
A Proof System for Cyber-physical Systems
with Shared-Variable Concurrency

Ran Li1, Huibiao Zhu1(B), and Richard Banach2

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

hbzhu@sei.ecnu.edu.cn
2 Department of Computer Science, University of Manchester,

Oxford Road, Manchester M13 9PL, UK

Abstract. Cyber-physical system (CPS) is about the interplay of dis-
crete behaviors and continuous behaviors. The combination of the phys-
ical and the cyber may cause hardship for the modeling and verification
of CPS. Hence, a language based on shared variables was proposed to
realize the interaction in CPS. In this paper, we formulate a proof sys-
tem for this language. To handle the parallel composition with shared
variables, we extend classical Hoare triples and bring the trace model
into our proof system. The introduction of the trace may complicate our
specification slightly, but it can realize a compositional proof when the
program is executing. Meanwhile, this introduction can set up a bridge
between our proof system and denotational semantics. Throughout this
paper, we also present some examples to illustrate the usage of our proof
system intuitively.

Keywords: Cyber-physical System (CPS) · Shared Variables · Trace
Model · Hoare Logic.

1 Introduction

Cyber-physical system (CPS) [6,7] is an integration of discrete computer control
behaviors and continuous physical behaviors. In CPS, computer programs can
influence physical behaviors, and vice versa. It has covered a wide range of
application areas, including healthcare equipment, intelligent traffic control and
environmental monitoring, etc.

The interaction between the cyber and the physical brings convenience for
many applications, while it may also complicate the design and the modeling of
systems. Thus, some specification languages are proposed to describe and model
CPS. Henzinger described hybrid systems with hybrid automata [3]. Zhou et al.
developed a language called Hybrid CSP [12] which supports parallel composition
via the communication mechanism, and Liu et al. proposed a calculus for it
in [9]. He et al. presented a hybrid relational modeling language (HRML) in [2].
Different from them, we proposed a language whose parallel mechanism is based
on shared variables in our previous work [1]. Further, we elaborated this language
and proposed its denotational and algebraic semantics in [8].

2 R. Li et al.

In this paper, we give a proof system for this language based on our pre-
vious work [1, 8]. The major challenge of formulating our proof system is how
to cope with the parallel programs that contain shared variables. For parallel
programs supported by shared variables, there are two main classical verification
methods. In the well-known Owicki&Gries system [11], they defined interference-
free to realize parallel composition. However, it may require proving numerous
assertions when we check the property of interference-free. Therefore, a compo-
sitional method called rely-guarantee was proposed in [5]. This approach adds
a rely condition and a guarantee condition in its specification, so that composi-
tionality is achieved. In [10], Lunel et. al. employed this approach to present a
component-based verification technique for Computer Controlled System (CCS)
in differential dynamic logic. Nevertheless, it takes some effort to determine the
corresponding rely condition and guarantee condition.

Slightly different from the two ways, we introduce the trace model into our
proof system. For the feature of shared variables in the parallel mechanism, we
define a Merge function to solve it. Thanks to the trace model, programs can per-
ceive environment’s actions and they can be composed during their executions
consequently. However, the trace model is not a panacea. We add the corre-
sponding preconditions and postconditions (similar to those in Hoare Logic [4])
to record the state of continuous variables, in that the trace only tracks values of
discrete variables. Further, we attach the global clock variable now to our proof
system. Therefore, it can capture the real-time feature of CPS. Altogether, we
extend the traditional triple in Hoare Logic [4] {p} S {q} to [tr•pc] S [tr′•qc]. tr
and tr′ are responsible for recording values of discrete variables. pc and qc con-
tain the pre/postcondition of continuous variables and the starting/termination
time of S. Because the focus of the proof is the initial and terminal data state of
the program, we present a transformation rule to build the bridge between our
proof system and traditional Hoare Logic.

Although the introduction of the trace model complicates the expression form
slightly, it realizes compositional proof during the programs’ executions which
cannot be done in Owicki&Gries system. What’s more, since the trace model
records all data states, it can provide more precise conditions of the environment
compared with the rely-guarantee approach. Moreover, our approach can link our
proof system with denotational semantics, since the trace model is used in the
description of our denotational semantics [8]. Overall, we give several rules for
basic commands and compound constructs in this paper. Besides, to aid the
understanding of our proof system, we also apply it to an example of a battery
management system.

The remainder of this paper is organized as follows. In Section 2, we recall
the syntax of this language and introduce the trace model briefly. Based on the
feature of this language and trace model, the specification of our proof system is
given. In Section 3, we list a set of rules used to specify and prove the correctness
of CPS. To showcase the application of our proof system, Section 4 is dedicated
to the example of a battery management system. We conclude our work and
discuss some future work in Section 5.

A Proof System for CPS with Shared-Variable Concurrency 3

2 Semantic Model

In this section, we first recall the syntax of the language to describe CPS. Then,
we introduce the trace model to support our proof system in the next section.
On this basis, the specification of our proof system is given as well.

2.1 Syntax of CPS with Shared-Variable Concurrency

As shown in Table 1, we follow the syntax proposed and elaborated in [1,8]. Here,
x is a discrete variable and v is a continuous variable. b stands for a Boolean
expression and e represents a discrete or continuous expression. The process
in our language contains discrete behaviors Db, continuous behaviors Cb and
various compositions of Db and Cb.

Table 1. Syntax of CPS

Process P,Q ::= Db (Discrete behavior)

| Cb (Continuous behavior)

| P ;Q (Sequential Composition)

| if b then P else Q (Conditional Construct)

| while b do P (Iteration Construct)

| P ‖ Q (Parallel Composition)

Discrete behavior Db ::= x := e | @gd
Continuous behavior Cb ::= R(v, v̇) until g

Guard Condition g ::= gd | gc | gd ∨ gc | gd ∧ gc
Discrete Guard gd ::= true | x = e | x < e | x > e | gd ∨ gd | gd ∧ gd | ¬gd
Continuous Guard gc ::= true | v = e | v < e | v > e | gc ∨ gc | gc ∧ gc | ¬gc

– Db: There are two discrete actions in our language.
• x := e is a discrete assignment and it is an atomic action. Through this

assignment, the expression e is evaluated and the value gained is assigned
to the discrete variable x.

• @gd is a discrete event guard. It is triggered if gd is satisfied. Other-
wise, the process waits for the environment to trigger gd. Note that the
environment stands for the other program given by the parallel compo-
sition. For example, if the whole system is P ‖ Q and we now analyze
the program P , then Q is P ’s environment.

– Cb: To define the continuous behaviors in CPS, we introduce differential
relation in our language.
• R(v, v̇) until g is the syntax of describing continuous behavior. R(v, v̇)

is a differential relation which defines the dynamics of the continuous
variable v. The evolution of v will follow the differential relation until
the guard condition g is triggered.

– Composition: Also, a process can be comprised of the above commands.
• P ;Q is sequential composition. The process Q is executed after the pro-

cess P ’s successful termination.
• if b then P else Q is a conditional construct. If the Boolean condition
b is true, then P is executed. Otherwise, Q is executed.

4 R. Li et al.

• while b do P is an iteration construct. P keeps running repeatedly until
the Boolean condition b does not hold.

• P ‖ Q is parallel composition. It indicates P executes in parallel with Q.
The parallel mechanism is based on shared variables. In our language,
shared writable variables only focus on discrete variables.

2.2 Trace Model

The parallel mechanism in our language is based on shared variables. We intro-
duce a trace model to record the communication during their execution. Trace
is defined to describe the behavior of a program, and it is composed of a series
of snapshots. A snapshot specifies the behavior of an atomic action, and it is
expressed as a triple (t, σ, µ).

– t: It records the time when the action occurs.
– σ: We use σ to record the states of data (i.e., discrete variables) contributed

by the program itself or its environment (i.e., the other program given by
the parallel composition) during the program’s runtime.

– µ: We introduce it to indicate whether the action is done by the program
itself or by the environment. If µ = 1, it means that this action is performed
by the program itself. If µ = 0, it implies that this action is contributed by
the environment. The introduction of µ can support the data exchange for
the components of a parallel process with the help of the Merge function
(shown on page 12).

We list the following projection functions πi(i = 1, 2, 3) to get the ith element
of a snapshot.

π1((t, σ, µ)) =df t, π2((t, σ, µ)) =df σ, π3((t, σ, µ)) =df µ

Further, we also define some operators of traces and snapshots.

– last(tr) stands for the last snapshot of the trace tr.
– tra ̂ trb denotes the concatenation of the trace tra and trb.
– Assume that tr contains at least one snapshot, the notation tr − last(tr)

indicates the rest of tr after deleting the last snapshot of tr.
– Assume that the snapshot sp is not the first one in its trace tr, pre(sp, tr)

denotes the previous snapshot of sp in tr.
– tr = tra ∨ trb is equivalent to tr = tra ∨ tr = trb. It implies that there are

two possible cases of tr. We introduce this notation to represent different
execution orders under parallel composition.

2.3 Specification

Based on the trace model, we introduce the formalism to specify and verify CPS
with shared-variable concurrency that is modeled by our language.

The classic Hoare triples [4] have the form of {p} S {q}. p, q and S denote
precondition, postcondition and program respectively. It indicates that if the

A Proof System for CPS with Shared-Variable Concurrency 5

program S is executed under the precondition p, the final state of S satisfies the
postcondition q when S terminates.

For parallelism with shared variables, slightly different from the two existing
methods (i.e., interference-free checking [11] and rely-guarantee [5]), we can pave
the way for parallel composition in the light of the above trace model. The
trace model gives the process an insight into the behaviors of the environment.
Whereas, since trace can only record the state of discrete variables in our model,
we also need to utilize traditional precondition and postcondition to mark values
of continuous variables. Besides, time is a crucial element in CPS, so we add a
global clock variable called now in our assertions.

Altogether, the formula has the new form of [tr • pc] S [tr′ • qc]. tr and
tr′ represent the initial trace and ending trace. pc and qc record the states of
continuous variables and the starting/termination time of S.

3 Proof System

In this section, we present a proof system for our language to prove the correct-
ness of CPS with shared-variable concurrency. Also, some programs are attached
and act as examples to illustrate the usage of these rules.

3.1 Auxiliary Rules

We give two auxiliary rules in this subsection. Rule 1 is defined to convert the
formula of the trace form to the classic form in Hoare Logic. Rule 2 is similar
to the traditional consequence rule in Hoare Logic.
Rule 1. Transformation

[tr • pc] S [tr′ • qc], (last(tr) • pc) p, (last(tr′) • qc) q

{p} S {q}
Actually, when we prove the correctness of program, the real focus is data

state. Thus, we link our proof system with traditional Hoare Logic through this
rule. We introduce the notation of as below. It maps the elements of the
snapshot sp to the corresponding data states. PL(σ) translates the mapping
relations in the data state into expressions of predicate logic. For example, if
σ =df {x 7→ 0, y 7→ 1}, then PL(σ) = (x = 0 ∧ y = 1).

(sp • pc) p =df (PL(π2(sp)) ∧ pc)→ p

Rule 2. Consequence

[tr1 • pc1] S [tr′1 • qc1], (tr • pc)
c−→ (tr1 • pc1), (tr′1 • qc1)

c−→ (tr′ • qc)

[tr • pc] S [tr′ • qc]
We use this rule to strengthen the precondition and weaken the postcondition.

The notation of
c−→ is used to define the implication relation of data states.

(tr • pc)
c−→ (tr1 • pc1) =df ((tr − last(tr)) = (tr1 − last(tr1)))

∧((PL(π2(last(tr))) ∧ pc)→ (PL(π2(last(tr1))) ∧ pc1))

6 R. Li et al.

3.2 Proof Rules for Basic Commands

3.2.1 Assignment

Rule 3. Assignment

tr
env−−→ (tr′ − last(tr′)), pre(last(tr′), tr′) PL(π2(last(tr′)))[e/x]

[tr • pc] x := e [tr′ • pc]
Here, PL(σ)[e/x] is the same as PL(σ) except that all free instances of vari-

able x are substituted for expression e. We define
env−−→ to describe the relation-

ship between tr and tr′. It implies that only environment steps are performed
between the end of tr and the end of tr′. This is due to the fact that when “x”
is a shared variable, it can be modified by the environment’s action.

tr1
env−−→ tr2 =df ∃s· (tr2 = tr1̂s ∧ ∀ttr ∈ s · π3(ttr) = 0)

An example of an application of this rule is:

[tr0 • v = 1.25 ∧ now = 0] x := x+ 1 [tr1 • v = 1.25 ∧ now = 0].

Here, tr0 =df 〈(0, σ0, 1)〉, tr1 =df 〈(0, σ0, 1), (0, σ1, 1)〉, σ0 =df {x 7→ 0} and σ1 =df

{x 7→ 1}. v = 1.25 ∧ now = 0 represents the initial state of continuous variables
and the starting time, and it remains unchanged. This is because the discrete
assignment does not change continuous values, and it is an atomic action which
takes no time.

3.2.2 Discrete Event Guard
For the discrete event guard @gd, it can be triggered by the program itself

or by the environment, so we divide it into two rules as follows.

(1) Rule 4-1 describes that gd is triggered due to the program’s own action.
Rule 4-1. Guard SelfTrig

last(tr) gd

[tr • pc] @gd [tr • pc]
last(tr) gd means that the current trace can trigger gd, that is, the event

guard gd is triggered by the program itself without waiting for the environment
to trigger. Due to this immediate trigger action, nothing needs to change.

By utilizing this rule, we can prove the following formula. Here, tr1 =df

〈(0, σ0, 1), (0, σ1, 1)〉, σ0 =df {x 7→ 0} and σ1 =df {x 7→ 1}.
[tr1 • v = 1.25 ∧ now = 0] @(x > 0) [tr1 • v = 1.25 ∧ now = 0].

(2) Rule 4-2 implies gd waits for the environment to trigger it.
Rule 4-2. Guard EnvTrig

last(tr) ¬gd, last(s) gd,

∀ttr ∈ s · π3(ttr) = 0, ∀ttr ∈ (s− last(s)) · ttr ¬gd

[tr • pc] @gd [tr̂s • pc[π1(last(s))/now]]

If the process cannot trigger the guard under the current state (i.e., last(tr)
¬gd), the process will wait for environment’s action to trigger gd. ∀ttr ∈ s ·

A Proof System for CPS with Shared-Variable Concurrency 7

π3(ttr) = 0 implies that all the actions in the trace s are contributed by the
environment. ∀ttr ∈ (s − last(s)) · ttr ¬gd and last(s) gd emphasize that
it is the last action of s triggers gd and none of the previous actions can trigger
gd. The global clock now is updated to π1(last(s)) because of the consumption
of waiting.

With this rule, we can deduce:

[tr1 • v = 1.25 ∧ now = 0] @(y > 0) [tr2 • v = 1.25 ∧ now = 2].

Here, tr1 =df 〈(0, σ0, 1), (0, σ1, 1)〉, tr2 =df tr1̂〈(1, σ′, 0), (2, σ′′, 0)〉, σ0 =df {x 7→ 0},
σ1 =df {x 7→ 1}, σ′ =df {x 7→ 1, y 7→ 0} and σ′′ =df {x 7→ 1, y 7→ 1}.

3.2.3 Continuous Behavior
For the continuous behavior R(v, v̇) until g, we list the following four types

of rules according to the types of guard g. More specifically, we further detail
each type of rules on the basis of the time when g is triggered (i.e., triggered at
the beginning or not).

(1) Rule 5-1-1 and Rule 5-1-2 describe the situation where the guard condi-
tion is merely determined by continuous variables (i.e., g ≡ gc). Hence, we can
omit trace in this rule and focus on the states of continuous variables in them.
Rule 5-1-1. Cb ContGuard 1

gc(vnow)

[tr • pc] R(v, v̇) until gc [tr • pc]

Rule 5-1-2. Cb ContGuard 2

pc[t0/now] ∧ ∃t′ ∈ (t0,∞) · (gc(vt′) ∧ ∀t ∈ [t0, t
′) · ¬gc(vt) ∧ now = t′)

∧R(v, v̇) during [t0, now)→ qc

[tr • pc] R(v, v̇) until gc [tr • qc]
As shown in Rule 5-1-1, if gc is satisfied at the beginning of the program

(i.e., gc(vnow)), then the state will not change. Here, gc(vt) means that the value
of continuous variables v at the time t makes gc true.

Rule 5-1-2 describes the situation where gc is not triggered at the beginning.
Here, t0 is a fresh variable representing the initial time. The program waits for
gc to be triggered (highlighted in Rule 5-1-2). now is updated to t′ and the
continuous variable v is evolving as R(v, v̇) during this period, expressed by
R(v, v̇) during [t0, now). By applying this rule, we can get the following proof.
Here, tr0 =df 〈(0, σ0, 1)〉 and σ0 =df {x 7→ 0}.

[tr0 • v = 1.25 ∧ now = 0] v̇ = 1 until v > 2.5 [tr0 • v = 2.5 ∧ now = 1.25].

(2) Rule 5-2-1 and Rule 5-2-2 contain rules that the guard concerns purely
discrete variables (i.e., g ≡ gd). Different from the above rules, we need to track
the traces. This is because the states of discrete variables are recorded in traces.
Rule 5-2-1. Cb DiscGuard 1

last(tr) gd

[tr • pc] R(v, v̇) until gd [tr • pc]

8 R. Li et al.

Rule 5-2-2. Cb DiscGuard 2

pc[t0/now] ∧ EnvTrig2(gd) ∧ now = π1(last(s)) ∧R(v, v̇) during [t0, now)→ qc

[tr • pc] R(v, v̇) until gd [tr̂s • qc]
The process is evolving as R(v, v̇) until the guard gd is triggered. Similarly, as

shown in Rule 5-2-1, if gd is triggered when the program starts, then nothing
needs to change.

Otherwise, as presented in Rule 5-2-2, gd waits to be triggered by the
environment, defined by EnvTrig2(gd). The definition of EnvTrig2(gd) below
is similar to Rule 4-2.

EnvTrig2(gd) =df last(tr) ¬gd ∧ last(s) gd ∧ ∀ttr ∈ s · π3(ttr) = 0

∧ ∀ttr ∈ (s− last(s)) · ttr ¬gd
This rule leads to:

[tr1 • v = 1.25 ∧ now = 0] v̇ = 1 until y > 0 [tr2 • v = 3.25 ∧ now = 2].

Here, tr1 =df 〈(0, σ0, 1), (0, σ1, 1)〉, tr2 =df tr1̂〈(1, σ′, 0), (2, σ′′, 0)〉, σ0 =df {x 7→ 0},
σ1 =df {x 7→ 1}, σ′ =df {x 7→ 1, y 7→ 0} and σ′′ =df {x 7→ 1, y 7→ 1}.

(3) Rule 5-3-1 and Rule 5-3-2 denote the condition where the guard is a
hybrid one with the form of gd ∧ gc.
Rule 5-3-1. Cb HybridGuard1 1

gc(vnow) ∧ (last(tr) gd)

[tr • pc] R(v, v̇) until gd ∧ gc [tr • pc]

Rule 5-3-2. Cb HybridGuard1 2

pc[t0/now] ∧ (last(tr̂s) gd) ∧Await(gd ∧ gc)
∧∃t′ > π1(last(tr̂s)) · (gc(vt′) ∧ now = t′) ∧R(v, v̇) during [t0, now)→ qc

[tr • pc] R(v, v̇) until gd ∧ gc [tr̂s • qc]
For the hybrid guard gd ∧ gc, only when gd and gc are both triggered, the

relevant continuous evolution terminates. Rule 5-3-1 depicts that gd ∧ gc is
satisfied at the beginning.

We apply Rule 5-3-2 to present the condition where gd∧ gc is not triggered
at the beginning. We can first wait for gd to become true. Once gd holds, we wait
for gc. Await(gd ∧ gc) defined below states that both guards do not hold in the
intervening period, and the highlighted part formalizes gd is not satisfied at t.
Since gd can only be changed at discrete time points, it keeps unchanged until the
next discrete action happens. As illustrated in Fig. 1, we define LClosest(tr̂s, t)
(i.e., the closest discrete action’s time point to t) to imply gd’s state at t. Here,
π∗1 is lifted from a single snapshot to a sequence of snapshots. The demonstration
of this rule is presented in Fig. 2(a).

Await(gd ∧ gc) =df ∀t < π1(last(tr̂s))·(
¬gc(vt) ∨

(
∃ttr ∈ (tr̂s− pre(last(tr))) · (π1(ttr) = LClosest(tr̂s, t) ∧ ttr ¬gd)

))
,

LClosest(tr̂s, t) = tc, if tc ∈ π∗1(tr̂s) · (tc 6 t ∧ (∀time ∈ π∗1(tr̂s) · (time 6 t→ tc > time))
)

A Proof System for CPS with Shared-Variable Concurrency 9

Fig. 1. Demonstration of Await

Also, we give an example to show this rule as below. Here, tr1 =df 〈(0, σ0, 1), (0, σ1, 1)〉,
tr2 =df tr1̂〈(1, σ′, 0), (2, σ′′, 0)〉, σ0 =df {x 7→ 0}, σ1 =df {x 7→ 1}, σ′ =df {x 7→ 1, y 7→
0} and σ′′ =df {x 7→ 1, y 7→ 1}.

[tr1 • v = 1.25 ∧ now = 0] v̇ = 1 until y > 0 ∧ v > 2.5 [tr2 • v = 3.25 ∧ now = 2]

(4) Rule 5-4-1 and Rule 5-4-2 include rules that the guard is a hybrid guard
with the form of gd ∨ gc.
Rule 5-4-1. Cb HybridGuard2 1

gc(now) ∨ (last(tr) gd)

[tr • pc] R(v, v̇) until gd ∨ gc [tr • pc]

Rule 5-4-2. Cb HybridGuard2 2

pc[t0/now] ∧AwaitTrig(gd ∨ gc) ∧R(v, v̇) during [t0, now)→ qc

[tr • pc] R(v, v̇) until gd ∨ gc [tr̂s • qc]
For the hybrid guard gd∨gc, the continuous variable v evolves until the guard

gd or gc is satisfied. Rule 5-4-1 portrays that at least one guard condition is
satisfied at the beginning.

If the current data state cannot meet gd and gc, the program will wait to be
triggered. As given in Rule 5-4-2, we define AwaitTrig(gd∨gc) to describe the
waiting and the eventual triggering process. The first two lines in the bracket
indicate that gc and gd are both unsatisfied before the terminal time t′. The
third line informs that it meets gc or gd at the time t′. The demonstrative figure
is shown in Fig. 2(b).

AwaitTrig(gd ∨ gc) =df ∃t′ ∈ (t0,∞)· (∀t < t′ · ¬gc(vt))
∧(∀ttr ∈ (tr̂s− pre(last(tr))) · (π1(ttr) < t′)→ (ttr ¬gd))

∧(gc(vt′) ∨ (π1(last(tr̂s)) = t′ ∧ last(tr̂s) gd)) ∧ now = t′

According to this rule, we can get:

[tr1 • v = 1.25 ∧ now = 0] v̇ = 1 until y > 0 ∨ v > 2.5 [tr′1 • v = 2.5 ∧ now = 1.25].

Here, tr1 =df 〈(0, σ0, 1), (0, σ1, 1)〉, tr′1 =df tr1̂〈(1, σ′, 1)〉, σ0 =df {x 7→ 0}, σ1 =df

{x 7→ 1} and σ′ =df {x 7→ 1, y 7→ 0}.

10 R. Li et al.

(a) Cb HybridGuard1
(b) Cb HybridGuard2

Fig. 2. Cb HybridGuard

3.3 Proof Rules for Compound Constructs

In this subsection, rules for compound constructs (Sequential Composition, It-
eration Construct and Parallel Composition) are enumerated.
Rule 6. Sequential Composition

[tr • pc] P [trm • pm], [trm • pm] Q [tr′ • qc]

[tr • pc] P ;Q [tr′ • qc]

It requires that the trace and the continuous variables’ values in P ’s post-
condition are consistent with those in Q’s precondition.

As an example, we assume that tr0 =df 〈(0, σ0, 1)〉, tr1 =df 〈(0, σ0, 1), (0, σ1, 1)〉,
σ0 =df {x 7→ 0} and σ1 =df {x 7→ 1}. From

[tr0 • v = 1.25 ∧ now = 0] x := x+ 1 [tr1 • v = 1.25 ∧ now = 0]

[tr1 • v = 1.25 ∧ now = 0] v̇ = 1 until v > 2.5 [tr1 • v = 2.5 ∧ now = 1.25],

through Rule 6, we have:

[tr0 • v = 1.25 ∧ now = 0] x := x+ 1; v̇ = 1 until v > 2.5 [tr1 • v = 2.5 ∧ now = 1.25].

Rule 7. Conditional Choice

[b& (tr • pc)] P [tr′ • qc]
[¬b& (tr • pc)] Q [tr′ • qc]

[tr • pc] if b then P else Q [tr′ • qc]

The first line of this rule implies that we need to prove [tr • pc] P [tr′ • qc],
if the Boolean condition b is satisfied in the data state of last(tr) • pc (i.e.,
last(tr) • pc b). On the contrary, the second line means that if the data state
cannot meet b, then we need to prove [tr • pc] Q [tr′ • qc].

We define that tr0 =df 〈(0, σ0, 1)〉, tr1 =df 〈(0, σ0, 1), (0, σ1, 1)〉, σ0 =df {x 7→ 0}
and σ1 =df {x 7→ 1}. From this rule, we can prove:

[tr0 • v = 1.25 ∧ now = 0] if x > 0 then x := x+ 1 else x := x− 1 [tr1 • v = 1.25 ∧ now = 0].

A Proof System for CPS with Shared-Variable Concurrency 11

Rule 8. Iteration Construct

(last(tr) • pc) I, {I ∧ b} P {I}, (last(tr′) • qc) (I ∧ ¬b)

[tr • pc] while b do P [tr′ • qc]

For the iteration construct, we follow the classic definition in Hoare logic and
employ loop invariant [4] to prove it. Here, I is the invariant of this iteration
and it can be inferred from the precondition. We only need to focus on the
last element of tr, since the trace can be generated by the previous programs.
The assertion of {I ∧ b} P {I} stays the same as that in traditional Hoare
Logic. When the program terminates, the data state should satisfy I ∧ ¬b (i.e.,
(last(tr′) • qc) (I ∧ ¬b)).

We take the program below as an example to explain this rule.

[tr0 • v = 1.25 ∧ now = 0] while x 6 2 do x := x+ 1 [tr3 • v = 1.25 ∧ now = 0]

Here, tr0 =df 〈(0, σ0, 1)〉, tr3 =df 〈(0, σ0, 1), (0, σ1, 1), (0, σ2, 1), (0, σ3, 1)〉 and σi =df

{x 7→ i}(i = 0, 1, 2, 3). In order to prove this formula, we need to prove the
following three premises. We define x 6 3 as the invariant I.

– (last(tr)•pc) I and (last(tr′)• qc) (I ∧¬b): They can be deduced with
predicate logic directly. The definition of is given in page 5.

– {I ∧ b} P {I}: To prove this, we transform it to the form of trace, i.e.,

[trIb] x := x+ 1 [trI′]

Here, trIb stands for the trace whose data state satisfies I ∧ b and trI′ is
the terminal trace after executing x := x+ 1. We define trIb =df 〈(0, σIb, 1)〉,
PL(σIb)→ x 6 2, trI′ =df trIb̂〈(0, σI′ , 1)〉 and σI′ = σIb[x+ 1/x]. With Rule
3, [trIb] x := x+ 1 [trI′] is proved. Next, Rule 1 leads to {I ∧ b} P {I}.

Rule 9. Parallel Composition

[tr • pc] P [tr1 • (qc1 ∧ now = t1)],

[tr • pc] Q [tr2 • (qc2 ∧ now = t2)],

qc = qc1 ∧ qc2, tradd ∈Merge(tr1 − tr, tr2 − tr), tr′ = tr̂tradd
[tr • pc] P ‖ Q [tr′ • qc[max{t1, t2}/now]]

In our approach, we employ the trace model to reflect the interaction between
the parallel components, so that we can focus on the individual components first
and then combine them.

We assume that continuous variables cannot be shared writable in our lan-
guage. It makes sense, since a continuous variable only has a determined value at
one time in the real-world. Therefore, qc1 and qc2 have no shared writable vari-
ables. Thus, we can simply combine qc1 and qc2 as qc1∧qc2. Besides, the maximal
terminal time of P and Q is the terminal time of P ‖ Q. As for the final trace
of P ‖ Q, we propose a Merge function to define the terminal trace of parallel

12 R. Li et al.

composition. We define Merge(trace1, trace2) as below. Here, trace1, trace2 and
trace3 stand for the newly added traces of P , Q and P ‖ Q respectively.

Merge(trace1, trace2) =df
(π∗1(trace3) = π∗1(trace1) = π∗1(trace2))∧

trace3|(π∗2(trace3) = π∗2(trace1) = π∗2(trace2))∧
(π∗3(trace3) = π∗3(trace1) + π∗3(trace2)) ∧ (2 /∈ π∗3(trace3))

Here, π∗i is lifted from a single snapshot to a sequence of snapshots. As defined

in Section 3, a snapshot in the trace is a tuple (t, σ, µ). The first two conditions
imply that the time and data stored in the trace of the parallel composition (i.e.,
trace3) should be the same as those in both parallel components (i.e., trace1 and
trace2). The third one indicates that the actions of parallel components P and
Q are also the actions of their parallel composition. The last condition restricts
that every snapshot can only be contributed by one parallel component. In the
trace model, although the two parallel components can do actions at the same
time, snapshots of them need to be added to the trace one by one.

Considering the following parallel program, we illustrate this rule. As an
example, from

[tr0 • v = 0 ∧ now = 0] x := x+ 1; v̇ = 1 until v > 1 [tr′1 • v = 1 ∧ now = 1],

[tr0 • u = 0 ∧ now = 0] x := 2; u̇ = 2 until u > 4 [tr′2 • u = 4 ∧ now = 2],

through Rule 9, we have:

[tr0 • v = 0 ∧ u = 0 ∧ now = 0]

(x := x+ 1; v̇ = 1 until v > 1) ‖ (x := 2; u̇ = 2 until u > 4)

[tr′ • v = 1 ∧ u = 4 ∧ now = 2]

where,
σi =df{x 7→ i}(i = 0, 1, 2, 3), tr0 =df 〈(0, σ0, 1)〉,
tr′1 =df 〈(0, σ0, 1), (0, σ2, 0), (0, σ3, 1)〉 ∨ 〈(0, σ0, 1), (0, σ1, 1), (0, σ2, 0)〉,
tr′2 =df 〈(0, σ0, 1), (0, σ2, 1), (0, σ3, 0)〉 ∨ 〈(0, σ0, 1), (0, σ1, 0), (0, σ2, 1)〉,
tr′ =df 〈(0, σ0, 1), (0, σ2, 1), (0, σ3, 1)〉 ∨ 〈(0, σ0, 1), (0, σ1, 1), (0, σ2, 1)〉.

Here, as introduced before, tr = tra ∨ trb denotes that there are two possible
cases of tr, i.e., tr can be equal to tra or trb. In the above sample parallel
program, tr′1 and tr′2 both have two possible traces because they represent two
different execution orders of x := x+ 1 and x := 2. As a consequence, the final
trace of their parallel composition tr′ has two cases through Merge function.

4 Case Study

In this section, we present an example of a Battery Management System (BMS)
to illustrate the usage of our proof system. We first give the BMS program to
demonstrate the syntax of our language. Then, we prove some related properties
using our proof system.

A Proof System for CPS with Shared-Variable Concurrency 13

4.1 Description of BMS

We employ the process of heat management in BMS as an example to illustrate
our language. For simplicity, we assume that the battery works properly if its
temperature is between Tsafemin and Tsafemax . When the vehicle is moving and
the temperature does not exceed the threshold value TMAX , the temperature
increases linearly. BMS will cool down the battery if the temperature is equal
to or greater than Tsafemax . Also, the temperature decreases linearly when BMS
is cooling and the temperature does not reach the threshold value TMIN . If the
temperature is equal to or less than Tsafemin , BMS will stop cooling.

BMS =df Ctrl ‖ Temp;
Ctrl =df while DT < 60 do

@(caron = 1); ṫ = 1 until t > DT + 1;
if(θ > Tsafemax)then coolon := 1; else coolon := coolon;
if(θ 6 Tsafemin)then coolon := 0; else coolon := coolon;
DT := t;

Temp =df while DT < 60 do{

if(coolon == 0)then θ̇ = 1 until(θ > TMAX ∨ coolon = 1);

else θ̇ = −2 until(θ 6 TMIN ∨ coolon = 0);

}

Here, DT is an auxiliary variable to realize the delay operation. t and θ
represents the time and the temperature, and we assume θ = 10 and t = 0 at
the beginning.. caron = 1 means that the car is moving. coolon stands for the
switch of cooling, BMS starts to cool down the battery if coolon = 1. We set
TMIN = 0, TMAX = 100, Tsafemin = 10 and Tsafemax = 40.

4.2 Proof for BMS

We first give an overview of the proof, and then present the proof outline of Ctrl
and Temp. Finally, we prove the whole program with Rule 9.

4.2.1. Overview
The program of BMS should meet that the battery must begin to cool down

once the temperature is equal to or greater than Tsafemax , and it stops cooling
when the temperature is equal to or lower than Tsafemin . Further, the tempera-
ture of the battery is guaranteed to be controlled between Tsafemin and Tsafemax .
Altogether, the program BMS should satisfy the following correctness formula.

{Init} BMS {DI ∧ CI}

where,
Init =df caron = 1 ∧DT = 0 ∧ coolon = 0 ∧ θ = 10 ∧ t = 0,

DI =df (θ > Tsafemax → coolon = 1) ∧ (θ 6 Tsafemin → coolon = 0) ∧DT 6 60 ∧ caron = 1,

CI =df Tsafemin 6 θ 6 Tsafemax .

We first convert this correctness formula to the form of trace model.

[tr • pc ∧ now = 0] BMS [tr′ • qc ∧ now = 60]

14 R. Li et al.

Here, since we are only concerned with the last snapshot of tr′, we abstract
the intermediate snapshots done by the loop body as a sequence of three dots
(...). PL(σ′) → (DI ∧ DT = 60) indicates that the terminal data state σ′ meets
DI ∧DT = 60.

pc =df θ = 10 ∧ t = 0, qc =df 10 6 θ 6 40 ∧ t = 60,

tr =df 〈(0, σ, 1)〉, tr′ =df 〈(0, σ, 1), ..., (60, σ′, 1)〉,
σ =df {caron 7→ 1, DT 7→ 0, coolon 7→ 0}, PL(σ′)→ (DI ∧DT = 60).

4.2.2. Proof for Ctrl
In this part, we want to prove [tr • pc ∧ now = 0] Ctrl [tr1 • qc1 ∧ now = 60].

The proof outline of Ctrl is given below.

[tr • pc ∧ now = 0]

while DT < 60 do

[trIb • pdt ∧ now = DT]...[1]

@(caron = 1);

[trIb • pdt ∧ now = DT]...[2]

ṫ = 1 until t > DT + 1;

[trIb • pdt+1 ∧ now = DT + 1]...[3]

if(θ > Tsafemax)then
[(θ > 40)&(trIb • pdt+1 ∧ now = DT + 1)]...[3.1]

coolon := 1;

[trIb̂〈(now, σc1, 1)〉 • pdt+1 ∧ now = DT + 1]...[3.2]

else

[¬(θ > 40)&(trIb • pdt+1 ∧ now = DT + 1)]...[3.3]

coolon := coolon;

[trIb̂〈(now, σIb, 1)〉 • pdt+1 ∧ now = DT + 1]...[3.4]

[trIb̂〈(now, σIb, 1)〉 • pdt+1 ∧ now = DT + 1]...[4]

if(θ 6 Tsafemin)then
[(θ 6 10)&(trIb1 • pdt+1 ∧ now = DT + 1)]...[4.1]

coolon := 0;

[trIb1̂〈(now, σc2, 1)〉 • pdt+1 ∧ now = DT + 1]...[4.2]

else

[¬(θ 6 10)&(trIb1 • pdt+1 ∧ now = DT + 1)]...[4.3]

coolon := coolon;

[trIb1̂〈(now, σIb, 1)〉 • pdt+1 ∧ now = DT + 1]...[4.4]

[trIb1̂〈(now, σIb, 1)〉 • pdt+1 ∧ now = DT + 1]...[5]

DT := t;

[trIb2̂〈(now, σt, 1)〉 • pdt+1 ∧ now = DT + 1]...[6]

[trI′ • pdt+1 ∧ now = DT + 1]...[7]

[tr1 • qc1 ∧ now = 60]

Also, some notations are defined as below.

pdt =df t = DT, pdt+1 =df t = DT + 1, qc1 =df true,

tr1 =df tr
′, trIb =df 〈(now, σIb, 1)〉, trIb1 =df trIb̂〈(now, σIb, 1)〉,

trIb2 =df trIb1̂〈(now, σIb, 1)〉, trI′ =df trIb2̂〈(now, σI , 1)〉,
PL(σI)→ DI, PL(σIb)→ (DI ∧DT < 60),

σc1 =df σIb[1/coolon], σc2 =df σIb[0/coolon], σt =df σIb[t/DT].

A Proof System for CPS with Shared-Variable Concurrency 15

4.2.3. Proof for Temp
In this part, we want to prove [tr •pc∧now = 0] Temp [tr2 • qc2∧now = 60].

For gaining it, we present the proof outline of Temp as below.

[tr • pc ∧ now = 0]

while DT < 60 do

[trIb′ • θ = θi ∧ now = ti]...[1]

if(coolon == 0)then

[(coolon == 0)&(trIb′ • θ = θi ∧ now = ti)]...[1.1]

θ̇ = 1 until(θ > TMAX ∨ coolon = 1);

[trIb′ ̂〈(now, σc1, 0)〉 • θ = 40 ∧ now = ti + 40− θI]...[1.2]
else

[¬(coolon == 0)&(trIb′ • θ = θi ∧ now = ti)]...[1.3]

θ̇ = −2 until(θ 6 TMIN ∨ coolon = 0);

[trIb′ ̂〈(now, σc2, 0)〉 • θ = 10 ∧ now = ti + θi − 10]...[1.4]

[trI′′ • θI ∧ now = (ti + 40− θi) ∨ (ti + θi − 10)]...[2]

[tr2 • qc2 ∧ now = 60]

where,

10 6 θi 6 40, qc2 =df CI, θI =df CI, trIb′ =df 〈(now, σIb, 0)〉,
trI′′ =df trIb′̂〈(now, σI , 0)〉, tr2 =df 〈(0, σ, 1), ..., (60, σ′, 0)〉.

4.2.4. Parallel Composition of Ctrl and Temp
By means of Rule 9, we get:

[tr • pc ∧ now = 0] Ctrl [tr1 • qc1 ∧ now = 60],

[tr • pc ∧ now = 0] Temp [tr2 • qc2 ∧ now = 60],

qc = qc1 ∧ qc2, tradd ∈Merge(tr1 − tr, tr2 − tr), tr′ = tr̂tradd
[tr • pc ∧ now = 0] Ctrl ‖ Temp [tr′ • qc ∧ now = 60]

In Ctrl ‖ Temp, we note that the actions of Temp are all continuous. As
a result, the actions recorded in tr′ are exactly the same as those in tr1 that
were done by Ctrl. Thus, snapshots in tr1 − tr and tr2 − tr are structurally
similar and vary only in their values of µ. Then, the satisfaction of tradd ∈
Merge(tr1 − tr, tr2 − tr) is obvious. We employ Rule 1, and obtain the final
desirable result, i.e., {Init} BMS {DI ∧ CI}.

5 Conclusion and Future Work

In this paper, we have presented a proof system for the language which is pro-
posed to model cyber-physical systems based on our previous work [1, 8]. We
extended the triple in classical Hoare Logic {p} S {q} to [tr • pc] S [tr′ • qc].
In this specification, tr and tr′ are introduced to pave the way for the proof of
parallel programs with shared variables. Considering that trace can only record

16 R. Li et al.

the values of discrete variables, we also appended a precondition pc and a post-
condition qc to indicate the states of continuous variables. now, the global clock
variable, is added to catch the feature of real-time in CPS as well. Our proof
system is mainly supported by the trace model, it can not only realize composi-
tional proof, but also link the proof system with denotational semantics [8]. For
an intuitive demonstration of this proof system’s usage, we also provided the
example of a battery management system.

In the future, considering that the traditional approach of building the link
between the proof system and semantics is mainly based on operational seman-
tics, we will investigate the link between our proof system and our denotational
semantics [8] in detail.
Acknowledgements. This work was partly supported by the National Key Research

and Development Program of China (Grant No. 2018YFB2101300), the National Nat-

ural Science Foundation of China (Grant Nos. 61872145, 62032024), Shanghai Trusted

Industry Internet Software Collaborative Innovation Center, and the Dean’s Fund of

Shanghai Key Laboratory of Trustworthy Computing (East China Normal Univer-

sity).

References

1. Banach, R., Zhu, H.: Language evolution and healthiness for critical cyber-physical
systems. J. Softw. Evol. Process. 33(9) (2021)

2. He, J., Li, Q.: A hybrid relational modelling language. In: Concurrency, Security,
and Puzzles. Lecture Notes in Computer Science, vol. 10160, pp. 124–143. Springer
(2017)

3. Henzinger, T.A.: The theory of hybrid automata. In: LICS. pp. 278–292. IEEE
Computer Society (1996)

4. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

5. Jones, C.B.: Accommodating interference in the formal design of concurrent object-
based programs. Formal Methods Syst. Des. 8(2), 105–122 (1996)

6. Lanotte, R., Merro, M., Tini, S.: A probabilistic calculus of cyber-physical systems.
Inf. Comput. 279, 104618 (2021)

7. Lee, E.A.: Cyber physical systems: Design challenges. In: ISORC. pp. 363–369.
IEEE Computer Society (2008)

8. Li, R., Zhu, H., Banach, R.: Denotational and algebraic semantics for cyber-
physical systems. In: ICECCS. pp. 123–132. IEEE (2022)

9. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for
hybrid CSP. In: APLAS. Lecture Notes in Computer Science, vol. 6461, pp. 1–15.
Springer (2010)

10. Lunel, S., Mitsch, S., Boyer, B., Talpin, J.: Parallel composition and modular
verification of computer controlled systems in differential dynamic logic. In: FM.
Lecture Notes in Computer Science, vol. 11800, pp. 354–370. Springer (2019)

11. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6, 319–340 (1976)

12. Zhou, C., Wang, J., Ravn, A.P.: A formal description of hybrid systems. In: Hybrid
Systems. Lecture Notes in Computer Science, vol. 1066, pp. 511–530. Springer
(1995)

	A Proof System for Cyber-physical Systems with Shared-Variable Concurrency

