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Fig. 1. The Mondex atomic actions.

1. Introduction

The Mondex Electronic Purse was developed formally in the mid-1990s using Z refinement. It was one of the first
developments to achieve an ITSEC E6 security rating [DoTaI91].1 Rather unusually for a commercial product, a
sanitised version of the core of the formal development was made publicly available [SCW00]. Since then it has been
a fertile ground for formal methods researchers — the original, human-built proofs of the security properties have been
subjected to re-examination by contemporary techniques, and have stood up extremely well to the fiercest tool-based
scrutiny achievable today, the first such mechanical verification being [SGHR06b].

The Mondex formal development featured a refinement proof from an atomic abstract model to a multi-step pro-
tocol at the concrete level. The principal component of thisrefinement proof was a backward simulation from abstract
to concrete. At the time of the original development, the development team did try to construct a forward simulation,
but were not successful — for a long time it was believed that aforward simulation refinement was impossible. It
is nowadays known that a forward simulation is entirely possible, and more than one is now available in the litera-
ture [BPJS07,SGH+07,HGS06]. The spur for the development of many of these was the Verification Grand Challenge,
for which the mechanical verification of the Mondex protocolwas the first major case study [JOW06,Woo06,WB07].

In this paper we explore the wider question regarding possible kinds of simulation for the refinement of an atomic
action into a multi-step protocol, in order to settle the matter in the general case. We do this in the simplest possible
relational framework in order to avoid complications that would distract from the main point.

In Mondex, the original refinement was done in a(1, 1) manner, i.e. single concrete steps were made to refine
single abstract ones. Consequently, since overall, there are more concrete steps than abstract ones, many concrete
steps had to refineskip. Of course, one advantage of the(1, 1) strategy is that, in the face of malevolent users or an
unpredictable environment, the concrete protocol can be proved to refine the abstract atomic action, no matter how
such a user might interrupt the intended playing out of the protocol — since every possible sequence of concrete steps
that can be executed, corresponds tosomeabstract execution, even if it is one consisting entirely ofskips.

In this, the original framework, the backward simulation correlated with anearly synchronisation, i.e. the single
non-trivial abstract step was(1, 1) matched with a step that occurred early in protocol runs. By contrast, the more
recently discovered forward simulations correlate with alatesynchronisation, namely, the various possible non-trivial
abstract steps are(1, 1) matched with steps that occur late in protocol runs. Given the past uncertainty regarding
forward and backward simulations in such contexts, our mainaim in this paper is to give a general treatment.

The rest of this paper is thus as follows. In Section 2 we outline the operation of our motivating example, the
Mondex Purse. In Section 3 we develop a theory of the refinement of a nondeterministic atomic action to a multi-step
protocol in terms of computation DAGs. This explores the waythat the single atomic action can be synchronised with
an individual step of the protocol in a(1, 1) refinement, and we see that there are a large number of possibilities for
this which we call synchronisation assignments (SAs). We see that SAs are related to the possible choices of forward
or backward simulations, according to the manner in which abstract outcomes are related to the details of the SA.
In Section 4 we relate the rather abstract computation DAG view of protocols to a more conventional one, using
event structures, and show that the histories generated by event structures yield computation trees in a natural way.
In Section 5 we relate the preceding theory of an isolated protocol run to the more global picture needed to embed
protocol runs into system runs, and we explore serialisability and the 2-phase property. Section 6 next, explores the
relationship between serialisation and simulation. In particular it deals with the fact that protocol instantiationsin a
system run are normally executed by a collection of co-operating agents, not all of whom start and end the instantiation
simultaneously, leading to overlaps of unrelated protocolinstantiations which generates some technical complications.
In the following Section 7 we apply the theory developed to the various refinements of Mondex available today,

1 Nowadays, national standards like ITSEC have been superseded by the ISO Common Criteria standard [Int05]. The highest ITSEC level, E6,
corresponds to the highest Common Criteria level, EAL7.
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Fig. 2.The Mondex concrete protocol.

noting finally that there are in fact some non-2-phase corners of the original Mondex protocol (though none of them
achieve anything observable at the abstract level, and are thus tolerated). The bulk of the preceding theory has been
mechanically verified using KIV, and in Section 8 we review what has been achieved here. The final section concludes.

2. Mondex: A Motivating Example

Fundamentally, Mondex is asmartcard purse. Since it is apurse, it contains real money, and since it is asmartcard, it
contains the money in digital form. This money is designed tobe transferable from purse to purse. As for real money,
the intention is that such transfers are normally performedin exchange for some desired purpose such as the purchase
of goods or services, but equally —just as for real money— it is not the responsibility of the money itself to ensure
that the transfer in which it engages is of a genuine nature. The only concern of money in general and of Mondex
money in particular, is that it should beunforgeable.

The major objective of the original Mondex development was to develop a protocol for money transfer that ensured
that:

1. Mondex money was unforgeable, even in the face of incomplete execution of the protocol or of malicious behaviour
of the environment.

2. Any full or partial run of the protocol is equivalent to either a successful money transfer, or a traceably (and thus
recoverably) lost-in-transit money transfer, or a null action.

These two properties are what make Mondex credible in the face of customer requirements: the first property, unforge-
ability, gives confidence in the value of Mondex money; whilethe second property, atomicity, gives comprehensibility
when compared with the behaviour of conventional financial transactions. Fig. 1 shows the atomic abstraction that the
Mondex protocol ensures, reflecting the three possibilities given in the above point 2. In Fig. 1 the nodes are states,
and the arrows are the different atomic actions that the concrete protocol refines.

The essence of the Mondex concrete protocol is illustrated in Fig. 2 in activity diagram style. The source purse is
theFrom purse while the destination purse is theTo purse. The protocol begins with the twoStart events (initiated
from the environment as a result of the purses’ owners typingin appropriate instructions at the interface device (the
wallet) into which the two purses have been inserted). Theseare theStartToevent, performed by theTo purse, and
StartFromevent, performed by theFrom purse, both of which take their respective purse from the idle state to a ‘busy’
state: theepr state (expecting payment request) for theFrom purse, and theepvstate (expecting payment value) for
theTo purse. TheStartToevent sends areq message to theFrom purse. Upon arrival of thereq message, theFrom
purse performs aReqevent and dispatches the money in aval message to theTo purse, itself passing into theepa
(expecting payment acknowledgement) state. Upon arrival of the val message, theTo purse performs aVal event and
sends anackmessage to theFrom purse, itself passing back into the idle state. Receipt of the ackmessage in theAck
event by theFrom purse completes the protocol, and theFrom purse too passes back into the idle state. Note that in
Fig. 2, the nodes are now events, edges are states, and arrowsare messages.

The preceding described the workings of a successful run of the protocol. Beyond that, all events after theStart
events can be replaced byAbort events, corresponding to runs of the protocol that are unsuccessful for whatever
reason. The fact that despiteAbortevents, the protocol still enjoys the unforgeability and atomicity properties, is what
makes Mondex non-trivial theoretically. However, the details of how this comes about do not concern us in this paper.

A further issue is that the Mondex protocol isisolated, i.e. once the protocol has commenced, the two purses take
note only of the arrival of the next message expected in the playout of the protocol, and of calls toAbort, ignoring all
other messages or calls from the environment and reserving the option of responding to such unexpected events by
performing a self-initiatedAbort whenever appropriate.
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In this paper, rather than being concerned withprovingthat the atomicity and isolatedness properties are enjoyedby
the protocol, we take properties such as these for granted, and instead, take an interest in simulation-theoretic properties
—in a general sense, and for their own sake— of the refinement of an atomic action to a protocol with characteristics
such as Mondex’s. The isolated property makes these simulation-theoretic properties particularly convenient to study.

3. Isolated Atomic Actions and their Protocols

For both protocols and atomic actions, we will specify the transitions involved using a relational approach. The fol-
lowing statements summarise the assumptions we make about this setup.

Assumptions 3.1.

1. Relations are represented by predicates whose variablestake values in suitable types.
2. Each relation used is deterministic, i.e. for each collection of values for the domain variables of the predicate

representing the relation, there is a unique collection of values for the codomain variables that makes the relation
true.

3. For each relation, for all values of domain and codomain variables that make the relation true, the domain values
are reachable from an initial state.

4. Where nondeterminism (whether at the atomic or the protocol level) is needed, it is handled by having different
relations for different outcomes.

5. Both atomic actions and protocols are represented by transition systems. At the atomic level, atomic actions are
given by a collection of predicates whose interpretations are restricted to shallow computation forests (i.e. all max-
imal paths of length 1). At the protocol level, protocols aregiven by a collection of predicates whose interpretations
are restricted to DAGs, all of whose paths are finite. A choiceof initial state for a root of the interpreting forest of
an atomic action picks out a unique tree, called the valid tree. A choice of an initial state for a root of the protocol
DAG picks out a unique (maximal reachable) subDAG of the interpreting DAG, called the valid DAG.

Thus an atomic action will be specified by a (typically) finitecollection of deterministic predicatesAtk(u, i, o, u′)
k = 1 . . ., in which u andu′ are (variables denoting) the before- and after- states of the atomic action,i ando are
the input and output of the action (these may in fact denote sequences, or more complex structures, of input and
output values corresponding to the finer grained events in the protocol, if convenient), and the labelk distinguishes the
different deterministic outcomes for the same starting conditions. All together, the complete atomic specification of
the protocol becomes:

Atomic(u, i, o, u′) ≡ At1(u, i, o, u′) ∨ At2(u, i, o, u′) ∨ . . . (1)

where

(∀u, i • Atk(u, i, o1, u′1) ∧ Atk(u, i, o2, u′2) ⇒ o1 = o2 ∧ u′1 = u′2) (2)

(and where it turns out that (2) is not actually needed in the ensuing mathematics, but helps for a convenient mental
picture).

At the protocol level, the individual steps are described bya collection of deterministic predicatesStρ(v, j, p, v′)
wherev andv′ are the before- and after- states of the step, andj andp are the input and output of the step. The label
ρ is an identifier which discriminates between different nondeterministic outcomes from the same before-state and
input, and is required to be different for each step along a path through the protocol DAG,2 but is otherwise available
to conveniently label steps in an application-relevant way.

(Forward) paths through the protocol computation DAG are described by compound predicates:

FPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt, vt) ≡

Stα(vI , j1, p1, v1) ∧ Stβ(v1, j2, p2, v2) ∧ . . . ∧ Stγ(vt−1, jt, pt, vt) (3)

in which vI is a possible initial state of the protocol,α labels a possible first step of the protocol,β labels a possible
successor step of theα step of the protocol, and so on. As (3) indicates, if a step hasa successor, the before-state of
the successor must match the after-state of its predecessor. The length of the sequence of labels in the subscript of

2 As for (2), determinism and path-uniqueness are not strictly necessary forρ, but are conceptually convenient.
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FPath〈α,β,...,γ〉 must match both the number of inputs and outputs, and be one less than the number of states, in the
argument list.

Maximal paths arise in the obvious way:

MPath〈α,β,...,γ〉(. . .) ≡

FPath〈α,β,...,γ〉(. . .) ∧ (〈α, β, . . . , γ〉 has no proper extension in the computation graph) (4)

From maximal and non-maximal paths, we can implicitly definea predicateBPath(backward paths) that describes
extensions of non-maximal forward paths:

MPath〈α,β,...,γ,δ,ǫ...,ζ〉(vI , j1, p1, v1, . . . , jt, pt, vt, jt+1, pt+1, vt+1 . . . , vF) ≡

FPath〈α,β,...,γ〉(vI , j1, p1, v1, . . . , jt, pt, vt) ∧ BPath〈δ,ǫ...,ζ〉(vt, jt+1, pt+1, vt+1 . . . , vF) (5)

In (5), vF is a possible final state of the protocol.3

Finally, maximal paths give rise to the predicateProtocol(vI , js, ps, vF), given by taking the disjunction over all
maximal paths, existentially quantifying all intermediate states, and repackaging the inputs and outputs into sequences:

Protocol(vI , js, ps, vF) ≡

∨
maximal

〈α,β,...,γ〉

(
(∃ j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt •

MPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vt−1, jt, pt, vF)
∧ js = 〈j1, j2, . . . , jt〉 ∧ ps= 〈p1, p2, . . . , pt〉)

)
(6)

The fact that the protocol implements the atomic action is captured by relating the two via a retrieve relationR, input
and output relationsInput andOutput, and demanding that an ASM-style [BS03] ‘big-step’ proof obligation holds.
The retrieve relation is required to satisfy:

Assumptions 3.2.

1. R(u, v) is a partial function from protocol statesv to atomic statesu. (7)

2. If v is a protocol state andvI1 andvI2 are initial protocol states, then

FPath〈...〉(vI1 . . . v) ∧ FPath〈...〉(vI2 . . . v) ⇒ (∃ uI • R(uI , vI1) ∧ R(uI , vI2)) (8)

(whereuI is obviously unique because of (7)).

3. R(u, v) is ‘not too big,’ i.e. it concerns just the ‘states of interest’ for the overall protocol,

i.e. the initial and final states:
R(u, v) ⇒ (∃ js, ps, ṽ • Protocol(v, js, ps, ṽ) ∨ Protocol(ṽ, js, ps, v)) (9)

(As for (2), it turns out that (9) is not needed later, but helps for a convenient mental picture.) The big-step PO is now:

Protocol(vI , js, ps, vF) ⇒

(∃ uI , i, o, uF • R(uI , vI ) ∧ Input(i, js) ∧ Atomic(uI , i, o, uF) ∧ Output(o, ps) ∧ R(uF, vF)) (10)

Conditions (9) and (10) ensure that the hypotheses and conclusions of the big-step PO are valid exactly when the
simulation predicateΣ:

Σ(uI , i, o, uF, vI , js, ps, vF) ≡

Atomic(uI , i, o, uF) ∧ Protocol(vI , js, ps, vF) ∧ R(uI , vI ) ∧ Input(i, js) ∧ Output(o, ps) ∧ R(uF, vF) (11)

is true in the given types.
Now that we have connected together the atomic and finegrained descriptions of the protocol, our aim is to develop

a general way of seeing howsome individual stepof a maximal path may be viewed as refining the atomic action, and
the consequences of such a view. First we develop some technical machinery in the shape of past and future oriented
retrieve relations — these show, in a generic way, how arbitrary points in the middle of the concrete protocol are
related to the initial and final points of the abstract atomicaction. Then we introduce synchronisation assignments,
which delimit exactly how the choices of individual step within the protocol computation graph may be made. Finally
we explore the consequences of these choices for proving therefinement via forward and backward simulation.

3 Initial and final states of the protocol coincide exactly with the root and leaf states of the protocol computation graph.
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First we get the ‘past oriented’ retrieve relationRP:

RP(uI , vt) ≡ (∃ vI , j1, p1, v1, . . . , jt, pt, 〈α, β, . . . , γ〉 • R(uI , vI ) ∧ FPath〈α,β,...,γ〉(vI , j1, p1, . . . , jt, pt, vt)) (12)

and the ‘future oriented’ retrieve relationRF:

RF(uF, vt) ≡ (∃ jt+1, pt+1, vt+1 . . . , vF, 〈δ, ǫ, . . . , ζ〉 • BPath〈δ,ǫ...,ζ〉(vt, jt+1, pt+1, vt+1 . . . , vF) ∧ R(uF, vF)) (13)

It is now easy to show the following:

Proposition 3.3.

RP(uI , vt) ∧ RF(uF, vt) ⇒ (∃ i, o • Atomic(uI , i, o, uF)) (14)

RP(uI , vt) ⇒ (∃ i, o, uF • Atomic(uI , i, o, uF) ∧ RF(uF, vt)) (15)

RF(uF, vt) ⇒ (∃ uI , i, o • RP(uI , vt) ∧ Atomic(uI , i, o, uF)) (16)

The proofs are similar to the proofs of the more interesting following result, obtained by replacing the ‘V’ consisting
of RP andRF in (14)-(16) by a ‘U’ consisting ofRP, Stρ andRF in (17)-(19):

Theorem 3.4.

RP(uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ∧ RF(uF, vt) ⇒ (∃ i, o, jsP, jsF, psP, psF •

Input(i, jsP::〈jt〉::js
F) ∧ Atomic(uI , i, o, uF) ∧ Output(o, psP::〈pt〉::psF)) (17)

RP(uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ⇒ (∃ i, o, uF, jsP, jsF, psP, psF •

∧ Input(i, jsP::〈jt〉::js
F) ∧ Atomic(uI , i, o, uF) ∧ Output(o, psP::〈pt〉::psF) ∧ RF(uF, vt)) (18)

Stρ(vt−1, jt, pt, vt) ∧ RF(uF, vt) ⇒ (∃ uI , i, o, jsP, jsF, psP, psF •

RP(uI , vt) ∧ Input(i, jsP::〈jt〉::js
F) ∧ Atomic(uI , i, o, uF) ∧ Output(o, psP::〈pt〉::psF)) (19)

Proof. For (17), fromRP(uI , vt−1) we know that there is a path through the computation tree froman initialvI to vt−1,
satisfying (3), and such thatR(uI , vI ) holds. EvidentlyStρ(vt−1, jt, pt, vt) extends that path. FromRF(uF, vt) we know
that there is a completion of this path to a maximal path fromvI to some finalvF. This maximal path enables us to
deriveR(uF, vF), and provides the witnessingjsP, jsF, psP, psF so that withjt, pt we can assemblejs = jsP::〈jt〉::jsF and
ps= psP::〈pt〉::psF , and then assertProtocol(vI , js, ps, vF).

Since we haveProtocol(vI , js, ps, vF), we can apply (10). The conclusions of (10) yieldR(ũ, vI ) for someũ; and
sinceR is functional (7), we must haveuI = ũ. The conclusions of (10) also yieldAtomic(uI , i, o, ũ′) andR(ũ′, vF)
for someũ′. Again, sinceR is functional, we must haveuF = ũ′. FromProtocol(vI , js, ps, vF) we can also deduce
Input(i, js) andOutput(o, ps).

For (18), the argument is similar except that we do not have touse the functional nature ofR to argueuF = ũ′,
sinceuF is existentially quantified in the conclusion.

For (19), we note first that by Assumptions 3.1.3,vt is reachable from some initialvI . We use this to assert auI
such thatRP(uI , vt) holds, after which we argue as for case (17). We are done. �

Theorem 3.4 is a crucial observation, since it enables an arbitrary protocol stepStρ(vt−1, jt, pt, vt) to be singled
out and made to correspond with a suitable abstract oneAtomic(uI , i, o, uF). For such aStρ(vt−1, jt, pt, vt) step, let
Outcomes(Stρ, uI ) (where the dependence onvt−1, jt, pt, vt is understood) be given by:

Outcomes(Stρ, uI ) = {uF | RP(uI , vt−1) ∧ Stρ(vt−1, jt, pt, vt) ∧ RF(uF, vt)} (20)

and OD(Stρ, uI ) (outcome determinism ofStρ, givenuI ) be given by:

OD(Stρ, uI ) = | Outcomes(Stρ, uI ) | (21)

If OD(Stρ, uI ) = 1 we say thatStρ is outcome deterministic atuI (Stρ is OD atuI ), whereas if OD(Stρ, uI) > 1 we say
thatStρ is outcome nondeterministic atuI (Stρ is ON atuI ).

Definition 3.5. Given an initialvI , a synchronisation assignment (SA(vI )) for the relevant valid DAG of a protocol
computation DAG is a subset of its steps, such that for each maximal path through the valid DAG fromvI , exactly one
of its steps is in SA(vI ). Steps in SA(vI ) are called SA steps.

Fig. 3 shows a synchronisation assignment. The many-level computation graph at the bottom (which happens to be
a tree) has thickened arrows which are the elements of the SA.The atomic action is at the top and plays no specific
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Fig. 3.A synchronisation assignment for a computation tree. The elements of the synchronisation assignment are shown bold.

part in the SA itself. Dashed arrows show the functional big-step retrieve relationR, while the dotted lines show some
pieces from theRP andRF relations, for convenience below.

Definition 3.6. Given a protocol computation graph, an intial statevI for the protocol, the atomic intial stateuI such
thatR(uI , vI ) holds, and a synchronisation assignment for the valid DAG determined byvI , the steps of the valid DAG
are classified as follows:

1. If a step is in the SA and is OD atuI , it is called an outcome deterministic forward synchronisation (ODFS) step.
2. If a step is in the SA and is ON atuI , it is called an outcome nondeterministic forward synchronisation (ONFS)

step.
3. If a step is an immediate or later successor of an ONFS step,it is called a backward skip (BS) step.
4. Every step not covered by 1-3 is called a forward skip (FS) step.

This definition shows that every path through the protocol computation tree can be described by the following regular
expression:

FS∗ ; ( ODFS; FS∗ + ONFS) ; BS∗ (22)

Our aim is to show that when given a big-diagram refinement of an atomic action to a protocol of the kind we have
described, if we wish to break the big-diagram refinement down into a collection of small-diagram refinements of zero
or one atomic action steps to individual steps of the protocol, one can always use forward simulation reasoning, except
for the BS steps. In fact one can use forward simulation reasoning for all steps exceptbranching BS steps(a term
explained below), though it comes at a price. Likewise, we have the option of using backward simulation reasoning
for all steps if we so wish. We discuss these points later.

By an ‘operation’ we understand a transition relation such as those we have been using hitherto, but without
assuming any specific additional properties.

Definition 3.7. Assume given an abstract operationAOp(u, i, o, u′), a concrete operationCOp(v, j, p, v′), and retrieve,
input and output relations,R1(u, v), In1(i, j) andOut1(o, p). ThenAOpforward simulatesCOp iff:

R1(u, v) ∧ COp(v, j, p, v′) ⇒ (∃ i, o, u′ • In1(i, j) ∧ AOp(u, i, o, u′) ∧ Out1(o, p) ∧ R1(u′, v′)) (23)

And AOpbackward simulatesCOp iff:

COp(v, j, p, v′) ∧ R1(u′, v′) ⇒ (∃ u, i, o • R1(u, v) ∧ In1(i, j) ∧ AOp(u, i, o, u′) ∧ Out1(o, p)) (24)

In both cases,In1(i, j) and/orOut1(o, p) can be omitted where there is no input and/or output fromAOpand/orCOp,
as applicable.

Theorem 3.8. Let there be a big-step refinement of an atomic actionAtomicto a protocolProtocol, given by a retrieve
relationR and input and output relationsInput andOutput, so that (10) holds. LetvI be a fixed initial state such that
R(uI , vI ) holds, and let SA(vI ) be a synchronisation assignment for the valid DAG rooted atvI . Then the refinement of
Atomicto Protocolcan be decomposed into single step simulations such that:
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1. If an FS step occurs before an SA step, it is forward simulated by the identity operation onuI .
2. If an FS step occurs after an SA step, it is forward simulated by the identity operation onuF, whereuF is some

outcome ofAtomic.
3. If Stρ is an SA step, it is forward simulated byAtomic(uI , i, o, uF) for everyuF in Outcomes(Stρ, uI ).
4. Every BS step is backward simulated by the identity operation on someuF.

Proof. We start by definingR1, which is:

R1(u, v) ≡



∃ a maximal path from some initial̃vI , and(
(v precedes an SA step along this path, andRP(u, v) holds)∨
(v follows an SA step along this path, andRF(u, v) holds)

)

 (25)

Also, we must define the single step input and output relations In1 andOut1; these however are only needed for the
SA steps themselves.

In1(i, j) ≡ (∃ an SA stepStρ(vt−1, j, pt, vt), jsB, jsF • Input(i, jsP::〈j〉::jsF)) (26)

Out1(o, p) ≡ (∃ an SA stepStρ(vt−1, jt, p, vt), psB, psF • Output(o, psP::〈p〉::psF)) (27)

In fact we prove slightly more than we strictly need.
For 1, letStρ(vt−1, jt, pt, vt) be the FS step in question. Since the SA is defined with respectto paths reachable

from vI , and FS steps are defined with respect to the SA,vt−1 must be reachable fromvI . To prove forward simulation,
assumeR1(u, vt−1) holds. Then there is a maximal path from some initialṽI that reachesvt−1 such thatRP(u, vt−1)

holds. From (12) there is a path from some initial˜̃vI that reachesvt−1 such thatR(ũI , ˜̃vI ) holds for some initial̃uI . By
(7) and (8),̃uI = u = uI . So in factR1(uI , vt−1) andRP(uI , vt−1) both hold. SinceStρ(vt−1, jt, pt, vt) obviously extends
the paths that witnessRP(uI , vt−1), the extensions witnessRP(uI , vt) andR1(uI , vt) too, which is what is required for
forward simulation of the identity onuI .

For 2, letStρ(vt−1, jt, pt, vt) be the FS step in question. Since it occurs after an SA step, itmust again be reachable
from vI . To prove forward simulation, assumeR1(u, vt−1) holds. Then there is a maximal path from some initialṽI that
reachesvt−1 such thatRF(u, vt−1) holds. From (13) there is a path fromvt−1 to some finalvF such thatR(uF, vF) holds,
whereuF is the unique abstract outcome, that witnesses that the SA step thatStρ(vt−1, jt, pt, vt) follows, is outcome
deterministic. By (7),u = uF, so thatRF(uF, vt−1) holds, wherebyR1(uF, vt−1) holds too. Truncating the first step of
the path fromvt−1 to vF that witnessesR(uF, vF), gives a path that witnessesRF(uF, vt) and henceR1(uF, vt), which is
what is required for forward simulation of the identity onuF.

For 3, let Stρ(vt−1, jt, pt, vt) be the SA step in question. Obviously it is reachable fromvI . To prove forward
simulation, assumeR1(u, vt−1). Then we can deduceR1(uI , vt−1) andRP(uI , vt−1) exactly as in case 1. For anyuF
in Outcomes(Stρ, uI ), we know thatAtomic(uI , i, o, uF) holds. Also, we can deduceRF(uF, vt) and henceR1(uF, vt)
exactly as in case 2. SinceStρ(vt−1, jt, pt, vt) occurs on a maximal path fromvI to some finalvF, the totality of inputs
along the path, bothjsP beforejt, and jsF after jt, will witness thatInput(i, jsP ::〈jt〉 :: jsF) holds, givingIn1(i, jt) as
required. The reasoning for outputs is similar. So we have all the conclusions of (23), which is what is required for
forward simulation ofAtomic(uI , i, o, uF).

For 4, letStρ(vt−1, jt, pt, vt) be the BS step in question. Since it occurs after an SA step, itmust be reachable fromvI .
To prove backward simulation, assumeR1(u, vt) holds. Then there is a maximal path from some initialṽI that reaches
vt such thatRF(u, vt) holds. From (13) there is a path fromvt to some finalvF such thatR(uF, vF) holds, whereuF is
some abstract outcome, that witnesses that the SA step thatStρ(vt−1, jt, pt, vt) follows, is outcome nondeterministic.
By (7), u = uF for some suchuF, so let us assume thatRF(uF, vt) holds, wherebyR1(uF, vt) holds too. Prepending
Stρ(vt−1, jt, pt, vt) to the path fromvt to vF that witnessesR(uF, vF), gives a path that witnessesRF(uF, vt−1), and hence
R1(uF, vt−1), which is what is required for backward simulation of the identity onuF. �

Since at the abstract level, the transpose of the step relation is a partial function, backward simulation is always aligned
with a decrease of nondeterminism in both abstract and protocol transition functions. Therefore we get the following
(cf. [LV93]).

Corollary 3.9. Under the assumptions of Theorem 3.8, one can always use single step backward simulations through-
out.

Corollary 3.9 might seem strange in the light of the well known fact that backward simulation alone is not complete
for data refinement. The explanation comes from the fact thatwe have an asymmetry between forward and backward
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directions in our setup. While we can never lose ‘abstract backward nondeterminism’ by simulating the protocol
backward (due to (8)), wecan lose ‘abstract forward nondeterminism’ by simulating the protocol forward. We also
have the following.

Corollary 3.10. Under the assumptions of Theorem 3.8, suppose there are no BSsteps (i.e. all SA steps are OD).
Then single step forward simulations can be used throughout.

Obviously, choosing the SA as the last step of each maximal path through the protocol satisfies the hypotheses of
Corollary 3.10.

Corollary 3.11. Let MPath(vI , . . . , vF) be a maximal path from an initialvI to a finalvF, such that (10) holds (for suit-
ably chosen other quantities). LetStρ(vt−1, jt, pt, vt) be the SA(vI ) step alongMPath(vI , . . . , vF). Then the simulation
of MPath(vI , . . . , vF) by Atomic(uI , i, o, uF) can be decomposed as follows:

1. If Stρ(vt−1, jt, pt, vt) is an ODFS step, the simulation ofMPath(vI , . . . , vF) may be established by inductively for-
ward simulating the steps ofMPath(vI , . . . , vF) from vI up to a stateṽt (which does not precedevt), and backward
simulating the steps ofMPath(vI , . . . , vF) from vF up to ṽt (if ṽt 6= vF), such that:

(a) predecessors ofStρ(vt−1, jt, pt, vt) are forward simulated by the identity operation onuI ,
(b) Stρ(vt−1, jt, pt, vt) is forward simulated byAtomic(uI , i, o, uF) whereuF is the unique element of Outcomes(Stρ,

uI ), establishingRF(uF, vt),
(c) FS successors ofStρ(vt−1, jt, pt, vt) are forward simulated fromvt by the identity operation onuF, establishing

RF(uF, ṽt),
(d) BS successors ofStρ(vt−1, jt, pt, vt) are backward simulated fromvF by the identity operation onuF, establish-

ing RF(uF, ṽt).

2. If Stρ(vt−1, jt, pt, vt) is an ONFS step, the simulation ofMPath(vI , . . . , vF) may be established by inductively
forward simulating the steps ofMPath(vI , . . . , vF) from vI up to and includingStρ(vt−1, jt, pt, vt), and inductively
backward simulating the steps ofMPath(vI , . . . , vF) from vF up tovt, such that:

(a) predecessors ofStρ(vt−1, jt, pt, vt) are forward simulated by the identity operation onuI ,
(b) Stρ(vt−1, jt, pt, vt) is forward simulated byAtomic(uI , i, o, uF), for eachuF in Outcomes(Stρ, uI ), establishing

RF(uF, vt),
(c) successors ofStρ(vt−1, jt, pt, vt) are backward simulated fromvF by the identity operation onuF, establishing

RF(uF, vt).

Why are the above results useful? We can give a couple of reasons.

Firstly, they are illuminative. One can be convinced of the correctness of a protocol with respect to an atomic action,
without having the details of a refinement already worked out. In such a situation, it may not be clear how to synchro-
nise the atomic action with the lower level description. Theorem 3.8 shows that one can choose this synchronisation
relatively freely, within the parameters of allowable synchronisation assignments.

Secondly, once having chosen a synchronisation, it is much easier to write down the ‘big-step’ retrieve relation and
associated input and output relations, than to discover themore finegrained single step ones. Theorem 3.8 shows that
with the big-step retrieve relation fixed, the single step ones,RP andRF may simply becalculated. Their generic form
needs to be instantiated with the details of the protocol andbig-step retrieve relation, and then one must eliminate as
many existential quantifiers as possible in order to arrive at a closed form. Making clear that thereis such a strategy
to follow is a considerable improvement over the hit-and-miss approach one would otherwise need, especially when
combined with uncertainty regarding synchronisation.

The theorem and its corollaries also provoke the following considerations.

One can replace some backward simulation by forward simulation. Given a synchronisation assignment, a branching
BS step is a BS stepStθ(vs, . . . , v′s,1) for which there is another BS stepStφ(vs, . . . , v′s,2) (with v′s,1 6= v′s,2) such
that the abstract outcomesuF,1, uF,2 corresponding to the completions of the paths fromv′s,1 andv′s,2 are different,
uF,1 6= uF,2.4 In such a case, onecannotmake a forward simulation inference succeed.

4 Since we speak of a BS step, there must exist suchuF,1 6= uF,2, as the nondeterminism inAtomic(uI , i, o, uF) has been resolved earlier than at
this BS step.
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To see this, recall that forward simulation demands that (23) can be provedno matter whatinstantiations one
chooses for the hypotheses. Now, suppose the first hypothesis of (23) is made true byR1(uF,1, vs), and the second
hypothesis is made true byStφ(vs, . . . , v′s,2). Then the first hypothesis demands thatuF be chosen to beuF,1, while the
second hypothesis demands thatuF be chosen to beuF,2, a contradiction. This is the standard backward simulation
counterexample.

In Fig. 3, the SA element along the upper thread of the computation tree is an ONFS step, since it can reach
two concrete final states that retrieve to two different abstract outcomes. Accordingly, the two BS steps immediately
following it (and the two following the topmost of them alongthe upper thread) are branching BS steps, since they
too can individually reach different concrete final states that retrieve to the two different abstract outcomes. With the
dotted lines depictingRF, it is easy to see that these steps illustrate what we have just discussed.

However, if a BS step isnot branching, i.e. there is only one protocol successor statev′s to vs, then the preceding
problem cannot arise since the unique successor cannot force a distinction between the choices foruF. So for non-
branching BS steps, a forward simulation inference will succeed. However, it comes at a price. If a forward simulating
BS step immediately follows a backward simulating BS step, theR1(uF, v) value at thev state that they share, occurs
as a hypothesis in both the backward PO (24) and the forward PO(23). It thus remains as an unproved assumption in
the overall single-step verification of the big-step refinement. As such it allows the verification to succeed vacuously
(i.e. using the ‘don’t care’ interpretation of the POs’ implications that comes into play when their hypotheses are
false). For this reason we phrased Corollary 3.11.2 as two inductive processes that meet in the middle, since it is much
better to verify someR1(uF, v) twice independently, than to leave some otherR1(uF, v) unproved, thus undermining
the whole verification.

Lastly, Theorem 3.8 offers a different strategy for addressing global correctness. Normally, to prove a protocol
(such as the one we have been considering) globally correct,one chooses either forward or backward simulation,
establishes that each protocol step refines some atomic option orskip, and this then extends to an inductive proof for
global executions as a whole. With Theorem 3.8, we can envisage a different approach, structured as follows.

1. We first study the ‘big-step’ refinement of atomic action toprotocol, determining the protocol computation DAG
and the big-step retrieve relation.

2. Next we choose a suitable synchronisation assignment.
3. Next we determine which combination of forward and backward simulations are appropriate for the synchronisa-

tion assignment.
4. Next we calculate the necessary single step retrieve relation, breaking down the big-step refinement into single

step refinements.
5. Finally, we determine how runs of the protocol can interleave to make global executions.

While the first four of these points have been discussed above, the fifth point is elaborated in the remainder of the
paper (see especially Sections 5 and 6). The alternative approach advocated, separates concerns, and in cases where a
complex protocol is concerned, may offer some advantages. In any event, the mere awareness of the possibility of such
an approach may make the more monolithic standard approach more tractable, since it can show that certain subgoals
of the standard approach are achievable in advance.

In choosing between the new approach and the traditional approach, it is important to appreciate that the choice
represents a value judgement about the very notion of what itmeans for a protocol to be correct. The standard in-
ductive approach, and the more separated-concerns approach developed in this paper, are (mathematically) different
statements, though not unrelated as discussed at the end of Section 6. Both however offer the same coverage of con-
crete steps, and both establish simulations between protocol and atomic action, albeit in different ways. We make
further remarks to this effect below.

4. Event Structures and Protocol Computation Trees

Step 1 of the alternative verification strategy just suggested relies on determining the protocol computation DAG.
Usually, consideration of this computation structure is not itself the means by which a protocol is invented, so the
computation DAG might well be derived from alternative starting points.

A common way of inventing a protocol is to say ‘this happens after that’ for a sufficiently large number of cases.
Such a train of thought can be formalised quite effectively using event structures of various kinds [WN95, Bou90,
NPW81,Win86,Win88,BC88,PP95]. Accordingly, we use eventstructures with symmetric conflict relations to encode



Atomic Actions, and their Refinements 11

StartTo StartFrom

Req

Val

AbortR

AbortV

AbortAAck

#

#

#

AbortT # AbortF#

Fig. 4. An event structure for the Mondex protocol.

possible playouts of a protocol, and show how to derive a computation tree from an underlying event structure of this
kind. Once there, one can map the tree to a more convenient DAGif one wishes.

Definition 4.1. A (symmetric flow) event structureE is a triple(E,≺, #) such that:

1. E is a set (of events).
2. ≺ is an asymmetric causal flow relation onE (whose transitive (resp. reflexive transitive) closure is written< (resp.

≤)).
3. # is an irreflexive symmetric conflict relation onE compatible with≤, i.e. such thatx # y ≤ z⇒ x # z.

The preceding is a very simple definition which will do for ourimmediate purposes. Generalisations arise by eg. al-
lowing the conflict relation to be asymmetric; see some of thecited literature.

An event structure defines which events may occur once other events have already occurred. Collections of events
are called configurations, and the legal configurations and legal ways of passing from one configuration to a successor
configuration are packaged up in the following definition.

Definition 4.2. Let E = (E,≺, #) be an event structure. The setXE ⊆ P E of (legal) configurations ofE , and the legal
ways of moving from a legal configurationX of E to a successor legal configurationY are given by the following rules.

1. ∅ ∈ XE .
2. X ∈ XE , x ∈ E− X, (∀ x′ ∈ E • x′ ≺ x ⇒ x′ ∈ X), (∀ x′ ∈ E • x′ # x ⇒ x′ 6∈ X) ⊢ X ∪ {x} ∈ XE .

In Fig. 4 we show an event structure for the Mondex protocol, adapted from the activity diagram of Fig. 2 to include all
the ‘abnormal’ ways that the protocol can play out, and flowing up the page. The constituent events are in the labelled
nodes, while the arrows show the elements of the flow relation≺, and the #-labelled edges show a generating set for
the conflict relation. In the Mondex documentation [SCW00] the variousAbortx events are all part of a singleAbort
operation, which has been split into five pieces in Fig. 4 according to which ‘normal’ event theAbort is in conflict
with.

In Fig. 4 there are two root events,StartFromandStartTo, either of which can start an ‘execution’ of the event
structure. (For the time being, we ignore the possibility ofstarting with one or both of theAbortT or AbortF events,
which lead to ‘stillborn’ executions; they are included in Fig. 4 for later convenience.) Once the first event has taken
place, we have a (different) choice of two next events (depending on whichStart event went first). If the next event
is the otherStartevent, then we have a choice of three subsequent events. . . and so on. Working out all the possible
orderings of events yields a quite complex structure, and itis clear that the event structure formalism captures all these
possibilities in a compact and convenient way.

In general, an event structure is executed by starting with the empty configuration, and then one executes one
event at a time, adding a new eventx to the existing configurationX, as sanctioned by the rules in Definition 4.2. So
Definition 4.2 provides a proof system that enables us to derive sequences of event occurrences. The set of sequences
obtained thereby can be turned into DAG-shaped and forest-shaped transition relations by accumulating the informa-
tion encountered in the course of assembling these sequences in suitable ways: if one adds elements to a set of events
one generates a DAG; if one appends elements to a sequence of events one generates a forest.

Definition 4.3. Let E = (E,≺, #) be an event structure. The transition systemEDAG associated withE is defined by:
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1. the states are the configurationsX ∈ XE , with ∅ as intial state,

2. the transitions are the stepsX
x
→ X′ iff X ∈ XE . . . ⊢ X′ = X ∪ {x} ∈ XE is a valid inference according

to Definition 4.2.

EvidentlyEDAG is a DAG.

Definition 4.4. LetE = (E,≺, #) be an event structure andEDAG its associated transition system. The transition forest
EFOR associated withE is defined by:

1. the states are the paths〈∅, . . . , X〉 in EDAG which start at the initialEDAG state, with the empty path as initial
EFOR state,

2. the transitions are the steps〈∅, . . . , X〉
x
→ 〈∅, . . . , X, X′〉 iff X

x
→ X′ is a step ofEDAG.

The preceding gets us some way towards the provisions of Section 3. However we are not there yet. Section 3 is
couched in relational terms. So events have to correspond torelations, and the enabledness or otherwise of these
relations in any state must correspond to what the flow and conflict relations of the event structure permit in given
configurations. In general, the process will be application-specific, since it will depend on many factors, such as how
many protagonists participate in the protocol, what their local state is envisaged to be, what knowledge of the global
state they have, the role of I/O, etc. However, in the contextof designing a protocol to accomplish some identified
atomic goal, the process of reconciling these two approaches can provide a useful consistency/correctness check on
the design activity.

Beyond that, our event structure account of Mondex left out certain state components, such as the details of purse
balances and amounts transfered etc., that a full account must include — i.e. the event structure was deliberately in-
tended to be generic. Reinstating the omitted components generates a replication of the forest, indexed by the reinstated
values, corresponding to the full computation forest.5

Once the event description is in place, and one is confident that it properly corresponds to the relational picture,
we can extract a computation forest via the constructions ofDefinitions 4.3 and 4.4.

By construction, the nodes of the forest shaped computational DAG EFOR incorporate the full history of the pro-
tocol up to the given point. Such history information is often needed in reasoning about protocols, since protocol
properties frequently depend not only on knowing that the protocol has arrived at a certain point, but that certain other
things must have necessarily happened prior to that point. Such facts can be trivially extracted from the full history,
so our formulation may be regarded as a multipurpose canonical description, useful for things other than just the con-
cerns of this paper. However, since different paths can often arrive at ‘essentially the same’ state eg. via interchanges
of causally independent steps somewhere in the interior of the protocol, it is just as useful to be able to forget aspects
of history, and identify common suffixes of certain paths. The duality betweenEDAG andEFOR (given in one direction
by the construction ofEFOR fromEDAG, and in the other by forgetting all but the last component of each state inEFOR)
bears out the compatibility of these different points of view.

Another aspect that should be discussed is I/O. At the atomiclevel, the I/O for the single step that takes place
must inevitably concern the environment, since there is no internal structure to engage in internal communication.
At the protocol level however, I/O can either be between the environment and the protocol, or be purely internal to
the protocol. In the latter case, the only restriction that we need is that messages must be produced before they can be
consumed, a fact we insist on also when we come to consider multiple protocol instatiations and the possibility that one
protocol instatiation outputs a message that is consumed byanother protocol instatiation. There is of course the option
of representing messages in flight within a suitable state component —such a state component can model properties of
the communication medium, eg. unreliablity— however we do not need to insist on that for the serialisation discussed
in the next section.

5. Interleaving and Serialising Individual Protocol Runs

Thus far, although using language such as ‘protocol,’ in reality we have only discussed some properties of acyclic
transition systems. In genuine protocols, various agents interact by performing events and sending/receiving messages
etc. We must connect our theory to this world.

5 N. B. This picture incidentally yields one useful convention for theρ labels of the step relationsStρ of Section 3: namely to tag each edge of the
‘generic’ forest by a distinct label (corresponding to the relevant event name in the event structure picture), and thento retain these labels in each
replicated forest, making the labels akin to names of ‘operations’ at what would be the code level.
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The basic idea is that the previous section should be understood as describing (the various possibilities for) a
single isolated protocol run, performed by however many agents would be appropriate in practice, with the proto-
col state recording in principle the full history of the protocol so far (regardless of whether such knowledge can
indeed be posessed by the individual agents), and ignoring the rest of the universe. The latter not only regarding other
agents/activities in the rest of the universe, but also regarding what the agents of the single protocol run might do both
before and after the run itself. So the previous section described an idealisedpatternor templatefor what collections
of agents might do over some period of time towards the achievement of some goal described by the atomic action
that the protocol implements.

Patterns or templates are normally made to correspond with what happens in the real world by some process of
matching, and that is the basis of our approach too. Since we have remarked that our protocol states can in principle
include unrealistically detailed history information, our matching process must include a projection mechanism to
allow the unrealistic parts to be forgotten. In such a scenario, protocol states that were previously distinct can be
matched to the same system state, just as we described in the previous section.

Definition 5.1. A systemconsists of a number ofagents, Aa, Ab, . . . each with its agent state subspaceWa, Wb, . . ..
Thus the system state space isW = Wa × Wb × . . ., agentAa’s instantaneous state is somewa ∈ Wa, and the system’s
instantaneous state isw ≡ (wa, wb, . . .).

Each agent is a transition system, i.e. the agent can move between different elements of its state space in discrete
steps, leaving the state of every other agent unaffected. The enabledness of any agent’s transitions is independent of
the state of any other agent. Each step can also consume inputand produce output, and the I/O policy described in the
previous section applies again: i.e. I/O may either be with the environment, or it may be internal to the system, and
any internal message that is consumed must earlier have beenproduced.

The system’s transitions are described by a predicateSyA similar toSt in Section 3, where the subscript ‘A’ refers
to the agent performing the step, and eachSyA step modifies only its own agent’s state subspace. The transitions of
the system as a whole are the interleaved agent transitions of the system’s agents, each extended withskip on the
irrelevant part of the total system state. Theskip-extended transitions are writtenSyA.

Definition 5.2. LetSbe a system with agentsAa, Ab, . . .. The sequenceT ≡ 〈wI , (k1, A1, q1), w1, (k2, A2, q2), w2, . . .〉
is a run of the system iff:

1. wI is an initial state of the system,
2. A1 is the agent that performs the first step,
3. k1 is the input consumed byA1 during the first step,
4. q1 is the output produced byA1 during the first step,
5. w1 is the result state of the first step,
6. the change of statewI → w1 involves a changewI → w1 to the state spaceW1 of A1 only; the stepSyA1

(wI , k1, q1, w1)
is theagent stepof the first transition of the run; the state spaces of agents other thanA1 remain unchanged,

7. . . . and analogously for subsequent system transitions.

Definition 5.3. LetProtocolbe a protocol in the sense of the previous section. An agent decomposition for the protocol
is a decomposition of the protocol state spaceV into a cartesian product of agent subspacesV = V1 × V2 × . . ., such
that each step of the protocol modifies6 at most one component in the product, leaving the other components unaltered.

The decomposition into agent subspaces just described, represents the fact that an instantiation of a protocol is nor-
mally executed by a number of agents inside a real system.7 However a real agent in a real system can play many roles
during the running of the system, including acting out different roles in different instances of the same protocol at dif-
ferent times. So we need to distinguish the various agent roles in a protocol definition from the different instantiations
of these during system runs. The next definition introduces the technical machinery for this.

Definition 5.4. Let Atomic, Protocol, . . . (with all the attendant machinery) be a protocol implementing an atomic
action in the sense of the previous section. We say that system runT instantiatesProtocol iff there is a maximal path

6 Here, and in the remainder of the paper, ‘modifies’ should be understood to mean ‘is deemed to modify’ or, ‘is permitted to modify in the syntactic
description of the step,’ since it is intended to cover not only non-trivial update, but also cases of read-only access, and cases in which the agent in
fact chooses not to access the state at all (even though the syntactic description, of which the step is a specific instantiation, permits it).
7 In Mondex there will be two agents, theTo agent and theFrom agent, so thatV = VFrom × VTo. Similarly for any protocol that works by
exchanging messages between two agents.
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Fig. 5. An atomic action, a protocol which implements it, and a system run containing an instance of a maximal path through the protocol. The
steps of the instance are shown bold.

through the protocolMPath〈α,β,...,γ〉(vI , j1, p1, v1, j2, p2, v2, . . . , vF−1, jF, pF, vF) and there are two maps:τA andτS
such that:

1. there is a cartesian product of disjoint functionsτA,l : Vl → Wal from all of the agent components ofV to a
(possibly proper) subset of distinct agent subspaces ofW, andτA = Πl τA,l ,

2. τS is an injective function from the steps of the maximal pathMPath〈α,β,...,γ〉 to agent steps ofT ,

3. τS is order preserving, i.e. ifStβ precedesStγ in MPath〈α,β,...,γ〉, thenτS(Stβ) precedesτS(Stγ) in T ,

4. for each protocol stepStβ(vt−1, jt, pt, vt) in the domain ofτS, if Vl is the agent component ofV modified during the
step, thenτA,l(Vl) is the agent subspace modified during the stepτS(Stβ(vt−1, jt, pt, vt)),

5. for each protocol stepStβ(vt−1, jt, pt, vt) in the domain ofτS, if τS(Stβ(vt−1, jt, pt, vt)) = SyAl(ws−1, ks, qs, ws),
thenτA,l(vt−1) = ws−1, jt = ks, pt = qs, τA,l(vt) = ws,

6. if protocol stepStβ modifiesVl and protocol stepStγ is the next protocol step alongMPath〈α,β,...,γ〉 that modifies
Vl , then no step ofT betweenτS(Stβ) andτS(Stγ) modifiesτA,l(Vl).

When we want to emphasise the details, we say that system runT instantiatesProtocol via τ ≡ (τA, τS) at step
τS(Stα(vI , j1, p1, v1)) of T , whereStα(vI , j1, p1, v1) is the initial step inMPath〈α,β,...,γ〉.

In Fig. 5 we show how a particular maximal path,M say, through the protocol illustrated in Fig. 3, might be mapped,
via an instantiation functionτ , to a selection of steps in a system run. The system state in the run is now ‘real world’
state, eschewing the maximal knowledge that the idealised protocol formulation allows. In between the steps ofτ(M),
other protocols are being instantiated by other agents, though without interfering with the state ofτ(M), by Definition
5.4.6.

Definition 5.5. Let MPath〈α,β,...,γ〉 be a maximal path inProtocol. StepStβ(vt−1, jt, pt, vt) of MPath〈α,β,...,γ〉 is
a first use of agent subspaceVl iff: it modifies Vl , and no earlier step ofMPath〈α,β,...,γ〉 modifiesVl . Similarly
Stβ(vt−1, jt, pt, vt) is a last use ofVl iff: it modifies Vl , and no later step ofMPath〈α,β,...,γ〉 modifiesVl . We say
thatProtocolis 2-phase (2P) alongMPath〈α,β,...,γ〉 iff all first uses of all agent subspaces ofProtocolprecede any last
use of any agent subspace ofProtocolalongMPath〈α,β,...,γ〉.

Definition 5.6. Let SyA(ws−1, ks, qs, ws) andSyB(ws, ks+1, qs+1, ws+1) be two successive steps of a runT of the sys-
tem. We say thatSyA(. . .) andSyB(. . .) can be commuted iff there is a statew̃s such thatSyA(w̃s, ks, qs, ws+1) and
SyB(ws−1, ks+1, qs+1, w̃s) are valid steps of the system, and the pairSyA(ws−1, ks, qs, ws) ; SyB(ws, ks+1, qs+1, ws+1)
can be replaced inT by SyB(ws−1, ks+1, qs+1, w̃s) ; SyA(w̃s, ks, qs, ws+1), yieldingT ′, whereT ′ is a valid run.
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Lemma 5.7. If SyA(. . .) andSyB(. . .) as in Definition 5.6, are two successive steps performed by two different agents,
then, provided both inputs are available in statews−1, SyA(. . .) andSyB(. . .) can be commuted.

Proof. SinceSyA(. . .) andSyB(. . .) are performed by different agents, the two agent subspaces modified by these
steps are disjoint, so the changes of state can be swapped, easily yielding the statẽws required by Definition 5.6. If
both inputs are available in statews−1, then theSyB(. . .) is enabled in statews−1 and can be performed first. Since the
input to SyA(. . .) is not removed by doingSyB(. . .), SyA(. . .) can followSyB(. . .). That this generates a valid run is
now straightforward. �

Since our formulation of a protocol does not consider the protocol’s context, the only way that a protocol, as formulated
in Section 3, can interact with the rest of the universe, is via I/O with the environment. In the system context, this leads
to a distinction within the internal system messages, between messages that are produced and consumed by the same
protocol instance (which should thus correspond to internal communications of the protocol itself), and those which
are produced and consumed by different protocol instances (which should thus correspond to communications with
the environment in the protocol model). (System level communications with the environment must of course also
correspond with protocol communications with the environment.) Since inter-protocol communications must comply
with normal causality considerations, these communications must fit well with the 2-phase property for protocol state
components. The next definition introduces the needed technicalities.

Definition 5.8. Suppose given a maximal pathMPath〈α,β,...,γ〉 of a protocol, which is 2P. An external dependency
definition (XDD) for it is a pair of (not necessarily disjoint) sets(IDS, ODS) of steps ofMPath〈α,β,...,γ〉. IDS is the
input dependency set: the set of steps ofMPath〈α,β,...,γ〉 during which an external input (i.e. one originating from
outsideMPath〈α,β,...,γ〉) is received; andODSis the output dependency set: the set of steps ofMPath〈α,β,...,γ〉 during
which an external output (i.e. one destined to outsideMPath〈α,β,...,γ〉) is delivered. A protocol is 2PXDD-normal iff:

1. all IDS steps occur no later than anyODSstep alongMPath〈α,β,...,γ〉,
2. the producer of every input of every protocol step other than anIDSstep is some other step ofMPath〈α,β,...,γ〉,
3. the consumer of every output of every protocol step other than anODSstep is some other step ofMPath〈α,β,...,γ〉,
4. eachIDS step occurs no later than any last use of the state,
5. eachODSstep occurs no earlier than any first use of the state.

For a maximal path through the Mondex protocol, the IDS stepsare theStartFromandStartToevents. There are no
ODS steps since Mondex is designed to change state, rather than produce output. As we mention in Section 7.8, there
are some paths through the Mondex protocol which are not 2-phase, though none of them do anything ‘useful’.

Definition 5.9. An instantiation of a 2PXDD-normal protocol is called a (2PXDD-normal) transaction.

For the rest of this paper all transactions will be 2PXDD-normal.

Theorem 5.10. LetT0 be a run of a system which consists entirely of the steps of transactions of a family of protocols.8

Then there is a serialisationT∞ of T0, generated by commuting adjacent steps, in which each instantiation occurs as a
contiguous series of steps.

Proof. Consider the directed graphDep0 whose nodes are the transactions ofT0, and whose edges are given by:
τ1 → τ2 iff:

1. an output of anODSstep ofτ1 is an input of anIDSstep ofτ2, or,
2. an agent subspaceVl is used by bothτ1 andτ2, butτ1’s modifications ofVl occur earlier inT0 thanτ2’s.

Claim 5.10.1Dep0 is acyclic.

Proof of Claim.Let V be the state space of a transactionτ . Since the last first use ofV precedes the first last use of
V in τ , and all allIDS steps precede allODSsteps inτ , by Definition 5.8.4-5, we can deduce that there is a step inτ
(which we will call the pivot), that precedes neither the last first use ofV nor anyIDSstep, and simultaneously follows
neither the first last use ofV nor anyODSstep (there are four cases). We identify each transaction inT0 with (some
choice for) its pivot. Since steps are interleaved, there isa total order on the transactions, inherited from that on their
pivots.

8 So there is a set of maximal paths through a set of 2PXDD-normal protocols, and a set of instantiations of them inT0, and the set of steps ofT0

is the disjoint union of these instantiations.
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We show thatDep0 can be interpreted in the set of pivots, and that each edge in the interpretation is oriented
towards the future, yielding the acyclicity ofDep0 immediately. For aDep0 edge of type 1, note that it is oriented
towards the future by straightforwards causality. So pretending that the requisite message was sent during the produc-
ing transaction’s pivot step, and pretending that it arrived during the consuming transaction’s pivot step can increase
its time of flight, but not change its orientation towards thefuture. For aDep0 edge of type 2, since the pivot steps
are contained within the uses of transactions’ state which do not overlap by Definition 5.4.6, and these are oriented
towards the future by 2, the orientation is preserved in the interpretation. We have our claim. � �

We serialiseT0 stage by stage. At each stage there are serialised and unserialised transactions. We call the boundary
between the serialised and unserialised transactions the horizon. So at the beginning there are no serialised transac-
tions, and the horizon lies just before the first step ofT0. At the n’th stage, which starts withTn, whose unserialised
transactions compriseDepn (a subgraph ofDep0), we choose an unserialised transaction which is a root ofDepn, and
we serialise it, whereupon its steps —in contiguous sequence— are both appended to the serialised part, and removed
from the unserialised part of the partly serialised run, moving the horizon to just beyond the newly serialised steps, and
yieldingTn+1 andDepn+1. If T0 is infinite, then the serialisation process continues forever, and every finite prefix of
T0 has all its steps eventually included in the serialised part. If T0 is finite, the process stops when the last transaction
of T0 has been serialised.

Stage n: A root transactionτn of Depn is chosen. By assumption, all transactions on whichτn is dependent, whether
through the state space, or viaτn’s IDS messages, have been serialised, i.e. their steps lie beyondthe horizon. So any
step ofTn that lies between the horizon andτn’s first step neither uses any state used byτn’s first step, nor produces a
message consumed byτn’s first step. So there is no obstacle to commuting the first step of τn towards the past until it
it arrives immediately after the horizon. Similarly the dependencies for the second step lie either beyond the horizon,
or arise from the first step, so the second step ofτn can be commuted towards the past until it arrives immediately
after the first. The process continues until the last step ofτn has been commuted until it arrives immediately after its
predecessor. This yieldsTn+1. Transactionτn is removed fromDepn, yielding Depn+1, and the horizon is moved to
just afterτn’s last step.End Stage n. �

The preceding amounts to a sketch of a relatively standard 2-phase serialisation proof process [BHG87,GR93,BN97,
WV02]. And once the run has been serialised, it is unsurprising to observe that each transaction of the serialised run
is a refinement of its corresponding atomic action via a retrieve function that forgets the part of the system state not
relevant to the transaction. We examine the details of this,and associated issues, in the next section.

6. Interleaved Protocol Runs as Simulations

Consider a serial runTser, as manufactured in the discourse above. If we pick on a particular state in the run, sayw, it
will be the representative in the system run of a protocol state, sayv, of the protocol being executed at that point of
the run. Say it is theg’th protocol instantiation being executed,Protocol-g. ThenProtocol-g itself is a refinement of
an atomic actionAtomic-g, via a retrieve relationR1

Protocol-g, constructed as in Section 3.
We know thatW consists of agent subspaces. Knowing thatw relates to a step ofProtocol-g allows us to split the

agent subspaces ofW into two sets. The members of the first set,WA,Protocol-g are the state subspaces belonging to those
agents actually executingProtocol-g. The second setWA,Protocol-g contains any agent subspaces ofW that remain.

Continuing to use the notations of the previous section, we know thatProtocol-g is instantiated viaτProtocol-g =
(τA,Protocol-g, τS,Protocol-g). Therefore the codomain ofτA,Protocol-g is WA,Protocol-g, andw is the tuple consisting ofw (the
projection ofw ontoWA,Protocol-g), and some other state elements belonging toWA,Protocol-g (if the latter is nonempty).
We thereby derive the following.

Proposition 6.1. Let Tser be a serial run of a collection of protocol instantiations bya set of agents. Then for each
step〈wd−1, kd, Ad, qd, wd〉 of Tser, there is an atomic action,Atomic-g say, such thatwd−1 andwd are related to: (a) the
identity on an initial state ofAtomic-g, or, (b) a step ofAtomic-g, or, (c) the identity on a final state ofAtomic-g, via
the retrieve relation:

Sg(u, w) ≡ R1
Protocol-g(u, v) ∧ τ−1

A,Protocol-g(v, w) (28)

whereR1
Protocol-g is theR1 retrieve relation forProtocol-g, constructed as described in Section 3. Furthermore, in the

case of option (b), the I/O of the entire transaction of which〈wd−1, kd, Ad, qd, wd〉 forms a part, is mapped to the I/O
of theAtomic-g step as in (26) and (27).

Proof. By construction, we know that there is a step ofProtocol-g, Stγ(vt−1, jt, pt, vt) say, which is mapped to
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〈wd−1, kd, Ad, qd, wd〉 of Tser by τS,Protocol-g, wherewd−1 andwd are the projections ofwd−1 andwd ontoWA,Protocol-g.
Thus the presence ofw in the left hand side of (28) and the presence ofw in the right hand side of (28) serves to project
out the unneeded system state. Next, we claim thatτ−1

A,Protocol-g connectswd−1 andwd to vt−1 andvt respectively. Fi-
nally, R1

Protocol-g connectsvt−1 andvt respectively to: (a) the identity on an initial state ofAtomic-g, or, (b) a step of
Atomic-g, or, (c) the identity on a final state ofAtomic-g, depending on whetherStγ(vt−1, jt, pt, vt): (a) occurs before
the SA step, or, (b)is the SA step, or, (c) occurs after the SA step, for the maximal path ofProtocol-g instantiated in
this portion ofTser.

We now briefly substantiate our claim aboutτ−1

A,Protocol-g. WA,Protocol-g splits into two parts. The first part just contains
WA,Protocol-g,d the agent subspace of the system agentAd actually executing〈wd−1, kd, Ad, qd, wd〉. The second part
contains the agent subspaces of all the system agents involved in executing this protocol instantiation, except for
Ad. A similar split occurs at theProtocol-g level. Therefore, by Definition 5.4.1,τ−1

A,Protocol-g splits into pieces, one
for each corresponding pair of (protocol/system) agent subspaces involved (‘∧’ in predicates, product relationally).
For Ad, we know that the relevant piece,τ−1

A,Protocol-g,d, holds, by Definition 5.4.5. For every other agent, since the
agent is involved in the protocol instantiation, there is some other step of the instantiation, occurring either earlier
or later than〈wd−1, kd, Ad, qd, wd〉, for which the appropriateτ−1

A,Protocol-g,– piece holds; and so, since both protocols

and instantiations skip on non-involved state during execution steps, the truth of suchτ−1

A,Protocol-g,– pieces propagates
throughout the whole of the instantiation. So we have the claim. �

Proposition 6.1 establishes a 1-step simulation propertyΣ1
Tser

which is analogous to (11). It shows that a single protocol
instantiation step〈wd−1, kd, Ad, qd, wd〉 and a suitable single (trivial or non-trivial) atomic step,together with the
relationsSg that connect them at before- and after- states (and with I/O relations where appropriate) all hold.

By combining the 1-step simulation relations thus calculated for all the protocol instantiations inTser, we see that
the whole ofTser is simulated by a sequence of such instantiations, as one would expect. And system states inTser
that lie at the end of one protocol instantiation and at the beginning of the next, are evidently in the domain of theSg
relations for two consecutiveg’s.

Unlike most formulations of simulation between a system runand its abstraction, in the above, each atomic abstrac-
tion exists in isolation, thus helping to isolate any trickytechnical aspects involved in its refinement from complications
arising from the involvement of system state. Of course, on the abstract side, one could set up instantiations in an ab-
stract system world in the same way as was done for the concrete protocol instantiations, and thereby recover a more
conventional view.

One could then ask what the benefit of the more complicated formulation was. The answer is that it separates con-
cerns rather neatly. Any technical difficulties in the refinement of the atomic action to the protocol, can be investigated
within a ‘bubble’ consisting of a template atomic action anda template protocol. After this, the connection between the
templates and the whole-system view, can be made relativelyroutinely, as we have just shown. The reader should note
in particular that the synchronisation needed for refinement (via the SA steps) has been completely decoupled from
the synchronisation needed for serialisation (which depends on first/last uses of state and analogous I/O properties).

Furthermore, although one could certainly invent contrived counterexamples, the connection between the state
in a protocol transition system and the state in a protocol instantiation will, in practical examples, be very simple.
The former typically contains more history information than a real system state would; the latter will typically con-
tain information about all sorts of system state that is irrelevant to the protocol instantiation itself (specifically,state
belonging to agents not involved in that particular protocol instantiation). For this reason we state the following.

Remark 6.2. We anticipate that in all cases of practical interest, the connection between protocol state and system
state will be achievable via simple forward induction techniques.

So far then, the picture looks rosy enough. But there is one remaining snag: not all system runs are serial. To see the
issues this raises, we note that once a step〈wd−1, kd, Ad, qd, wd〉 is chosen, the discussion in Proposition 6.1 splits the
system state space into three: (a) agentAd’s agent subspace, (b) the agent subspaces of the other agents participating
in the protocol instantiation, (c) the agent subspaces of agents not covered by (a) or (b). For (a) we calculated the
contribution toSg directly via the approproiateτA function, for (b) we enlarged this contribution by propagating the
effects of other steps in the maximal path being instantiated, for (c) we projected that state away.

The latter two are problematic in a non-serial run. In the (c)part, there may be other non-trivial protocol instanti-
ations going on that are interleaved with this one, and theseshould be considered. In the (b) part, if any of the agents
involved, at the point of the〈wd−1, kd, Ad, qd, wd〉 step, has not yet reached the first use of or has already passedthe
last use of its state, then it may be, at this point of the protocol instantiation, involved in other activities unrelatedto the



18 Banach and Schellhorn

A1

A2

A3

Fig. 6. Timelines for three agents engaged in a protocol, shading the first-to-last uses of their state spaces.

present protocol instantiation. In such a case, propagating aτA function to the〈wd−1, kd, Ad, qd, wd〉 step is in general
invalid.

Fig. 6 illustrates the situation. Three agentsA1, A2, A3 engage in a protocol, with time going left to right, and with
the first use to last use of the agent subspaces shaded grey; propagatingτA functions into the unshaded areas is not
permissible.

Thus in a non-serial run, protocol instantiations generally have ‘ragged starts’ and ‘ragged ends’ —the shaded part
of Fig. 6— allowing different protocol instantiations to overlap in time, even when they involve some of the same
agents. On the other hand, in a serial run, protocol instantiations have ‘clean starts’ and ‘clean ends’ —the whole
rectangular area in Fig. 6— so all involved agents are in the right state at the beginning of the rectangle, and in the
right state at the end of it. This ‘clean’ formulation was extremely useful in Section 3, where it led directly to the
straightforward definition of the past and future retrieve relationsRP andRF in terms of the equally clean outer retrieve
relationR.

The clean separation of concerns engendered by templateAtomicandProtocol transition relations, distinct from
system runs, permits the gap between serial and non-serial system runs to be closed in a number of ways. Perhaps the
simplest of these keepsAtomicandProtocolunchanged, and just reinterprets the various retrieve relations in a manner
appropriate for non-serial runs. This is the approach we will take.

Definition 6.3. Let AtomicandProtocolbe as in Section 3, letMPath〈α,β,...,γ〉 be a maximal path throughProtocol,
and letR1 be as in (25) with respect to a given SA. LetVAd be an agent subspace of the state space ofProtocolandvAd

a typical element ofVAd. Then the fragmented retrieve relation̂R1
Ad

is defined by:

R̂1
Ad

(u, vAd) ≡ ∃ vAd
• R1(u, 〈vAd, vAd

〉) ∧
(

vAd occurs no earlier than the first use ofVAd and no
later than the last use ofVAd, alongMPath〈α,β,...,γ〉

)
(29)

wherevAd
refers to the protocol state in all agent subspaces other thanVAd, and the dependence of̂R1

Ad
onMPath〈α,β,...,γ〉

and the SA is understood.

We see that whereasR is stipulated (in Assumptions 3.2.1) to be a partial function, the variouŝR1
Ad

evidently are not.

Given theR̂1
Ad

, we can recover the originalR1 as follows.

Proposition 6.4. Let Atomic, Protocol, MPath〈α,β,...,γ〉, a given SA, and the variouŝR1
Ad

be as previously. Then:

R1(u, 〈vAd1, vAd2 , vAd3 , . . .〉) ≡ R̂1
Ad1

(u, v̂Ad1) ∧ R̂1
Ad2

(u, v̂Ad2) ∧ R̂1
Ad3

(u, v̂Ad3) ∧ . . . (30)

whered1, d2, d3, . . . ranges over all the agents involved in the protocol and

v̂Ad1 =





vfirst,Ad1 wherevfirst,Ad1 is the before-state of the first use ofVAd1

if vAd1 occurs in a step which precedes the first use ofVAd1

vlast,Ad1 wherevlast,Ad1 is the after-state of the last use ofVAd1

if vAd1 occurs in a step which follows the last use ofVAd1

vAd1 otherwise

v̂Ad2 =





vfirst,Ad2 wherevfirst,Ad2 is the before-state of the first use ofVAd2 if . . . etc.
vlast,Ad2 wherevlast,Ad2 is the after-state of the last use ofVAd2 if . . . etc.
vAd2 otherwise

etc. (31)
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Proof. A straightforward calculation that extends the variouŝR1
Ad

into the ‘white bits’ of Fig. 6. �

While Proposition 6.4 is quite general, in practice we can often do better if the abstract state can be partitioned
along agent lines, like the protocol state. In that case one can quantify out the irrelevant abstract state (as well as the

irrelevant protocol state) and thêR1
Ad

relations can become functions. Mondex is an instance of this, where theFrom
andTo balances from the protocol state survive into (and are distinguishable at) the abstract level.

We observe that the more narrowly defined fragmented retrieve relations reflect more accurately the way that
a community of agents might instantiate a family of isolatedprotocols in an interleaved manner, consistent with
the event structure picture given earlier, and how this description correspondingly obscures the relationship with the
refinement of atomic action to finegrained protocol.

With the tools that we have now developed, we can make a connection between an arbitrary system run and the
collection of protocols that it instantiates. Again, thereare a number of detailed ways to do this. Our approach is aimed
at a good correspondence with Remark 6.2.

Definition 6.5. LetT be a(n arbitrary) run of a collection of protocol instantiations by a set of agents. We say a system
agent subspaceWd is busy (in a given state occurencew of T ) iff: w either is or occurs after the before-state of the
first use ofWd by its agentAd, and either is or occurs before the after-state of the last use of Wd by Ad, during some
instantiation of some protocol duringT . If Protocol-g is the protocol being instantiated by agentAd and its colleagues,
we say thatWd is busy while instantiatingProtocol-g. Otherwise we sayWd is non-busy (in state occurencew of T ).

Proposition 6.6. Let T be a run of a collection of protocol instantiations by a set ofagents. Then for each statew of
T , w is related to the abstract states of the set of protocol instantiations —while instantiating which, the relevant agent
subspace is busy inw— via the retrieve relation:

S(〈ug1, ug2 . . .〉, w) ≡
∧

subspaceWd is busy inw while
instantiatingProtocol-g

(
R̂1

Ad,Protocol-g(ug, vt) ∧ τ−1

Ad,Protocol-g(vt, wd)
)

(32)

whereg1, g2 . . . ranges over all the protocols whose agent subspaces are busyin w, and bothR̂1
Ad

andτ have acquired
an extra ‘Protocol-g’ index to label all the protocols that are being instantiated atw.

Proof. This is the obvious adaptation of Proposition 6.1 to a situation in which more than one protocol might be being
instantiated at a given statew, and for a given protocol instantiation, not all of the agents involved may be busy inw
while instantiating it. �

Definition 6.7. A transaction prefix is like a transaction, but such that the step mapτS of the instantiation is only
defined on a proper prefix of the maximal path of the protocol being instantiated. A transaction prefix is deadlocked iff
there is a system statew in the run, at or beyond the last step in the range ofτS, such that there is no possible extension
of the run afterw, for whichτS can be extended to an instantiation of a longer prefix of a maximal path of the protocol.

Theorem 6.8. Let there be a collection of agents, each with its own agent subspace, and a collection of atomic actions,
each refined to a protocol as above. Suppose that:

1. The system as a whole executes a run.
2. Each agent only executes steps that instantiate protocolsteps.
3. Each agent’s steps extend a prefix of the instantiation of amaximal path through a protocol.
4. If, in a state of the system run an agent subspaceVA is busy, then agentA can only execute steps that extend a

maximal path through the protocol with whose instantiationagentA is busy.

Then:

(a) Each state of the system runw, is related to the abstract before- or after- states of the atomic actions being instan-
tiated inw, via the run-specific retrieve relationsSof (32), with corresponding results for I/O.

(b) If a transaction prefix is deadlocked, then there is some agent subspace needed by the transaction which remains
permanently busy (with another instantiation), or there issome external input needed by the transaction which
never arrives, or both, (‘permanently’ referring to any extension of the run beyond the point at which deadlock can
be established).

(c) If the system run is fair —i.e. if every transaction prefixthat is not deadlocked eventually progresses (and thus
eventually completes the instantiation of a maximal path)—then the transactions that run to completion can be
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serialised as in Theorem 5.10, and the transactions that do not run to completion (i.e. the deadlocked transaction
prefixes) can be relegated to the end of the serialised run (and in the case of infinite runs, to indefinitely far into
the future).

Proof. Part (a) amounts to the invariant of a straightforward inductive process, which follows readily from our earlier
calculations. Thus the initial state of a run is related onlyto the before-state of the first step of the first protocol
being instantiated, providing the base case. For the inductive argument, consider that the next (run) step is one of the
following: (i) the first step of a protocol instantiation; (ii) a non-first step of a protocol instantiation which makes a
previously non-busy agent subspace busy; (iii) a non-last step of a protocol instantiation which makes a previously busy
agent subspace non-busy; (iv) the last step of a protocol instantiation; (v) an internal step of a protocol instantiation,
i.e. a step not covered by one of the preceding cases.

For (i), the agent subspace required must be non-busy prior to the run step, since pre-emption is prevented by
4. The run step makes it busy. TheS relation is amplified by mapping the before-state of that agent subspace to the
before-state of the atomic action being instantiated, and the after-state of that agent subspace to either the before-state
of the atomic action again (if the run step does not instantiate the SA step), or the after-state of the atomic action (if
the run step does instantiate the SA step). Both possibilities are catered for in the big conjunction in (32).

For (ii), the argument is similar, although other agent subspaces are already busy with the transaction. Depending
on whether the run step instantiates: (α) a step before the SA step, (β) the SA step itself, (γ) a step after the SA step,
yields a three way case split for mapping the before- and after- states of the run step to the before- and after- states of
the atomic action.

For (iii), the argument is the converse; thus the step completes, making the relevant agent subspace non-busy. There
is a three way case split for before- and after- states as in case (ii).

For (iv), the argument is the converse of case (i), with a two way case split for before- and after- states.
For (v), the relevant agent subspace is busy with the transaction, and remains so. There is a three way case split for

before- and after- states.
Regarding the I/O, Definition 5.4.5 stipulates that the inputs and outputs of a protocol path and its instantiation are

identical. Therefore the protocol/system I/O relationship is trivial, and the atomic/protocol I/O relationship has been
taken care of in Theorem 3.8.

Part (b) rests on the observation that in our system model, the only ‘resources’ that a step might need (and whose
absence can therefore disable it) are the availability of a needed input, and the availability of the agent subspace in
which the needed state change is to take place. Thus suppose that a transaction prefix is deadlocked. Then, by defi-
nition, the next step of any extension must be disabled. So inthe case of each possible extension, either an input is
unavailable, or the agent subspace is unavailable (or both). In the former case, since all prior steps of the transaction
prefix have already been instantiated, producing all required internal outputs (which are assumed to reach their desti-
nations in a finite amount of time), any needed input of a disabled step must be external. In the latter case, the agent
needed to execute the disabled step must be unavailable. This can only be because that agent is permanently busy with
some other transaction, by 4, since if there was ever a point in the future at which it became non-busy, a run extension
could be constructed that elected to instantiate the hitherto blocked step at that point.

Part (c) rests on the observation that no completed transaction τ can depend on a deadlocked transaction prefix
— in the sense ofτ needing either an external output, or a state value in an agent subspace, that is produced by the
deadlocked transaction prefix. This is because all transactions and transaction prefixes are 2PXDD-normal. Since the
deadlocked transaction prefix is blocked, it cannot have yetacquired all the resources it needs to complete. Therefore,
by the 2PXDD-normal property, it cannot have started to produce any external outputs, and all its agent subspaces
remain busy forever by the ‘no pre-emption’ property above,4. Sinceτ completes, it cannot have needed any of these
resources.

Now consider the serialisation process of Theorem 5.10. By the preceding, deadlocked transaction prefixes occur
as leaves of the original dependency DAGDep0. Since the serialisation process ‘consumes’ transactionsfrom the
roots, the deadlocked transaction prefixes eventually all appear as isolated nodes of successive dependency DAGs
Depn. Once a deadlocked transaction prefix is in this condition, it can be ignored by the remainder of the serialisation,
and thus get relegated to the end of a finite serialised run, orindefinitely far into the future in an infinite run. �

The provisions of Theorem 6.8 bring the global perspective of Theorem 5.10, which deals exclusively with fully instan-
tiated maximal paths, closer to the practical world, in which agents, though constrained to execute only instantiations
of protocol steps, do so in ignorance of global information,and therefore risk deadlock. The latter is defined in very
simple terms in our models as just the absence of needed input, or non-availability of needed state (given the assump-
tion of non-pre-emption), this being a precise expression of the sense in which the instantiations of our protocols are
isolated.
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It is clear that we can expect that the assumptions of Theorem6.8 will be rather easy to check in practical exam-
ples. Moreover, once one knows that agents only ever executeinstantiations of protocol steps, the ‘simple forwards
induction’ alluded to in Remark 6.2 amounts to the observation that all system steps are in the range of appropriateτS
maps.

We have now reached the point, beyond which we do not elaborate our modelling to a greater level of detail
than we have already achieved. This is mainly because the relevant facts may be brought about in many different
ways. Thus, at one extreme, system agents may be true independent processing entities, each with its own memory,
physically isolated from the rest of the world (as happens inMondex). At the other extreme, system agents and their
memories may be abstractions (such as threads) maintained by an OS scheduling process, all within a single processor.
Many variations in between can obviously be envisaged. Eachsituation will support its own reasons for establishing
the needed facts that our general formalism relies on. Thus every real world application of the general formalism will
require a little ‘glue theory’ to connect its specific details to the general provisions. This is entirely analogous to the
way that ‘glue logic’ is often needed to connect up off-the-shelf hardware components, or the way that ‘glue code’ is
needed to connect up off-the-shelf software components.

7. Mondex and its Refinements

In this section we reflect on the Mondex protocol, and the extent to which its refinement possibilities correspond to the
preceding theory. We consider a number of specific refinements. Some of these were constructed as contributions to
the Verification Grand Challenge [JOW06,Woo06,WB07], for which the mechnical verification of Mondex constituted
the first major case study. The VGC work is surveyed in the special issue [JWe08]. Others among our refinements were
constructed independently, and we also consider some refinements that do not correspond to any refinement explored
in the literature at all, but which, on the basis of the theoryelaborated above, are evidently perfectly possible. There
are a number of points to be borne in mind.

First of all, our theory has been couched in terms of single transitions (which is less cluttered), whereas Mondex
is couched in terms of Zoperations[Spi92,DB01, ISO02]. The distinction is the same as the one discussed in Section
4 between the generic event structure and its replication inthe detailed computational structure by all the permitted
values of the generically omitted state. Therefore when we say below that such and such an operation is synchronised
with such and such an atomic action, we are referring in bulk to all the transitions of the operation being suitably
synchronised with appropriate instantiations of the atomic action.

Secondly, we will restrict our attention for now to runs of the protocol which commence with the twoStart op-
erations,StartFromandStartTo, in either order, (returning to other possibilities at the end of this section). Referring
to Fig. 2, this means that after the twoStart operations, the protocol, which is henceforth serial (as isobvious from
the causal dependencies of thereq, val andackmessages), executes some prefix of theReq-Val-Acksequence of op-
erations. If it does not complete that sequence, each purse that still has elements of theReq-Val-Acksequence left to
do, performs anAbortoperation (which replaces the first such unperformedReq-Val-Ackoperation left on that purse’s
agenda), completing the protocol abnormally. Note howeverthat unlike theReq-Val-Ackoperations which are causally
constrained by thereq, val, ackmessages,Abortoperations are not causally constrained and can occur at anytime. Ev-
ery variation in the order of performing the protocol’s operations whenAbort events are involved, causes a branching
of the computation tree structure, and leads overall, to quite a complex protocol computation tree. All of this concurs
with the possibilities offered in the event structure of Fig. 4.

Thirdly, while the original Mondex refinement is structuredas two refinement stages (A model to B model, then
B model to C model), the separation of concerns that this embodies is different to the one in our general two stage
architecture. In particular, there is no separation of protocol-local reasoning from global-embedding reasoning in the
original Mondex development, making the Mondex inter-model invariants quite complicated compared with ours. Of
course the comparison is not completely fair, since our architecture did not write down the atomic system level view
explicitly, as pointed out in the previous section — so a fairer comparison would cast the approach of this paper as a
three stage architecture.

7.1. The Original Mondex Refinement [SCW00]

In [SCW00], the refinement is constructed to synchronise with the atomic description as early as possible, given the
assumptions above. Thus the atomic action is synchronised with theReqoperation, which refines bothAbTransferOK
andAbTransferLost. Since the protocol still has plenty of opportunity to fail after theReqoperation, theReqoperation
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itself does not fix the outcome, so the refinement, achieved onthe basis of a global inductive proof, has to be a
backward one. We can visualise to some extent the substructure of Fig. 3 that forces a backward simulation (referred
to at the end of Section 3), from Fig. 2, if we add an edge fromReqto anAbort, as an alternative to the message
towardsVal, since the two abstract outcomes are already available at the end of theReqoperation. Furthermore, since
for a failing transaction the protocol has already angelically chosen to refineAbTransferLost, theAbort operation(s),
which actually signal the failure at the protocol level, allrefineAbIgnore(which is Mondex-speak for an abstractskip).

7.2. The Refinement of Banach et al. [BPJS07]

In [BPJS07], amongst other things, a synchronisation with the atomic description that occured late was sought, in
order to try to get a forward simulation.9 The natural operation to refineAbTransferOKto is Val, since that is the
moment that the money safely arrives at the recipient. However, if the refinement ofAbTransferOKis ‘obvious,’ then
the refinement ofAbTransferLostis less so. The subtlety lies within theAbort operation. The deeper structure of the
Mondex protocol implies that if only oneAbort occurs in a transaction, it is harmless, and such anAbort can refine
AbIgnore. Only if two Abort operations occur for a transaction, each while its respective purse is in a critical state,
has the transaction failed non-trivially, whereupon the transaction needs to refineAbTransferLost. This leads to the
decomposition of theAbort operation into cases, depending on the precise role of the operation in the transaction.
In the formalism of this paper, theAbort operation of Mondex corresponds to a collection of events which occur at
different places in the computation tree of the protocol, and are thus distinguishable.

The case analysis is interesting. The distinction between benign and non-benign instances ofAbort is made on the
basis of a purse’s local state (specifically, on whether the purse is in stateepvor epa(non-benign), or in some other
state (benign)). However, since twoAborts make oneAbTransferLost, we can only refineAbTransferLostto one of the
pair — and it has to be the second of the pair, since if only oneAbort in a critical state happens, then it turns out to be
benign nonetheless. In [BPJS07]non-localstate information is used to distinguish the first non-benign Abort from the
second, and the first is then made to refineAbIgnorewhile the second refinesAbTransferLost.

7.3. The Refinement of Schellhorn et al. [SGH+07]

In [SGH+07] we have the second mechanized verification of Mondex using the KIV theorem prover [RSSB98].
While the first [SGHR06b] used the original backward simulation and data refinement, the second uses abstract state
machines (ASMs, [Gur95], [BS03]) together with ASM refinement and generalized forward simulations [Sch01].

The refinement, like [BPJS07], synchronizes successful transfers by havingVal implementAbTransferOK. But
it chooses to synchronize failed transfers at the earliest point possible. This gives two cases for theReqoperation,
which is the point where theFrom purse sends money. In the first, theTo purse is still ready to receive the money, in
which caseReqimplementsAbIgnore. But if theTo purse has already aborted then the second case applies, andReq
implementsAbTransferLost.10 Instead of having two cases (as in [BPJS07]) in which theAbort operation implements
AbTransferLost, the design of [SGH+07] leaves only one: the case where theTo purse aborts inepvafter money has
been sent.

The different choices for the synchronisation points was one motivation for us to study the general possibilities
here. Another one was to provide a general formalization of using past and future simulation relations (RP andRF). In-
stances of such relations with a schematic encoding into Dynamic Logic are not only used in the case study [SGH+07]
but also in earlier work. Future simulation relations occurin the correctness proof of ASM refinement [Sch01]. Past
simulation relations are used in coupled refinement [DW03] as noted in [Sch05].

7.4. The Refinements of Haxthausen, George et al. [HGS06]

The two refinements of [HGS06] use the RAISE specification language [The92]. They are another mechanized verifi-
cation of Mondex using the theorem prover PVS [ORS92]. This case study is slightly out of scope of our theory, since

9 Looking forward to some extent to the specific results of the present paper —which show that the essentials of a protocol can be understood by
discussing the protagonists in isolation— the discussion in [BPJS07] was restricted to a world of just two purses, a single From purse and a single
To purse.
10 This differs from [BPJS07], where theAbort of theFrom purse that is bound to happen in this situation implementsAbTransferLost.
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it does not start with atomic actions, but with a two step protocol: the first step (calledTransferLeft) is a send operation,
which nondeterministically chooses between a success and failure, and we call the two casesSendOKandSendFail.
After SendOK, there are again two possibilities: receiving may succeed or fail. For symmetry, we call these operations
ReceiveOKandReceiveFail, [HGS06] calls themTransferRightandAbort. Already, the splitting of transactions at the
abstract level into send and receive, allows us to keep the balances of abstract and concrete level in perfect synchrony,
as is required by RAISE refinement. The two refinements implementTransferLeftwith ReqandReceiveOKwith Val.

To compare the synchronisation points with our proofs, we have to add an additional refinement of the original
abstract Mondex level to the abstract RAISE level. The refinement would have to implementAbTransferOKby the
sequenceSendOK;ReceiveOK. AbTransferLostwould be implemented by bothSendFailandSendOK;ReceiveFail.
BecauseSendOKis ON, a forward simulation proof would have to synchronize with the last operation of every
sequence. Composing the resulting simulation relation with the existing refinements, we find that the synchronization
is the one used in [SGH+07].

7.5. The Refinements of Butler and Yadav

These refinements develop a Mondex-like money transfer protocol using the B4free tool [B4f]. In accordance with the
Event-B [AH06] methodology, the protocol is developed in many small, but easily mechanically provable refinement
steps, the simulations being forward simulations. The strategy decomposes the abstract events to facilitate separate
refinement of distinct pieces to distinct protocol level operations. Aside from that, it is similar to that of [BPJS07] in
that failing transfers are refined byAborts.

Note that with the exception of the original (backward) one,the preceding refinements are all forward simulations
when viewed at the individual protocol instance level (cf. Corollary 3.10). As such, and particularly when they are
based on(1, 1) refinements, they all readily extend to forward simulation refinements of full system runs — just as the
original(1, 1) backward simulation readily extended to a backward simulation refinement for full system runs.

7.6. The Refinements of Schellhorn and Banach [SB08]

In [SB08] the authors developed a new refinement strategy forMondex based round the essential requirements that the
Mondex protocol addresses, in contrast to other approacheswhich were driven primarily by the technical demands of
one refinement technique or another. The refinement of [SB08]has the same initial and final specification as the ASM
refinement in [SGH+07]. It is broken down into three separate refinements for thethree essential concepts inherent in
the Mondex protocol:

• Implementing money transfer by sending messages over a lossy transport medium.
• Checking messages to be fresh to protect against replay attacks.
• Implementing a challenge-response system needed to ensurefreshness using sequence numbers and a fourth mes-

sage.

The first refinement implements atomic money transfer using aprotocol on the second level that consists ofreq, val
andackmessages only. It ensures uniqueness of protocol runs by using abstract transaction identifiers (tids, inspired by
[BPJS07]). TheStartToandStartFromsteps of the final protocol shown in Fig. 2 are added only in thelast refinement
which implementstids by pairs of sequence numbers.

Since the first refinement is the main non-atomic refinement ofthe development it is natural to ask whether our
theory is flexible enough to view this refinement as an instance of the theory developed in this paper.

The answer is a cautious yes, although some small adjustments are necessary, which we now describe. First, the
operations of the second level do not use input and output explicitly. Messages sent from a sending purse are directly
placed into aninboxof incoming messages of the intended receiver.

To view the ASM as having operationsSt(v, j, p, v′) with a common input/output type forj andp, this type would
have to consist of paired message contents and intended receivers. A valid protocol run would have to satisfy the
constraint that each outputp is used at most once in a later step, only by the intended receiver, for which it forms the
input j. This is clearly straightforward enough to arrange.

As a side remark, matching the third level to operationsSt(v, j, p, v′) is easier, since the second refinement re-
placesinboxes with a global ether of sent messages. Thereby replay attacks become possible, and the third level adds
appropriate checks to prevent them.
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A second niggle when matching the approach of this paper to the first refinement of [SB08] is the use of transaction
identifiers. When the firstreqmessage of a protocol run is generated in theStartTostep, it is equipped with a transaction
identifiertid, which is chosen to be fresh relative to a global settidsetof already used ones. Since our present approach
does not consider global state (except for the implicit set of messages sent so far) this could be encoded by using
external inputs for theStartTooperation, each containing its needed freshtid. Uniqueness would result in the constraint
that valid protocol runs never reuse these externaltid inputs.11

Apart from these adjustments, the proof technique we have developed here can be informally seen to apply: the
synchronization points are the same as in [SGH+07] (late synchronization using simulation relationsRP that look into
the past).

The verification of the first refinement in [SB08] follows the results of Section 5. In particular, it uses aprotocol-
local invariant that is similar to formula (32): the conjunction over all instancesProtocol-gbecomes a quantifier over
all tids that have been used so far. These transaction identifiers also implicitly fix the mappingτ . The quantification
over busy subspacesWd considers the two spaces of theFrom andTo purses. Usingprotocol-localinvariants is a result
of using the results of this paper. The older [SGH+07] used more complex purse-local invariants.

7.7. Other Possibilities

Our general theory shows that even more possibilities than have been discussed above are actually possible. For
example, the refinement of [BPJS07] could have chosen to refine AbTransferOKto Ack instead ofVal, sinceAck
occurs as the last operation of a successful transaction. However, since in general there is a possibility that a transaction
succeeds but that theackmessage is lost, causing theAckoperation to be replaced by anAbort (which as it turns out is
harmless), we infer that in such a refinement there would be a case in whichAbTransferOKwould have to be refined
by Abort!

An alternative to the preceding is to synchronise right at the beginning, with the first (or second)Start event —
and there are plenty of hybrid cases, combining aspects fromseveral of the described or suggested refinements arising
from the rich structure of the protocol computation tree. Weleave the curious reader to work out such scenarios for
himself.

7.8. The Non-2-Phase Fragments

In discussing the preceding refinements, we have always assumed that the twoStart operations are performed first.
But it could happen that one purseStarts and immediately afterwardsAborts, before the second purse hasStarted.
This spoils the 2P property since the first purse has relinquished its use of its local state before the second purse has
claimed its first use. In such a case, either purse may engage in other transactions, changing the local state, after the
first purse’sAbort and before the second purse’sStart.

A remaining possibility is that only one purseStarts, and the other purse merelyAborts (as explicitly permitted in
the event structure of Fig. 4), or indeed does nothing (a possibility allowed for in the definitions of [SCW00] though
not shown in Fig. 4). In such a case, even if the other purse’sAbort happens after the (inevitable)Abort of the first
purse, it is arguable that the protocol is nevertheless 2P, since the other purse’s use of its state amounts to no more than
skip. Even if one does not accept this argument, it is evident thatthe breakdown of the 2P property is rather mild.

Dealing formally with such situations requires an extension of our theory, which will be discussed in detail else-
where [BS]. Note though, that even if these situations are not serialisable via the standard 2P technique, the fact that
we have(1, 1) refinements of the protocol, guarantees nonetheless that these ‘rogue’ interleavings preserve atomic
semantics.

8. Mechanical Verification

To gain assurance in the relatively informal account of protocol theory given above, some mechanical verification
has been undertaken, using the KIV theorem prover. As well assupporting the preceding theory, this constitutes an
interesting exercise in formal verification in its own right.

11 As an alternative to such a constraint, which falls slightlyoutside of our general framework, we could explicitly introduce atid server agent
whose ‘protocol’ consisted of the doling out of freshtids as external outputs, with our default I/O assumption of reliable point-to-point delivery
upholding the freshness and absence of duplication requirements.
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KIV [RSSB98] is an interactive theorem prover for many-sorted higher-order logic. There are several extensions
to this logic (Dynamic Logic, Temporal Logic and a logic for Java programs), but they are not used here. Structured
algebraic specifications can be built from elementary theories using the standard operators (similar to CASL [CoF04]):
union, enrichment, renaming and actualization of parametric specifications. Theorem proving uses sequent calculus.

As a first step towards a formalized theory of protocols, KIV specifications and proofs have been developed for
the isolated protocols of Section 3. The results are available on the Web [KIV07]. Checking theorems with KIV led
to small improvements which are already incorporated in Section 3, so in this section we only discuss a few topics,
which are relevant when transferring pencil-and-paper proofs to an interactive theorem prover, and we give a lemma
used in Theorem 3.8, that shows a modularization of the proof.

When formalizing the notion of execution paths a first difficulty is of course that no ‘three dots notation’ is available
in formal specifications. Instead a free data type has been defined in KIV. Using Z notation this data type can be written
as:

path ::= mkV〈〈V〉〉 | mkpa〈〈V × J × P× path〉〉 (33)

A number of operations are needed for paths.#pa is the number of steps of pathpa, its nth node ispa[n] for 0 ≤
n ≤ #pa, and its first and last nodes arepa.first := pa[0] andpa.last := pa[#pa]. The concatenationpa + pa′

of two pathspa andpa′ is defined whenpa′.first = pa.last. We also need the firstn stepspa to n (written infix)
of a path, and the restpa from n. inputs(pa) andoutputs(pa) are the inputs resp. outputs done on a path. Finally,
Step(pa, n) ∈ V × J × P × V is then’th step ofpa. A predicatePath(pa) is defined recursively, which holds, iff
every step satisfies someSt(ρ)(Step(pa, n)). An argumentρ from some index typeCIx replaces the subscript inStρ;
the (higher-order) type ofStbeing:

St : CIx → V × J × P× V → bool (34)

To give formal definitions ofFPath (3), BPathandMPath, two unspecified predicatesinit andfinal characterizing
initial and final states are used. Around 40 lemmas are provedover this theory and used as rewrite rules to get some
basic automation for the main proofs.

The definition ofProtocol(cf. (6)) becomes:

Protocol(v, js, ps, v′) == ∃pa • MPath(pa) ∧ inputs(pa) = js ∧ outputs(pa) = ps (35)

A synchronization assignment is defined as a functionSA: path→ nat. The idea is that the synchronization step of a
path isStep(pa, SA(pa)). FunctionSAis specified by two constraints:

MPath(pa) ⇒ SA(pa) < #pa (36)

MPath(pa) ∧ MPath(pa′) ∧ n ≤ #pa∧ m≤ #pa′ ∧ pa[n] = pa′[m] ⇒ (SA(pa) < n ⇔ SA(pa′) < m) (37)

The first axiom should be obvious, the second is a consistencycondition: for two maximal paths, which have a state in
common, the synchronization point must either be before that node in both paths, or both synchronization steps must
follow the common node. Based on this definition we can characterize the steps of a maximal path to be the disjoint
union of FS, BS and SA steps. As an example, then’th step of pathpa is a forward skip step iffFS(pa, n) holds:

FS(pa, n) == MPath(pa) ∧ (n < SA(pa) ∨ SA(pa) < n < #pa∧ OD(pa to SA(pa)) (38)

where

OD(pa) == FPath(pa) ∧ ∀pa1, pa2 • MPath(pa+ pa1) ∧ MPath(pa+ pa2) ⇒ pa1.last = pa2.last (39)

As Lemmas for Theorem 3.8 and Corollary 3.9 we then prove thatall steps can be simulated forwards and backwards,
the only exception being BS steps, which can only be simulated backwards:

BS-BW : MPath(pa) ∧ BS(pa, n) ∧ R1(u, v′) ∧ pa[n] = v ∧ pa[n + 1] = v′ ⇒ R1(u, v) (40)

FS-FW: FS(pa, n) ∧ R1(u, v) ∧ pa[n] = v ∧ pa[n + 1] = v′ ⇒ R1(u, v′) (41)

SA-FW : MPath(pa) ∧ R1(u, v) ∧ Step(pa, SA(pa)) = (v, j, p, v′)

⇒ ∃u′, i, o, k • At(k)(u, i, o, u′) ∧ R1(u′, v′) ∧ Input1(i, j) ∧ Output1(o, p) (42)

SA-BW : MPath(pa) ∧ R1(u′, v′) ∧ Step(pa, SA(pa)) = (v, j, p, v′)

⇒ ∃u, i, o, k.At(k)(u, i, o, u′) ∧ R1(u, v) ∧ Input1(i, j) ∧ Output1(o, p) (43)

FS-BW : MPath(pa) ∧ FS(pa, n) ∧ R1(u, v′) ∧ pa[n] = v ∧ pa[n + 1] = v′ ⇒ R1(u, v) (44)
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BS-BW : MPath(pa) ∧ R1(u, v′) ∧ pa[n] = v ∧ pa[n + 1] = v′ ⇒ R1(u, v) (45)

The proof of the last two lemmas requires Ass. 3.2.2, the others do not. The lemmas are independent of Ass. 3.1.3
which require all concrete states to be reachable. Based on the characterization of steps on paths, we can now define a
global characterization of steps:

BS(v, j, p, v′) == ∃pa, n • BS(pa, n) ∧ Step(pa, n) = (v, j, p, v′) (46)

FS(v, j, p, v′) == ¬BS(v, j, p, v′) ∧ ∃pa, n • FS(pa, n) ∧ Step(pa, n) = (v, j, p, v′) (47)

SA(v, j, p, v′) == ∃pa.MPath(pa) ∧ Step(pa, SA(pa)) = (v, j, p, v′) (48)

Note that a step which is an FS step on one path and a BS step on another, must be classified as a BS step, since it is the
successor of an OD step onsomepath. The three classes of steps are proven to be disjoint, and provided all states are
reachable every stepSt(ρ)(v, j, p, v′) falls into one of the three classes. This allows us to prove Theorem 3.8 formally.
As an example, the definition of Clause 4 of Theorem 3.8 is proven formally as:

R1(u′, v′) ∧ BS(v, j, p, v′) ⇒ R1(u′, v) (49)

using Lemma (45). The four clauses (44), (43) and (45) together imply Corollary 3.9. We also prove that forward
simulation is always possible by choosing the synchronization step as the last step of every maximal path:

(∀pa • MPath(pa) ⇒ SA(pa) = #pa− 1) ∧ St(ρ)(v, j, p, v′) ∧ R1(u, v)

⇒ ∃u′ • R1(u′, v′) ∧ (u = u′ ∨ ∃ i, o • Atomic(u, i, o, u′)) (50)

The KIV proofs for the theorems of Section 3 are relatively small compared to other KIV case studies (eg. the Mondex
case study [SGHR06b, SGH+07] already mentioned). The tricky bit about them is mainly to get all the assumptions
right for all the cases. As an example, the borderline case ofanMPathconsisting of a single node must be forbidden,
since then constraint (36) is not satisfiable.

9. Conclusions, and Further Work

In the preceding sections we took the Mondex Electronic Purse —a prime example of a protocol enacted between a
number of parties that was designed to achieve the effect of an atomic action— and we looked for a generalisation.
We developed a refinement framework based on seeing the atomic action as a shallow computation tree and the
protocol as a computation DAG, and saw that we could choose the way that the atomic action was synchronised
with the protocol in a ‘small diagram’ refinement relativelyfreely. The properties of the choice, in particular how
potential abstract outcomes were related to synchronisation points, was closely related to the prospects for forward
and backward simulation at the small diagram level.

We then embedded this formulation of an isolated protocol run in a framework enabling different runs of perhaps
different protocols to be interleaved in a natural way. Whencombined with a fairly standard 2-phase property, these
system runs could be serialised, showing that the atomicityabstraction survives. While serial runs corresponded to the
equivalent sequence of atomic actions in a relatively transparent way, the correspondence between non-serial runs and
their atomic counterparts required the adaptation of the relationship between atomic actions their refining protocols.
Specifically, in a serial framework, each protocol instantiation starts and ends cleanly, allowing the formulation of a
simple functional atomic/protocol ‘big step’ retrieve relationR, which then allowed the ‘small step’ past and future
retrieve relationsRP andRF to be extracted straightforwardly. In a non-serial framework, the protocol instantiations’
starts and ends are ‘ragged’ and the properties ofR so useful for the refinement investigation get heavily obscured in

the fragmented retrieve relationŝR1
Ad

needed to accomodate the non-serial features (which are often non-functional
even thoughR itself is). We regard the clarity brought about by the separation between atomic/protocol refinement
concerns and protocol instantiation concerns in our approach, to be a major factor in its favour.

We then confronted the theory with various refinements for Mondex that have been created in the recent past,
whether in direct connection with the Verification Grand Challenge [JOW06,Woo06,WB07] or otherwise, and showed
that the flexibility regarding synchronisation points brought out by the general theory was well borne out in these
various refinements.

Furthermore, the whole of this framework has been mechanically verified using the KIV theorem prover. To achieve
this, some mild transliterations from the original versionof Section 3 were needed to facilitate a better fit to KIV, and
the process indeed resulted in some worthwhile improvements to the theoretical formulation, as already noted in Sect
8 — the detailed results are available on the web.
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As noted at the end of Section 3, the approach advocated in this paper permits a different strategy for verifying
protocols. In the new approach, the steps required to verifya specific protocol are, at bare minimum:

1. Choose the atomic action shallow computation tree.
2. Choose the protocol computation DAG and big-stepR.
3. Confirm that a suitable synchronisation assignment exists.
4. Confirm that the protocol DAG is 2PXDD-normal.
5. Confirm that for any system run consisting exclusively of instantiations of protocol steps, the instantiations simu-

late those protocol steps suitably.

Compared with the list at the end of Section 3, the above is simpler, for the reason that the omitted steps are true
generically. Only what is noted above is required to connectthe specific details of a specific protocol to the generic
facts. This dramatically cuts down the verification workload.

As also noted at the end of Section 3, the approach advocated in this paper amounts to a different notion of what it
means for a protocol to be correct. However, as we also pointed out, by completing our construction with an abstract
system level that instantiates a sequence of abstract atomic actions (obviously there are no awkward serialisation issues
here) we can make a direct connection with the traditional approach, so we can have the best of both worlds.

Besides the gratifying way that all this worked out, a coupleof further interesting questions suggest themselves.
The first is, that although the majority of ‘normal’ Mondex transactions (including not only successful ones, but also
ones that fail in a ‘normal’ kind of way) are 2-phase —and the modification of the protocol suggested by Schellhorn
et al. in [SGH+07] in order to design out the possibility of a certain kind ofdenial of service attack is 2-phase in its
entirety— the original Mondex protocol has some (in practice rare, but in theory interesting) non-2-phase parts. These
are not covered by the theory of this paper, and will be explored elsewhere [BS].

A second is, that Mondex is what we called an isolated protocol. That is to say, once the protocol has commenced,
the parties engaging in it are fixed, and no intrusion by otheragents is contemplated. (In practice, the Mondex purse’s
local state determines how much notice is taken of which messages from which agents — the options of ignoring any
message, or of aborting the current protocol run are deliberately always enabled in Mondex.) Thus it is natural to ask
how the theory develops for protocols having state that is genuinely shared between a number of agents, including
cases where the number of agents is not necessarily determined at the start of the protocol, and cases where the
boundary between those agents genuinely participating in the protocol and those not participating in the protocol is
more diffuse. Again, the theory of this paper does not cover such situations, and this is another issue to be explored
in [BS].
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