
.

term
r the
nd a
ACTL
ending

s.

era-
e ar-
antic
dness

mod-

e
ss di-

tern
a re-
, the
phe-

onven-
TL
l dead-
c of
level
his is

s.

erial
er is
MONSTR II — Suspending Semantics and Independence

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K

banach@cs.man.ac.uk)

Abstract: The suspending semantic model for the execution of the MONSTR generalised
graph rewriting language is defined. This is the canonical operational semantic model fo
MONSTR language. Its correctness with respect to DACTL semantics is discussed, a
number of general theorems on the soundness of suspending executions with respect to D
semantics are proved. General theorems are proved about the independence of susp
primitive actions, which are useful in the verification of MONSTR systems.

Key Words: Intermediate Languages, Term Graph Rewriting, MONSTR, Semantic Model

Category: D.1.3, D.3.1, F.3.2, F.4.2

1 INTRODUCTION

In the first paper in this series, [Banach (1996)], we introduced the MONSTR gen
lised term graph rewriting language, a sublanguage of the DACTL language, and th
chitectural rationale behind its design. We also briefly described some other sem
models for MONSTR and the correctness problems that they engender when soun
with respect to DACTL semantics is desired.

In this paper we examine one of these alternative semantic models, the suspending
el, in detail. It is important to state clearly that:When one is speaking of the MON-
STR language, without specifically mentioning any particular semantic model for
it, then the suspending model is to be understood. Thus suspending semantics is th
canonical semantics for the language, and all correctness issues refer, more or le
rectly, to it.

The suspending model differs from the conventional DACTL model insofar as pat
matching of redexes is sensitive to the node and arc markings in the redex. When
dex with non-idle markings on the root symbol’s matched arguments is encountered
rewrite suspends until these arguments become idle. Obviously the suspension
nomenon creates dependencies between rewrites beyond those present in the c
tional DACTL semantic model. The correctness problem (with respect to DAC
semantics) thus reduces to the analysis of these dependencies, and of the potentia
locks that they might create. This is a major concern of this paper. A further topi
interest that we deal with, this time regarding correctness with respect to higher
specifications, is when two execution steps of the model may be interchanged. T
needed when discussing serialisability properties of arbitrary executions of system

The rest of this paper is structured as follows. [Section 2] reviews the salient mat
from M-I , the first paper in this series, [Banach (1996)]. Although the present pap
self contained, a reasonable working knowledge ofM-I will be of benefit to the reader
as we do not repeat every useful detail fromM-I in order to prevent the size of these

per,

tness
n of

some
on-
6] ex-
jacent
ndard

one
note-
se-

g
t-

rn

ing
n ex-
re-
s we
s a

es.
pic-

when
papers from growing in arithmetic progression. Throughout the remainder of the pa
notation such asM-I .11.4 refers to the fourth listed item of Section 11 ofM-I .

[Section 3] defines suspending semantics precisely. [Section 4] discusses correc
of suspending executions compared with DACTL executions and proves a selectio
theorems that relate to correctness for terminating executions. [Section 5] uses
inspiration from [Section 4] to construct an appropriate notion of correctness for n
terminating suspending executions, and proves a correctness theorem. [Section
amines the independence problem, and proves a number of results that enable ad
events in arbitrary executions to be interchanged. These are useful when a sta
form for executions of some specific system is desired. They are also useful were
to construct an abstract semantics for suspending MONSTR systems; particularly
worthy is the way that suspensions introduce a lot of asymmetric conflict into the
mantics. [Section 7] concludes.

2 KEY IDEAS FROM MONSTR I

We recall that we deal with term graphs, consisting of nodesx, each labelled with a sym-
bol σ(x) of fixed arity A(σ(x)), and with each symbolσ(x) coming from an alphabet
S = F ∪ C ∪ V, being the disjoint union of functions inF, constructors inC, or state-
holders inV. Nodesx also have a sequence of out-arcsα(x) to their children where for
eachk ∈ A(x) = A(σ(x)), α(x)[k] is a child node. Likewise nodes carry a node markin
µ(x) ∈ { ε, ∗, #, ## … #n} (idle, active, once twice… n times suspended), and each ou
arc is marked byν(x)[k] ∈ { ε, ^} (normal or idle arc, notification arc) soν(x) is the se-
quence of these pertaining tox. These markings influence reduction strategy. A patte
is like a graph but where some leaf nodes may be labelled withAny, whereAny ∉ S.
Such a node is called implicit; others are called explicit. A homomorphism or match
is a symbol/arity/child-respecting node map, but the constraints are imposed only o
plicit nodes, so “Any nodes can match anything”. The markings are normally dis
garded by homomorphisms (calling them graph structure homomorphisms), unles
say otherwise (calling them marking preserving homomorphisms). [Fig. 1] show
rather simple graph. We note the concrete syntaxv:S in whichv is the node whileS is
the symbol, and that eg.α(q) is the sequence [s, v] so thatα(q)[2] = v. Likewiseν(q)
= [ε, ε] as we generally do not visibly write the idle node or arc markings in pictur
For the sequel we note that we can suppress the mention of nodes when we draw
tures of graphs and patterns, expressing the sharing directly, but this not possible
we use a linear concrete syntax as we will do in examples later.

∗q:F[• •]

s:S v:S

Fig. 1. A graph.

e

fault
A rule is a quadrupleD = (P, root, Red, Act). P is a pattern androot is a node ofP with
σ(root) ∈ F. (We say thatD is a rule forσ(root)) The left subpatternL of the rule, is
that subpattern accessible fromroot. It must contain all implicit nodes ofP and all node
and arc markings inL are idle. Redis a set of pairs of nodes fromL × P, eg. (a, b), with
each LHS nodea an explicit node ofL. The pairs inRedform a many–1 relation (i.e.
a function) such that distinct LHSs (a ≠ a′) are labelled differently (σ(a) ≠ σ(a′)). This
makes the operational semantics of redirection unambiguous.Act is also a set of nodes
of L. [Fig. 2] shows a picture of a rule, withroot (and henceL) indicated,Redindicated
by dashed arrows, andAct indicated by∗-marking the relevant node ofL.

A DACTL execution step proceeds by first nondeterministically choosing a nodet ∈ G
which is active in the graphG (i.e.µ(t) = ∗). The remainder of the step depends on th
symbolσ(t).

If σ(t) ∈ C ∪ V, thent notifies any of its parentsp to which it is connected via a notifi-
cation (̂ -marked) in-arc. If they are suspended (µ(p) = #n for n ≥ 1), their suspension
markings are decremented once for each such arc (µ(p) becomes#n–m wherem is the
number of such arcs, with#0 = ∗, #–j = ε), the notification markings are removed from
all the relevant arcs, andt becomes idle (µ(t) becomesε). If the result of these alter-
ations is calledH then there is an obvious injection on nodesiG,H : G → H. [Fig. 3]
illustrates such a step assuming3 is a constructor.

If σ(t) ∈ F, then for MONSTR systems, a normal rule forσ(t) is chosen if there is one
that will match, otherwise a default rule is chosen. (See below for normal and de

root : F[• •]

S ∗a:Any

#F[• •]

^

Fig. 2. A rule.

##G[• • •]

∗3K

^^

∗G[• • •]

∗3K

Fig. 3. A notification step.

⇒

map

n

es,
what
c-
cular

left

ows
indi-

cond

e

bol

e-

he

ese
rules). A ruleD matches a graphG at t iff there is a graph structure homomorphism
g : L → G, also known as a redex. For future reference, a redexg : L → G is said to be
standard, iff all the arcs and all the explicitly matched nodes ing(L) are idle.

Once a redex has been located, a rewrite takes place. During a rewrite, a copy ofP – L
(including the markings) is glued to the redexg : L → G, yielding a graphG′, in such a
way that there exists an extended matchingg′ : P → G′, and injective homomorphism
iG,G′ : G → G′. This phase is called contractum building and definesG′ uniquely up to
the identity of the nodes inG′. In the next phase, redirection, theG′ imagesg′(a) of
LHS nodesa of Redpairs (a, b) are located, and all their in-arcs are redirected to theG′
imagesg′(b) of the corresponding RHS nodesb, giving graphG′′. Regarded as a node
mapP → G′′, g′ no longer extends to a homomorphism and we thus write it asg′′ :
P → G′′. Likewise we have the node injection mapiG′,G′′ : G′ → G′′, also no longer a
homomorphism. The redirections themselves are captured by the node redirection
rG′,G′′ : G′ → G′′ which maps eachg′(a) in G′ to the correspondingg′(b) in G′′ and is
otherwise identical toiG′,G′′ : G′ → G′′. Finally in the root quiescence and activatio
phase,G′′ images ofActnodes are located viag′′ and made active if they were idle, and
t itself is made idle unless it was one of these nodes. This gives the result graphH and
injective node mapsh : P → H, andiG′′,H : G′′ → H.

Note thatiG,G′, iG′,G′′, iG′′,H are actually names for the appropriate identities on nod
while g′, g′′, h are in fact equal as node maps. This is because of the way we chose
the nodes of the graphsG′, G′′, H were to be. Had we decided on a different constru
tion, or to define these graphs only up to isomorphism (see [Section 6]), these parti
properties of these maps would not have held.

[Fig. 4] shows the rewriting process in action. There is clearly a matching of the
subpattern of the rule pictured in [Fig. 2] to the graph of [Fig. 1] at the activeF-labelled
node. The double arrow shows the overall effect of the rewrite, while the single arr
show the effects of the three phases discussed above. For added clarity we have
cated the images of the redirection pairs under the extended matching in the se
graph. In this example, theiG,H image of the root node∗F of the rewrite inG is the idle
F-labelled node of the resultH, and therG,H image of the same node is the idleS-la-
belled node ofH. Similarly theiG,H image of the firstS-labelled child of the root node
∗F is the idleS-labelled node ofH, and therG,H image of the same node is the activ
S-labelled node ofH. For the secondS-labelled child of the root node∗F, both iG,H
andrG,H take it to the activeS-labelled node ofH.

All executions start from a (graph consisting of a) single node labelled with the sym
Initial, and as a matter of notation, if [X, A, B, C, …, W, Y] is a portion of an execution
sequence, we defineiX,Y andrX,Y to be compositions of the elementary injection and r
direction mapsi–,– andr–,– discussed above over the portion [X … Y], wherer–,– is in-
terpreted as another name fori–,– whenever the step or substep in question is not t
redirection phase of a rewrite. ThusiX,Y(x) = (iW,Y … iB,C iA,B iX,A)(x) is the
copy in the graphYof the nodex in graphX, while rX,Y(x) = (rW,Y … rB,C rA,B
rX,A)(x) refers to the fate ofx under whatever redirections [X … Y] contains. In partic-
ular, the way that arc redirection works means that the arc (pk, c) in X becomes the arc
(iX,Y(p)k, rX,Y(c)) in Y. We will use the mapsiX,Y and rX,Y quite extensively below.
Graphs that occur in some execution are called execution graphs.

The theory of MONSTR falls apart unless two crucial invariants hold. We define th
now. We say that a nodex is balanced iff [µ(x) = #n (for n ≥ 1) ⇔ |{ k | ν(x)[k] = ^} |

hat

sat-

ols,
e the

h
may
te-
root.
= n]. A graph or pattern is balanced iff the former holds for all its nodes. We say t
an arc (pk, c) is state saturated iff [ν(p)[k] = ^ andµ(c) = ε ⇒ σ(c) ∈ V]. A node is
state saturated iff the former holds for all its in-arcs; and a graph or pattern is state
urated iff the former holds for all its nodes.

In order that MONSTR executions enjoy desirable properties, MONSTR symb
rules, systems etc. must conform to a suite of restrictions. Here we tersely quot
relevant parts ofM-I for reference.

Restriction M-I.11.1 (Alphabets) The alphabet of symbolsS, is the disjoint union of
three subalphabetsS = F ∪ C ∪ V where:F is the alphabet of function symbols which
may label the root of the left subpatternL of a rule, but not any subroot node ofL, and
which may be the LHS of a redirection.C is the alphabet of constructor symbols whic
may label a subroot node of the left subpattern of a rule, but not the root, and which
not be the LHS of a redirection.V is the alphabet of stateholders, or variables. A sta
holder symbol may label a subroot node of the left subpattern of a rule, but not the
Stateholders may label the LHS of a redirection.

Restriction M-I.11.2 (Symbols) For eachS∈ S, there is a set of natural numbersA(S),
in every case an initial segment of the naturals from 1, or empty. For eachF ∈ F, there
are subsets State(F) ⊆ Map(F) ⊆ A(F), with State(F) either a singleton or empty.Root
∈ C.

Definition M-I.11.3 (Normal and Default Rules) Let F ∈ F. A rule for F such that
each child of the root is a distinct implicit node is called a default rule forF. Otherwise
the rule is a normal rule.

∗F[• •]

S S

#F[• •]

^

∗F[• •]

S S

∗F[• •]

SS

#F[• •]

^

F[• •]

S∗S

#F[• •]

^

Fig. 4. A rewite execution step.

⇒

↓ ↑

→

t, i.e.

xed

ern,

d by

-
ly:

tore
Restriction M-I.11.4 (Rules) Let D = (P, root, Red, Act) be a rule with left subpattern
L. Then

(1) Each node has the arity dictated by its symbol, i.e. for allx ∈ P, A(x) = A(σ(x)).

(2) Each normal rule for a symbol matches the same set of arguments of the roo
if σ(root) = F, andD is a normal rule thenα(root)[k] is explicit ⇔ k ∈ Map(F).

(3) A rule for a function may match at most one stateholder, and then only in a fi
position; all other explicit arguments must be constructors, i.e. ifσ(root) = F, and
D is a normal rule thenσ(α(root)[k]) ∈ V ⇒ k ∈ State(F).

(4) All grandchildren of the root are implicit, i.e. for allk ∈ A(σ(root)), and j ∈
A(σ(α(root)[k])), α(α(root)[k])[j] is implicit.

(5) Implicit nodes of the left subpattern have only one parent in the left subpatt
i.e. if y ∈ P is implicit, there is precisely onex ∈ L such that for somek ∈ A(x),
y = α(x)[k].

(6) Everyx ∈ P is balanced, i.e.µ(x) = #n (for n ≥ 1) ⇔ |{ k | ν(x)[k] = ^} | = n.

(7) Every arc (pk, c) of P is either state saturated or activated, i.e.ν(p)[k] = ^ and
µ(c) = ε ⇒ σ(c) ∈ V or c ∈ Act.

(8) The root is always redirected, i.e. for someb ∈ P (root, b) ∈ Red.

(9) No arc can lose state saturatedness through redirection, i.e. (a, b) ∈ Redand
µ(b) = ε ⇒ σ(b) ∈ V or b ∈ Act.

(10) A node which is the LHS but not the RHS of a redirection should be garbage
a rewrite whenever possible, i.e. (b, c) ∈ Redandb ∈ Act ⇒ there is ab ≠ a ∈
L such that (a, b) ∈ Red.

Theorem M-I.11.5 (Desirable Properties) When all rules used, conform to Restric
tion M-I .11.4, induction over executions yields many desirable properties. Name

• All execution graph nodes respect the arities of their symbols.• The pattern matching
requirements of each redex, depend solely on the symbol at the root.• No pointer equiv-
alence is required for matching any redex node, that is not evident from Map(σ(root)).
• All execution graphs are balanced and state saturated.• When all redexes that are re-
written are standard redexes, the overwriting lemmaM-I .5.10, applies to most redirec-
tions, in practice enabling the convenient representation of rewriting by packet s
manipulations.

Restriction M-I.11.6 (Systems, Rule Selection)For eachF ∈ F there is a pair of sets
(N F, DF), whereN F consists of normal rules forF, andDF is non-empty and consists
of default rules forF. In an execution, when a chosen roott is identified and it is labelled
by F ∈ F, rule selection is performed according to the following procedure:

If some rule fromN F matches the chosen roott

Then Sel = {D ∈ N F | D matches att}

Else Sel = DF

Choice of rule fromSel is nondeterministic.

bove

ab-
cket
uired
ode

gar-
oth-

s re-
pend-
in the

t
than
ence.
ent
ow-
ally
From now on, we always assume that the systems we deal with conform to the a
restrictions, i.e. are MONSTR systems.

The last point in theoremM-I .11.5 raises the issue of liveness and garbage which is
sent from the discussion thus far, since if we are to overwrite some part of (the pa
store representation of) an execution graph, we need to be sure it will never be req
in the future, (we will say a little more about packet stores below). We say that a n
x is live iff one or more of the following hold: (1)σ(x) = Root; (2) x is active i.e.µ(x)
= ∗; (3) x is accessible from a nodep via a normal arc (pk, x) wherep is already live;
(4) x can access a nodec via a notification arc (xk, c) wherec is already live. If a node
x cannot be proved live on the basis of the preceding four conditions, we say it is
bage. And an arc is live iff both its parent and child nodes are live, being garbage
erwise. Given this, we can define the live subgraph (LSG) of a graphG as consisting
of those nodes and arcs ofG which are live. InM-I we showed that this definition is
sound. Note particularly that the LSG does not necessarily satisfy all the propertie
quired for it to be a term graph in the sense we have assumed thus far, as a live sus
ed node might well have garbage notification out-arcs, so that a node’s presence
LSG does not imply the presence of all its out-arcs in the LSG.

Below, we will need to refer to the following results concerning garbage.

Lemma M-I.5.10 (Overwriting lemma) Let G be a balanced graph, and letg : L → G
be a standard redex for a ruleD = (P, root, Red, Act). Denoting the result of contractum
building using a prime, as usual, let

Redg = {(g′(a), g′(b)) | (a, b) ∈ Red, g′(a) ≠ g′(b)}

Let (g′(a), g′(b)) ∈ Redg and suppose

(1) σ(a) ≠ Root.

(2) There is no (g′(c), g′(d)) ∈ Redg with g′(d) = g′(a).

(3) g′(a) ∉ g′(Act).

Thenh(a) is garbage in the graphH produced by the rewrite.

Lemma M-I.5.11 (Moving lemma) Let G be a balanced graph, and letg : L → G be
a standard redex for a ruleD = (P, root, Red, Act). Denoting the result of contractum
building using a prime, as usual, letRedg be as in lemmaM-I .5.10 and let (g′(a), g′(b))
∈ Redg satisfy

(2) There is no (g′(c), g′(d)) ∈ Redg with g′(d) = g′(a).

Thenh(a) has no in-arcs inH.

3 SUSPENDING SEMANTICS

We return once more to the last point in theoremM-I .11.5. It contains the caveat tha
all redexes that are rewritten are standard redexes. This is in fact more important
it appears, since the soundness of the definition of garbage breaks down in its abs
Now from the point of view of an abstract rewriting system, there is nothing to prev
us from simply defining the rewriting relation to be restricted to standard redexes. H
ever the MONSTR rewriting model is intended to capture a much more operation

riting
ieve

rites
r arbi-
f re-
form

nces

at

ro-
man-

iring
e

uted
y
n-idle
urse
ard

-

-

based machine model at a suitably abstract level and so simply restricting the rew
relation to a convenient subset of pairs of related graphs will not do. The way to ach
this restriction is instead to introduce a new atomic action.

Suspending executions consist of three kinds of atomic action: notifications, rew
and suspensions. These are defined below. Whereas the first two are defined fo
trary DACTL systems (i.e. systems that do not necessarily conform to the suite o
strictions we listed above), the last of these, suspensions, only make sense (in the
to be described), for MONSTR systems. The next definition states the circumsta
under which each kind of action is performed.

Definition 3.1 (Execution Steps) Let G be a graph andt an active node ofG, the cho-
sen root. For suspending semantics, the kind of execution step to be performedt is
determined as follows.

If σ(t) ∈ C ∪ V
Then Perform a notification att
Else If For allk ∈ Map(σ(t)), µ(α(t)[k]) = ε (andν(t)[k] = ε)

Then

Else Perform a suspension att

Note that the part in the highlighted box is just the usual MONSTR rule selection p
cedure, so that the only difference between suspending semantics and DACTL se
tics is when the explicit nodes that a normal rule forσ(t) would need to match are non-
idle, whereupon a suspension occurs. Note that this is subtly different from requ
that only rules having standard redexes att are eligible for selection. Even when som
Map(σ(t)) arguments of a chosen roott are non-idle, a default rule forσ(t) would still
always have a standard redex, so could govern a rewrite att. But suspending semantics
indicates a suspension instead. The rationale behind this is that when a distrib
packet store rewriting implementation (M-I .10) commences a rewrite, it begins b
sending out Constructor_Request messages, and these suspend on any no
Map(σ(t)) arguments before anything else is known about those arguments. Of co
when a suspending rewrite does occur, it will turn out that it is a rewrite of a stand
redex for sure.

Now we define the three kinds of suspending atomic action.

Definition 3.2 (Suspending Notification) These are defined exactly as for DACTL se
mantics, reviewed above. SeeM-I .3.11.

Definition 3.3 (Suspending Rewrites) These are defined exactly as for DACTL se
mantics, reviewed above. SeeM-I .3.10.

Definition 3.4 (Suspending Suspensions)Supposet is a chosen root in a graphG,
σ(t) ∈ F and there is at least onek ∈ Map(σ(t)) such thatα(t)[k] is non-idle. Let

Perform a rewrite using a rule chosen
nondeterministically fromSel where

If some rule fromN σ(t) matches the chosen roott
Then Sel = {D ∈ N σ(t) | D matches att}
Else Sel = Dσ(t)

n
iform

ecu-

xecu-
ore

r-
Susp(t) = {k ∈ Map(σ(t)) | α(t)[k] is non-idle inG}
n = | Susp(t) |

Define the graphH as follows.

(1) NH = NG.

(2) σH = σG.

(3) αH = αG.

(4) µH(x) = If x = t

Then #n

Else µG(x).

(5) νH(x)[k] = If x = t andk ∈ Susp(t)
Then ^
Else νG(x)[k].

ThenH is the result of the suspension.

As above, we define the mapsiG,H = rG,H as the identity on nodes also for suspensio
steps, in order to be able to track the fate of nodes through executions using a un
notation.

This completes the definition of the repertoire of actions available to suspending ex
tions. [Fig. 5] shows a suspension step for a fragment of term graph rooted at anF-la-
belled chosen root.

Now we must consider the effect of the new suspension steps on properties of e
tions. First, the preservation of garbage. (Note that the next theorem is actually m
general than we need.)

Theorem 3.5 Let G be a balanced graph andt be an active node oft. Let Susp(t) be
defined as in definition 3.4 and let 0≠ n = | Susp(t) |. Suppose a suspension step is pe
formed att yielding graphH. Then

∗F[• • •]

#H[•]

∗A

⇒

∗G K

^

##F[• • •]

#H[•]

∗A

∗G K

^

^^

Fig. 5. A suspension step.

via a

s

cation

e

s

ep can

an-

nd
and
(1) If x is a garbage node ofG, theniG,H(x) is a garbage node ofH.

(2) If (pk, c) is a garbage arc ofG, then (iG,H(p)k, rG,H(c)) is a garbage arc ofH.

Proof. We recall that a node is live iff, (1) it isRoot-labelled, or (2) it is active, or (3)
it is accessible from a live node via a normal arc, or (4) it can access a live node
notification arc. Otherwise it is garbage.

For a suspension step fromt, the suspension redex consists of all arcs (tl, z) of G, with
l ∈ Susp(t), and their constituent nodes. Sincet is active and all suspension redex arc
are normal by balancedness, the suspension redex is live inG.

Consider a garbage nodex in G. There is no proof of liveness ofx in G sox is not in
the suspension redex. Thus we consider the redex-emergent arcs. These are notifi
arcs (qm, t); normal arcs (tm, q) for m ∉ Susp(t); normal arcs (zm, q) wherez = α(t)[l]
for l ∈ Susp(t); and finally notification arcs (qm, z). Before the suspension step,t and
all of these arcs are live.

After the suspension, theiG,H image oft in H will be suspended, thus will not be live
unless there is an alternative “nonlocal” proof oft’s liveness inG not involvingt’s active
marking, or one of thez’s is active inG, or there is a “nonlocal” proof of such az’s live-
ness inG that did not involve the arc (tl, z). (The latter two cases allow us to deduc
iG,H(t) is live in H.) Thus inH, theiG,H images of the redex-emergent arcs (qm, t) and
(tm, q) will not necessarily be live. Similarly theiG,H image of aznode will not be live
in H unlessz is active inG, or there is an independent “nonlocal” proof of the livenes
of z in G not relying on the suspension redex. Thus inH, theiG,H images of redex-emer-
gent arcs (zm, q) and (qm, z) need not be live.

Altogether, this means that for nodes and arcs outside the redex, the suspension st
destroy proofs of liveness, but not create new ones. We conclude that theiG,H image of
x is garbage inH.

For a garbage arc (pk, c), we argue that at least one ofp or c is garbage and thus outside
the suspension redex inG. By the preceding, itsiG,H image is still garbage inH. If p
is the garbage node, then (iG,H(p)k, rG,H(c)) is obviously garbage. Ifc is the garbage
node, then becauserG,H(c) = iG,H(c) for suspensions,rG,H(c) is garbage inH, giving the
conclusion. We are done.

Now we come to the first high point in the theory of the suspending model.

Theorem 3.6 (Properties of Suspending Semantics)Let R be a MONSTR system
and letG = [G0, G1…] be an execution of the system according to suspending sem
tics. Then

(1) Every rewrite in the execution is a rewrite of a standard redex.

(2) Every execution step preserves garbage.

(3) Every graphGi is balanced and state saturated.

Proof. By induction on executions. Clearly (3) holds for the initial graph, and (1) a
(2) hold for the initial rewrite. Suppose then (3) holds for all execution graphs up to
includingGi–1, and (1) and (2) hold for all execution steps that led toGi–1. By (3) we
know thatGi–1 is balanced, hence ifGi is obtained fromGi–1 by a rewrite, since all ex-
plicit non-root arguments of the redex are idle, the redex is standard, giving (1).

rem
ced-
k
d since
e sat-

ll ex-
e the
ing

lev-
ll into
-
sus-
tores,

n

-

. All
sion,

m,

sen-

ation
are

(a)]
ld of
acket
of

oint-
We know that rewrites of standard redexes preserve garbage (M-I .5.7), that notifica-
tions preserve garbage (M-I .5.8), and that suspensions preserve garbage (by theo
3.5), so we have (2). Finally we know that rewrites and notifications preserve balan
ness and state saturatedness (M-I .4.2 andM-I .4.4); so to get the result we need to chec
suspensions. But it is easy to see that suspensions preserved balancedness; an
all the new notification arcs created in a suspension have non-idle child nodes, stat
uratedness is preserved also. So we have (3) forGi. We are done.

Thus changing DACTL semantics by the introduction of suspension steps, forces a
ecutions to behave in the way that we would wish. The suspensions in fact enforc
firewall principle (M-I .7) in the suspending model, and this is the source of the pleas
properties we have derived.

As the introduction of suspension steps is intended to work smoothly with the lower
el aspects of the MONSTR model, we should check that suspensions translate we
the world of packet store primitives described inM-I .6, and we should prove an appro
priate adequacy theorem. We will not do this completely formally, mainly because
pension steps are so simple; we content ourselves with a brief overview of packet s
and then we will examine a typical example.

A packet store representation of a MONSTR graphG is contained within a set of packet
store locations. Each distinct nodexof G is represented by a distinct packet at a locatio
x. The location contains: (1)x’s symbolσ(x); (2) x’s markingµ(x); (3) a sequence of
items each of which is either the unitBLANK , or another locationy (a forward pointer);
(4) a return address setρ(x) containing a set of pairs such asm.k wherem is a packet
location andk is an index into the sequence of items atm (a reversed pointer). The in-
variant that binds the packet store to the represented graphG asserts that: (a) normal
arcs (pk, c) of G are in bijective correspondence with entriesc in k’th position of the se-
quence of items atp, where locationsp andc hold the representatives of nodesp andc
respectively; (b) notification arcs (pk, c) of G are in bijective correspondence with en
triesp.k in the return address set ofc, where locationsp andc hold the representatives
of nodesp andc respectively and thek’th position of the sequence of items atp is
BLANK .

In such an environment, the representation of suspension steps is simple enough
we need do, is to change the active marking in the root packet to a suitable suspen
remove the root packet’s forward pointers to Map(σ(root)) non-idle child packets, re-
placing them byBLANK , and insert a reversed pointer to the relevant root packet ite
into the return address set of each such child packet.

This simple picture becomes slightly more complicated when we optimise the repre
tation to allow garbage not to be represented, and permit the presence ofInd(irection)
packets as intermediaries in the representation of arcs to allow the local implement
of redirection (seeM-I .6 for a detailed discussion). Nevertheless the complications
rather elementary and we merely give an example.

[Fig. 6] shows the packet store transformation for the suspension of [Fig. 5]. [Fig. 6.
shows the pre-state while [Fig. 6.(b)] shows the post-state. Note that the first chi
the root packet is assumed to have been exported to some other location in the p
store, leaving behind a suspendedIndwhich causes the suspension on that argument
the root (as the argument itself is inaccessible), while the second child argumentis itself
accessible because it can be found by traversing an idle indirection chain (all the p

Fig. 6.(b) Post-state of the packet store for the suspension of [Fig. 5].

F ρ – – •

Ind • – ε Ind ∅ • ε K ∅

∗ G • # H • –

∗ A •

Fig. 6.(a) Pre-state of the packet store for the suspension of [Fig. 5].

∗ F ρ • • •

Ind ∅ – ε Ind ∅ • ε K ∅

∗ G • # H ∅ –

∗ A •

des-
e the

tics)
elow.

t

ully
is
ers that represent the arc in question point in the necessary direction), allowing the
tination packet to be retrieved, at which point the suspension is caused becaus
argument itself is non-idle.

4 CORRECTNESS OF SUSPENDING EXECUTIONS

In this section we study the effect on correctness (with respect to DACTL seman
that the introduction of suspension steps generates. The first important result is b

Theorem 4.1 Let R be a MONSTR system. LetG = [G0, G1…] be an execution ofR
according to suspending semantics. Let the domain ofG (i.e. its set of indices) beNG.
Then there is an execution ofR, GD = [GD

0, GD
1…] according to DACTL semantics,

with domainNGD, such that there is a non-decreasing mapδ : NG → NGD such that for
all i ∈ NG,

(1) There is a graph structure isomorphismθi : Gi → GD
δ(i).

(2) x ∈ Gi is non-idle ⇔ θi(x) ∈ GD
δ(i) is non-idle.

(3) x ∈ Gi andµ(x) = #n ⇒ µ(θi(x)) = #m with 0 ≤ m ≤ n (and#0 = ∗), so that

(4) x ∈ Gi is active ⇒ θi(x) ∈ GD
δ(i) is active.

(5) (pk, c) ∈ Gi is a normal arc⇒ (θi(p)k, θi(c)) ∈ GD
δ(i) is a normal arc.

(6) (pk, c) is a notification arc inGi and (θi(p)k, θi(c)) is a normal arc inGD
δ(i)

⇒ θi(p) is active.

And

(7) Whenever execution stepGi → Gi+1 is a rewrite with roott governed by ruleD,

then execution stepGD
δ(i) → GD

δ(i)+1 is a rewrite of a standard redex with roo
θi(t) governed by ruleD; and whenever execution stepGi → Gi+1 is a notification

from t, then execution stepGD
δ(i) → GD

δ(i)+1 is a notification fromθi(t).

Proof. We constructGD andδ : NG → NGD as follows.

Step 0: Letδ(0) = 0 andGD
0 = G0. Clearly (1) – (6) hold fori = 0.

Stepi + 1: Suppose we haveδ for j ∈ [0 … i] and the correspondingGD
δ(j). There are

three cases depending on whetherGi+1 is obtained fromGi by notification, by rewriting,
or by a suspension.

Notification case. Lett ∈ Gi be the chosen root for the notification soσ(t) ∈ C ∪ V. By
hypothesisθi(t) is active, andσ(θi(t)) ∈ C ∪ V so that nodeθi(t) is a possible root for a
notification inGD

δ(j). Let GD
δ(j)+1 be the result of performing a notification atθi(t) in

GD
δ(j), and letδ(i + 1) = δ(i) + 1. Since there is a graph structure isomorphismθi :

Gi → GD
δ(i) (note that this does not require the node and arc markings to be faithf

mapped byθi; seeM-I .3.3), and notifications merely manipulate the markings, there
obviously a graph structure isomorphismθi+1 : Gi+1 → GD

δ(i+1) giving (1).

le

(3)
o

lise

pond-

hism

sy to

y

see.

s by
We note that notifications only manipulate the markings in the notification redex. InGi
(resp.GD

δ(i)), t (resp.θi(t)) is active and has its active marking replaced by the id
marking inGi+1 (resp.GD

δ(i+1)). Noting also that non-idle parents oft (resp.θi(t))
merely have one non-idle marking changed to another when their out-arcs tot (resp.
θi(t)) are notification arcs, we conclude that (2) is preserved by notifications. Since
holds for the notification redexes inGi andGD

δ(i) and notifications decrement non-zer
suspension marks, (3) holds for the graphsGi+1 andGD

δ(i+1), whence we quickly get
(4) for Gi+1 andGD

δ(i+1). It is easy to see that (5) is preserved as notifications norma
all notification in-arcs oft. Likewise for (6).

Rewrite case. By hypothesisGi andGD
δ(i) are graph structure isomorphic, whence ift

is the chosen root inGi, σ(t) = σ(θi(t)) ∈ F. By (2) and (4) and the fact thatGi has a
standard redex for some ruleD = (P, root, Red, Act) for σ(t) at t, GD

δ(i) has a standard
redex for the same rule atθi(t). And becauseD was eligible for selection to govern the
stepGi → Gi+1, so isD to govern a stepGD

δ(i) → GD
δ(i+1). Therefore we perform a

rewrite atθi(t) similar to the one att.

Let us compare the rewriting processes that createGi+1 from Gi andGD
δ(i+1) from

GD
δ(i) using the ruleD. Letgi : L → Gi andgD

δ(i) : L → GD
δ(i) be the redexes.

The two contractum building phases clearly allow the extension ofθi : Gi → GD
δ(i) to

a graph structure isomorphism

θi′ : Gi′ → GD
δ(i)′

such that the obvious triangle involvinggi′ : P → Gi′ andgD
δ(i)′ : P → GD

δ(i)′ com-
mutes. Since identically labelled and marked nodes and edges are added to corres
ing places, it is easy to see that (1) – (6) hold forGi′ and GD

δ(i)′ via θi′.

Also the redirection phase admits a further extension to a graph structure isomorp

θi′′ : Gi′′ → GD
δ(i)′′

such that the triangle involving the node mapsgi′′ : P → Gi′′ andgD
δ(i)′′ : P → GD

δ(i)′′
commutes too. Since similar modifications are made to both graphs, it is again ea
see that (1) – (6) hold forGi′′ and GD

δ(i)′′ via θi′′.

Likewise the activation phase finally yields the graph structure isomorphism

θi+1 : Gi+1 → GD
δ(i+1)

such that the triangle involvinghi+1 : P → Gi+1 andhD
δ(i+1) : P → GD

δ(i+1) commutes,
and we easily see that (1) – (6) hold forGi+1 and GD

δ(i+1) via θi+1.

Suspension case. Here we do not construct a new graph at all. We setδ(i+1) = δ(i),
GD

δ(i+1) = GD
δ(i), andθi+1 = θi, noting in the latter case that markings are ignored b

theθ maps; giving (1). As for notifications, we observe that ift ∈ Gi is the chosen root,
the marking ont changes from∗ to #n, both of which are non-idle markings; otherwise
all node markings remain the same. This quickly yields (2) – (4); (5) is also easy to
The basic nature of suspensions ensures that (6) is preserved.

The above yields a sequence of execution steps for which property (7) is obviou
construction.

ibly

we
ing
ter-

d

the

f oc-
hy-

e-

f

uce

of
sus-
roots
same

n-
If G is non-terminating, it is a DACTL executionGD. (We do not contemplate transfi-
nite executions in this paper). Otherwise it is a prefix of a DACTL execution, poss
a proper one since there may be active nodes left over in the finalGD graph arising from
suspensions inG not all of whose arguments subsequently notified. In such a case
can complete the DACTL execution by performing rewrites and notifications accord
to DACTL semantics until we either reach a final graph, or the execution does not
minate. The result in either case isGD.

The close relationship betweenG andGD constructed above, extends to liveness an
garbage as follows.

Theorem 4.2 Assume the notation of theorem 4.1. Then for alli ∈ NG,

(1) x ∈ Gi is live ⇒ θi(x) ∈ GD
δ(i) is live.

(2) (pk, c) ∈ Gi is a live arc⇒ (θi(p)k, θi(c)) ∈ GD
δ(i) is a live arc.

Proof. We start with the nodes. We use a form of induction on the size of a proof of
liveness ofx ∈ Gi. (By the size of a proof presented in the sequent style ofM-I .Fig.10,
we mean the sum of the number of occurrences of formulae and of the number o
currences of inference steps in the proof, in an obvious way.) The precise induction
pothesis is

If x ∈ Gi has a liveness proofΠx,i of sizen, then

θi(x) ∈ GD
δ(i) has a liveness proofΠD

θi(x),δ(i) of sizem ≤ n.

If x is live because it isRoot-labelled or active, then by theorem 4.1.(1) or 4.1.(4) r
spectively,θi(x) is live inGD

δ(i).

If x is live because there is a normal arc (pk, x) with p live in Gi, thenp has a smaller
liveness proof thanx, and by theorem 4.1.(5), (θi(p)k, θi(x)) is a normal arc. By hypoth-
esisθi(p) is live, whenceθi(x) is live, both with proofs of requisite size.

If x is live because there is a notification arc (xk, c) with c live in Gi, thenc has a smaller
liveness proof thanx, and (θi(x)k, θi(c)) is either a notification arc or a normal arc. I
the former, thenθi(c) is live by hypothesis, whenceθi(x) is live, both with proofs of req-
uisite size. If the latter, then by theorem 4.1.(6),θi(x) is active anyway, whence live, by
a very small proof.

Since an arc is live iff both the parent and child nodes are live, we immediately ded
the result for arcs.

Thus suspending executions map fairly straightforwardly into at least prefixes
DACTL executions of the same system. If things go well, the suspensions of the
pending execution subsequently receive enough notifications to reactivate their
and let a rewrite take place. When all suspensions are thus released, we get the
final graph (assuming the execution terminates). We now study this further.

Definition 4.3 Let Gi be an execution graph (for either suspending or DACTL sema
tics). The execution dependency graph (EDG) ofGi consists of

(1) all notification arcs and their parent and child nodes,

(2) all non-idle nodes.

for
be no-

a)

as

tem

nd-
ate sat-

start
oes not

older,
since
Note that like the live subgraph (LSG), the EDG need not satisfy all the invariants
being a term graph, not least because not all out-arcs of a suspended node need
tification arcs.

Theorem 4.4 LetGf be an execution graph of a suspending executionG of a MONSTR
systemR. Then

(1) (a) All nodes ofGf are idle ⇒
(b) The EDG ofGf is empty.

(2) (a) The EDG ofGf is empty ⇒ [

(b) Gf is the final graph of the suspending MONSTR executionG of R, and

(c) Gf is the final graph of the associated DACTL executionGD of R.]

Proof. (1) is clearly true by balancedness. For (2), (a)⇒ (b) since all nodes ofGf are
idle, whence there is no candidate chosen root for another execution step. Also (⇒
(c) by theorem 4.1.(2).

Corollary 4.5 If G is a suspending execution of a MONSTR systemR, with final graph
Gf, and the EDG ofGf is empty, then there is a DACTL execution ofR producing the
same final graph.

N.B. In the following theorem, the two chains of implications are to be understood
shorthand for {[(a)⇒ (b)] ∧ [(b) ⇒ (c)]}.

Theorem 4.6 Let Gf be a suspending semantics execution graph of a MONSTR sys
R. Then

(1) (a) Gf contains no active nodes⇒
(b) The EDG ofGf contains no active nodes⇒
(c) The EDG ofGf is non-empty⇔ the EDG ofGf contains a suspended

node, and [there is a cycle of deadlocked suspended nodes inGf, or there
is an idle stateholder at the head of a notification arc ofGf, (or both)].

(2) (a) The EDG ofGf contains no active nodes⇒
(b) Gf is the final graph of the suspending executionG of R ⇒
(c) Gf is graph-structure isomorphic to a graph of the associated DACTL

executionGD of R.

Proof. Consider a node in the EDG of an execution graphGf of R. If it is active, or an
idle stateholder at the head of a notification arc, it is a leaf of the EDG. If it is suspe
ed, it has at least one child node. These remarks are true by balancedness and st
uratedness. Moreover there are no other possibilities.

Consider a maximal path of the EDG containing at least one arc. Perforce it must
at a suspended node, and must encounter more suspended nodes as long as it d
find a leaf of the EDG, again by balancedness.

Now for (1), (a)⇒ (b) is obvious. Also (b)⇒ (c) because if the EDG ofGf is non-
empty and it has no active nodes, then any leaf of the EDG must be an idle stateh
implying the presence of a suspended parent. If there is no leaf in the EDG, then

ther

ys-

ation
a gar-
In the
ed no-
n-

STR
the
ad

s sub-
e can
paper.

re

n

arc

s

e acy-
lic
ate-
ob-
tatic
nt
is pa-
Gf is finite, its EDG is finite, and so must consist of suspended nodes knotted toge
in cycles. Part (2) is obvious.

Corollary 4.7 Let Gi be a suspending semantics execution graph of a MONSTR s
temR. If the EDG ofGi contains either of the following:

(a) A cycle consisting of suspended nodes and notification arcs. Or:

(b) A garbage idle stateholder at the head of a notification arc.

Then no subsequent execution graph will have an empty EDG.

Proof. A suspended node which is either in a cycle of suspended nodes and notific
arcs, or is the ancestor (via a path of suspended nodes and notification arcs) of
baged idle stateholder, will remain permanently suspended by balancedness.
former case there is a deadlocked cycle of suspensions, in the latter case, a need
tification from the idle stateholder will never materialise. So the EDG will remain no
empty in each subsequent execution step.

Assuming we define correctness of a terminating suspending execution of a MON
systemR, by the property that its final graph is marking-preserving isomorphic to
final graph produced by a DACTL execution, then corollary 4.7 identifies some b
things, which once they have occurred in an execution graph, preclude correctnes
sequently. The negations of these bad things lead to some good things which w
use to assert correctness. The next result is perhaps the most important one in this

Theorem 4.8 Let R be a MONSTR system, and letG = [G0, G1…] be a suspending
execution ofR. Suppose the following hold.

(1) For alli ∈ NG the EDG ofGi is acyclic.

(2) For alli ∈ NG if x ∈ Gi is an idle stateholder child of a notification arc, then the
is ai < j ∈ NG.

(3) G terminates.

ThenG is correct, i.e. its final graphGf can be obtained from a DACTL execution ofR.

Proof. Consider the EDG ofGf. It is acyclic by (1), (thus in particular does not contai
any deadlocked cycles of suspensions). It contains no active nodes sinceGf is final by
(3), and it contains no idle stateholder node which is a child node of a notification
since if it did, there would have to be anf < j ∈ NG andGf would not be final. Thus the
EDG of Gf is a finite directed acyclic graph without leaf nodes, hence empty. ThuG
is correct by theorem 4.4.

Theorem 4.8 reduces correctness to three sub-problems. The first is to establish th
clicity of the EDG of any execution graph (the initial graph obviously has an acyc
EDG). The second is to show that idle stateholder children of notification arcs ultim
ly always have the opportunity to participate in a suitable rewrite. The third is the pr
lem of termination. All of these subproblems give reasonable prospects for s
analysis. Properties of rule systemsR can be formulated, that guarantee the releva
properties of execution graphs. However, these topics are beyond the scope of th
per and will be treated in depth elsewhere.

g no-
ctness
such
our
fair-
rial.

n-

ems,

s-
the

, or

f the
rem
and
to say
ell

ON-
r in
age.
ssert
We continue this section by considering what happens when we take the precedin
tions modulo garbage, i.e. we ask the question whether we can establish the corre
of a suspending execution with respect to a DACTL execution of the same system
that the two final graphs differ only in garbage. Unfortunately this precludes use of
most powerful tool, the emptiness of the EDG. Consequently the results below are
ly weak. They are quoted without proof, being easy adaptations of preceding mate

Definition 4.9 Let Gi be an execution graph (for either suspending or DACTL sema
tics). The live execution dependency graph (LEDG) ofGi consists of

(1) all live notification arcs and their parent and child nodes,

(2) all live non-idle nodes.

As in theorem 4.6, the chains of implications and equivalences in the next two theor
are to be read as conjunctions of binary implications or equivalences.

Theorem 4.10 Let Gf be a suspending execution graph of a MONSTR systemR. Then

(1) All live nodes ofGf are idle ⇔

(2) Gf is the final graph of the suspending executionG of R ⇔

(3) The LEDG ofGf is empty ⇒

(4) The EDG ofGf is non-empty⇔ there is a (garbage) deadlocked cycle of su
pended nodes, or a notification arc whose child node is an idle stateholder in
EDG ofGf.

Theorem 4.11 Let Gf be a suspending execution graph of a MONSTR systemR. Then

(1) Gf contains no active nodes⇔

(2) Gf is the final graph of the suspending executionG of R ⇔

(3) The LEDG ofGf contains no active nodes⇒

(4) The LEDG is non-empty⇔ there is a deadlocked cycle of suspended nodes
a notification arc whose child node is an idle stateholder in the LEDG ofGf.

The previous two results are very similar. Theorem 4.10 deals with emptiness o
LEDG, which implies that nodes in the EDG must be non-active garbage. Theo
4.11 deals with non-activeness of the LEDG, which permits live deadlocked cycles
suspensions on stateholders, unlike theorem 4.10. Note that neither result is able
much about any associated DACTL execution, since the DACTL execution may w
manifest live parts of a graph which correspond to garbage in their suspending M
STR counterparts. Only if all such live parts commit garbage-theoretic suicide late
the DACTL execution, may we anticipate a equivalence of executions up to garb
Clearly theorems of a general nature such as those above, will not be able to a
whether this happens or not.

Finally for this section, we examine an example of a terminating system.

Example 4.12 We revisit the factorial example ofM-I .

uc-
any
only
ex-

ched
s are

in the

Un-
form
them
uled

ified
one

in the
so.

ntees
t the
ct of
mutu-
S consists of
F = {Fac, Mul, Sub, Initial}
C = {0, 1, 2, 3, …} i.e. the naturals
V = ∅

Rules:

Sub[0 0] => ∗0 |
Sub[1 0] => ∗1 |
… etc.… i.e. the normal delta rules for subtraction.;

Sub[x y] => ##Sub[^∗x ^∗y] ;

Mul[0 0] => ∗0 |
Mul[1 0] => ∗0 |
… etc. … i.e. the normal delta rules for multiplication.;

Mul[x y] => ##Mul[^∗x ^∗y] ;

Fac[0] => ∗1 ;

Fac[n] => #Mul[n ^#Fac[^∗Sub[n 1]]] ;

Initial => ∗Fac[5] ;

This is a fairly uncomplicated example. It is easy to show by a straightforward ind
tion over suspending executions that any instance of an active function symbol in
execution graph of the system has all of its matched arguments already idle. So the
execution (there is only one as the system is completely deterministic) is a DACTL
ecution and is automatically correct. Note how the default rules forSub andMul are
effectively just programmed up versions of suspensions, and the fact that all mat
arguments turn out to be in constructor form is reflected in the fact that these rule
never actually used.

However considering suspending semantics allows us to increase the concurrency
system, rewriting three of the default rules as follows.

Sub[x y] => ∗Sub[∗x ∗y]

Mul[x y] => ∗Mul[∗x ∗y]

Fac[n] => ∗Mul[n ∗Fac[∗Sub[n 1]]]

In this version, the three functions instantiated on the RHS of theFac default rule can
all attempt to rewrite as soon as an instance of that rule has completed its rewrite.
fortunately all these functions are strict and need their arguments in constructor
before they can progress the computation. So the only thing that happens if any of
attempt to rewrite at any moment other than the point at which they become sched
to rewrite in the DACTL execution, is that they become suspended, only to be not
later. Increasing the concurrency thus wastes work here. This is not untypical. If
can deduce the dependencies in a computation well enough statically to program
requisite suspensions at contractum building time, it is always preferable to do
However this is not always possible, and then the suspension mechanism guara
that the computation does things in the right order nevertheless. However this is no
only or even the main virtue of suspending semantics. The most important aspe
suspensions is that they prevent, in an implementable manner, the collapse of the

dness,

cu-
inat-

f the
ust
dif-

fer-
oint

our-

a

ise
odes
nce-

gar-

lve
Nor-
r def-
an

gh
hich
that
omic
tion
ore

m

ally reinforcing system of properties characterised by balancedness, state saturate
and the soundness of garbage.

5 CORRECTNESS FOR NON-TERMINATING
EXECUTIONS

Since theorem 4.1 worked equally well for terminating and for non-terminating exe
tions, it is desirable to extend the correctness results generated from it to non-term
ing executions. Unfortunately, the main criterion available to us, the emptiness o
EDG, is not applicable when the execution doesn’t terminate; by definition. We m
therefore be content with some sort of approximation to emptiness of the EDG, and
ferent approximations will yield different notions of correctness. Pursuing such dif
ent approximations can rapidly transform the study of correctness into a branch of p
set topology, a diversion which we do not wish to take in this paper, so we content
selves with the simplest feasable approximation.

Definition 5.1 Let G = [G0, G1…] be a (non-terminating) suspending execution of
MONSTR systemR. Suppose for alli ∈ NG, for all x ∈ Gi, there is anNi,x such that for
all j ∈ NG with j ≥ Ni,x, iGi,Gj

(x) is not in the EDG ofGj. Then we say thatG is pointwise
correct with respect to DACTL semantics.

Note that this definition provides a very weak notion of correctness: that of pointw
approach to non-membership of the EDG by all nodes. Further, the fact that all n
eventually vacate the EDG, may not be useful; eg. the steadily increasing set of he
forth idle nodes that the definition promises, may in fact consist predominantly of
bage.

Usually, showing that an execution satisfies a property like definition 5.1, will invo
some assumptions of fairness. This can be a complex subject [Francez (1986)].
mally we will just make whatever assumptions are necessary to make progress. Fo
inition 5.1 specifically, it is generally enough to assume that every active node in
execution graph, becomes a chosen root eventually.

The next definition gives us the ammunition to track the life history of a node throu
an execution. A node may engage in a limited number of events depending on w
atomic action is next in the execution, and what part if any the node has to play in
action. Thus a node may play no part at all, being an innocent bystander in the at
action; it may merely have its marking changed as the result of notification, activa
or suspension; or it may undergo redirection. There are no other possibilities. M
formally we have this definition.

Definition 5.2 Let G = [G0, G1…] be a suspending execution of a MONSTR syste
R. A node event chainEx for a nodex in a graphGi of G, is a maximal sequence of the
form

Ex ≡ [(µx x : σx)k , (µy y : σy)k+1 , (µz z : σz)k+2 , …]

such that the following are true.

(1) If (µz z : σz)m is an element ofEx thenz∈ Gm, andµz andσz are the marking and
symbol ofz in Gm respectively. (I.e.µ(z) = µz andσ(z) = σz.)

.)

pply
but

edi-
e in
rs of
s (f);
write
node
of

redi-
e com-
cted
us-

snap-

wo
writ-
o be
(2) If the first element in the sequence is (µx x : σx)k, then eitherk = 0 andx is the
initial node inG0, or x is not in the image ofiGk–1,Gk

. (I.e. the atomic action that

createsGk is a rewrite, andx is introduced during the contractum building phase

(3) If (µy y : σy)m , (µz z : σz)m+1 are an adjacent pair of elements inEx, then

EITHER z = iGm,Gm+1
(y) = rGm,Gm+1

(y), σ(z) = σ(y), and one of the following

holds:

(a) The pair describe an identity event fory, andµy = µz.

(b) The pair describe a notification event fory, andµy = ∗ andµz = ε.

(c, d) The pair describe an activation event fory, andµy ∈ { ε, #n (n ≥ 1)} andµz
= ∗.

(e) The pair describe a decrement suspension event fory, andµy = #n (n ≥ 2)

andµz = #n–m with n – m≥ 1.

(f) The pair describe a suspension event fory, andµy = ∗ andµz = #n (n ≥ 1).

OR rGm,Gm+1
(y) ≠ iGm,Gm+1

(y) and one of the following holds:

(g, h) The pair describe an activation event fory, andz= iGm,Gm+1
(y), andµy ∈

{ ε, ∗} and µz = ∗.

(i) The pair describe a redirection event fory, andz = rGm,Gm+1
(y).

It is clear from definition 5.2.(2) and the fact thatG is an execution, that identity events
apply to all nodes not affected by an execution step (a); that notification events a
only to roots of notifications (b); that activation events apply only to nodes activated
not redirected by a rewrite (c), or activated by a notification (d), or activated and r
rected by a rewrite in non-root position (g), or activated and redirected by a rewrit
root position (h); that decrement suspension events apply only to non-root membe
a notification redex (e); that suspension events apply only to roots of suspension
and that redirection events apply only to nodes that are being redirected during a re
(i). Thus a node event chain starting at some node records what happens to that
from a computational point of view. It is clear that by examining an adjacent pair
elements in a node event chain, we can tell what sort of event they depict.

We observe that node event chains can share common suffixes when redirections
rect one node to another, or several nodes to the same destination. They can shar
mon prefixes too, but only when there is a node that is both activated and redire
during some rewrite, participating in event types (g) and (i), or (h) and (i) simultaneo
ly. We also point out that they share some of the characteristics of sequences of
shots of a single location in the packet store representations ofM-I .6, albeit at a higher
level of abstraction — not requiring indirections, and ignoring arcs. (Evidently, t
node event chains share a common prefix exactly when the conditions of the over
ing lemmaM-I .5.10 do not hold at some location in the packet store, and one has t
content with the weaker provisions of the moving lemmaM-I .5.11.) [Fig. 7] gives a

inds
direc-
ably
under

a

-

ed re-

-
em

n

here
t

gar-

-
re at
state transition diagram for nodes classified by marking and symbol, and for the k
of permitted events according to suspending semantics. Thick lines represent re
tions, where perforce the LHS and RHS nodes are different, while thin lines, suit
labelled, represent the other kinds of events, where only one node (and its image
iGm,Gm+1

) is involved. Identity events are not shown, for clarity. Note that there is
pleasing (though not exact) degree of symmetry about the diagram.

Lemma 5.3 Let G be a suspending execution of a MONSTR systemR. Letx be a live
node of graphGk of G. Then (µ(x) x : σ(x))k is an element of some node event chainEw
of G.

Proof. By induction over executions. InG0, the one and only initial nodeinitial is in
the common first element (∗ initial : Initial)0 in all node event chains that have a 0-sub
scripted element. The result follows for subscript 0.

Suppose the result holds up toGm. If the next execution stepGm → Gm+1 is not a re-
write then it is easy to see that theiGm+1,Gm image ofx occurs in element (…)m+1 in Ew
iff x occurs in the preceding element (…)m in Ew. So if all the nodes of Live(Gm) occur
in m-subscripted elements of node event chains, then all theiriGm+1,Gm images occur in
m+1-subscripted elements of node event chains. Consequently we get the requir
sult as Live(Gm+1) ⊆ iGm,Gm+1(Live(Gm)).

Otherwise the next execution stepGm → Gm+1 is a rewrite. All contractum nodes in-
troduced during the rewrite are in the first (m+1-subscripted) elements of all corre
sponding node event chains by definition 5.2.(2), so the conclusion holds for th
regardless of whether they are live inGm+1 or not. So now consider Live(Gm). By the-
orem 3.6.(2), we know that Live(iGm,Gm+1(Gm)) ⊆ iGm,Gm+1(Live(Gm)), so the conclu-
sion holds for all live nodes ofGm subjected to an event of type other than (i) i
definition 5.2. For a nodex ∈ Gm subjected to an event of type (i), i.e.x is the LHS of
a redirection, we know thatx is balanced andσ(x) ≠ Root ∈ C. Thus by the overwriting
lemmaM-I .5.10, theiGm,Gm+1 image ofx will not be live unless, eitherx is also acti-
vated, orx is also the RHS of some other redirection (or both). But in these cases t
is anm+1-subscripted element (… iGm,Gm+1(x) …)m+1 in some node event chain tha
records these possibilities.

Lemma 5.4 Let G be a suspending execution of a MONSTR systemR. Let y =
iG*,GA(y*) in graphGA, be theiG*,GA image of a nodey* first introduced in graphG* of
G, and letA be the smallest subscriptk such that for each element (µz z : σz)k in every
node event chainEw of G that has ak-subscripted element,iG*,Gk(y*) ≠ z. Then the ex-
ecution stepGA–1 → GA was a rewrite,y = iGA–1,GA(x) for somex ∈ GA–1, and in this
rewrite,x was the LHS but not the RHS of a redirection, was not activated, and was
baged by the rewrite. And conversely.

Proof. A straightforward extension of lemma 5.3.

Lemma 5.5 Let G be a suspending execution of a MONSTR systemR. Lety be a node
of graphGk of G, and letk be such that for each element (µz z : σz)k in every node event
chainEw of G that has ak-subscripted element,y ≠ z. Then for anyq > k, there is noq-
subscripted element (… iGk,Gq(y) …)q in any node event chain ofG.

Proof. Suppose not. We know that a nodey ∈ Gm of G first fails to be mentioned in
m+1-subscripted elements of node event chains ofG by being garbaged as the unacti
vated LHS but not RHS of redirections by lemma 5.4. To be mentioned once mo

Fig. 7. State transition diagram for events in suspending semantics.

Idle

C
Suspended

C
Active

C

Idle

F
Suspended

F
Active

F

Idle

V
Suspended

V
Active

V

Act

Act

Act

Susp

Act

Act

Act

Not

Not

Dec
Sus

Dec
Sus

Dec
Sus

n, as
s

RHS,
exes

eing
ith-

N-

the

re-

as not
DG

cause
stan-

s

us-
the
some later execution step, it would have to at least become the RHS of a redirectio
all other events relate to theiGm,Gm+1 images of nodes. To achieve this in turn, require
it to become a member of a standard redex, as the only alternative for a redirection
a contractum node, can only occur in the rewrite that creates it. But all standard red
are live, and garbage is persistent, so the proposal is impossible. We are done.

Continuing the analogy with the packet store ofM-I , we see that nodes likey in lemma
5.4, are those which in the packet store representation of rewriting inM-I .6, have their
representing packets overwritten, without their packet contents simultaneously b
moved to some other location; in other words, those packets which get “discarded w
out trace”.

Definition 5.6 Let x be a node occurring in graphGi in a suspending executionG of a
MONSTR systemR. We say that “x is eventuallyΠ” (or similar), iff there is anN ≥ i
such that for allj ≥ N, propertyΠ is true of theiGi,Gj image ofx in Gj. Similarly letEx
be a node event chain forx in G. We say that “Ex is eventuallyΠ”, iff there is anN such
that for allj ≥ N, propertyΠ is true for all elements (…)j in Ex.

Theorem 5.7 Let G be a non-terminating suspending MONSTR execution of a MO
STR systemR. Suppose for allx occuring in graphsGi of G, and for all node event
chainsEy in G, the following hold.

(1) x is eventually not both the LHS of a redirection, and also either activated or
RHS of a redirection of a rewrite ofG.

(2) Ey is eventually idle.

ThenG is a pointwise correct execution ofR with respect to DACTL semantics.

Proof. Consider a nodex of the execution, first introduced in a graphGA of G. Thus
eitherA = 0 andx is the initial node, orA > 0 andx was introduced during contractum
building in the rewriteGA–1 → GA. We must show that there is anN such that fork ≥ N,
iGA,Gk(x) is not in the EDG ofGk. There are three cases.

Case 1: There is anN such that fork ≥ N, iGA,Gk(x) is not in thek’th element of any node
event chain ofG. AssumeN is the smallest possible. Then by lemma 5.4iGA,GN(x) is
garbage, by being the unactivated LHS of a redirection without being the RHS of a
direction, in the rewriteGN–1 → GN. In such a caseiGA,GN(x) is necessarily idle and
balanced. By balancedness, all its out-arcs are also idle and garbage. Since it w
the RHS of a redirection, it has no in-arcs, thus no non-idle ones. So it is not in the E
of GN. Fork ≥ N, this situation persists (foriGA,Gk(x)), asiGA,Gk(x) continues to remain
as idle garbage, to have only idle garbage out-arcs, and no in-arcs. This follows be
nodes can only alter an idle marking or acquire in-arcs as the result of being in a
dard redex, which requires them to be live.

Case 2: There is aB such that fork ≥ B, iGA,Gk(x) is in some node event chainEw whose
suffix of elements with subscriptsB+i for i non-negative, contains only events of type
(a) – (h) (i.e. anything except redirections). So for eachB+i, theB+i’th element ofEw
containsiGA,GB+i(x). By (2), there is anN ≥ B such that fori non-negative, theN+i’th
element ofEw, containingiGA,GN+i(x), is idle. By balancedness, ifiGA,GN+i(x) was in the
EDG ofGN+i, it would have to be a stateholder with a notification in-arc from some s
pendedp ∈ GN+i. Such ap would have to remain suspended forever, since receiving
requisite notification entailsiGA,GN+i+j(x) being active for some non-negativej, an im-

ly

e

-

-
We

s even
s in
efini-
y we

ple-
possibility. Thus there is a node event chain,Eu say, containing the non-idle node
iGN+i,GN+i+j(p) in eachN+i+j’th element of a suffix, which it is easy to see contains on
identity events. But this contradicts (2), which says thatEu is eventually idle. So we
conclude thatiGA,GN+i(x) was not in the EDG ofGN+i after all.

Case 3: Everything else. In this case, for allB, for all node event chainsEw say, that
haveiGA,GB(x) in theirB’th element, there is a non-negativei such that elements (…)B+i
and (…)B+i +1 of Ew depict a redirection event of rewriteGB+i → GB+i +1. SoiGA,GB+i (x)
is the LHS of a redirection. IfiGA,GB+i (x) were neither activated nor the RHS of som
other redirection of the rewriteGB+i → GB+i +1, we would be in case 1, as the rewrite
would garbageiGA,GB+i (x). So eitheriGA,GB+i (x) is activated or is the RHS of a redirec
tion. SinceB was arbitrary, there must be infinitely many indices ofG, k1 < k2 < … <
ki < … at which the nodeiGA,Gki

(x) is both the LHS of a redirection, and also either ac
tivated or the RHS of a redirection. But this is precluded by (1), so case 3 is empty.
are done.

Theorem 5.7 shows that under reasonable conditions, we can deduce correctnes
for non-terminating suspending executions. The formulation of sufficient condition
terms of node event chains and redirections, is frequently more convenient than d
tion 5.1, because the events in node event chains conform more closely to the wa
naturally think of the destiny of nodes in an execution as evolving.

We examine a couple of examples of non-terminating systems.

Example 5.8 We consider a version of the producer consumer example ofM-I .

S consists of
F = {Producer, Consumer, Reader, Writer, Initial}
C = {Item, Cons, Nil}
V = {Empty, Full}

Rules:

Producer => ∗Cons[Item ∗Producer] ;

Consumer[Cons[h t]] => #Consumer[^∗t] ;

Consumer[x] => #Consumer[^∗x] ;

Reader[s:Full[x]] => ∗Cons[x #Reader[^y:Empty]] , s := ∗y |
Reader[s:Empty] => #Reader[^s] ;

Reader[x] => #Reader[^∗x] ;

Writer[Cons[h t] s:Empty] => #Writer[^∗t u:Full[h]] , s := ∗u |
Writer[x:Cons[h t] s:Full] => #Writer[x ^s] ;

Writer[x y] => ##Writer[^∗x ^∗y] ;

Initial => #Consumer[^#Reader[^s:Empty]] ,
#Consumer[^#Reader[^s]] ,
x:#Writer[^∗Producer s] ,
y:#Writer[^∗Producer s] ;

In this example, suspending semantics is actually needed for a smooth machine im
mentation as non-standard redexes can arise. For consider the first rules for bothRead-

the

us-

ause

and
wing

ake
osen

there

ck
pen-
Fur-
ery
ction
. So
te in-
gu-
r;
oti-

gar-
quisite
rites,
sys-
r the-

rcs.
er andWriter; both of which redirect their stateholder to an active node. Because of
presence of multipleReaders andWriters, schedules exist in whichReaders and
Writers attempt to pattern match their stateholder argument while it is still active. S
pensions thus provide the natural way to handle this situation.

Another area in which suspending semantics can be exploited is in the rules that c
the lists ofItems to be devoured byConsumers andWriters. If aConsumer wishes
to consume an item which has not yet been read by theReader it must wait, and like-
wise when aWriter wishes to write an item not yet produced by theProducer. This is
achieved by having each freshly createdConsumer or Writer node activate and sus-
pend on its matched argument in the rules

Consumer[Cons[h t]] => #Consumer[^∗t]

Writer[Cons[h t] s:Empty] => #Writer[^∗t u:Full[h]] , s := ∗u

The programmed suspension ensures that suchConsumers andWriters only wake
once the relevant argument is inCons form. However there are races betweenCon-
sumers and theirReaders andWriters and theirProducers. If the latter usually stay
ahead of the former so that theConsumers andWriters usually have their argument in
Cons form anyway, the activation and suspension of the above rules waste work
the runtime suspension mechanism provides a more efficient synchronisation allo
the rules to be replaced by

Consumer[Cons[h t]] => ∗Consumer[t]

Writer[Cons[h t] s:Empty] => ∗Writer[t u:Full[h]] , s := ∗u

We can verify that (either version of) the above system is pointwise correct if we m
the conventional fairness assumption that all active nodes eventually become ch
roots. The key is to note that the live part of any execution graph is a semitree, i.e.
is a unique non-backtracking unoriented live semipath1 between any two live nodes of
any execution graph. This is trivially true for the initial graph and it is easy to che
that it is preserved by all the rules, being trivially preserved by notifications and sus
sions. This allows us to quickly see that no LHS of a redirection is ever activated.
thermore it is clear from a superficial examination of the rules that the RHS of ev
redirection is a contractum node. Thus no redex node can be the LHS of a redire
and either the RHS of a redirection or activated, even once let alone infinitely often
theorem 5.7.(1) holds. To establish theorem 5.7.(2) we need a rather more intrica
ductive argument which we will not describe in detail. Assuming fairness, this ar
ment needs to prove that: (1) eachItem node is created idle and remains so foreve
(2) eachCons node is created active, later notifies, possibly repeats an activation/n
fication cycle and eventually becomes idle garbage; (3) eachEmpty node and eachFull
node is created active, later notifies, and eventually is redirected, becoming idle
bage; (4) each function node is created suspended and eventually receives the re
number of notifications and becomes active or is created active already, and rew
eventually becoming idle garbage. [Fig. 8] which shows an execution graph of the
tem, makes all of these statements at least plausible. These in turn are enough fo
orem 5.7.(2), and hence for pointwise correctness.

1. We recall that a semipath in a directed graph just disregards the orientation of the a

the
the

ible
S and
em

occur
y are
ise

ome
Example 5.9 In this example we display a MONSTR system that does not satisfy
conditions of theorem 5.7. All of the rewrites of this system are in fact instances of
example that we used to illustrate rewriting in [Section 2], [Fig. 4]. The one poss
execution of the system, has two stateholder nodes that are simultaneously the LH
RHS of redirections infinitely often. This property is used to ensure that neither of th
is eventually in every subsequent element of some node event chain (though they
in some node event chains infinitely many times), and this helps to ensure that the
repeatedly in the EDG. Ironically, though the execution of this system is not pointw
correct according to definition 5.1, we would much prefer to regard it as correct in s

∗Consumer[•] Cons[• •] Cons[• •] #Reader[•]

Item Item

Empty

^

∗Writer[• •]

Cons[• •] ∗Producer

Item
∗Writer[• •]

Cons[• •] Cons[• •] ∗Producer

Item Item

Fig. 8. An execution graph of Producers and Consumers.

#Consumer[•] #Reader[•]

^

^

t all.
eral

ex-
hs of

h
the

f

d it is
he

ution
ason
ure of
may
rtain
rinci-
ther
lism
con-
only
ing
ed as
form
f this

sim-
one

ction
hich
wider sense, as it is in fact a DACTL execution; containing no suspension steps a
This merely illustrates the obvious fact that non-terminating executions can in gen
be trickier to deal with than terminating ones.

S consists of
F = {F, Initial}
C = ∅
V = {S}

Rules:

root:F[s:S a] => s , s := ∗a , #F[^a root] ;

F[a b] => #F[^∗a b] ;

Initial => ∗F[s:S v:S] ;

[Fig. 9] illustrates the execution of this system showing only the live nodes in each
ecution graph, (note that the difference between the top right and bottom left grap
[Fig. 9] and the result graph of [Fig. 4], is that [Fig. 4] includes the idleF-labelled node
which is garbage). In relation to this note also that while theF nodes are constantly be-
ing garbaged and replenished, theS nodes,s andv, are the same nodes in each grap
(i.e. they areiGk,Gk+1 images rather than contractum instantiations), as a result of
phenomena pointed out above. Consequently, there is a node event chainEs say, that
perpetually contains one or other of theses andv nodes alternately, and each picture o
the cyclic part of the execution in the figure, indicates which node is inEs by the♠. As
usual, dashed arrows represent redirections to be performed in the next step, an
clear that each suffix ofEs contains an infinite number of redirection events where t
redirected node is the RHS as well as the LHS of redirections, because boths andv visit
Es infinitely many times.

6 INDEPENDENCE

In this section, we examine the conditions under which the order of adjacent exec
steps of suspending executions is irrelevant. This is of interest when we wish to re
about the correctness of specific systems. In general the relatively finegrained nat
MONSTR rules means that larger atomic actions at a higher level of abstraction,
have to be broken down into smaller subactions. Often this can generate a ce
amount of concurrency in the execution graph, as independent subactions are in p
ple able to execute simultaneously — which is modelled by interleaving them in ei
order in the serial rewriting model. Combining such independence with any paralle
in the original system can yield an astronomical number of execution sequences to
sider, especially when executions are infinite. Often large numbers of these differ
in trivial ways, and the interchange theorems of this section help with this, by allow
executions that differ only by sequences of permitted interchanges to be regard
equivalent. Ultimately one may be able to reduce all the executions to a standard
if the understanding of the system is profound enough. For a concrete example o
process see [Banach et al. (1995)].

Actually, to just say that independent actions may simply be interchanged is too
plistic. In one case, choosing one action first obliterates the other; in another,
choice entails an extra action. And in any case, the results we start with in this se
are expressed in a symmetric form which states that given an execution graph for w

order
ints

a

two candidate next execution steps are available, one may perform them in either
with equivalent results (provided suitable conditions hold). We return to these po
later.

Theorem 6.1 Let GN = [G0, G1, …, GN] be a prefix of a suspending execution of
MONSTR systemR. SupposeGN contains two active nodest1 ≠ t2 with { σ(t1), σ(t2)}
⊆ C ∪ V. For either choice ofi ∈ {1, 2}, let j denote the other choice. LetHi be ob-
tained by performing a notification fromti in GN. Then

(1) H1 andH2 are graph structure isomorphic.

(2) rGN,Hi
(tj) = iGN,Hi

(tj) is an active constructor or stateholder, hence the root

of a potential notification step, inHi.

Let Ki be obtained fromHi by notifying fromrGN,Hi
(tj). Then

(3) K1 andK2 are marking preserving isomorphic.

∗Initial

⇓

∗F[• •]

s:S v:S
♠

∗F[• •]

s:S v:S
♠

#F[• •]

∗s:S v:S
♠

^

⇑

⇐

#F[• •]

s:S ∗v:S
♠

^

⇓

⇒

Fig. 9. A non-terminating execution of the system featuring
two nodes that are repeatedly in the EDG.

fol-

ide.

ep

n-

a

cs
will

ince
n root,

the

a

Proof. This is relatively easy. Since notifications merely manipulate markings, (1)
lows immediately since bothH1 andH2 are graph structure isomorphic toGN. Sincetj
is active inGN, it cannot be a suspended parent of a notification arc ofti; thus it is not
notified inti’s notification, andrGN,Hi

(tj) is active inHi so that (2) holds. As for (1),K1
andK2 are graph structure isomorphic, so we must check that the markings coinc
We know that the sets of notification arcs that comprise the notification redexes oft1 and
t2 in GN are disjoint. After notification, all of them end up as normal arcs inK1 andK2.
Other arcs are unaffected.

For nodes,t1 andt2 lose their active marking; nodes not in either notification redex ke
their marking; parent nodes ofti in the notification redex ofti but not oftj decrement
their suspensions by the same amount during the notification of eitherti or of rGN,Hj

(ti);
and parent nodes of botht1 andt2 in both notification redexes decrement their suspe
sions by the sum of two such amounts, ending with the same marking since (n – a) – b
= (n – b) – a. So we have (3), and thus the whole theorem.

Theorem 6.2 Let GN = [G0, G1, …, GN] be a prefix of a suspending execution of
MONSTR systemR. SupposeGN contains two active function nodess1 ≠ s2 with not
all Map(σ(si)) arguments idle, i.e. such that fori ∈ {1, 2} there is at least oneki ∈
Map(σ(si)) such thatα(si)[ki] is not idle inGN. For either choice ofi ∈ {1, 2}, let j de-
note the other choice. LetHi be obtained by performing a suspension fromsi in GN.
Then

(1) H1 andH2 are graph structure isomorphic.

(2) rGN,Hi
(sj) = iGN,Hi

(sj) is an active function node, and hence the root

of a potential suspension step, inHi.

Let Ki be obtained fromHi by performing a suspension fromrGN,Hi
(sj). Then

(3) K1 andK2 are marking preserving isomorphic.

Proof. This is pretty similar to theorem 6.1, in that notifications turn notification ar
into normal arcs, while suspensions turn normal arcs into notification arcs. So we
be fairly brief.

Since suspensions merely manipulate markings we have (1) immediately. Also s
the only node marking that is changed in a suspension step is that of the suspensio
and all nodes are non-idle afterwards iff they were non-idle before, (2) follows, andK1
andK2 are graph structure isomorphic. Since the sets of normal arcs constituting
two suspension redexes are disjoint inGN, we get (3) easily.

Theorem 6.3 Let GN = [G0, G1, …, GN] be a prefix of a suspending execution of
MONSTR systemR. SupposeGN contains an active function nodes such that there is
at least onek ∈ Map(σ(s)) such thatα(s)[k] is not idle inGN. SupposeGN also contains
an active constructor or stateholdert. Let

Susp = {k ∈ Map(σ(s)) | α(s)[k] is non-idle inGN}
SuspNodes = {x ∈ GN | x = α(s)[k] for somek ∈ Susp}

Π ≡ SuspNodes = {t}

Let Hs be obtained by performing a suspension froms in GN, and letHt be obtained by
performing a notification fromt in GN. Then

g sus-

gs.

ca-

cs of

ation
) arcs

;
main-

one
wer
nsion
ns
rcs in
(a)
-

(
,
hat
(1) Hs andHt are graph structure isomorphic.

(2) rGN,Hs
(t) = iGN,Hs

(t) is an active constructor or stateholder, hence the root

of a potential notification step inHs.
rGN,Ht

(s) = iGN,Ht
(s) is an active function node, and unlessΠ holds, is the

root of a potential suspension step inHt.

Let Ks be obtained fromHs by performing a notification fromrGN,Hs
(t), and let

Kt = If Π Then Ht
Else The result of performing a suspension fromrGN,Ht

(s) in Ht

Then

(3) Ks andKt are marking preserving isomorphic.

Proof. As in the previous theorems, (1) is immediate. Sinces cannot be in the notifi-
cation redex oft in GN, and since althought might be in the suspension redex ofs in GN,
the node markings of non-root nodes of suspension redexes do not change durin
pensions, we conclude (2), noting that ifs’s only non-idle Map(σ(s)) argument wast,
there is no potential suspension fromrGN,Ht

(s) in Ht sincerGN,Ht
(t) is idle. Obviously

we find thatKsandKt are graph structure isomorphic, so we need to check the markin

For arcs there are four disjoint cases: (a) all arcs (sk, t), for any applicablek, which must
all be normal arcs inGN; (b) other arcs of the suspension redex; (c) arcs of the notifi
tion redex; (d) all remaining arcs.

For (a), if the suspension is done first, the constituent arcs become notification ar
Hs, and next become normal arcs ofKs after the notification. If the notification is done
first, these arcs disappear from the suspension redex inHt sincerGN,Ht

(t) is idle, remain-
ing normal in the suspension step that follows if the suspension redex inGN contained
other than case (a) arcs. For cases (b) and (c) it is clear that they become notific
arcs and normal arcs respectively regardless of the order of the steps. Also case (d
are unaffected.

For nodes there are also four disjoint cases: (a)s; (b) the nodes of the notification redex
(c) nodes in the suspension redex other than case (a) and case (b) nodes; (d) all re
ing nodes.

For (a), if the suspension is done first,rGN,Hs
(s) becomes suspended inHs, and in the

notification step receives notifications along all case (a) arcs. If the notification is d
first, s is unaffected during notification, but becomes suspended (on potentially fe
arguments) during the subsequent suspension (if any). It is clear that the net suspe
markings onrGN,Ks

(s) in Ks and onrGN,Kt
(s) in Kt are the same, as the extra suspensio

when the suspension is done first, match the notifications received from case (a) a
the following notification. Obviously if the suspension redex consists solely of case
arcs and their nodes, then all suspensionss acquires when suspension is first, are re
leased in the notification, leavingrGN,Ks

(s) active inKs; corresponding to the complete
removal of the suspension redex (because there are no remaining non-idle Mapσ(s))
arguments ofrGN,Ht

(s) in Ht) where notification is first, followed by a null suspension
also leavingrGN,Kt

(s) active inKt. For case (b) and case (c) nodes, it is easy to see t

se (d)

a

ls in-
g as
ark-

cess
they undergo the same net change regardless of the order of the steps; likewise ca
nodes remain unaffected. This is enough for (3).

Theorem 6.4 Let GN = [G0, G1, …, GN] be a prefix of a suspending execution of
MONSTR systemR. SupposeGN contains an active constructor or stateholder nodet.
SupposeGN also contains an active function nodef, all of whose Map(σ(f)) arguments
are idle, and which is thus the root of a standard redexg : L → GN for some ruleD =
(P, root, Red, Act). Let

Π ≡ t ∈ g(Act)

Let Ht be obtained by performing a notification fromt in GN. Let Hf be obtained by
rewriting the redex rooted atf in GN, via the usual phasesg′ : P → GN′, g′′ : P → GN′′,
hf : P → Hf, and associatedi andr maps. Then

(1) (a) rGN,Hf
(t) = iGN,Hf

(t) is an active constructor or stateholder, hence the

root of a potential notification step inHf.

(b) rGN,Ht
(f) = iGN,Ht

(f) is an active function node, and

ht = rGN,Ht
g : L → Ht

is a standard redex forD, such that all of the Map(σ(rGN,Ht
(f))) arguments

of rGN,Ht
(f) are idle, hence is the redex of a potential rewrite inHt.

Let Kf be obtained fromHf by performing a notification fromrGN,Hf
(t). Let Jt be ob-

tained fromHt by rewriting the redex rooted atrGN,Ht
(f) in Ht, via the usual phases

ht′ : P → Ht′, ht′′ : P → Ht′′, jt : P → Jt, and associatedi andr maps. Then

(2) If Π Then rGN,Jt
(t) is an active constructor or stateholder,

hence the root of a potential notification step inJt

Let

Kt = If notΠ Then Jt
Else The result of performing a notification fromrGN,Jt

(t) in Jt

Then

(3) Kf andKt are marking preserving isomorphic.

Proof. A little thought shows that neitherf nor any off’s Map(σ(f)) arguments can be
in the notification redex, either because of the node markings or the node symbo
volved. However this does not preclude the notification redex nodes from occurrin
implicitly matched nodes of the rewriting redex. Because of the respective arc m
ings, it is clear that the sets of arcs of the two redexes are disjoint.

Consider performing the notification to createHt. EvidentlyGN andHt are graph struc-
ture isomorphic. And since the only node whose active marking changes in this pro
is t itself, and no node becomes non-idle which was not non-idle previously,rGN,Ht

(f) is
active inHt and (1).(b) follows. Let us compare the rewriting processes that createHf
from GN andJt from Ht using the ruleD. Let

ctum

mor-

ism

n
one
g are
that
st
var-

r

their
of

ing
ode

,

out-

d

θ : GN → Ht

be the graph structure isomorphism mentioned already. The respective contra
building phases clearly allow its extension to a graph structure isomorphism

θ′ : GN′ → Ht′

such that the obvious triangle involvingg′ : P → GN′ andht′ : P → Ht′ commutes. Ev-
idently the redirection phase admits a further extension to a graph structure iso
phism

θ′′ : GN′′ → Ht′′

such that the triangle involving the node mapsg′′ : P → GN′′ andht′′ : P → Ht′′ com-
mutes too. Likewise the activation phase finally yields the graph structure isomorph

θ′′′ : Hf → Jt

such that the triangle involvinghf : P → Hf andjt : P → Jt commutes.

The definition of rewriting (M-I .3.10) shows that the only active node of the rewritte
graph that can possibly end up idle in the result, is the root of the redex (if it is not
of the activated nodes). The only other nodes that can undergo a change of markin
the activated nodes which, if they start off idle, end up active. Thus we conclude
sincet ≠ f, rGN,Hf

(t) is active inHf, whence we have (1).(a). To get (2) and (3), we mu
follow what happens to the markings of the other nodes, and to the markings of the
ious arcs too.

For nodes there are four disjoint cases: (a)t; (b) nodes of the notification redex othe
thant; (c) contractum nodes; (d) all other nodes.

For case (a), regardingt, if rewriting is done first, we know that it is active inHf so ends
up idle inKf after the notification. If notification is done first, then it is idle inHt, and
then either is idle inJt if t ∉ g(Act), or is active inJt if t ∈ g(Act), giving us (2). In the
latter case,rGN,Jt

(t) is a notification root inJt, and doing the notification, makes it idle
in Kt, as required.

For case (b) nodes, we note that they start out non-idle, and when notified, change
marking from one non-idle marking to another (non-idle marking). By the definition
rewriting, their markings are unaffected by activation. The relative order of rewrit
and notification(s) is thus immaterial for them and they end up with the same n
marking regardless.

For case (c), regarding (theg′ image or theht′ image of) aP – L nodeq, there are two
contributing subcases depending on the out-arcs ofq. Subcase (c1) concerns all notifi-
cation out-arcs ofq whose child node is (a node whoseg′ image, resp.ht′ image, is the
rGN,GN′ image, resp. therGN,Ht′ image, of)t, or whose child node is the LHS of a redi-
rection (a, b) ∈ Redwhere the RHS node is (a node whoseg′ image, resp.ht′ image, is
therGN,GN′ image, resp. therGN,Ht′ image, of)t. If there are such notification out-arcs
then we haveΠ by M-I .11.4.(7) orM-I .11.4.(9), sincet can only have been matched to
an implicit node ofL because of its active marking. Subcase (c2) concerns all other
arcs ofq.

Regarding the images ofq in the various graphs, if notification is done first, the chil
node of (c1) out-arcs ofht′(q) is idle in Ht′, but active inJt, whereuponjt(q) receives

e of

e

ame

less
they

k-

ctum
actum

rdless
ither

tra no-
ss of

a

s

notifications along the (c1) out-arcs which decrease its suspension marking inKt. (N.B.
Because of the earlier notification fromt, the only suspended parents thatrGN,Jt

(t) has,
are the parent nodes of these (c1) out-arcs.) If rewriting is done first, the child nod
(c1) out-arcs ofg′(q) is active inGN′, hence inHf, whereupon the (c1) out-arcs join the
image of the notification redex inHf. hf(q) therefore receives notifications along th
(c1) out-arcs which decrease its suspension marking inKf. Since by contractum build-
ing, the images ofq start with the same number of suspensions, and also have the s
number of (c1) out-arcs, the markings on them inKt andKf are the same. The (c2) out-
arcs do not affect the node markings of contractum nodes.

Finally for case (d) nodes, it is clear that they end up with the same marking regard
of the order of the steps, since either they retain the same marking throughout, or
start idle and fall into the image ofActat some point, thence acquiring the active mar
ing.

For arcs, there are four disjoint cases: (a) arcs of the notification redex; (b) contra
arcs in the (c1) subcase of case (c) for nodes discussed above; (c) all other contr
arcs; (d) all other arcs.

For case (a) arcs, they start off as notification arcs, and end up as normal arcs, rega
of the order of steps. Likewise for case (b) arcs; depending on order of steps, they e
become normal arcs at the same time as the case (a) arcs, or later, during the ex
tification. Case (c) and case (d) arcs retain their arc marking throughout, regardle
the order of steps. We are done.

Theorem 6.5 Let GN = [G0, G1, …, GN] be a prefix of a suspending execution of
MONSTR systemR. SupposeGN contains an active function nodes such that there is
at least onek ∈ Map(σ(s)) such thatα(s)[k] is not idle inGN. SupposeGN also contains
an active function nodef, all of whose Map(σ(f)) arguments are idle, and which is thu
the root of a standard redexg : L → GN for some ruleD = (P, root, Red, Act). Let

Susp = {k ∈ Map(σ(s)) | α(s)[k] is non-idle inGN}
SuspNodes = {x ∈ GN | x = α(s)[k] for somek ∈ Susp}

Susp = {k ∈ Map(σ(s)) | α(s)[k] is idle inGN}
SuspNodes = {x ∈ GN | x = α(s)[k] for somek ∈ Susp}

ActNodes =g(Act)

Let (root, b) ∈ Red be the root redirection ofD. Suppose

(A) f ∉ SuspNodes orµ(b) ≠ ε or b ∈ Act

(B) ActNodes∩ SuspNodes =∅

Let Hs be obtained by performing a suspension froms in GN. Let Hf be obtained by
rewriting the redex rooted atf in GN, via the usual phasesg′ : P → GN′, g′′ : P → GN′′,
hf : P → Hf, and associatedi andr maps. Then

(1) (a) rGN,Hf
(s) = iGN,Hf

(s) is an active function node ofHf such that there is

at least onek ∈ Map(σ(rGN,Hf
(s))) such thatα(rGN,Hf

(s))[k] is not idle

in Hf. HencerGN,Hf
(s) the root of a potential suspension step inHf.

(b) rGN,Hs
(f) = iGN,Hs

(f) is an active function node, and

the
m oc-
the

x, it

es at

ctum

ism

root
un-

d up

t one
hs = rGN,Hs
g : L → Hs

is a standard redex forD, such that all of the Map(σ(rGN,Hs
(f))) arguments

of rGN,Hs
(f) are idle, hence is the redex of a potential rewrite inHs.

Let Kf be obtained fromHf by performing a suspension fromrGN,Hf
(s). Let Ks be ob-

tained fromHs by rewriting the redex rooted atrGN,Hs
(f) in Hs, via the usual phases

hs′ : P → Hs′, hs′′ : P → Hs′′, ks : P → Ks, and associatedi andr maps. Then

(2) Kf andKs are marking preserving isomorphic.

Proof. Obviouslyf ≠ s sincef’s Map(σ(f)) arguments are idle ands’s aren’t. Equally
obviously,f’s Map(σ(f)) arguments do not include any suspension redex nodes since
latter are non-idle. However, this does not prevent the suspension redex nodes fro
curring as implicitly matched arguments of the root of the rewriting redex. Because
out-arcs of implicitly matched nodes of the rewriting redex are not part of that rede
is clear that the sets of arcs of the two redexes are disjoint.

Consider performing the suspension to createHs. EvidentlyGN andHs are graph struc-
ture isomorphic. And since for suspensions, the only node whose marking chang
all is s itself, rGN,Hs

(f) is active inHs and (1).(b) follows. Let us compare the rewriting
processes that createHf from GN andKs from Hs using the ruleD. Let

θ : GN → Hs

be the graph structure isomorphism mentioned already. The respective contra
building phases clearly allow its extension to a graph structure isomorphism

θ′ : GN′ → Hs′

such that the obvious triangle involvingg′ : P → GN′ andhs′ : P → Hs′ commutes. The
redirection phase admits a further extension to a graph structure isomorphism

θ′′ : GN′′ → Hs′′

such that the triangle involving the node mapsg′′ : P → GN′′ andhs′′ : P → Hs′′ com-
mutes too. Likewise the activation phase finally yields the graph structure isomorph

θ′′′ : Hf → Ks

such that the triangle involvinghf : P → Hf andks : P → Ks commutes.

As in the previous theorem, the definition of rewriting (M-I .3.10) shows that the only
active node of the rewritten graph that can possibly end up idle in the result, is the
of the redex (if it is not one of the activated nodes). The only other nodes that can
dergo a change of marking are the activated nodes which, if they start off idle, en
active. Thus we conclude that sincef ≠ s, rGN,Hf

(s) is active inHf. To get 1.(a), we must
show that there is at least one Map(σ(rGN,Hf

(s))) argument ofrGN,Hf
(s) in Hf which is

non-idle. If {f} ≠ SuspNodes, then since SuspNodes is nonempty, there is at leas
nodef ≠ y ∈ SuspNodes. Evidentlyy is non-idle inGN, sorGN,Hf

(y) = iGN,Hf
(y) is non-

idle in Hf, and we are done. Otherwise by (A), we conclude thatrGN,Hf
(f) is non-idle in

Hf, and thereforeHf has the arc (iGN,Hf
(s)m, rGN,Hf

(f)) for somem ∈ Map(σ(iGN,Hf
(s))),

which witnesses what we need.

cs

s

and
the
ately,

after
first,
they

rmal
they

ps.

ist-

ed,
teps.
er of

s, we
teps,
they
n.

to
es plus

. Since
rite,

, the
We are

ost
the
ag-

a

t

To get (2) we must follow what happens to the markings on the nodes and arcs.

For arcs there are four disjoint cases: (a) all arcs (sk, f), for any applicablek ∈ Susp,
which must all be normal arcs inGN; (b) other arcs of the suspension redex; (c) all ar
(sk, x) not in the suspension redex, but withk ∈ Map(σ(s)); (d) all remaining arcs,
whether already existing inGN, or introduced during rewriting, (this includes all arc
(sk, x), for anyk ∉ Map(σ(s))).

For case (a) arcs, if rewriting is done first, they remain normal during the rewrite,
sincef is redirected to a non-idle node by (A), they become notification arcs after
suspension. If the suspension is done first, they become notification arcs immedi
and remain so during the rewrite.

For case (b) arcs, they are unaffected by rewriting, and become notification arcs
the suspension, regardless of the order of steps. For case (c) arcs, if the rewrite is
they remain normal, and because of (B), their child nodes are not activated, whence
remain normal after the suspension. If the suspension is first, they remain no
through both the suspension and rewrite. For case (d) arcs, they retain the marking
had inGN, or were given during contractum building, regardless of the order of ste

For nodes there are five disjoint cases: (a)s; (b) f; (c) nodes in SuspNodes other thanf
(if applicable); (d) nodes inSuspNodes; (e) all remaining nodes, whether already ex
ing in GN, or introduced during rewriting.

For the case (b) nodef, its marking is unaffected by the suspension, and it is quiesc
or perhaps reactivated during the rewrite. This holds regardless of the order of the s
For the case (c) nodes, they start off non-idle, and remain so, regardless of the ord
steps, being unaffected by any activations from the rewrite. For the case (d) node
know by (B) that they are not activated, and this holds regardless of the order of s
so they remain idle either way. For case (e) nodes, either they retain the marking
had inGN, or were given during contractum building; or they undergo an activatio
This holds regardless of the order of the steps.

For the case (a) nodes, if suspension is done first, its marking changes from active
suspended, with as many suspensions in total, as there are arcs to case (c) nod
arcs tof if f is a Map(σ(s)) argument ofs. The marking remains during the rewriting
step. If rewriting is done first, the Map(σ(s)) argument arcs tof (if applicable), become
redirected to a non-idle node by (A), and the other Map(σ(s)) argument arcs to case (c)
and case (d) nodes remain, as neither case (c) nor case (d) nodes are redirected
case (c) nodes are all non-idle before the rewrite and therefore non-idle after the rew
and case (d) nodes are all idle before the rewrite and by (B) idle after the rewrite
the same number of suspensions are generated as for the other order of steps.
done.

The final result of this section, addressing the interchange of two rewrites, is the m
complex. Unlike the previous results which are “optimal” in a fairly clear sense,
following theorem is not, in that some straightforward extensions may easily be im
ined. We comment on some of these below.

Theorem 6.6 Let GN = [G0, G1, …, GN] be a prefix of a suspending execution of
MONSTR systemR. SupposeGN contains two active function nodesf1 ≠ f2. Suppose
for i ∈ {1, 2}, all of the Map(σ(fi)) arguments offi are idle, and suppose therefore tha
fi is the root of a standard redexgi : Li → GN for some ruleDi = (Pi, rooti, Redi, Acti).

y

For either choice ofi ∈ {1, 2}, let j denote the other choice. IfLi (the left subpattern of
Pi) contains an explicit stateholder, let it besi. If for someti ∈ Pi, (si, ti) ∈ Redi, then
we sayDi redirectssi, otherwise not.

Let

ActNodesi = gi(Acti)
MapNodesi = {x ∈ GN | x = α(fi)[k] for somek ∈ Map(σ(fi)}
RedNodesi = {x ∈ GN | x = gi(a) for (a, b) ∈ Redi such thatgi(a) ≠ gi(b)}

Suppose

(A) g1(s1) = v1 = v2 = g2(s2) ⇒ [For bothi ∈ {1, 2}, Di does not redirectsi]

(B) For eitheri ∈ {1, 2}, Di redirectssi ⇒ [vi ∉ MapNodesj andvj ∉ MapNodesi]

(C) (ActNodesi ∪ ActNodesj) ∩ ({ fi, fj} ∪ MapNodesi ∪ MapNodesj) = ∅

(D) For bothi ∈ {1, 2},
∅ = {(x, y, z) ∈ GN

3 | x ∈ RedNodesi andy ∈ RedNodesj andz ∈ RedNodesi
and x ≠ z and (x, y) = (gi(a), gi(b)) for (a, b) ∈ Redi

and (y, z) = (gj(c), gj(d)) for (c, d) ∈ Redj}

Let Hi be obtained by rewriting the redex rooted atfi in GN, via the usual phasesgi′ :
Pi → GNi′, gi′′ : Pi → GNi′′, gi′′′ : Pi → Hi, and associatedi andr maps.

Then

(1) rGN,Hi
(fj) = iGN,Hi

(fj) is an active function node ofHi, and

hi = rGN,Hi
gj : Lj → Hi

is a standard redex forDj, such that all of the Map(σ(rGN,Hi
(fj))) arguments of

rGN,Hi
(fj) are idle, hence is the redex of a potential rewrite inHi.

Let Ki be obtained fromHi by rewriting the redex rooted atrGN,Hi
(fj) in Hi, via the usual

phaseshi′ : Pj → Hi′, hi′′ : Pj → Hi′′, ki : Pj → Ki, and associatedi andr maps.

Then

(2) K1 andK2 are marking preserving isomorphic.

Proof. Sincefi ≠ fj, both are active, and both have all Map(σ(fi)) arguments idle inGN,
we havefi ∉ MapNodesj and vice versa. If bothDi andDj are normal rules and both
feature a stateholder inLi andLj, then, ifvi ≠ vj, then MapNodesi ∩ MapNodesj consists
only of constructors. Ifvi = vj, then MapNodesi ∩ MapNodesj can includevi = vj pro-
vided neither is redirected. IfDi is a normal rule butDj is a default rule, then MapN-
odesi ∩ MapNodesj consists only of constructors, and MapNodesj – MapNodesi can
include idle nodes with arbitrary symbols; and vice versa. If bothDi andDj are default
rules, MapNodesi ∪ MapNodesj can contain arbitrarily labelled idle nodes. And in an
event, nothing precludes the nodes in {fi} ∪ MapNodesi from occuring as implicitly
matched non-MapNodesj nodes of theDj redex provided they are not activated byDj,
and vice versa.

by

.
con-

d

d for
ver

d the

etry.

we

odes.

ur-

oc-
d then

cases
Suppose theDi redex is rewritten first. Sincefi ≠ fj andvi ≠ fj, fj cannot be redirected by
theDi rewrite. Also sincefj is active,fj’s marking is unaffected by theDi rewrite. There-
fore rGN,Hi

(fj) = iGN,Hi
(fj) is active inHi.

Let x ∈ MapNodesj and supposeDj is a normal rule; consequentlyσ(x) ∈ C ∪ V. If
σ(x) ∈ C, x is not redirectable, thus not redirected in theDi rewrite. Thus,rGN,Hi

(x) =
iGN,Hi

(x), σ(rGN,Hi
(x)) = σ(iGN,Hi

(x)), and so an arc (rootm, c) of Lj can be matched to
the arc (iGN,Hi

(fj)m, rGN,Hi
(x)) = (rGN,Hi

(fj)m, rGN,Hi
(x)) in Hi, iff it can be matched to the

arc ((fj)m, x) in GN. If σ(x) ∈ V, then assuming that both rules feature a stateholder,
(A) eithervi ≠ vj and the same conclusion holds since theDi rewrite cannot redirectvj;
or alternativelyvi = vj and neither rewrite redirectsvi = vj, and the conclusion holds also
Clearly if one or other rule does not feature a stateholder, then we draw the same
clusion even more trivially.

So the explicit nodes ofLj and the arcs connecting them can be matched byrGN,Hi
gj.

Since by the MONSTR restrictions on patterns (M-I .11.4.(4)), no constraints are place
on any implicit nodes ofLj (or their in-arcs) to achieve a match,rGN,Hi

gj matches all
of Lj to Hi. SorGN,Hi

gj : Lj → Hi is a redex forDj in Hi. Since by (C), there is no
overlap between the nodes activated in theDi rewrite and (rGN,Hi

gj)({ fj} ∪ MapN-
odesj), rGN,Hi

gj : Lj → Hi is a standard redex forDj in Hi, giving us (1) for this case.

If Dj is a default rule we need no specific graph structure constraints to be satisfie
matching, as a default rule for a function symbol will always have a redex whene
there is a suitably labelled active node. HencerGN,Hi

gj : Lj → Hi is a redex forDj in
Hi; indeed a standard redex. Not that this is adequate by itself, since we still nee
Map(σ(fj)) arguments of therGN,Hi

image offj to be idle inHi else a suspension would
be forced ifrGN,Hi

(fj) attempted to rewrite inHi. By (B) vi is only in MapNodesj if it is
not redirected byDi, so if it is in MapNodesj, it remains idle by (C), so we have (1) by
reasoning analogous to that used above. The remainder of (1) is a matter of symm

It remains to establish the marking preserving isomorphism claimed in (2), which
do in stages.

Stage 1.First we define a bijection between the nodes ofK1 andK2. Images ofGN in
K1 andK2 are made to correspond, as are corresponding images of contractum n
Thus

θ : NK1
→ NK2

where

θ(iGN,K1
(x)) = iGN,K2

(x) for x ∈ GN

θ(iH1,K1
(g1′′′(p1))) = k2(p1) for p1 ∈ NP1

 – NL1
θ(k1(p2)) = iH2,K2

(g2′′′(p2)) for p2 ∈ NP2
 – NL2

This is a bijection assuming that a sufficiently fussy construction for disjoint union d
ing contractum building has ensured all introduced nodes are distinct.

Now we extendθ to a graph structure isomorphism by checking out the arcs. This
cupies three stages since we argue separately about arc tails and arc heads, an
bring the two together in a third stage. So each arc is covered by one of the head
and one of the tail cases.

ring

al-
-
us
Stage 2.We first check the arc tails, which are easy since tails of arcs never move du
redirection. So the cases above for nodes extendθ immediately to a bijection on tails
of arcs asθ-related nodes have the same arity.

Stage 3.Since arc heads follow the redirection functions under rewriting, we next c
culate therW,Ki

functions of all nodes, whereW is as appropriate for the node in ques
tion. Then we check thatθ expresses the right relationship between the vario
possibilities. There are three cases: (a) nodes ofGN whereW is GN; (bi) contractum
nodes introduced in theDi rewrite whereW is eitherHi or Ki depending on order of re-
writing.

Now we note straight away that for case (bi), for an instantiated contractum nodex, say
x = w(ci), for either version ofWwherew : Pi → W, we haverW,Ki

(x) = iW,Ki
(x). This is

because the first rewrite, ofDi say, only redirects nodes in RedNodesi, and the second
rewrite, perforce ofDj, only redirects nodes inrGN,Hi

(RedNodesj) = iGN,Hi
(RedNodesj).

Neither of these includes any instantiated contractum nodes. Thusθ(rHi,Ki
(gi′′′(ci))) =

θ(iHi,Ki
(gi′′′(ci))) = kj(ci) and symmetrically, as required.

For a case (a) nodex there are three subcases: (a.1)x ∉ (RedNodesi ∪ RedNodesj);
(a.2i) x ∈ RedNodesi. (That RedNodesi ∩ RedNodesj = ∅ follows easily from the hy-
potheses.)

For subcase (a.1), supposeDi rewrites first. We have ({x} ∪ RedNodesj) ∩ RedNodesi
= ∅ so thatrGN,Hi

(y) = iGN,Hi
(y) for all y ∈ { x} ∪ RedNodesj. ConsequentlyiGN,Hi

(x)
is not redirected in the subsequentDj rewrite, andrGN,Ki

(x) = iGN,Ki
(x). By symmetry

we getrGN,Kj
(x) = iGN,Kj

(x) if Dj rewrites first. Therefore by the first clause forθ, we
find θ(rGN,K1

(x)) = rGN,K2
(x) as required.

For subcase (a.2i), supposeDi rewrites first, giving subsubcase (a.2i.i). By assumption,
rGN,Hi

(x) ≠ iGN,Hi
(x). There are three sub…cases: (a.2i.i.C) in whichrGN,Hi

(x) = gi′′′(ci),
whereci is a contractum node of the ruleDi; (a.2i.i.I) in which rGN,Hi

(x) = iGN,Hi
(yi),

whereyi ∉ RedNodesj; (a.2i.i.R) in which rGN,Hi
(x) = iGN,Hi

(yi), whereyi ∈ RedNodesj.

For sub…case (a.2i.i.C), we calculaterGN,Ki
(x) = iHi,Ki

(gi′′′(ci)), by case (bi). For
sub…case (a.2i.i.I), we calculaterGN,Ki

(x) = rHi,Ki
(rGN,Hi

(x)) = rHi,Ki
(iGN,Hi

(yi)) =
iHi,Ki

(iGN,Hi
(yi)) = iGN,Ki

(yi), sinceyi ∉ RedNodesj.

For sub…case (a.2i.i.R), with rGN,Hi
(x) = iGN,Hi

(yi), whereyi ∈ RedNodesj, there are two
sub…cases: (a.2i.i.R.C) in which rHi,Ki

(iGN,Hi
(yi)) = ki(di) wheredi is a contractum node

of the ruleDj; (a.2i.i.R.I) in which rHi,Ki
(iGN,Hi

(yi)) = iGN,Ki
(zi), with zi ∈ GN. In the lat-

ter case, we know by (D) that the redirection target ofyi in the redexgj : Lj → GN is not
in RedNodesi.

For sub…case (a.2i.i.R.C), we calculaterGN,Ki
(x) = rHi,Ki

(rGN,Hi
(x)) = rHi,Ki

(iGN,Hi
(yi))

= ki(di), by case (bi). For sub…case (a.2i.i.R.I), we calculaterGN,Ki
(x) = rHi,Ki

(rGN,Hi
(x))

= rHi,Ki
(iGN,Hi

(yi)) = iGN,Ki
(zi) for zi ∈ GN.

Now supposeDj rewrites first, giving subsubcase (a.2i.j). Sincex ∈ RedNodesi and
RedNodesi ∩ RedNodesj = ∅, rGN,Hj

(x) = iGN,Hj
(x), and sorGN,Kj

(x) = rHj,Kj
(iGN,Hj

(x)).
There are now three sub…cases: the first is (a.2i.j.C) in which rHj,Kj

(iGN,Hj
(x)) = kj(cj),

wherecj is a contractum node of the ruleDi. Alternatively, if the redirection target of
iGN,Hj

(x) is not an instantiated contractum node, then it must be therGN,Hj
image of a

node ofGN by (1). So the other two cases are: (a.2i.j.I) in which rHj,Kj
(iGN,Hj

(x)) =

n

ting

or

first

a

iHj,Kj
(rGN,Hj

(yj)), whereyj ∉ RedNodesj; and (a.2i.j.R) in which rHj,Kj
(iGN,Hj

(x)) =
iHj,Kj

(rGN,Hj
(yj)), whereyj ∈ RedNodesj.

For sub…case (a.2i.j.C), we calculaterGN,Kj
(x) = kj(cj), by case (bj). For sub…case

(a.2i.j.I), we calculaterGN,Kj
(x) = rHj,Kj

(iGN,Hj
(x)) = iHj,Kj

(rGN,Hj
(yj)) = iHj,Kj

(iGN,Hj
(yj))

= iGN,Kj
(yj), sinceyj ∉ RedNodesj.

For sub…case (a.2i.j.R), with rHj,Kj
(iGN,Hj

(x)) = iHj,Kj
(rGN,Hj

(yj)), whereyj ∈ RedN-
odesj, there are two sub…cases: (a.2i.j.R.C) in which iHj,Kj

(rGN,Hj
(yj)) = iHj,Kj

(gj′′′(dj))
wheredj is a contractum node of the ruleDj; (a.2i.j.R.I) in which iHj,Kj

(rGN,Hj
(yj)) =

iHj,Kj
(iGN,Hj

(zj)) with zj ∈ GN. In the latter case, we know by (D) that the redirectio
target ofyj in the redexgj : Lj → GN is not in RedNodesi.

For sub…case (a.2i.j.R.C), we calculaterGN,Kj
(x) = rHj,Kj

(iGN,Hj
(x)) = iHj,Kj

(rGN,Hj
(yj))

= iHj,Kj
(gj′′′(dj)), by case (bj). For sub…case (a.2i.j.R.I), we calculaterGN,Kj

(x) =
rHj,Kj

(iGN,Hj
(x)) = iHj,Kj

(rGN,Hj
(yj)) = iHj,Kj

(iGN,Hj
(zj)) = iGN,Kj

(zj) for zj ∈ GN.

The eight possibilities above pair up nicely when we interchange the order of rewri
in a given sequence. The following describes what happens.

When we interchange the order in case (a.2i.i.C), we get an instance of case (a.2i.j.C)
and vice versa. The nodesci andcj are identified, and the second and third clauses f
θ show thatθ(rGN,K1

(x)) = rGN,K2
(x) as required.

When we interchange the order in case (a.2i.i.I), we get an instance of case (a.2i.j.I) and
vice versa. The nodesyi andyj are identified, and the first clause forθ shows that
θ(rGN,K1

(x)) = rGN,K2
(x) as required.

When we interchange the order in case (a.2i.i.R.C), we get an instance of case (a.2i.j.R.C)
and vice versa. The nodesyi andyj are identified, the nodesdi anddj are identified, and
the second and third clauses forθ show thatθ(rGN,K1

(x)) = rGN,K2
(x) as required.

When we interchange the order in case (a.2i.i.R.I), we get an instance of case (a.2i.j.R.I)
and vice versa. The nodesyi andyj are identified, and the nodeszi andzj are identified,
for the latter of which we need to make essential use of hypothesis (D). Then the
clause forθ shows thatθ(rGN,K1

(x)) = rGN,K2
(x) as required.

This completes stage 3.

Stage 4.We now utilise the results of stage 3 to show that all arcs ofK1 andK2 are re-
lated as required. There are three cases: (a) arcs ofGN; (bi) instantiations of contractum
arcs ofDi.

Let (pk, c) be an arc ofGN. Thenθ(iGN,K1
(p)) = iGN,K2

(p) by stage 2, andθ(rGN,K1
(c))

= rGN,K2
(c) by stage 3, so

θ((iGN,K1
(p)k, rGN,K1

(c))) = (iGN,K2
(p)k, rGN,K2

(c))

and we have what we need for case (a) arcs.

For case (bi) arcs there are two subcases: (bi.C) where the head is an instantiation of
contractum node; (bi.I) where the head is a matching image of a left pattern node.

For case (bi.C), let (pk, c) be an arc between two contractum nodes ofDi. Case (bi) of
stage 3 assures us that the instantiations of neitherp nor c get redirected. The homo-

ase,

-

nd

he-

p-

-

. If
morphic nature of the contractum building phase, the second and third clauses forθ, and
symmetry, then assure us that

θ((iH1,K1
(g1′′′(p))k, rH1,K1

(g1′′′(c)))) = (k2(p)k, k2(c))

if Di = D1, and

θ((k1(p)k, k1(c))) = (iH2,K2
(g2′′′(p))k, rH2,K2

(g2′′′(c)))

otherwise.

For case (bi.I), let (pk, c) be an arc from a contractum nodep to a left pattern nodec of
Di. We first note that due to the homomorphic nature of the contractum building ph
the homomorphismgi′ : Pi → GNi′ guarantees thatGNi′ has a copy,gi′((pk, c)) of (pk, c)
if Di rewrites first, and the homomorphismhj′ : Pi → Hj′ guarantees thatHj′ has a copy,
hj′((pk, c)) of (pk, c) if Di rewrites second. Case (bi) of stage 3 assures us that the in
stantiations ofp do not get redirected. So forp, noting thatiGNi′,Hi

(gi′(p)) = gi′′′(p) in
the first case, andiHi′,Ki

(hi′(p)) = ki(p) in the second case, we can use the second a
third clauses forθ as above.

For c, there will be a nodex ∈ GN such thatiGN,GNi′(x) = rGN,GNi′(x) = gi′(c) in the first
case, andrGN,Hj′(x) = hj′(c) in the second case, given that we have clause (1) of the t
orem. Now using stage 3 forx ∈ GN, (which allows us to factorise therGN,K1

(x) and
rGN,K2

(x) maps atGNi′ and atHj′), and symmetry, allows us to conclude that

θ((iGN1′,K1
(g1′(p))k, rGN1′,K1

(g1′(c)))) = (iH2′,K2
(h2′(p))k, rH2′,K2

(h2′(c)))

if Di = D1, and

θ((iH1′,K1
(h1′(p))k, rH1′,K1

(h1′(c)))) = (iGN2′,K2
(g2′(p))k, rGN2′,K2

(g2′(c)))

otherwise.

At this pointθ is a graph structure isomorphism.

Stage 5.Finally we turn our attention to the markings. This is easy given our assum
tions about the ActNodes sets, since by (C), for anyx ∈ (ActNodesi ∪ ActNodesj),
rGN,Ki

(x) = iGN,Ki
(x).

There are eight disjoint cases: (ai) the rootfi; (b) nodes in (ActNodesi ∩ ActNodesj);
(ci) nodes in (ActNodesi – ActNodesj); (d) nodes ofGN not in (ActNodesi ∪ Act-
Nodesj); (ei) instantiations of contractum nodes ofDi.

For case (ai), sincefi ∉ ActNodesi, fi is quiesced in theDi rewrite. Sincefi ∉ ActNodesj
∪ MapNodesj it is unaffected by theDj rewrite. This holds regardless of order of re
writing, soµ(iGN,K1

(fi)) = µ(iGN,K2
(fi)) = ε.

For case (b), a nodex in (ActNodesi ∩ ActNodesj) which is idle inGN, is activated in
the first rewrite, and remains active through the second rewrite regardless of orderx
is non-idle inGN, the activations do not affect it. Soµ(iGN,K1

(x)) = µ(iGN,K2
(x)).

For case (ci), a nodex in (ActNodesi – ActNodesj) which is idle inGN, is activated in
theDi rewrite and is unaffected by theDj rewrite, again regardless of order. Ifx is non-
idle in GN, theDi activation does not affect it. Soµ(iGN,K1

(x)) = µ(iGN,K2
(x)).

tions
(C),
-
at in
tions

ither

arc

gined.

ets of
redex
re-
es the

ders.
tified
ions
ng-
ture
uffi-
no

these
erful

on a

a
hen

ed to
nce to
er of

ioned
h in
first,
al-

tisfy-
For case (d), a node ofGN not in (ActNodesi ∪ ActNodesj) retains the marking it has in
GN, regardless of order. Soµ(iGN,K1

(x)) = µ(iGN,K2
(x)).

For case (ei), since activated nodes are always left subpattern nodes, the instantia
of contractum nodes are not activated in the first rewrite, regardless of order. By
(ActNodesi ∪ ActNodesj) ∩ { fi, fj, vi, vj} = ∅, so the redirections of the first rewrite can
not redirect a node to the instantiation of a contractum node (of the first rewrite), th
the second rewrite, becomes part of the redex and is to be activated. So instantia
of contractum nodes of the first rewrite are not activated in the second rewrite, for e
order. Hence

µ(iH1,K1
(g1′′′(p1))) = µ(k2(p1)) for p1 ∈ NP1

 – NL1
µ(k1(p2)) = µ(iH2,K2

(g2′′′(p2))) for p2 ∈ NP2
 – NL2

This completes the argument for nodes. The argument for arcs is trivial since no
markings are changed in a rewrite. We are done.

As mentioned above, some easy extensions to the preceding theorem may be ima
For instance, instead of (A), we could allow also the trivial redirection ofsi to itself. Or
we could allow more complex overlaps between the sets of activated nodes and s
matched nodes in the two redexes. Where activations make the MapNodes of the
of the following rewrite non-idle, additional notification steps may be introduced to p
clude a suspension in certain cases. Where the overlap of matched nodes includ
stateholders non-trivially (as for instance when a stateholder ofDi is in MapNodesj with
Dj a default rule), restrictions have to be imposed on the redirections of the statehol
In general, the interaction between the matched, activated, redirected, and no
nodes within two arbitrary rewrites becomes extremely complex, and the extens
proposed make any resulting “all purpose” theorem and its proof an exceptionally lo
winded listing of cases, even by the standards of what we did prove. Given the na
of typical “useful and understandable” MONSTR systems, the theorem above is s
cient for most practical purposes. (Note for instance that trivial redirections serve
useful purpose; neither do activations of constructor MapNodes arguments, since
can neither “do” anything themselves, nor notify anyone else.) Where a more pow
interchange theorem might be needed in a specific situation, it is best established
case by case basis, by adding to the preceding case analysis.

Theorem 6.7 Let GN = [G0, G1, …, GN] be a prefix of a suspending execution of
MONSTR systemR. Suppose the hypotheses of one of theorems 6.1 – 6.6 apply. T
with the notation used in that theorem (or the obviously analogous notation),K 1 = [G0,
G1, …, GN … K1] is a prefix of a suspending execution iffK 2 = [G0, G1, …, GN … K2]
is a prefix of a suspending execution.

Proof. Beyond the facts established already in the theorems mentioned, all we ne
check, is that for the execution steps discussed in each particular case, conforma
the execution strategy of suspending semantics in definition 3.1 holds for one ord
execution steps iff it holds for the other. But it is relatively obvious that this is so.

There are three points that deserve to be further discussed now. The first, ment
previously, concerns the style of theorems 6.1 – 6.6. All of them concern a grap
which two potential actions are available, and say that regardless of which is done
the other is still available afterwards (in a suitable, perhaps even trivial, form). The
ternative approach is to postulate that an execution prefix ends with two actions sa

be
the
inde-
om-

and
two

o a se-
such
to a

ps in
ems.

r ab-
rallel
rs will
rems
ne se-
orems.

inter-
than
pen-
s are
ON-
, and
es are
the
asily.
phys-
more
e con-
the

rob-
d use
s ac-

for-
(See
and
one
dif-

on-
s for
. On

ex-
fest a
than
vent
ing certain properties, and derive from this, that the order of the steps may
interchanged. In the literature, in [Ehrig (1979)], [Ehrig (1986)] on the one hand,
former is called parallel independence of steps while the latter is called sequential
pendence; on the other hand, in [Lynch et al. (1994)], the former is called forward c
mutativity of steps while the latter is called backward commutativity.

For most graph rewriting frameworks, where the structure of the nodes of graphs
the operations on them permitted in a single execution step are relatively simple, the
concepts are equivalent in the sense that a parallel independent pair corresponds t
quential independent pair, and vice versa; and there is a body of theorems for each
framework establishing the fact. The same is true for suspending semantics up
point: in some of the cases there is more to it than just swapping the execution ste
question, as the reader will suspect by the nature of some of the preceding theor

Below we will list the corresponding sequential independence theorems in a rathe
breviated form, saying just enough to enable us to use the already established pa
independence theorems to complete the interchange of steps. Enthusiastic reade
have no trouble in filling in the details that state the sequential independence theo
as completely standalone results, and the theorems that proclaim how the standalo
quential independence theorems are equivalent to the parallel independence the

A second and related point concerns the closeness of the redexes involved in an
change theorem. Many graph rewriting frameworks have simpler descriptions
MONSTR, and it is often correspondingly easier to draw up the appropriate inde
dence theorems. It is relatively obvious that if the redexes for two execution step
“far enough apart” then the two steps can be interchanged. However, for useful M
STR systems, the redexes of logically independent steps must frequently overlap
so theorems that merely deal with the independence of steps having disjoint redex
insufficient. For pairs of execution steps dealt with in theorems 6.1 – 6.5 above,
boundary between steps that are independent can be drawn precisely and fairly e
For the independence of rewrite steps though, we experience an almost palpable
ical force between redexes. The closer we try to push two redexes together, the
excruciating the case analysis of an independence proof becomes. As a result, w
tented ourselves with a suboptimal result, which nevertheless is still sufficient for
majority of real applications, since these must not only embody a solution to the p
lem at hand, but also be relatively comprehensible to the humans who design an
them. The latter aspect limits in practice the degree to which independent redexe
tually overlap.

As a final point, we mention that independence theorems provide a route to various
mulations of abstract semantics for graph rewriting systems via event structures.
eg. various papers in [Schneider and Ehrig (1993)], [Cuny et al. (1996)], [Corradini
Montanari (1995)].) We avoid doing the same in this study for two reasons. On the
hand, we are primarily interested in formulating what equivalences we can between
ferent semantic models for MONSTR, and to do this it is sufficient to derive relati
ships between different concrete executions, without worrying about the prospect
collecting up sets of executions into equivalence classes in a convincing manner
the other hand, it is clear from theorems 6.3 and 6.4, and from considering simple
amples of overlapping redexes for rewrites, that suspending semantics can mani
number of situations where the notion of conflict between events is more complex
the elegant notion of symmetric conflict to be found in conventional treatments of e

ly
ruc-

metry
two
pen-

which

iso-

iso-

er
structures ([Nielsen et al. (1981)], [Winskel (1986)], [Winskel (1988)]). It is probab
fair to say that a completely satisfactory treatment of asymmetric conflict in event st
tures has not yet appeared.

Here are the abbreviated sequential independence theorems. Note that the asym
of the situations involving different types of execution step entails the existence of
different theorems whereas one sufficed in the more symmetric case of parallel inde
dence. Note also the additional hypotheses required to exclude various cases in
the second execution step might conceivably have been caused by the first.

Theorem 6.8 Let K 1 = [G0, G1, …, GN, H1, K1] be a prefix of a suspending execution
of a MONSTR systemR. Suppose the last two execution steps ofK 1 are notifications,
from t1 ∈ GN and t* 2 ∈ H1 respectively. Then there is a nodet2 ∈ GN such that
rGN,H1

(t2) = t*2 and such that the hypotheses of theorem 6.1 apply tot1, t2 in GN. Con-
sequently the two notifications may be interchanged, yielding marking preserving
morphic final graphs for the two resulting execution prefixes.

Theorem 6.9 Let K 1 = [G0, G1, …, GN, H1, K1] be a prefix of a suspending execution
of a MONSTR systemR. Suppose the last two execution steps ofK 1 are suspensions,
from s1 ∈ GN ands*2 ∈ H1 respectively. Then there is a nodes2 ∈ GN such that
rGN,H1

(s2) = s*2 and such that the hypotheses of theorem 6.2 apply tos1, s2 in GN. Con-
sequently the two suspensions may be interchanged, yielding marking preserving
morphic final graphs for the two resulting execution prefixes.

Theorem 6.10a LetK s= [G0, G1, …, GN, Hs, Ks] be a prefix of a suspending execution
of a MONSTR systemR. Suppose the last two execution steps ofK s are a suspension,
from s ∈ GN and a notification fromt* ∈ Hs respectively. Then there is a nodet ∈ GN

such thatrGN,Hs
(t) = t* and such that the hypotheses of theorem 6.3 apply tos, t in GN.

Consequently the suspension and notification may be interchanged, yieldingK t, which
equals [G0, G1, …, GN, Ht, Kt] if (in the notation of theorem 6.3), SuspNodes≠ { t}, and
which equals [G0, G1, …, GN, Kt], omitting the suspension, otherwise; where in eith
case,Ks andKt are marking preserving isomorphic.

Theorem 6.10b Let K t = [G0, G1, …, GN, Ht, Kt] be a prefix of a suspending execution
of a MONSTR systemR. Suppose the last two execution steps ofK t are a notification,
from t ∈ GN and a suspension froms* ∈ Ht respectively. Then there is a nodes ∈ GN

such thatrGN,Ht
(s) = s* and such that the hypotheses of theorem 6.3 apply tos, t in GN.

Consequently the notification and suspension may be interchanged, yieldingK s, which
equals [G0, G1, …, GN, Hs, Ks] whereKs andKt are marking preserving isomorphic. A
similar execution prefix may be generated ifK t = [G0, G1, …, GN, Kt], with the last step
a notification from a nodet ∈ GN which is the only non-idle Map(σ(s)) child of a func-
tion nodes ∈ GN; and againKs andKt are marking preserving isomorphic.

Theorem 6.11a Let K f = [G0, G1, …, GN, Hf, Kf] be a prefix of a suspending execution
of a MONSTR systemR. Suppose the last two execution steps ofK f are a rewrite from
f ∈ GN governed by a ruleD = (P, root, Red, Act), and a notification fromt* ∈ Hf re-
spectively. Supposet* ∈ Hf is not the instantiation of a contractum node ofP. Then
there is a nodet ∈ GN such thatrGN,Hf

(t) = t* . Supposet ∈ GN is not idle. Then the
hypotheses of theorem 6.4 apply tof, t in GN. Consequently the rewrite and notification
may be interchanged, yieldingK t, which equals [G0, G1, …, GN, Ht, Kt] if (in the no-
tation of theorem 6.4),t ∉ g(Act), and which equals [G0, G1, …, GN, Ht, Jt, Kt], includ-

ted

ding

-

ing an additional notification fromiGN,Jt
(t) in Jt, otherwise; where in either case,Kf and

Kt are marking preserving isomorphic.

Theorem 6.11b Let K t = [G0, G1, …, GN, Ht, Kt] be a prefix of a suspending execution
of a MONSTR systemR. Suppose the last two execution steps ofK t are a notification
from t ∈ GN, and a rewrite fromf* ∈ Ht governed by a ruleD = (P, root, Red, Act)
respectively. Then there is a nodef ∈ GN such thatrGN,Ht

(f) = f* . Suppose thatt is not
a Map(σ(f)) argument off ∈ GN. Then the hypotheses of theorem 6.4 apply tof, t in GN.
Consequently the notification and rewrite may be interchanged, yieldingK f, which
equals [G0, G1, …, GN, Hf, Kf] if (in the notation of theorem 6.4),t ∉ g(Act); whereKf
andKt are marking preserving isomorphic. A similar execution prefix may be genera
if K t = [G0, G1, …, GN, Ht, Jt, Kt], with the last step an additional notification from
rGN,Jt

(t) in Jt in case (in the notation of theorem 6.4),t ∈ g(Act); and againKf andKt are
marking preserving isomorphic.

Theorem 6.12a Let K f = [G0, G1, …, GN, Hf, Kf] be a prefix of a suspending execution
of a MONSTR systemR. Suppose the last two execution steps ofK s are a rewrite from
f ∈ GN governed by a ruleD = (P, root, Red, Act), and a suspension froms* ∈ Hf re-
spectively. Supposes* ∈ Hf is not the instantiation of a contractum node ofP. Then
there is a nodes ∈ GN such thatrGN,Hf

(s) = s*. Supposes ∈ GN is not idle. Suppose
the hypotheses of theorem 6.5 apply tos, f in GN; in particular suppose (in the notation
of theorem 6.5), that [f ∉ SuspNodes orµ(b) ≠ ε or b ∈ Act], and that ActNodes∩ Sus-
pNodes =∅. Consequently the rewrite and suspension may be interchanged, yiel
K s = [G0, G1, …, GN, Hs, Ks], whereKf andKs are marking preserving isomorphic.

Theorem 6.12b Let K s = [G0, G1, …, GN, Hs, Ks] be a prefix of a suspending execu
tion of a MONSTR systemR. Suppose the last two execution steps ofK s are a suspen-
sion, froms∈ GN, and a rewrite fromf* ∈ Hs governed by a ruleD = (P, root, Red, Act)
respectively. Then there is a nodef ∈ GN such thatrGN,Hs

(f) = f* . Suppose the hypoth-
eses of theorem 6.5 apply tos, f in GN; in particular suppose (in the notation of theorem
6.5), that [f ∉ SuspNodes orµ(b) ≠ ε or b ∈ Act], and that ActNodes∩ SuspNodes =
∅. Consequently the suspension and rewrite may be interchanged, yieldingK f = [G0,
G1, …, GN, Hf, Kf], whereKf andKs are marking preserving isomorphic.

Theorem 6.13 Let K 1 = [G0, G1, …, GN, H1, K1] be a prefix of a suspending execution
of a MONSTR systemR. Suppose the last two execution steps ofK 1 are rewrites, from
f1 ∈ GN andf*2 ∈ H1, governed by rulesDi = (Pi, rooti, Redi, Acti) for i = 1 and 2 re-
spectively. Supposef*2 ∈ H1 is not the instantiation of a contractum node ofP1. Then
there is a nodef2 ∈ GN such thatrGN,H1

(f2) = f*2. Supposef2 ∈ GN is not idle. Suppose
the hypotheses of theorem 6.6 apply tof1, f2 in GN; in particular suppose (in the notation
of theorem 6.6), that

(A) g1(s1) = v1 = v2 = g2(s2) ⇒ [For bothi ∈ {1, 2}, Di does not redirectsi]
(B) For eitheri ∈ {1, 2}, Di redirectssi ⇒ [vi ∉ MapNodesj andvj ∉ MapNodesi]
(C) (ActNodesi ∪ ActNodesj) ∩ ({ fi, fj} ∪ MapNodesi ∪ MapNodesj) = ∅
(D) For bothi ∈ {1, 2},

∅ = {(x, y, z) ∈ GN
3 | x ∈ RedNodesi andy ∈ RedNodesj andz ∈ RedNodesi

and x ≠ z and (x, y) = (gi(a), gi(b)) for (a, b) ∈ Redi
and (y, z) = (gj(c), gj(d)) for (c, d) ∈ Redj}

iso-

raph
of a

ther
est,
tely,

r ter-
cribe
e so-

h.

ely.

tion
uch
spend-
look
s in

anal-

duc-
esults
one
our
event

given
play

ul in
so
ater

culate
ang-
h re-
ut the
en-

ieve.
Consequently the two rewrites may be interchanged, yielding marking preserving
morphic final graphs for the two resulting execution prefixes.

7 CONCLUSIONS

In the previous sections we have defined suspending semantics for the MONSTR g
rewriting language. We studied notions of correctness for suspending executions
MONSTR systemR in terms of their producing graphs that were in one sense or ano
equivalent to graphs produced by DACTL executions of the same system. At b
marking preserving isomorphism is the equivalence of choice, and one that fortuna
gives us a powerful handle on correctness via properties of the EDG, especially fo
minating executions. In the process of exploring correctness, we were able to des
conditions sufficient for correctness, which reduced the correctness problem to th
lution of a number of subproblems.

For terminating executions three subproblems sufficed:

• The acyclicity of the EDG.

• The absence of idle stateholder children of notification arcs in the final grap

• Termination.

For non-terminating executions we had:

• Nodes are not simultaneously both the LHS and RHS of redirections indefinit

• Node event chains are eventually idle.

Readers will note that the subproblems listed above all involve properties of execu
graphs, i.e. they involve dynamic, or runtime properties of systems. Typically s
properties are undecidable; so to be able to state that there are systems whose su
ing executions are correct for the kinds of reason that we have explored, we must
for decidable approximations. Future papers will examine the stated subproblem
depth, and in turn, approximate them by criteria decidable on the basis of a static
ysis of rule systems.

A further important issue we examined was independence. We saw that the intro
tion of suspensions complicated the picture quite a bit; some of the independence r
required complexities such as the introduction of extra steps, or the elimination of
of the original steps. In the face of this, it was safer in the short term, to restrict
attention to concrete independence results rather than try to construct an abstract
semantics for suspending systems. The latter is certainly a fascinating problem,
the “closeness to reality” of suspending execution steps. They certainly seem to dis
much of the contrariness of events in the real world, and this feature may be helpf
the construction of a convincing theory of asymmetric conflict for them. But it al
seems likely that any attempt at such a theory might well be controversial to a gre
or lesser extent, so it is best left to another place. In the same vein, one can spe
that even more convoluted combinations of execution steps may be proved interch
able (up to isomorphism of the graph produced), than we contemplated above. Wit
gard to abstract event semantics, such possibilities forcefully raise questions abo
very notion of what constitutes an event, and confirm that it is very much a “context s
sitive decision”, depending on what the creator of a particular theory hopes to ach
Again such matters are best avoided in this paper.

.

culus

5.

y).

rs.

n

Do-

onal
94.

om-

.

Ro-
References

[Banach (1996)] Banach. R., MONSTR I — Fundamental Issues and the Design of MONSTR
J.UCS,2, 164-216, (1996).

[Banach et al. (1995)] Banach R., Balazs J., Papadopoulos G., A Translation of the Pi-Cal
into MONSTR. J.UCS1, 335-394, (1995).

[Corradini and Montanari (1995)] Corradini A., Montanari U., (eds.) Proc. SEGRAGRA-9
E.N.T.C.S.2 9-16, Elsevier, (1995).

[Ehrig (1979)] Ehrig H., Introduction to the Algebraic Theory of Graph Grammars (A surve
in: L.N.C.S.73, 1-69, Springer, Berlin, (1979).

[Ehrig (1986)] Ehrig H., A Tutorial Introduction to the Algebraic Approach of Graph Gramma
in: Third International Workshop on Graph Grammars, L.N.C.S.291, 3-14, Springer, Ber-
lin, (1986).

[Francez (1986)] Francez N., Fairness. Springer, Berlin, (1986).

[Lynch et al. (1994)] Lynch N., Merritt M., Weihl W., Fekete A., Atomic Transactions. Morga
Kaufmann, (1994).

[Nielsen et al. (1981)] Nielsen M., Plotkin G., Winskel G., Petri Nets, Event Structures and
mains, Part I. Theoretical Computer Science13, 85-108, (1981).

[Cuny et al. (1996)] Cuny J., Ehrig H, Engels G., Rozenberg G. (eds.) Proc. Fifth Internati
Workshop on Graph Grammars and their Application to Computer Science 19
L.N.C.S.1073, Springer, Berlin, (1996).

[Schneider and Ehrig (1993)] Schneider H-J., Ehrig H., (eds.), Graph Transformations in C
puter Science. L.N.C.S.776, Springer, Berlin, (1993).

[Winskel (1986)] Winskel G., Event Structures.in: Petri Nets, An Advanced Course, L.N.C.S
255, 325-392, Springer, Berlin, (1986).

[Winskel (1988)] Winskel G., An Introduction to Event Structures.in: Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. de Bakker, de Roever,
zenberg (eds.), L.N.C.S.354, 364-397, Springer, Berlin, (1988).

	MONSTR II — Suspending Semantics and Independence
	R. Banach (Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K. banach@cs.man...
	Abstract: The suspending semantic model for the execution of the MONSTR generalised term graph re...
	Key Words: Intermediate Languages, Term Graph Rewriting, MONSTR, Semantic Models.
	Category: D.1.3, D.3.1, F.3.2, F.4.2
	1 INTRODUCTION
	2 KEY IDEAS FROM MONSTR I
	3 SUSPENDING SEMANTICS
	4 CORRECTNESS OF SUSPENDING EXECUTIONS
	5 CORRECTNESS FOR NON-TERMINATING EXECUTIONS
	6 INDEPENDENCE
	7 CONCLUSIONS
	References

