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MONSTR V — Transitive Coercing Semantics
and the Church-Rosser Property

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K

banach@cs.man.ac.uk )

Abstract: The transitive coercing semantic model for the execution of the MONSTR general
term graph rewriting language is defined. Of all the operational semantics for MONSTR tha
might consider, this one has the cleanest properties. Under intuitively obvious condition
executions involving redexes permitted to overlap sufficiently to allow the programming
deterministic synchronisations, and despite the failure of exact subcommutativity, a Chu
Rosser theorem is proved to hold up to markings and garbage.

1 Introduction

In the first MONSTR paper ([Banach (1996b)], hereafter referred to asM-I ), we intro-
duced the MONSTR generalised term graph rewriting language, together with its o
ational semantics, and the architectural rationale behind its design. We also b
described some other semantic models for MONSTR and the correctness problem
they engender when soundness with respect to the original semantics is desired. I
sequent papers (M-II [Banach (1997a)],M-III [Banach (1997b)],M-IV [Banach
(1997c)]), we treated such correctness problems in detail, concentrating on issue
nected with serialisability properties of finegrained operational semantic models,
as might reflect the behaviour of actual implementations on distributed architectu

In this paper we introduce the transitive coercing semantic model. Because the m
is already coercing, it enjoys the good serialisability properties of coercing models
finegrained implementation as discussed inM-IV . The addition of transitivity of redi-
rections ([Banach (1996a)]) gives the model better subcommutativity properties, an
the emphasis in this paper is on the Church-Rosser property. (In truth, for the mo
considered earlier in this series, analogous Church-Rosser theorems hold, but be
of the weaker subcommutativity properties of those models, collections of rather
side conditions have to be included in the hypotheses, and this makes such theore
less interest. Some indication of what is involved here may be gleaned from Sect
of M-II where subcommutativity results are worked out for the standard (suspend
semantics, as an aid to the verification of systems implemented in MONSTR, wit
proceeding to a full Church-Rosser theorem.)

MONSTR is worth studying for number of reasons. First it is a graph rewriting fram
work deliberately cast close to the capabilities of real implementations. Its expres
ness therefore combines the abstractness of graphs and their arbitrary interconne
with very pragmatic considerations, and translations of other systems into MONS
describe both potential implementation routes, and something of the naturalness o
erwise of the primitives offered by such systems. MONSTR has with some justifica
been called an abstract assembly language, and a wider ranging discussion s
MONSTR in context and with suitable references to earlier work can be found inM-I .
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Secondly, MONSTR provides a model for concurrent computations that combine
abstractness of graph structure and of the potential to encode arbitrary inform
within the labels of the graphs, with a very specific rewrite strategy control mechan
based on considerations of concrete machine design. MONSTR is also sensitive
particular feature of many real computing systems, whereby some parts of the cu
computational state are active and others are passive, the latter being manipula
the former; and in a real system the active may in time become passive and vice v
Often the nondeterminism in a real system finds expression in the competition bet
active parts to perform incompatible manipulations on the passive parts. Ideally, a
a clean model of computation, this would be the only source of nondeterminism a
gards the final answer computed by the system. However most low level mode
computation that are as operational as MONSTR, do not have such pleasant sem
properties, at least not in an elegantly expressible form. And the same is true of th
mantic models for MONSTR considered earlier in this series of papers. However
model presented here, the culmination of the series, possesses particularly strong
erties in this respect. Provided synchronisations are deterministic, i.e. provided th
a (locally) unique outcome whatever the order of arrival of interested processes at a
ticular piece of passive computational state, the local determinism extends to a g
determinism, resulting in a Church-Rosser property.  This is what we prove here.

The rest of the paper is as follows. Section 2 defines transitive term graphs, and
the (abstract) syntax of MONSTR rules and systems. Though the treatment is m
matically self contained, no attempt is made to motivate the definitions. The reader
is left uneasy by Section 2 should consultM-I which is largely concerned with such mo
tivational issues. For future reference, notation such asM-I .11.4 refers to the fourth
listed item of Section 11 ofM-I . Section 3 defines transitive coercing semantics p
cisely, and contains additional motivational remarks at the end. Then Section 4 co
the fundamental invariants of MONSTR, balancedness and state saturatedness,
Section 5 discusses garbage, an issue which plays a significant role in the Church-
er theorem subsequently.

Typical MONSTR systems feature a lot of sharing and thus a lot of overlapping rede
in order to express the synchronisations that concurrent systems need. Thus a C
Rosser theorem that merely deals with the obvious analogue of orthogonal syste
which redexes may not overlap at all (or hardly at all) yields a relatively weak res
with little applicability to practice and to the situations described previously. So Sec
6 deals with overlapping redexes, identifying cases in which redexes may overlap
benign manner. The paper would be of less value were it not for the fact that the
chronisation situations these cases allow us to reason about are in fact just the on
turn out to be practically useful in typical real MONSTR systems. Section 7 sets
the subcommutativity results on which the main theorem is based. We see there
the elementary atomic actions of transitive coercing MONSTR do not actually subc
mute in all the desired situations. This adds some technical spice to the Church-R
theorem of Section 8, where we see that the discrepancies in subcommutativity
the expected filling in of the Church-Rosser diamond to flake into distinct sheets.
tunately, a careful analysis reveals that the discrepancies are sufficiently benign
they do not actually block the construction, and all relevant sheets can be filled in a
sired. It is perhaps worth mentioning that not all systems with the Church-Rosser p
erty satisfy the hypotheses of the main theorem, though these are fairly rare.
interesting case in point is the efficient translation of untyped interaction nets
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MONSTR ([Banach and Papadopoulos (1997)]), where more drastic overlapping o
dexes than permitted here nevertheless leads to confluent results. Section 9 conc

2 Transitive Term Graphs and the Syntax of MONSTR Systems

In this section we deal with basic syntactic matters. For readers familiar withM-I , the
graphs of this paper contain “bottom-nodes” whose nature will become clear in the
section.

We assume we are given an alphabetS = {S, T, …} of node symbols and in addition,
two further special symbolsAny and⊥ (bottom) which are not inS. When we wish to
refer to specific symbols we will write them thusS, T; but when we speak about sym
bols in general in the meta-language we will use italics thusS, T.

Definition 2.1 A transitive term graph (or just graph)G, is a quintuple (N, σ, α, µ, ν)
where

(1) N is a set of nodes.

(2) σ is a mapN → S ∪ {⊥}, which labels each node.

(3) α is a mapN → N*, which maps each node to its sequence of children.

(4) µ is a mapN → { ε, ∗, #, ##, ###, … #n (n ≥ 1)}, which maps each node to its
node marking (idle, active, once, twice… n times suspended).

(5) ν is a mapN → { ε, ^}*, which maps each node to the sequence of arc markin
on the arcs to its children (each either the normal or notification marking).

Clearly we must have for allx ∈ N, dom(α(x)) = dom(ν(x)), where the domain of a se-
quence is the set of its indices. And furthermore,⊥-labelled nodes (⊥-nodes), satisfy

(BOT) σ(x) = ⊥ ⇒ α(x) = ν(x) = ∅

i.e. ⊥-nodes are always childless.

We writeA(x), the arity of a nodex, for dom(α(x)) = dom(ν(x)). Note thatA(x) is a set
of consecutive natural numbers starting at 1, or empty. When dealing with more
one graph (or pattern — see below), we subscript the objects defined in (1) – (5) a
with the name of the graph in question to avoid ambiguity. Also we allow ourselve
write x ∈ G instead ofx ∈ N(G) or x ∈ NG etc. Each child nodec of some nodep de-
termines an arc of the graph, and we will refer to arcs using the notation (pk, c) to indi-
cate thatc is thek’th child of p; i.e. thatc = α(p)[k] for somek ∈ A(p). The mapsµ, ν
are referred to as the markings and are mainly concerned with encoding execution
egies, whileN, σ, α are referred to as the graph structure and provide the main infor
tion content of the graph.

For ease of use, the names are meant to be reasonably alliterative:σ for symbols,α for
arcs,µ for markings,ν for notifications.

Fig. 1 below shows a term graph, in which each node is depicted by its symbol follo
by its sequence of out-arcs in brackets, and only non-idle markings are shown. O
ously transitive term graphs are directed graphs. We use standard digraph termin
below where necessary without further comment; eg. path, semipath, and access
of one node from another.  (Recall a semipath ignores the orientation of arcs.)
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For rewriting, we will need a notion of pattern, and a sufficiently flexible notion of p
tern matching.

Definition 2.2 A pattern is defined as in definition 2.1 except that the signature ofσ is
N → S ∪ {Any}, andAny-labelled nodes must satisfy

(ANY) σ(x) = Any ⇒ α(x) = ν(x) = ∅

In patterns and graphs, among the non-⊥-nodes,Any-labelled nodes (Any-nodes) are
also called implicit whereas other nodes are explicit.

Homomorphisms relate patterns to graphs. Apart from the expected preservati
structure, readers should note the asymmetry of the roles of theAny-nodes and⊥-
nodes.

Definition 2.3 Let P be a pattern andG be a graph (and letP have a rootr). A node
maph : P → G is a homomorphism, or matching, toG (at t ∈ G) iff ( h(r) = t and) for
all nodesx ∈ P such thatσ(x) ≠ Any andσ(h(x)) ≠ ⊥

(1) σ(x) = σ(h(x)), i.e.h is label-preserving.

(2) A(x) = A(h(x)), i.e.h is arity-preserving.

(3) For allk ∈ A(x), h(α(x)[k]) =  α(h(x))[k],  i.e.h is order-preserving.

A homomorphism is proper iff⊥ ∉ {σ(h(x)) | x ∈ P andx is explicit}.

Suppose in addition the following hold:

(4) µ(x) = µ(h(x)), i.e.h is node-marking-preserving.

(5) For allk ∈ A(x), h(ν(x)[k]) = ν(h(x))[k], i.e.h is arc-marking-preserving.

In such a case we say thath preserves markings. (To emphasise the converse when
quired, we call ordinary homomorphisms, graph structure homomorphisms.)

Omitting mention of roots, definition 2.3 serves just as well for homomorphisms
tween graphs and homomorphisms between unrooted patterns, as it does for roote
terns and graphs.

∗F[ • • ]

Cons[ • • ] Var

2

#Q[ • ]

^

Fig. 1  A graph.

Root[ • ]
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Definition 2.4   A ruleD is a quadruple (P, root, Red, Act) where

(1) P is a pattern, called the full pattern of the rule.

(2) root is an explicit node ofP called the root, and all implicit nodes ofP are acces-
sible from the root. Ifσ(root) = S, thenD is a rule forS. The subpattern ofP
of nodes and arcs accessible from (and including)root is called the left patternL
of the rule, and nodes ofP not inL are called contractum nodes.L is unmarked,
i.e. for allx ∈ L, µ(x) = ε, andν(x)[k] = ε for all k ∈ A(x).

(3) Redis a set of pairs of nodes, (called redirections) such thatRed⊆ L × P, and
Red satisfies the invariants (RED-1), (RED-2) and (RED-3) below:

(RED-1) Red is the graph (in the set theoretic sense) of a partial function.

(RED-2) (a, b) ∈ Red⇒ a is an explicit node ofL.

(RED-3) {(a, b), (a′, b′)} ⊆ Red anda ≠ a′ ⇒ σ(a) ≠ σ(a′).

For (a, b) ∈ Red, a is called the LHS andb the RHS of the redirection, and we
say that the rule redirectsa.

(4) Act is a set of nodes (called activations) ofP such thatAct ⊆ L.

Fig. 2 is a picture of a rule, withroot indicated by the short stubby arrow,Redindicated
by the dashed arrows, andAct indicated by adorning the relevant nodes ofL with a ∗
(these are unmarked according to definition 2.4.(2)).

Definition 2.5 A rule D = (L ⊆ P, root, Red, Act) matches (or is applicable to) a grap
G at t iff µ(t) = ∗ and there is a proper matchingg : L → G at t. We call the image of
such a matching a redex.

It is not hard to see that the rule of Fig. 2 matches at theF-labelled node of Fig. 1.

For reasons discussed at length inM-I , it is necessary from a distributed implementa
tion standpoint, to circumscribe the generality permitted by definition 2.4. The de
erations inM-I distil down to the following combinatorial properties, quoted (almos
verbatim fromM-I , which define the abstract syntax of MONSTR systems.

Restriction M-I.11.1 The alphabet of symbolsS, is the disjoint union of three subal-
phabets

F[ • • ]

Cons[ • • ] Var

∗Any ∗Any

##G[ • • ]

^

Fig. 2  A rule.

^
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S = F ∪ C ∪ V

F is the alphabet of function symbols. A function symbol may label the root of the
patternL of a rule, but not any subroot node ofL. Function symbols may label the LHS
of a redirection.

C is the alphabet of constructor symbols. A constructor symbol may label a sub
node of the left pattern of a rule, but not the root. Constructors may not label the L
of a redirection.

V is the alphabet of stateholders, or variables. A stateholder symbol may label a su
node of the left pattern of a rule, but not the root. Stateholders may label the LHS
redirection.

The functions act as instigators of rewrites, the constructors encode immutable va
while the stateholders are able to model notions of updatable state, and to play a c
role in the coding of synchronisation primitives.

Restriction M-I.11.2

(1) For eachS ∈ S, there is a set of natural numbersA(S), in every case an initial
segment of the naturals from 1, or empty.

(2) For eachF ∈ F, there is a subset ofA(F), Map(F).

(3) For eachF ∈ F, there is a subset of Map(F), State(F), in every case either a sin-
gleton or empty.

(4) Root ∈ C.

The above maps each symbolS to its arity A(S). The intention is that allS-labelled
nodes are to have the same arity. For functionsF, Map(F) is the set of argument posi-
tions at which all normal rules forF (see below), will always need to pattern match
Similarly State(F), if non-empty, contains the position at which any stateholder arg
ment ofF must occur in a normal rule forF. Clause (4) states thatRoot is a constructor,
a fact used in the theory of garbage collection.

Definition M-I.11.3 LetF ∈ F. A rule forF such that each child of the root is a distinc
implicit node is called a default rule forF.  Otherwise the rule is a normal rule.

Note that with fixed arities, a default rule forF will always succeed in matching its left
pattern to any activeF-labelled node of a graph, precisely because no-non trivial c
ditions need to be satisfied by the children of the root of the redex.

Restriction M-I.11.4   LetD = (P, root, Red, Act) be a rule with left patternL.  Then

(1) Each node has the arity dictated by its symbol, i.e.

For allx ∈ P, A(x) = A(σ(x))

(2) Each normal rule for a symbol matches the same set of arguments of the roo
if σ(root) = F, andD is a normal rule then

α(root)[k] is explicit  ⇔  k ∈ Map(F)

(3) A rule for a function may match at most one stateholder, and then only in a fi
position (the stateholder position); all other explicit arguments must be const
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then

σ(α(root)[k]) ∈ V ⇒  k ∈ State(F)

(4) All grandchildren of the root are implicit, i.e. for allk ∈ A(σ(root)), and j ∈
A(σ(α(root)[k]))

α(α(root)[k])[ j] is implicit

(5) Implicit nodes of the left pattern have only one parent in the left pattern, i.e
y ∈ P is implicit, there is precisely onex ∈ L such that for somek ∈ A(x), y =
α(x)[k].

(6) Everyx ∈ P is balanced, i.e.

µ(x) = #n (for n ≥ 1) ⇔ |{ k | ν(x)[k] = ^} | = n

(7) Every arc (pk, c) of P is either state saturated or activated, i.e.

ν(p)[k] = ^ andµ(c) = ε ⇒ σ(c) ∈ V or c ∈ Act

(8) The root is always redirected, i.e. for someb ∈ P

(root, b) ∈ Red

(9) No arc can lose state saturatedness through redirection, i.e.

(a, b) ∈ Red andµ(b) = ε ⇒ σ(b) ∈ V or b ∈ Act

(10) A node which is the LHS but not the RHS of a redirection should be garbage
a rewrite whenever possible, i.e.

(b, c) ∈ Red andb ∈ Act ⇒  there is ab ≠ a ∈ L such that (a, b) ∈ Red

Restriction M-I.11.6 For eachF ∈ F there is a pair of sets (N F, DF), whereN F con-
sists of normal rules forF, andDF is non-empty and consists of just default rules forF.
An assignment of such pairs to eachF ∈ F constitutes a MONSTR system.

The above gives the syntax of MONSTR systems. In addition,M-I defines a couple of
builtins for testing pointer equality, but we will not be concerned with these in this
per.

3 Transitive Coercing Semantics

Definition M-I.3.13 An initial graph is one which consists of a single node with emp
arity, with the active node marking, and labelled by the symbolInitial.

Definition M-I.3.14 A preexecutionG of a systemR is a sequence of graphs [G0,
G1…] such thatG0 is initial and for eachi ≥ 0 such thati+1 is an index ofG, Gi+1 results
from Gi by some execution step at some arbitrarily selected active nodeti of Gi (i.e. a
nodeti for whichµ(ti) = ∗). If the sequence is of maximal length, it is called an exec
tion.  Graphs occuring in (pre)executions are called execution graphs.

Though the above is (essentially) taken fromM-I , it applies equally well here. All that
remains is to define execution steps, and the rules which state how one chooses be
them at any particular active node. Transitive coercing execution steps are of
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kinds: notifications, rewrites and suspensions. The next definition states the circ
stances under which each kind of action is performed.

Definition 3.1 Let G be a graph andt an active node ofG, the chosen root. For tran-
sitive coercing semantics, the kind of execution step to be performed att is determined
as follows.

If σ(t) ∈ C ∪ V
Then Perform a notification att
Else If For allk ∈ Map(σ(t)), µ(α(t)[k]) = ε  (andν(t)[k] = ε),

and for allk ∈ State(σ(t)), σ(α(t)[k]) ∈ C ∪ V,
and for allk ∈ (Map(σ(t)) – State(σ(t))), σ(α(t)[k]) ∈ C

Then Perform a rewrite using a rule chosen
nondeterministically fromSel where

If   some rule fromN σ(t) matches the chosen roott
Then Sel = {D ∈ N σ(t) | D matches att}
Else Sel = Dσ(t)

Else (If For somek ∈ Map(σ(t)), µ(α(t)[k]) ≠ ε,
or for k ∈ State(σ(t)), σ(α(t)[k]) ∉ C ∪ V,
or for somek ∈ Map(σ(t)) – State(σ(t)), σ(α(t)[k]) ∉ C

Then) Perform a suspension att

We note incidentally that if the conditions for a rewrite hold, then either a normal o
default rule will definitely match according to the criterion of definition 2.5.

Now we define the individual types of step. We start with the simplest cases. Noti
tion causes the chosen root to be quiesced (i.e. to have its active marking removed
for most notification in-arcs of the chosen root, their notification marking is remo
and parent nodes of such in arcs have any non-zero suspension marking decrem
“Most” in the preceding sentence refers to all notification arcs which do not conn
functions to stateholder children occuring in matched but not stateholder position

Fig. 3 shows a notification in a fragment of a graph, (assuming2 is a constructor).

More formally we have the following.

Definition 3.2 Let t be the chosen root in a graphG with σ(t) ∈ C ∪ V. Let the graph
H be given by

(1) NH = NG.

∗2

##G[ • • ]

Fig. 3  A notification.

^
⇒

2

#G[ • • ]
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(2) σH = σG.

(3) αH = αG.

(4) µH(x) = If µG(x) = #n (with n ≥ 1) and
     0≠ m = |{ k ∈ A(x) | αG(x)[k] = t andνG(x)[k] = ^ and

   not[σG(x) ∈ F andk ∈ (Map(σG(x)) – State(σG(x)))
 andσG(t) ∈ V ] } |

Then #n–m (where#0 = ∗, and#–p = ε for p ≥ 1)
Else If x = t Then ε
Else µG(x).

(5) νH(x)[k] = If  αG(x)[k] = t andνG(x)[k] = ^ and not[σG(x) ∈ F and
k ∈ (Map(σG(x)) – State(σG(x))) andσG(t) ∈ V ]

Then ε
Else νG(x)[k].

The result of the notification is the graphH.

Suspensions occur when not all the matched arguments of a function at the chose
are in the required form, by virtue of being non-idle, or of being⊥-nodes, or of being
functions, or of being stateholders in a non-stateholder position. The suspension m
the chosen root suspended on all such arguments till the required state of affairs ob
activating any idle functions thus encountered. Fig. 4 shows a suspension step
fragment of term graph rooted at anF-labelled chosen root. The assumption is that a
four arguments ofF are in Map(F), thatG is a function, thatS is a stateholder, and that
State(F) = {2}.

More formally we have the following.

Definition 3.3 Supposet is a chosen root in a graphG, σ(t) ∈ F and there is at least
onek ∈ Map(σ(t)) such that eitherα(t)[k] is a ⊥-node, orα(t)[k] is non-idle, orα(t)[k]
is an idle function, orα(t)[k] is an idle stateholder withk ∉ State(σ(t)).  Let

Susp(t) = {k ∈ Map(σG(t)) | αG(t)[k] is non-idle, or
αG(t)[k] is idle andσG(αG(t)[k]) = ⊥, or

∗F[ • • • • ] ⇒ ####F[ • • • • ]

#H[ • ]

∗A

∗G S

^

^^

Fig. 4.  A suspension step.

^

⊥

^

#H[ • ]

∗A

G S

^

⊥
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αG(t)[k] is idle andσG(αG(t)[k]) ∈ F, or
[ k ∈ (Map(σG(t)) – State(σG(t))) and
αG(t)[k] is idle andσG(αG(t)[k]) ∈ V ] }

n = | Susp(t) |

Define the graphH as follows.

(1) NH = NG.

(2) σH = σG.

(3) αH = αG.

(4) µH(x) = If x = t

Then #n

Else If x = αG(t)[k] andk ∈ Susp(t) andαG(t)[k] is idle and
  σG(αG(t)[k]) ∈ F

Then ∗
Else µG(x).

(5) νH(x)[k] = If x = t andk ∈ Susp(t)
Then ^
Else νG(x)[k].

ThenH is the result of the suspension.

We define the mapsiG,H = rG,H as the identity on nodes for notification and suspensi
steps, in order to be able to track the fate of nodes through executions using a no
uniform with that for the relevant maps for rewrite steps, which are introduced as
proceed with the definition of the latter now.

Once a redex has been identified, a rewrite consists of four phases, namely contr
building, bottom analysis, redirection and activation. AssumeG, t, D = (P, root, Red,
Act) andg given as necessary, in the notation of Section 2. We will use the matchin
Fig. 2 at theF-labelled node of Fig. 1 as a running example.

Contractum building adds a copy of each contractum node ofP to G. Node markings
for such nodes are taken fromP. Copies of arcs ofP from contractum nodes to their
children are added in such a way that there is a graph structure homomorphism (c
the extended matching)g′ : P → G′ from the whole ofP to the graph being created
which agrees withg onL.  Arc markings are again taken fromP.

Doing this for our running example yields Fig. 5. We see that copies of exactly the c
tractum nodes and arcs, suitably marked, have been added, and that this enables
tended matchingg′ of the whole ofP to be constructed.

More formally we have the following.

Definition 3.4   Assume the preceding notation.  Let the graphG′ be given by

(1) NG′ = NG ∪+ (NP – NL) where∪+ is disjoint union.
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(2) σG′(x) = σG(x)  if x ∈ G,
σG′(n) = σP(n)  if n ∈ P – L.

(3) αG′(x)[k] = αG(x)[k]  if x ∈ G, for k ∈ A(x),
αG′(n)[k] = αP(n)[k]  if both n andαP(n)[k] ∈ P – L, for k ∈ A(n),

g(αG(n)[k])  if n ∈ P – L andαP(n)[k] ∈ L, for k ∈ A(n).

(4) µG′(x) = µG(x)  if x ∈ G,
µG′(n) = µP(n)  if n ∈ P – L.

(5) νG′(x)[k] = νG(x)[k]  if x ∈ G, for k ∈ A(x),
νG′(n)[k] = νP(n)[k]  if n ∈ P – L, for k ∈ A(n).

Note the use of disjoint union above. In constructive definitions of disjoint union,
members of such a union are tagged so that one can discern their origin. Definitio
omitted to do this. This is not normally a source of difficulty unless one is intereste
more “global” issues. In fact we will be confronted by some of these later in this pa
and so a proper definition needs to take this into account. In such a case, a nodex in G
and its representative inG′ after contractum building, are no longer the same thing, a
there is a natural injectioniG,G′ : G → G′ that takesx to its representative inG′. We let
rG,G′ be another name foriG,G′, as for notifications and suspensions.

Bottom analysis does nothing to the structure of the graph itself, but prepares the gr
for the details of the next phase.  It consists of the following observations.  Let

Red′ = {(x, y) | for some (a, b) ∈ Red, g′(a) = x, g′(b) = y}

View Red′ as a relation onNG′, writing Red′+, Red′∗ for its transitive, reflexive transitive
closures.

We writex ~ y iff there is az∈ NG′ such thatx Red′∗ zandy Red′∗ z. Then ~ is clearly
an equivalence relation, becauseRedis a partial function onP and because (RED-3) en-
suresg and henceg′ is injective on the LHS nodes of redirections. We write [x] to rep-
resent the equivalence class containingx as usual. Further, we will write [x]° iff there

∗F[ • • ]

Cons[ • • ] Var

2

#Q[ • ]

^

Root[ • ]

##G[ • • ]

^

Fig. 5  Contractum Building.
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is a y ∈ [x] such thaty Red′+ y (i.e. we write [x]° to indicate that [x] contains a non-
trivial Red′-cycle).  We write [x]- otherwise.

Lemma 3.5 With the preceding notation, for all [x]- there is a uniquey- ∈ [x]- such
that for allx ∈ [x]-, x Red′∗ y-.

Proof. Basically trivial once one notes that all rules are finite objects, whence eachx]-

equivalence class is a tree inNG′ and has a unique rooty-.

When the context makes the class [z]- clear, we will use the- notation to refer to this
root element without further comment.

Redirection takes each arc (pk, c) such thatc = g′(a) for some (a, b) ∈ Redand replaces
it with (pk, d), whered is determined by interpreting the redirections inRedtransitively.
Thus ifc is a member of a [–]- class, [x-]- say, thend is the unique root elementx- of that
class.  Otherwisec is in a [–]° class, andd is a freshly introduced⊥-node for the class.

Performing the redirections on our example yields Fig. 6. Note the new⊥-node, intro-
duced because of the self-redirection onVar.

More formally we have the following.

Definition 3.6   Assume the preceding notation.  Let the graphG′′ be given by

(1) NG′′ = NG′ ∪+ B whereB = {[x]° | [x]° ⊆ NG′} .

(2) σG′′(x) = σG′(x)  if x ∈ NG′,
               ⊥  if x ∈ B.

(3) αG′′(x)[k] = y- ∈ NG′ if αG′(x)[k] = y andy ∈ [y-]-,  for k ∈ A(x),
                    [y]° ∈ B if αG′(x)[k] = y andy ∈ [y]°,  for k ∈ A(x),

 αG′(x)[k]  for k ∈ A(x),  otherwise.

(4) µG′′(x) = µG′(x)  if x ∈ NG′,
ε  if x ∈ B.

Fig. 6  Redirection.
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(5) νG′′(x) = νG′(x)  if x ∈ NG′,
∅  if x ∈ B.

On G′′ the mapg′ induces a mapg′′ : P → G′′ which is now just a symbol preserving
node map, rather than a homomorphism. Furthermore, there is an obvious inje
iG′,G′′ : G′ → G′′ that takes each node ofG′ to its representative inG′′ as we discussed
above. We also define the maprG′,G′′ : G′ → G′′ which identifies redirection targets as
follows.

rG′,G′′(x)  = x- ∈ NG′ if x ∈ [x-]-,
[x]° ∈ B if x ∈ [x]°,
iG′,G′′(x),  otherwise.

The above is the only place where thei–,– andr–,– maps differ.

Activation makes active the (rG′,G′′ g′)-images of idle non-⊥-nodes inAct, and also
makes theg′′-image oft idle (root quiescence). Doing this for our running examp
yields Fig. 7. Note that despite there being two activations in the rule (the two child
of Cons), only one is performed as the second ofCons’s children is a⊥-node.

More formally we have the following.

Definition 3.7   Assume the preceding notation.  Let the graphH be given by

(1) NH = NG′′.

(2) σH = σG′′.

(3) αH = αG′′.

(4) µH(x) = ∗  if ∃ a ∈ Act with (rG′,G′′ g′)(a) = x andσG′′(x) ≠ ⊥ andµG′′(x) = ε,
ε  if x = t,
µG′′(x)  otherwise.

(5) νH = νG′′.

Fig. 7  Activation.
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One can easily check that byM-I.11.4.(8), quoted above, and definition 3.6, the first tw
clauses of definition 3.7.(4) are always disjoint.

OnH, g′′ induces a maph : P → H which is of course another symbol preserving nod
map. We also define the mapsiG′′,H = rG′′,H : G′′ → H as the identity on nodes by anal
ogy with previous cases.

Definition 3.8 The result of the rewrite of the redexg : L → G according to the ruleD
= (P, root, Red, Act) is the graphH produced by applying definitions 3.4 – 3.7.

By composing the various mapsiG,G′, iG′,G′′ or rG′,G′′, etc., we can track the history of
a node through a rewrite. ThusiG,H(x) = (iG′′,H iG′,G′′ iG,G′)(x) is the node which is
the copy inH of x ∈ G, andrG,H(x) = (rG′′,H rG′,G′′ rG,G′)(x) is the node ofH thatx got
redirected to. In future we will need to keep a close track of nodes through the ph
of a rewrite, particularly when relevant properties of nodes change from one phase
rewrite to another, so the above notation is a useful alternative to theg, g′, g′′, h maps,
and is also applicable to nodes not directly affected by the particular rewrite.

Composing a sequence ofiG,H maps or ofrG,H maps, allows us to track the history of a
node through an execution of the system. The former tracks a node’s identity, an
latter tracks what a node “becomes” via redirection. Generically, any such compos
will be callediX,Yor rX,YwhereX andYare the first and last graphs in the sequence. A
arc (pk, c) is evidently tracked by (iX,Y(p)k, rX,Y(c)). A last but very important property
of these notations is that they are portable to situations in which one wishes to d
operations on graphs “universally”, i.e. up to (marking preserving) isomorphism.
such approaches one defines the semantics by listing properties that the collect
functionsg, g′, g′′, h, iG,G′, iG′,G′′, rG′,G′′, etc. possesses, and any graphH* related to the
input data of the rewrite (or other execution step) by such a collection of maps is a
ceptable answer. Of course the list of properties must be such that anyH* satisfying
them is guaranteed to be marking preserving isomorphic toH as we constructed it
above. We will need some of this below, when we have to say precisely in what ma
the two graphs at the ends of the two paths round a cell in the Church-Rosser dia
are “the same”.

The above operational semantics is a bit complicated, to say the least. The reaso
this arise from the desire to make the implementation on a certain kind of architec
model relatively straightforward, and thus efficient. In reality, the model divides i
the graph structure part (which is intended to encode the actual computation), an
markings, which guide the sheduling policy of any implementation (via activations, s
pensions and notifications, and definition 3.1). Thus the essence of the rewriting
ess is redirection, a digraph version of substitution. Since the RHS of suc
“substitution” must connect with the rest of the graph in general, it is more conven
to insist that contractum building comes first. Activations then allow the execution
rule to influence future rewriting strategy. The specific versions of activations, sus
sions, and redirections used in this paper (compared with those of other papers i
series) ensure both a good serialisability theory (seeM-IV ), and a clean Church-Rosse
theorem, properties which are not altogether unrelated.
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4 Fundamental Properties — Balancedness and
State Saturatedness

In this section we treat two rather basic invariants in the context of our operationa
mantics.

Definition 4.1   A nodex in a graphG is balanced iff forn ≥ 1,

µ(x) = #n  ⇔ |{ k | ν(x)[k] = ^} | = n

We say that a pattern or graph is balanced iff every node is balanced.

Theorem 4.2 Let R be a MONSTR system. Then every execution graph ofR is bal-
anced.

Proof. By induction on executions. An initial graph is balanced. Furthermore, no
cations preserve balancedness, since for each notification marking removed fro
arc, a suspension marking is removed from the parent node. Suspensions preser
ancedness by doing the opposite. We check that the phases of a rewrite do not
balancedness. Contractum building preserves balancedness, as all new nodes a
the graph are balanced by restrictionM-I.11.4.(6) quoted above. Redirection only af
fects the heads of some arcs and introduces balanced⊥-nodes, so preserves balanced
ness. Finally, activation only affects the node markings on non-suspended nodes
preserving balancedness.

Definition 4.3   An arc (pk, c) of a graphG is state saturated iff

ν(p)[k] = ^ andµ(c) = ε ⇒ σ(c) ∈ V ∪ {⊥}

A node of a graph is state saturated iff all of its in-arcs are state saturated. Likewi
graph or pattern is state saturated if all of its nodes and arcs are.

Theorem 4.4 Let R be a MONSTR system. Then every execution graph ofR is state
saturated.

Proof. By induction over executions. An initial graph is state saturated. A notificat
step clearly preserves state saturatedness, since for the only node which become
all notification in-arcs become idle unless the node is a stateholder, in which case c
of them are allowed to remain as notification in-arcs according to definition 3.2. A s
pension step does the opposite, creating notification arcs, but where these hav
nodes as children, then such children are always stateholders or⊥-nodes by inspection
of definition 3.3, preserving state saturatedness. We argue that rewrites preserve
saturatedness as follows.

Let Gi be rewritten toGi+1, using a ruleD = (P, root, Red, Act), and a redexgi : L → Gi.
Assume the usual notation for the pieces of a rewrite (eg. mapsgi, gi′, gi′′, andgi+1 :
P → Gi+1). Consider contractum building. It is easy to check that all new nodes in
duced inG′i are state saturated by restrictionM-I.11.4.(7) sinceAct⊆ L. Obviously the
nodes ofGi′ – gi′(P) are state saturated since they continue to have (iGi,Gi′ copies of) just
the same arcs they had inGi, andGi is state saturated by the induction hypothesis. Th
leaves the nodes ofgi′(L). Nodes ingi′(L) – gi′(Act) are state saturated because any ne
in-arcs they acquired are state saturated byM-I.11.4.(7). This leaves a set of nodes
gi′(χ) ⊆ gi′(Act) ⊆ gi′(L) ⊆ Gi′ which fail to be state saturated as they acquired a no
zero number of notification in-arcs during contractum building, but were idle, not⊥-
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nodes, notV-labelled, and without notification in-arcs inGi. ThereforeGi′ may fail to
be state saturated, but just for this reason.

Now consider redirection and activation. All arcs ofGi+1 are copies, or redirected cop
ies of arcs ofGi′. We check that all arcs ofGi′ end up state saturated inGi+1 which is
sufficient. Leaving aside the phenomenon of root quiescence for the moment, the
three cases. Case (a): in-arcs of nodes ingi′(χ) ⊆ gi′(Act) which are not redirected.
These are unchanged by redirection, and have their child nodes activated during a
tion, restoring state saturatedness to case (a) nodes. Case (b): in-arcs of nodesy which
are redirected. Let (xk, y) be a redirected arc, withgi′(a) = y, (a, b) ∈ Red, and redirec-
tion targetrGi′,Gi′′(y). If σ(rGi′,Gi′′(y)) ∈ V or µ(rGi′,Gi′′(y)) ≠ ε, or rGi′,Gi′′(y) is a⊥-node,
then (iGi′,Gi′′(x)k, rGi′,Gi′′(y)) is state saturated. In case not, we knowb ∈ Actby restric-
tion M-I.11.4.(9). NowrGi′,Gi′′(y) = rGi′,Gi′′(g′(b)) by definition of redirection, and we
are assuming thatµ(rGi′,Gi′′(g′(b))) = ε. Therefore the activation phase, makingGi+1,
will make µ(rGi′,Gi+1

(y)) = µ(rGi′,Gi+1
(g′(b))) = ∗ by definition 3.7.(4). This restores

state saturatedness to all case (b) nodes. Case (c): in-arcs of all other nodes. Th
state saturated inGi′ and do not suffer redirection. They remain state saturated throu
out the redirection and activation phases.

Finally we return to the root, to deduce that root quiescence cannot destroy state
ratedness. But this is immediate sincegi′′(root) has no in-arcs. This in turn holds by
restrictionM-I.11.4.(8) and because no LHS of a redirection is a redirection target (
the destination of a redirected arc) by definition 3.6.  We are done.

5 Liveness and Garbage

In all of the preceding, no node or arc was ever destroyed, which is not really accep
for a reasonable model of computation. In this section we introduce a suitable no
of liveness, which turns out to be a proof theoretic business. This leads to the appr
ate notion of garbage which we prove sound.

Definition 5.1 Let G be a graph, andx a node ofG. Thenx is live iff it can be proved
so on the basis of the following rules of inference:

(1) If σ(x) is a special symbolRoot, thenx is live.

(2) If µ(x) = ∗, thenx is live.

(3) If p is live and (pk, x) is an idle arc, thenx is live.

(4) If c is live and (xk, c) is a notification arc, thenx is live.

Definition 5.1 is nothing more than a proof system. Thus clauses (1) and (2) form
cases of proofs of liveness; and liveness is propagated down normal arcs and up
cation arcs, which makes clauses (3) and (4) into analogues of modus ponens. It
ident that the structure of a proof of liveness follows the structure of a certain kin
semipath in the graph.

Definition 5.2 Let G be a graph. The set of live nodes ofG is denoted Live(G), and
NG – Live(G) is denoted Gar(G), the garbage set ofG. An arc (pk, c) of G is live iff both
p andc are live; otherwise it is garbage.
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Note that the inference rules in definition 5.1.(3) and 5.1.(4) give “local” means of pr
ing the liveness of any given live arc (pk, c). Connectivity properties of the graphG may
also give rise to other, completely unrelated proofs for (pk, c).

Definition 5.3 The live subgraph of a graphG, LSG(G), consists of the live nodes and
live arcs ofG.

Note that the live subgraph need not be a graph in the sense that it satisfies all the
iants implied by definition 2.1, since a live node may have a garbage notification
arc to a garbage child node. Live nodes may also have garbage normal in-arcs from
bage parent nodes, though this does not threaten the invariants of definition 2.1.

The most important thing about garbage is its persistence. Once a node of an exe
graph is proclaimed garbage, no execution step should cause it to be capable of
proved live ever again.  This is the main result of this section.

Theorem 5.4 Let R be a MONSTR system. LetG be an execution graph ofR, and let
G → H be an execution step.  Then

(1) If x is a garbage node ofG, theniG,H(x) is a garbage node ofH.

(2) If (pk, c) is a garbage arc ofG, then (iG,H(p)k, rG,H(c)) is a garbage arc ofH.

Proof. We must check that each possible execution step does not involve any ga
node or arc in any harmful way. In order, we examine notifications, suspensions
finally rewrites. For each execution step we define theexecution step redexto consist
of all nodes and arcs mentioned in the definition of execution steps of that kind in
tion 3.

In all three cases, the structure of the proof is the same. First of all we prove tha
execution step redex is live. Then we identify the redex-emergent arcs as those
precisely one of whose nodes is in the execution step redex, and which are capa
progressing a liveness proof out of the redex. Fig. 8 shows how this happens in se
notation. Finally we show that the transformation that generates the graphH cannot
make any hypothesised garbage nodex live, by reasoning about the properties of the re
dex-emergent arcs.  The proof for garbage arcs (pk, c) then follows quickly.

Notifications. For a notification fromt ∈ G, the notification redex consists of all noti-
fication arcs (zl, t) and their constituent nodes manipulated by the notification, i.e.

q  live

z  live          (qk, z) : notif. arc

…  …

…  …

q  live

z  live          (zk, q) : norm. arc

…  …

…  …

Fig. 8  Redex-emergent steps in proofs of liveness;
z is live because it is in the execution step redex.

Notification arc caseNormal arc case
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notification in-arcs (zl, t) of t such thatt is not a stateholder child in (Map – State) pos
tion of the function parent nodez. The redex-emergent arcs are therefore: normal a
(tm, q); other notification in-arcs (wm, t) of t (such thatt is a stateholder child in (Map –
State) position of the function parent nodew); normal arcs (zm, q) (for the relevant nodes
z); and notification arcs (qm, z) (for the same relevant nodesz). All such arcs are evi-
dently live inG sincet is active inG.

We recall that for notifications,rG,H = iG,H. In H, the iG,H image oft is idle, and the
iG,H images of all arcs (zl, t) are normal. TheiG,H images of redex-emergent arcs (zm, q)
and (qm, z) are live iff their correspondingz is live, and theiG,H images of redex-emer-
gent arcs (tm, q) and (wm, t) are live iff t is live.

Suppose now thatx is garbage inG, but thatiG,H(x) is live in H. Obviouslyx cannot be
in the notification redex. Consider a proof of the liveness ofiG,H(x), in order to con-
struct one forx, for a contradiction. The proof inH starts at an active orRoot-labelled
node ofH, sayu0. But by the definition of notifications,u0 = iG,H(u0*) for some like-
wise active orRoot-labelled nodeu0* of G. Evidentlyu0* ≠ x, so the proof must be
bigger than just an axiom instance. It therefore continues along either a normal o
tification arc. If the arc is a notification arc, it is theiG,H image of a notification arc of
G, and we continue the proof inG. If it is a normal arc, then either it is theiG,H image
of a normal arc ofG and the proof inG continues, or it is theiG,H image of a notification
arc ofG. In the latter case we are dealing with an arc of the notification redex wh
child node must bet in G, which was active and thus live inG. Sincex is not in the
notification redex inG, the proof emerges from the notification redex along a rede
emergent arc. Therefore we can construct a proof of the liveness ofx in G by patching
the tail of a proof of the liveness ofiG,H(x) in H, the tail in question being from the las
(if any) visit to theiG,H image of the notification redex in the proof forH.

So we have our contradiction andiG,H(x) is garbage inH. For a garbage arc (pk, c), we
argue that at least one ofp or c is garbage and thus outside the notification redex inG.
By the preceding, itsiG,H image is still garbage inH. If p is the garbage node, then
(iG,H(p)k, rG,H(c)) is obviously garbage. Ifc is the garbage node, then becauserG,H(c)
= iG,H(c) for notifications,rG,H(c) is garbage inH, giving the conclusion.

Suspensions. Let Susp(t) be given as in definition 3.3 and let 0≠ n = | Susp(t) |. The
suspension redex consists of all arcs (tl, z) of G, with l ∈ Susp(t), and their constituent
nodes. Sincet is active and all suspension redex arcs are normal by balancednes
suspension redex is live inG. The redex-emergent arcs are notification arcs (qm, t); all
normal arcs (tm, q) for m∉ Susp(t); normal arcs (zm, q) wherez= α(t)[l] for l ∈ Susp(t);
and finally notification arcs (qm, z). Before the suspension step all of these arcs are li

Suppose now thatx is garbage inG, but thatiG,H(x) is live in H. Obviouslyx cannot be
in the suspension redex. As in the notification case, consider a proof of the livene
iG,H(x), in order to construct one forx. The proof inH starts at an active orRoot-la-
belled node ofH, sayu0. But by the definition of suspensions,u0 = iG,H(u0*) for some
likewise active orRoot-labelled nodeu0* of G. Sou0* ≠ x, and the proof must be big-
ger than just an axiom instance. It therefore continues along either a normal or n
cation arc. If the arc is a normal arc, it is theiG,H image of a normal arc ofG, and we
continue the proof inG. If it is a notification arc, then either it is theiG,H image of a
notification arc ofG and the proof inG continues, or it is theiG,H image of a normal arc
of G. In the latter case we are dealing with an arc of the suspension redex, whose p
node must bet in G, which was active and thus live inG. Sincex is not in the notifica-
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tion redex inG, the proof emerges from the notification redex along a redex-emerg
arc. Therefore we can again construct a proof of the liveness ofx in G by patching the
tail of a proof of the liveness ofiG,H(x) in H, the tail in question being from the last (if
any) visit to theiG,H image of the suspension redex in the proof forH. The proof for
garbage arcs is as in the case of notifications.

Rewrites. Employing the usual notation, for a rewrite step, the redex isg(L) as per def-
inition 2.5. An important consequence of balancedness and of definition 3.1, is tha
a rewrite, all arcs ofg(L) are normal. Therefore the whole ofg(L) is live. The redex-
emergent arcs are notification arcs (qk, z) with z ∈ g(L), and normal arcs (zk, q) with z
∈ g(L) andq ∉ g(L).

Consider the garbage nodex in G. There is no proof of liveness ofx in G sox ∉ g(L).
After contractum building, all proofs of liveness inG remain valid after being mapped
to G′ because of the injectioniG,G′ which preserves markings. New proofs of livenes
may have been created involving the contractum nodes, but none of them can
iG,G′(x) live. For suppose not. To do so such a proof would have to follow a semip
from a contractum node toiG,G′(x). Since such a semipath must pass throughg′(L), we
would have a redex-emergent step in the proof. Since all redex-emergent steps a
changed fromG, we could patch the final part of such a proof inH to construct a proof
of the liveness ofx in G, a contradiction.

After redirection, all previous proofs not mentioning redex or contractum nodes rem
unchanged, since for arcs not containing a redex or contractum node,iG′,G′′ extends to
a marking-preserving homomorphism. Callg′′(P) ∪+ B (whereB is the set of⊥-nodes
adjoined during the redirection phase) the extended redex for brevity. By the prev
paragraph, any proof of liveness inG′′ of iG,G′′(x) must involve an extended-redex
emergent step.  There are two cases.

The Normal Case: Here we note that a normal arc (zk, q) with z in the extended redex
must havez in g′′(L) since redirection does not affect the parent nodes of arcs. Thu
before, the final part of the proof would correspond with the final part of a proof inG′,
andiG,G′(x) would be live inG′, a contradiction.

The Notification Case: Here we note that a notification arc (qk, z) in G′′ is the (iG′,G′′,
rG′,G′′) image of a notification arc (qk, z*) of G′. If z* did not get redirected, thenz* is
in g′(L) as this is the only part of the extended redex inG′ accessible from outsideg′(P).
But theng′(L) is live, and so the final part of the proof would correspond with the fin
part of a proof inG′ andiG,G′(x) would be live inG′. If z* did get redirected toz, then
z* is in g′(L) since LHSs of all redirections are. Once more we would find a proof w
a redex-emergent step involving (qk, z*), showing thatiG,G′(x) was live inG′. We con-
clude that theiG,G′′ image ofx remains garbage inG′′.

Finally the root quiescence and activation phase. The root is always made idle ac
ing to definition 3.7.(4). Thus sinceh(root) is idle in H, some proofs of liveness that
exist forG′′ are destroyed; which cannot makeiG,H(x) live. If some nodes ofh(P) are
activated, some new proofs of liveness inH without counterparts inG′′ might be creat-
ed. However, any such proof which provediG,H(x) live, must utilise (theiG′′,H image
of) an extended-redex-emergent step, as argued above. Any such extended-redex
gent step involves either a normal arc, or a notification arc, and the arguments for
cases are identical to those voiced above for the redirection phase. We concludex
is garbage inH.
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For a garbage arc (pk, c), we argue that at least one ofp or c is garbage and thus outside
of g(L) in G. By the preceding, itsiG,H image is still garbage inH. If p is the garbage
node, then (iG,H(p)k, rG,H(c)) is obviously garbage. Ifc is the garbage node, then be
causec is outside ofg(L), rG,H(c) = iG,H(c), the latter of which is garbage inH, giving
the conclusion.  We are done.

We end this section with a simple lemma whose proof is largely implicit in the prec
ing proof.

Lemma 5.5 Let R be a MONSTR system. LetG be an execution graph ofR, and let
G → H be a rewrite execution step according to a ruleD = (P, root, Red, Act) of a redex
g(L) rooted att ∈ G. Let x ∈ g(L) be the left node of a redirection prescribed by th
rewrite.  Then

(1) iG,H(x) has no in-arcs.

(2) iG,H(x) is garbage inH.

Proof. We know that each node that is the left node of a redirection is in either a-

class, or in a [–]° class. In the first case the redirection target is theiG′,G′′ image of a
node ofG′ that is not itself the left hand side of a redirection. In the second case
redirection target is a⊥-node, again not the left hand side of a redirection. We dedu
that (1) holds.

To get (2), we note that from the MONSTR restrictions on rules,x is either the root of
the redex, or the stateholder child of the root. Neither of these are constructors, t
fore σ(x) ≠ Root, sinceRoot is a constructor byM-I.11.2.(4) quoted above, and so
iG,H(x) cannot be proved live by recourse to definition 5.1.(1). Also the root is quiesc
and the stateholder, if redirected, is not activated since the nodes which are activat
(rG′,G′′ g′)(Act), which does not include any left nodes of redirections by the previo
paragraph, soµ(iG,H(x)) ≠ ∗, andiG,H(x) cannot be proved live by definition 5.1.(2). By
(1), iG,H(x) has no in-arcs of any kind, soiG,H(x) cannot be proved live by definition
5.1.(3). Finally, the root was quiesced, so is idle inH. Furthermore, the stateholder wa
in G, idle by definition 3.1, therefore if redirected, remains unactivated inH by our pre-
ceding argument, and thus idle inH. By balancedness,iG,H(x) has no notification out-
arcs, soiG,H(x) cannot be proved live by definition 5.1.(4).  We are done.

6 Overlapping Redexes and Safe Critical Cones

In this section, we define resuspending rules, and discuss critical cones, particularl
critical cones.

Definition 6.1 Let F ∈ F andS∈ V. Let kf ∈ State(F). A normal ruleD = (P, root,
Red, Act) for F is a resuspending rule forF andS iff

(1) F matchesS (in kf’th position).

(2) The only contractum node ofP is a nodef such that

σ(f) = F,

µ(f) = #,

For j ∈ A(f),
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α(f)[j] = α(root)[j],

ν(f)[j] = If j = kf Then  ^ Else ε

(3) Red = {(root, f)}

(4) Act = ∅

Example 6.2 Let A(F) = {1 … 5}, Map(F) = {2, 3, 4}, and State(F) = {3}. Then Fig.
9 shows a resuspending rule forF andS.

Definition 6.3 Let G be an execution graph of a MONSTR systemR, and lets∈ G be
a stateholder node ofG, and letS= σ(s). Let CC(s) containsand all the active function
nodesf ∈ G such thats occurs in stateholder position of eachf, i.e.

CC(s) = { f ∈ G | µ(f) = ∗, σ(f) ∈ F, ∃ kf ∈ State(σ(f)), ands= α(f)[kf] } ∪ { s}

We call CC(s), the critical cone ofs, and we call the arcs (fkf
, s), the arcs of the critical

cone.  We can write a critical cone using the notation {s; f1 … fn}.

When we strive for a Church-Rosser property, we can allow redexes to overlap on
structors, as these are read-only. Likewise we can contemplate the idea of allowin
dexes to overlap on their implicitly matched nodes, since these cannot be redire
Because the operational semantics is transitive and coercing, this turns out to be s
though non-trivial (see the next section and the one that follows). This concentrate
focus on critical cones, as the seat of non-confluent behaviour. Safe critical cone
those where we can see that non-confluent behaviour can be avoided.

Definition 6.4 Let G be an execution graph of a MONSTR systemR, and lets∈ G be
a stateholder with critical cone CC(s) = {s; f1 … fn}. The critical cone is safe iff one of
the following conditions holds.

(1) For i = 1 … n, no rule forσ(fi) which matches atfi ∈ G, redirects its stateholder
argument.

(2) There is exactly onei ∈ {1 … n} such that there is a rule forσ(fi) which matches
at fi ∈ G and redirects its stateholder argument. Furthermore it redirects it
non-idle node or activated node. Fori ≠ j ∈ {1 … n}, the only normal rules for
σ(fj) which match atfj are resuspending rules, and eachσ(fj) has such a rule.

F[ • • • • • ]

C1Any Any

#F[ • • • • • ]

^

Fig. 9  A resuspending rule.
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The idea behind these possibilities should be clear. In (1), the stateholder behav
just another constructor. In (2), precisely one of the functions is capable of “doing
ything”; the others, should any of them rewrite, merely resuspend, which modulo m
ings and garbage does not alter the structure of the graph. A cone of type (1) can
rise to one of type (2) on the same stateholder, as once all the “read only” functions
rewritten, other rewriting activity containing references to (a suitablei–,– image of)s,
may create functions having references to (a suitable image of)s in stateholder position.

Despite these promising features, the critical cones we have described would not
teresting were it not for the fact that the resuspending behaviour we focus on is ex
what realistic MONSTR systems typically use for synchronisation purposes. (Se
the references to applications discussed inM-I .)

7 Subcommutativity Lemmas

In this section, we present the basic subcommutativity lemmas that hold for MONS
systems under transitive coercing semantics. These are the building blocks for the
theorem of the paper.

Lemma 7.1 Let GN = [G0, …, GN] be a transitive coercing preexecution of a MONST
systemR. SupposeGN contains two active nodest1 ≠ t2 with { σ(t1), σ(t2)} ⊆ C ∪ V.
For either choice ofi ∈ {1, 2}, let j denote the other choice. LetHi be obtained by per-
forming a notification fromti in GN.  Then

(1) H1 andH2 are graph structure isomorphic.

(2) rGN,Hi
(tj) = iGN,Hi

(tj) is an active constructor or stateholder, hence the root

of a potential notification step, inHi.

Let Ki be obtained fromHi by notifying fromrGN,Hi
(tj).  Then

(3) K1 andK2 are marking preserving isomorphic via a mapψ : K1 → K2.

Proof. This is relatively easy. Since notifications merely manipulate markings, (1)
lows immediately since bothH1 andH2 are graph structure isomorphic toGN. Sincetj
is active inGN, it cannot be a suspended parent of a notification arc ofti; thus it is not
notified inti’s notification, andrGN,Hi

(tj) is active inHi so that (2) holds. As for (1),K1
andK2 are graph structure isomorphic, so we must check that the markings coin
We know that the sets of notification arcs that comprise the notification redexes oft1 and
t2 in GN are disjoint. After notification, all of them end up as normal arcs inK1 andK2.
Other arcs are unaffected.

For nodes,t1 andt2 lose their active marking; nodes not in either notification redex ke
their marking; parent nodes ofti in the notification redex ofti but not oftj decrement
their suspensions by the same amount during the notification of eitherti or of rGN,Hj

(ti);
and parent nodes of botht1 andt2 in both notification redexes decrement their suspe
sions by the sum of two such amounts, ending with the same marking since (n – a) – b
= (n – b) – a.  So we have (3), and thus the whole lemma.

Lemma 7.2 Let GN = [G0, …, GN] be a transitive coercing preexecution of a MONST
systemR. SupposeGN contains two active function nodess1 ≠ s2 with Susp(s1) ≠ ∅ ≠
Susp(s2), where the Susp set of a function node is given in definition 3.3. For eit



to
ll be

since
on root
ere
ts

sions,

R

choice ofi ∈ {1, 2}, let j denote the other choice. LetHi be obtained by performing a
suspension fromsi in GN.  Then

(1) H1 andH2 are graph structure isomorphic.

(2) rGN,Hi
(sj) = iGN,Hi

(sj) is an active function node, and hence the root

of a potential suspension step, inHi.

Let Ki be obtained fromHi by performing a suspension fromrGN,Hi
(sj).  Then

(3) K1 andK2 are marking preserving isomorphic via a mapψ : K1 → K2.

Proof. This is pretty similar to lemma 7.1, in that notifications turn notification arcs in
normal arcs, while suspensions turn normal arcs into notification arcs. So we wi
fairly brief.

Since suspensions merely manipulate markings we have (1) immediately. Also
the only node markings that change in a suspension step are those of the suspensi
and of any activated idle functions, and all nodes are idle afterwards only if they w
idle before, (2) follows, andK1 andK2 are graph structure isomorphic. Since the se
of normal arcs constituting the two suspension redexes are disjoint inGN, and any idle
function that is activated ends up activated regardless of the order of the suspen
we get (3) easily.

Lemma 7.3 Let GN = [G0, …, GN] be a transitive coercing preexecution of a MONST
systemR. SupposeGN contains an active function nodeswith Susp(s) ≠ ∅, where the
Susp set of a function node is given in definition 3.3. SupposeGN also contains an ac-
tive constructor or stateholdert.  Let

Susp = {k ∈ Map(σ(s)) | α(s)[k] is non-idle, or
α(s)[k] is idle andσ(α(s)[k]) = ⊥, or
α(s)[k] is idle andσ(α(s)[k]) ∈ F, or
[ k ∈ (Map(σ(s)) – State(σ(s))) and
α(s)[k] is idle andσ(α(s)[k]) ∈ V ] }

SuspNodes = {x ∈ GN | x = α(s)[k] for somek ∈ Susp}
Π ≡  SuspNodes = {t} and not[σ(t) ∈ V andt = α(s)[k]

for somek ∈ (Map(σ(s)) – State(σ(s))) ]

Let Hs be obtained by performing a suspension froms in GN, and letHt be obtained by
performing a notification fromt in GN.  Then

(1) Hs andHt are graph structure isomorphic.

(2) (a) rGN,Hs
(t) = iGN,Hs

(t) is an active constructor or stateholder, hence the

root of a potential notification step, inHs.

(b) rGN,Ht
(s) = iGN,Ht

(s) is an active function node, and unlessΠ holds,

is the root of a potential suspension step, inHt.

Let Ks be obtained fromHs by performing a notification fromrGN,Hs
(t), and let

Kt  = If Π Then Ht
Else  The result of performing a suspension fromrGN,Ht

(s) in Ht
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Then

(3) Ks andKt are marking preserving isomorphic via a mapψ : Ks → Kt.

Proof. As in the previous lemmas, (1) is immediate. Sinces cannot be in the notifica-
tion redex oft in GN, and since althought might be in the suspension redex ofs in GN,
the node markings of non-idle non-root nodes of suspension redexes do not chang
ing suspensions, we conclude (2), noting that ift was the only element ofs’s SuspNodes
set, unlesst is a stateholder in a constructor-only position ofs, there is no potential sus-
pension fromrGN,Ht

(s) in Ht sincerGN,Ht
(t) is idle. Obviously we find thatKsandKt are

graph structure isomorphic, so we need to check the markings.

For arcs there are four disjoint cases: (a) all arcs (sk, t), for any applicablek, which must
all be normal arcs inGN; (b) other arcs of the suspension redex; (c) arcs of the notifi
tion redex; (d) all remaining arcs.

For (a), there are two subcases: (a1) arcs (sk, t) such thatt is a stateholder in constructor-
only positionk of s for any suchk; (a2) all other case (a) arcs. For both subcases, if
suspension is done first, the constituent arcs become notification arcs ofHs, and then
the (a2) arcs become normal arcs ofKs after the notification, (a1) arcs remaining sus
pended. If the notification is done first, sincerGN,Ht

(t) is idle, (a2) arcs disappear from
the suspension redex inHt. If there were (a1) arcs in the suspension redex ofGN, the
suspension step causes them to become notification arcs. For cases (b) and (c) it i
that they become notification arcs and normal arcs respectively regardless of the
of the steps.  Also case (d) arcs are unaffected.

For nodes there are also four disjoint cases: (a)s; (b) the nodes of the notification redex
(c) nodes in the suspension redex other than case (a) and case (b) nodes; (d) all re
ing nodes.

For (a), if the suspension is done first,rGN,Hs
(s) becomes suspended inHs, and in the

notification step receives notifications along all case (a2) arcs (if there are any). I
notification is done first,s is unaffected during notification, but becomes suspended
potentially fewer arguments) during the subsequent suspension (if any). It is clea
the net suspension markings onrGN,Ks

(s) in Ks and onrGN,Kt
(s) in Kt are the same, as

the extra suspensions when the suspension is done first, match the notifications re
from case (a2) arcs in the following notification. Obviously if the suspension redex c
sists solely of case (a2) arcs and their nodes, then all the suspensions thats acquires
when suspension is first, are released in the notification, leavingrGN,Ks

(s) active inKs;
corresponding to the complete removal of the suspension redex (because there
remaining elements in the SuspNodes set ofrGN,Ht

(s) in Ht) where notification is first,
followed by a null suspension, also leavingrGN,Kt

(s) active inKt. For case (b) and case
(c) nodes, it is easy to see that they undergo the same net change regardless of th
of the steps; likewise case (d) nodes remain unaffected.  This is enough for (3).

Lemma 7.4 Let GN = [G0, …, GN] be a transitive coercing preexecution of a MONST
systemR. SupposeGN contains an active constructor or stateholder nodet. Suppose
GN also contains an active function nodef, all of whose (Map(σ(f)) – State(σ(f))) argu-
ments are idle constructors, and whose State(σ(f)) argument (if any) is an idle construc-
tor or stateholder, and which is thus the root of a redexg : L → GN for some ruleD =
(P, root, Red, Act).  Let

Π  ≡ t ∈ g(Act ∪ {b | (a, b) ∈ Red, a ∈ Act, b ∈ L})



a

ls in-
g as
ark-

cess

e

ctum
Let Ht be obtained by performing a notification fromt in GN. Let Hf be obtained by
rewriting the redex rooted atf in GN, via the usual phasesg′ : P → GN′, g′′ : P → GN′′,
hf : P → Hf, and associatedi andr maps.  Then

(1) (a) rGN,Hf
(t) = iGN,Hf

(t) is an active constructor or stateholder, hence the

root of a potential notification step, inHf.

(b) rGN,Ht
(f) = iGN,Ht

(f) is an active function node, and

ht = rGN,Ht
g : L → Ht

is a redex forD, such that all the (Map(σ(rGN,Ht
(f))) – State(σ(rGN,Ht

(f))))

arguments ofrGN,Ht
(f) are idle constructors, and any State(σ(rGN,Ht

(f)))

argument is an idle constructor or stateholder, hence is the redex of 
potential rewrite inHt.

Let Kf be obtained fromHf by performing a notification fromrGN,Hf
(t). Let Jt be ob-

tained fromHt by rewriting the redex rooted atrGN,Ht
(f) in Ht, via the usual phases

ht′ : P → Ht′, ht′′ : P → Ht′′, jt : P → Jt, and associatedi andr maps.  Then

(2) If Π  Then rGN,Jt
(t) is an active constructor or stateholder,

hence the root of a potential notification step, inJt

Let

Kt  = If   notΠ Then Jt
Else  The result of performing a notification fromrGN,Jt

(t) in Jt

Then

(3) Kf andKt are marking preserving isomorphic via a mapψ : Kf → Kt.

Proof. A little thought shows that neitherf nor any off’s Map(σ(f)) arguments can be
in the notification redex, either because of the node markings or the node symbo
volved. However this does not preclude the notification redex nodes from occurrin
implicitly matched nodes of the rewriting redex. Because of the respective arc m
ings, it is clear that the sets of arcs of the two redexes are disjoint.

Consider performing the notification to createHt. EvidentlyGN andHt are graph struc-
ture isomorphic. And since the only node whose active marking changes in this pro
is t itself, and no node becomes non-idle which was not non-idle previously,rGN,Ht

(f) is
active inHt and (1).(b) follows. Let us compare the rewriting processes that creatHf
from GN andJt from Ht using the ruleD.  Let

θ : GN → Ht

be the graph structure isomorphism mentioned already. The respective contra
building phases clearly allow its extension to a graph structure isomorphism

θ′ : GN′ → Ht′
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such that the obvious triangle involvingg′ : P → GN′ andht′ : P → Ht′ commutes. Ev-
idently the redirection phase admits a further extension to a graph structure iso
phism

θ′′ : GN′′ → Ht′′

such that the triangle involving the node mapsg′′ : P → GN′′ andht′′ : P → Ht′′ com-
mutes too. Likewise the activation phase finally yields the graph structure isomorp

θ′′′ : Hf → Jt

such that the triangle involvinghf : P → Hf andjt : P → Jt commutes.

The definition 3.8 of rewriting shows that the only active node of the rewritten gra
that ends up idle in the result, is the root of the redex. The only other nodes tha
undergo a change of marking are the activated nodes which, if they start off idle, en
active. Thus we conclude that sincet ≠ f, rGN,Hf

(t) is active inHf, whence we have
(1).(a). To get (2) and (3), we must follow what happens to the markings of the o
nodes, and to the markings of the various arcs too.

For nodes there are five disjoint cases: (a)t; (b) f; (c) nodes of the notification redex oth
er thant; (d) contractum nodes; (e) all other nodes.

For case (a), regardingt, if rewriting is done first, we know that it is active inHf so ends
up idle inKf after the notification. If notification is done first, then it is idle inHt, and
then either is idle inJt if Π does not hold, or is active inJt if Π holds, giving us (2). In
the latter case, we know thatrGN,Jt

(t) = iGN,Jt
(t) because the non-idle marking ont ∈ G

means that it can only have been matched to an implicit node ofL and this precludes it
from being one of the redirected nodes of the rewrite. Also in the latter case,rGN,Jt

(t)
is a notification root inJt, and doing the notification, makes it idle inKt, as required.

For case (b),f ends up idle regardless of the order of execution steps.

For case (c) nodes, we note that they start out non-idle, and when notified, change
marking from one non-idle marking to another (non-idle marking). By the definition
rewriting, their markings are unaffected by activation. The relative order of rewrit
and notification(s) is thus immaterial for them and they end up with the same n
marking regardless.

For case (d), regarding (theg′ image or theht′ image of) aP – L nodeq, there are two
contributing subcases depending on the out-arcs ofq. Subcase (d1) concerns all notifi
cation out-arcs ofq whose child node is (a node whoseg′ image, resp.ht′ image, is the
rGN,GN′ image, resp. therGN,Ht′ image, of)t, or whose child node is the LHS of a redi
rection where the RHS node is (therGN,GN′ image, resp. therGN,Ht′ image, of)t. If there
are such notification out-arcs, then we haveΠ by the above quotedM-I .11.4.(7) orM-
I .11.4.(9), sincet can only have been matched to an implicit node ofL because of its
active marking.  Subcase (d2) concerns all other out-arcs ofq.

Regarding the images ofq in the various graphs, if notification is done first, the chil
node of (d1) out-arcs ofht′(q) is idle in Ht′, but active inJt, whereuponjt(q) receives
notifications along the (d1) out-arcs which decrease its suspension marking inKt. (N.B.
Because of the earlier notification fromt, the only suspended parents thatrGN,Jt

(t) has,
are the parent nodes of these (d1) out-arcs.) If rewriting is done first, the child nod
(d1) out-arcs ofg′(q) is active inGN′, hence inHf, whereupon the (d1) out-arcs join the
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image of the notification redex inHf. hf(q) therefore receives notifications along th
(d1) out-arcs which decrease its suspension marking inKf. Since by contractum build-
ing, the images ofq start with the same number of suspensions, and also have the s
number of (d1) out-arcs, the markings on them inKt andKf are the same. The (d2) out-
arcs do not affect the node markings of contractum nodes.

Finally for case (e) nodes, it is clear that they end up with the same marking regar
of the order of the steps, since either they retain the same marking throughout, or
start idle and fall into the appropriate image ofAct at some point, thence acquiring the
active marking.

For arcs, there are four disjoint cases: (a) arcs of the notification redex; (b) contra
arcs in the (d1) subcase of case (d) for nodes discussed above; (c) all other contr
arcs; (d) all other arcs.

For case (a) arcs, they start off as notification arcs, and end up as normal arcs, rega
of the order of steps. Likewise for case (b) arcs; depending on order of steps, they e
become normal arcs at the same time as the case (a) arcs, or later, during the ex
tification. Case (c) and case (d) arcs retain their arc marking throughout, regardle
the order of steps.  We are done.

Lemma 7.5 Let GN = [G0, …, GN] be a transitive coercing preexecution of a MONST
systemR. SupposeGN contains an active function nodeswith Susp(s) ≠ ∅, where the
Susp set of a function node is given in definition 3.3. SupposeGN also contains an ac-
tive function nodef, all of whose (Map(σ(f)) – State(σ(f))) arguments are idle construc
tors, and whose State(σ(f)) argument (if any, let it bev) is an idle constructor or
stateholder, and which is thus the root of a redexg : L → GN for some ruleD = (P, root,
Red, Act).  Let

Susp = {k ∈ Map(σ(s)) | α(s)[k] is non-idle, or
α(s)[k] is idle andσ(α(s)[k]) = ⊥, or
α(s)[k] is idle andσ(α(s)[k]) ∈ F, or
[ k ∈ (Map(σ(s)) – State(σ(s))) and
α(s)[k] is idle andσ(α(s)[k]) ∈ V ] }

SuspNodes = {x ∈ GN | x = α(s)[k] for somek ∈ Susp}

Susp = {k ∈ Map(σ(s)) | k ∉ Susp}
SuspNodes = {x ∈ GN | x = α(s)[k] for somek ∈ Susp}

Suppose for every redirection (a, b) ∈ Red, eitherb is non-idle orb ∈ Act.  Let

SuspAct = (SuspNodes∩ g(Act ∪ {b | (a, b) ∈ Red, a ∈ Act, b ∈ L}))
– ({α(f)[k] | k ∈ State(σ(f))} ∩ {α(s)[k] | k ∈ State(σ(s))})

Π  ≡ SuspAct≠ ∅

Let Hs be obtained by performing a suspension froms in GN. Let Hf be obtained by
rewriting the redex rooted atf in GN, via the usual phasesg′ : P → GN′, g′′ : P → GN′′,
hf : P → Hf, and associatedi andr maps.  Then

(1) (a) rGN,Hf
(s) = iGN,Hf

(s) is an active function node ofHf with non-empty

Susp set.  HencerGN,Hf
(s) the root of a potential suspension step inHf.

(b) rGN,Hs
(f) = iGN,Hs

(f) is an active function node, and
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hs = rGN,Hs
g : L → Hs

is a redex forD, such that all (Map(σ(rGN,Hs
(f))) – State(σ(rGN,Hs

(f)))) ar-

guments ofrGN,Hs
(f) are idle constructors, and any State(σ(rGN,Hs

(f))) ar-

gument is an idle constructor or stateholder, hence is the redex
potential rewrite inHs.

Let Jf be obtained fromHf by performing a suspension fromrGN,Hf
(s). Let Js be ob-

tained fromHs by rewriting the redex rooted atrGN,Hs
(f) in Hs, via the usual phases

hs′ : P → Hs′, hs′′ : P → Hs′′, js : P → Js, and associatedi andr maps.  Then

(2) If Π  Then Every node inrGN,Jf
(SuspAct) (resp.rGN,Js

(SuspAct)) is an

active constructor, hence the root of a potential notification ste
in Jf (resp.Js).

Let Kf andKs be given by

If   notΠ Then Kf = Jf andKs = Js
Else Kf (resp.Ks) = the result of performing notifications from each node in

rGN,Jf
(SuspAct) inJf (resp.rGN,Js

(SuspAct) inJs)

Then

(3) Kf andKs are marking preserving isomorphic via a mapψ : Kf → Ks; apart from
the exceptional case in whichf ands share the same stateholder or construct
node, both in stateholder position, and thef rewrite either redirects it (to a non-
idle node, or activated node, or⊥-node), or merely activates it without redirec
tion. In symbols if: State(σ(s)) = {ks} ; State(σ(f)) = {kf} ; α(s)[ks] = α(f)[kf] =
v ; µ(rGN,Kf

(v)) = µ(rGN,Ks
(v)) ≠ ε or σ(rGN,Kf

(v)) = σ(rGN,Ks
(v)) = ⊥: In such a

case,rGN,Kf
(s) has an extra suspension marking compared withψ(rGN,Kf

(s)) =

rGN,Ks
(s), and the arc (rGN,Kf

(s)ks
, rGN,Kf

(v)) is a notification arc, whereas

ψ((rGN,Kf
(s)ks

, rGN,Kf
(v))) = (rGN,Ks

(s)ks
, rGN,Ks

(v)) is a normal arc. Even in the

exceptional case,Kf andKs are marking preserving isomorphic viaψ aside from
the stated details.

Proof. Obviouslyf ≠ s sincef has an empty Susp set whiles does not. Equally obvi-
ously, f’s Map(σ(f)) arguments do not include most kinds of suspension redex no
since the latter are non-idle, or idle functions, or⊥-nodes, or idle stateholders in the
wrong place. (In fact one of the latter could be the stateholder argument off, but this is
the only possible exception.) However, this does not prevent the suspension r
nodes from occurring as implicitly matched arguments of the rewriting redex. Beca
the out-arcs off ands are disjoint, and the out-arcs of implicitly matched nodes of t
rewriting redex are not part of that redex, it is clear that the sets of arcs of the two
dexes are disjoint.

Consider performing the suspension to createHs. EvidentlyGN andHs are graph struc-
ture isomorphic. And since for suspensions, the only nodes whose markings chang
s itself and any idle function activated in the suspension,rGN,Hs

(f) is active inHs and
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(1).(b) follows. Let us compare the rewriting processes that createHf from GN andKs
from Hs using the ruleD.  Let

θ : GN → Hs

be the graph structure isomorphism mentioned already. The respective contra
building phases clearly allow its extension to a graph structure isomorphism

θ′ : GN′ → Hs′

such that the obvious triangle involvingg′ : P → GN′ andhs′ : P → Hs′ commutes. The
redirection phase admits a further extension to a graph structure isomorphism

θ′′ : GN′′ → Hs′′

such that the triangle involving the node mapsg′′ : P → GN′′ andhs′′ : P → Hs′′ com-
mutes too. Likewise the activation phase finally yields the graph structure isomorp

θ′′′ : Hf → Js

such that the triangle involvinghf : P → Hf andjs : P → Jscommutes. (In particular the
equalityσ(rGN,Kf

(v)) = σ(rGN,Ks
(v)) mentioned in clause (3) of the lemma is guarante

to hold.)

As in the previous lemma, the definition of rewriting 3.8 shows that the only active n
of the rewritten graph that ends up idle in the result, is the root of the redex. The
other nodes that can undergo a change of marking are the activated nodes which,
start off idle, end up active. Thus we conclude that sincef ≠ s, rGN,Hf

(s) is active inHf.
To get 1.(a), we must show thatrGN,Hf

(s) has a non-empty Susp set. For this is it is su
ficient to notice that the rewrite cannot make a non-root non-idle node idle, nor cha
the symbol on a node, nor redirect a node to an idle non-⊥-node. So each Susp argu
ment ofsbecomes a Susp argument ofrGN,Hf

(s), and in fact these may be joined by oth
ers ifSuspAct≠ ∅, or if a node in stateholder position for bothf ands, is redirected or
activated.  So 1.(a) holds.

By the rather stringent conditions for rewrite redexes, (2) holds trivially. To get (3)
must follow what happens to the markings on the nodes and arcs.

For arcs there are five disjoint cases: (a) all arcs (sk, f), for any applicablek ∈ Susp,
which must all be normal arcs inGN; (b) other arcs of the suspension redex (i.e. who
child nodes are in SuspNodes); (c) all arcs (sk, x) not in the suspension redex, but with
k ∈ (Map(σ(s)) – State(σ(s))); (d) any arc (sk, x) not in the suspension redex, but withk
∈ State(σ(s)); (e) all remaining arcs, whether already existing inGN, or introduced dur-
ing rewriting, (this includes all arcs (sk, x), for anyk ∉ Map(σ(s))).

For case (a) arcs, if rewriting is done first, they remain normal during the rewrite,
sincef is redirected to a non-idle node or activated node or⊥-node, they become noti-
fication arcs after the suspension. If the redirection target was aSuspAct node, they be-
come normal after the final notification; otherwise not. If the suspension is done
they become notification arcs immediately, and remain so during the rewrite. Du
the final notification, they become normal if the redirection target was aSuspAct node;
otherwise not.

For case (b) arcs, they are unaffected by rewriting, and become notification arcs
the suspension, regardless of the order of steps, remaining so in the final notificati
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any). For case (c) arcs, if the rewrite is first, they remain normal throughout; unless
child node was inSuspAct, in which case they become notification arcs after the s
pension, returning to normal after the final notification. If the suspension is first, t
remain normal through both the suspension and rewrite and final notification.

If there is a case (d) arc, its child is an idle constructor or stateholder. Either may
activated, and a stateholder may get redirected by the rewrite, which will make the
child a non-idle node or⊥-node. Therefore if any of these happen and the rewrite
done first, it joins the suspension redex, and becomes a notification arc during the
pension; this does not happen if the rewrite comes second. The arc is unaffected
final notifications whatever the order. For case (e) arcs, they retain the marking the
in GN, or were given during contractum building, regardless of the order of steps, ex
for contractum notification arcs with contractum parent nodes andSuspAct child nodes,
which become normal after the final notification, regardless of order of steps.

For nodes there are six disjoint cases: (a)s; (b) f; (c) nodes in SuspNodes other thanf
and its child in stateholder position (if applicable); (d) nodes inSuspNodes other than
the child off in stateholder position if any; (e) the child off in stateholder position if
any; (f) all remaining nodes, whether already existing inGN, or introduced during re-
writing.

For the case (b) nodef, its marking is unaffected by the suspension, and it is quiesc
during the rewrite. This holds regardless of the order of the steps. For the cas
nodes, the non-idle nodes remain so, regardless of the order of steps, being unaf
by any activations from the rewrite, or final notification. Any idle functions are activ
ed either (perhaps) by the rewrite, or by the suspension, and remain thus. Idle state
ers, might be activated by the rewrite, or not regardless of order;⊥-nodes remain so. For
the case (d) nodes, we know they must be idle constructors. During the rewrite,
might be activated, but will subsequently notify in the final notification. In such a ca
if the rewite is first they join the suspension redex, otherwise not.

For case (e), if there is a child off in stateholder position, if it occurs in SuspNodes, th
argument is as for the SuspNodes nodes, since it must be an idle stateholder in con
tor position fors. Thus it may (or may not) be activated, or redirected to a non-idle no
or activated node or⊥-node by the rewrite regardless of order. If it occurs outside
the Map(σ(s)) arguments ofs, it is unaffected by the suspension and notification, wha
ever the order of steps. If it occurs inSuspNodes, either it is a constructor, in whic
case the rewrite may (or may not) activate it regardless of order. If the rewrite doe
tivate it, it joins the suspension redex if the suspension occurs second, and provid
is not in stateholder position ofs, it notifies in the last step, again regardless of ord
Otherwise if it occurs inSuspNodes, it must be a stateholder, in which case it mus
the stateholder argument ofs as well as that off. In this case, the rewrite may activate
it, or redirect it (to a non-idle or activated or⊥-node) whereupon, if the suspension oc
curs second, it joins the suspension redex. (In any case the equalityµ(rGN,Kf

(v)) =
µ(rGN,Ks

(v)) (whenα(s)[ks]) = α(f)[kf]) = v) mentioned in clause (3) of the lemma i
guaranteed to hold.)

For case (f) nodes, either they retain the marking they had inGN, or were given during
contractum building; or they undergo an activation. This holds regardless of the o
of the steps.
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For the case (a) nodes, if suspension is done first, its marking changes from active
suspended, with as many suspensions in total, as there are: Map(σ(s)) arcs to case (c)
nodes, plus Map(σ(s)) arcs tof if f is a matched argument ofs, plus (Map(σ(s)) –
State(σ(s))) arcs to the stateholder child off (in stateholder position off) if any, if it is
a constructor position argument ofs. The marking remains during the rewriting ste
and final notification.

If rewriting is done first, the Map(σ(s)) argument arcs tof (if any), become redirected
to an activated node or non-idle node or⊥-node. Similarly for the Map(σ(s)) argument
arcs to the childv of f in stateholder position if it got activated or non-root redirecte
If in fact either occured, andvwas also in stateholder position ofs, the fact thatrGN,Hf

(v)
is non-idle or a⊥-node, means it joins the suspension redex ofrGN,Hf

(s). The rewrite
also potentially activates some nodes, and those that are inSuspAct join the suspension
redex ofrGN,Hf

(s) as well. These latter, notify during the final notification, so that th
suspension marking onrGN,Kf

(s) is one more than that onrGN,Ks
(s) if rGN,Hf

(v) joined
the suspension redex ofrGN,Hf

(s), otherwise being the same.  We are done.

Lemma 7.6 Let GN = [G0, …, GN] be a transitive coercing preexecution of a MONST
systemR. SupposeGN contains two active function nodesf1 ≠ f2. Suppose fori ∈ {1,
2}, all of the (Map(σ(fi)) – State(σ(fi))) arguments offi are idle constructors, and any
State(σ(fi))) argument offi is an idle constructor or stateholder, and suppose theref
thatfi is the root of a redexgi : Li → GN for some ruleDi = (Pi, rooti, Redi, Acti). Sup-
pose for each redirection (a, b) ∈ Redi, eitherb is non-idle orb is in Acti. For either
choice ofi ∈ {1, 2}, let j denote the other choice. IfLi (the left subpattern ofPi) contains
an explicit stateholder, let it besi. If for someti ∈ Pi, (si, ti) ∈ Redi, then we sayDi
redirectssi, otherwise not.

Let

MapNodesi = {x ∈ GN | x = α(fi)[k] for somek ∈ Map(σ(fi)}
RedNodesi = {x ∈ GN | x = gi(a) for some (a, b) ∈ Redi}
LActNodesi = gi(Acti ∪ {b | (a, b) ∈ Redi, a ∈ Acti, b ∈ Li})

Suppose

g1(s1) = v1 = v2 = g2(s2) ⇒  [ For bothi ∈ {1, 2}, Di does not redirectsi ].

Let Hi be obtained by rewriting the redex rooted atfi in GN, via the usual phasesgi′ :
Pi → GNi′, gi′′ : Pi → GNi′′, hi : Pi → Hi, and associatedi andr maps.  Let

RedGNi = {(x, y) ∈ GN×GN | for some (a, b) ∈ Redi, gi(a) = x, gi(b) = y}
Redi° = {(x, y) ∈ GN×GN | for some (a, b) ∈ Redi, gi(a) = x, gi(b) = y,

 andx RedGNi+ x}
Red1&2° = {(x, y) ∈ GN×GN | for some (a, b) ∈ (RedGN1 ∪ RedGN2),

[(g1(a) = x andg1(b) = y), or (g2(a) = x andg2(b) = y)],
andx (RedGN1 ∪ RedGN2)+ x}

Let

NNi.1 = LActNodesi ∩ MapNodesj

Then
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(1) Noti.1 = rGN,Hi
(NNi.1) = iGN,Hi

(NNi.1) contains only active constructors, possibl

combined with an active stateholder.

Let Mi be the result of performing notifications from all nodes inNoti.1.

Then

(2) rGN,Mi
(fj) = iGN,Mi

(fj) is an active function node ofMi, and

mi = rGN,Mi
gj : Lj → Mi

is a redex forDj, such that all the (Map(σ(rGN,Mi
(fj))) – State(σ(rGN,Mi

(fj)))) ar-

guments ofrGN,Mi
(fj) are idle constructors, and any State(σ(rGN,Mi

(fj))) argument

is an idle constructor or stateholder, hence is the redex of a potential rewri
Mi.

LetNi be obtained fromMi by rewriting the redex rooted atrGN,Mi
(fj) in Mi, via the usual

phasesmi′ : Pj → Mi′, mi′′ : Pj → Mi′′, ni : Pj → Ni, and associatedi andr maps.

Let

NN3  = (LActNodes1 ∪ LActNodes2) ∩
((MapNodes1 – RedNodes1) ∪ (MapNodes2 – RedNodes2))

Then

(3) Noti.3 = rGN,Ni
(NN3) = iGN,Ni

(NN3) contains only constructors and stateholder

each in either the active or idle state.

Let Ki be the result of performing notifications from all active nodes inNoti.3.

Then

(4) K1 andK2 are marking preserving isomorphic via a mapψ : K1 → K2; apart from
the exceptional cases where

(a) Dj shares and activates an unredirected unactivated stateholder oDi
which has a notification contractum in-arc. In symbols if: for somepi ∈
Pi, 0 <z= |{ l | α(pi)[l] = si, ν(pi)[l] = ^, vi ∉ RedNodesi, vi ∉ LActNodesi,
vi ∈ LActNodesj, vi ∈ MapNodesj} |. In such a case, ifµ(iNj,Kj

(nj(pi)))

= #q, thenµ(iHi,Ki
(hi(pi))) = #(q–z), and each relevant arc (iNj,Kj

(nj(pi))l,

rGN,Kj
(vi)) is a notification arc, whereas (iHi,Ki

(hi(pi))l, rGN,Ki
(vi)) is a nor-

mal arc. (And these respective pairs of nodes and arcs correspond vψ
or ψ–1 according to the subscripts.)

(b) Dj activates a redirected stateholder ofDi which has a notification in-arc
in GN (and similarly forj). In symbols if: for someu ∈ GN, zi = |{ l | α(u)[l]
= vi, ν(u)[l] = ^, vi ∈ RedNodesi, vi ∈ LActNodesj} |, andzj = |{ l | α(u)[l]
= vj, ν(u)[l] = ^, vj ∈ RedNodesj, vj ∈ LActNodesi} |, and 0 <zi + zj. In

such a case, ifµGN
(u) = #q, then we haveµ(iGN,Ki

(u)) = #(q–zj) and
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µ(iGN,Kj
(u)) = #(q–zi); and each relevant arc (iGN,Ki

(u))l, rGN,Ki
(vj)) is a no-

tification arc, whereas (iGN,Kj
(u))l, rGN,Kj

(vj)) is a normal arc, and each rel-

evant arc (iGN,Kj
(u))l, rGN,Kj

(vi)) is a notification arc, whereas (iGN,Ki
(u))l,

rGN,Ki
(vi)) is a normal arc. (And these respective pairs of nodes and a

correspond viaψ or ψ–1 according to the subscripts.)

Even in the exceptional cases,K1 andK2 are marking preserving isomorphic via
ψ apart from the stated details.

Proof. Sincefi ≠ fj, and both are active, and because all (Map – State) arguments of
f’s are idle constructors and any State argument must be an idle constructor or state
er, the only overlap between ({fi} ∪ MapNodesi) and ({fj} ∪ MapNodesj) is on common
idle constructors, or a single shared but unredirected idle stateholder. (Of cours
plicitly matched nodes of either redex may match arbitrary nodes, including arbit
nodes of the other redex). Noting that an activation from the first rewrite does not a
the root of the redex of the second, clauses (1), (2) and (3) are clear.

It remains to establish the marking preserving isomorphism claimed in (4), which
do in five stages.

Stage 1.First we define a bijection between the nodes ofK1 andK2. Images ofGN in
K1 andK2 are made to correspond, as are corresponding images of contractum n
and any⊥-nodes introduced during redirection.  Thus

θ : NK1
→ NK2

where

θ(iGN,K1
(x)) = iGN,K2

(x)  for x ∈ GN

θ(iH1,K1
(h1(p1))) = iN2,K2

(n2(p1))  for p1 ∈ NP1
 – NL1

θ(iN1,K1
(n1(p2))) = iH2,K2

(h2(p2))  for p2 ∈ NP2
 – NL2

θ(iH1,K1
(q1.1)) = iN2,K2

(q1.2)  for 〈q1.1, q1.2〉 ∈
{ 〈iGN1′′,H1

iGN,GN1′′([–]°), iM2′′,N2
iGN,M2′′([–]°)〉 |

[–]° ⊆ Red1°∗},
θ(iN1,K1

(q2.1)) = iH2,K2
(q2.2)  for 〈q2.1, q2.2〉 ∈

{ 〈iM1′′,H1
iGN,M1′′([–]°), iGN2′′,H2

iGN,GN2′′([–]°)〉 |
[–]° ⊆ Red2°∗},

θ(iN1,K1
(q3.1)) = iN2,K2

(q3.2)  for 〈q3.1, q3.2〉 ∈
{ 〈iGN1′′,N1

iGN,GN1′′([–]°), iGN2′′,N2
iGN,GN2′′([–]°)〉 |

[–]° ⊆ (Red1&2°∗ – (Red1°∗ ∪ Red2°∗))}

We can see that this is a well defined bijection, provided we note some things. Firs
assume a sufficiently fussy construction for disjoint union during contractum build
has ensured all introduced nodes are distinct. Second, the composition symb
which occur, hide a slight abuse of notation. The earlier map in the composition re
to an equivalence class of nodes (i.e. a set of nodes), before they have been forme
a ⊥-node; the latter one, to the⊥-node itself (i.e. an individual node). Thirdly, the las
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three cases are genuinely disjoint since the cycle of nodes that forms a⊥-node during
redirection has the property that each member is both the left node and the right
of a redirection. As we are dealing with redexes which already exist inGN, witnesses
to the cycles that comprise the⊥-nodes created, also exist already. Thus inGN, since
for every left node of a redirection there is a unique right node, cycles entirely conta
in the first redex are disjoint from those contained in the second redex. These in
are disjoint from cycles spanning both redexes, since the latter consist of (an
number of) chains contained entirely in one or other redex, for which the first nod
not the right node of a redirection, and the last node is not the left node of a redirec
but such that the chains glue together suitably to form the cycle; and for which the
rewrite (in whichever order), shorts out the pieces relevant to that rewrite, creati
genuine cycle for the second rewrite. (We will see all this in a little more detail belo

This completes stage 1.

Now we extendθ to a graph structure isomorphism by checking out the arcs. This
cupies three stages since we argue separately about arc tails and arc heads (so e
is covered by one of the head cases and one of the tail cases), and then bring th
together in a third stage.

Stage 2.We first check the arc tails, which are easy since tails of arcs never move du
redirection. So the cases above for nodes extendθ immediately to a bijection on tails
of arcs asθ-related nodes have the same arity.

Stage 3.Since arc heads follow the redirection functions under rewriting, we next c
culate therW,Ki

functions of all nodes, whereW is as appropriate for the node in ques
tion. Then we check thatθ expresses the right relationship between the vario
possibilities. There are seven cases, following the breakdown of cases forθ above (the
last case splits into two): (a) nodes ofGN whereW is GN; (bi) contractum nodes intro-
duced in theDi rewrite whereW is eitherHi or Ni depending on order of rewriting; (ci)
⊥-nodes properly belonging to one or other rewrite whereW is eitherHi orNi depending
on order of rewriting; (di) ⊥-nodes properly belonging to both rewrites whereW is Ni.

We note that RedNodesi ∩ RedNodesj = ∅ follows easily from the hypotheses; and
from this we conclude

rGN,Hi
(y) = iGN,Hi

(y) for all y ∈ RedNodesj
rGN,Hj

(y) = iGN,Hj
(y) for all y ∈ RedNodesi

Now for case (bi), for an instantiated contractum nodex, sayx = w(ci), for either version
of Wwherew : Pi → W, we haverW,Ki

(x) = iW,Ki
(x). This is because the first rewrite, o

Di say, only redirects nodes in RedNodesi, and the second rewrite, perforce ofDj, only
redirects nodes inrGN,Mi

(RedNodesj) = iGN,Mi
(RedNodesj). Neither of these includes

any instantiated contractum nodes. It is clear thatθ expresses the right relationship be
tween therW,Ki

(x) images of such nodes.

A similar argument works for cases (ci) and (di), because⊥-nodes are not redirected ei
ther. ThusrW,Ki

(x) = iW,Ki
(x) for such nodes, and againθ gives what is required.

For a case (a) nodex there are three subcases: (a.1)x ∉ (RedNodesi ∪ RedNodesj);
(a.2i) x ∈ RedNodesi.
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For subcase (a.1), supposeDi rewrites first. We haverGN,Hi
(x) = iGN,Hi

(x). Subsequent-
ly iGN,Mi

(x) is not redirected in theDj rewrite either, andrGN,Ki
(x) = iGN,Ki

(x). By sym-
metry we getrGN,Kj

(x) = iGN,Kj
(x) if Dj rewrites first. Therefore by the first clause fo

θ, we findθ(rGN,K1
(x)) = rGN,K2

(x) as required.

For the subcases (a.2i), there are a large number of sub…subcases, depending on how
the redirections combine together. Considerx ∈ (RedNodesi ∪ RedNodesj). Sox =
gi!j (a) (wherei!j stands for eitheri or j), for some redirection (a, b) ∈ (Redi ∪ Redj).
Considerb. It is either a contractum node (caseC) and the analysis stops, or not. If not
theny = g(b) is either not in (RedNodesi ∪ RedNodesj) (caseI) and the analysis stops,
or it is. In the latter case, eithery is a node we have analysed already (caseR⊥) and the
analysis stops having found a cycle of redirections, or not and we continue the ana
with y (caseR). And so on. For any givenx ∈ (RedNodesi ∪ RedNodesj), the whole
process continues for at most four steps, since that is the maximum number of di
redirections.

Each possible combination for a nodex ∈ (RedNodesi ∪ RedNodesj) corresponds to a
connected directed graph of redirections, with a single source vertex, with each v
having at most one out-edge, whose directed edges are given by the (a, b) ∈ (Redi ∪
Redj), with verticesb andc identified iff gi!j (b) = gi!j (c), and with each edge (a, b) col-
ouredi or j according to whether (a, b) is in Redi or in Redj. Fig. 10 shows the cases o
length 4, supressing thei andj colouring (which serves to multiply the number of pos
sibilities by a factor of 6), and for theR⊥ cases indicating the previously encountere
vertex with a blob.

We can see that the complete set of possibilities for a nodex ∈ (RedNodesi ∪ RedN-
odesj) is given by an expression of the form .R…R.X, where: the chain .R…R. contains
at least none, and at most threeR’s; X is C or I or R⊥, and ifR⊥ then one of the preceding
dots is a blob; and where eachR or X is colouredi or j with at most two of any one colour
occurring.

subcase (a.2.R.R.R.C)

subcase (a.2.R.R.R.I)

subcase (a.2•R.R.R.R⊥)

Fig. 10   Cases for redirection chains of length 4.

subcase (a.2.R•R.R.R⊥)

subcase (a.2.R.R•R.R⊥)

subcase (a.2.R.R.R•R⊥)



in

ds in
t for

our
the

ect-

chain

t

-
s

ir-
last

s

er

dis-
s also

case
Where bothi andj colours occur for some particular case, both rewrites play a role
determining the ultimate redirection target forx, otherwise only one of them does.

Suppose only one colour occurs, so the chain is of length at most 2. If the case en
C, thei–,– image of the contractum node instance provides the final redirection targe
x regardless of the order of rewriting. If the case ends inI, the i–,– image of the root
node of the relevant [–]- class (which is certainly not redirected because only one col
occurs), provides the final redirection target regardless of the order of rewriting. If
case ends inR⊥, thei–,– image of the⊥-node for the relevant [–]° class provides the final
redirection target regardless of the order of rewriting. All these possibilities are corr
ly related byθ.

Suppose both colours occur. Then any maximal single coloured segment of the
which is not the last segment of the whole chain, must relate to part of a [–]- class of the
appropriate rewrite (say theDi rewrite), and its final vertex (corresponding to the roo
node of the [–]- class) is necessarily implicitly matched byDi to a node that is explicitly
matched byDj to the left node of a redirection ofDj.

SupposeDi rewrites first and that the last segment belongs toDj. Then it is clear that
the redirections of theDi rewrite serve to short-circuit thei-coloured segments, by redi-
recting all non-root nodes of each relevant [–]- class to its root. As the root also corre
sponds to the initial vertex of the followingj-coloured segment, the whole chain i
transformed into one of the single coloured cases dealt with above, for theDj rewrite.

Now supposeDj rewrites first. Allj-coloured segments except the last act as short-c
cuits as previously, but now the final segment participates in the rewrite too. If the
edge of the last segment ends in theC or I cases, then the redirections of theDj rewrite
short circuit this segment, and transform the immediately precedingi-coloured segment
of the original chain from a pure short-circuit, to aC or I -ended case respectively, a
this preceding segment now becomes the last part of the chain for theDi rewrite. If the
last edge of the last segment ends inR⊥, there are two subcases, depending on wheth
the cycle consists purely of edges of a single colour (necessarilyj), or whether both col-
ours are involved. If the former, then the last segment acts like theR⊥-ended case for
the single coloured situation, creating a⊥-node for the relevant [–]° class, which puts
the precedingi-coloured segment into theI-ended case, as the⊥-node does not get re-
directed. If the latter, then the last segment just acts like another of the previously
cussed short-circuits, as its final vertex necessarily corresponds to a node which i
the left node of a redirection (of either theDi or theDj rewrite). In this case, theDj re-
write short-circuits part of the cycle, creating a smaller cycle for theDi rewrite, which
now falls into anR⊥-ended case for the single coloured situation.

Tedious detailed calculations for all the possibilities, along the lines of that for sub
(a.1), confirm that the results for either order of rewriting are correctly related byθ.

This completes stage 3.

Stage 4.We now utilise the results of stage 3 to show that all arcs ofK1 andK2 are re-
lated as required. There are three cases: (a) arcs ofGN; (bi) instantiations of contractum
arcs ofDi.

Let (pk, c) be an arc ofGN. Thenθ(iGN,K1
(p)) = iGN,K2

(p) by stage 2, andθ(rGN,K1
(c))

= rGN,K2
(c) by stage 3, so
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θ((iGN,K1
(p)k, rGN,K1

(c))) = (iGN,K2
(p)k, rGN,K2

(c))

and we have what we need for case (a) arcs.

For case (bi) arcs there are two subcases: (bi.C) where the child node is an instantiation
of a contractum node; (bi.I) where the child node is a matching image of a left patte
node.

For case (bi.C), let (pk, c) be an arc between two contractum nodes ofDi. Case (bi) of
stage 3 assures us that the instantiations of neitherp nor c get redirected. The homo-
morphic nature of the contractum building phase, the second and third clauses forθ, and
symmetry, then assure us that

θ((iH1,K1
(h1(p))k, rH1,K1

(h1(c)))) = ((iN2,K2
(n2(p)))k, rN2,K2

(n2(c)))

if Di = D1, and

θ(((iN1,K1
(n1(p)))k, rN1,K1

(n1(c)))) = (iH2,K2
(h2(p))k, rH2,K2

(h2(c)))

otherwise.

For case (bi.I), let (pk, c) be an arc from a contractum nodep to a left pattern nodec of
Di. We first note that due to the homomorphic nature of the contractum building ph
the homomorphismgi′ : Pi → GNi′ guarantees thatGNi′ has a copy,gi′((pk, c)) of (pk, c)
if Di rewrites first, and the homomorphismmj′ : Pi → Mj′ guarantees thatMj′ has a copy,
mj′((pk, c)) of (pk, c) if Di rewrites second. Case (bi) of stage 3 assures us that the in
stantiations ofp do not get redirected. So forp, noting thatiGNi′,Hi

(gi′(p)) = hi(p) in the
first case, andiMi′,Ni

(mi′(p)) = ni(p) in the second case, we can use the second and t
clauses forθ as above.

For c, there will be a nodex ∈ GN such thatiGN,GNi′(x) = rGN,GNi′(x) = gi′(c) in the first
case, andrGN,Mj′(x) = mj′(c) in the second case, given that we have clause (2) of the t
orem. Now using stage 3 forx ∈ GN, (which allows us to factorise therGN,K1

(x) and
rGN,K2

(x) maps atGNi′ and atMj′), and symmetry, allows us to conclude that

θ((iGN1′,K1
(g1′(p))k, rGN1′,K1

(g1′(c)))) = (iM2′,K2
(m2′(p))k, rM2′,K2

(m2′(c)))

if Di = D1, and

θ((iM1′,K1
(m1′(p))k, rM1′,K1

(m1′(c)))) = (iGN2′,K2
(g2′(p))k, rGN2′,K2

(g2′(c)))

otherwise.

At this pointθ is a graph structure isomorphism.

Stage 5.Finally we turn our attention to the markings, starting with the node markin

There are eleven disjoint cases: (ai) the rootfi; (bi) nodes in RedNodesi other thanfi (if
any); (ci) nodes in MapNodesi – Rednodesi; (di) instantiations of contractum nodes o
Di; (e) ⊥-nodes created by either rewrite; (f) non-idle nodes ofGN not previously men-
tioned; (g) idle nodes ofGN not previously mentioned.

For case (ai), fi is quiesced in theDi rewrite. If it occurred in ActNodesj then if Di re-
writes first, the redirection offi to a non-idle, or activated, or⊥- node ensures that the
nodeiGN,Mi

(fi) is not accessible to theDj rewrite later; ifDj rewrites first, it is unaffected
by any activation, being active already.  Soµ(iGN,K1

(fi)) = µ(iGN,K2
(fi)) = ε.
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For case (bi), the redirected stateholdervi starts off idle. IfDi rewrites first, it is redi-
rected to a non-idle, or activated, or⊥- node, and henceiGN,Mi

(vi) is idle and remains
immune to any activation fromDj. If Dj rewrites first, it may be activated, but then no
tifies, ready for theDi rewrite, which is as before. Either way we have,µ(iGN,K1

(vi)) =
µ(iGN,K2

(vi)).

For case (ci), the relevant nodes are idle constructors and possibly a stateholder w
is not redirected. Such a node may be activated by the first rewrite, and if it is mat
by the second rewrite, notifies immediately beforehand. It may be activated again
in any event, it notifies in the last step if it is active by then. Either way, for such a n
ci, µ(iGN,K1

(ci)) = µ(iGN,K2
(ci)) = ε.

For case (di), a contractum nodedi, an instantiation of nodepi of Di, is first created with
the marking specified by the rule, regardless of the order of rewriting. The only w
that this can change, is if it has a notification out-arc to a child node which is one o
notifying nodes, or it receives an activation via a redirection. These two possibil
are mutually exclusive. If an activation changes the marking,di must have been created
idle, ends up active regardless of rewriting order, and cannot receive notification
balancedness.

If it receives a notification,di must have been created suspended. In that case any
vant child node is either among the MapNodes nodes (of either rewrite) and is activ
by Di, or is the unredirected and unactivated stateholder node of theDi rewrite, (byM-
I.11.4.(7),(9) and the hypotheses for redirections ofDi and for which nodes notify). In
the former case, the notification takes place regardless of the order of rewriting, an
gardless of whetherDj also activates the node, because any arc can only be noti
once, and the hypotheses guarantee that this happens. The same applies in th
case ifDj does not activate the node. In these cases therefore, we haveµ(iHi,Ki

(hi(pi)))
= µ(iNj,Kj

(nj(pi))).

However in the latter case, ifDj does activate the node, it ends up with different mar
ings depending on rewriting order. Thus ifDj rewrites first, it activates the stateholde
node of theDi rewrite which promptly notifies, beforedi has been instantiated, and thu
iNj,Kj

(nj(pi)) has not received a notification. IfDi rewrites first, the instantiation ofpi is
now earlier, andiHi,Mi

(hi(pi)) is around and able to receive the notification following th
activation from theDj rewrite. For this case therefore,µ(iHi,Ki

(hi(pi))) has as many few-
er suspension markings compared toµ(iNj,Kj

(nj(pi))), as there are notification out-arcs
from pi to si in Di.

For case (e), we note that a⊥-node is immune to activations, and cannot receive not
cations because it has no out-arcs, soµKi

(⊥) = µKj
(⊥) = ε, for anyθ-related⊥-nodes in-

dicated informally by⊥.

For case (f), the marking of an otherwise not discussed non-idle nodeu of GN can only
be affected if it is suspended and receives a notification. In this case the child no
question must belong to (MapNodesi ∪ MapNodesj). If the child is never redirected, or
never activated (or both), for either order of rewriting it either does or does not no
consistently. So ifu has only such children at worst, we getµ(iGN,K1

(u)) = µ(iGN,K2
(u)).

The same holds if the child is redirected (and/or perhaps activated) by one rewrite
not activated by the other.

However, if the child is redirected byDi and activated byDj (which means the child
must bevi), if Di rewrites first, the child is redirected to a non-idle, or activated, or⊥-
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node, which means that it is immune to the subsequent activation fromDj, and hence
does not notify. On the other hand, ifDj rewrites first,vi is activated and immediately
notifies, so a notification goes tou. For this case therefore,µ(iGN,Ki

(u)) has as many
more suspension markings compared toµ(iGN,Kj

(u)), as there are notification out-arcs
from u to vi in GN. (N.B. For simplicity, we have assumed no out-arcs of a similar ki
from u to vj; if there are some, the required difference in number of suspensions is
difference of two such calculations.)

For case (g), an idle nodew of GN not otherwise discussed, can only have its markin
changed by virtue of receiving an activation. Sincew is not redirected, it is clear thatw
does or does not receive such an activation consistently, regardless of the order
writing.  Soµ(iGN,K1

(w)) = µ(iGN,K2
(w)).

This completes the discussion of nodes. The argument for arcs follows that for no
All arcs ofKi are either (iGN,Ki

, rGN,Ki
) copies of arcs ofGN, or (iHi,Ki

, rHi,Ki
) or (iNi,Ki

,
rNi,Ki

) copies of instantiations of contractum arcs ofDi andDj. Thus corresponding arcs
in K1 andK2 either are or are not notification arcs consistently, except for the ca
where differing numbers of notifications are received by the parent node, in which c
the arcs to the relevant stateholders are or are not notification arcs. These cases
infered easily from the discussion of nodes, so we will not comment further. We
done.

Lemma 7.7 Let GN = [G0, …, GN] be a transitive coercing preexecution of a MONST
systemR. SupposeGN contains two active function nodesfr ≠ fs. Suppose forfr, all of
the (Map(σ(fr)) – State(σ(fr))) arguments offr are idle constructors, that State(σ(fr)) =
{ kr}, and thekr’th argument offr is an idle stateholder, and suppose therefore thatfr is
the root of a redexgr : Lr → GN for some ruleDr = (Pr, rootr, Redr, Actr). Suppose the
stateholder argument ofDr is sr, and thatDr redirectssr. Suppose for each redirection
(a, b) ∈ Redr, eitherb is non-idle orb is inActr.

Suppose forfs, all of the (Map(σ(fs)) – State(σ(fs))) arguments offsare idle constructors,
that State(σ(fs)) = {ks}, and theks’th argument offs is an idle stateholder, and suppos
that fs is the root of a redexgs : Ls → GN for a resuspending ruleDs = (Ps, roots, Reds,
∅). Suppose for the root redirection (roots, bs) ∈ Redr, bs is non-idle (as is the case for
a resuspending rule).

Supposegr(sr) = v = gs(ss).

Let

MapNodesr = {x ∈ GN | x = α(fr)[k] for somek ∈ Map(σ(fr))}
MapNodess = {x ∈ GN | x = α(fs)[k] for somek ∈ Map(σ(fs))}
RedNodesr = {x ∈ GN | x = gr(a) for some (a, b) ∈ Redr}
RedNodess = {x ∈ GN | x = gs(roots) for (roots, bs) ∈ Redr}
LActNodesr = gr(Actr ∪ {b | (a, b) ∈ Redr, a ∈ Actr, b ∈ Lr})

Let Hr be obtained by rewriting the redex rooted atfr in GN, via the usual phasesgr′ :
Pr → GNr′, gr′′ : Pr → GNr′′, gr′′′ : Pr → Hr, and associatedi andr maps. LetHs be
obtained by rewriting the redex rooted atfs in GN, via the usual phasesgs′ : Ps → GNs′,
gs′′ : Ps → GNs′′, gs′′′ : Ps → Hs, and associatedi andr maps.

Let
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NNr = (LActNodesr ∩ MapNodess) – RedNodesr

Then

(1) Notr = rGN,Hr
(NNr) = iGN,Hr

(NNr) contains only active constructors.

Let Mr be the result of performing notifications from all nodes inNotr.

Then

(2) (a) rGN,Mr
(fs) = iGN,Mr

(fs) is an active function node ofMr, such that all the

Map(σ(rGN,Mr
(fs))) – State(σ(rGN,Mr

(fs)))) arguments ofrGN,Mr
(fs) are idle

constructors, and the State(σ(rGN,Mr
(fs))) argument ofrGN,Mr

(fs) is a non-

idle or⊥- node, hence is the redex of a potential suspension step inMr.

(b) rGN,Hs
(fr) = iGN,Hs

(fr) is an active function node ofHs, and

hs = rGN,Hs
gr : Lr → Hs

i s a redex forDr , such that a l l the (Map(σ ( r GN ,H s
( f r ) ) ) –

State(σ(rGN,Hs
(fr)))) arguments ofrGN,Hs

(fr) are idle constructors, and the

State(σ(rGN,Hs
(fr))) argument ofrGN,Hs

(fr) is an idle stateholder, hence is

the redex of a potential rewrite inHs.

Let Kr be obtained fromMr by performing a suspension step rooted atrGN,Mr
(fs) in Mr.

Let Msbe obtained fromHsby rewriting the redex rooted atrGN,Hs
(fr) in Hs, via the usu-

al phaseshs′ : Pr → Hs′, hs′′ : Pr → Hs′′, hs′′′ : Pr → Ms, and associatedi andr maps.

Then

(3) Nots = rGN,Ms
(NNr) = iGN,Ms

(NNr) contains only active constructors.

Let Ks be the result of performing notifications from all nodes inNots.

Then

(4) Kr andψ(Kr) ⊆ Ks are marking preserving isomorphic via a mapψ : Kr → Ks;
and the only things inKs – ψ(Kr) are the extra idle garbage nodeiGN,Ks

(fs) and

extra normal garbage arcs (iGN,Ks
(fs)l, rGN,Ks

(α(fs)[l])) for l ∈ A(σ(fs)), which

have no counterparts inKr.

Proof. Mercifully, we can reuse much of the proofs of previous lemmas with minor
terations, so we will be fairly brief. Consider performing the resuspension rewrit
produceHs. Aside from technical details of disjoint unions etc., the only difference b
tweenGN andHs is that the nodefs and out-arcs ((fs)l, α(fs)[l]) for l ∈ A(σ(fs)), which
are active and normal respectively and all live inGN, become idle and normal respec
tively and all garbage inHs; and inHs, there is a new noderGN,Hs

(fs) once suspended
with the same symbol asfs, and new arcs (rGN,Hs

(fs)l, rGN,Hs
(α(fs)[l])) for l ∈ A(σ(fs)),

all normal arcs except for (rGN,Hs
(fs)ks

, rGN,Hs
(v)) which is a notification arc. Under the

circumstances, it is clear that the maprGN,Hs
extends to an injective homomorphism
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which is marking preserving, except onfs and its stateholder out-arc. (2).(b) is now
clear.

Let us callrGN,Hs
, θ for short. As we did in lemmas 7.4 and 7.5, we can perform t

rewrites according toDr of the redexes rooted atfr ∈ GN andrGN,Hs
(fr) ∈ Hs in parallel,

constructing injective “almost” marking preserving homomorphisms phase by ph
SoMs andHr are related by an injective mappingθ′′′ : Hr → Ms, which fails to be a
marking preserving isomorphism by a node and arc marking and inMs an extra node
and its out-arcs which are garbage.

The rest is relatively straightforward. As in lemma 7.5, theDr rewrite (whatever the or-
der of rewriting), may activate some MapNodess nodes, but these can only be previous
ly idle constructors as the stateholders are assumed shared, so the awkward cases
in lemma 7.5 do not arise, and (1), (2).(a) and (3) are now clear.

When the notificationsHr → Mr andMs → Ks are performed, a similar relationship, le
us call it θ′′′′ : Mr → Ks, holds as forHr andMs. Finally when the suspension step
Mr → Kr is performed, there results the mapψ : Kr → Ks, which is a marking preserving
injective homomorphism, such that the only things inKs falling outside the image ofψ
are the previously noted garbage nodeiGN,Ks

(fs) and its out-arcs.  We are done.

8 The Church-Rosser Theorem

The general idea for proving the theorem is to fill in the Church-Rosser diamond
tween two preexecutions that diverge fromG0, by continually adding instances of sub
commuting squares, until one reaches the diagonally opposite point. See Fig. 11.
things prevent this from being entirely straightforward. The first is that MONSTR
not a free rewriting system, but one whose strategy is programmed by the marking
we have to be sure that the squares we fill in are permitted by the strategy. The se
is that some of the subcommuting squares do not subcommute quite “on the n
which for our purposes means up to marking preserving isomorphism. This cause
construction to potentially flake into separate sheets at various points1 — some of these
sheets may recombine later in the construction, as later activations and notifica
cause differing markings to resynchronise; see Fig. 11 again. Given the flaking
need to do two things. Firstly we need to be sure that despite it we can still get to
diagonally opposite corner, up to some markings and some garbage. What we ca
handrail construction is crucial here. Secondly, we need to relate the graphs occu
at the same coordinates of the various flakes, since there is no guarantee that a
flakes will have recombined by the time we finish filling in all the sheets.

Lemma 8.1 Let GN = [G0 … GN] be a transitive coercing preexecution of a MONST
systemR. Suppose the hypotheses of one of lemmas 7.1 – 7.7 apply. Then with
notation used in that lemma (or the obviously analogous notation in the subscripts
have:K 1 = [G0 … GN … K1] is a transitive coercing preexecution ofR iff K 2 = [G0 …
GN … K2] is a transitive coercing preexecution ofR.

1. Readers familiar with complex analysis may amuse themselves by contemplating an
analogy with Riemann surfaces. It is as though the graph structure corresponded to the
magnitude of an analytic function and the markings and garbage corresponded to the
phase; and there was a singularity in the “bad cell” of Fig. 11.
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Proof. Beyond the facts established already in the lemmas mentioned, all we ne
check, is that for the execution steps discussed in each particular case, conforma
the execution strategy of suspending MONSTR semantics in definition 3.1 holds
one order of execution steps iff it holds for the other; but it is rather obvious that th
so. (Note in particular that the lemmas involving rewrite steps are insensitive to whe
or not a default rule is being used when a normal rule is demanded by definition 3.1.

Lemma 8.2 Let GN = [G0 … GN] be a transitive coercing preexecution of a MONST
systemR. Suppose the hypotheses of one of lemmas 7.1 – 7.7 apply. With the nota
used in that lemma (or the obviously analogous notation in the subscripts), letK 1 = [G0
… GN … H1 … K1] andK 2 = [G0 … GN … H2 … K2] be the transitive coercing pre-
executions ofR constructed in the relevant lemma, and letψ : K1 → K2 be the marking
preserving isomorphism (ornot quitemarking preserving isomorphism), constructed
that lemma.  Then

(1) An active nodet of Hi hasrHi,Ki
(t) active inKi iff for no graphMi in Hi … Ki is

rHi,Mi
(t) the chosen root.  For such at, rHi,Mi

(t) = iHi,Mi
(t) for everyMi.

(2) For every active nodet of H1 such thatrH1,K1
(t) is active inK1, ψ rH1,K1

(t) is

active inK2.

Fig. 11  Filling in the Church-Rosser diamond.

GA

GBG0

…

ψ
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(3) For every active nodet of H2 such thatrH2,K2
(t) is active inK2, rH2,K2

(t) is in the

range ofψ, andψ–1 rH2,K2
(t) is active inK1.

(4) A nodex ∈ K1 is non-idle iffψ(x) ∈ K2 is non-idle.

Proof. This requires an examination of the individual cases in lemmas 7.1 – 7.7.
the notification/notification, suspension/suspension and notification/suspension c
things are helped by the facts that: (a)Hi … Ki consists of at most one step; (b) the grap
structure is not changed by any of the steps involved, and; (c)ψ is a marking preserving
isomorphism.

Thus for the notification/notification case, the only active markings removed inHi … Ki
are the ones on the notification roots, hence (1), (2) and (3). Similarly for the sus
sion/suspension case. Also for the notification/suspension case, except thatHt … Kt
might be trivial.

For the rewrite/notification case if the notification is last, its root is the only node wh
active marking is removed inHf … Kf; and if the rewrite is last, likewise forHt … Kt;
with the observation that if the rewrite reactivated the notification root, a final notifi
tion is there to fix things.

For the rewrite/suspension case,ψ may no longer be marking preserving, but in an
case the discrepancy amounts to a differing number of suspensions on the susp
root, which does not affect the conclusions. Otherwise the reasoning is much as
previous case.

For the rewrite/rewrite case, there are two subcases: (A) dealt with in lemma 7.6,
ering two rewrites which either do not belong to the same critical cone or if they
their use of the common stateholder is read-only. In this case,ψ may no longer be mark-
ing preserving, and we need to check more carefully that the required conclusions
The failure ofψ to be marking preserving concerns two kinds of nodes suspende
the stateholder: either contractum nodes introduced during one or other rewrite, o
isting nodes ofGN. Both kinds of nodes are suspended inHi on the shared stateholde
(apart from the contractum nodes which are due to be introduced in theDj rewrite which
do not exist yet inHi), so cannot cause the conclusions to fail. For other nodes we h
the conclusions because neither a rewrite nor a notification can remove an active m
ing, except from its own root.

The final subcase is (B), dealt with in lemma 7.7, covering two rewrites which bel
to the same critical cone and one of which is a resuspension. The reasoning here i
ilar to but simpler than in the previous subcase, as none of the awkward circumsta
of that subcase arise because of the simple nature of resuspending rules. It is al
only case in which the direction in whichψ goes matters, asψ : Kr → Ks is not onto.
This makes it necessary to have differing clauses (2) and (3) in the lemma.

Clause (4) follows from a trivial inspection of the conclusions of lemmas 7.1 – 7.7

Lemma 8.2 does little above stating the obvious, namely that performing one exec
step does not destroy other potential sites for performing execution steps. Still the
more to it than meets the eye. For instance, the “iff” of the first clause does not hold
other semantic models that have been considered in this series of papers. More i
tant, is the granularity of the implications in the clauses (2) and (3), which directly re
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properties ofHi to ones ofKi, without pausing to involve any of the intermediate graph
along the way. Contemplating going only in small steps, i.e. proving a series of fi
grained implications that relate the active nodes of each graph inHi … Ki to the active
nodes of its successor is perfectly possible, but would cause clauses (2) and (3) t
For example, the differences in markings that we were able to ignore in discussin
write/rewrite subcase (A), would become visible to the hypotheses of these mini-im
cations, and we would not be able to cross the gap described by theψ functions. Not
being able to do so would cause our proof strategy for the Church-Rosser theore
fail in cases whereψ refers to an exceptional case, as we would not be sure that any
ecution step that we needed to perform on one sheet, could be mimicked on anothe
the other hand, we onlyneedto do this for execution steps that occurred in theoriginal
preexecutions (and some necessary notifications), not other ones that merely hap
be permitted as a result of the subcommutativity cells that we construct in the proc1.
This is exploited by the handrail construction in the main theorem, which is vital
propagating the proof in the presence of the flaking, and shows why the correct g
larity of the implications is so important here.

Now for the main result.

Theorem 8.3   LetR be a MONSTR system.  Suppose

(a) For every two distinct normal rulesDi ≠ Dj in R, whereDi = (Li ⊆ Pi, rooti, Redi,
Acti) andDj = (Lj ⊆ Pj, rootj, Redj, Actj), we have thatLi andLj are not graph
unifyable, (i.e. there is noG and nogi : Li → G, gj : Lj → G, with gi(rooti) =
gj(rootj)).  Similarly for every two distinct default rules.

(b) For every rule ofR, every redirection is to an activated node or non-idle nod

(c) Every critical cone that arises in any execution ofR is safe.

Let GA = [G0, …, GA] andGB = [G0, …, GB] be transitive coercing preexecutions ofR.
Then there are extensionsGX = [G0, …, GA, …, GX] andGY = [G0, …, GB, …, GY] of
GA andGB such that

(1) There are subgraphsGX* of GX, andGY* of GY, and a graph structure isomor
phismΘXY* : GX* → GY*.

(2) All nodes and arcs inGX – GX*, and inGY – GY* are garbaged roots (and thei
out-arcs) of resuspending rewrites. In particular,GX* contains LSG(GX) and
GY* contains LSG(GY).

Proof. Let us set the scene informally for the moment. We assume thatGA = [G0, …,
GA] consists ofA steps, andGB = [G0, …, GB] of B steps. So the Church-Rosser dia
mond divides up into a grid ofA.B cells. We will coordinatise the diamond, refering t
a cell by its coordinates (a, b), where 1≤ a ≤ A, and 1≤ b ≤ B, so roughly speaking, cell
(a, b) produces graph (or graphs, because of the flaking)G(a, b), from G(a–1,b–1), where
the graphs ofGA andGB are identified with graphsG(a, b) such that one or other coor-
dinate is zero.

1. To put it more brusquely, we do not needK1 andK2 to be bisimilar.
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The filling in of the Church-Rosser diamond will attempt to work by well founded r
cursion on a partial order < over the coordinates, where (a, b) < (a′, b′) iff a < a′ andb
≤ b′, or a ≤ a′ andb < b′. We will call this setup the base coordinate system and ba
partial order. We can fill a cell, i.e. construct the graph(s) at its highest coordinate
using a subcommutativity lemma, once all the graphs at lower coordinates w.r.t. <
been constructed.  This process requires the consideration of two technical point

The first technical point is that not all the subcommutativity lemmas close their c
(i.e. constructHi … Ki say) using a single execution step. In one case there is no
at all which is no problem at all, since we just introduce a suitable marking preser
isomorphism to act as a step, but in others several steps are needed. The latter po
ity requires the consideration of two points in and of itself.

On the one hand we need to amplify the indexing system in the Church-Rosser diam
to cope with these extra graphs — this we can do for example by introducing a dec
point and naming the first graph on the way fromG(a, b) to sayG(a, b+1) asG(a, b.1), the
secondG(a, b.2) and so on; introducing a second decimal point if perhaps the s
G(a+1, b.1) to G(a+1,b.2) say, subsequently needs to be subdivided itself, thusG(a+1,b.1.1)
etc. The partial order < extends pointwise and lexicographically to these pairs of in
sequences in the obvious way: the least significant index variable changes fastest i
dimensions. We will call this generalised setup, the refined coordinate system an
fined partial order.

On the other hand, and more seriously, this process potentially causes the constr
to diverge as the hierarchy of newly introduced steps might potentially have an
bounded number of levels, and might require at least some sort of limit treatment. H
ever we notice that all the additional steps introduced, in any of the subcommutat
lemmas, are always notifications. It takes only a moment to check that notificat
subcommute on the nose with all other execution steps, so the phenomenon we
does not happen. In fact bearing in mind that the worst behaved of the subcommu
ity lemmas is 7.6, where up to 2M notifications are introduced in either closing sequen
of the cell (whereM is the maximum cardinality of the MapNodes set of any functio
used during eitherGA or GB), we can calculate that when an execution sequence
lengthA, is projected over another of lengthB, we get a closing sequence [G(A, 0)=GA,
…, GX=G(A, B)] of length at most 2M.A.B.

The second technical point concerns the flaking of the construction into sheets, w
we have already mentioned. To keep things reasonable, for cases where the mapψ con-
structed in any of the subcommutativity lemmas is actually a genuine marking pres
ing isomorphism, let us agree that the cell in question is closed by a single graph, r
than an isomorphic pair. We call such cells good cells; others will be bad cells. M
imising the number of good cells in the construction requires that we view execu
steps as being defined up to marking preserving isomorphism in general, and our
tion throughout the paper has been fussy enough to transplant without change to th
proach. More specifically, given the specific constructions for the various execu
steps defined in Section 3, which prescribe how to obtain from the starting graphG the
result graphH and the injection and redirection functionsiG,H andrG,H, if W is a graph
which is marking preserving isomorphic toH, via an isomorphismθ : H → W, thenW
is an equally acceptable result of the execution step, provided we equip it with th
jection and redirection functionsiG,W = θ iG,H andrG,W = θ rG,H. This allows us to
close all the good subcommutativity cells on the nose, and bad cells are consequ
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Since all cases involving notifications are unproblematic, we see that all the extra
that get introduced in closing the more complicated cells (whether good or bad), d
introduce additional flaking, and thus we easily estimate that the maximum numb
distinct non marking preserving isomorphic graphs we can generate at coordinate
tion (A, B) is overestimated by flaking once per base coordinate cell on each sheet
erated.  The total thus generated being the binomial coeficient (A+B

A ).

In principle the flaking can interfere rather badly with the coordinate construction
graphs on different sheets at a given coordinate position might conceivably spaw
compatible subsequent behaviour, leading to ambiguity in the construction of late
ordinates.  But we will in fact see that such unwelcome behaviour will not arise.

With the above preamble, we turn to the more formal construction. We start with
special case in which no flaking occurs; so all cells are good. This proceeds by a s
taneous recursive construction of, and induction on, the refined coordinate system
partial order.

If both GA andGB are trivial, consisting ofG0 only, then the theorem holds trivially, tak-
ing GA = GB = GX = GY, andΘXY* to be the identity. If only one ofGA or GB is trivial,
let it beGA; then takeGB = GX = GY, with ΘXY* an identity as before. There remains
the non-trivial case.  This involves considering the situation illustrated in Fig. 12.

The induction hypothesis consists of the following clauses.

(i) The construction thus far, has constructed the refined coordinate system t
clude all coordinates lower than (a, b), (α, b), (a, β) in the refined partial order.

(ii) In the refined coordinate system thus far,α is the successor ofa in the vertical
direction, andβ is the successor ofb in the horizontal direction1.

1. That is to say, any cell to the left of [Fig. 12] has its top and bottom at coordinatesp
andq, wherep ≤ a, andα ≤ q in the refined partial order. Similarly for any cell above
Fig. 12.

G(a, b) G(a, β)

G(α, b)

Fig.  12  Lines at the start of an induction step.
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(iii) The construction thus far is complete up to at least coordinate positions (a, b),
(α, b), (a, β), in that it has built the graphs required at these coordinate positio

(iv) The dashed lines connecting a graphG(a, b) to a graphG(α, b) or a graphG(a, β)
are of two kinds. Each is either: (a), a marking preserving isomorphism; or
an execution step.

The rest is relatively straightforward. We just have to complete the square in Fig
and re-establish the induction hypothesis for the new graph(s)G(α, β) (and perhaps oth-
ers), and arrowsG(α, b) … G(α, β) andG(a, β) … G(α, β) illustrated.

The two different kinds of line generate three cases to consider, by symmetry.

If both lines are marking preserving isomorphisms, then we letG(α, β) be yet another
marking preserving isomorphic copy ofG(a, b) andG(α, b) andG(a, β), and we let the re-
quired arrows be the obvious marking preserving isomorphisms. If only one line
marking preserving isomorphism, we complete the square with a marking prese
isomorphism and a marking preserving isomorphic copy of whatever execution ste
other line was, so that the isomorphisms and execution steps respectively face eac
er across the square. In these cases, the coordinate system does not require fur
finement, so all clauses of the induction hypothesis are easily seen to be preserv

Now suppose both lines are execution steps. Then either the same active node
chosen root of both steps inG(a, b) or not. If yes, then both lines are the same step, sin
if either is a notification or suspension, the other can only be the same; and if eith
a rewrite, then hypothesis (a) of the theorem ensures that in MONSTR’s prioritised
selection strategy, only one rule will match at the chosen root so it must be the sam
in both cases. At any rate in any of these cases, the cell can be closed with a ma
preserving isomorphic copyG(α, β), of the already marking preserving isomorphi
G(α, b) andG(a, β); the required arrows being the obvious isomorphisms. As previou
all clauses of the induction hypothesis are easily seen to be preserved.

Suppose then that the roots are different. In such a case we call on the subcommu
ity lemmas to help. Where there are two rewrites involved and they are not in the s
critical cone, then lemma 7.6 applies; if both are in the same critical cone, the sa

G(a, b) G(a, β)

G(α, b)

Fig.  13  The objective of an induction step.

G(α, β)
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hypothesis (c) of the theorem, assures us that either both uses of the stateholder ar
only so that lemma 7.6 applies again, or that one rewrite is a resuspension rewrite
then lemma 7.7 applies. Apart from that, the subcommutativity lemmas apply unres
edly. In each possible case, the relevant lemma allows us to complete the square
nose, by assumption.

In the case of notification/suspension, if the suspension comes second, it may be
trivial. In this case, the corresponding arrow of the construction is a marking preser
isomorphism, dealt with rather as above. In other cases, the arrows may contain s
execution steps. In this case we refine the coordinate system further, for example o
bottom arrow, making the successors ofG(α, b) in turn,G(α, b.1), G(α, b.2), G(α, b.3) etc.,
until the last graph is calledG(α, β) as in previous cases. This establishes that the ind
tion hypothesis is preserved. This completes the treatment of the special case.

For the general case, we start by using the special case as far as we can. We fill in
thing like the shaded region of Fig. 14. The two not quite enclosed squares are bad
that do not close on the nose. Extending the construction into the area south east o
cells, requires the handrail construction, a kind of strip lemma, next.

Consider the situation in Fig. 15.YXGNPR is an instance of a bad cell, whilePQRSis
a strip filled entirely by good cells. We claim that there is an extension ofG0GNXY to
G0GNXYZ, such that the natural analogue of lemma 8.2 holds. Thus letψRY: R→ Ybe
theψ map provided by the appropriate subcommutativity lemma. (A completely a

Fig. 14  Bad cells block the Church-Rosser construction.
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ogous result holds ifψYR : Y → R is given instead). We will prove that there is a ma
ψSZ : S→ Z (resp.ψZS : Z → S) such that the following hold.

(1) RSandYZare of the same length, and contain similar execution steps in the s
order; in particular, rewrites occur at the same places in both.

(2) ψSZ: S→ Z (resp.ψZS: Z → S) is a graph structure isomomorphism except whe
YXGNPR is an instance of lemma 7.7, when there is an extra garbage node
its out-arcs not related byψSZ (resp.ψZS) to the other graph.

(3) An active nodet of Q hasrQ,S(t) active inSiff for no graphBj in Q … Sis rQ,Bj
(t)

the chosen root.  For such at, rQ,Bj
(t) = iQ,Bj

(t) for everyBj.

(4) For every active nodet of Q such thatrQ,S(t) is active inS, ψSZ(t) is active inZ,

(resp.rQ,S(t) is in the range ofψ andψ–1
ZS(rQ,S(t)) is active inZ) .

(5) A nodet ∈ S is non-idle iffψSZ(t) (resp.ψ–1
ZS(t)) is non-idle.

Now if YXGNPR is an instance of lemma 7.7, the only difference betweenR andY is
some garbage. By the soundness results for garbage in Section 5, we can makeYZ the
same asRS, up to this garbage, and the claim holds.

Otherwise the claim is substantiated by induction on the length ofPQ. If this is trivial
then the claim holds trivially by lemma 8.2. Otherwise we go by cases on the next
in PQ, sayMi → Mi+1. Let Ni close the span ofPMi andPRas in Fig. 15, and letNi+1
closePMi+1 andPR. Ni … Ni+1 may consist of more than a single step. LetWi be the
graph ofYZcorresponding toNi by induction hypothesis. Our job is to constructWi …
Wi+1 corresponding toNi … Ni+1.

If Mi → Mi+1 is an isomorphism step, it subcommutes with everything on the way fr
Mi … Ni, so stepNi → Ni+1 in RSis an isomorphism, and we make the correspondi
stepWi → Wi+1 in YZan isomorphism too. If the stepMi → Mi+1 is a notification, this
commutes with everything, and by the hypotheses, we can makeWi → Wi+1 in YZa no-
tification too. This works, provided nothing inMi … Ni is thesamenotification, other-

Fig. 15  The handrail construction.

GN P Q

R S

X
Y Z

G0

Mi

Ni
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wise we have isomorphisms again from a certain point on. In such a case
corresponding node inWi is already idle by the induction hypothesis, and we ma
Wi → Wi+1 an isomorphism too.  It is easy to see that the claim holds.

If the stepMi → Mi+1 is a suspension, then either some step inMi … Ni is a notification
that trivialises the suspension, in which case the induction hypothesis assures us th
corresponding node inWi is already idle and we makeWi → Wi+1 an isomorphism, or
not. If not, then apart from notifications and isomorphisms, of which there may be
eral,Mi … Ni contains exactly one rewrite or suspension (this is because we are dis
ing a strip with exactly one bad cell on the left). If it is a suspension, the two of th
either subcommute, and the corresponding stepWi → Wi+1 becomes a suspension, o
they are the same, in which case we get an isomorphism. If it is a rewrite, then th
write and suspension subcommute (on the nose, because we assumePQRSis covered
by good cells), with perhaps the addition of some notifications as per lemma 7.5.
extra notifications makeNi … Ni+1 into a multistep sequence but are easy to deal wi
Hence we constructWi … Wi+1 as a sequence consisting of a suspension, followed
the requisite notifications.  Establishing the claim is easy.

Finally the stepMi → Mi+1 might be a rewrite. This will subcommute with any isomor
phisms or notifications inMi … Ni giving a corresponding step forWi → Wi+1, leaving
suspensions and rewrites to consider. If we have a suspension, the situation is as
previous paragraph with the roles reversed. If we have a rewrite, then either the tw
them are the same, and we have the inevitable isomorphisms, or not. If not then b
sumptionPQRSis covered with good cells, so the rewrites subcommute with the ad
tion of the appropriate notifications, andWi … Wi+1 becomes a sequence consisting
some notifications, a rewrite, and some more notifications. The notifications are a
easy to deal with and it is easy to see that all the clauses of the induction hypothes
properly established.  This completes the inductive step for the construction ofYZ.

So we have the handrailYZ. In itself this is not enough to completely fill in the whole
Church-Rosser diamond, as a bad cell to the right ofQSmight block further progress.
For this let us examine Fig. 16.

Fig. 16  Two bad cells in the same strip.

G0

GN P Q

R S

X
Y Z

U P′ Q′
R′ S′V

Y′ Z′

Y′′ Z′′

P′′ Q′′
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There are various possibilities depending on the relationship betweenQSandUV, where
we intend thatUV is a subsequence ofQS. First of allUV must be “the same” execution
step as wasGNX. Therefore ifQU is non-trivial, it must consist of notifications and iso
morphisms, and the same holds ifVSis non-trivial. So there are four cases. If bothQU
andVSare trivial, it is easy to extend the argument used already to extend the han
YZ to Y′′, and then to notice that the same hypothesis applies toP′ andY′′ as applies to
P′ andY′, and thence to continue the extension toZ′′, independently of the construction
of Y′Z′. If QU is trivial butVSis not, we must first construct the handrailY′Z′, then fill
in the projection ofVSalong it (this will contain only good cells), and finally build
ZY′′Z′′ which can be done as above. IfVSis trivial butQU is not, we must consider the
extension ofPQ to P′′Q′′ in order that the induction hypothesis for the extension ofXYZ
to XYZY′′Z′′ does not reveal differing markings on nodes that correspond inU andZ.
SinceQU consists of isomorphisms and notifications only, only good cells occur
tweenQP′′Q′′ andUP′Q′ so this is easy; then the handrail construction proceeds as
merly.  If bothQU andVS are non-trivial, we must do both things.

Once we can build handrails, we can extend the filling in of the Church-Rosser diam
to the various sheets generated. Roughly speaking, proceeding inwards into the in
from the given preexecutionsGA andGB, ensures that we can always make progre
even ifPQ, P′Q′ or P′′Q′′ are themselves partly handrails. (We leave to the interes
reader the construction of the partial order, over whose induction the filling in of
Church-Rosser diamond can be more formally described.) Because the relation
between corresponding graphs at the same coordinates on the pairs of sheets we
ate are, apart from garbage, graph structure isomorphisms which preserve the idle
idle property of nodes, it is clear from definition 3.1 and the hypotheses, that for an
bitrary coordinate position and arbitrary choice of direction of progress east or so
we always perform “the same step” from corresponding roots on different sheets
either always an isomorphism, or notification, or suspension on the same argumen
always a rewrite using the same rule. This also ensures that the construction of th
fined coordinate system and partial order is unambiguous. Because the original p
ecutions are finite, and we flake once per sheet per base cell at most, we comple
whole process in a finite number of iterations. When the construction reaches co
nates (A, B), erasing the isomorphism steps from the extensions toGA andGB generated,
gives us theGX andGY we need.

It remains to constructGX*, GY* andΘXY*, and show they have the right properties. W
construct similar objects for all pairs of graphs on different sheets, for all coordinate
sitions.  Then the ones required will just be a particular case.

If only good cells occur, then everything commutes on the nose, there is only one s
and we can takeGX* = GX, GY* = GY andΘXY* as the obvious identity; the same thing
holds for all coordinates.

Otherwise the structure of the sheets and their graphs can be discerned from the c
tion of bad cells. Each bad cell is identified by the coordinates of its southeast co
(a, b) say. For each bad cell, one sheet is obtained by going east then south fro
northwest corner, call this the + sheet; and the other sheet is given by going south
east, call it the – sheet. Any graph at coordinates (a, b) on any sheet, and the sheet itsel
can be named by a function mapping all bad cells into the set {+, –}, and ignoring
values at all bad cells at coordinates (a′, b′) > (a, b). The collection of such functions
restricted to (a′, b′) ≤ (a, b) names the set of sheets which are distinct at coordinatesa,
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b), so all graphs created can be namedG(a, b)
T where (a, b) gives the coordinates, andT

is the function value naming the sheet.

Now we proceed by recursion on the flakings pertaining to bad cells. These are ord
by < which is a finite partial order. Consider a <-maximal bad cell at (α, β) (on some
sheet with sheet nameT0 which is about to flake for the last time giving sheetsT1 and
T2, so T1 andT2 are the two possible extensions of the mapT0). The construction of
the handrails from the two different graphsG(α, β)

T1 andG(α, β)
T2 involves the construc-

tion of homomorphismsψ as described above. Since similar steps are performed on
handrail and the corresponding normal execution, all the graphs constructed with
dinates (a, b) > (α, β), are isomorphic up to markings or garbage. If they are isomorp
up to markings, setG(α, β)

{T0},T1 * = G(α, β)
T1, G(α, β)

{T0},T2 * = G(α, β)
T2, and

Θ(α, β)
{T0},T1,T2 : G(α, β)

{T0},T1 * → G(α, β)
{T0},T2 * = ψ as constructed by the relevant lem

ma, and do similarly for coordinates (a, b) > (α, β). If they are isomorphic up to extra
garbage, colour the relevant garbage node and arcs black (for example) in whiche
G(α, β)

T1 or G(α, β)
T2 has it, and propagate the colouring via the (i–,–, r–,–) maps to (a, b)

> (α, β). SetG(α, β)
{T0},T1 * = the uncoloured subgraph ofG(α, β)

T1, G(α, β)
{T0},T2 * = the

uncoloured subgraph ofG(α, β)
T2, andΘ(α, β)

{T0},T1,T2 : G(α, β)
{T0},T1 * → G(α, β)

{T0},T2 *

= ψ as constructed by lemma 7.7 and restricted to the uncoloured parts ofG(α, β)
{T0},T1 *

andG(α, β)
{T0},T2 *. Do similarly for coordinates (a, b) > (α, β). In this notation{T0}

indicates how far the construction has progressed (i.e. the common part of the nam
sheets processed), andT1 andT2 refer to the sheets themselves. So much for the ba
case.

For the recursive step, we have done all of the above for all bad cells at positionsα′,
β′) > (α, β) and located on the sheets that flake from the current bad cell on the cu
sheet whose sheet name isT0 say. LetTx refer to a typical bad cellsuccessorof T0, so
we have generated partial isomorphismsΘ(α′, β′)

{Tx},T i ,Tj : G(α′, β′)
{Tx},T i* → G(α′,

β′)
{Tx},T j* say, between graphs on sheets belonging to all bad cell descendants ofTx. We

have done this for all bad cell successorsTx of T0, so for a typicalΘ(α′, β′)
{Tx},T i,Tj, the

{Tx} is the common part of the names of a set of sheets already processed, such t
the sheet names in the set agree withT0 on bad cells≤ (α, β) and with each other on one
further bad cell successorTx of T0.

If (α, β) is not a lemma 7.7 bad cell, theψ generated for it is bijective, so we extend th
construction in the expected way, noting that all cells involved at any coordinate p
tion are graph structure isomorphic, and building the relevant isomorphismsΘ(a,
b)

{T0},T i,Tj where the notation{T0} refers the common part of the previous{Tx} sets. If
(α, β) is a lemma 7.7 bad cell, the relevant garbage node and arc are coloured blac
colouring is propagated wherever it will reach via (i–,–, r–,–) maps, and the subgraphs
built previously have to be further restricted to keep them uncoloured, for half of
sheets in question.

Eventually we complete the construction, getting subgraphs and isomorphi
Θ(a, b)

{},T1,T2 : G(a, b)
{},T1 * → G(a, b)

{},T2 *, between subgraphs on arbitrary sheets at a
given coordinates (a, b), where{} names the set of all sheets, being the empty functio
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Now one of theG(A, B)
{},T i* , the one pertaining to the graphGX, is theGX* we seek, and

another isGY*. The graph structure isomorphismΘXY* : GX* → GY* is the relevant
Θ(A, B)

{},T i,Tj.  It clearly has the required properties.  We are done.

Corollary 8.4 Let R be a MONSTR system. Assume the notation and hypothese
theorem 8.3.  Then there is a preexecution ofR, GZ = [G0, …, GZ] such that

(1) There are subgraphsGX** of GX* of GX, andGY** of GY* of GY, and a graph
structure isomorphismΘXY** : GX** → GY**.

(2) All nodes and arcs inGX – GX**, and in GY – GY** are garbaged roots (and their
out-arcs) of resuspending rewrites. In particular,GX** contains LSG(GX) and
GY** contains LSG(GY).

(3) There are graph structure isomorphismsΘZX : GZ → GX**, and ΘZY : GZ →
GY**, such that ΘZY = ΘXY** ΘZX.

(4) ΘZX(LSG(GZ)) ⊇ LSG(GX) andΘZY(LSG(GZ)) ⊇ LSG(GY).

Proof. We describe how to constructGZ. View the edges of the various cells on th
various sheets constructed in the preceding theorem as the edges of a directed
We start fromG0 and head for the diagonally opposite corner by an arbitrary path
versing edges downwards and to the right only (i.e. in the direction of the execu
steps), and avoiding resuspending rewrite and suspension step edges; thereby g
ing a preexecution (with isomorphism steps)GZ

-. It may be impossible to proceed be
yond some particular point without traversing a resuspending rewrite or suspension
edge if both outgoing edges of some graph at (α, β) say, are resuspending rewrite or sus
pension step edges. But rather than doing such a step, we jump by a marking pres
isomorphism to the diagonally opposite corner of the cell in question (α′, β′) say, with-
out performing any execution step at all. The graph ofGZ

- that we have at (α′, β′), dif-
fers from the graph in the construction built in theorem 8.3 at the same coordinate
the absence of some garbage, and by the fact that the root(s) of the resuspend
write(s) or suspension step(s) is (are) still active. This cannot prevent subsequ
tracking a path towards (A, B) as theGZ

- graph is at least as ready to perform any ex
cution step as any compatriot in the Church-Rosser diamond at the same coordina
and this property persists. We generate none of the garbage nodes and arcs that
7.7 takes pains to describe or that a suspension step might create, and futherm
there is a critical cone within the Church-Rosser construction such that some resus
ing rewrite is not forced to subcommute with a non-resuspending rewrite, the rele
garbaged resuspension root and out-arcs survive intoGX* and GY* because there is no
instance of lemma 7.7 in the construction to throw them out. However the construc
of GZ

- omits the creation of such garbage, hence the subgraph ofGX*, GX**, that we
need to relateGZ to may be a proper subgraph ofGX*. We now getGZ from GZ

- by
erasing all the isomorphism steps, and the conclusions follow easily, clause (4) in
ticular following from the soundness of garbage and induction on the length of the
execution.

9 Conclusions

In the preceding sections, we have described the structure of MONSTR, studie
length in previous papers, and have given it the most elegant of the semantic m
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considered in this series. Most elegant that is with respect to its having desirable
erties, rather than having the simplest description: in fact its description is the mos
volved of all the models considered, and also the furthest from the term rewri
origins that inspired the original term graph rewriting model ([Barendregt et
(1987)]). Nevertheless the more complex collection of primitives offered in the mo
seems to be more than justified by the strong properties it possesses. FromM-IV we
infer a good serialisability property as regards finegrained implementation, and in
paper we showed that the Church-Rosser property holds, despite the lack of exac
commutativity which looked more than once as though it might bring down the wh
enterprise.
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