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Fig. 1. The Mondex atomic actions.

1. Introduction

The Mondex Electronic Purse was developed formally in thé-h890s using Z refinement. It was one of the first
developments to achieve an ITSEC E6 security rating [DalllaiRather unusually for a commercial product, a
sanitised version of the core of the formal development wadapublicly available [SCWO0O]. Since then it has been
a fertile ground for formal methods researchers — the oaighuman-built proofs of the security properties have been
subjected to re-examination by contemporary techniqueshave stood up extremely well to the fiercest tool-based
scrutiny achievable today, the first such mechanical vatifio being [SGHRO06b].

The Mondex formal development featured a refinement prawhfan atomic abstract model to a multi-step pro-
tocol at the concrete level. The principal component of tbfsnement proof was a backward simulation from abstract
to concrete. At the time of the original development, theali@@ment team did try to construct a forward simulation,
but were not successful — for a long time it was believed thfiravard simulation refinement was impossible. It
is nowadays known that a forward simulation is entirely jjaies and more than one is now available in the litera-
ture [BPJS07,SGH07,HGS06]. The spur for the development of many of these easérification Grand Challenge,
for which the mechanical verification of the Mondex protoealk the first major case study [JOW06, Woo06, WBO7].

In this paper we explore the wider question regarding pteskinds of simulation for the refinement of an atomic
action into a multi-step protocol, in order to settle the teain the general case. We do this in the simplest possible
relational framework in order to avoid complications thatul distract from the main point.

In Mondex, the original refinement was done ir{lal) manner, i.e. single concrete steps were made to refine
single abstract ones. Consequently, since overall, therenare concrete steps than abstract ones, many concrete
steps had to refingkip. Of course, one advantage of tfie 1) strategy is that, in the face of malevolent users or an
unpredictable environment, the concrete protocol can begalto refine the abstract atomic action, no matter how
such a user might interrupt the intended playing out of tléqmol — since every possible sequence of concrete steps
that can be executed, correspondsameabstract execution, even if it is one consisting entirelglaps.

In this, the original framework, the backward simulationretated with arearly synchronisation, i.e. the single
non-trivial abstract step wad, 1) matched with a step that occurred early in protocol runs. &ytrast, the more
recently discovered forward simulations correlate withta synchronisation, namely, the various possible non-trivia
abstract steps ar@, 1) matched with steps that occur late in protocol runs. Givenghst uncertainty regarding
forward and backward simulations in such contexts, our raamin this paper is to give a general treatment.

The rest of this paper is thus as follows. In Section 2 we peatthe operation of our motivating example, the
Mondex Purse. In Section 3 we develop a theory of the refineofennondeterministic atomic action to a multi-step
protocol in terms of computation DAGs. This explores the Wt the single atomic action can be synchronised with
an individual step of the protocol in@, 1) refinement, and we see that there are a large number of ditesiddr
this which we call synchronisation assignments (SAs). Veetlsat SAs are related to the possible choices of forward
or backward simulations, according to the manner in whicstralst outcomes are related to the details of the SA.
In Section 4 we relate the rather abstract computation DASv\Gf protocols to a more conventional one, using
event structures, and show that the histories generatesdnt structures yield computation trees in a natural way.
In Section 5 we relate the preceding theory of an isolatetbpod run to the more global picture needed to embed
protocol runs into system runs, and we explore serialigglaind the 2-phase property. Section 6 next, explores the
relationship between serialisation and simulation. Irtipalar it deals with the fact that protocol instantiatiansa
system run are normally executed by a collection of co-dpagagents, not all of whom start and end the instantiation
simultaneously, leading to overlaps of unrelated protowihntiations which generates some technical comptinati
In the following Section 7 we apply the theory developed te Harious refinements of Mondex available today,

1 Nowadays, national standards like ITSEC have been suptdmdthe ISO Common Criteria standard [Int05]. The high®SHC level, ES,
corresponds to the highest Common Criteria level, EAL7.
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Fig. 2. The Mondex concrete protocol.

noting finally that there are in fact some non-2-phase carakthe original Mondex protocol (though none of them
achieve anything observable at the abstract level, anchaetblerated). The bulk of the preceding theory has been
mechanically verified using KIV, and in Section 8 we reviewathas been achieved here. The final section concludes.

2. Mondex: A Motivating Example

Fundamentally, Mondex isemartcard purseSince it is gourse it contains real money, and since it ismartcard it
contains the money in digital form. This money is designeledransferable from purse to purse. As for real money,
the intention is that such transfers are normally performexkchange for some desired purpose such as the purchase
of goods or services, but equally —just as for real money-s itat the responsibility of the money itself to ensure
that the transfer in which it engages is of a genuine natune.dnly concern of money in general and of Mondex
money in particular, is that it should kmforgeable

The major objective of the original Mondex development veeddvelop a protocol for money transfer that ensured
that:

1. Mondex money was unforgeable, even in the face of incatmpbeecution of the protocol or of malicious behaviour
of the environment.

2. Any full or partial run of the protocol is equivalent toleér a successful money transfer, or a traceably (and thus
recoverably) lost-in-transit money transfer, or a nuliatct

These two properties are what make Mondex credible in theedhcustomer requirements: the first property, unforge-
ability, gives confidence in the value of Mondex money; witile second property, atomicity, gives comprehensibility
when compared with the behaviour of conventional financaadgactions. Fig. 1 shows the atomic abstraction that the
Mondex protocol ensures, reflecting the three possitsligiwen in the above point 2. In Fig. 1 the nodes are states,
and the arrows are the different atomic actions that thered@protocol refines.

The essence of the Mondex concrete protocol is illustratdeg. 2 in activity diagram style. The source purse is
the From purse while the destination purse is fi® purse. The protocol begins with the ttart events (initiated
from the environment as a result of the purses’ owners typirappropriate instructions at the interface device (the
wallet) into which the two purses have been inserted). ThesdheStartToevent, performed by th@ purse, and
StartFromevent, performed by therom purse, both of which take their respective purse from theesthte to a ‘busy’
state: theepr state (expecting payment request) for Brem purse, and thepvstate (expecting payment value) for
the To purse. TheStartToevent sends s&eq message to thErom purse. Upon arrival of theeq message, thErom
purse performs &egevent and dispatches the money inad message to th&o purse, itself passing into thepa
(expecting payment acknowledgement) state. Upon arriidleoval message, th@ purse performs &al event and
sends amckmessage to thErom purse, itself passing back into the idle state. Receipt@&thkmessage in thAck
event by thé=rom purse completes the protocol, and #rem purse too passes back into the idle state. Note that in
Fig. 2, the nodes are now events, edges are states, and anemessages.

The preceding described the workings of a successful ruheoptotocol. Beyond that, all events after irt
events can be replaced Bbort events, corresponding to runs of the protocol that are wesstul for whatever
reason. The fact that despidortevents, the protocol still enjoys the unforgeability anzhaitity properties, is what
makes Mondex non-trivial theoretically. However, the dstaf how this comes about do not concern us in this paper.

A further issue is that the Mondex protocols®lated i.e. once the protocol has commenced, the two purses take
note only of the arrival of the next message expected in thgaquit of the protocol, and of calls fsbort, ignoring all
other messages or calls from the environment and reserrngyttion of responding to such unexpected events by
performing a self-initiatedbort whenever appropriate.
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In this paper, rather than being concerned wiibvingthat the atomicity and isolatedness properties are enjoyed
the protocol, we take properties such as these for grameddnatead, take an interest in simulation-theoretic prige
—in a general sense, and for their own sake— of the refinenfemt atomic action to a protocol with characteristics
such as Mondex’s. The isolated property makes these siimuititeoretic properties particularly convenient to stud

3. Isolated Atomic Actions and their Protocols

For both protocols and atomic actions, we will specify transitions involved using a relational approach. The fol-
lowing statements summarise the assumptions we make dbesetup.

Assumptions 3.1.

1. Relations are represented by predicates whose varia@Biesalues in suitable types.

2. Each relation used is deterministic, i.e. for each ctibecof values for the domain variables of the predicate
representing the relation, there is a unique collectionatdies for the codomain variables that makes the relation
true.

3. For each relation, for all values of domain and codomaiiaistes that make the relation true, the domain values
are reachable from an initial state.

4. Where nondeterminism (whether at the atomic or the pobiewel) is needed, it is handled by having different
relations for different outcomes.

5. Both atomic actions and protocols are represented bgitiam systems. At the atomic level, atomic actions are
given by a collection of predicates whose interpretationsestricted to shallow computation forests (i.e. all max-
imal paths of length 1). At the protocol level, protocolsagren by a collection of predicates whose interpretations
are restricted to DAGs, all of whose paths are finite. A choidaitial state for a root of the interpreting forest of
an atomic action picks out a unique tree, called the valiel thechoice of an initial state for a root of the protocol
DAG picks out a unique (maximal reachable) subDAG of therprieting DAG, called the valid DAG.

Thus an atomic action will be specified by a (typically) fingellection of deterministic predicate$(u, i, o0, u’)

k = 1...,in whichuandu’ are (variables denoting) the before- and after- stateseofithmic actionj ando are
the input and output of the action (these may in fact denafi@eseces, or more complex structures, of input and
output values corresponding to the finer grained eventsiptatocol, if convenient), and the labetlistinguishes the
different deterministic outcomes for the same startingdétions. All together, the complete atomic specification of
the protocol becomes:

Atomidu,i,o,u") = Aty (u,i,o,u’) V Aty (u,i,o,u’) Vv ... Q)
where

(Vu,i .Atk(ua i7017 ull) A Atk(u7 i7027 u/2) = 01 = 09 A ull = u/2) (2)
(and where it turns out that (2) is not actually needed in tisugng mathematics, but helps for a convenient mental
picture).

At the protocol level, the individual steps are describedatmpllection of deterministic predicat&s, (v, j, p, V')
wherev andV are the before- and after- states of the step,janttip are the input and output of the step. The label
p is an identifier which discriminates between different netedministic outcomes from the same before-state and
input, and is required to be different for each step alongth fraough the protocol DAG but is otherwise available
to conveniently label steps in an application-relevant.way

(Forward) paths through the protocol computation DAG aedbed by compound predicates:

FPath, g, 4y (Vi,j1, P1, Vi, 2, P2, Va, - o, Vi1, Jt, P Vi) =
StL(Vi,j1,P1, Vi) A StB(Vi,j2, P2, V) A ... A St (Vi—1, i, Pr, V) (3

in which v, is a possible initial state of the protocal,labels a possible first step of the protogdlabels a possible
successor step of the step of the protocol, and so on. As (3) indicates, if a stepahsisccessor, the before-state of
the successor must match the after-state of its predec@$sofength of the sequence of labels in the subscript of

2 As for (2), determinism and path-uniqueness are not stietcessary fop, but are conceptually convenient.
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FPath,, s, .., must match both the number of inputs and outputs, and be sadtan the number of states, in the
argument list.
Maximal paths arise in the obvious way:

MPath, 3. ) (.-.) =
FPath, 5. (...) A ({a, B, ...,7) has no proper extension in the computation graph) 4)

From maximal and non-maximal paths, we can implicitly defingredicateBPath (backward paths) that describes
extensions of non-maximal forward paths:

MPath, g, ~.5.e....c) (V5015 P1s Vi, - -5 Jt P Ve Jtrt, Prrts Vern - -, VE) =
FPath, g, 4y (Vi,J1, P, Vi, -, Jt, P, i) A BPathys . oy (Ve jea 15 Pea1, Vet - - -5 VE) %)
In (5), ve is a possible final state of the protocol.

Finally, maximal paths give rise to the predic&mtocolvi, s, ps Vr), given by taking the disjunction over all
maximal paths, existentially quantifying all intermediatates, and repackaging the inputs and outputs into seggien

Protocolv, js,ps vg) =
(3 J1,P1, V1,2, P2, V2, - - Vi1, e, Pr @ )
MF.)ath(a,.ﬁ,....,’ﬁ (V| 7J17 P1,V1,]2,P2, V2, ..., Vi—1,]t, Pty VF)
A js = (Jni2,-- -0 A PS= (P1,P2; - -, PY))
The fact that the protocol implements the atomic action Ewad by relating the two via a retrieve relatiBninput

and output relationnput and Output and demanding that an ASM-style [BS03] ‘big-step’ proofigdtion holds.
The retrieve relation is required to satisfy:

(6)

maximal
(a,B,0007)

Assumptions 3.2.

1. R(u,v) is a partial function from protocol state<o atomic states. (7
2. If vis a protocol state ang, andv;, are initial protocol states, then
FPath, y(vi1...v) A FPathy y(Vi2...v) = (3 u e R(u;,vi1) A R(Ui, vi2)) (8)

(whereuy, is obviously unique because of (7)).
3. R(u,v) is ‘not too big,’ i.e. it concerns just the ‘states of inteirésr the overall protocol,
i.e. the initial and final states:
R(u,v) = (3 js,ps V e Protocolv, js, ps V) vV ProtocolV, js, ps v)) (9)

(As for (2), it turns out that (9) is not needed later, but lsdlr a convenient mental picture.) The big-step PO is now:

Protocolv, js, ps V¢) =
(3 w,i,0,us e R(u,vi) A Input(i,js) A Atomidu,, i, 0, ug) A Outpuio, ps) A R(Ug, Vg)) (10)

Conditions (9) and (10) ensure that the hypotheses and usionk of the big-step PO are valid exactly when the
simulation predicate:

S(u,i,0,Ug, V), S, PS VE) =
Atomiqu, i, 0, Ug) A Protocolv, js, ps ve) A R(ui, vi) A Input(i, js) A Outpuio, ps) A R(Ug, Vg) (12)

is true in the given types.

Now that we have connected together the atomic and finegtdiescriptions of the protocol, our aim is to develop
a general way of seeing haawme individual stepf a maximal path may be viewed as refining the atomic actiod, a
the consequences of such a view. First we develop some tadmachinery in the shape of past and future oriented
retrieve relations — these show, in a generic way, how atyitpoints in the middle of the concrete protocol are
related to the initial and final points of the abstract atoagtion. Then we introduce synchronisation assignments,
which delimit exactly how the choices of individual step it the protocol computation graph may be made. Finally
we explore the consequences of these choices for provimgtinement via forward and backward simulation.

3 Initial and final states of the protocol coincide exactlyhwite root and leaf states of the protocol computation graph.
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First we get the ‘past oriented’ retrieve relatigf:

RO(UL V) = (3 V1,1, P1s Vs et Pr (s, By oo, y) o R(U, i) A FPath, 5y (Vi i1, Pry - P ) (12)
and the ‘future oriented’ retrieve relatidti:

RE(UE, V) = (3 Jigt, P 1s Vi1 -« -, Ve, (06, ..., ) @ BPaths ey (Vis Ji1, P15 Vet - - -, VE) A R(Ug, Vi) (13)
Itis now easy to show the following:
Proposition 3.3.

R°(u,v) A RT(Ug,v) = (3,0  Atomiqu, i, 0,Ur)) (14)
R°(u,w) = (3 i,0,ur e Atomiduy,i,o,us) A R (Ug, W) (15)
R (Ur,v) = (3 uj,i,0 e R(u;,v) A Atomiduy, i, 0, Ug)) (16)

The proofs are similar to the proofs of the more interestaifpiving result, obtained by replacing the ‘V’ consisting
of R” andR" in (14)-(16) by a ‘U’ consisting oR”, St, andR™ in (17)-(19):

Theorem 3.4.
RP(ur, Vi—1) A St (Vi—1,jt, pr, o) A RE(UR, v) = (3 i,0,js7,js", ps, ps o
Input(i, js::(jt):js7) A Atomiduy, i, 0, ug) A Outputo, ps :(pt)::ps)) (7)
RP(ur, Vi—1) A St (Vi—1,jt, P, ) = (3 1,0, U, js7, js", pS, ps o
A Input(i, jsP::(jg):4s7) A Atomiduy, i, 0,ur) A Outpuio, ps::(pr):ps ) A R (Ug, ) (18)
St (Ve—1, jt, P, o) A RE(Ug,w) = (3 wy,i,0,js",js7, ps’, ps e
R (ui,w) A Input(i, js::(jt):js7) A Atomiquy, i, 0, ug) A Outputo, ps ::(pt)::ps)) (19)

Proof. For (17), fromRP(u;, v;_1) we know that there is a path through the computation tree &omnitial v tov;_1,
satisfying (3), and such th&(u;, v|) holds. EvidentlySt,(vi—1, i, pt, Vt) extends that path. Frof (Ug, vt) we know
that there is a completion of this path to a maximal path fiprio some finalve. This maximal path enables us to
deriveR(Ur, V¢ ), and provides the witnessing’, js™, ps’, ps™ so that withj;, p; we can assembis = js™:(j;):;js™ and
ps= ps::(p)::ps, and then asseRrotocol i, js, ps V).

Since we havérotocolvi, js, ps vr), we can apply (10). The conclusions of (10) yi&(, v;) for some(; and
sinceR is functional (7), we must havg = 0. The conclusions of (10) also yieltomidu;,i,0, o) andR(U, v¢)
for somell'. Again, sinceR is functional, we must haver = . From Protocolv, js, ps vg) we can also deduce
Input(i, js) andOutpufo, ps).

For (18), the argument is similar except that we do not havuesthe functional nature ¢t to argueur = ),
sinceur is existentially quantified in the conclusion.

For (19), we note first that by Assumptions 3.2v3is reachable from some initial. We use this to asserta
such thaR"(u;, v¢) holds, after which we argue as for case (17). We are done. O

Theorem 3.4 is a crucial observation, since it enables aitranp protocol stepSt,(vi_1,]ji, pr, k) to be singled
out and made to correspond with a suitable abstractAgomiquy,i, o, ug). For such aSt,(vi—1, i, P, vt) step, let
OutcomesSt,, uy) (where the dependence on 1, jt, pt, vt is understood) be given by:

OutcomeéSt,, u) = {ur | R°(Uj, Vi—1) A St(Vie1,Jt P, Vi) A RT(Ug, w)} (20)
and OOSt,, uy) (outcome determinism @t,, givenu,) be given by:
OD(St,, u) = | OutcomesSt,, u;) | (21)

If OD(St,, u;) = 1 we say thaBt, is outcome deterministic ag (St, is OD atu,), whereas if ODSt,, u;) > 1 we say
thatSt, is outcome nondeterministic ag (St, is ON atu;).

Definition 3.5. Given an initialv;, a synchronisation assignment (&f) for the relevant valid DAG of a protocol
computation DAG is a subset of its steps, such that for eactimahpath through the valid DAG from, exactly one
of its steps is in SAv; ). Steps in SAv,) are called SA steps.

Fig. 3 shows a synchronisation assignment. The many-l®@rapatation graph at the bottom (which happens to be
a tree) has thickened arrows which are the elements of th&B&atomic action is at the top and plays no specific
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Fig. 3. A synchronisation assignment for a computation tree. Témehts of the synchronisation assignment are shown bold.

partin the SA itself. Dashed arrows show the functionalsiep retrieve relatioR, while the dotted lines show some
pieces from th&r” andR" relations, for convenience below.

Definition 3.6. Given a protocol computation graph, an intial stgtéor the protocol, the atomic intial statg such
thatR(u;, vi) holds, and a synchronisation assignment for the valid DA@®rd&ned byv,, the steps of the valid DAG
are classified as follows:

1. Ifastepisinthe SA andis OD a, it is called an outcome deterministic forward synchrotiisa(ODFS) step.

2. If a stepis in the SA and is ON &, it is called an outcome nondeterministic forward syncisation (ONFS)
step.

3. If a step is an immediate or later successor of an ONFSisismalled a backward skip (BS) step.

4. Every step not covered by 1-3 is called a forward skip (F&).s

This definition shows that every path through the protocaigotation tree can be described by the following regular
expression:

FS«; (ODFS; FSx + ONFS) ; BSk (22)

Our aim is to show that when given a big-diagram refinemenncdtamic action to a protocol of the kind we have
described, if we wish to break the big-diagram refinementdmito a collection of small-diagram refinements of zero
or one atomic action steps to individual steps of the prdtas® can always use forward simulation reasoning, except
for the BS steps. In fact one can use forward simulation r@agdfor all steps excegiranching BS step& term
explained below), though it comes at a price. Likewise, weehthe option of using backward simulation reasoning
for all steps if we so wish. We discuss these points later.

By an ‘operation’ we understand a transition relation susttese we have been using hitherto, but without
assuming any specific additional properties.

Definition 3.7. Assume given an abstract operat®@p(u, i, 0, U’), a concrete operatidBOp(v, j, p, V'), and retrieve,
input and output relation&! (u, v), In'(i,j) andOut! (o, p). ThenAOpforward simulate€Opiff:

R'(u,v) A COp(v,j,p,V) = (3 i,0,u e In'(i,j) A AOp(u,i,o,u’) A Out'(o,p) A R (U, V)) (23)
And AOpbackward simulate€Opiff:
Cop(v,j,p,V) AR (U,V) = (3 u,i,0 e RY(u,v) Aln'(i,j) A AOp(u,i,o,u’) A Out(o,p)) (24)

In both casesdn'(i,j) and/orOut! (o, p) can be omitted where there is no input and/or output fAgdpand/orCOp,
as applicable.

Theorem 3.8. Let there be a big-step refinement of an atomic achitomicto a protocoProtocol given by a retrieve
relationR and input and output relationsput andOutput so that (10) holds. Let; be a fixed initial state such that
R(uy, v) holds, and let SA/) be a synchronisation assignment for the valid DAG rootegl.&then the refinement of
Atomicto Protocolcan be decomposed into single step simulations such that:
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1. If an FS step occurs before an SA step, it is forward simadlat the identity operation an.

2. If an FS step occurs after an SA step, it is forward simdlate the identity operation oug, whereug is some
outcome ofAtomic

3. If St, is an SA step, it is forward simulated Byomiqui, i, 0, ug) for everyur in OutcomesSt,, u; ).
4. Every BS step is backward simulated by the identity op@natn someug.

Proof. We start by definingR', which is:

R(u,v) = ( 3 a maximal path from some initi&, and )
) (25)

(v precedes an SA step along this path, BR¢l, v) holds)v
(vfollows an SA step along this path, aRfi(u, v) holds)

Also, we must define the single step input and output relaiohandOut'; these however are only needed for the
SA steps themselves.

In'(i,j) = (3 an SA stepSt,(vi—1,], P, W), js°, js" & Input(i, js"::(j):js")) (26)
Out'(0,p) = (3 an SA stefSt, (Vi—1,jt, p, %), pS’, pS_ e Outpuio, ps=:(p)::ps )) (27)

In fact we prove slightly more than we strictly need.

For 1, letSt,(vi—1, i, P, i) be the FS step in question. Since the SA is defined with respemths reachable
fromv;, and FS steps are defined with respect to thevgA, must be reachable from. To prove forward simulation,
assumeR! (u,v;_1) holds. Then there is a maximal path from some inijathat reaches;_; such thaR”(u,v;_1)
holds. From (12) there is a path from some initiathat reaches;_; such thaR(Qy, v,) holds for some initiali;. By
(7)and (8)0y = u= u. Soin factR! (U, vi_1) andR"(uy, vi_1) both hold. Sinc&t, (vi—1, j;, pr, V) obviously extends
the paths that witnes®”(u;, vt_1), the extensions witnes® (u;, v) andR! (u;, ) too, which is what is required for
forward simulation of the identity on,.

For 2, letSt,(vi—1, jt, P, ) be the FS step in question. Since it occurs after an SA steqst again be reachable
fromv;. To prove forward simulation, assurRé(u, v;_1) holds. Then there is a maximal path from some initjahat
reaches;_; such thaR™ (u,v;_;) holds. From (13) there is a path from ; to some finale such thaR(ug, ve) holds,
whereur is the unique abstract outcome, that witnesses that the &AtisatSt, (vi—1, ji, pr, vt) follows, is outcome
deterministic. By (7)u = Ur, so thatR™ (ug, v;_1) holds, wherebﬁl(up,vt%g holds too. Truncating the first step of
the path fromv_; to v that witnesseR(Ur, Ve ), gives a path that witnessBS (Ug, vt) and henc&! (Ug, ), which is
what is required for forward simulation of the identity oa

For 3, letSt,(vi—1,jt, P, t) be the SA step in question. Obviously it is reachable frgmTo prove forward
simulation, assum&! (u, v_1). Then we can dedud®' (u;,v;_1) andR”(u;,_1) exactly as in case 1. For amy
in Outcome$St,, u;), we know thatAtomiquy, i, 0, ug) holds. Also, we can dedud® (ug,v;) and henceR! (Ug, )
exactly as in case 2. Sin&4,(vi—1, jt, pt, t) occurs on a maximal path from to some finalr, the totality of inputs
along the path, botfs® beforej;, andjs™ after j;, will witness thatinput(i, js”:: (j;) ::js7) holds, givingIn(i,j;) as
required. The reasoning for outputs is similar. So we halvthalconclusions of (23), which is what is required for
forward simulation ofAtomiquy, i, 0, Ug).

For 4, letSt, (vi—1, jt, P, vt) be the BS step in question. Since it occurs after an SA steqst be reachable from.
To prove backward simulation, assuiREu, v;) holds. Then there is a maximal path from some initjiahat reaches
Vvt such thaR" (u, v) holds. From (13) there is a path fromto some finalr such thaR(ur, ve) holds, whereau is
some abstract outcome, that witnesses that the SA steStffat 1, ji, pi, vt) follows, is outcome nondeterministic.
By (7), u = ur for some suchug, so let us assume th&F (ug, v) holds, wherebyR! (ug, vt) holds too. Prepending
St,(Vi—1,]t, pr, v) to the path fronv; to v that withesseR(ur, vr ), gives a path that witnessBS (U, ;1 ), and hence
R'(Ur, V;_1), Which is what is required for backward simulation of theritiy on ug. O
Since at the abstract level, the transpose of the steparliata partial function, backward simulation is alwaysadig

with a decrease of nondeterminism in both abstract and pobt@nsition functions. Therefore we get the following
(cf. [LV93]).

Corollary 3.9. Under the assumptions of Theorem 3.8, one can always ude steg backward simulations through-
out.

Corollary 3.9 might seem strange in the light of the well kmdiact that backward simulation alone is not complete
for data refinement. The explanation comes from the facttieatave an asymmetry between forward and backward
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directions in our setup. While we can never lose ‘abstrackward nondeterminism’ by simulating the protocol
backward (due to (8)), weanlose ‘abstract forward nondeterminism’ by simulating tmetpcol forward. We also
have the following.

Corollary 3.10. Under the assumptions of Theorem 3.8, suppose there are raePBS (i.e. all SA steps are OD).
Then single step forward simulations can be used throughout

Obviously, choosing the SA as the last step of each maxinthl fhaough the protocol satisfies the hypotheses of
Corollary 3.10.

Corollary 3.11. LetMPath(v, ..., Vvg) be a maximal path from an initial to a finalvg, such that (10) holds (for suit-
ably chosen other quantities). L8%, (vi—1, jt, pt, ) be the SAv) step alongMPath(vi, . .., vg). Then the simulation
of MPath(v, ..., vg) by Atomiduy, I, 0, ug) can be decomposed as follows:

1. If St,(vi—1, ], Pt, V) is an ODFS step, the simulation BfPath(v, . .., ve) may be established by inductively for-
ward simulating the steps MPath(vi, . .., vg) from v, up to a state; (which does not precedg), and backward
simulating the steps dPath(vi, . .., vg) from vi up tov; (if vi # Vi), such that:

(a) predecessors &, (vi—1,jt, P, \t) are forward simulated by the identity operationign

(b) St,(Vi—1,]t, pr, vt) is forward simulated bytomidu, i, 0, ug) whereug is the unique element of Outcon{&s,,
u), establishind=F (ug, v),

(c) FS successors &ft,(vi—1, ], pr, vi) are forward simulated from by the identity operation oug, establishing
R (ur, vp),

(d) BS successors &t,(vi—1, jt, P, &) are backward simulated from by the identity operation oue, establish-
ing R” (Ur, V).

2. If St,(vi—1,]Jt, P, &) is an ONFS step, the simulation dfPath(vi,...,ve) may be established by inductively

forward simulating the steps ddPath(vi, ..., ve) fromv, up to and includingt, (i1, j, Pt, vt), and inductively
backward simulating the stepsMPath(v,, . .., vr) from ve up tow;, such that:

(a) predecessors &, (vi—1,jt, Pr, V) are forward simulated by the identity operationign

(b) St,(Vt—1,]t, pr, vt) is forward simulated byAtomiqu, i, 0, ug), for eachur in Outcomes$St,, u;), establishing
R (Ur, W),

(c) successors @t,(vi—1,ji, Pr, V) are backward simulated from by the identity operation our, establishing
RF(UF7 Vt)'

Why are the above results useful? We can give a couple ofmeaso

Firstly, they are illuminative. One can be convinced of therectness of a protocol with respect to an atomic action,
without having the details of a refinement already worked lmutuch a situation, it may not be clear how to synchro-
nise the atomic action with the lower level description. ditean 3.8 shows that one can choose this synchronisation
relatively freely, within the parameters of allowable sigranisation assignments.

Secondly, once having chosen a synchronisation, it is masieeto write down the ‘big-step’ retrieve relation and
associated input and output relations, than to discovemibre finegrained single step ones. Theorem 3.8 shows that
with the big-step retrieve relation fixed, the single stepgR” andR™ may simply becalculated Their generic form
needs to be instantiated with the details of the protocoltagestep retrieve relation, and then one must eliminate as
many existential quantifiers as possible in order to arrivee @osed form. Making clear that theisesuch a strategy
to follow is a considerable improvement over the hit-andsvapproach one would otherwise need, especially when
combined with uncertainty regarding synchronisation.

The theorem and its corollaries also provoke the followiogsiderations.

One can replace some backward simulation by forward simunlaGiven a synchronisation assignment, a branching
BS step is a BS stefy(vs, ..., Vg ) for which there is another BS steft;(vs, . .., Vgo) (With v ; # v,) such
that the abstract outcomes 1, Ur » corresponding to the completions of the paths frgm andv; , are different,
Ur1 # Uk 2.% In such a case, ormnnotmake a forward simulation inference succeed.

4 Since we speak of a BS step, there must exist smch # Uk 2, as the nondeterminism istomiqui, i, 0, up) has been resolved earlier than at
this BS step.
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To see this, recall that forward simulation demands tha} (2B be provedo matter whatinstantiations one
chooses for the hypotheses. Now, suppose the first hypstbe€23) is made true bR (ur 1, Vs), and the second
hypothesis is made true I8t;(vs, . . ., V5 »). Then the first hypothesis demands thxabe chosen to ber ;, while the
second hypothesis demands tbatbe chosen to beg 2, a contradiction. This is the standard backward simulation
counterexample.

In Fig. 3, the SA element along the upper thread of the contiputéree is an ONFS step, since it can reach
two concrete final states that retrieve to two different @ustoutcomes. Accordingly, the two BS steps immediately
following it (and the two following the topmost of them alotige upper thread) are branching BS steps, since they
too can individually reach different concrete final statest retrieve to the two different abstract outcomes. With th
dotted lines depictin&’, it is easy to see that these steps illustrate what we havdigeissed.

However, if a BS step isot branching, i.e. there is only one protocol successor statevs, then the preceding
problem cannot arise since the unique successor cannet odéstinction between the choices fgr. So for non-
branching BS steps, a forward simulation inference wilkcesd. However, it comes at a price. If a forward simulating
BS step immediately follows a backward simulating BS stepR! (Ur, v) value at thev state that they share, occurs
as a hypothesis in both the backward PO (24) and the forwar{®B)OIt thus remains as an unproved assumption in
the overall single-step verification of the big-step refieein As such it allows the verification to succeed vacuously
(i.e. using the ‘don’t care’ interpretation of the POs’ ingglions that comes into play when their hypotheses are
false). For this reason we phrased Corollary 3.11.2 as tdwadtive processes that meet in the middle, since it is much
better to verify soméR! (U, v) twice independently, than to leave some otRé&fug, v) unproved, thus undermining
the whole verification.

Lastly, Theorem 3.8 offers a different strategy for addregglobal correctness. Normally, to prove a protocol
(such as the one we have been considering) globally cowaetchooses either forward or backward simulation,
establishes that each protocol step refines some atomanogmtskip, and this then extends to an inductive proof for
global executions as a whole. With Theorem 3.8, we can egwiaalifferent approach, structured as follows.

1. We first study the ‘big-step’ refinement of atomic actiorptotocol, determining the protocol computation DAG
and the big-step retrieve relation.

2. Nextwe choose a suitable synchronisation assignment.

3. Next we determine which combination of forward and baaklxsmulations are appropriate for the synchronisa-
tion assignment.

4. Next we calculate the necessary single step retrievéae)dreaking down the big-step refinement into single
step refinements.

5. Finally, we determine how runs of the protocol can intréeto make global executions.

While the first four of these points have been discussed altbedifth point is elaborated in the remainder of the
paper (see especially Sections 5 and 6). The alternativ@agip advocated, separates concerns, and in cases where a
complex protocol is concerned, may offer some advantagesyt event, the mere awareness of the possibility of such
an approach may make the more monolithic standard approahtnactable, since it can show that certain subgoals
of the standard approach are achievable in advance.

In choosing between the new approach and the traditionabaph, it is important to appreciate that the choice
represents a value judgement about the very notion of whaeéns for a protocol to be correct. The standard in-
ductive approach, and the more separated-concerns appiteseloped in this paper, are (mathematically) different
statements, though not unrelated as discussed at the emdtidrs6. Both however offer the same coverage of con-
crete steps, and both establish simulations between miodmel atomic action, albeit in different ways. We make
further remarks to this effect below.

4. Event Structures and Protocol Computation Trees

Step 1 of the alternative verification strategy just sugggeselies on determining the protocol computation DAG.
Usually, consideration of this computation structure i$ itgelf the means by which a protocol is invented, so the
computation DAG might well be derived from alternative stag points.

A common way of inventing a protocol is to say ‘this happensrahat’ for a sufficiently large number of cases.
Such a train of thought can be formalised quite effectiveding event structures of various kinds [WN95, Bou90,
NPW81,Win86,Win88,BC88,PP95]. Accordingly, we use eatnictures with symmetric conflict relations to encode
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Fig. 4. An event structure for the Mondex protocol.

possible playouts of a protocol, and show how to derive a caatipn tree from an underlying event structure of this
kind. Once there, one can map the tree to a more convenientiD#@ wishes.

Definition 4.1. A (symmetric flow) event structur@ is a triple(E, <, #) such that:

1. Eis a set (of events).
2. <is an asymmetric causal flow relation Brfwhose transitive (resp. reflexive transitive) closurerigten < (resp.

<))

3. #is anirreflexive symmetric conflict relation &compatible with<, i.e. such thak#y < z= x#z

The preceding is a very simple definition which will do for donmediate purposes. Generalisations arise by eg. al-
lowing the conflict relation to be asymmetric; see some oftited literature.

An event structure defines which events may occur once otteetehave already occurred. Collections of events
are called configurations, and the legal configurations egal lways of passing from one configuration to a successor
configuration are packaged up in the following definition.

Definition 4.2. Let& = (E, <, #) be an event structure. The &t C P E of (legal) configurations of,, and the legal
ways of moving from a legal configuratiofiof £ to a successor legal configuratigrare given by the following rules.

1. o€ Xe.
2. XeXe,xeE-X,(VX €cEexX <x=X € X),(VX cEexX #x=X ¢X) F XU{x}e X:.

In Fig. 4 we show an event structure for the Mondex protoatdpaed from the activity diagram of Fig. 2 to include all
the ‘abnormal’ ways that the protocol can play out, and flguip the page. The constituent events are in the labelled
nodes, while the arrows show the elements of the flow relatipand the #-labelled edges show a generating set for
the conflict relation. In the Mondex documentation [SCW0@ variousAbort, events are all part of a singhbort
operation, which has been split into five pieces in Fig. 4 edicg to which ‘normal’ event thébortis in conflict
with.

In Fig. 4 there are two root eventStartFromand StartTq either of which can start an ‘execution’ of the event
structure. (For the time being, we ignore the possibilitygiirting with one or both of thAbortr or Abort: events,
which lead to ‘stillborn’ executions; they are included iig M for later convenience.) Once the first event has taken
place, we have a (different) choice of two next events (ddipgnon whichStartevent went first). If the next event
is the otheiStartevent, then we have a choice of three subsequent everdad so on. Working out all the possible
orderings of events yields a quite complex structure, aiscciear that the event structure formalism captures afiehe
possibilities in a compact and convenient way.

In general, an event structure is executed by starting vaghempty configuration, and then one executes one
event at a time, adding a new everib the existing configuratioX, as sanctioned by the rules in Definition 4.2. So
Definition 4.2 provides a proof system that enables us tovedaequences of event occurrences. The set of sequences
obtained thereby can be turned into DAG-shaped and fohegiesl transition relations by accumulating the informa-
tion encountered in the course of assembling these seguamnseitable ways: if one adds elements to a set of events
one generates a DAG; if one appends elements to a sequenants ene generates a forest.

Definition 4.3. Let& = (E, <, #) be an event structure. The transition sys#C associated witlf is defined by:



12 Banach and Schellhorn

1. the states are the configuratiofs X, with & as intial state,

2. the transitions are the stepsX = X' iff Xe Xe...F X =XU{x} € Xz isavalid inference according
to Definition 4.2.

Evidently£PAC is a DAG.

Definition 4.4. Let& = (E, <, #) be an event structure ad®€ its associated transition system. The transition forest
EFOR associated witld is defined by:

1. the states are the paths(@, ..., X) in £PA¢ which start at the initiaf °A® state, with the empty path as initial
EFOR state,

2. the transitions are the steps(@, ..., X) = (@,...,X,X/) iff X5 X isastep ofPAC,

The preceding gets us some way towards the provisions ofoBe®t However we are not there yet. Section 3 is
couched in relational terms. So events have to corresponelatons, and the enabledness or otherwise of these
relations in any state must correspond to what the flow andlicorelations of the event structure permit in given
configurations. In general, the process will be applicatipacific, since it will depend on many factors, such as how
many protagonists participate in the protocol, what thegal state is envisaged to be, what knowledge of the global
state they have, the role of 1/0, etc. However, in the contéxtesigning a protocol to accomplish some identified
atomic goal, the process of reconciling these two appraache provide a useful consistency/correctness check on
the design activity.

Beyond that, our event structure account of Mondex left eutain state components, such as the details of purse
balances and amounts transfered etc., that a full accousttimziude — i.e. the event structure was deliberately in-
tended to be generic. Reinstating the omitted componentrgtes a replication of the forest, indexed by the reiedtat
values, corresponding to the full computation forfest.

Once the event description is in place, and one is confidentttproperly corresponds to the relational picture,
we can extract a computation forest via the constructiomafihitions 4.3 and 4.4.

By construction, the nodes of the forest shaped computatidAG £7CR incorporate the full history of the pro-
tocol up to the given point. Such history information is ofteeeded in reasoning about protocols, since protocol
properties frequently depend not only on knowing that tleequol has arrived at a certain point, but that certain other
things must have necessarily happened prior to that poirth $acts can be trivially extracted from the full history,
so our formulation may be regarded as a multipurpose caalhéscription, useful for things other than just the con-
cerns of this paper. However, since different paths camaftave at ‘essentially the same’ state eg. via interchange
of causally independent steps somewhere in the interidreoptotocol, it is just as useful to be able to forget aspects
of history, and identify common suffixes of certain pathse Blality betwee@®*® and£FOR (given in one direction
by the construction of "OR from £PAG, and in the other by forgetting all but the last componentatestate ir£FOR)
bears out the compatibility of these different points ofwie

Another aspect that should be discussed is I/O. At the atéewid, the I/O for the single step that takes place
must inevitably concern the environment, since there isnt@rmal structure to engage in internal communication.
At the protocol level however, 1/0O can either be between tindrenment and the protocol, or be purely internal to
the protocaol. In the latter case, the only restriction thatneed is that messages must be produced before they can be
consumed, a fact we insist on also when we come to considdipfeydrotocol instatiations and the possibility that one
protocol instatiation outputs a message that is consumeddther protocol instatiation. There is of course the aptio
of representing messages in flight within a suitable statepmment —such a state component can model properties of
the communication medium, eg. unreliablity— however we dorreed to insist on that for the serialisation discussed
in the next section.

5. Interleaving and Serialising Individual Protocol Runs
Thus far, although using language such as ‘protocol,’ ifiteave have only discussed some properties of acyclic

transition systems. In genuine protocols, various agetgsdct by performing events and sending/receiving messag
etc. We must connect our theory to this world.

5 N.B. This picture incidentally yields one useful conventior thep labels of the step relatior, of Section 3: namely to tag each edge of the
‘generic’ forest by a distinct label (corresponding to tekevant event name in the event structure picture), andtthegtain these labels in each
replicated forest, making the labels akin to names of ‘dpm1a’ at what would be the code level.
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The basic idea is that the previous section should be umaetsts describing (the various possibilities for) a
single isolated protocol run, performed by however manyntggyeould be appropriate in practice, with the proto-
col state recording in principle the full history of the pwobl so far (regardless of whether such knowledge can
indeed be posessed by the individual agents), and igndragest of the universe. The latter not only regarding other
agents/activities in the rest of the universe, but alsordigg what the agents of the single protocol run might do both
before and after the run itself. So the previous sectionritestt an idealisegatternor templatefor what collections
of agents might do over some period of time towards the aehient of some goal described by the atomic action
that the protocol implements.

Patterns or templates are normally made to correspond witit happens in the real world by some process of
matching, and that is the basis of our approach too. Sinceawe temarked that our protocol states can in principle
include unrealistically detailed history information,ramatching process must include a projection mechanism to
allow the unrealistic parts to be forgotten. In such a sdengarotocol states that were previously distinct can be
matched to the same system state, just as we described iretheus section.

Definition 5.1. A systenconsists of a number a@fgents A, Ay, . .. each with its agent state subspatig W, . . ..
Thus the system state spac&Vis= W, x Wy x ..., agentA,’s instantaneous state is somg € W,, and the system’s
instantaneous stateis= (W, Wp, . . .).

Each agent is a transition system, i.e. the agent can mowebetdifferent elements of its state space in discrete
steps, leaving the state of every other agent unaffectegl eflabledness of any agent’s transitions is independent of
the state of any other agent. Each step can also consumeainghproduce output, and the I/O policy described in the
previous section applies again: i.e. /0 may either be withénvironment, or it may be internal to the system, and
any internal message that is consumed must earlier havepbeeuced.

The system’s transitions are described by a predi®gieimilar to Stin Section 3, where the subscript refers
to the agent performing the step, and e&sh step modifies only its own agent’s state subspace. The tiamsiof
the system as a whole are the interleaved agent transitiothe @ystem’s agents, each extended vgitip on the
irrelevant part of the total system state. Thip-extended transitions are writt@y,.

Definition 5.2. LetSbe a system with agertg, Ay, . . .. The sequenc& = (Wi, (ky, A1, 1), Wy, (ko, Az, O2), Wa, . . .)
is a run of the system iff:

1. W is an initial state of the system,

. A is the agent that performs the first step,

. kq is the input consumed b4y during the first step,

. g is the output produced b4, during the first step,

. Wy is the result state of the first step,

. the change of sta® — W, involves a change; — w; to the state spad#; of A; only; the stefSya, (Wi, ki, gi, wq)
is theagent stepf the first transition of the run; the state spaces of agahtrehanA; remain unchanged,

7. ... and analogously for subsequent system transitions.

o0, WN

Definition 5.3. LetProtocolbe a protocolin the sense of the previous section. An ageotdgosition for the protocol
is a decomposition of the protocol state sp¥dato a cartesian product of agent subspadesV; x Vs x ..., such
that each step of the protocol modifieg most one component in the product, leaving the other coeps unaltered.

The decomposition into agent subspaces just describeseqts the fact that an instantiation of a protocol is nor-
mally executed by a number of agents inside a real sy$tdowever a real agent in a real system can play many roles
during the running of the system, including acting out d#f& roles in different instances of the same protocol at dif
ferent times. So we need to distinguish the various ageestiiala protocol definition from the different instantiason

of these during system runs. The next definition introdulcegechnical machinery for this.

Definition 5.4. Let Atomic Protocol . .. (with all the attendant machinery) be a protocol implenmemntn atomic
action in the sense of the previous section. We say thatrayste7 instantiate$rotocoliff there is a maximal path

6 Here, and in the remainder of the paper, ‘modifies’ shouldrizetstood to mean ‘is deemed to modify’ or, ‘is permitted tadify in the syntactic
description of the step,’ since it is intended to cover ndy eron-trivial update, but also cases of read-only access cases in which the agent in
fact chooses not to access the state at all (even thoughritectig description, of which the step is a specific instdith, permits it).

7 In Mondex there will be two agents, tfe agent and thérom agent, so thaV = Vgom X Vro. Similarly for any protocol that works by
exchanging messages between two agents.
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Fig. 5. An atomic action, a protocol which implements it, and a systan containing an instance of a maximal path through théopab. The
steps of the instance are shown bold.

through the protocoMPathy, g 1, (Vi,J1, P1, V1,j2, P2, V2, - . -, VE—1, jF, PF, Ve ) @and there are two mapsa andrs
such that:

1. there is a cartesian product of disjoint functieng : V| — W, from all of the agent components dfto a
(possibly proper) subset of distinct agent subspac®¥,@nd7ra = II; 7,

2. 1sis an injective function from the steps of the maximal piitRath, 5 ... .y to agent steps df,

3. 7sis order preserving, i.e. Bts precedest, in MPath, 5. ), thenTs(Sgg) precedess(St,) in 7,

4. for each protocol stePtz (i1, jt, Pt, Vi) in the domain ofrs, if V) is the agent component ¥fmodified during the
step, therra (Vi) is the agent subspace modified during the st€Btz (Vi—1, jt, P, \t)),

5. for each protocol stesgg(vt 1,t, P, Vi) in the domain ofrs, if 75(Stz(Vt—1,]Jt, P, V1)) = SWa (Ws—1, Ks, Os, Ws),
then7a (i—1) = Ws—1, jt = Ks, Pt = 0s, 7a1(Vt) = W,

6. if protocol steSt; modifiesV| and protocol steft, is the next protocol step alodPath, 5. ... ., that modifies
V), then no step of betweenrs(Stz) andrs(St,) modifiesra (V).

When we want to emphasise the details, we say that systerfi’ rimstantiateSDrotocolvia T = (7a,7s) at step
7s(St(Vi,j1, P1, V1)) of 7, whereSt, (v, j1, p1, V1) is the initial step inMPath, 5. ..

In Fig. 5 we show how a particular maximal palh,say, through the protocol |Ilustrated in Fig. 3, might be megh
via an instantiation function, to a selection of steps in a system run. The system state iruthis now ‘real world’
state, eschewing the maximal knowledge that the idealis&td@ol formulation allows. In between the steps-0¥1),
other protocols are being instantiated by other agentsgihavithout interfering with the state e{M), by Definition
5.4.6.

Definition 5.5. Let MPath, 5 .. ., be a maximal path irProtocol StepSts(w_1,ji, pr, i) of MPath, 5 . .y is
a first use of agent subspaVe |ff it modifies V|, and no earlier step d¥lPath,, 5 . .y modifiesV;. Similarly
Stz(Ve—1,]Jt, P, ) is a last use ol iff: it modifies Vj, and no later step ofPath,, s .. .,y modifiesV,. We say
thatProtocolis 2-phase (2P) alongPath,, 5 ... ., iff all first uses of all agent subspacesRJbtocoIprecede any last
use of any agent subspaceFtrbtocoIanngMPath<a Broy)-

Definition 5.6. Let Sy, (Ws_1, ks, Gs, Ws) and Sy (Ws, K11, s+ 1, Ws11) be two successive steps of a rfirof the sys-
tem. We say thaSy,(...) andSy(...) can be commuted iff there is a stalg such thatSy, (Ws, ks, gs, Ws+1) and
Sy (Ws—1, Ks+1, Gst1, Ws) are valid steps of the system, and the [Bjg(Ws_1, Ks, Gs, Ws) ; Sy (Ws, Ks 41, 01, Ws1)

can be replaced iff by Sy (Ws_1, Kst 1, Gst1, Ws) ; SYa(Ws, Ks, 0s, Ws1), YieldingZ”, whereT” is a valid run.
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Lemma 5.7. If Sy,(...) andSy(. . .) as in Definition 5.6, are two successive steps performed bylffferent agents,
then, provided both inputs are available in s@&te;, Sy,(...) andSy(...) can be commuted.

Proof. SinceSy,(...) andSy(...) are performed by different agents, the two agent subspaoeified by these
steps are disjoint, so the changes of state can be swapsilgt,\@elding the statavs required by Definition 5.6. If
both inputs are available in stalg_, then theSy(. . .) is enabled in stat@s_; and can be performed first. Since the
input to Sy, (. . .) is not removed by doin@y(. . .), Sy (. ..) can followSy(. ..). That this generates a valid run is
now straightforward. O

Since our formulation of a protocol does not consider théqual’'s context, the only way that a protocol, as formulated

in Section 3, can interact with the rest of the universe,add with the environment. In the system context, this leads
to a distinction within the internal system messages, betweessages that are produced and consumed by the same
protocol instance (which should thus correspond to infesommunications of the protocol itself), and those which
are produced and consumed by different protocol instanekill should thus correspond to communications with
the environment in the protocol model). (System level comications with the environment must of course also
correspond with protocol communications with the envirentr) Since inter-protocol communications must comply
with normal causality considerations, these communioatiaust fit well with the 2-phase property for protocol state
components. The next definition introduces the needed iczlities.

Definition 5.8. Suppose given a maximal pafiPath, s ... ., of a protocol, which is 2P. An external dependency
definition (XDD) for it is a pair of (not necessarily disjo)rgets(IDS, ODS) of steps ofMPath,, 5 .. .. IDSis the
input dependency set: the set of stepsvitath, 5.,y during which an external input (i.e. one originating from
outsideMPath, s .. ,)) is received; an@DSis the output dependency set: the set of stepd@dth., s, .. ) during
which an external output (i.e. one destined to outsiRath,, s . -) is delivered. A protocol is 2PXDD-normal iff:

1. allIDS steps occur no later than a@DSstep alongvPath, 5.... -y,

2. the producer of every input of every protocol step othantanIDS step is some other step bfPath, 5. ),

3. the consumer of every output of every protocol step otem anODSstep is some other step bfPathy,, 3.... -,
4. eachDS step occurs no later than any last use of the state,

5. eachODSstep occurs no earlier than any first use of the state.

For a maximal path through the Mondex protocol, the IDS stepgheStartFromand StartToevents. There are no
ODS steps since Mondex is designed to change state, radrepthduce output. As we mention in Section 7.8, there
are some paths through the Mondex protocol which are note&gtihough none of them do anything ‘useful’.

Definition 5.9. An instantiation of a 2PXDD-normal protocol is called a (ZPX-normal) transaction.
For the rest of this paper all transactions will be 2PXDDwmak.

Theorem 5.10. Let 7, be a run of a system which consists entirely of the steps m$#aietions of a family of protocofs.
Then there is a serialisatich,, of 7, generated by commuting adjacent steps, in which eachitiesti@n occurs as a
contiguous series of steps.

Proof. Consider the directed grapbep, whose nodes are the transactionsZgf and whose edges are given by:
T — To Iff

1. an output of a®®DSstep ofr; is an input of arlDS step ofr, or,
2. an agent subspabgis used by both; andr,, butr's modifications oV, occur earlier irZ; thanr,’s.

Claim 5.10.1Dep, is acyclic.

Proof of Claim.Let V be the state space of a transactiorSince the last first use &f precedes the first last use of
Vin 7, and all allIDS steps precede aDDSsteps inr, by Definition 5.8.4-5, we can deduce that there is a step in
(which we will call the pivot), that precedes neither the fast use ofV nor anylDS step, and simultaneously follows
neither the first last use &f nor anyODSstep (there are four cases). We identify each transactidp with (some
choice for) its pivot. Since steps are interleaved, theeetital order on the transactions, inherited from that oir the
pivots.

8 So there is a set of maximal paths through a set of 2PXDD-rigurotocols, and a set of instantiations of then®if and the set of steps @
is the disjoint union of these instantiations.
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We show thatDep, can be interpreted in the set of pivots, and that each eddeeilinterpretation is oriented
towards the future, yielding the acyclicity &fep, immediately. For @ep, edge of type 1, note that it is oriented
towards the future by straightforwards causality. So prditeg that the requisite message was sent during the produc-
ing transaction’s pivot step, and pretending that it adidering the consuming transaction’s pivot step can ineeas
its time of flight, but not change its orientation towards thiure. For aDep, edge of type 2, since the pivot steps
are contained within the uses of transactions’ state whichat overlap by Definition 5.4.6, and these are oriented
towards the future by 2, the orientation is preserved intberpretation. We have our claim. 0o

We serialise/; stage by stage. At each stage there are serialised andalisggtiransactions. We call the boundary
between the serialised and unserialised transactionsattieoh. So at the beginning there are no serialised transac-
tions, and the horizon lies just before the first ste@@fAt the n'th stage, which starts witff,, whose unserialised
transactions comprideep, (a subgraph obep,), we choose an unserialised transaction which is a robegf, and
we serialise it, whereupon its steps —in contiguous sectenare both appended to the serialised part, and removed
from the unserialised part of the partly serialised run, mgthe horizon to just beyond the newly serialised stepd, an
yielding 711 andDep.y1. If 7g is infinite, then the serialisation process continues fereand every finite prefix of
7y has all its steps eventually included in the serialised. it is finite, the process stops when the last transaction
of 7o has been serialised.

Stage nA root transactior;, of Dep, is chosen. By assumption, all transactions on whijgk dependent, whether
through the state space, or wigs IDS messages, have been serialised, i.e. their steps lie béyemdrizon. So any
step of7, that lies between the horizon angls first step neither uses any state used-fjyfirst step, nor produces a
message consumed hys first step. So there is no obstacle to commuting the firgt sfe;, towards the past until it
it arrives immediately after the horizon. Similarly the degencies for the second step lie either beyond the horizon,
or arise from the first step, so the second step,afan be commuted towards the past until it arrives immediatel
after the first. The process continues until the last steg, bis been commuted until it arrives immediately after its
predecessor. This yields,.,. Transaction, is removed fronDep,, yielding Dep,+1, and the horizon is moved to
just afterm’s last stepEnd Stage n O

The preceding amounts to a sketch of a relatively standauitb®e serialisation proof process [BHG87, GR93, BN97,
WV02]. And once the run has been serialised, it is unsurmmisd observe that each transaction of the serialised run
is a refinement of its corresponding atomic action via aeetrifunction that forgets the part of the system state not
relevant to the transaction. We examine the details of #imid,associated issues, in the next section.

6. Interleaved Protocol Runs as Simulations

Consider a serial ruffise, as manufactured in the discourse above. If we pick on aqodatti state in the run, say, it
will be the representative in the system run of a protocdkstayv, of the protocol being executed at that point of
the run. Say it is the'th protocol instantiation being executdeliotocolg. ThenProtocolg itself is a refinement of
an atomic actiotomicg, via a retrieve relatiomRb ...y, CONstructed as in Section 3.

We know thatW consists of agent subspaces. Knowing thiaelates to a step d?rotocolg allows us to split the
agent subspaces ! into two sets. The members of the first 38k protocotg are the state subspaces belonging to those
agents actually executirigrotocolg. The second S8z protocorg contains any agent subspaces\othat remain.

Continuing to use the notations of the previous section, m@kthatProtocolg is instantiated Viarprotocotg =
(Ta,Protocotg, TS Protocotg) . Therefore the codomain ek protocotg iS Wa protocorg: @NdW is the tuple consisting ok (the
projection ofw ontoWa protocotg), @and some other state elements belongind/tgssissorg (if the latter is nonempty).

We thereby derive the following.

Proposition 6.1. Let Z¢¢r be a serial run of a collection of protocol instantiationsebget of agents. Then for each
step(Wy_1, kg, Ad, 0d, Wa) Of Zse, there is an atomic actioAtomicg say, such thawy_; andwy are related to: (a) the
identity on an initial state oAtomicg, or, (b) a step oAtomicg, or, (c) the identity on a final state dtomicg, via
the retrieve relation:

SJ(U7 W) = Ré’rotocotg(uv V) A 7-A:érotocotg(v’ w) (28)

whereR} ;1,014 iS theR' retrieve relation folProtocolg, constructed as described in Section 3. Furthermore, in the

case of option (b), the I/O of the entire transaction of whi@g_1, kg, A4, dd, Wa) forms a part, is mapped to the 1/O
of the Atomicg step as in (26) and (27).

Proof. By construction, we know that there is a stepRibtocolg, St,(vi—1,jt, P, &) say, which is mapped to
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(Wd—1, Kd, Ad, Od, Wa) OF Tser BY 75 protocorg: Wherewy_; andwy are the projections ofly—; andWy onto Wa protocotg-
Thus the presence @fin the left hand side of (28) and the presencedi the right hand side of (28) serves to project
out the unneeded system state. Next, we cIaimthQé;mocmg connectsvy_; andwy to vi—; andv; respectively. Fi-
nally, R}Dmtocotg connects,_; andv; respectively to: (a) the identity on an initial stateAtbmicg, or, (b) a step of
Atomicg, or, (c) the identity on a final state étomicg, depending on whethe&t, (vi—1, ji, pt, vt): (&) occurs before
the SA step, or, (bls the SA step, or, (c) occurs after the SA step, for the maxirathi pf Protocolg instantiated in
this portion of7gg,.

We now briefly substantiate our claim abo@)émmcotg. Wi protocotg SPIits into two parts. The first part just contains

Wa protocotg,d the agent subspace of the system agignactually executingwg_1, K4, Ad, dg, Wa). The second part
contains the agent subspaces of all the system agents @avalvexecuting this protocol instantiation, except for

Ag. A similar split occurs at thérotocolg level. Therefore, by Definition 5.4.31-A_’F1,mmcoLg splits into pieces, one

for each corresponding pair of (protocol/system) agensgabes involved {’ in predicates, product relationally).

For Ag, we know that the relevant piece/;émmco@d, holds, by Definition 5.4.5. For every other agent, since the
agent is involved in the protocol instantiation, there isoother step of the instantiation, occurring either earlie
or later than(wgy_1, K4, Ag, g, Wa), for which the appropriate,;,},mmcokg‘_ piece holds; and so, since both protocols

and instantiations skip on non-involved state during eieotsteps, the truth of sucky’ ;romcokg’_ pieces propagates
throughout the whole of the instantiation. So we have thiecla d

Proposition 6.1 establishes a 1-step simulation pro@}gywhich is analogousto (11). It shows that a single protocol
instantiation stepwq_1, kg, A4, g, Wq) and a suitable single (trivial or non-trivial) atomic stepgether with the
relationsS, that connect them at before- and after- states (and withdl&@ions where appropriate) all hold.

By combining the 1-step simulation relations thus caladdbr all the protocol instantiations e, we see that
the whole of7Zs is simulated by a sequence of such instantiations, as ontwapect. And system states e,
that lie at the end of one protocol instantiation and at ttggrireéng of the next, are evidently in the domain of the
relations for two consecutivgs.

Unlike most formulations of simulation between a systemamid its abstraction, in the above, each atomic abstrac-
tion exists in isolation, thus helping to isolate any tritkghnical aspects involved in its refinement from compidiset
arising from the involvement of system state. Of course heraibstract side, one could set up instantiations in an ab-
stract system world in the same way as was done for the cengretocol instantiations, and thereby recover a more
conventional view.

One could then ask what the benefit of the more complicatediftation was. The answer is that it separates con-
cerns rather neatly. Any technical difficulties in the refirent of the atomic action to the protocol, can be investidjate
within a ‘bubble’ consisting of a template atomic action artémplate protocol. After this, the connection between the
templates and the whole-system view, can be made relatioatinely, as we have just shown. The reader should note
in particular that the synchronisation needed for refinedri\a the SA steps) has been completely decoupled from
the synchronisation needed for serialisation (which ddpem first/last uses of state and analogous I/O properties).

Furthermore, although one could certainly invent contticeunterexamples, the connection between the state
in a protocol transition system and the state in a protocsthintiation will, in practical examples, be very simple.
The former typically contains more history information itha real system state would; the latter will typically con-
tain information about all sorts of system state that idewant to the protocol instantiation itself (specificaliyate
belonging to agents not involved in that particular protaestantiation). For this reason we state the following.

Remark 6.2. We anticipate that in all cases of practical interest, theneation between protocol state and system
state will be achievable via simple forward induction teiques.

So far then, the picture looks rosy enough. But there is omai@ing snag: not all system runs are serial. To see the
issues this raises, we note that once a $tep 1, kq, Ad, 94, Wg) IS chosen, the discussion in Proposition 6.1 splits the
system state space into three: (a) ag®yg agent subspace, (b) the agent subspaces of the othes ggetitipating

in the protocol instantiation, (c) the agent subspaces ehesgnot covered by (a) or (b). For (a) we calculated the
contribution toS; directly via the approproiate, function, for (b) we enlarged this contribution by propagaihe
effects of other steps in the maximal path being instardidta (c) we projected that state away.

The latter two are problematic in a non-serial run. In thep@y, there may be other non-trivial protocol instanti-
ations going on that are interleaved with this one, and tebeeld be considered. In the (b) part, if any of the agents
involved, at the point of théwy_1, k4, Ad, 04, W) Step, has not yet reached the first use of or has already ptesed
last use of its state, then it may be, at this point of the mltmstantiation, involved in other activities unrelatedhe
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Fig. 6. Timelines for three agents engaged in a protocol, shadmdjrt-to-last uses of their state spaces.

present protocol instantiation. In such a case, propagatia function to the(wgy_1, Ky, Ad, dd, Wa) Step is in general
invalid.

Fig. 6 illustrates the situation. Three ageAtsAz, As engage in a protocol, with time going left to right, and with
the first use to last use of the agent subspaces shaded gopggaitingra functions into the unshaded areas is not
permissible.

Thus in a non-serial run, protocol instantiations gengtadve ‘ragged starts’ and ‘ragged ends’ —the shaded part
of Fig. 6— allowing different protocol instantiations toenap in time, even when they involve some of the same
agents. On the other hand, in a serial run, protocol ingthotis have ‘clean starts’ and ‘clean ends’ —the whole
rectangular area in Fig. 6— so all involved agents are in itjiet state at the beginning of the rectangle, and in the
right state at the end of it. This ‘clean’ formulation wasrertely useful in Section 3, where it led directly to the
straightforward definition of the past and future retriesiationsR® andRF in terms of the equally clean outer retrieve
relationR.

The clean separation of concerns engendered by temflateicand Protocoltransition relations, distinct from
system runs, permits the gap between serial and non-sgstals runs to be closed in a number of ways. Perhaps the
simplest of these keeggomicandProtocolunchanged, and just reinterprets the various retrievéaakin a manner
appropriate for non-serial runs. This is the approach wetakk.

Definition 6.3. Let AtomicandProtocolbe as in Section 3, IédPath, s, ... ., be a maximal path throughrotocol
and letR! be as in (25) with respect to a given SA. M, be an agent subspace of the state spa&eatbcolandv,
a typical element o¥/,,. Then the fragmented retrieve reIatiB}gd is defined by:

FE};(U, Vag) = 3z, @ RY(U, (Vag, V) A (vAd occurs no earlier than the first use\of, and no) (29)

later than the last use ¥, alongMPath, 3. .. .

wherevg; refers to the protocol state in all agent subspaces otheMgaand the dependencela/fd onMPath, 5.... -
and the SA is understood.

We see that wheredis stipulated (in Assumptions 3.2.1) to be a partial funttihie variousR;, evidently are not.
Given theR,&d, we can recover the origin&' as follows.

Proposition 6.4. Let Atomig Protocol MPath, s ... ), @ given SA, and the varim@?d be as previously. Then:

— — —

R (U, (Vags» Vg s Vag - - ) = R, (U, 9, ) A RL (U, V) A RL (U, Vag,) A . (30)
whered1, d2,d3, ... ranges over all the agents involved in the protocol and

VirstAg,  WhereVss: a,, is the before-state of the first use\ey,,
if va,, OCcurs in a step which precedes the first use.Qf

Vag = { ViastA,  Whereviasia,, IS the after-state of the last use\gf,,
if va,, occurs in a step which follows the last useMaf,
Vay otherwise
VirstAie  WHereVsst a, is the before-state of the first use\if,, if .. . etc.
Vai = { ViastA,  Whereviasia,, IS the after-state of the last use\f,, if . . . etc.
VAg otherwise

etc. (31)
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Proof. A straightforward calculation that extends the varié}l}into the ‘white bits’ of Fig. 6. O

While Proposition 6.4 is quite general, in practice we caterofdo better if the abstract state can be partitioned
along agent lines, like the protocol state. In that case anequantify out the irrelevant abstract state (as well as the

irrelevant protocol state) and tlﬁé\d relations can become functions. Mondex is an instance sf Wtere thé-rom
andTo balances from the protocol state survive into (and arerdjgsishable at) the abstract level.

We observe that the more narrowly defined fragmented retnielations reflect more accurately the way that
a community of agents might instantiate a family of isolapedtocols in an interleaved manner, consistent with
the event structure picture given earlier, and how this ifgthon correspondingly obscures the relationship with th
refinement of atomic action to finegrained protocol.

With the tools that we have now developed, we can make a ctinondgetween an arbitrary system run and the
collection of protocols that it instantiates. Again, thare a number of detailed ways to do this. Our approach is aimed
at a good correspondence with Remark 6.2.

Definition 6.5. Let7 be a(n arbitrary) run of a collection of protocol instaritas by a set of agents. We say a system
agent subspacéd/ is busy (in a given state occurenmeof 7') iff: W either is or occurs after the before-state of the
first use ofWy by its agentdy, and either is or occurs before the after-state of the lasb@i¥y by Aq, during some
instantiation of some protocol duririf. If Protocolg is the protocol being instantiated by agé@gtand its colleagues,
we say thaWVy is busy while instantiatingrotocolg. Otherwise we saWy is non-busy (in state occurengeof 7).

Proposition 6.6. Let 7 be a run of a collection of protocol instantiations by a sea@énts. Then for each stateof
T, Wis related to the abstract states of the set of protocolntistzons —while instantiating which, the relevant agent
subspace is busy im— via the retrieve relation:

S((ug1, Ugz . . .), W) =

) S - -1
/\ SUb;ps?ggt\i/datlisn$rSgt(;®gL\gh"e (RAmProtocoLg(ugv Vt) A Tpa,Protocotg (V'f’ Wd)) (32)
wheregl, g2 ... ranges over all the protocols whose agent subspaces arénbussnd botrR}Ad andr have acquired
an extra Protocolg’ index to label all the protocols that are being instanticaéw.

Proof. This is the obvious adaptation of Proposition 6.1 to a sitiain which more than one protocol might be being
instantiated at a given stai® and for a given protocol instantiation, not all of the aganvolved may be busy iw
while instantiating it.

Definition 6.7. A transaction prefix is like a transaction, but such that tlee snaprs of the instantiation is only
defined on a proper prefix of the maximal path of the protocwidpmstantiated. A transaction prefix is deadlocked iff
there is a system staiein the run, at or beyond the last step in the rangssp$uch that there is no possible extension
of the run aftem, for whichrs can be extended to an instantiation of a longer prefix of a makpath of the protocol.

Theorem 6.8. Let there be a collection of agents, each with its own agdrgsace, and a collection of atomic actions,
each refined to a protocol as above. Suppose that:

1. The system as a whole executes a run.

2. Each agent only executes steps that instantiate progteyd.

3. Each agent’s steps extend a prefix of the instantiatiomedc@mal path through a protocol.
4

. If, in a state of the system run an agent subspéacis busy, then ageri can only execute steps that extend a
maximal path through the protocol with whose instantiatigentA is busy.

Then:

(a) Each state of the system ramis related to the abstract before- or after- states of thmiatactions being instan-
tiated inw, via the run-specific retrieve relatio®of (32), with corresponding results for 1/0.

(b) If a transaction prefix is deadlocked, then there is sogembsubspace needed by the transaction which remains
permanently busy (with another instantiation), or theredme external input needed by the transaction which
never arrives, or both, (‘permanently’ referring to anyasdion of the run beyond the point at which deadlock can
be established).

(c) If the system run is fair —i.e. if every transaction pretfiat is not deadlocked eventually progresses (and thus
eventually completes the instantiation of a maximal pathiien the transactions that run to completion can be
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serialised as in Theorem 5.10, and the transactions thabtiun to completion (i.e. the deadlocked transaction
prefixes) can be relegated to the end of the serialised ruhiatine case of infinite runs, to indefinitely far into
the future).

Proof. Part (a) amounts to the invariant of a straightforward insdeqrocess, which follows readily from our earlier
calculations. Thus the initial state of a run is related dwlythe before-state of the first step of the first protocol
being instantiated, providing the base case. For the induatgument, consider that the next (run) step is one of the
following: (i) the first step of a protocol instantiationi)(a non-first step of a protocol instantiation which makes a
previously non-busy agent subspace busy; (iii) a non-taptaf a protocol instantiation which makes a previouslybus
agent subspace non-busy; (iv) the last step of a protoctritiation; (v) an internal step of a protocol instantiatio
i.e. a step not covered by one of the preceding cases.

For (i), the agent subspace required must be non-busy prithret run step, since pre-emption is prevented by
4. The run step makes it busy. TBeelation is amplified by mapping the before-state of thanagabspace to the
before-state of the atomic action being instantiated, hadifter-state of that agent subspace to either the befate-s
of the atomic action again (if the run step does not instéatize SA step), or the after-state of the atomic action (if
the run step does instantiate the SA step). Both possisilére catered for in the big conjunction in (32).

For (ii), the argument is similar, although other agent palegs are already busy with the transaction. Depending
on whether the run step instantiatas) & step before the SA stegi)(the SA step itself,{) a step after the SA step,
yields a three way case split for mapping the before- and-aftates of the run step to the before- and after- states of
the atomic action.

For (iii), the argument is the converse; thus the step cotaplenaking the relevant agent subspace non-busy. There
is a three way case split for before- and after- states assi @i,

For (iv), the argument is the converse of case (i), with a tvay wase split for before- and after- states.

For (v), the relevant agent subspace is busy with the tréinsaand remains so. There is a three way case split for
before- and after- states.

Regarding the I/O, Definition 5.4.5 stipulates that the isfaund outputs of a protocol path and its instantiation are
identical. Therefore the protocol/system 1/O relatiopshitrivial, and the atomic/protocol I/O relationship haseh
taken care of in Theorem 3.8.

Part (b) rests on the observation that in our system modebutity ‘resources’ that a step might need (and whose
absence can therefore disable it) are the availability ofeded input, and the availability of the agent subspace in
which the needed state change is to take place. Thus supgmise transaction prefix is deadlocked. Then, by defi-
nition, the next step of any extension must be disabled. Sbdrcase of each possible extension, either an input is
unavailable, or the agent subspace is unavailable (or blotthe former case, since all prior steps of the transaction
prefix have already been instantiated, producing all reguiimternal outputs (which are assumed to reach their desti-
nations in a finite amount of time), any needed input of a deshbtep must be external. In the latter case, the agent
needed to execute the disabled step must be unavailabgecdmionly be because that agent is permanently busy with
some other transaction, by 4, since if there was ever a pothti future at which it became non-busy, a run extension
could be constructed that elected to instantiate the hdldocked step at that point.

Part (c) rests on the observation that no completed transactcan depend on a deadlocked transaction prefix
— in the sense of needing either an external output, or a state value in antagéspace, that is produced by the
deadlocked transaction prefix. This is because all traimsecand transaction prefixes are 2PXDD-normal. Since the
deadlocked transaction prefix is blocked, it cannot havagetired all the resources it needs to complete. Therefore,
by the 2PXDD-normal property, it cannot have started to poedany external outputs, and all its agent subspaces
remain busy forever by the ‘no pre-emption’ property aba@veSincer completes, it cannot have needed any of these
resources.

Now consider the serialisation process of Theorem 5.10hBypteceding, deadlocked transaction prefixes occur
as leaves of the original dependency DABp,. Since the serialisation process ‘consumes’ transacfioms the
roots, the deadlocked transaction prefixes eventuallypgdear as isolated nodes of successive dependency DAGs
Dep. Once a deadlocked transaction prefix is in this conditiozam be ignored by the remainder of the serialisation,
and thus get relegated to the end of a finite serialised rungdefinitely far into the future in an infinite run. O

The provisions of Theorem 6.8 bring the global perspectivieheorem 5.10, which deals exclusively with fully instan-
tiated maximal paths, closer to the practical world, in viategents, though constrained to execute only instantition
of protocol steps, do so in ignorance of global informatiammg therefore risk deadlock. The latter is defined in very
simple terms in our models as just the absence of needed mpubn-availability of needed state (given the assump-
tion of non-pre-emption), this being a precise expressigdh@sense in which the instantiations of our protocols are
isolated
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Itis clear that we can expect that the assumptions of The6t8mwill be rather easy to check in practical exam-
ples. Moreover, once one knows that agents only ever ex@ustntiations of protocol steps, the ‘simple forwards
induction’ alluded to in Remark 6.2 amounts to the obseovettiat all system steps are in the range of appropriate
maps.

We have now reached the point, beyond which we do not elabawat modelling to a greater level of detalil
than we have already achieved. This is mainly because thear facts may be brought about in many different
ways. Thus, at one extreme, system agents may be true indgorocessing entities, each with its own memory,
physically isolated from the rest of the world (as happergamdex). At the other extreme, system agents and their
memories may be abstractions (such as threads) maintajreed®S scheduling process, all within a single processor.
Many variations in between can obviously be envisaged. Eauahtion will support its own reasons for establishing
the needed facts that our general formalism relies on. Theryeeal world application of the general formalism will
require a little ‘glue theory’ to connect its specific detdib the general provisions. This is entirely analogous ¢o th
way that ‘glue logic’ is often needed to connect up off-thel§hardware components, or the way that ‘glue code’ is
needed to connect up off-the-shelf software components.

7. Mondex and its Refinements

In this section we reflect on the Mondex protocol, and thergttewhich its refinement possibilities correspond to the
preceding theory. We consider a number of specific refinesn&ame of these were constructed as contributions to
the Verification Grand Challenge [JOW06, Wo006,WBO07], fdiieth the mechnical verification of Mondex constituted
the first major case study. The VGC work is surveyed in theiapissue [JWe08]. Others among our refinements were
constructed independently, and we also consider some madimts that do not correspond to any refinement explored
in the literature at all, but which, on the basis of the theslgborated above, are evidently perfectly possible. There
are a number of points to be borne in mind.

First of all, our theory has been couched in terms of singleditions (which is less cluttered), whereas Mondex
is couched in terms of AperationdSpi92, DB01,1SO02]. The distinction is the same as the aseudsed in Section
4 between the generic event structure and its replicatidhdrdetailed computational structure by all the permitted
values of the generically omitted state. Therefore whenayebglow that such and such an operation is synchronised
with such and such an atomic action, we are referring in bul&lt the transitions of the operation being suitably
synchronised with appropriate instantiations of the atomation.

Secondly, we will restrict our attention for now to runs oétprotocol which commence with the tv&iart op-
erations StartFromandStartTq in either order, (returning to other possibilities at timel @f this section). Referring
to Fig. 2, this means that after the t&artoperations, the protocol, which is henceforth serial (ashigous from
the causal dependencies of tieg, val andack messages), executes some prefix ofRlegtVal-Ack sequence of op-
erations. If it does not complete that sequence, each puasstill has elements of thHeegVal-Acksequence left to
do, performs abortoperation (which replaces the first such unperforiRegVal-Ackoperation left on that purse’s
agenda), completing the protocol abnormally. Note howthagrunlike theRegVal-Ackoperations which are causally
constrained by theeq, val, ackmessage#bortoperations are not causally constrained and can occur diraeyEv-
ery variation in the order of performing the protocol’s agtesns whermbortevents are involved, causes a branching
of the computation tree structure, and leads overall, tteecucomplex protocol computation tree. All of this concurs
with the possibilities offered in the event structure of.Fg

Thirdly, while the original Mondex refinement is structuraslitwo refinement stages (A model to B model, then
B model to C model), the separation of concerns that this elelsas different to the one in our general two stage
architecture. In particular, there is no separation ofguok-local reasoning from global-embedding reasonindpén t
original Mondex development, making the Mondex inter-mawohariants quite complicated compared with ours. Of
course the comparison is not completely fair, since ouritacture did not write down the atomic system level view
explicitly, as pointed out in the previous section — so agiagdomparison would cast the approach of this paper as a
three stage architecture.

7.1. The Original Mondex Refinement [SCWO0OQ]

In [SCWO00], the refinement is constructed to synchronisé it atomic description as early as possible, given the
assumptions above. Thus the atomic action is synchronighdive Reqoperation, which refines bothb TransferOK
andAbTransferLostSince the protocol still has plenty of opportunity to fdiles theReqoperation, th&Reqoperation
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itself does not fix the outcome, so the refinement, achievetherbasis of a global inductive proof, has to be a
backward one. We can visualise to some extent the substeunfiérig. 3 that forces a backward simulation (referred
to at the end of Section 3), from Fig. 2, if we add an edge fReqto anAbort, as an alternative to the message
towardsVal, since the two abstract outcomes are already available &t of theReqoperation. Furthermore, since
for a failing transaction the protocol has already ang#jicdhosen to refindbTransferLostthe Abort operation(s),
which actually signal the failure at the protocol level refineAblgnore(which is Mondex-speak for an abstragip).

7.2. The Refinement of Banach et al. [BPJS07]

In [BPJSO07], amongst other things, a synchronisation withatomic description that occured late was sought, in
order to try to get a forward simulatichThe natural operation to refingbTransferOKto is Val, since that is the
moment that the money safely arrives at the recipient. Hewéithe refinement oAbTransferOKis ‘obvious,’ then
the refinement oAbTransferLosts less so. The subtlety lies within tidort operation. The deeper structure of the
Mondex protocol implies that if only on&bort occurs in a transaction, it is harmless, and suclbort can refine
Ablgnore Only if two Abort operations occur for a transaction, each while its respegtiirse is in a critical state,
has the transaction failed non-trivially, whereupon tlensaction needs to refildTransferLostThis leads to the
decomposition of thé\bort operation into cases, depending on the precise role of teeatipn in the transaction.
In the formalism of this paper, th&bort operation of Mondex corresponds to a collection of eventielwvbccur at
different places in the computation tree of the protocod are thus distinguishable.

The case analysis is interesting. The distinction betwesigm and non-benign instancesAdjortis made on the
basis of a purse’s local state (specifically, on whether tiragis in statepvor epa(non-benign), or in some other
state (benign)). However, since twdborts make onébTransferLostwe can only refindbTransferLosto one of the
pair — and it has to be the second of the pair, since if onlyAlpertin a critical state happens, then it turns out to be
benign nonetheless. In [BPJSO¥]n-localstate information is used to distinguish the first non-bewibort from the
second, and the first is then made to refgnorewhile the second refinesbTransferLost

7.3. The Refinement of Schellhorn et al. [SGHO07]

In [SGHT07] we have the second mechanized verification of Mondexgusie KIV theorem prover [RSSB98].
While the first [SGHRO6b] used the original backward simiolaeind data refinement, the second uses abstract state
machines (ASMs, [Gur95], [BS03]) together with ASM refinerthand generalized forward simulations [Sch01].

The refinement, like [BPJS07], synchronizes successfoktess by having/al implementAbTransferOK But
it chooses to synchronize failed transfers at the earliesttpossible. This gives two cases for tReqoperation,
which is the point where thErom purse sends money. In the first, the purse is still ready to receive the money, in
which caseRegimplementsAblgnore But if the To purse has already aborted then the second case applieRegnd
implementsAbTransferLost? Instead of having two cases (as in [BPJS07]) in whichAhert operation implements
AbTransferLostthe design of [SGHO07] leaves only one: the case where Tloepurse aborts ipvafter money has
been sent.

The different choices for the synchronisation points was mmtivation for us to study the general possibilities
here. Another one was to provide a general formalizatiorsofgipast and future simulation relatiof® @ndRF). In-
stances of such relations with a schematic encoding int@BynLogic are not only used in the case study [SGH]
but also in earlier work. Future simulation relations ocicuthe correctness proof of ASM refinement [Sch01]. Past
simulation relations are used in coupled refinement [DW@3ja@ted in [Sch05].

7.4. The Refinements of Haxthausen, George et al. [HGSO06]

The two refinements of [HGS06] use the RAISE specificatioguage [The92]. They are another mechanized verifi-
cation of Mondex using the theorem prover PVS [ORS92]. Tagecstudy is slightly out of scope of our theory, since

9 Looking forward to some extent to the specific results of tresent paper —which show that the essentials of a protocobeainderstood by
discussing the protagonists in isolation— the discussidBPJS07] was restricted to a world of just two purses, alsiRgbm purse and a single
To purse.

10 This differs from [BPJS07], where thibort of the From purse that is bound to happen in this situation impleméhf&ransferLost
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it does not start with atomic actions, but with a two step @cot: the first step (calle@iransferLef} is a send operation,
which nondeterministically chooses between a successadnde, and we call the two cas€&endOKandSendFail
After SendOKthere are again two possibilities: receiving may succeddilo For symmetry, we call these operations
ReceiveOkandReceiveFajl[HGSO06] calls thenTransferRighandAbort Already, the splitting of transactions at the
abstract level into send and receive, allows us to keep tlambes of abstract and concrete level in perfect synchrony,
as is required by RAISE refinement. The two refinements impleifransferLefwith RegandReceiveOKvith Val.

To compare the synchronisation points with our proofs, weehta add an additional refinement of the original
abstract Mondex level to the abstract RAISE level. The refieret would have to implemertbTransferOKby the
sequencesendOKReceiveOKAbTransferLostvould be implemented by bot8endFailand SendOKReceiveFail
BecauseSendOKis ON, a forward simulation proof would have to synchronizghwhe last operation of every
sequence. Composing the resulting simulation relatioh thi¢ existing refinements, we find that the synchronization
is the one used in [SGFD7].

7.5. The Refinements of Butler and Yadav

These refinements develop a Mondex-like money transfeopobtising the B4free tool [B4f]. In accordance with the
Event-B [AHO6] methodology, the protocol is developed innpamall, but easily mechanically provable refinement
steps, the simulations being forward simulations. Theesgsadecomposes the abstract events to facilitate separate
refinement of distinct pieces to distinct protocol level @i®ns. Aside from that, it is similar to that of [BPJS07] in
that failing transfers are refined Byborts.

Note that with the exception of the original (backward) ahe,preceding refinements are all forward simulations
when viewed at the individual protocol instance level (cfr@lary 3.10). As such, and particularly when they are
based or{1, 1) refinements, they all readily extend to forward simulatiefimrements of full system runs — just as the
original (1, 1) backward simulation readily extended to a backward sinanaefinement for full system runs.

7.6. The Refinements of Schellhorn and Banach [SBO8]

In [SB08] the authors developed a new refinement strategylfordex based round the essential requirements that the
Mondex protocol addresses, in contrast to other approachies were driven primarily by the technical demands of
one refinement technique or another. The refinement of [SB&8the same initial and final specification as the ASM
refinement in [SGF07]. It is broken down into three separate refinements fottthee essential concepts inherent in
the Mondex protocol:

¢ Implementing money transfer by sending messages overwati@ssport medium.
e Checking messages to be fresh to protect against replakaitta

e Implementing a challenge-response system needed to dnssineess using sequence numbers and a fourth mes-
sage.

The first refinement implements atomic money transfer usipgpgocol on the second level that consistsed, val
andackmessages only. It ensures uniqueness of protocol runs hy abstract transaction identifietil§, inspired by
[BPJSO7]). TheStartToandStartFromsteps of the final protocol shown in Fig. 2 are added only ifdkerefinement
which implementsids by pairs of sequence numbers.

Since the first refinement is the main non-atomic refinemeth®fievelopment it is natural to ask whether our
theory is flexible enough to view this refinement as an ingari¢he theory developed in this paper.

The answer is a cautious yes, although some small adjusgraemhecessary, which we now describe. First, the
operations of the second level do not use input and outplicithp Messages sent from a sending purse are directly
placed into annboxof incoming messages of the intended receiver.

To view the ASM as having operatio®(v, j, p, V') with a common input/output type fgrandp, this type would
have to consist of paired message contents and intendegereceA valid protocol run would have to satisfy the
constraint that each outpptis used at most once in a later step, only by the intendedvarcéor which it forms the
inputj. This is clearly straightforward enough to arrange.

As a side remark, matching the third level to operati8i(s, j, p, V') is easier, since the second refinement re-
placesnboxes with a global ether of sent messages. Thereby replakatt@come possible, and the third level adds
appropriate checks to prevent them.
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A second niggle when matching the approach of this papeetbrit refinement of [SB08] is the use of transaction
identifiers. When the firseqmessage of a protocol run is generated irStetTostep, it is equipped with a transaction
identifiertid, which is chosen to be fresh relative to a globakigkstetof already used ones. Since our present approach
does not consider global state (except for the implicit $ehessages sent so far) this could be encoded by using
external inputs for th&tartTooperation, each containing its needed fresghUniqueness would result in the constraint
that valid protocol runs never reuse these extetidahputs!!

Apart from these adjustments, the proof technique we haveldlged here can be informally seen to apply: the
synchronization points are the same as in [S®H] (late synchronization using simulation relatid®isthat look into
the past).

The verification of the first refinement in [SB08] follows thesults of Section 5. In particular, it usep@tocol-
local invariant that is similar to formula (32): the conjunctioven all instance®rotocol-gbecomes a quantifier over
all tids that have been used so far. These transaction identif@rsraplicitly fix the mappingr. The quantification
over busy subspac®¥; considers the two spaces of them andTo purses. Usingrotocol-localinvariants is a result
of using the results of this paper. The older [SGH] used more complex purse-local invariants.

7.7. Other Possibilities

Our general theory shows that even more possibilities ttee lbeen discussed above are actually possible. For
example, the refinement of [BPJS07] could have chosen toeréfiTransferOKto Ack instead ofVal, since Ack
occurs as the last operation of a successful transactiometdz, since in general there is a possibility that a tratimac
succeeds but that tleekmessage is lost, causing tAekoperation to be replaced by &tort (which as it turns out is
harmless), we infer that in such a refinement there would kBsa in whichAbTransferOKwould have to be refined
by Abort

An alternative to the preceding is to synchronise right atlihginning, with the first (or secon8}artevent —
and there are plenty of hybrid cases, combining aspectssemaral of the described or suggested refinements arising
from the rich structure of the protocol computation tree. [d&eve the curious reader to work out such scenarios for
himself.

7.8. The Non-2-Phase Fragments

In discussing the preceding refinements, we have alwaysnesbkthat the twdStart operations are performed first.
But it could happen that one purSgars and immediately afterwardsborts, before the second purse tsisried.
This spoils the 2P property since the first purse has relghed its use of its local state before the second purse has
claimed its first use. In such a case, either purse may engagiber transactions, changing the local state, after the
first purse’sAbortand before the second purs&tart
A remaining possibility is that only one purSearis, and the other purse merélports (as explicitly permitted in
the event structure of Fig. 4), or indeed does nothing (aibiigs allowed for in the definitions of [SCWO00] though
not shown in Fig. 4). In such a case, even if the other puisietat happens after the (inevitabléport of the first
purse, it is arguable that the protocol is nevertheless2ét she other purse’s use of its state amounts to no more than
skip. Even if one does not accept this argument, it is evidenttiieabreakdown of the 2P property is rather mild.
Dealing formally with such situations requires an extengsibour theory, which will be discussed in detail else-
where [BS]. Note though, that even if these situations atesedalisable via the standard 2P technique, the fact that
we have(1, 1) refinements of the protocol, guarantees nonetheless tbs¢ thogue’ interleavings preserve atomic
semantics.

8. Mechanical Verification
To gain assurance in the relatively informal account of grot theory given above, some mechanical verification

has been undertaken, using the KIV theorem prover. As wedbipporting the preceding theory, this constitutes an
interesting exercise in formal verification in its own right

11 As an alternative to such a constraint, which falls slighiytside of our general framework, we could explicitly imtuze atid server agent
whose ‘protocol’ consisted of the doling out of frestls as external outputs, with our default /0O assumption a@alé point-to-point delivery
upholding the freshness and absence of duplication reqaints.
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KIV [RSSB98] is an interactive theorem prover for many-edrhigher-order logic. There are several extensions
to this logic (Dynamic Logic, Temporal Logic and a logic fava programs), but they are not used here. Structured
algebraic specifications can be built from elementary tiesarsing the standard operators (similar to CASL [CoF04]):
union, enrichment, renaming and actualization of paramsecifications. Theorem proving uses sequent calculus.

As a first step towards a formalized theory of protocols, Kpédaifications and proofs have been developed for
the isolated protocols of Section 3. The results are availab the Web [KIV07]. Checking theorems with KIV led
to small improvements which are already incorporated irti&e@, so in this section we only discuss a few topics,
which are relevant when transferring pencil-and-papeofsrto an interactive theorem prover, and we give a lemma
used in Theorem 3.8, that shows a modularization of the proof

When formalizing the notion of execution paths a first diffigis of course that no ‘three dots notation’ is available
in formal specifications. Instead a free data type has befemedién KIV. Using Z notation this data type can be written
as:

path::= mkV({(V)) | mkpa(V x J x P x path)) (33)

A number of operations are needed for patipais the number of steps of pafh, its nth node igaln| for 0 <

n < #pa and its first and last nodes apafirst := pal0] andpalast := pa]#pa]. The concatenatiopa + pa

of two pathspa andpd is defined wherpd .first = palast We also need the firgt stepspa to n(written infix)

of a path, and the regta from n inputgpa) andoutputgpa) are the inputs resp. outputs done on a path. Finally,
Stegpa,n) € V x J x P x V is then'th step ofpa. A predicatePath(pa) is defined recursively, which holds, iff
every step satisfies son$(p)(Stefipa, n)). An argumenip from some index typ€Ix replaces the subscript Bt,;

the (higher-order) type d$tbeing:

St: CIx — V x J x P x V — bool (34)

To give formal definitions ofPath (3), BPathand MPath, two unspecified predicatesit andfinal characterizing
initial and final states are used. Around 40 lemmas are provedthis theory and used as rewrite rules to get some
basic automation for the main proofs.

The definition ofProtocol(cf. (6)) becomes:

Protocolv, js, ps V) == dpa e MPath(pa) A inputgpa) = js A outputgpa) = ps (35)

A synchronization assignment is defined as a func86n path — nat The idea is that the synchronization step of a
path isStefipa, SApa)). FunctionSAis specified by two constraints:

MPath(pa) = SApa) < #pa (36)
MPath(pa) A MPath(pa) A n < #paA m < #pd A pan] = pa[m = (SApa) < n< SApd) < m) (37)

The first axiom should be obvious, the second is a consistemgition: for two maximal paths, which have a state in
common, the synchronization point must either be beforertbde in both paths, or both synchronization steps must
follow the common node. Based on this definition we can char&e the steps of a maximal path to be the disjoint
union of FS, BS and SA steps. As an example rttiestep of pattpais a forward skip step ifFS(pa, n) holds:

FS(pa, n) == MPath(pa) A (n < SA(pa) V SApa) < n < #paA OD(pa to SApa)) (38)
where
OD(pa) == FPath(pa) A V pal, pa2 ¢ MPath(pa+ pal) A MPath(pa+ pa2) = pal.last= pa2.last (39)

As Lemmas for Theorem 3.8 and Corollary 3.9 we then provedtateps can be simulated forwards and backwards,
the only exception being BS steps, which can only be simdlagekwards:

BS-BW : MPath(pa) A BS(pa,n) A R'(u,V) A paln] = v A pajn+ 1] =V = R'(u,v) (40)
FS-FW: FS(pa, n) A R'(u,v) A pan] =v A pan+ 1] =V = R'(u,V) (41)
SA-FW : MPath(pa) A R'(u,v) A Stegipa, SApa)) = (v,j,p,V)

= 3u,i,0,k e At(k)(u,i,0,u’) A R'(U,V) A Inputl(i,j) A Outputl (o, p) (42)
SA-BW : MPath(pa) A R' (U, V) A Stefpa, SApa)) = (V,j,p,V)

= 3u,i,0,kAt(K)(u,i,0,u) A R (u,v) A Inputl(i,j) A Outputl (o, p) (43)

FS-BW: MPath(pa) A FS(pa,n) A R'(u,V) A pan] = v A pan+ 1] =V = R'(u,v) (44)
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BS-BW : MPath(pa) A R'(u,V) A pan] = v A pan+ 1] =V = R'(u,v) (45)

The proof of the last two lemmas requires Ass. 3.2.2, thersttie not. The lemmas are independent of Ass. 3.1.3
which require all concrete states to be reachable. Baseaeorhiaracterization of steps on paths, we can now define a
global characterization of steps:

BS\v,j,p,V) == 3pa,ne BSpa n) A Stegpa, n) = (v,j,p,V) (46)
FS(v,j,p,V) == -BYv,j,p,V) A 3pa,n e FS(pa,n) A Stefpa,n) = (v,j, p,V) (47)
S'A(ijv p, \/) ==3 pa‘MPaﬂ‘(pa) A Stempaa S'A(pa)) = (V7j7 p, \/) (48)

Note that a step which is an FS step on one path and a BS stepthreamust be classified as a BS step, since it is the
successor of an OD step somepath. The three classes of steps are proven to be disjoohprawided all states are
reachable every steip)(v, |, p, V') falls into one of the three classes. This allows us to provesfém 3.8 formally.

As an example, the definition of Clause 4 of Theorem 3.8 isgmdermally as:

RI(U, V) ABSv,j,p,V) = R'(U,V) (49)

using Lemma (45). The four clauses (44), (43) and (45) tagedthply Corollary 3.9. We also prove that forward
simulation is always possible by choosing the synchroitinattep as the last step of every maximal path:

(Vpae MPath(pa) = SA(pa) = #pa— 1) A St(p)(v,j,p,V) A R'(u,V)
= 3Uu e RI(U,V) A (U= UV 3i,0 e Atomiqu,i,o,u’)) (50)

The KIV proofs for the theorems of Section 3 are relativelyairmompared to other KIV case studies (eg. the Mondex
case study [SGHRO06b, SGi#87] already mentioned). The tricky bit about them is mailyeét all the assumptions
right for all the cases. As an example, the borderline casa dfPath consisting of a single node must be forbidden,
since then constraint (36) is not satisfiable.

9. Conclusions, and Further Work

In the preceding sections we took the Mondex Electronic @4+& prime example of a protocol enacted between a
number of parties that was designed to achieve the effeat at@mic action— and we looked for a generalisation.
We developed a refinement framework based on seeing the atmtion as a shallow computation tree and the
protocol as a computation DAG, and saw that we could chooseviy that the atomic action was synchronised
with the protocol in a ‘small diagram’ refinement relativétgely. The properties of the choice, in particular how
potential abstract outcomes were related to synchroaoisgivints, was closely related to the prospects for forward
and backward simulation at the small diagram level.

We then embedded this formulation of an isolated protoaolma framework enabling different runs of perhaps
different protocols to be interleaved in a natural way. Whembined with a fairly standard 2-phase property, these
system runs could be serialised, showing that the atormabisgraction survives. While serial runs correspondeddo th
equivalent sequence of atomic actions in a relatively arent way, the correspondence between non-serial runs and
their atomic counterparts required the adaptation of theiomship between atomic actions their refining protocols
Specifically, in a serial framework, each protocol instatitin starts and ends cleanly, allowing the formulation of a
simple functional atomic/protocol ‘big step’ retrieveadbn R, which then allowed the ‘small step’ past and future
retrieve relation&” andRF to be extracted straightforwardly. In a non-serial framewthe protocol instantiations’
starts and ends are ‘ragged’ and the propertid® €6 useful for the refinement investigation get heavily obsduin

the fragmented retrieve relatioR  needed to accomodate the non-serial features (which ae oéin-functional
even thougR itself is). We regard the clarity brought about by the setianabetween atomic/protocol refinement
concerns and protocol instantiation concerns in our aggprda be a major factor in its favour.

We then confronted the theory with various refinements fonbex that have been created in the recent past,
whether in direct connection with the Verification Grand G rage [JOW06, Woo06,WB07] or otherwise, and showed
that the flexibility regarding synchronisation points bghtiout by the general theory was well borne out in these
various refinements.

Furthermore, the whole of this framework has been mechiyiaaified using the KIV theorem prover. To achieve
this, some mild transliterations from the original versafrsection 3 were needed to facilitate a better fit to KIV, and
the process indeed resulted in some worthwhile improvesierihe theoretical formulation, as already noted in Sect
8 — the detailed results are available on the web.
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As noted at the end of Section 3, the approach advocatedsipéer permits a different strategy for verifying
protocols. In the new approach, the steps required to varyecific protocol are, at bare minimum:

. Choose the atomic action shallow computation tree.

. Choose the protocol computation DAG and big-$ep

. Confirm that a suitable synchronisation assignmentsexist
. Confirm that the protocol DAG is 2PXDD-normal.

. Confirm that for any system run consisting exclusivelynstantiations of protocol steps, the instantiations simu-
late those protocol steps suitably.

ga b wWN P

Compared with the list at the end of Section 3, the above iplgimfor the reason that the omitted steps are true
generically. Only what is noted above is required to contteetspecific details of a specific protocol to the generic
facts. This dramatically cuts down the verification worldoa

As also noted at the end of Section 3, the approach advocathitipaper amounts to a different notion of what it
means for a protocol to be correct. However, as we also mbmte by completing our construction with an abstract
system level that instantiates a sequence of abstract@tmtibns (obviously there are no awkward serialisatiomgss
here) we can make a direct connection with the traditionpf@gch, so we can have the best of both worlds.

Besides the gratifying way that all this worked out, a cougdléurther interesting questions suggest themselves.
The first is, that although the majority of ‘normal’ Mondeamisactions (including not only successful ones, but also
ones that fail in a ‘normal’ kind of way) are 2-phase —and thedification of the protocol suggested by Schellhorn
et al. in [SGH"07] in order to design out the possibility of a certain kinddehial of service attack is 2-phase in its
entirety— the original Mondex protocol has some (in practire, but in theory interesting) non-2-phase parts. These
are not covered by the theory of this paper, and will be exqul@sewhere [BS].

A second is, that Mondex is what we called an isolated prdtddmt is to say, once the protocol has commenced,
the parties engaging in it are fixed, and no intrusion by o#lgemts is contemplated. (In practice, the Mondex purse’s
local state determines how much notice is taken of which agessfrom which agents — the options of ignoring any
message, or of aborting the current protocol run are deltbbralways enabled in Mondex.) Thus it is natural to ask
how the theory develops for protocols having state that isigeely shared between a number of agents, including
cases where the number of agents is not necessarily detatrainthe start of the protocol, and cases where the
boundary between those agents genuinely participatinigerptotocol and those not participating in the protocol is
more diffuse. Again, the theory of this paper does not couehsituations, and this is another issue to be explored
in [BS].
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