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Abstract

Inspired by the properties of the refinement development of the Mondex Electronic Purse, we view an atomic
action as a family of transitions with a common before-state, and different after-states corresponding to
different possible outcomes when the action is attempted. We view a protocol for an atomic action as a
computation tree, each branch of which achieves in several steps, one of the outcomes of the atomic action.
We show that in this picture, the protocol can be viewed as a relational refinement of the atomic action in a
number of ways. Firstly, it yields a ‘big diagram’ simulation à la ASM. Secondly, it yields a ‘small diagram’
simulation, in which the atomic action is synchronised with an individual step along each path through
the protocol, and all the other steps of the path simulate skip. We show that provided each path through
the protocol contains one step synchronised with the atomic action, the choice of synchronisation point can
be made freely. We describe the relationship between such synchronisations and forward and backward
simulations. We relate this theory to serialisations of system runs containing multiple transactions, and
show how existing Mondex refinements embody the ideas developed.
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1 Introduction

The Mondex Electronic Purse was developed formally in the mid-1990s using Z

refinement. It was one of the first developments to achieve an ITSEC E6 security

rating [7]. 3 Rather unusually for a commercial product, a sanitised version of the

core of the formal development was made publicly available [26]. Since then it

has been a fertile ground for formal methods researchers — the original, human-

built proofs of the security properties have been subjected to re-examination by

contemporary techniques, and have stood up extremely well to the fiercest tool-

based scrutiny achievable today, the first such mechanical verification being [24].

1 Email: banach@cs.man.ac.uk
2 Email: schellhorn@informatik.uni-augsburg.de
3 Nowadays, national standards like ITSEC have been superseded by the ISO Common Criteria standard
[13]. The highest ITSEC level, E6, corresponds to the highest Common Criteria level, EAL7.
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The Mondex formal development featured a refinement proof from an atomic

abstract model to a multi-step protocol at the concrete level. The principal compo-

nent of this refinement proof was a backward simulation from abstract to concrete.

At the time of the original development, the development team did try to construct

a forward simulation, but were not successful. For a long time it was believed that

a forward simulation refinement was impossible. It is by now known that a forward

simulation is entirely possible, and more than one has been constructed [3,22,12].

In this paper we explore the wider question regarding possible kinds of simula-

tion for the refinement of an atomic action into a multi-step protocol, in order to

settle the matter in the general case. We do this in the simplest possible relational

framework in order to avoid complications that would distract from the main point.

In Mondex, the original refinement was done in a (1, 1) manner, i.e. single con-

crete steps were made to refine single abstract ones. Consequently, since overall,

there are more concrete steps than abstract ones, many concrete steps had to refine

skip. Of course, one advantage of the (1, 1) strategy is that, in the face of malevo-

lent users or an unpredictable environment, the concrete protocol can be proved to

refine the abstract atomic action, no matter how such a user might interrupt the

intended playing out of the protocol — since every possible sequence of concrete

steps that can be executed, corresponds to some abstract execution, even if it is

one consisting entirely of skips.

In this, the original framework, the backward simulation correlated with an

early synchronisation, i.e. the single non-trivial abstract step was (1, 1) matched

with a step that occurred early in protocol runs. By contrast, the more recently

discovered forward simulations correlate with a late synchronisation, namely, the

various possible non-trivial abstract steps are (1, 1) matched with steps that occur

late in protocol runs.

Given the past uncertainty regarding forward and backward simulations in such

contexts, our aim in this paper is to give a general treatment. In Section 2 we

outline the operation of our motivating example, the Mondex Purse. In Section

3 we develop a theory of the refinement of a non-deterministic atomic action to

a multi-step protocol. This explores the way that the single atomic action can be

synchronised with an individual step of the protocol in a (1, 1) refinement, and we see

that there are a large number of possibilities for this which we call synchronisation

assignments (SAs). We see that SAs are related to the possible choices of forward

or backward simulations, according to the manner in which abstract outcomes are

related to the details of the SA. In Section 4 we relate the preceding theory of an

isolated protocol run to the more global picture needed to embed protocol runs

into system runs, and we explore serialisability and the 2-phase property. In the

following Section 5 we apply the theory developed to the various refinements of

Mondex available today. The final section concludes, and outlines extensions of

the work needed to deal with not only some of the more obscure possibilities that

Mondex allows, but also more general scenarios where the ‘protocol’ mental picture

is appealing.
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2 Mondex: A Motivating Example

Fundamentally, Mondex is a smartcard purse. Since it is a purse, it contains real

money, and since it is a smartcard, it contains the money in digital form. This money

is designed to be transferable from purse to purse. As for real money, the intention

is that such transfers are normally performed in exchange for some desired purpose

such as the purchase of goods or services, but equally —just as for real money—

it is not the responsibility of the money itself to ensure that the transfer in which

it engages is of a genuine nature. The only concern of money in general and of

Mondex money in particular, is that it should be unforgeable.

The major objective of the original Mondex development was to develop a pro-

tocol for money transfer that ensured that:

(i) Mondex money was unforgeable, even in the face of incomplete execution of

the protocol or of malicious behaviour of the environment;

(ii) any full or partial run of the protocol is equivalent to either a successful money

transfer, or a traceably (and thus recoverably) lost-in-transit money transfer,

or a null action.

These two properties are what make Mondex credible in the face of customer require-

ments: the first property, unforgeability, gives confidence in the value of Mondex

money; while the second property, atomicity, gives comprehensibility when com-

pared with the behaviour of conventional financial transactions. Fig. 1 shows the

atomic abstraction that the Mondex protocol ensures, reflecting the three possibil-

ities given in (ii) above. In Fig. 1 the nodes are states, and the arrows are the

different atomic actions that the concrete protocol refines.

•

•

•

•

AbTransferOK

AbTransferLost

AbIgnore

Fig. 1. The Mondex atomic actions.

The essence of the Mondex concrete protocol is illustrated in Fig. 2 in activity

diagram style. The source purse is the From purse while the destination purse is

the To purse. The protocol begins with the two Start events (initiated from the

environment as a result of the purses’ owners typing in appropriate instructions

at the interface device (the wallet) into which the two purses have been inserted).

These are the StartTo event, performed by the To purse, and StartFrom event,

performed by the From purse, both of which take their respective purse from the

idle state to a ‘busy’ state: the epr state (expecting payment request) for the From

purse, and the epv state (expecting payment value) for the To purse. The StartTo

event sends a req message to the From purse. Upon arrival of the req message, the

From purse performs a Req event and dispatches the money in a val message to the

To purse, itself passing into the epa (expecting payment acknowledgement) state.

Upon arrival of the val message, the To purse performs a Val event and sends an

ack message to the From purse, itself passing back into the idle state. Receipt of

the ack message in the Ack event by the From purse completes the protocol, and
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the From purse too passes back into the idle state. Note that in Fig. 2, the nodes

are now events, edges are states, and arrows are messages.

To purse

From purse

StartTo

StartFrom

idle

idle
epr

epv

epa

idle

idleReq Ack

Val

req val ack

Fig. 2. The Mondex concrete protocol.

The preceding described the workings of a successful run of the protocol. Beyond

that, all events after the Start events can be replaced by Abort events, correspond-

ing to runs of the protocol that are unsuccessful for whatever reason. The fact

that despite Abort events, the protocol still enjoys the unforgeability and atomicity

properties, is what makes Mondex non-trivial theoretically. However, the details of

how this comes about do not concern us in this paper.

A further issue is that the Mondex protocol is isolated, i.e. once the protocol

has commenced, the two purses take note only of the arrival of the next message

expected in the playout of the protocol, and of calls to Abort, ignoring all other

messages or calls from the environment and reserving the option of responding to

such unexpected events by performing a self-initiated Abort whenever appropriate.

In this paper, rather than being concerned with proving that the atomicity and

isolatedness properties are enjoyed by the protocol, we take properties such as these

for granted, and instead, take an interest in simulation-theoretic properties —in a

general sense, and for their own sake— of the refinement of an atomic action to a

protocol with characteristics such as Mondex’s. The isolated property makes these

simulation-theoretic properties particularly convenient to study.

3 Isolated Atomic Actions and their Protocols

For both protocols and atomic actions, we will specify the transitions involved

using a relational approach. The following statements summarise the assumptions

we make about this setup.

Assumptions 3.1

(i) Relations are represented by predicates whose variables take values in suitable

types.

(ii) Each relation used is deterministic, i.e. for each collection of values for the

domain variables of the predicate representing the relation, there is a unique

collection of values for the codomain variables that makes the relation true.

(iii) For each relation, for all values of domain and codomain variables that make

the relation true, the domain values are reachable from an initial state.

(iv) Where nondeterminism (whether at the atomic or the protocol level) is needed,

it is handled by having different relations for different outcomes. We assume

nondeterminism is always finite.
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(v) Both protocols and atomic actions are represented by computation trees, in

which each edge of the computation tree graph corresponds to a (predicate rep-

resenting a) unique relation. All computation trees are assumed finite.

(vi) For both protocol and atomic action computation trees, the predicate-labelled

trees are interpreted within structures which are themselves forests. A choice

of initial state for the first step of an atomic or protocol computation tree, picks

out a unique tree of the interpreting forest, called the valid subtree.

Thus an atomic action will be specified by a finite collection of deterministic pred-

icates Atk(u, i, o, u′) k = 1 . . ., in which u and u′ are (variables denoting) the

before- and after- states of the atomic action, i and o are the input and output

of the action (these may in fact denote sequences (or more complex structures) of

input and output values corresponding to the finer grained events in the protocol,

if convenient), and the index k distinguishes the different deterministic outcomes

for the same starting conditions. All together, the complete atomic specification of

the protocol becomes:

Atomic(u, i, o, u′) ≡ At1(u, i, o, u′) ∨ At2(u, i, o, u′) ∨ . . . where (1)

(∀u, i • Atk(u, i, o1, u
′
1) ∧ Atk(u, i, o2, u

′
2) ⇒ o1 = o2 ∧ u′

1 = u′
2) (2)

At the protocol level, the individual steps are described by a collection of deter-

ministic predicates Stρ(v, j, p, v′) where v and v′ are the before- and after- states of

the step, j and p are the input and output of the step, and ρ is an identifier which

uniquely identifies an edge in the graph of the protocol computation.

N.B. While the decision to represent atomic actions via shallow trees is a nat-

ural one, the decision to represent even multistep protocols via deeper trees has

consequences that deserve to be spelled out. Protocols can often arrive at ‘essen-

tially the same’ state via different paths, obtained eg. via interchanges of causally

independent steps somewhere in the interior of the protocol. In our formulation,

such ‘essentially the same’ states have to be regarded as different. So our protocol

states can be understood as incorporating the full history of the protocol up to the

given point. (Such history information is not only convenient here, but is in any

case often needed in reasoning about protocols, since protocol properties frequently

depend not only on knowing that the protocol has arrived at a certain point, but

that certain other things must have necessarily happened prior to that point. Such

facts can be trivially extracted from the full history, so our formulation may be

regarded as a multipurpose canonical description, useful for things other than just

the concerns of this paper. In the next section, we get the opportunity to project

out such aspects of the protocol state as deserve to be regarded as unrealistic.)

Another aspect that should be discussed is I/O. At the atomic level, the I/O for

the single step that takes place must inevitably concern the environment, since there

is no internal structure to engage in internal communication. At the protocol level

however, I/O can either be between the environment and the protocol, or be purely

internal to the protocol. In the latter case, the only restriction is that messages

must be produced before they can be consumed. There is of course the option of

representing messages in flight within a suitable state component —such a state

component can model properties of the communication medium, eg. unreliablity—
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however we do not need to insist on this for the theory here.

(Forward) paths through the computation tree are described by compound pred-

icates:

FPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt, vt) ≡

Stα(vI , j1, p1, v1) ∧ Stβ(v1, j2, p2, v2) ∧ . . . ∧ Stγ(vt−1, jt, pt, vt) (3)

in which vI is a possible initial state of the protocol, α labels a possible first step of

the protocol, β labels a possible successor step of the α step of the protocol, and so

on. As (3) indicates, if a step has a successor, the before-state of the successor must

match the after-state of its predecessor. The length of the sequence of labels in the

subscript of FPath〈α,β,...,γ〉 must match both the number of inputs and outputs,

and be one less than the number of states, in the argument list.

Maximal paths arise in the obvious way:

MPath〈α,β,...,γ〉(. . .) ≡ FPath〈α,β,...,γ〉(. . .)

∧ (〈α, β, . . . , γ〉 has no proper extension in the computation tree) (4)

From maximal and non-maximal paths, we can implicitly define a predicate BPath

(backward paths) that describes extensions of non-maximal forward paths:

MPath〈α,β,...,γ,δ,ǫ...,ζ〉(vI , j1, p1, v1, . . . , jt, pt, vt, jt+1, pt+1, vt+1 . . . , vF ) ≡

FPath〈α,β,...,γ〉(vI , j1, p1, v1, . . . , jt, pt, vt)

∧ BPath〈δ,ǫ...,ζ〉(vt, jt+1, pt+1, vt+1 . . . , vF ) (5)

In (5), vF is a possible final state of the protocol.

Finally, maximal paths give rise to the predicate Protocol(vI , js, ps, vF ), where

vF is a possible final state of the protocol, 4 given by taking the disjunction over

all maximal paths, existentially quantifying all intermediate states, and repackaging

the inputs and outputs into sequences:

Protocol(vI , js, ps, vF ) ≡

∨

n

maximal
〈α,β,...,γ〉

o











(∃ j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt •

MPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt, vF )

∧ js = 〈j1, j2, . . . , jt〉 ∧ ps = 〈p1, p2, . . . , pt〉)











(6)

The fact that the protocol implements the atomic action is captured by having a

retrieve relation R(u, v) (which is required to be a function from protocol states v

to atomic states u), and input and output relations Input(i, js) and Output(o, ps),

4 Initial and final states of the protocol coincide exactly with the root and leaf states of the protocol
computation tree.
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such that the following ASM-style [6] ‘big-step’ proof obligation holds:

Protocol(vI , js, ps, vF ) ⇒

(∃ uI , i, o, uF •

R(uI , vI) ∧ Input(i, js) ∧ Atomic(uI , i, o, uF ) ∧ Output(o, ps) ∧ R(uF , vF ))

(7)

We further require that the ‘big-step’ retrieve relation R(u, v) is ‘not too big,’ i.e.

it concerns just the ‘states of interest’ for the overall protocol, i.e. the initial and

terminal states:

R(u, v) ⇒ (∃ js, ps, ṽ • Protocol(v, js, ps, ṽ) ∨ Protocol(ṽ, js, ps, v)) (8)

Conditions (7) and (8) ensure that the hypotheses and conclusions of the big-step

PO are valid exactly when the simulation predicate Σ:

Σ(uI , i, o, uF , vI , js, ps, vF ) ≡

Atomic(uI , i, o, uF ) ∧ Protocol(vI , js, ps, vF )

∧ R(uI , vI) ∧ Input(i, js) ∧ Output(o, ps) ∧ R(uF , vF ) (9)

is true in the given types.

Now that we have connected together the atomic and finegrained descriptions

of the protocol, our aim is to develop a general way of seeing how some individual

step of a maximal path may be viewed as refining the atomic action, and the con-

sequences of such a view. First we develop some technical machinery in the shape

of past and future oriented retrieve relations. Then we introduce synchronisation

assignments, which delimit exactly how the choices of individual step within the

protocol computation tree may be made. Finally we explore the consequences of

these choices for proving the refinement via forward and backward simulation.

From these ingredients we get the ‘past oriented’ retrieve relation RP :

RP (uI , vt) ≡ (∃ vI , j1, p1, v1, . . . , jt, pt, 〈α, β, . . . , γ〉 •

R(uI , vI) ∧ FPath〈α,β,...,γ〉(vI , j1, p1, . . . , jt, pt, vt)) (10)

and the ‘future oriented’ retrieve relation RF :

RF (uF , vt) ≡ (∃ jt+1, pt+1, vt+1 . . . , vF , 〈δ, ǫ . . . , ζ〉 •

BPath〈δ,ǫ...,ζ〉(vt, jt+1, pt+1, vt+1 . . . , vF ) ∧ R(uF , vF )) (11)

It is easy to show the following:

Proposition 3.2

RP (uI , vt) ∧ RF (uF , vt) ⇒ (∃ i, o • Atomic(uI , i, o, uF )) (12)

RP (uI , vt) ⇒ (∃ i, o, uF • Atomic(uI , i, o, uF ) ∧ RF (uF , vt)) (13)

RF (uF , vt) ⇒ (∃ uI , i, o • RP (uI , vt) ∧ Atomic(uI , i, o, uF )) (14)

The proofs are similar to the proofs of the more interesting following result:

7



Banach, Schellhorn

Theorem 3.3

RP (uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ∧ RF (uF , vt) ⇒ (∃ i, o, jsP , jsF , psP , psF •

Input(i, jsP ::〈jt〉::js
F ) ∧ Atomic(uI , i, o, uF ) ∧ Output(o, psP ::〈pt〉::psF ))

(15)

RP (uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ⇒ (∃ i, o, uF , jsP , jsF , psP , psF • RF (uF , vt)

∧ Input(i, jsP ::〈jt〉::js
F ) ∧ Atomic(uI , i, o, uF ) ∧ Output(o, psP ::〈pt〉::psF ))

(16)

Stρ(vt−1, jt, pt, vt) ∧ RF (uF , vt) ⇒ (∃ uI , i, o, js
P , jsF , psP , psF • RP (uI , vt)

∧ Input(i, jsP ::〈jt〉::js
F ) ∧ Atomic(uI , i, o, uF ) ∧ Output(o, psP ::〈pt〉::psF ))

(17)

Proof. For (15), from RP (uI , vt−1) we know that there is a path through the com-

putation tree from an initial vI to vt−1, satisfying (3), and such that R(uI , vI)

holds. Evidently Stρ(vt−1, jt, pt, vt) extends that path. From RF (uF , vt) we know

that there is a completion of this path to a maximal path from vI to some final

vF . This maximal path enables us to derive R(uF , vF ), and provides the witness-

ing jsP , jsF , psP , psF so that with jt, pt we can assemble js = jsP ::〈jt〉::js
F and

ps = psP ::〈pt〉::psF , and then assert Protocol(vI , js, ps, vF ).

Since we have Protocol(vI , js, ps, vF ), we can apply (7). The conclusions of (7)

yield R(ũ, vI) for some ũ; and since R is functional, we must have uI = ũ. The

conclusions of (7) also yield Atomic(uI , i, o, ũ
′) and R(ũ′, vF ) for some ũ′. Again,

since R is functional, we must have uF = ũ′. From Protocol(vI , js, ps, vF ) we can

also deduce Input(i, js) and Output(o, ps).

For (16), the argument is similar except that we do not have to use the functional

nature of R to argue uF = ũ′, since uF is existentially quantified in the conclusion.

For (17), we note first that by Assumptions 3.1.(iii), vt is reachable from some

initial vI . We use this to assert a uI such that RP (uI , vt) holds, after which we

argue as for case (15). We are done. 2

Proposition 3.3 is a crucial observation, since it enables an arbitrary protocol step

Stρ(vt−1, jt, pt, vt) to be singled out and made to correspond with a suitable abstract

one Atomic(uI , i, o, uF ). For such a Stρ(vt−1, jt, pt, vt) step, let Outcomes(Stρ, uI)

(with vt−1, jt, pt, vt understood) be given by:

Outcomes(Stρ, uI) =

{uF | (∃ vF • RP (uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ∧ RF (uF , vt))} (18)

and OD(Stρ, uI) (outcome determinism of Stρ, given uI) be given by:

OD(Stρ, uI) = | Outcomes(Stρ, uI) | (19)

If OD(Stρ, uI) = 1 we say that Stρ is outcome deterministic at uI (Stρ is OD at

uI), whereas if OD(Stρ, uI) > 1 we say that Stρ is outcome nondeterministic at uI

(Stρ is ON at uI).
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Definition 3.4 Given an initial vI , a synchronisation assignment (SA(vI)) for the

relevant valid subtree of a protocol computation tree is a subset of its steps, such

that for each maximal path through the valid subtree from vI , exactly one of its

steps is in SA(vI). Steps in SA(vI) are called SA steps.

Fig. 3 shows a synchronisation assignment. The many-level computation tree at the

bottom has thickened arrows which are the elements of the SA. The atomic action

is at the top and plays no specific part in the SA itself. Dashed arrows show the

functional big-step retrieve relation R, while the dotted lines show some pieces from

the RP and RF relations, for convenience below.

•

•

•

•

•
•

•

•

•

•

•
•

•

• •

•

•

•

…

R
R

RRP F

Fig. 3. A synchronisation assignment for a computation tree. The elements of the synchronisation assign-
ment are shown bold.

Definition 3.5 Given a protocol computation tree, an intial state vI for the pro-

tocol, the atomic intial state uI such that R(uI , vI) holds, and a synchronisation

assignment for the valid subtree determined by vI , the steps of the valid subtree are

classified as follows:

(i) If a step is in the SA and is OD at uI , it is said to be an outcome deterministic

forward synchronisation (ODFS) step.

(ii) If a step is in the SA and is ON at uI , it is said to be an outcome nondeter-

ministic forward synchronisation (ONFS) step.

(iii) If a step is an immediate or later successor of an ONFS step, it is a backward

skip (BS) step.

(iv) Every step not covered by (i)-(iii) is a forward skip (FS) step.

This definition shows that every path through the protocol computation tree can

be described by the following regular expression:

FS∗ ; ( ODFS ; FS ∗ + ONFS ; BS∗ ) (20)

Our aim is to show that when given a big-diagram refinement of an atomic action

to a protocol of the kind we have described, if we wish to break the big-diagram

refinement down into a collection of small-diagram refinements of zero or one atomic

action steps to individual steps of the protocol, one can always use forward simu-

lation reasoning, except for the BS steps. In fact one can use forward simulation

reasoning for all steps except branching BS steps (a term explained below), though

it comes at a price. Likewise, we have the option of using backward simulation

reasoning for all steps if we so wish. We discuss these points later.
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Definition 3.6 Assume given an abstract operation AOp(u, i, o, u′), a concrete

COp(v, j, p, v′), and retrieve, input and output relations, R1(u, v), In1(i, j) and

Out1(o, p). Then AOp forward simulates COp iff:

R1(u, v) ∧ COp(v, j, p, v′)

⇒ (∃ i, o, u′ • In1(i, j) ∧ AOp(u, i, o, u′) ∧ Out1(o, p) ∧ R1(u′, v′)) (21)

And AOp backward simulates COp iff:

COp(v, j, p, v′) ∧ R1(u′, v′)

⇒ (∃ u, i, o • R1(u, v) ∧ In1(i, j) ∧ AOp(u, i, o, u′) ∧ Out1(o, p)) (22)

In both cases, In1(i, j) and/or Out1(o, p) can be omitted where there is no input

and/or output from AOp and/or COp, as applicable.

Theorem 3.7 Let there be a big-step refinement of an atomic action Atomic to

a protocol Protocol, given by a retrieve relation R and input and output relations

Input and Output, so that (7) holds. Let vI be a fixed initial state such that R(uI , vI)

holds, and let SA(vI) be a synchronisation assignment for the valid subtree rooted

at vI . Then the refinement of Atomic to Protocol can be decomposed into single

step simulations such that:

(i) If an FS step occurs before an SA step, it is forward simulated by the identity

operation on uI .

(ii) If an FS step occurs after an SA step, it is forward simulated by the identity

operation on uF , where uF is some outcome of Atomic.

(iii) If Stρ is an SA step, it is forward simulated by Atomic(uI , i, o, uF ) for every

uF in Outcomes(Stρ, uI).

(iv) Every BS step is backward simulated by the identity operation on some uF .

Proof. We start by defining R1, which is:

R1(u, v) ≡ (∃ a maximal path from some initial ṽI , and

((v precedes an SA step along this path, and RP (u, v) holds), ∨

(v follows an SA step along this path, and RF (u, v) holds))) (23)

Also we must define the single step input and output relations In1 and Out1; these

however are only needed for the SA steps themselves.

In1(i, j) ≡ (∃ an SA step Stρ(vt−1, j, pt, vt), js
B , jsF •

Input(i, jsP ::〈j〉::jsF )) (24)

Out1(o, p) ≡ (∃ an SA step Stρ(vt−1, jt, p, vt), psB , psF •

Output(o, psP ::〈p〉::psF )) (25)

Proving the simulation claims in (i)-(iv) is now rather simple. For (i), (ii) and (iv),

since either RP or RF (with the same atomic state) holds for both the before and

10
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after states of the FS or BS step, and noting that there is no I/O for these steps,

the simulation condition (21) or (22) is readily seen to hold.

For (iii), let Stρ(vt−1, jt, pt, vt) be an SA step. We know that RP (uI , vt−1) holds

for uI , vt−1, hence R1(uI , vt−1) is true, giving the hypotheses of (21). So we must

show that the conclusions of (21) hold. For any uF in Outcomes(Stρ, uI), we know

that Atomic(uI , i, o, uF ) holds. Also we know that RF (uF , vt) holds, so R1(uF , vt)

holds. Since Stρ(vt−1, jt, pt, vt) occurs on a maximal path from vI to vF , the totality

of inputs along the path, both jsP before jt, and jsF after jt, will witness that

Input(i, jsP ::〈jt〉::js
F ) holds, giving In1(i, jt) as required. The reasoning for outputs

is similar. So we have all the conclusions of (21), thus completing the proof. 2

Since at both abstract and protocol levels, the transpose of the step relation is a

partial function, backward simulation is always aligned with a decrease of nonde-

terminism in both abstract and protocol transition functions. Therefore we get the

following (cf. [17]).

Corollary 3.8 Under the assumptions of Theorem 3.7, one can always use single

step backward simulations throughout.

We also have the following.

Corollary 3.9 Under the assumptions of Theorem 3.7, suppose there are no BS

steps (i.e. all SA steps are OD). Then single step forward simulations can be used

throughout.

Obviously, choosing the SA as the last step of each maximal path through the

protocol satisfies the hypotheses of Corollary 3.9.

Corollary 3.10 Let vF be a final state accessible from vI such that (7) holds for this

choice of vI , vF (and suitable other quantities). Let Stρ(vt−1, jt, pt, vt) be the SA(vI)

step along the (unique) path from vI to vF , MPath(vI , . . . , vF ). Then the simulation

of MPath(vI , . . . , vF ) by Atomic(uI , i, o, uF ) can be decomposed as follows:

(i) If Stρ(vt−1, jt, pt, vt) is an ODFS step, the whole of the simulation of

MPath(vI , . . . , vF ) may be established by inductively forward simulating each

step of MPath(vI , . . . , vF ) from vI , such that:

(a) predecessors of Stρ(vt−1, jt, pt, vt) are forward simulated by the identity op-

eration on uI ,

(b) Stρ(vt−1, jt, pt, vt) is forward simulated by Atomic(uI , i, o, uF ) where uF is

the unique element of Outcomes(Stρ, uI),

(c) successors of Stρ(vt−1, jt, pt, vt) are forward simulated by the identity oper-

ation on uF .

(ii) If Stρ(vt−1, jt, pt, vt) is an ONFS step, the simulation of MPath(vI , . . . , vF ))

may be established by inductively forward simulating the steps of

FPath(vI , . . . , vt) from vI up to and including Stρ(vt−1, jt, pt, vt), and induc-

tively backward simulating the steps of BPath(vt, . . . , vF ) from vF up to vt,

such that:

(a) predecessors of Stρ(vt−1, jt, pt, vt) are forward simulated by the identity op-

eration on uI ,

11
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(b) Stρ(vt−1, jt, pt, vt) is forward simulated by Atomic(uI , i, o, uF ), for each uF

in Outcomes(Stρ, uI), establishing RF (uF , vt),

(c) successors of Stρ(vt−1, jt, pt, vt) are backward simulated from vF by the

identity operation on uF , establishing RF (uF , vt).

Why is the above theorem useful? We can give a couple of reasons.

Firstly, it is illuminative. One can be convinced of the correctness of a protocol

with respect to an atomic action, without having the details of a refinement already

worked out. In such a situation, it may not be clear how to synchronise the atomic

action with the lower level description. Theorem 3.7 shows that one can choose this

synchronisation relatively freely, within the parameters of allowable synchronisation

assignments.

Secondly, once having chosen a synchronisation, it is much easier to write down

the ‘big-step’ retrieve relation and associated input and output relations, than to

discover the more finegrained single step ones. Theorem 3.7 shows that with the

big-step retrieve relation fixed, the single step ones, RP and RF may simply be

calculated. Their generic form needs to be instantiated with the details of the pro-

tocol and big-step retrieve relation, and then one must eliminate as many existential

quantifiers as possible in order to arrive at a closed form. Making clear that there

is such a strategy to follow is a considerable improvement over the hit-and-miss

approach one would otherwise need, especially when combined with uncertainty

regarding synchronisation.

The theorem also provokes the following considerations.

One can replace some backward simulation by forward simulation. Given a synchro-

nisation assignment, a branching BS step is a BS step Stθ(vs, . . . , v
′
s,1) for which

there is another BS step Stφ(vs, . . . , v
′
s,2) (with v′s,1 6= v′s,2) such that the abstract

outcomes uF,1, uF,2 corresponding to the completions of the paths from v′s,1 and v′s,2
are different, uF,1 6= uF,2.

5 In such a case, one cannot make a forward simulation

inference succeed.

To see this, suppose the first hypothesis of (21) is made true by R1(uF,1, vs), and

the second hypothesis is made true by Stφ(vs, . . . , v
′
s,2). Then the first hypothesis

demands that uF be chosen to be uF,1, while the second hypothesis demands that

uF be chosen to be uF,2, a contradiction. This is the standard backward simulation

counterexample.

In Fig. 3, the SA element along the upper thread of the computation tree is an

ONFS step, since it can reach two concrete final states that retrieve to two different

abstract outcomes. Accordingly, the two BS steps immediately following it (and the

two following the topmost of them along the upper thread) are branching BS steps,

since they too can individually reach different concrete final states that retrieve to

the two different abstract outcomes. With the dotted lines depicting RF , it is easy

to see that these steps illustrate what we have just discussed.

However, if a BS step is not branching, i.e. there is only one protocol successor

state v′s to vs, then the preceding problem cannot arise since the unique successor

5 Since we speak of a BS step, there must be such uF,1 6= uF,2, as the nondeterminism in Atomic(uI , i, o, uF )
has been resolved earlier than at this BS step.
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cannot force a distinction between the choices for uF . So for nonbranching BS

steps, a forward simulation inference will succeed. However, it comes at a price. If

a forward simulating BS step immediately follows a backward simulating BS step,

the R1(uF , v) value at the v state that they share, occurs as a hypothesis in both

the backward PO (22) and the forward PO (21). It thus remains as an unproved

assumption in the overall single-step verification of the big-step refinement. As such

it allows the verification to succeed vacuously. For this reason we phrased Theorem

3.7.(ii) as two inductive processes that meet in the middle, since it is much better

to verify some R1(uF , v) twice independently, than to leave some other R1(uF , v)

unproved, thus undermining the whole verification.

Lastly, Theorem 3.7 offers a different strategy for addressing global correctness

(see the next section). Normally, to prove a protocol such as the one we have been

considering globally correct, one chooses either forward or backward simulation,

establishes that each protocol step refines some atomic option or skip, and this then

extends to an inductive proof for global executions as a whole. With Theorem

3.7, we can envisage a different approach. We first study the ‘big-step’ refinement

of atomic action to protocol, determining the protocol computation tree and the

big-step retrieve relation. Next we choose a suitable synchronisation assignment.

Next we determine which combination of forward and backward simulations are

appropriate for the synchronisation assignment. Next we calculate the necessary

single step retrieve relation, breaking down the big-step refinement into single step

refinements. Finally, we determine how runs of the protocol can interleave to make

global executions. This alternative approach separates concerns, and in cases where

a complex protocol is concerned, may offer some advantages. In any event, the

mere awareness of the possibility of such an approach may make the more monlithic

standard approach more tractable, since it can show that certain subgoals of the

standard approach are achievable in advance. It is to such matters that we now

turn.

4 Interleaving Individual Protocol Runs

Thus far, although using language such as ‘protocol,’ in reality we have only dis-

cussed some properties of computation trees. In genuine protocols, various agents

interact by performing events and sending/receiving messages etc. We must connect

our theory to this world.

The basic idea is that the previous section should be understood as describing

(the various possibilities for) a single isolated protocol run, performed by however

many agents would be appropriate in practice, with the protocol state recording the

full history of the protocol so far (regardless of whether such knowledge is obtainable

in principle by the individual agents), and ignoring the rest of the universe. The

latter not only regarding other agents/activities in the rest of the universe, but

also regarding what the agents of the single protocol run might do both before

and after the run itself. So the previous section described an idealised pattern or

template for what collections of agents might do over some period of time towards

the achievement of some goal described in principle by the atomic action that the

protocol implements.
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Patterns or templates are normally made to correspond with what happens in

the real world by some process of matching, and that is the basis of our approach too.

Since we have remarked that our protocol states can include unrealistically detailed

history information, our matching process must include a projection mechanism to

allow the unrealistic parts to be forgotten. In such a scenario, protocol states that

were previously distinct can be matched to the same system state, destroying the

previously assumed tree property of the valid subtrees that interpret the protocol.

But this is OK. At the system level, we do not need the backward reachability

properties that trees guarantee.

Definition 4.1 A system consists of a number of agents, Aa, Ab, . . . each with its

agent state subspace Wa,Wb, . . .. The system state space is W = Wa × Wb × . . ..

So agent Aa’s instantaneous state is some wa ∈ Wa, and the system’s instantaneous

state is w ≡ (wa, wb, . . .).

Each agent is a transition system, i.e. the agent can move between different

elements of its state space in discrete steps, leaving the state of every other agent

unaffected. The enabledness of any agent’s transitions is independent of the state

of any other agent. Each step can also consume input and produce output, and the

I/O policy described in the previous section applies again: i.e. I/O may either be

with the environment, or it may be internal to the system and any internal message

that is consumed must earlier have been produced.

The transitions are described by a predicate SyA similar to St in the previous

section, where the subscript ‘A’ refers to the agent performing the step. The transi-

tions of the system as a whole are the interleaved agent transitions of the system’s

agents.

Definition 4.2 Let S be a system with agents Aa, Ab, . . .. The sequence T ≡

〈wI , (k1, A1, q1), w1, (k2, A2, q2), w2, . . .〉 is a run of the system iff:

(i) wI is an initial state of the system,

(ii) A1 is the agent that performs the first step,

(iii) k1 is the input consumed by A1 during the first step,

(iv) q1 is the output produced by A1 during the first step,

(v) w1 is the result state of the first step,

(vi) the change of state wI → w1 involves change to the state space W1 of A1 only;

the state spaces of agents other than A1 remain unchanged,

(vii) . . . and analogously for subsequent system transitions.

Definition 4.3 Let Protocol be a protocol in the sense of the previous section. An

agent decomposition for the protocol is a decomposition of the protocol state space

V into a cartesian product of agent subspaces V = V1×V2× . . ., such that each step

of the protocol modifies at most one component in the product, leaving the other

components unaltered.

The decomposition into agent subspaces just described, represents the fact that an

instantiation of a protocol is normally executed by a number of agents inside a

real system. However a real agent in a real system can play many roles during the
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running of the system, including acting out different roles in different instances of

the same protocol at different times. So we need to distinguish the various agent

roles in a protocol definition from the different instantiations of these during system

runs. The next definition introduces the technical machinery for this.

Definition 4.4 Let Atomic, Protocol, . . . (with all the attendant machinery) be a

protocol implementing an atomic action in the sense of the previous section. We

say that system run T instantiates Protocol iff there is a maximal path through

the protocol MPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vF−1, jF , pF , vF ) and there

are two maps: τA and τS such that:

(i) the signature of τA is τA : V → W , and τA decomposes into a cartesian product

of disjoint maps τA,l : Vl → Wal
from each of the agent components of V to

distinct agent subspaces of W ,

(ii) τS is an injective map from the steps of the maximal path MPath〈α,β,...,γ〉 to

steps of T ,

(iii) τS is order preserving, i.e. if Stβ precedes Stγ in MPath〈α,β,...,γ〉, then τS(Stβ)

precedes τS(Stγ) in T ,

(iv) for each protocol step Stβ(vt−1, jt, pt, vt) in the domain of τS , if Vl is the agent

component of V modified during the step, then τA,l(Vl) is the agent subspace

modified during the step τS(Stβ(vt−1, jt, pt, vt)),

(v) for each protocol step Stβ(vt−1, jt, pt, vt) in the domain of τS , if

τS(Stβ(vt−1, jt, pt, vt)) = SyAl
(ws−1, ks, qs, ws), then τA,l(vt−1) = ws−1, jt =

ks, pt = qs, τA,l(vt) = ws.

(vi) if protocol step Stβ modifies Vl and protocol step Stγ is the next protocol step

along MPath〈α,β,...,γ〉 that modifies Vl, then no step of T between τS(Stβ) and

τS(Stγ) modifies τA(Vl).

When we want to emphasise the details, we say that system run T instantiates

Protocol via τ ≡ (τA, τS) at step τS(Stα(vI , j1, p1, v1)) of T , where Stα(vI , j1, p1, v1)

is the initial step in MPath〈α,β,...,γ〉.
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Fig. 4. An atomic action, a protocol which implements it, and a system run containing an instance of a
maximal path through the protocol. The steps of the instance are shown bold.
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In Fig. 4 we show how a particular maximal path, M say, through the protocol

illustrated in Fig. 3, might be mapped, via an instatiation function τ , to a selection

of steps in a system run. The system state in the run is now ‘real world’ state,

eschewing the maximal knowledge that the idealised protocol formulation allows.

In between the steps of τ(M), other protocols are being instatiated by other agents,

though without interfering with the state of τ(M), by Definition 4.4.(iv).

Definition 4.5 Let MPath〈α,β,...,γ〉 be a maximal path in Protocol. Step

Stβ(vt−1, jt, pt, vt) of MPath〈α,β,...,γ〉 is a first use of agent subspace Vl iff: it modifies

Vl, and no earlier step of MPath〈α,β,...,γ〉 modifies Vl. Similarly Stβ(vt−1, jt, pt, vt)

is a last use of Vl iff: it modifies Vl, and no later step of MPath〈α,β,...,γ〉 modifies Vl.

We say that Protocol is 2-phase (2P) along MPath〈α,β,...,γ〉 iff all first uses of all

agent subspaces of Protocol precede any last use of any agent subspace of Protocol

along MPath〈α,β,...,γ〉.

Definition 4.6 Let SyA(ws−1, ks, qs, ws) and SyB(ws, ks+1, qs+1, ws+1) be two

successive steps of a run T of the system. We say that SyA(. . .) and

SyB(. . .) can be commuted iff there is a state w̃s such that SyA(w̃s, ks, qs, ws+1)

and SyB(ws−1, ks+1, qs+1, w̃s) are valid steps of the system, and the

pair SyA(ws−1, ks, qs, ws);SyB(ws, ks+1, qs+1, ws+1) can be replaced in T by

SyB(ws−1, ks+1, qs+1, w̃s);SyA(w̃s, ks, qs, ws+1), yielding T ′, where T ′ is a valid run.

Lemma 4.7 If SyA(. . .) and SyB(. . .) as in Definition 4.6, are two successive steps

performed by two different agents, then, provided both inputs are available in state

ws−1, SyA(. . .) and SyB(. . .) can be commuted.

Proof. Since SyA(. . .) and SyB(. . .) are performed by different agents, the two

agent subspaces modified by these steps are disjoint, so the changes of state can be

swapped, easily yielding the state w̃s required by Definition 4.6. If both inputs are

available in state ws−1, then the SyB(. . .) is enabled in state ws−1 and can be per-

formed first. Since the input to SyA(. . .) is not removed by doing SyB(. . .), SyA(. . .)

can follow SyB(. . .). That this generates a valid run is now straightforward. 2

Since our formulation of a protocol does not consider the protocol’s context, the

only way that a protocol, as formulated in Section 3, can interact with the rest of

the universe is via I/O with the environment. In the system context, this leads to

a distinction within the internal system messages, between messages that are pro-

duced and consumed by the same protocol instance (which should thus correspond

to internal communications of the protocol itself), and those which are produced

and consumed by different protocol instances (which should thus correspond to

communications with the environment in the protocol model). (System level com-

munications with the environment must of course also correspond with protocol

communications with the environment.) Since inter-protocol communications must

comply with normal causality considerations, these communications must fit well

with the 2-phase property for protocol state components. The next definition in-

troduces the needed technicalities.

Definition 4.8 Suppose given a maximal path MPath〈α,β,...,γ〉 of a protocol,

which is 2P. An external dependency definition (XDD) for them is, a pair of sets
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(IDS,ODS) of (not necessarily disjoint) steps. IDS is the input dependency set,

and ODS is the output dependency set. A protocol is XDD-normal iff:

(i) all IDS steps occur no later than any ODS step along MPath〈α,β,...,γ〉,

(ii) the producer of every input of every protocol step other than an IDS step is

some other step of the same protocol,

(iii) the consumer of every output of every protocol step other than an ODS step

is some other step of the same protocol,

(iv) each IDS step occurs no later than any last use of the state,

(v) each ODS step occurs no earlier than any first use of the state.

Definition 4.9 An instantiation of a 2P XDD-normal protocol is called a transac-

tion.

Theorem 4.10 Let T0 be a run of a system which consists entirely of the steps

of transactions of a family of protocols. 6 Then there is a serialisation T∞ of T0,

generated by commuting adjacent steps, in which each instantiation occurs as a

contiguous series of steps.

Proof. Consider the directed graph Dep0 whose nodes are the transactions of T0,

and whose edges are given by: τ1 → τ2 iff:

(i) an output of an ODS step of τ1 is an input of an IDS step of τ2,

(ii) an agent subspace Vl is used by both τ1 and τ2, but τ1’s modifications of Vl

occur earlier in T0 than τ2’s.

Claim 4.10.1 Dep0 is acyclic.

Proof of Claim. Let V be the state space of a transaction τ . Since the last first

use of V precedes the first last use of V in τ , and all all IDS steps precede all

ODS steps in τ , by Definition 4.8.(iv)-(v), we can deduce that there is a step in τ

(which we will call the pivot), that precedes neither the last first use of V nor any

IDS step, and simultaneously follows neither the first last use of V nor any ODS

step (there are four cases). We identify each transaction in T0 with (some choice

for) its pivot. Since steps are interleaved, there is a total order on the transactions,

inherited from that on their pivots.

We show that Dep0 can be interpreted in the set of pivots, and that each edge

in the interpretation is oriented towards the future, yielding the acyclicity of Dep0

immediately. For a Dep0 edge of type (i), note that it is oriented towards the

future by straightforwards causality. So pretending that the requisite message was

sent during the producing transaction’s pivot step, and pretending that it arrived

during the consuming transaction’s pivot step can increase its time of flight, but

not change its orientation towards the future. For a Dep0 edge of type (ii), since

the pivot steps are contained within the uses of transactions’ state, and these are

oriented towards the future by (ii), the orientation is preserved in the interpretation.

We have our claim. � �

6 So there is a set of maximal paths through a set of 2P XDD-normal protocols, and a set of instantiations
of them in T0, and the set of steps of T0 is the disjoint union of these instantiations
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We serialise T0 stage by stage. At each stage there are serialised and unserialised

transactions. We call the boundary between the serialised and unserialised trans-

actions the horizon. So at the beginning there are no serialised transactions, and

the horizon lies just before the first step of T0. At the n’th stage, which starts with

Tn, whose unserialised transactions comprise Depn (a subgraph of Dep0), we choose

an unserialised transaction which is a root of Depn, and we serialise it, whereupon

its steps —in contiguous sequence— are both appended to the serialised part, and

removed from the unserialised part of the partly serialised run, moving the horizon

to just beyond the newly serialised steps, and yielding Tn+1 and Depn+1. If T0 is

infinite, then the serialisation process continues forever, and every finite prefix of T0

has all its steps eventually included in the serialised part. If T0 is finite, the process

stops when the last transaction of T0 has been serialised.

Stage n: A root transaction τn of Depn is chosen. By assumption, all transac-

tions on which τn is dependent, whether through the state space, or via τn’s IDS

messages, have been serialised, i.e. their steps lie beyond the horizon. So any step

of Tn that lies between the horizon and τn’s first step neither uses any state used

by τn’s first step, nor produces a message consumed by τn’s first step. So there is

no obstacle to commuting the first step of τn towards the past until it it arrives

immediately after the horizon. Similarly the dependencies for the second step lie

either beyond the horizon, or arise from the first step, so the second step of τn

can be commuted towards the past until it arrives immediately after the first. The

process continues until the last step of τn has been commuted until it arrives im-

mediately after its predecessor. This yields Tn+1. Transaction τn is removed from

Depn, yielding Depn+1, and the horizon is moved to just after τn’s last step. End

Stage n. 2

The preceding amounts to a sketch of a relatively standard 2-phase serialisation

proof process [4,10,5,28]. And once the run has been serialised, it is clear that each

transaction of the serialised run is a refinement of its corresponding atomic action

via a retrieve function that forgets the part of the system state not relevant to the

transaction.

5 Mondex and its Refinements

In this section we reflect on the Mondex protocol, and the extent to which its

refinement possibilities correspond to the preceding theory. There are a number of

points to be borne in mind.

First of all, our theory has been couched in terms of single transitions (which is

less cluttered), whereas Mondex is couched in terms of Z operations [25,8,14]. Thus

when we say below that such and such an operation is synchronised with such and

such an atomic action, we are refering in bulk to all the transitions of the operation

being suitably synchronised with appropriate instatiations of the atomic action.

Secondly, we will restrict our attention to runs of the protocol which commence

with the two Start operations, StartFrom and StartTo, in either order, (returning

to other possibilities at the end of this section). Refering to Fig. 2, this means that

after the two Start operations, the protocol, which is henceforth serial (as is obvious

from the causal dependencies of the req, val and ack messages), executes some prefix
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of the Req-Val-Ack sequence of operations. If it does not complete that sequence,

each purse that still has elements of the Req-Val-Ack sequence left to do, performs

an Abort operation (replacing the first such unperformed Req-Val-Ack operation

left on that purse’s agenda), completing the protocol abnormally. Note however

that unlike the Req-Val-Ack operations which are causally constrained by the req,

val, ack messages, Abort operations are not causally constrained and can occur at

any time. Every variation in the order of performing the protocol’s operations when

Abort events are involved, causes a branching of the computation tree structure, and

leads overall, to quite a complex protocol computation tree.

5.1 The Original Mondex Refinement [26]

In [26], the refinement is constructed to synchronise with the atomic description as

early as possible, given the assumptions above. Thus the atomic action is synchro-

nised with the Req operation, which refines both AbTransferOK and AbTransfer-

Lost. Since the protocol still has plenty of opportunity to fail after the Req operation,

the Req operation itself does not fix the outcome, so the refinement, achieved on

the basis of a global inductive proof, has to be a backward one. We can visualise to

some extent the substructure of Fig. 3 that forces a backward simulation (refered

to at the end of Section 3), from Fig. 2, if we add an edge from Req to an Abort,

as an alternative to the message towards Val, since the two abstract outcomes are

already available at the end of the Req operation. Furthermore, since for a failing

transaction the protocol has already angelically chosen to refine AbTransferLost, the

Abort operation(s) which actually signal the failure at the protocol level all refine

AbIgnore (which is Mondex-speak for an abstract skip).

5.2 The Refinement of Banach et al. [3]

In [3], amongst other things, a synchronisation with the atomic description that

occured late was sought, in order to try to get a forward simulation. 7 The natu-

ral operation to refine AbTransferOK to is Val, since that is the moment that the

money safely arrives at the recipient. However, if the refinement of AbTransferOK

is ‘obvious,’ then the refinement of AbTransferLost is less so. The subtlety lies

within the Abort operation. The deeper structure of the Mondex protocol implies

that if only one Abort occurs in a transaction, it is harmless, and such an Abort can

refine AbIgnore. Only if two Abort operations occur for a transaction, each while

its respective purse is in a critical state, has the transaction failed non-trivially,

whereupon the transaction needs to refine AbTransferLost. This leads to the de-

composition of the Abort operation into cases, depending on the precise role of the

operation in the transaction. In the formalism of this paper, the Abort operation of

Mondex corresponds to a collection of events which occur at different places in the

computation tree of the protocol, and are thus distinguishable.

The case analysis is interesting. The distinction between benign and non-benign

instances of Abort is made on the basis of a purse’s local state (specifically, on

7 Looking forward to some extent to the specific results of this paper —which show that the essentials of a
protocol can be understood by discussing the protagonists in isolation— the discussion in [3] was restricted
to a world of just two purses, a single From purse and a single To purse.
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whether the purse is in state epv or epa (non-benign), or in some other state (be-

nign)). However, since two Aborts make one AbTransferLost, we can only refine

AbTransferLost to one of the pair — and it has to be the second of the pair, since if

only one Abort in a critical state happens, then it turns out to be benign nonethe-

less. In [3] non-local state information is used to distinguish the first non-benign

Abort from the second, and the first is then made to refine AbIgnore while the

second refines AbTransferLost.

5.3 The Refinement of Schellhorn et al. [22]

[22] is the second mechanized verification of Mondex using the the KIV theorem

prover [19]. While the first [24] used the original backward simulation and data

refinement, the second uses abstract state machines (ASMs, [11], [6]) together with

ASM refinement and generalized forward simulations ([20]).

The refinement, like [3], synchronizes successful transfers by having Val imple-

ment AbTransferOK. But it chooses to synchronize failed transfers at the earliest

point possible. This gives two cases for the Req operation, which is the point where

the From purse sends money. In the first, the To purse is still ready to receive

the money, in which case Req implements AbIgnore. But if the To purse has al-

ready aborted then the second case applies, and Req implements AbTransferLost. 8

Instead of having two cases (as in [3]) in which the Abort operation implements

AbTransferLost, the design of [22] leaves only one: the case where the To purse

aborts in epv after money has been sent.

The different choices for the synchronisation points was one motivation for us

to study the general possibilities here. Another one was to provide a general for-

malization of using past and future simulation relations (RP and RF ). Instances

of such relations with a schematic encoding into Dynamic Logic are not only used

in the case study [22] but also in earlier work. Future simulation relations occur in

the correctness proof of ASM refinement [20]. Past simulation relations are used in

coupled refinement [9] as noted in [21].

5.4 The Refinements of Haxthausen, George et al. [12]

The two refinements of [12] use the RAISE specification language [27]. They are

another mechanized verification of Mondex using the theorem prover PVS [18]. This

case study is slightly out of scope of our theory, since it does not start with atomic

actions, but with a two step protocol: the first step (called TransferLeft) is a send

operation, which nondeterministically chooses between a success and failure, and

we call the two cases SendOK and SendFail. After SendOK, there are again two

possibilities: receiving may succeed or fail. For symmetry, we call these operations

ReceiveOK and ReceiveFail, [12] calls them TransferRight and Abort. Already, the

splitting of transactions at the abstract level into send and receive, allows us to

keep the balances of abstract and concrete level in perfect synchrony, as is required

by RAISE refinement. The two refinements implement TransferLeft with Req and

ReceiveOK with Val.

8 This differs from [3], where the Abort of the From purse that is bound to happen in this situation
implements AbTransferLost.
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To compare the synchronisation points with our proofs, we have to add an ad-

ditional refinement of the original abstract Mondex level to the abstract RAISE

level. The refinement would have to implement AbTransferOK by the sequence

SendOK ;ReceiveOK. AbTransferLost would be implemented by both SendFail and

SendOK ;ReceiveFail. Because SendOK is ON, a forward simulation proof would

have to synchronize with the last operation of every sequence. Composing the

resulting simulation relation with the existing refinements, we find that the syn-

chronization is the one used in [22].

5.5 The refinements of Butler and Yadav

These refinements develop a Mondex-like money transfer protocol using the B4free

tool [2]. They will be published as a contribution to [15]. In accordance to the Event-

B [1] methodology, the protocol is developed in many small, but easily mechanically

provable refinement steps, the simulations being forward simulations. The strategy

decomposes the abstract events to facilitate separate refinement of distinct pieces

to distinct protocol level operations. Aside from that, it is similar to that of [3] in

that failing transfers are refined by Aborts.

Note that with the exception of the original (backward) one, the preceding refine-

ments are all forward simulations when viewed at the individual protocol instance

level (cf. Corollary 3.9). As such, and particularly when they are based on (1, 1)

refinements, they all readily extend to forward simulation refinements of full sys-

tem runs — just as the original (1, 1) backward simulation readily extended to a

backward simulation refinement for full system runs.

5.6 Other Possibilities

Our general theory shows that even more possibilities than have been discussed

above are actually possible. For example, the refinement of [3] could have chosen to

refine AbTransferOK to Ack instead of Val, since Val occurs as the last operation

of a successful transaction. However, since in general there is a possibility that a

transaction succeeds but that the ack message is lost, causing the Ack operation to

be replaced by an Abort (which as it turns out is harmless), we infer that in such a

refinement there would be a case in which AbTransferOK would have to be refined

by Abort !

An alternative to the preceding is to synchronise right at the beginning, with

the first (or second) Start event — and there are plenty of hybrid cases, combining

aspects from several of the described or suggested refinements arising from the rich

structure of the protocol computation tree. We leave the curious reader to work

out such scenarios for him- or her- self.

5.7 The Non-2-Phase Fragments

In discussing the preceding refinements, we have always assumed that the two Start

operations are performed first. But it could happen that one purse Starts and

immediately afterwards Aborts, before the second purse has Started. This spoils

the 2P property since the first purse has relinquished its use of its local state before
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the second purse has claimed its first use. In such a case, either purse may engage in

other transactions, changing the local state, after the first purse’s Abort and before

the second purse’s Start.

A remaining possibility is that only one purse Starts, and the other purse merely

Aborts, or does nothing. In such a case, even if the other purse’s Abort happens

after the (inevitable) Abort of the first purse, it is arguable that the protocol is

nevertheless 2P, since the other purse’s use of its state amounts to no more than

skip. Even if one does not accept this argument, it is evident that the breakdown

of the 2P property is rather mild.

Dealing formally with such situations requires an extension of our theory. Note

though, that even if these situations are not serialisable via the standard 2P tech-

nique, the fact that we have (1, 1) refinements of the protocol, guarantees nonethe-

less that these ‘rogue’ interleavings preserve atomic semantics.

6 Conclusions, and Further Work

In the preceding sections we took the Mondex Electronic Purse —a prime example

of a protocol enacted between a number of parties that was designed to achieve

the effect of an atomic action— and we looked for a generalisation. We developed

a refinement framework based on seeing both the atomic action and protocol as

computation trees, and saw that we could choose the way that the atomic action

was synchronised with the protocol in a ‘small diagram’ refinement relatively freely.

The properties of the choice, in particular how potential abstract outcomes were

related to synchronisation points, was closely related to the prospects for forward

and backward simulation at the small diagram level.

We then embedded this formulation of an isolated protocol run in a framework

enabling different runs of perhaps different protocols to be interleaved in a natural

way. When combined with a fairly standard 2-phase property, these system runs

could be serialised, showing that the atomicity abstraction survives.

We then confronted the theory with various refinements for Mondex that have

been created in the recent past, and showed that the flexibility regarding synchro-

nisation points was well borne out in these various refinements.

However, although the majority of ‘normal’ Mondex transactions (including not

only successful ones, but also ones that fail in a ‘normal’ kind of way) are 2-phase

—and the modification of the protocol suggested by Schellhorn et al. in [22] in order

to design out the possibility of a certain kind of denial of service attack is 2-phase

in its entirety— the original Mondex protocol has some (in practice rare, but in

theory interesting) non-2-phase parts. A more sophisticated theory is required to

handle those situations.

Besides these issues, Mondex is what we called an isolated protocol. That is to

say, once the protocol has commenced, the parties engaging in it are fixed, and no

intrusion by other agents is contemplated. (In practice, the Mondex purse’s local

state determines how much notice is taken of which messages from which agents.)

Thus it is natural to ask how the theory develops for protocols having state that is

genuinely shared between a number of agents, including cases where the number is

not necessarily determined at the start of the protocol. Such extensions will also
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allow the direct modelling of more sophisticated behaviour by the I/O environment

than we have contemplated in this paper. (To capture, using the techniques of this

paper, I/O behaviour more subtle than the simple delivery of messages injected

into the environment, one would have to regard the environment as an agent in its

own right, participating in an esential way in protocols.) These directions will be

investigated in future work.
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