is guaranteed. Whilleain arrangement does not in itself
guarantee the absendcd failures, it does at leagtermittheir absence as we show below.

As well asClanLog there is another critical global data structubgD, of agent dataAgDis an array indexed by
agentid’s. Each entry in the array is a pdNST, data), constrained to be of such a size that a single CAS instnuctio
can update the pair atomicallNST can be one oPUSH POP, NONE and reflects the agent’s intentions. For the
PUSH casedatais the value to be pushed; f®OP, datais a placeholder for the value to be received; ONE
datais either dummy data thatRusker has acquired, or the desired data thBbger has acquired.

An agentk updates his entry iAgD prior to CAS-ingClanLog so thatAgD(k) is accurate as soon as he has joined
the chain. Suppose th&etHiny is the event of successfully joining the chain by aderacquiring the idk of k's
predecessor, referred to Bgnin [CGO07], in the process. Fig. 7 gives an event structuréiferensuing possibilities.

Agentk then readAgD(’k) to see if the two agents form a complementary pair (i.e. onthef aPUSH, the
other aPOP). Suppose that check fails (evévPry (fail to Match Pair byk)). Then there is no point in agekitrying
to implement a swap wittk. Howeverk may by now have acquired, or in the near future may acquireceessok’.
Sincek is unaware ok’’s existence, all he can do is wait a while, in the hope that su¢ might implement a swap on
his behalf. After a delay performs a CAS ogD(k), comparing with its previous value, and attempting to ovéswy
it with (NONE .. .). If the CAS succeeds (eveBWwHR; (fail to Swap Passive bl)), then there was after all nd, no
swap, and exits the clan unsuccessfully; and whichevelinfPush TryEliminationor TryPop; TryEliminationwas
under way fokk is retried. If the CAS fails (everBwR (Swap Passive b)), then therds new data inAgD(k), which
must have been put there by some genuingho detected a complementary pair and was able to implerhestiap.
Agentk takes the appropriate action with the data andTity&limination(and hence its calling operation) succeeds.

Suppose, by contrast, that the complementary pair cheé@rpezd byk succeeded (eveMPry (succeed to Match
Pair byk)). Thenk will try to actively implement a swap witf's data,AgD(’k), which he remembers from before.

To implement a swap of two items requires at least three ilmeatand as many updates. For aglenibcations
AgD(K), AgD(’k) and local data provide the locations, the intention beirextthange the data igD(k) andAgD('k).
The updates tAgD(k) andAgD(’k) must be atomic to prevent interferencekbyand’k respectively, who may also be
trying to access these locations during their own attentpitsiplement swaps.

Agentk first tries to overwriteAgD(k) with (NONE .. .) using a CAS, and comparing with its previous value. If
this fails (evenSwEIMe, (Swap despite failing to Eliminate Me i), then there is new data igD(k), put there by
k', who accessedgD(k) earlier, having detected a complementary pair Witfiherefore, ifk is aPuster, his data has
already been taken, andkfis aPoper, he can extract the new data fréxgD(k), exiting successfully in both cases.

If the CAS succeeds (eveBiMeg, (Eliminate Me byk)), k has prevente#d’ from interfering with his swap, and
must now complete his swap process by overwrithgdD('k) with (NONE data,) (wheredata, is k's original data,
previously stored in the second componenAgD(k)), comparingAgD(’k) with its previous value. If this last CAS
fails (eventEIHimy (fail to Eliminate Him byk)), then’k must have performed hEIMe earlier onAgD('k), andk’s
swap attempt failsk exits and must retry from the beginning.

If this last CAS succeeds (eveBtvEIHink (Swap achieved via Eliminate Him By), thenk has installed his own
datadata. in AgD('k) while simultaneously preventirig from completing his own swap attempt. Thereforek i§ a

13 Thus by having as mar@lanLoc as is considered useful, as many clans as is considerad cagfoe run in parallel, reducing contention, and
maximising concurrency. The mechanisms for determining hmanyClanLoc should be maintained is beyond the scope of this paper.
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(SwEIHimy) (EHimy)  (SwEIHiny) (ElHimg) — (SwElHimy)

Fig. 7. An event structure illustrating the working of a clan in tHiengnation part of a non-locking stack protocol.

Puster, he has succeeded in passing his daiofer’k, and ifk is aPoper, he already haBuster’k’s data which he
read earlier. In either cadecan exit successfully.

The above account of the ‘main path’ through the behavioua afan leaves a few loose ends to be tied up.
Firstly, the first agent in the clan, agdhthas no predecessor to work on; his only hope therefore ie tenapped
passively, and Fig. 7 shows the simpler event tree that hsezprently has. Secondly, the growth of the clan, i.e. the
accumulation of agents attaching themselves to the chaips &s soon as the current last agent executes his last CAS,
i.e. as soon as hiSwEIHimor EIHim takes place. The effect of either of these is to set the iostnu field in his
AgD slot toNONE preventing any new arrival from having a viable predecessactively swap with, i.e. any new
arrival becomes a new agentThirdly, any member of the chain similarly completing B&EIHimor EIHim breaks
the chain into independent pieces, since swapping actwitng predecessors lower down the chain can no longer be
interfered with by swapping actvity among successors higpethe chain. Consequently, if the chain happens to be
of even length, and all the odd-numbered agents happen tessfally complete SwEIHimevent, then all agents in
the chain succeed. It is in this sense that the chain arraggigrermitsthe absence of failures, while neverthelees
guaranteeingheir absence, since nothing guarantees that the dynafraadan will generate as ideal outcome as just
described.

8. Not-So-Isolated Atomic Actions and their Protocols

The preceding section described two not-so-isolated paigpthe non-locking stack, and its enhancement, the elim-
ination stack. In the case of the former, we gave a straightfad description of the protocol via an (enhanced kind
of) event structure, as in Section 4. This means that we caergge a protocol computation DAG for the non-locking
stack simply by generating all the configuration sequen€essaitable relational model of the event structure in the
manner described in Section 4.

In the case of the elimination stack however, matters aré¢ mbie complicated. The reader will have observed
that the description of the working of the elimination staeKectively breaks up into three separate event strusture
one of them not mentioned at all. The first is the event stredhiat describes the non-locking stack in Fig. 6, since the
original TryPushandTryPopform the first (and if successful, only) step of the more etabmmechanism. The second,
not described, captures how various agents compete tdhdktamselves to an elimination clan via the read-CAS loop
whose success is@etHimevent, once th@ryPushor TryPophas failed. Thirdly, we have the event structure that
describes the elimination mechanism itself, Fig. 7, oncagent has successfully attached to a clan.

The event structure account was structured thus, becausgegmated description, unifying all the features in a
single event structure, would be unhelpfully complicafBloe full working of the elimination stack, contains, likesth
global description of the Mondex protocol in a context of m@urses and many transactions, a lot of overlapping
complex possibilities, hard to capture succinctly by mezfressent structures.

So, as before, our event structure account was generigjibgrout certain aspects while suppressing others (par-
ticularly low level state details). When these are reirestatve get a replication of the forest (or DAG) of sequences
of configurations generated by the various event structarasindexed by the reinstated data values. In a multi-stage
protocol, such as our description of the elimination staxice this is done, it then becomes relatively easy to glue to-
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Fig. 8. A ‘slice’ through the factorisation of the refinement of aoraic action to a protocol, through the agent (middle) lajiére middle layer
contains actions that characterise, in an atomic fashitwat wach agent participating in the protocol achieves. To®gol layer below, contains a
multiple synchronisation assignment, with a selectedgmaltstep for each agent atomic step. The thin dark-hatatiestgtes are ‘jolts,” in which
agents other than the ones participating non-triviallyhia protocol are able to interfere with the protocol state do@trolled manner. The two jolts
shown are both trivial at the agent level since the prototaieschanges both abstract to the identity.

gether appropriate copies of the DAGs corresponding to ifferent stages, to get an overall description, and thereby
a computation DAG for the whole protocol.

Two issues —granularity and multiple agents— now need tmbesidered. Both affect the refinement relationship
between atomic and protocol levels.

Regarding granularity, unlike Mondex, for which all pathedugh the protocol are finit@priori, the non-blocking
nature of the stack algorithms opens the possibility thatesactivity may be repeated indefinitely without ever meet-
ing with success. In part, such possibilities may be avolmedrawing the boundaries of the protocol appropriately.
For example, in the case of the non-blocking stack, one cathsé the protocol consists of tHeyPushand TryPop
routines themselves, each with two finite outcomes (sucedgailure), rather than the enclosiRgshandPop op-
erations that only have a single finite outcome (success)also the possibility of non-termination. However this
approach is not fireproof. In the case of the eliminationlistéice loop body ofPushis TryPush TryElimination
and similarly forPop. Considering the loop body alone does not avoid non-tertiminasince the middle stage of
TryElimination joining the chain via th&etHimevent, is not guaranteed to succeed in a finite number of.sBeps
even though choosing the granularity of a protocol desoripin a convenient way may avoid some cases in which
infinite paths arise, we neverthless cannot completelydadealing with protocols that have infinite paths. On the
other hand, note that an infinite sequence of failed attetopgehieve some goal is inevitably unfair. This gives us
grounds for according infinite paths that arise in this wayfi@ient status to finite paths.

We can divide infinite paths into three categories. An infirpath can: (1) consume input and or generate out-
put, (and perhaps also manipluate the state in a nontrivag) W(2) neither consume input nor generate output, but
manipluate the state in a nontrivial way; (3) do no I/O andHarmore manipluate the state in a way that (according
to a suitable notion of observation) is observably triviaur contention is that all the infinite paths that arise in our
study of protocols fall into the third category. Certaintat is the case for the examples considered in Section 7 — the
infinite paths that arose there consisted of indefinitelgated attempts to access some resource via an action whose
effects were null if unsuccessful. Given that protocolsiashave them in this paper) are intended to accomplish (one
of) a finite number of outcomes in a finite amount of time, a sege of steps that accomplishes an infinite number
of observable state changes or I/0 actions cannot reallg@@ded as belonging to a single protocol instance. This
forces option (3) in the classification above, and furtheeforces the conclusion that an unobservable state change
must necessarily beefined bythe property that it maps (under the retrieve relation ofréfsnement between atomic
and protocol levels) to an identity on the atomic state.dnuitn, this then opens the way to two approaches to dealing
with such, relatively innocuous, infinite paths. In the firge allow protocols to have ‘jolts’ in them, modelled by a
special purpose agedolt, whose transitions trivialise under abstraction — an itdiqath then becomes an infinite
sequence of jolts in an infinite sequence of finite protoceketions by other agents. In the second, we develop ex-
tensions of the theory of Section 3 to accomodate these ypawia infinite paths. We develop the tools for the first
approach below.

Regarding multiple agents, unlike Mondex once more, in Wtdlt participating agents cooperate towards the
achievement of a single goal, making it sensible to repitabkervarious possible collective outcomes as single astion
at the atomic level, for the non-blocking protocols, therggecompete for resources in order to achieve their own
individual goals, and a representation of various possibléective outcomes as single actions at the atomic level
is (while perfectly possible) considerably less usefulwdaer, multiple agents are not hard to incorporate into the
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framework of Section 3. One can take the setup in Section@fastor the refinement from atomic to protocol levels
via an intermediate level. Let us call it the agent level.. Bighows a ‘vertical slice’ through the arrangement that
ensues.

At the top we have the usual shallow tree description of &l plessible collective outcomes as single atomic
actions — Fig. 8 shows one of the possibilities. The nextdaysvn is a computational DAG, as in Section 3, but to
enable the maximum reuse of the results of Section 3, it isice=d to be a forest — Fig. 8 shows one path through
it, and the ‘big step’ abstraction functid that maps the endpoints of the path to the before- and afteessof the
single atomic action above that the path refines. At the buttbe protocol layer is as before. Fig. 8 shows a single
path through it, and the ‘big step’ abstraction functifhthat maps the endpoints of the path to the before- and after-
states of the agent level path above.

Fig. 8 also shows how several individual steps of a path tjindhe protocol DAG are mapped, in a 1-1 order-
preserving manner, to (all) the steps in the agent levelipsaHi. This is a multiple synchronisation assignment (M SA
Obviously the 1-1 order-preserving property has to be ctestly maintained across all protocol DAG paths and their
mapping to agent level paths aboVe.

Fig. 8 also shows how in the presence of an MSA we not only Haeg@ast oriented and future oriented retrieve
relationsR” andR" that we had before, but various intermediate retrieveimaR , R, . .. too. It is not hard to see
that these can be calculated via formulae very similar tg &2l (13). It is equally easy to see that the results in the
latter part of Section 3 have analogues for this more gemeyed.

Finally, the dark-hatched shapes in Fig. 8 are the jolts atwive spoke earlier. Jolts are points in the running of
the protocol in which agents other than those deemed to ltigipating in the current protocol run can interfere with
it, i.e. they can modify the current protocol state. Such-gatiributed state changes must be dealt with by the prbtoco
in an appropriate fashion. Ideally, jolts map to the iderit the agent level, but not always. When they do, the agent
level clearly abstracts cleanly back to the abstract e, this yields a rationale for allowing such jolts to be (a#t)
ignored altogether — certainly in the abstraction from ddewvel to abstract level. When they don't, the relationship
between the abstract and agent levels becomes more cotaglisince the interference is no longer invisible there,
and appropriate arguments have to be advanced about thenwalyich the agent level paths with non-trivial jolts
relate to the abstract level. We will see instances of batlesyof behaviour below.

In a world of not-so-isolated protocols, tangles of proidnstances that are unbounded in time and space may
potentially arise. Jolts give us the capability of cuttingls tangles into finite pieces. Given our earlier insistahegt
a protocol instance must consist of a finite sequence of stiepsnfinite number of steps inherent in an unbounded
tangle of instances must be capable of being cut up into fiéees that do not interfere destructively with each other,
if our approach is to make sense in the not-so-isolated world

We now look at the details of the approach proposed abover&\the changes from the treatment of Section 3 are
relatively few, we just list them explicitly, and descrildeetr consequences for the theory as a whole. Where there are
more extensive differences, we give fuller details. As aandetel notational device, we distinguish previous congept
from their current versions using &"superscript. S&Atomic® refers to the definition of the atomic level in Section 3,
whereasAtomicrefers to the atomic level here.

The Atomic Level

e The atomic level is defined as in Section 3. Aomic(here) has the same propertiesfemic® (there); (28)
i.e. itis a shallow computation tree.

The Agent Level

The agent level captures the decomposition of the purelyiattevel (in which the state changes capture the various
alternative overall goals of the protocol), into atomigostef individual agents participating in the protocol, eaptg

the protocol’s overall goals as seen from individual aggmsspectives. This admirably clean picture is made more
cluttered by needing to allow for agent level jolts.

e The agent levehgentis defined like a special case®fotocol*; i.e. it is a computation DAG with all paths(29)
finite, but in addition, it is restricted to be a forest.

e The agent state spav@ factors into a product of subspacés = VA, x VA, x ..., as in Definition 5.3, so (30)
that each step of thegenttransition relation modifies (in the sense of footnote 6) ashone of them.

4 N.B. Recalling Mondex, despite it being an isolated prot@zal having an overall goal, the agent level makes senseeErne evidently two
agents, thé&rom purse and th&o purse, and a run of Mondex accomplishes either: (3gadby theFrom purse followed by &eceiveby theTo
purse, or (2) &endby theFrom purse followed by ar\bort by theTo purse, or (3)Aborts by both purses. Cf. Section 6.4.
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There is a set gfrotocol agentsThere is a bijection between the subspaceégffnd the protocol agents,(31)
so thatVAp, is the subspace associatedPa

There is an additional agerdplt, distinct from all the protocol agents in (31). (32)

Each step of thégenttransition relation is executed either by a protocol adg@tin which case it modifies (33)
the subspace associated wWih, or by Jolt, in which case it may modify any subspace.

No protocol agenPA may execute more than one step of a maximal path througihgeattransition (34)
relation, and no pair of consecutive steps is executedblty

To connect the jolted agent level with the abstract levelnesed to disregard the jolts in a suitable way.

o Let Agen? be the subforest dhgentconsisting of all itsJolt-free paths. (35)

e Then there is a functional ‘big step’ retrieve relati®h betweenAtomicandAgent, andR*P andRAF are  (36)
the related past and future retrieve relations. Using thesive relations, all the results of Section 3 hold

betweenAtomicandAgent.
The jolted and non-jolted parts éigentneed to be connected.

e There is a functiod which maps any maximal path éigentwhich contains dolt-executed step as initial (37)
step or final step (or both) but which contains Juit-executed step in its interior, to a pathAgent, and

such thatl is injective on the nordolt steps and the nodes of the ndolt steps and preserves the agent that
executes each staep.

The functionJ relates anAgentpath in which jolts occur only at the extremities, to Agenﬂ_ path in which such

jolts are disregarded, allowing tifegent path to be abstracted to an atomic transition, and relatia@tiginalAgent
path to that abstractiomgentpaths with jolts in arbitrary places must be transformed ipaths with jolts only at
extremities before they can be abstracted, a matter to whéchttend below.

One way of generating suitable functiahsen paths in a systematic way is to view thgenttransition relation as
being generated via the unwinding of the paths of a suitalé Bansition relation, similar to the way that Definition
4.5 is related, by unwinding, to Definition 4.4 in the evenasture world. With a suitable DAG, the paths without any
Jolt-executed step can arise as the interior portions of paithsJolt-executed steps at their extremity (or extremities),
and the unwinding can unambiguously relate the latter tddtraer.

The Protocol Level
e The protocol leveProtocolis defined likeProtocoF; i.e. it is a computation DAG with all paths finite. (38)

To handle multiple synchronisation assignments and otloetalting aspects properly, the agents and their properties
need to be reflected in the protocol level.

e The protocol state spaséfactors into a product of subspacés= V; x Vs, x ..., as in Definition 5.3. (39)

e For each protocol agefA, there is a subs@fpa = {Vpa1, Veas2, . ..} Of the subspaces of. For distinct
PA; andPAy, Vpa, N Vea, Need not be empty.

o For each steft, of the Protocoltransition relation, there is a protocol agéi#t or Jolt, that executesit.  (40)
o If St, is executed by a protocol agePh, then it modifies at most one state subspége/k € Vpa, and
St, may do I/O in the usual manner.
o If St, is executed bylolt, thenSt, maynotdo I/O.

We use the machinery of Section 3, superscripting witror * P’ to indicate the agent or protocol level where needed.
The refinement fronAgentto Protocolis then captured by (7)-(11) with uses Afomic® replaced byMPath, and
other obvious notational changes.

Definition 8.1. Let Pathf\(...) be a contiguous fragment of an agent path, Batif’(. . .) be a contiguous fragment of
a protocol path. We say thRatH(...) andPatif(...) areX-completable iffPatH(. . .) andPatH’(. ..) are exendable
(in either direction or both) to maximal pathaPath’(...) andMPatt’(. . .) which witness the obvious analogue of
(11). Any such extension is calledacompletion ofPathf(. ..) andPatif(. . .).

Definition 8.2. Letv, be an initial state oProtocol and letRP be the (functional) ‘big step’ retrieve relation between
the AgentandProtocoltransition relations. A multiple synchronisation assigmtn(MSA(v, )) for the valid DAG from
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v is a subset of its nodelt steps, such that for each maximal pMPRattf’ (v, . .., ve) through the valid DAG from
vi: if RP(avi,Vv;) whereay is an initial state ofAgentandRP (aw, Vi) whereaw is a final state oAgentboth hold,
and ifMPathf\(avi, . .. ,ave) is a(ny) maximal path of the valid DAG iAgentfrom av; to aw, then there is an order
preserving bijection from all the nondolt steps oMPat(av, . .., aw) to the MSAv, ) steps oMPat’ (v, . . ., Vg ),
such that for everst) in MPathf'(av, . . . ,avr ), the same protocol agent executes bthand6(St}). An MSA(v; )
for everyy, constitutes an MSA foProtocol

Definition 8.3. Let an MSA forMPattf’ (v, ..., ve) andMPati(au, . .. ,aw) etc., be as in Definition 8.2. If the bi-
jectiond extends t@”, in which the order preserving bijection on ndok steps of extends to an order preserving inclu-
sion of all theJolt steps oMPathf(avi, . . ., ave) also, then we say thddPati (v, . .., ve) andMPathf(av, . . . , ave)
areJolt-compatible. An MSA foiProtocol which isJolt-compatible for everyiPati” and any abstractiokPatif* of

it is a Jolt-compatible MSA forProtocol

Definition 8.4. We define the ‘past oriented’ retrieve relatid%ﬁ:

Rgp(avs,vt) = (3 avi, aji,apr,avi, - .., ajs, aps, (&, - -, ), Vi, J1,P1, V1, -« - Jts Py (T, ..., p) @
R°(avi,vi) A FPathf,, . (av,aji,ap;,...,ajs aps,aw) A FPath (vi,ji,p1,- - jupuv) A
R(avi,vi), FPattf,, FPatt,  areX-completable with all:-completionsJolt-compatible A
the number of steps itw, . . ., v) and the number of MSA) steps in(x, ..., p) are equal (41)

and the ‘future oriented’ retrieve relatioﬁgF:

RIF(avs, ) = (3 @jsp1, @Psp1, V41 - -5 AV, (Y, ., 6), 1, Prpt, Vi - Ve, (py o, T) @

FPattf, _, FPatlf . R(aw,Ve) areX-completable with al-completionslolt-compatible A
the number of steps iy, . . ., §) and the number of MS4,) steps (for some,) in (p,...,7) are equal (42)

With these tools in place, we can prove evident analogue$4)f(19) in which arbitraryProtocol steps can figure

in various simulation-related POs, featuring appropijatdosenR relations from the family just defined. One can
then complete the programme of Section 3 in this more comgit setting. There are minor changes of notation
and terminology, but insisting that tigenttransition relation is a forest ensures that even CorolBa@ysurvives in

an appropriate form. Also helpful, is the fact that the aiddial detail we introduced concerning protocol agents is
essentially irrelevant to the mathematical requiremehts@refinement proofs.

We now turn our attention from refinement proofs to seriaitgg which is inevitably going to be more complicated
in the presence of jolts. Unlike the situation in Sections18@ &, where serialisation was purely a matter for concern
at system run time, we now need to lift some of the reasonirigeg@tomic-agent-protocol world. First we introduce
some terminology.

Definition 8.5. Suppose given aAgenttransition system and a correspondifgtocol transition system, and the
refinement machinery given ig°. Suppose also givenJolt-compatible MSA forProtocol as in Definition 8.3. A

contiguous subsequence of steps of a maximal path throwgprtitocol DAG not including dolt step is called a
portion. A portion is called a:

1. skip equivalent no external output portion (SENXOP) lif¢ tbefore-state of its first step equals the after-state of
its last step, and no step produces an output which is not mpanother step in the same portion,

2. skip equivalent no external input portion (SENXIP) ifetbefore-state of its first step equals the after-state of its
last step, and no step consumes an input which has not bgeut bytanother step in the same portion,

3. general no external output portion (GNXOP) iff it is not BNSXOP and no step produces an output which is not
input by another step in the same portion,

4. general no external input portion (GNXIP) iff it is not a ISKIP and no step consumes an input which has not
been output by another step in the same portion,

5. complex portion (CP) iff it is not a SENXOP, SENXIP, GNXOPG@NXIP.
In addition, any contiguous subsequencddf steps is called a:
6. complex jolt (CJ) iff it includes the image under #hefunction of aJolt step ofAgent
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Fig. 9. The shifting of abstractly trivial jolts past SENXOPs andN6iPs. On the left, the past of a CP contains an ATJ which ccetiter a
SENXOP, so the ATJ is pushed further into the past. On the,riga future of a CP contains an ATJ which occurs before a SIPNs¢ it is pushed
further into the future.

7. abstractly trivial jolt (ATJ) iff the before-state of ifgst step differs from the after-state of its last step, baoes
not include the image under ti#é function of aJolt step ofAgent

8. skip equivalent jolt (SEJ) iff the before-state of itstfissep equals the after-state of its last step, and it does not
include the image under tite function of aJolt step ofAgent

Evidently the status of jolt @rotocollevel depends critically on the synchonisation assignraadton its extension

to Agentjolts viag’. Of the three kinds of jolt, SEJs are the least objectionableegards disturbing serial semantics
— they are not even observable withHnotocolmaximal paths. This is not to say that they can be dismissgitin
since a read-only access to some state that is being usedoliyeartransaction can reveal information which can
subsequently be used to influence a system run in a way thategoserial semantics. However we will assume that
this is not the case for SEJs. In other words:

e Weassumehat the fact that thErotocollevel paths that SEJs intrude into cannot observe themfierad (43)
by a corresponding inability of any system run as a whole &eoke them.

What (43) says is that there dneggher level system invariantiat maintain serial semantics despite the intrusions of
SEJs.

The other kinds of jolt are more drastic than SEJs. Both CdsAdds can be observed withiRrotocollevel and/or
Agentlevel paths, so, if we are to recover any semblance at allridlssemantics, we must somehow get rid of such
jolts from the interior ofProtocolandAgentpaths. We adapt some concepts from 2P theory.

Definition 8.6. (Assuming the preceding machinery) a maximal path in a patbAG is jolt-normal iff:

1. it contains exactly one (real or deemed) CP — if there isea €P (as given in Definition 8.5.5), either the
before-state of the first step of a SENXIP or GNXIP, or theraftate of the last step of a SENXOP or GNXOP,
may be called thdeemedCP; both eventualities are covered by the phrase ‘(deemid) C

2. before the (deemed) CP, the only kinds of portion thatgule@ CJ or ATJ are SENXOPs and GNXOPs,

3. after the (deemed) CP, the only kinds of portion that felloCJ or ATJ are SENXIPs and GNXIPs,

4. the steps of the path are partitioned into contiguousesyeEnces, each of which is a (deemed) CP, SENXIP,
GNXIP, SENXOP or GNXOP.

In addition:
5. aprotocol DAG is jolt-normal iff every path is jolt-norma

We now describe how we can exploit the preceding for seatdis.

In Lemma 5.7 and in Theorem 5.10 we felt able to interchangessbecause the state components they affected
were disjoint. Innocuous though this interchange of stepg Ioe, the serialisability that it leads to is still a definitiof
a notion of correctness, which exists independently of,carhot be derived from, other considerations (in particula
from the notions of refinement that we have worked with). la ¢tlarrent context, we will be forced to adopt an even
weaker notion of correctness connected with serialisatiod we make up for the laxitude this introduces by assuming
that what it permits is acceptable when measured againsttjutrements of the system. This again brings us back to
the presence of higher level system invariants, withoutWithe semantics of the kind of ‘porous’ transactions we are
contemplating becomes potentially nonsensical.

For protocol paths containing non-trivial jolts (i.e. ATaisd CJs) in their interior, our goal is to push the ATJs and
CJs to the extremities of the path, after which they can bsorably disregarded as far as the current atomic goal is
concerned.
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Let us look at the elimination of an ATJ adjacent to a SENX®@&nloccurrence of an ATJ (with before-state
and after-stat®’) in a path of a jolt-normal protocol is preceded by an SENX@Rh before- and after- states both
V'), we can hope that we could shift the ATJ past the SENXOPaoépd the SENXOP with one that has before- and
after- states both, generating thereby some other path in the protocol DAG wiies semantically acceptable as
a substitute for the original one, according to the requéeta of the system. If such a thing is possible we say that
the ATJ has beeshiftedinto the past. The left hand side of Fig. 9 illustrates thistfee case that the SENXOP is
a refinement of an agent level transition (according to bletRVP or RIF retrieve relations); the right hand side of
Fig. 9 illustrates the dual case of pushing an ATJ into therﬁupast a §ENXIP. There are degenerate cases in which
the SENXOP refines the identity and the agent level consfgtsba single state, of course. Pushing into the past is
desirable for ATJs occurring before the CP of a jolt-nornraltpcol, and pushing into the future is desirable for ATJs
after the CP.

At this point we emphasise one thing. Unlike the case of Didimb.6 and Lemma 5.7, in which individual steps
were interchanged, the shifts of Fig. 9 (and of Fig. 10 beliowdlve the interchange of contiguous sequences of steps
en bloc Since the states involved are in principle shared, theilddtanterchange of a step at a time would almost
inevitably break many detailed low level invariants whilési in progress, so we do not even contemplate such an
approach. Instead, then blocshifting approach, albeit avoiding such pitfalls, neveltiss needs to be approached
with care, since the applicability of a shift may well depemda global property of the protocol transition system as a
whole. Thus it must be the case that in all system runs, thecad} presence of the two continguous subsequences of
the before-side of the shift, can in all cases, be replacetidywo continguous subsequences of the after-side of the
shift, and the result is still a valid system run, before te of the shift can be sanctioned as a local transformation.
This departure from purely local reasoning, while obvigusigretable, is a more or less unavoidable consequence of
interfering with the differing uses by different agents based state.

Let us now replay the above for a CJ. The analogue here woutd bhkift the CJ past a SENXOP. Since a CJ
abstracts to a non-trivial step at agent level, the analafiég. 9 would have a quadrilateral not only at the lower
protocol level, but also at the higher agent level. Unfoatigty the agent transition relation has been stipulate@ta b
forest, so it containao quadrilaterals. Thus instead of being able to argue abaedylocal modifications to paths,
moving jolts and replacing SENXOPs in a small portion of théhpwe must introduce mappings on paths as a whole,
and to say that one agent path is the CJ-shifting of another.

One way of generating such mappings on paths in a systemayiésfto again view thégenttransition relation
as being generated via the unwinding of the paths of a seitBBlG transition relation, as for Definition 4.5 and
Definition 4.4 in event structures, as noted earlier. Witbhsa DAG, and the mapping on paths round one of its
guadrilaterals available, the required mapping on patltearforest is then generated by relating the two DAG paths
to their forest representatives, and extending to everyimabpath that enters and leaves that quadrilateral.

We note moreover that a functional big step retrieve refabietween agent and protocol levels also means that
distinctAgentfinal states must refine to distinétotocolstates, so that the absence of a quadrilateral dgfemtlevel
implies a corresponding absencePabtocollevel. Thus the necessity for mappings on paths as a whofgagedes
down a refinement hierarchy when retrieve relations aretfanal.

Thus far we have explored shifting ATJs and CJs past skipvatgrit portions, since that leads to quadrilaterals
in the Protocoltransition relation with the same state along two of its sjdehich is the easiest situation to visualise
and describe. But there is no reason to stop there. Obviowsign shifting a CJ which starts with before-state
say, and ends with after-statesay, its source and destination positions in the shift magt btart withv, and must
both end inv'. After all, a CJ describes activity specificaliytsidethe control of the current protocol path, so there
is no possibility to change any aspect of it by arguing loc&bm insidethe current protocol path. However, that
is not to say the lead-in ta must be of a prescribed form before and after the shift, nat the lead-out fronv’
must be of a prescribed form before and after the shift. Qimlig if we are going to reason locally (or in a manner
that at least corresponds to local reasoning after unw@dis above — and as is highly preferable), then the before
and after paths must diverge at some common sf#tesay, and (in the DAG picture) must converge again at some
common state®" say. This yields a formulation of shifting past GNXOPs and)X®Rk, illustrated in Fig. 10. There,
the CJ is shifted, in a manner that presumes to make progressds expelling the CJ to one end or the other of
the resulting maximal path, but no assumptions are madet dl@segments of protocol path that act as lead- to
after divergence from™", or that act as lead-out after until convergence to®", save the absence of external input
or output, as appropriate. In fact, once a CJ is sufficiedtgeto one or other extremity of a maximal path, there is
nothing to prevent the interpretation of all or part of soremaining outlying GNXOP or GNXIP as itself a jolt (from
the point of view of the current protocol), and thus to expélam the current transaction. In Section 10.3 we will see
an example in which this flexibility is exploited to maximurffiest.
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Fig. 10.A general shift of a CJ.

Definition 8.7. A Protocoltransition relation isesolvabléff, via series of shifts, any maximal path can have its ATJs
and CJs moved to the beginning and/or end of the resultirig paidulo the reinterpretation of any remaining GNXOP
or GNXIP as itself a jolt.

The end result of resolving all the ATJs and CJs need not benpletely jolt-free protocol path: SEJs may remain in
its interior. Such interruptions, which amount to ‘sublimal skips’ during the protocol path, are tolerated (modulo the
assumption of global unobservability), since they are bioitbservable at protocol level, and also furnish a mechanis
whereby a potentially unbounded (in space and or time) &nfjinterfering transactions may be cut up into finite
pieces, as noted earlier.

9. Serialisation of Resolvable Jolted Transactions

In this section we present a serialisation constructiorr@mate to the ‘jolted’ protocols of Section 8. We reiterat
that shifting amounts to a notion of correctness. Theretfugeserialisability property that rests on it is also a notd
correctness. As before, we just refer to the earlier treatméiere the differences are slight, giving more detail veher
it is more important to do so.

e As in Definition 5.1, a system has a number of system statgsicksV; , W, . . . and the the total system(44)
state spac®/ = W; x W, x ... is the product of all of them. There is also a numbesp$tem agents
Ag, Ay, . . ., each associated with one or more of the system state swdssgrW, = {Ws,, Wh,, ...} for
A, etc.

Note the distinction betweesystem agentand protocol agentdntroduced in the previous section. The latter will
shortly be matched to the former.

The definition of an instantiation of Rrotocolmaximal path, Definition 9.1 next, is comparable to Defimto4
above, but is more complicated for a number of reasons: (I)eweesent agents at both protocol and system levels,
to model the various agents active in (especially) notsstaied protocols; (2) we give each agent the possibility
of having several distinct state subspaces, to convegiemidel both shared and private local state; (3) we allow
distinct agents to have state subspaces in common, to mualeldsstate; (4) in Definition 9.1 we utilise more of the
‘runtime information’ contained within the image of the rolaing compared with Definition 5.4, in order to allow
more flexibility for the jolts.

e A system run is defined as in Definition 5.2, except that ren{p®j each step involves changeaioe ofthe (45)
system state subspaces associated with the agent whoexédcut

Definition 9.1. Let Atomic Agent Protocol . .. (with all the attendant machinery) be a protocol implemamtin
atomic action in the sense of the previous section. We sagyistem ruri/” instantiate$rotocoliff there is a maximal
path through the protocdiPath, 5. ... -y (Vi,j1,P1,V1,]2, P2, Ve, ..., VF—1,]F, PF, V) @nd three mapsiag, 7a andrs
such that:

1. Tagis an injective function from the set of protocol agents\gkntto the set of system agenfs,

2. for each protocol agefA, there is an injectionss(PA, —) from the selpa (0f the subspaces &f associated with
PA) to the seW,, pa) (of the subspaces & associated withag(PA)),

3. for each protocol agemA, for each subspacep, in Ve, there is a mappa) : Veal — W, pa)y, andra =
IIpaves, TPa) (Where the product ranges over the subspagas, for eachPA),

15 In particular,Jolt is never in the domain ofag.
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4. 7sis an injective function defined on (all) stepsMPath,, 5 .. ., — if a step is executed by a protocol ag&w{
thenrs maps it to a single step @f, executed by system agemny(PA); if a step is executed bjolt, thenrs maps
it to a (not necessarily contiguous) subsequence sfeps,

5. 7sis order preserving, i.e. Bt; precedesSt, in MPath,, 3 .. ., thenrs(St;) precedess(St,) in 7,

6. foreach ste@tz(vi—1, jt, pr, V) in the domain ofs executed by a protocol agepa, if Vea is the agent component
of V modified duringSts(vt—1, jt, pt, t), thenW,_pa)y is the system agent subspace modified during the step
TS(S%(Vt—lvjtv Pt, Vt))'

7. for each stefStz(vi—1,jt, Pt, i) in the domain ofrs executed by a protocol ageR#, if 7s(Stz(Vi—1, jt, Pt, Vt))
= SY(PA) (Ws_1, ks, 0s, Ws), and the transitioms_; — ws modifies system subspaté, thenWe = W, pa|) €
W,.,,pa) for somel (reiterating 6 aboveypa|(Vi—1) = Ws—1, jt = Ks, Pt = 0, 7pa1(Vt) = Ws,

8. if Sy, is a step off in the image ofrs that modifies a system state subsp@tenvhereW, = 7a(Vpa)) for some
protocol agenPAandl, andSy; is also a step of in the image ofrs that modifies\,, then no step of between
Sy, andSy, may modifyW, unless it too is in the image ot.

When we want to emphasise the details, we say that systerfi instantiaterotocolvia 7 = (7ag, 7a, 7s) at step
7s(St.) of 7, whereSt, is the initial step ilfMPath, ... ).

e Suppose a shift of an ATJ or CJ is representdelatocollevel by transformingPathinto MPath, such that (46)
there is a corresponding transformation friPattPA® to MPath®AC in the DAG picture, andViPattPAC
andMPathPA® have a common suffikiPatPAC(veon . . ) after the local transformation. MPath(veo". . )
andMPatH (v°°". . .) are the corresponding suffixesifiPathandMPath, we assumethat MPath(v°". . )
can be instantiated within a system riinon a given subsequengeof 7 iff MPath(v*°"...) can also be
instantiated irZ” on.

Lemma 9.2. Suppose that system ruh instantiates a maximal patiiPath of Protocolvia 7 = (7ag, 7a, 7s), SO
that a shiftable ATJ or CJ and an immediately preceding SERX® GNXOP are mapped b into anadjacent
pair 7s(-NXOP) andrs(-J) of contiguoussubsequences @f. Let MPatH shift 7s(-J) into the past irfProtocol Then
75(-NXOP) and7s(-J) can be interchanged i, to yield an instantiation oMPath in a system rur?”’ via v’ =
(Tag» Ta» 7$) CONstructed in the obvious way. Dually for an ATJ or CJ and amediately following SENXIP or
GNXIP. We say thats(-J) has been shifted iff to yield7”.

Proof. We have to show that’, as described, is a valid system run, and that it instasthdEath as claimed. But this

is easy. Since a SENXOP or GNXOP produces no outputs, pughirig the future past an ATJ or CJ MPath does

not threaten to demand that any input of the ATJ or CJ is corsibefore the corresponding output has been produced.
Also the instantiationr merely instantiates any external I/O of SENXOP or GNXOP ahdTd or CJ, and extends
the protocol state by the remainder of the system state.Becaf the contiguity and adjacency@f-NXOP) and
75(-J), this additional system state remains unchanged througheMNXOP) andrg(-J), and therefore interchanging
75(-NXOP) andrg(-J) results in a valid system ruf’, which evidently instantiatddPath via ar’, constructed in the
obvious way, using (46). O

Definition 9.3. Suppose given a maximal patiPathin a jolt-normal protocol, and assume the notions of externa
dependency definition (XDD), and of input and output depeggesets(IDS, ODS) as in Definition 5.8. Then the
protocol is 2PJXDD-normal iff the following holds: MPathcontains a real CP, then the CP, considered in isolation,
is 2PXDD-normal according to Definition 5.8.

Definition 9.4. An instantiation of a 2PJXDD-normal protocol is called aJXPD-normal) transaction.
For the remainder of this section all transactions will bé’2BD-normal.

Theorem 9.5. Let 7, be a run of a system which consists entirely of the steps n#retions of a family of resolvable
2PJXDD-normal protocot§ such that:

1. each instantiation of a protocol path is partitioned BENXIP, GNXIP, SENXOP, GNXOP, CJ, ATJ, SEJ pieces,
2. every step offy is in a SENXIP, GNXIP, SENXOP, GNXOP or CP of some transagtion
3. the steps of the instantiation of any SENXIP, GNXIP, SENPKGNXOP belong to a single transaction.

16 go there is a set of maximal paths through a set of resolvab&bBD-normal protocols, and a set of instantiations of tharfig, and the set of
steps of7j is the fiot necessarily disjoifitunion of these instantiations.
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Then there is a serialisatidh,, of 7y, generated by commuting adjacent steps and shifting ifiatems of jolts and
portions, in which each instantiation occurs as a contiglsauies of steps, interrupted, at worst, by SEJs.

Proof. For each transaction iy choose a pivot as follows:

1. if the transaction instantiates a real CP, choose a p#&/ot &laim 5.10.1,
2. if the transaction instantiates a deemed CP, choosedhewtose before-state or after-state is the deemed CP.

Consider the directed grajibep, whose nodes are the transactionggfand whose edges are given by.:—  iff:

1. an output of a®DSstep ofr; is an input of ariDS step ofr,, or,
2. there is a system state subspace modified by hatimdr andr’s pivot occurs earlier irfy thanr’s.

Claim 9.5.1Dep, is acyclic.

Proof of Claim.As in the proof of Claim 5.10.1, we can interpi2ep, in the set of pivots. For clause 1, external /O
can be interpreted as arriving at or issuing from the pivoa tfansaction, and for clause 2, well it refers directly to
pivots anyway. Since all the edges@ép, thus interpreted, are oriented towards the future, angitras are linearly
ordered by time, the claim follows. oo

The remainder of the serialisation splits into three pha@edion Coalescencdolt RedefinitionResolutionin all
cases we proceed in stages, each of which affects only apimiten of the system run as in Theorem 5.10, following
the structure oDep, from its root nodes. Of course 1 is infinite, we can never complete any of the phases before
starting the next. In such cases we assume that the workithg efirious stages of the various phases is interleaved in
such a way, that whenever some stage of some phase is pedfamepreceding stages of any preceding phases that
it depends on in order to see the context it expects, havadieeen done. Since each stage has only a finite ‘reach,
this will always be possible. We do not dwell on the technitethils of the scheduling needed to achieve this.

Portion CoalescencéiNorking on the transactions in an order compatible vid,, we move steps of the system
run until, for each portion of any transaction, the stepshefportion are contiguous. For a given transaction, we start
with the CP, and move all its steps inwards towards the piMotis the CP’s last step before the pivot is swapped with
its successor steps, in turn, until it arrives just before givot itself. The assumption that the CP is 2PXDD-normal
and condition Definition 9.1.8 ensure that this processesets. Once all the pivot’s CP predecessors come just before
it, the pivot’s CP successors are moved to just after it. ThesCP’s next step after the pivot is swapped with its
predecessor steps, in turn, until it arrives just after tivetpand similarly for the remaining steps of the CP.

There remain the SENXIP, GNXIP, SENXOP, GNXOP portions.&8ENXOP or GNXOP, all the portion’s steps
except the last one are moved into the future until they diitdast one in a contiguous order-preserving sequence.
Once more, Definition 9.1.8 ensures that this works. For aXdBNr GNXIP, all the portion’s steps except the first
one are moved into the past until they abut the first one in diguwous order-preserving sequence. Definition 9.1.8
ensures that this works. We call the last steps of SENXOP@Rs, and the first steps of SENXIPs, GNXIPs, the
subpivots of the transaction.

Jolt Redefinition.In the previous phase, due to movement of individual stépEsgap between two consecutive
non-Jolt portions of a transaction may have acquired steps otherthizae originally matched to the intervening jolt.
Jolt Redefinition is simply the process of redefining any sutfitrated’ jolt between two portions to includall the
steps that now fall between them, and to maintain this camd@ynamically through the resolution phase, next.

Resolution. Since the preceding phases did not move any pivots or sutspiralative to each other), the system
run, as it now appears, is a sequence of non-overlappinggcsion portions which embody the original dependencies
of Depy. Moreover, each transaction’s jolts now consist of someerges of portions belonging to other transactions.
Since we assumed that all the protocols figuring in the oailgaystem run were resolvable, we can now apply the
resolution strategy of Definition 88t seq Sweeping through the transactions in an order compatiliteDep,, we
apply for each, a series of shifts which moves all its SENXRXIP, SENXOP, GNXOP portions until they (or what-
ever similar portions supersede them in the process) abutahnsaction’s CP (which is not moved throughout). The
result is a sequentialisation @ in which only those SEJs that occur between the CP and itsrimos surrounding
SENXOP, GNXOP and SENXIP, GNXIP portions, survive to intgtrthe otherwise completely sequential execution.
We are done. O

Given that after the above serialisation, there are onlysSfadbedded in the interior of any transaction, and that we
have a global assumption that any state that they might ebsemot used to violate serial semantics, it might be
possible to argue that such SEJs can be replaced bgkipg, and these may then be moved to outside the transaction
in which they occur, achieveing a fully serial execution.
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10. Examples of Serialisation of Resolvable Jolted Transéons

In this section we make a few remarks about some situatioagyrdfrom our motivating examples, which embody
some of the more elaborate serialisation techniques disdusbove. We start with the simplest case, lock-free stacks

10.1. Lock-Free Stacks

The straightforward lock-free stacks of Section 7.1 aratiebly easy to interpret in the framework we built. The
overall protocol DAG decomposes into a set of cases thatitbesihe workings of clans of all possible siZ€sAbove

it, the agent forest summarises this for the sets of agemtdvied, and above that, the atomic shallow forest captures
in a single transition, what each more detailed outcomeraptishes overall.

Thus for a clan of size, at the atomic level, there will beatomic transitions, each representing the fact that agent
k succeeded in his update while the others failedkfar{0...n — 1}. Descending to the agent level, the agent forest
will contain, for a clan of sizen, a subtree containing! branches emerging from a common root, and each branch
will consist of aComm, step representing the success of agefllowed by (n — 1) moreFail steps representing the
failure of the other agents, ordered in some way. Since tisane restriction on the order in which tija — 1) other
agentdrail, there will be(n — 1)! permutations of these, and allbranches gather into a tree with a branching factor
that starts ah and decreases hyat each level, by identifying common prefixes. Note that weeheot mentioned any
Jolt steps in the agent transition relation. There are none; weotloeed them.

At the protocol level there will be more complexity. Each rimaal path will start with theRdTop step for the agent
| that initiates the clan (assuming we are not numbering agarthe order they join the clan, which always remains
an option). This step is then followed by a serieRadfTopandInter steps representing the arrivals and local workings
of other agents that take place prior to themm step of the successful agent. (The only restriction on tiResEop
andInter steps, is that for aninter step there must have been an earReiTopstep.) At some point i this activity,
agentk succeeds. Once agdahas succeeded, there are no mRopsteps, and the maximal path is completed by
whatever outstandintnter steps andrail steps there are for all agents other thathese steps being interleaved in
some causally valid order. Note that as for the agent triansitlation, we have not mentioned adgit steps; there
are none, we do not need them at protocol level either.

The models we have described at the various levels of altistnagre more or less fixed. Certainly that is the
case for the atomic and protocol levels. The agent levelriatiey allows a little more flexibility, but given our
understanding of the protocol, there is little scope foeiming an agent model that appears as ‘natural’ as the one we
have sketched.

Having fixed the models, we can contemplate possible refinestetween them. Again there are some ‘obviously
natural’ refinements. As regards the atomic to agent refimgra# playouts of the protocol event structure feature suc
cess for one agent, and failure for the remainder, and theess@lways comes first. So an atomic to agent refinement
that captures this in the most natural way is the most coimvinsynchronising the atomic action with the successful
agent’s step (which always comes first) does the trick. The simple synchronisation assignment, as in Section 3.
But of course, the refinement theory of Section 3 allows plenbther possibilities, which we do not dwell upon here.

The agent to protocol refinement is constrained by the neadhtch the order of agent names appearing in any
maximal pathViPath of the agent model, with the order of agent names that arautingdhe steps synchronised with
them in the MSA for any corresponding maximal pafiRattf’ in the protocol model that refinddPatH. This is a
modelling constraint rather than one forced by any faetfith@refinement theory. It is simplest and most transparent
if we synchronise the protocol level success or failure efenagentag in MPathf’ with the relevant agent level
success or failure event faig in MPath*. Thus for anyMPatHh’, we have to choose the right agent level pisifRath*
for it to refine: the successful agenof MPath’ has to execute the agent level success event, the first sképaift’,
and the remaining fail events dPath* must be executed by the same ordering of agents as occutsefdaiting
events ilMPattf’. This gives us a multiple synchronisation assignment asadeled by Definition 8.2. The absence of
jolts at either agent or protocol level implies that we dolma¥e to worry about the additional constraints in achieving
a Jolt-compatible MSA as per Definition 8.3. Of course, there anm@tous alternative possibilities for refinement,
as permitted by the theory of Section 8, immeasurably areglifi we decompose thiater steps into the low level
sequences of local instructions that they represent fdr agent and then consider all the possible valid interlegsvin
that result.

17 This will make the protocol DAG infinitely wide and it will hapaths of arbitrary length, but all paths will still be finite
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Concerning the serialisation properties of the above patmodel and accompanying refinements, we note that
aside from the additional structure imposed by taking nésgent names, we have not deviated from the framework
of Section 5 at all. We have managed to design the descripfitotk-free stacks so that that any agent that impacts a
clan becomes a member of it, and thus the the entire workitigeotlan becomes a finite piece of the overall protocol.
In particular, the entire model enjoys the full 2P seridliity property.

10.2. Elimination Stacks

Let us now consider the extension of the lock-free stack éoefimination stack. One aspect of our earlier treatment,
was the decoupling of the lock-free initial part of the molaberate mechanism from the elimination part itself. One
justification for this, and a perfectly adequate one, istih@tomplete protocol, as described in [CG07,CGO06], femstur
an unspecified and completely non-deterministic mechafisrassigning lock-free-failing agents to clan locations.
This in turn allows subsequent refinement to mechanismshndrie optimised to system-specific desiderata. For this
reason we will continue to discuss the two parts separately.

In the elimination mechanism, the workings of a clan arerdslied by the circumstance of the last successful
joiner (i.e. the agent at the end of the chain) executindetide event before any other agent has successfully joined
the clan. Obviously clans of arbitrary size are possiblajatpading to protocol DAGs of unbounded width and depth,
but still with all paths finite.

At the atomic level, the single transitions will represem various possible global outcomes: since the critical
actions of the protocol are swaps, each involving two adjaegents in the chain, overall, some even number of
agents which happen to be adjacent in pairs in the chain areddwemplementary operations can succeed, the rest will
fail; this will summarise the global outcome of the workinftloe clan.

At the agent level, the global outcome is reflected in indigildagent steps, so for a clan of sizeghere will ben
steps in any agent level maximal path. In such an agent leaimal path, successful pairs havBashstep followed
(either immediately or later) by the correspondipap steps. Failing agents haverail step. These step names may
be made more elaborate, to record eg. who was the active andhehpassive partner of a successful pair, or the
mechanism by which &ail came about. And not all naively conceivable interleavinbighe steps need be possible
since causality (as partly captured in the asymmetric feataf the general event structures) must be respected. For
instance, if two contiguous adjacent pairs both succeed, time order of events must not be such that the middle pair
of the four agents involved is forced to succeed. The pdifiidepend, at least partly, on the level of detail reeord
in the agent level steps. To make the remaining discussior nuncrete, we will assume that we merely model, for a
given agent, whether its step wRssh Popor Fail, and that the state modelled at agent level just concerrsrigée
local data item that was pushed or popped in a successfyl@asat was to be pushed or popped in an unsuccessful
case. As for the lock-free stack, we have no needfitrsteps at agent level.

At the protocol level, we have steps corresponding to thatsua (a finite subset, corresponding to a finite number
of clan members, of) Fig. 7, again interleaved in a large nemab possible ways, commensurate with causality. In
addition, we have the option of including events corresjogtb those concurrent attempts to join the clan while the
possibility to do so is still open, but that fail, events (veeasuccessful couterparts are thetHimevents of Fig. 7)
which are not represented in Fig. 7. Regarding these, if warae weak fairness, then for any finite size of clan, there
will be a finite (but potentially unbounded) set of them.

Rather than clutter the protocol definition itself by indlugl these failed joining attempts as the acts of agents
involved in the protocol, we can conveniently represeniitias SEJs interleaved into the paths of the protocol. This
makes the agents and steps of the protocol transitionealatirrespond to the events in Fig. 7, with the interjectibn o
finite numbers of SEJs into the protocol’s paths. This is ectinal in terms of representing the important aspects of the
protocol. Moreover, since failing clan joiners do not affdeeir subsequent behaviour on the basis of the information
they gain, the higher level atomicity invariant is maintdnas is appropriate for modelling such interruptions a3sSE
So at the protocol level, we do have jolts, but only of the damapkind, those that are refinements of the identity at the
agent level.

Concerning refinement, since there is no common featurd gfadal outcomes to fasten onto (sind®gextremis
all agents of the clan carail, eg. by executing theBwPevents in numerical order), we have no ‘natural’ refinement
between abstract and agent levels to focus on. Any of the mefimements permitted by Section 3 is as good as any
other. Each simply makes the single atomic level step cpomd to one of the agent level steps in an agent level
maximal path that refines it.

For the agent level to protocol level refinement we can ddle lietter, in that the presence of agent names at both
levels of abstraction and the necessity to match the ordagent names in a maximal agent level path with the order
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of agent names occurring in the MSA for any maximal protoewél path that refines it enables us to construct a more

‘natural’ refinement. Thus we can synchronise the sequeirggoaess or failure events at protocol level, as they occur

along a maximal path for the relevant listing of the protoagént names, with the agent level sequence of abstract
agent successes or failures for the same ordering of priigents. But, as ever, the extension of the refinement theory
of Section 3 potentially offers many more possibilities.

Concerning serialisation, we have already noted the dv#itlaof SEJs to succinctly record innocuous interference
in the protocol state by agents extraneous to the protoelynsuccessful clan joiners). Since these SEJs consist of
reads and CAS operations, they reveal information (naneydentities if the last two successful joiners) that could
in principle, be used to destroy serial semantics. Howdwediscipline adhered to by protocol agents is such that no
such violation occurs, and these extraneous accesses stateein the middle of a protocol run, indeed prove to be
innocuous'®

Noting this, we can regard the semantics of the protocol aarrserial, with the only departures from ‘true
seriality’ being these SEJs. Whether near seriality candhlie converted to true seriality hinges on a small modgllin
detail. Is the sematics of joining a clan a non-determirghtrice between success and failure, or is it specified so that
success always has priority over failure (as modelled inFig If the former, then we always have the option of moving
an SEJ to the beginning or end of the transaction it intesruplacing it there by an event non-deterministcally
chosen to be null. However, if success always has priorigy @ilure, then at the beginning or end of the transaction,
it may not be possible to find a place for a null event, sinceptiegailing circumstances there may not be capable of
preventing success. The account in [CG07,CGO06] inclinesesdat to the former view.

As a final word on these two examples, we should not forgetithedality, these protocols run as sequences of
individual machine instructions, the critical parts belmndled by CASs. The number of possible interleavings that
this generates is truly enormous; much greater than evemuimder of interleavings that we noted existed at protocol
level.

10.3. Non-2P Fragments of Mondex

The previous examples showed no, or almost no, departure fhe straightforward refinement and serialisation
proposals described in Sections 3 and 5. Even the failedjciaers of the elimination stack could be accomodated,
if desired, in the standard framework, at the cost of a faioan of clutter. The situation with the non-2P fragments
of Mondex is rather different, since the 2P discipline igyadilly broken from the outset, and requires the stretching of
our theory as described in Sections 8 and 9. In the ensuidigdegcribe one particular non-2P scenario, and how it
is dealt with, in detail. Other related possibilities, sushare indicated in Section 6.7, can be dealt with in a similar
manner.

To appreciate the nature of the problem properly, we willhe®re detail about the protocol level of Mondex than
we have presented hitherto. We will introduce what we neagleago.

At the protocol level of Mondex, consider two purses, frem purse and thdo purse, as before. The local
state we need to consider for each purse involves its balamtkits sequence number. (There are of course other
components of local state present, such as the prospeetivgatction amount, the purses’ unique identifiers, and the
purses’ local logs, not to mention the local state of evelmeppurse in the Mondex community and the global ‘aborted
transaction archive,’ but they will not affect our discussso we can ignore them.) So, as far as we are concerned, the
state will consist oFromSN FromBal ToBal ToSN

Consider the non-2P run of steps in the fragment below. dedati state values are refered to by the series of
superscripts ofrfromSN FromBal ToBal ToSNon various lines. In between citing the state values, varipurse
operations are mentioned. TReom purse’s steps occur towards the left, and Thepurse’s steps occur towards the
right.

In Mondex, the environment correlates its view of a tranisactvhich is about to start, with the two protagonist
purses’ internal view of it, by parameterising the t&tartoperations with (what should be) the two purses’ sequence
numbers at that point (information which the environmemt ohtain by simply asking the purses). For the fragment
below, let us assume these sequence numbeEamesSN andToSM, as in the first state.

18 How unlike quantum mechnics then, in which the mere presefittee means to reveal information is enough to alter the ishystate.
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FromSN', FromBal*, ToBal*, ToSM
StartFrom
AbortFrom
FromSN"', FromBal*, ToBal*, ToSN'
... other stuff. ..
FromSN, FromBaF, ToBaP, ToSN
StartTo(x)
AbortTo
FromSN, FromBaP, ToBaP, ToSN'

The first pair of stepsStartFromandAbortFrom does not alter the balance, but BrtFromoperation does increment
the From purse’s sequence number (in the hope that the transacting twt to be a useful one, needing therefore

to be isolated from any future activity), moving it fromomSN* to FromSN''. The ‘other stuff’ represents other
unspecified transactions that involve theom purse and perhaps thi purse too, and moves the local state to
FromSN, FromBaP, ToBaF, ToSN. The story now depends on whether ‘other stuff’ really dicbive theTo purse
or not. If not, thenToBal*, ToSM* = ToBaP, ToSN and theStartTostep can run since it is parameterised by the
correctTo purse sequence number, nam&gsN . If yes, then theStartTostep cannot run, and only thbort step
can run. This is indicated by the asterisk againstStatTostep.

To serialise this non-2P scenario, one possibility to abersis to move th&tartFromandAbortFrompair, so that
it occurs just before th8tartTo(x) andAbortTopair. Unfortunately, the sequence number for finem purse will be
wrong by this point. However we can replace the eaitartFromandAbortFromcombination by a lateAbortFrom
step alone (as we argued for tBéartTo(x) step). This is doubly fortunate, since AbortFromstep alone will not
increase thérom purse sequence number, and thus cause no disagreemertieflomSN at the end of the run,
whereas a successful la®gtartFromwould give us this additional headache to contend With.

But this is not the worst of it. Removing tt8tartFromandAbortFrompair from its earlier position leaves an incon-

sistency in thérom purse sequence number, which now has no means of progréssimgromSN to FromSN .
Fortunately the protocol level of Mondex provides an ogeraincreasewhose only effect is to increase the current
purse’s sequence number (at this level of abstraction). &oam plug the gap with dncreaseFronstep, arriving at
the run below.

FromSN, FromBal*, ToBal*, ToSMN'
IncreaseFrom
FromSN"', FromBal*, ToBal*, ToSN'
... other stuff. ..
FromSN, FromBaF, ToBaP, ToSN
AbortFrom
StartTo(x)
AbortTo
FromSN, FromBaP, ToBaP, ToSN'

Let us now discuss how the above transformation can be viewdide shifting of a jolt in the serialisation formalism
of Section 9.

To start with, since neitheBtartFrom; AbortFromnor StartTo(x) ; AbortTodoes any I/O, we can view the first
as a GNXOP and the second as a GNXIP. Since we serialis&dattTo («) ; AbortTa the before-state of its its
first step makes for an appropriate deemed CP. The ‘othdt stuistitutes a jolt, and since the purse balances can
change during it, something that will be observable at thenatevel, it constitutes a CJ. Clearly the replacement of
StartFrom; AbortFromby anAbortFromworking on a different state later, is not the mere displagetnof a step past
other steps that are independent of it, so we must justifyntbee on requirements grounds. However, both portions
are null transactions as far as the abstract and agent lexelsoncerned, so we judge the replacement appropriate,
satisfying the higher level invariant that demands thatteder we alter, the sequence of non-trivial transactioas th
take place remains the same.

Finally, the shift that implements the replacement, repdabe GNXOP ; CJ sequence by a CJ ; GNX&#Rjuence
which is itself prefixed by théncreaseFrom Despite the fact that thimcreaseFronis executed by the santgom

19 Besides this, the balance of tFeom purse might have been depleted during the ‘other stuff, rt@stent that makes starting the previously
scheduled transaction properly at the later time, impdssib
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purse that executed the GNXOP ; CJ sequencelntreaseFromhas nothing to do with the current transaction, so,
from the point of view of the current transaction, it is a jiaat occurs outside of it. In fact it is an example of the
expulsion of a ‘remaining piece’ of GNXOP from the currergrtsaction, as sketched at the end of Section 8, and it
is perfectly reasonable to view it as a fresh trivial tranarcin its own right. Thus the current transaction has been
reduced to thé\bortFrom; StartTo(x) ; AbortTosequence, a contiguous sequence, as was our aim.

11. Mechanical Verification

To gain assurance in the relatively informal account of gpecot theory given above, some mechanical verification
has been undertaken, using the KIV theorem prover. As wedugporting the preceding theory, this constitutes an
interesting exercise in formal verification in its own right

KIV [RSSB98, KIV] is an interactive theorem prover for masgrted many-sorted higher-order logic. There are
several extensions to this logic (Dynamic Logic, Tempomagic and a logic for Java programs), but they are not used
here. Structured algebraic specifications can be built ietementary theories using the standard operators (sitoilar
CASL [CoF04]): union, enrichment, renaming and actuailorabf parametric specifications. Theorem proving uses
sequent calculus.

As a first step towards a formalized theory of protocols, Kpésifications and proofs have been developed for
the isolated protocols of Section 3. The results are availab the Web [KIVO07]. Checking theorems with KIV led
to small improvements which are already incorporated iniSea, so in this section we only discuss a few topics,
which are relevant when transferring pencil-and-papeofsto an interactive theorem prover, and we give a lemma
used in Theorem 3.8, that shows a modularization of the proof

When formalizing the notion of execution paths a first diffigis of course that no ‘three dots notation’ is available
in formal specifications. Instead a free data has been défin€l)/. Using Z notation this data type can be written as:

path::= mkV{V)) | mkpa(V x J x P x path)) 47)

A number of operations are needed for patitpa is the number of steps of pafi, its nth node igaln| for 0 <

n < #pa and its first and last nodes apafirst := paj0] andpalast := pa]#pa]. The concatenatiopa + pa

of two pathspa andpd is defined wherpd first = palast We also need the first stepspa to n(written infix)

of a path, and the regta from n inputgpa) andoutputgpa) are the inputs resp. outputs done on a path. Finally,
Stegpa,n) € V x J x P x V is then'th step ofpa. A predicatePath(pa) is defined recursively, which holds, iff
every step satisfies sonS(p)(Stefipa, n)). An argumenip from some index typ€Ix replaces the subscript 8t,;

the (higher-order) type dbtbeing:

St: Clx — V x J x P x V — bool (48)

To give formal definitions ofPath (3), BPathand MPath two unspecified predicatésit andfinal characterizing
initial and final states are used. Around 40 lemmas are provedthis theory and used as rewrite rules to get some
basic automation for the main proofs.

The definition of protocol (cf. (6)) becomes:

Protocolv, js, ps V') == Ipae MPath(pa) A inputgpa) = js A outputgpa) = ps (49)

A synchronization assignment is defined as a func88n path — nat The idea is that the synchronization step of a
path isSteggpa, SApa)). FunctionSAis specified by two constraints:

MPath(pa) = SApa) < #pa (50)
MPath(pa) A MPath(pa) A n < #paA m < #pd A pan] = pa[m = (SApa) < n< SApd) < m) (51)

The first axiom should be obvious, the second is a consistamugition: for two maximal paths, which have a state in
common, the synchronization point must either be beforertbee in both paths, or both synchronization steps must
follow the common node. Based on this definition we can chariae the steps of a maximal path to be the disjoint
union of FS, BS and SA steps. As an example rttiestep of pattpais a forward skip step ifFS(pa, n) holds:

FS(pa, n) == MPath(pa) A (n < SA(pa) V SApa) < n < #paA OD(pa to SApa)) (52)
where
OD(pa) == FPath(pa) A V pal, pa2 ¢ MPath(pa+ pal) A MPath(pa+ pa2) = pal.last= pa2.last (53)
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As Lemmas for Theorem 3.8 and Corollary 3.9 we then proveahateps can be simulated forwards and backwards,
the only exception being BS steps, which can only be simdlagekwards:

BS-BW : MPath(pa) A BS(pa,n) A R'(u,V) A paln] = v A paln+ 1] =V = Rl(u,v) (54)
FS-FW: FS(pa,n) A R'(u,v) A paln] =v A pan+ 1] =V = R'(u,V) (55)
SA-FW : MPath(pa) A R'(u, V) A Steipa, SApa)) = (v,],p,V)

= 3u,i,0,k e At(k)(u,i,0,u’) A R'(U,V) A Inputl(i,j) A Outputl (o, p) (56)
SA-BW : MPath(pa) A R* (U, V) A Stefpa, SApa)) = (v,j,p,V)

= 3u,i,0,kAt(k)(u,i,o,u’) A R (u,v) A Inputl(i,j) A Outputl (0, p) (57)
FS-BW: MPath(pa) A FS(pa,n) A R'(u,V) A pan] = v A pan+ 1] =V = R'(u,v) (58)
BS-BW: MPath(pa) A R'(u,V) A paln] = v A pan+ 1] =V = R'(u,v) (59)

The proof of the last two lemmas requires Ass. 3.2.2, therettle not. The lemmas are independent of Ass. 3.1.3
which require all concrete states to be reachable. Baseldeocharacterization of steps on paths, we can now define a
global characterization of steps:

BSv,j,p,V) == Ipa n e BYpa,n) A Steggpa,n) = (v,j,p,V) (60)
FS(v,j,p,V) == -BSv,j,p,V) A Ipa ne FS(pa n) A Stefpa,n) = (v,j,p,V) (61)
SAV.j,p,V) == IpaMPath(pa) A Stefipa, SApa)) = (v,j,p,V') (62)

Note that a step which is an FS step on one path and a BS stepthregmust be classified as a BS step, since it is the
successor of an OD step somepath. The three classes of steps are proven to be disjomhprawided all states are
reachable every stept(p)(v, j, p, V') falls into one of the three classes. This allows us to provecfém 3.8 formally.

As an example, the definition of Clause 4 of Theorem 3.8 is@mdermally as:

RY(U,V) A BSV.,p,V) = RYU,V) (63)

using Lemma (59). The four clauses (58), (57) and (59) tagdthply Corollary 3.9. We also prove that forward
simulation is always possible by choosing the synchroitnattep as the last step of every maximal path:

(Vpae MPath(pa) = SApa) = #pa— 1) A St(p)(V:j,p, V) A R'(u,v)
= Ju e« RY(U,V) A (u= UV Ji,0 e Atomiqu,i,o,u’)) (64)

The KIV proofs for the theorems of Section 3 are relativelyairmompared to other KIV case studies (eg. the Mondex
case study [SGHRO06b, SGi#87] already mentioned). The tricky bit about them is maimlyget all the assumptions
right for all the cases. As an example, the borderline cassMPathconsisting of a single node must be forbidden,
since then constraint (50) is not satisfiable.

12. Conclusions, and Further Work

In the preceding sections we took the Mondex Electronic @ur& prime example of a protocol enacted between a
number of parties that was designed to achieve the effeat at@mic action— and we looked for a generalisation.
We developed a refinement framework based on seeing the @txtion as a shallow computation tree and the
protocol as a computation DAG, and saw that we could choosevily that the atomic action was synchronised
with the protocol in a ‘small diagram’ refinement relativéhgely. The properties of the choice, in particular how
potential abstract outcomes were related to synchronoisgidints, was closely related to the prospects for forward
and backward simulation at the small diagram level.

We then embedded this formulation of an isolated protocolinua framework enabling different runs of perhaps
different protocols to be interleaved in a natural way. Wikembined with a fairly standard 2-phase property, these
system runs could be serialised, showing that the atormatiggraction survives.

We then confronted the theory with various refinements fonifex that have been created in the recent past, and
showed that the flexibility regarding synchronisation peivas well borne out in these various refinements.

However, although the majority of ‘normal’ Mondex trandans (including not only successful ones, but also
ones that fail in a ‘normal’ kind of way) are 2-phase —and thadification of the protocol suggested by Schellhorn
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et al. in [SGH"07] in order to design out the possibility of a certain kinddefial of service attack is 2-phase in its
entirety— the original Mondex protocol has some (in praetiare, but in theory interesting) non-2-phase parts. A
more sophisticated theory was required to handle thosatsins.

Besides these issues, Mondex is what we called an isolatedgod. That is to say, once the protocol has com-
menced, the parties engaging in it are fixed, and no intrusyasther agents is contemplated. (In practice, the Mondex
purse’s local state determines how much notice is taken aftwimessages from which agents.) Thus it is natural to
ask how the theory develops for protocols having state thg¢huinely shared between a number of agents, including
cases where the number is not necessarily determined atiti@fthe protocol.

To this end, we examined an example of a not-so-isolatedpobtthe lock-free stack and its more elaborate
relative, the elimination stack. These are protocols thatdesigned to run at a very fine level of granularity and
interleaving, precluding the use of any kind of powerfulding mechanism to enforce atomic semantics. The lock-
free and elimination stacks were introduced via an elaledrabtion of event structure, the straightforward versibn o
which supported various aspects of the discussion of thedéoprotocol.

In the not-so-isolated world, the relatively straightfama theory that catered for the Mondex protocol, becomes
more cluttered due to the necessity of credibly reflectirgystructure of the various participating agents and their
different interactions, an aspect that could be safely gidayred in the isolated protocol case because of its sttical
determined structure. These aspects do not really interfdth the main ideas of the refinement proofs since those
were already available in their absence.

However the inclusion of agent structure at this level p&miich things as the direct modelling of more sophisti-
cated behaviour by the I/O environment than we have contegbin this paper. (To capture, using the techniques of
this paper, 1/0 behaviour more subtle than the simple delieé messages injected into the environment, one would
have to regard the environment as an agent in its own righticgating in an esential way in protocols.)

The inclusion of agent structure at this level also pernhigsformulation of the notion of jolted protocol: a protocol
whose normal running could be interrupted by ‘rogue agemisiegarded as belonging to the current family of agents
executing the protocol. Such flexibility is useful to enablangle of agents, potentially unbounded in time and space,
all interfering with one another, each in pursuit of his widual protocol aims, to be separated into finite pieces in
order to apply our theory.

With the jolted protocol ideas in place, the instantiatidrsoch protocols in system runs could be considered,
and thence their serialisation. We saw that provided endagdl transformations of the running of a protocol could
be found, interchanges of portions of protocols larger tensingle steps usually moved around during serialisation
arguments, enabled system runs that departed rather mastodily from the 2-phase property to nevertheless be
serialised.

We then revisited our running examples. The lock-free amdiehtion stacks yielded rather easily to the new
techniques, requiring little departure from the earlienfialation in fact. The aforementioned non-2-phase aspdcts
Mondex did however need the full power of the new theory, ardllstrated this by discussing one example in detail.

It is inevitably the case that the mechanical verificatiothaf entire theoretical framework presented in this paper
would be a considerable undertaking. As such it has not beempted yet. However, the experience in verifying
formulations of refinement gained by the second author atidagues, enabled the results of Section 3 to be for-
malised and mechanically proved using KIV without the itreent of excessive effort. The fuller mechanisation of
the technigues we have presented remains an intriguinéecigal for the future.
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