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MONSTR: Term Graph
Rewriting for Parallel
Machines

R. Banach

18.1 INTRODUCTION

In this chapter, the primary issue addressed is the adoptability of generalized Term
Graph Rewriting Systems (TGRS) as a fundamental computational model at the ar-
chitectural level. This is a desirable thing to do since many currently fashionable
programming styles (e.g. functional or logic) have easy translations into TGRS. Un-
fortunately, implementing the model on a parallel machine (an equally fashionable
architectural style), is infeasable in its raw form. This is surprising because there are
many implementations of fashionable programming styles on fashionable architectures
that actually perform acceptably well. This indicates that perhaps the more trouble-
some features of the full TGR model are not really needed when one translates such
languages into the TGR form. This hypothesis turns out to be correct, and gives rise
to a program of work to indentify the little used, expensive aspects of general TGRS
and to exclude them by carefully redefining TGR languages and/or their semantic
models. Some aspects of this work are surveyed in this chapter.

There is far too little space available to present all the details, let alone all the proofs.
These will appear in [Ban93]. The rest of the chapter is organized as follows. In section
18.2, we present an abstract version of a concrete TGR language, DACTL. In section
18.3 we present a sublanguage, MONSTR, and justify its selection on architectural
grounds. In section 18.4, we discuss a number of semantic models for the MONSTR
sublanguage, arguing that these more closely reflect the way a realistic parallel ma-
chine might execute MONSTR, programs. We present the main soundness results that
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map computations according to these more operational models, into computations
according to the original semantics, thus giving a handle on correctness.

18.2 ABSTRACT DACTL

We present here a rather abstract and slightly simplified version of the language
DACTL [GKSS88, GHK*88]. The abstraction takes us away from the tedium of con-
crete syntax and enables us to concentrate on the semantic issues. We assume we are
given an alphabet S = {S,T...} of node symbols. We write SeqNN for the set of sets
of naturals of the form {1...n}, where {1...0} =0.

DEFINITION 18.2.1 A(n abstract DACTL) term graph (or just graph) G, is a quin-
tuple (N,o,a, p,v) where

(1) N is a set of nodes,

(2) oisamap N—S,

(3) aisamap N - N*,

(4) pis a map N — {e, %, #, #4t, #44, ..., #° (n > 1)},
(5) v isamap N — {e, "}*,

such that for all z € G, dom(a(z)) = dom(v(z)) € SeqN.

Informally, for each node we have its node symbol o () and its sequence of successors
a(z). The node carries a node marking pu(z), and each arc to a successor (say the k",
a(x)[k]) carries an arc marking, v(z)[k]. The maps u, v are referred to as the markings
and are mainly concerned with encoding execution strategies, while N, o, a are referred
to as the graph structure and provide the main information content of the graph. For
x € G (which we write in preference to x € N(G)), the domain of a(x) or of v(z) is
called the arity of x, A(x). We refer to an arc of the graph using the notation (p,c)
to indicate that c is the k' child of p, i.e. that ¢ = a(z)[k] and k € A(p).

For ease of use, the names are meant to be reasonably alliterative: o for symbols, a
for arcs, p for markings, v for notifications (see below).

We assume there is a special node symbol Any, not considered to be in S.

DEFINITION 18.2.2 A rule R is a quadruple (G,r, Red, Act) where

(1) G is a graph, except that some nodes of G may be labeled with Any, and
o(n) =Any = a(n) =¢

(e is the empty sequence, empty node marking, empty arc marking, according to
context).
Nodes n with o(n) = Any are called implicit whereas other nodes are explicit.

(2) r is a node of G called the root, and all implicit nodes are accessible from the root
via a path of length at least one (so the root is explicit). If o(r) = S, then R is a
rule for S. For all nodes x accessible from (and including) r, p(z) = € and v(z) = ¢
for all k € A(z).

(3) Red is a set of pairs, (called redirections) of nodes of G such that if (z,y) € Red,
then x is explicit and accessible from r. If (x,y), (u,v) € Red thenx =u =y = v
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and © # u = o(y) # o(v). For (z,y) € Red,z is called the LHS and y the RHS
of the redirection.

(4) Act is a set of nodes (called activations) of G such that for all © € Act, x is
accessible from the root r.

The subgraph of G accessible from (and including) the root is called the pattern
of the rule, and nodes of G not in the pattern are called contractum nodes. More
generally a pattern is a rooted graph in which there may be some implicit nodes. By
a graph we will normally mean an object without implicit nodes and not necessarily
endowed with a root.

DEFINITION 18.2.3 A matching of a pattern P with root r say, to a graph G at a
node t € G, is a map h : P — G such that

(1) h(r)=t
(2) If z € P is explicit then, o(z) = o(h(z)),A(z) = A(h(z)), and for all k €
A(x), h(a(x)[k]) = a(h(z))[k].

So a matching is a graph structure homomorphism in which Any nodes can match
anything but explicit nodes must behave well. The same defintion will suffice for
matching patterns to other patterns or, omitting mention of roots, for matching graphs
to other graphs.

A system is just a set of rules. Rewriting proceeds via two stages, rule selection and
rule execution.

DEFINITION 18.2.4 Let X be a graph, t € X a node of X such that u(t) = x, and R a
system. Let Sel = {R | there is an R € R such that there is a matching h: P — X of
the pattern P of the graph G of the rule R to X att}. Rule selection is some (otherwise
unspecified) process for choosing a member of Sel assuming it is non-empty. It clearly
only has force when there is more than one member of Sel. The chosen R makes t the
root of the redex h(P) and R the selected rule that governs the rewrite.

Assuming we have a selected rule and redex, rule execution (or rewriting according
to the rule governing the rewrite) proceeds in three phases: contractum building,
redirection, and activation. Assume X, t, R = (G, r, Red, Act) and h given as above.

DEFINITION 18.2.5 Contractum building adds a copy of each contractum node of G
to X. Node markings for such nodes are taken from G. Copies of arcs of G from
contractum nodes to their successors are added in such a way that there is a graph
structure homomorphism h' from the whole of G to the graph being created which
agrees with h on P. Arc markings are again taken from G. Call the resulting graph X'
and let ix x' be the natural injection.

DEFINITION 18.2.6 Redirection takes each arc (py,c) such that ¢ = h'(z) for some
(z,y) € Red and replaces it with (pr,h'(y)). This can be done consistently since the
LHSs of two distinct redirections cannot map to the same node of X since their node
symbols are different by 18.2.2.(3). All such redirections are performed simultaneously.
Let the resulting graph be called X" and let ix: x» be the natural injection. Note that
ixr,x 18 just an injective map on nodes rather than a graph structure homomorphism
as for ix,x . We define the map rx/ x» by rx: x»(c) =ix: x»(c) unless c = h'(z) for
some (z,y) € Red, in which case rx: x»(c) =ix x(h'(y)).
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DEFINITION 18.2.7 Activation takes the nodes y = ix: x () for x = h'(u) with u €
Act, and if u(y) = € then the node marking is changed to x. Unless t"" = ix: x» (h'(r))
was one of these nodes, its marking is changed to €. Call the resulting graph Y, and
define ix» y as the natural injection.

The result of the rewrite is the graph Y. For a more detailed exposition of contraction
building and redirection, see [BVEG'87] 3.6 (i)-(ii), or [GKSS88] for a more detailed
exposition of all the phases in a concrete syntax setting. Note that our notion of
activation is a little different than that in [GKSS88], the pattern calculus (a feature
of true DACTL we ignore), being at the heart of the matter. Also we have combined
root quiescence and activation in our version of the activation phase, whereas root
quiescence is done right at the beginning of the [GKSS88] definition. The reason for
this is that it yields significant technical simplifications when graph markings are
involved in inductive proofs of properties of executions (although the present chapter
provides no evidence for this, due to its succinctness).

Suppose now that Sel is empty. Then instead of a rewrite, notification takes place.

DEFINITION 18.2.8 Notification is the process whereby the node marking u(t) is
changed to €, and for all arcs (pg,t) € X, if the arc marking v(p)[k] is ”, then
it is changed to €, and if the node marking p(p) is #™ (for n > 1) it is changed to
#771, with #° being understood as . Call the resulting graph Y and let ix y be the
natural injection.

The result of the notification is the graph Y as before.

DEFINITION 18.2.9 An initial graph is one which consists of an isolated node of empty
arity, with the active (x) node marking, and labeled by the symbol Initial.

DEFINITION 18.2.10 An execution of a system R is a sequence of graphs [Go,G1 .. .]
of mazximum length such that Go is initial and for each i > 0 such that i + 1 is an
index of the sequence, G; 1 results from G; by either rewriting or notification at some
active node of G;. Graphs occuring in executions are called execution graphs.

By composing the various maps ix xr, ix',x» Or rx: x», etc., we can track the
history of a node through an execution of the system. Note that no node is ever
destroyed.

So much for the definitions which give us the basic operational semantics of DACTL.
The main problem with these semantics from a architectural point of view, is that an
entire rewrite or entire notification must take place as a single atomic action. This
places quite a burden on a parallel implementaion, when it has to cope with rewrites
or notifications that might overlap with other rewrites or notifications. In particular,
whatever an implementation does, it must in some acceptable way be equivalent to a
serializable sequence of rewrites and notifications.

18.3 MONSTR

Now we present an abridged TGR language, MONSTR, first investigated in [BSW88]
and [BW89], which curtails some of the problems inherent in the DACTL definition.
The definition is in terms of a list of restrictions on the general structure of DACTL.
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First, we partition the symbol alphabet S into F U C U V, where F consists of
functions which have rules but which cannot occur at subroot positions of patterns
of rules; and C and V, consisting of constructors and variables (or stateholders),
neither of which can occur at root positions of patterns of rules and therefore neither
of which have rules; in addition constructors are not permitted to occur as the LHS
of a redirection.

Next we insist that rules are of two kinds, normal rules and default rules. A de-
fault rule has a pattern which consists of an active function node and as many distinct
implicit children as its arity dictates. Otherwise it is normal. Thus a default rule’s pat-
tern will always match at an active execution graph node labeled with the appropriate
function symbol.

We insist that there is at least one default rule for every function symbol, and we
allow a normal rule to be selected in preference to a default rule whenever either will
match, but the latter aspect will be of no significance below.

DEFINITION 18.3.1 MONSTR graphs, rules and systems must conform to the follow-
ing list of restrictions.

(1) Symbols have fized arities, i.e. the map x — A(x) factors through o(z), and thus
A(z) = A(o(x)).

(2) For each F € F there is a subset M(F) C A(F) such that k € M(F) iff for any
normal rule for F' with root r,a(r)[k] is explicit.

(3) For each F € F there is a subset ©(F) C A(F), at most a singleton, such that
if k € X(F), then for any normal rule for F with root r,o(a(r)[k]) € C U V.
Otherwise, for explicit ar)[l],1 # k,o(a(r)[l]) € C.

(4) For each rule, any grandchild of the root is implicit.

(5) For every rule, no implicit node may have more than one parent in the pattern.

(6) Ewvery node x in every rule is balanced, i.e. u(x) = #" for somen > 1 iff n is
the cardinality of {k € A(z) | v(z)[k] = "}.

(7) Every arc (pi,c) in every rule is state saturated, i.e. if v(p)[k] = 7, then if
u(c) = € then either c is explicit and o(c) € V, or c € Act.

(8) For every rule with root r, (r,t) € Red for some t.

(9) For every rule, if (z,y) € Red with u(y) = € and y & Act then y is explicit and
o(y) € V.

(10) For every rule, if (y,z) € Red, then y & Act unless (z,y) € Red for some z.

Despite the size of this collection of restrictions, a useful and expressive model of
computation remains; in particular it is trivial to simulate a Turing Machine, giving
us full computational power.

The restrictions on symbols and rules introduced in the preamble to 18.3.1 are
there to impose some discipline on the generality of DACTL; designating symbols
to be either functions, which perform rewrites but do nothing else; or constructors,
which hold values but do nothing else (in particular they do not get redirected);
or stateholders, which as their name implies, hold updatable values and can model
standard notions of state.

Restrictions (1) — (5) are largely “geographical” in nature. They ease hardware
construction, but also have an impact on problems arising from concurrent executions
(see the discussion of the fine-grained MONSTR semantic model below). Restriction
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(10) permits a smooth implementation of redirection by overwriting. Restrictions (6)
— (9) have rather more immediate consequences; which also happen to aid overwriting.

THEOREM 18.3.2 (Fundamental Properties) If a DACTL system obeys restrictions
(6) — (9) of definition 18.3.1 then every execution graph is

(1) balanced,
(2) state saturated.

18.4 ALTERNATIVE SEMANTIC MODELS

Having defined the MONSTR sublanguage of DACTL, we can now explore the conse-
quences of executing MONSTR systems according to different operational semantics.
The models we consider are the suspending MONSTR model, the fine-grained MON-
STR model, fully coercing models, and serializable weak models.

18.4.1 The suspending MONSTR model

The suspending MONSTR model addresses one of the simpler problem areas of the
DACTL semantic model, namely the fact that a rewrite can proceed independently
of the markings of the subroot redex nodes. This is indeed problematic for implemen-
tations, because implementations that feature concurrent rewriting of distinct but
perhaps overlapping redexes may well want to manipulate the graph in a more fine-
grained way than the atomicity of the rewriting paradigm would allow, and this would
tend to destroy serializability.

For F € F we call M(F) the map of F. Since all M(F) arguments of F' redexes
are explicit, they must be examined during pattern matching. We insist that such
arguments are idle i.e. have the € node marking, before rewriting can occur. If this is
not the case, then a suspension occurs.

DEFINITION 18.4.1 Lett € X be an active function node and let m > 0 where m is
the cardinality of {k € M(o(t)) | p(a(t)[k]) # }. Then the suspension of t (on its
non-idle map arguments) changes p(t) to #™, and for each k such that k € M(o(t))
and p(a(t)[k]) # e,v(t)[k] is changed to . Call the resulting graph Y and let the
natural injection be ixy as before.

Suspending MONSTR executions are thus sequences of graphs generated from an
initial graph by rewrites, notifications and suspensions, and compared to DACTL
executions, impose additional dependencies between rewrites. We note that since the
root node of a suspension acquires as many # markings as it has out-arcs which aquire
a " marking, balancedness is preserved and so suspending MONSTR executions enjoy
the same fundamental properties as DACTL executions.

THEOREM 18.4.2 Let G; be a suspending MONSTR execution graph. Then there is
a DACTL execution graph with graph structure isomorphic to that of G;.

THEOREM 18.4.3 Suppose some suspending MONSTR ezxecution terminates in a final
graph where all the node and arc markings are €. Then there is some DACTL execution
that produces the same final graph.



MONSTR

THEOREM 18.4.4 Suppose for some suspending MONSTR execution, for each execu-
tion graph, the subgraph consisting of nodes and arcs having non-¢ markings is acyclic.
Then if the execution terminates, there is some DACTL execution that produces the
same final graph.

18.4.2 The fine-grained MONSTR model

Despite its suspension events, the suspending MONSTR model still insists that
rewrites are done in a single atomic action, where they occur. The fine-grained MON-
STR model breaks this atomicity of rewriting down into more primitive steps. On
the whole, actions involving both of the pair of nodes at the two ends of an arc, are
performed using message passing, and so correspond to more than one atomic action
in the model. As the precise details are rather intricate we will content ourselves with
a rather more informal presentation than hitherto.

We start with the notifications. In fine-grained MONSTR these are split into two
sorts of action. Notification issuing, which quiesces the root and issues notification
messages to the relevant parents; and notification events where such messages arrive
and alter the node marking from #" to #" ! (or *). We have not said when the
relevant arc marking gets altered. In reality it may be changed as part of either type
of action, but doing so temporarily breaks one or other of the fundamental prop-
erties 18.3.2. This a technical nuisance, though not serious since parts of execution
graphs where the invariant breaks down correspond 1 — 1 with partially completed
notifications (or other actions whose fine-grained versions also temporarily break the
invariant).

Rewrites are broken up in a somewhat more complex manner. If the function labeling
the root of the redex has no normal rules, then the rewrite moves immediately to the
rewrite action below. Otherwise rewriting starts with read issuing, in which if ¢ is the
root of the redex and m is the cardinality of C' — args = M(o(t)) — X(o(t)), then a
read message is issued to each C'—args child of ¢, u(t) is changed to #™, and for each
k € C —args,v(t)[k] is changed to ”. This breaks fundamental property 18.3.2.(b).
When such a message arrives at its destination, a read event takes place, in which if
the argument is idle (say it is the k'), and a constructor, v(t)[k] is changed to €, and
u(t) changes from #! to #!~1. If the argument is idle but not a constructor, the same
thing happens but in addition a “FAIL” is recorded at the root of the redex. Here #°
is * as before and if p(t) indeed becomes *, then the rewrite is ready to perform the
rewrite action below. If the argument is non-idle the read event is retried when the
argument notifies. We see how fine-grained MONSTR suspensions are a more abstract
model of these argument reading preliminaries, which are themselves a more abstract
model of what happens at the machine level.

The rewrite action performs the heart of the rewrite and consists of three stages,
all taking place within the confines of a single atomic action. First, if any FAILs have
been recorded for the root of the redex, a default rule rather than the original normal
rule is selected for matching and execution. This is because although the children at
C — args positions of the root might well have been redirected to constructor form by
this time, the asynchronous nature of the argument reading process means that the
rewriting mechanism cannot be aware of such a fact.

Second, assuming no FAILs, the pattern is matched including any stateholder argu-
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ment «(t)[E(c(t))]. By hypothesis, enough arguments have been read to yield a verdict
for any normal rule for o(t). All this proceeds unless the stateholder argument itself
is non-idle in which case the rewrite suspends until notification by the stateholder
argument.

Third, assuming no FAILSs or suspension on the stateholder, a rule is selected in the
usual way. The rule to be executed now having been fixed by one means or another,
the contractum is built, the redirections are performed, and activation messages are
issued to any nodes matched to pattern nodes in the activation set of the rule. Finally
the root of the redex can be quiesced unless it turned out to be one of the nodes to
be activated. This completes the description of rewrite actions.

The final type of action of interest is the activation event, in which an activation
message arrives at its destination, and if the node marking of the destination is e,
changes it to *, activating the node.

Fine-grained MONSTR executions are thus generated by sequences of actions of the
kind described above. With sufficient attention to detail the following results can be
obtained.

DEFINITION 18.4.5 Let R be a default rule with root v, and suppose the cardinal-
ity of M(o(r)) is m. Suppose there is eractly one contractum node ¢, with o(c) =
o(r), ple) = #™,alO[k] = a(r)[k] for k € A(r),v(c)k] = * for k € M(o(r)), and
v(c)[k] =€ for k € A(o(r)) — M(o(r)). Suppose Red = {(r,c)} and Act = {a(r)[k] |
ke M(o(r))}. Then R is a refiring rule.

DEFINITION 18.4.6 Let R be a normal rule with rule with root r and suppose
o(a(r)[k]) € V for k € T(o(r)), assumed non-empty. Suppose there is exactly one
contractum node ¢, with o(c) = o(r), pu(c) = #,a(c)[k] = a(r)[k] for k € A(r), and
v(e)k] = € for k € A(a(r)) — X(o(r)) and v(c)[k] = " for k € L(a(r)). Suppose
Red = {(r,c)} and Act = 0. Then R is a suspension rule.

THEOREM 18.4.7 Suppose for some system that

(1) every default rule for a symbol with non-empty arity is a refiring rule,
(2) every normal rule either,

(a) does not match a stateholder (even if its X(o(root)) #0), or

(b) matches a stateholder (in its (o (root)) position) and redirects it to a non-idle
node, or

(c) is a suspension rule.

Suppose also that
(ActF) no activation message ever finds its destination to be an idle function node.

Then if a fine-grained MONSTR execution terminates, there is a suspending MONSTR
execution of the system that produces the same final graph, modulo garbage.

This is an opportune moment to briefly discuss garbage. Since nodes of the graph are
never deleted during any execution step, copious quantities of garbage are generated.
We define the live nodes of the graph to be base live nodes (which are active nodes,
and constructors specifically designated as such), or nodes accessible from live nodes
via e-marked arcs, or nodes that can access live nodes via ”-marked arcs. All others
are garbage. This definition turns out to be sound.
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18.4.3 Fully coercing models

Rewrites in the previous two models wait for active subcomputations to terminate
(i-e. notify) before proceeding. This is the idea behind suspension. In this sense the
two models are coercing in a rather weak sense. The fully coercing versions of the two
models are coercing in a stronger sense, namely that they actively instigate subcom-
putations when they chance upon inactive subcomputations during pattern matching.
Since constructors are regarded as ground objects, and stateholders are ground un-
til some rewrite chooses to redirect them, the only nodes that denote the presence
of inactive subcomputations are idle function nodes. Thus in the fully coercing ver-
sion of suspending MONSTR, the root of a pattern match suspends not only on
non-idle M (o(root)) arguments, but also on those M (o (root)) arguments which are
idle functions; these are simultaneously made active. In the fully coercing version of
fine-grained MONSTR, a similar thing happens when a read event encounters an idle
function node. Instead of recording a FAILure, the event activates the function and
completion of pattern matching is delayed until the child subcomputation notifies.

Of course, if no contractum node of any rule of a system is an idle function, then any
semantic model that is at least as coercing as suspending MONSTR is fully coercing.
The major point of significance concerning the fully coercing models follows.

THEOREM 18.4.8 For fully coercing fine-grained MONSTR, Theorem 18.4.7 holds
but without requiring the (run-time) condition (ActF).

18.4.4 Serializable weak models

In all of the previous models, executions have been serial since the semantic mod-
els have been derived from the DACTL rewriting model, and rewriting models are
conventionally sequential. On the other hand, the ultimate objective is to model the
actions of an underlying parallel machine whose operation is in no way sequential.
Sequentiallity thus plays two conflicting roles in our study of operational semantics.
On the one hand, it is an objective, because we want to reduce the concurrent opera-
tion of the parallel machine to some serial rewriting sequence of the original DACTL
semantic model if we can; on the other hand it is an obstacle, because for technical
simplicity, we would like to work in the graph world as much as possible, but that
world only offers us the sequential rewriting paradigm, which thus makes the modeling
of concurrent behavior problematic.

To overcome the obstacle, we cannot avoid looking at the way a putative machine
would represent and manipulate the graph. Such an examination would reveal the areas
of conflict and hence of potential interference between different execution primitives.
One could then lift the criteria necessary for non-interference to the graph world, and
study them in the more convenient abstract setting.

For the particular architectural model we have in mind, the Flagship model [WW87,
WWW+87, WSWW89], the problems boil down to the study of the interference of
distinct redirections, given a minimal locking strategy for graph nodes. To see this,
it is enough to review the definition of the redirection phase, which makes it plain
that if the execution graph nodes matched to the LHS and RHS of a redirection are
identical, then the redirection is a null action. To enforce this in a world of coded
up graph representations with concurrently operating agents modifying the graph,
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requires both an identity test for node representations, and locking of appropriate
parts of the coding to enable redirections to be performed atomically. Both of these
are luxuries that an efficient implementation of the rewriting model would rather do
without. The study of serializable weak models thus turns into the search for criteria
that ensure that a system will execute safely in the absence of mechanisms in the
semantic model to determine identity and enforce atomicity of redirection.

18.5 CONCLUSIONS

The reduction of the atomic semantics of the MONSTR subset of DACTL to seman-
tics more in keeping with the behavior of a concrete architectural model such as the
Flagship machine turns out to be a complex process. Most people who have attempted
the reduction of abstract semantic models to more realistic ones would agree with this
view. In fact it is not possible to do the reduction for the full MONSTR sublanguage
as Theorem 18.4.8 might be taken to imply. It turns out that all points of difference
between DACTL and machine semantics give rise to counter examples (usually quite
easy to construct) that yield different results according to which semantic model is
used. Nevertheless these counter examples are usually sufficiently pathological to in-
spire a search for criteria under which equivalence can be demonstrated, and to date,
the search has been a fruitful one. See [Ban93] for details.
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