MONSTR Il — Suspending Semantics and Independence

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.
banach@cs.man.ac.uk)

Abstract: The suspending semantic model for the execution of the MONSTR generalised term
graph rewriting language is defined. This is the canonical operational semantic model for the
MONSTR language. Its correctness with respect to DACTL semantics is discussed, and a
number of general theorems on the soundness of suspending executions with respect to DACTL
semantics are proved. General theorems are proved about the independence of suspending
primitive actions, which are useful in the verification of MONSTR systems.

Key Words: Intermediate Languages, Term Graph Rewriting, MONSTR, Semantic Models.

Category: D.1.3,D.3.1, F.3.2, F.4.2

1 INTRODUCTION

In the first paper in this series, [Banach (1996)], we introduced the MONSTR genera-
lised term graph rewriting language, a sublanguage of the DACTL language, and the ar-
chitectural rationale behind its design. We also briefly described some other semantic
models for MONSTR and the correctness problems that they engender when soundness
with respect to DACTL semantics is desired.

In this paper we examine one of these alternative semantic models, the suspending mod-
el, in detail. Itis important to state clearly that¥hen one is speaking of the MON-

STR language, without specifically mentioning any particular semantic model for

it, then the suspending model is to be understoadThus suspending semantics is the
canonical semantics for the language, and all correctness issues refer, more or less di-
rectly, to it.

The suspending model differs from the conventional DACTL model insofar as pattern
matching of redexes is sensitive to the node and arc markings in the redex. When are-
dex with non-idle markings on the root symbol’s matched arguments is encountered, the
rewrite suspends until these arguments become idle. Obviously the suspension phe-
nomenon creates dependencies between rewrites beyond those present in the conven-
tional DACTL semantic model. The correctness problem (with respect to DACTL
semantics) thus reduces to the analysis of these dependencies, and of the potential dead-
locks that they might create. This is a major concern of this paper. A further topic of
interest that we deal with, this time regarding correctness with respect to higher level
specifications, is when two execution steps of the model may be interchanged. This is
needed when discussing serialisability properties of arbitrary executions of systems.

The rest of this paper is structured as follows. [Section 2] reviews the salient material
from M-I, the first paper in this series, [Banach (1996)]. Although the present paper is
self contained, a reasonable working knowledg®lef will be of benefit to the reader

as we do not repeat every useful detail frdr in order to prevent the size of these

papers from growing in arithmetic progression. Throughout the remainder of the paper,
notation such akl-1.11.4 refers to the fourth listed item of Section 1Meff.

[Section 3] defines suspending semantics precisely. [Section 4] discusses correctness
of suspending executions compared with DACTL executions and proves a selection of
theorems that relate to correctness for terminating executions. [Section 5] uses some
inspiration from [Section 4] to construct an appropriate notion of correctness for non-
terminating suspending executions, and proves a correctness theorem. [Section 6] ex-
amines the independence problem, and proves a number of results that enable adjacent
events in arbitrary executions to be interchanged. These are useful when a standard
form for executions of some specific system is desired. They are also useful were one
to construct an abstract semantics for suspending MONSTR systems; particularly note-
worthy is the way that suspensions introduce a lot of asymmetric conflict into the se-
mantics. [Section 7] concludes.

2 KEY IDEAS FROM MONSTR |

We recall that we deal with term graphs, consisting of nogleach labelled with a sym-

bol o(x) of fixed arity A(c(x)), and with each symbad(x) coming from an alphabet
S=F 0O C OV, being the disjoint union of functions iR constructors irC, or state-
holders inV. Nodesx also have a sequence of out-angX) to their children where for
eachk 0 A(X) = A(a(X)), a(x)[K] is a child node. Likewise nodes carry a node marking
u(x) O{e, O #, ## ... #"} (idle, active, once twice.. ntimes suspended), and each out-

arc is marked by (X)[k] O {¢€, } (normal or idle arc, notification arc) sa(x) is the se-
guence of these pertainingxo These markings influence reduction strategy. A pattern

is like a graph but where some leaf nodes may be labelled Avith whereAny O S.

Such anode is called implicit; others are called explicit. A homomorphism or matching
is a symbol/arity/child-respecting node map, but the constraints are imposed only on ex-
plicit nodes, so Any nodes can match anything”. The markings are normally disre-
garded by homomorphisms (calling them graph structure homomorphisms), unless we
say otherwise (calling them marking preserving homomorphisms). [Fig. 1] shows a
rather simple graph. We note the concrete symt&in whichv is the node whilés is

the symbol, and that eg(q) is the sequences|v] so thata(q)[2] = v. Likewisev(q)

= [, €] as we generally do not visibly write the idle node or arc markings in pictures.
For the sequel we note that we can suppress the mention of nodes when we draw pic-
tures of graphs and patterns, expressing the sharing directly, but this not possible when
we use a linear concrete syntax as we will do in examples later.

e

s:S v:S

Fig. 1. A graph.

A rule is a quadrupl® = (P, root, Red Act). P is a pattern ancbotis a node o with
o(root) O F. (We say thaD is a rule fora(root)) The left subpatterh of the rule, is
that subpattern accessible frsoot. It must contain all implicit nodes d¢f and all node
and arc markings it are idle. Redis a set of pairs of nodes fromx P, eg. @, b), with
each LHS nodea an explicit node of.. The pairs irRedform a many-1 relation (i.e.
a function) such that distinct LHSa ¢ &) are labelled differentlyq(a) # o(a")). This
makes the operational semantics of redirection unambigubciss also a set of nodes
of L. [Fig. 2] shows a picture of a rule, witbhot (and hencé) indicated Redindicated
by dashed arrows, attindicated by *marking the relevant node bf

root : F[#F[]

S Ca:Any
Pl

\

Fig. 2. Arule.

A DACTL execution step proceeds by first nondeterministically choosing atade

which is active in the grap (i.e. pu(t) = 0. The remainder of the step depends on the
symbolo(t).

If o(t) O C OV, thent notifies any of its parentsto which it is connected via a notifi-
cation (-marked) in-arc. If they are suspendedp) = #" for n > 1), their suspension
markings are decremented once for each suchigp) becomes#™™ wherem is the
number of such arcs, with® = [#7 = €), the natification markings are removed from
all the relevant arcs, artdoecomes idlej((t) becomes). If the result of these alter-
ations is callecH then there is an obvious injection on nodgg; : G — H. [Fig. 3]
illustrates such a step assumBg a constructor.

##G[] uej|]

[]

K (B K

&

Fig. 3. A notification step.

If a(t) O F, then for MONSTR systems, a normal rule fat) is chosen if there is one
that will match, otherwise a default rule is chosen. (See below for normal and default

rules). A ruleD matches a grap® att iff there is a graph structure homomorphism
g:L - G, also known as a redex. For future reference, a rgdéx —» G is said to be
standard, iff all the arcs and all the explicitly matched nodgéinare idle.

Once aredex has been located, a rewrite takes place. During a rewrite, a ¢bpy.of
(including the markings) is glued to the redgxL — G, yielding a graplG’, in such a
way that there exists an extended matchaghgP — G', and injective homomorphism
ige : G - G. This phase is called contractum bundmg and def.ésnlquely up to
the identity of the nodes i6'. In the next phase, redirection, ti& imagesg'(a) of
LHS nodesa of Redpairs @, b) are located, and all their in-arcs are redirected taGhe
imagesg'(b) of the corresponding RHS nodbsgiving graphG”. Regarded as a node
mapP - G", g no longer extends to a homomorphism and we thus write g'as

P - G". Likewise we have the node injection mgps': G' - G, also no longer a
homomorphlsm The redirections themselves are captured by the node redirection map
re g -G - G"which maps eachy'(a) in G' to the correspondmg (b) in G" and is
otherwise identical tag -G - G". Finally in the root quiescence and activation
phaseG" images ofActnodes are located vgi' and made active if they were idle, and
titself is made idle unless it was one of these nodes. This gives the resulttdaaudh
injective node maps: P - H, andig'jy : G" - H.

Note thauG e e G ier p are actually names for the appropriate identities on nodes,
whiled, g", hare in fact equal as node maps. This is because of the way we chose what
the nodes of the grapl@z, G, H were to be. Had we decided on a different construc-
tion, or to define these graphs only up to isomorphism (see [Section 6]), these particular
properties of these maps would not have held.

[Fig. 4] shows the rewriting process in action. There is clearly a matching of the left
subpattern of the rule pictured in [Fig. 2] to the graph of [Fig. 1] at the a€tiabelled

node. The double arrow shows the overall effect of the rewrite, while the single arrows
show the effects of the three phases discussed above. For added clarity we have indi-
cated the images of the redirection pairs under the extended matching in the second
graph. Inthis example, thg ;, image of the root nodeF of the rewrite inG is the idle
F-labelled node of the resui, and therg 1y image of the same node is the idiela-

belled node oH. Similarly theig 1, image of the firsB-labelled child of the root node

[F is the idleS-labelled node of, and therg 1y image of the same node is the active
S-labelled node ofi. For the secon&-labelied child of the root nodeF, bothig
andrg take it to the activ&-labelled node oH.

All executions start from a (graph consisting of a) single node labelled with the symbol
Initial, and as a matter of notation, XJA, B, C, ..., W, Y] is a portion of an execution
sequence, we defing y andry y to be compositions of the elementary injection and re-
direction maps__andr__ discussed above over the portiofi [. ﬂ wherer__is in-
terpreted as another name for. whenever the step or substep in question is not the
redirection phase of a rewrite. Thiygy(X) = (iyy © ... 0igc ©iap 0 ixa)(X) isthe
copy in the graplY of the nodex in graphX, while rxy(¥) = (fwy © ... Orgc Orag ©

rx A)(X) refers to the fate ok under whatever redirectionX[.. Y] contains. In partic-
ular, the way that arc redirection works means that thegga) in X becomes the arc
(ix v(Pk: x y(c)) in Y. We will use the mapsy y andry y quite extensively below.
Graphs that occur in some execution are called execution graphs.

The theory of MONSTR falls apart unless two crucial invariants hold. We define these
now. We say that a nodeis balanced iff [u(x) =#" (forn=1) = [k|v(X)[Kl ="}

e WY

;Ff/.\]'#/?[] EF[\;\]”#/F[/]
5 V.

S S
N
Fig. 4. A rewite execution step.

=n]. Agraph or pattern is balanced iff the former holds for all its nodes. We say that
an arc fy, c) is state saturated iff\(p)[K] = * andu(c) =¢ O o(c) OV]. Anodeis

state saturated iff the former holds for all its in-arcs; and a graph or pattern is state sat-
urated iff the former holds for all its nodes.

In order that MONSTR executions enjoy desirable properties, MONSTR symbols,
rules, systems etc. must conform to a suite of restrictions. Here we tersely quote the
relevant parts of1-1 for reference.

Restriction M-1.11.1 (Alphabets) The alphabet of symbols, is the disjoint union of
three subalphabe&=F O C O V where:F is the alphabet of function symbols which
may label the root of the left subpattdrrof a rule, but not any subroot node lofand

which may be the LHS of a redirectio is the alphabet of constructor symbols which
may label a subroot node of the left subpattern of a rule, but not the root, and which may
not be the LHS of a redirectiorV is the alphabet of stateholders, or variables. A state-
holder symbol may label a subroot node of the left subpattern of a rule, but not the root.
Stateholders may label the LHS of a redirection.

Restriction M-1.11.2 (Symbols) For eaclSO S, there is a set of natural numbe&x&S),

in every case an initial segment of the naturals from 1, or empty. Forfeach, there
are subsets State([J Map(F) O A(F), with StateF) either a singleton or emptyjRoot

ocC.

Definition M-1.11.3 (Normal and Default Rules) LetF O F. A rule for F such that
each child of the root is a distinct implicit node is called a default rulé-foDtherwise
the rule is a normal rule.

Restriction M-1.11.4 (Rules) LetD = (P, root, Red Acf) be a rule with left subpattern
L. Then

(1) Each node has the arity dictated by its symbol, i.e. forfalP, A(x) = A(a(X)).

(2) Eachnormal rule for a symbol matches the same set of arguments of the root, i.e.
if o(root) = F, andD is a normal rule thea(root)[K] is explicit = kI Map(F).

(3) Arrule for a function may match at most one stateholder, and then only in a fixed
position; all other explicit arguments must be constructors, iarifot) = F, and
D is a normal rule thea(a(root)[K]) OV O k0O StateF).

(4) All grandchildren of the root are implicit, i.e. for atl 0 A(c(root)), andj O
A(a(a(root)[K])), a(a(root)[K][]] is implicit.

(5) Implicit nodes of the left subpattern have only one parent in the left subpattern,
i.e. if y O Pis implicit, there is precisely one[] L such that for somk 00 A(X),

y =a([K.
(6) EveryxOPis balanced, i.qu(x) =#" (forn=1) = [k|v(X)[K ="}|=n.

(7) Every arc p, c) of P is either state saturated or activated, v@)[k] = * and
p()=¢ O o(c) OV orcOAct

(8) The root is always redirected, i.e. for sdmié P (root, b) [Red

(9) No arc can lose state saturatedness through redirectiona,ile). [Redand
Hb)=¢ 0 o) OV orbOAct

(10) Anode whichis the LHS but not the RHS of a redirection should be garbaged by
a rewrite whenever possible, i.d, €) 0 Redandb [0 Act [0 thereisa&#al
L such thatd, b) 00 Red

Theorem M-1.11.5 (Desirable Properties) When all rules used, conform to Restric-
tion M-l .11.4, induction over executions yields many desirable properties. Namely:

» All execution graph nodes respect the arities of their symbdifie pattern matching
requirements of each redex, depend solely on the symbol at the Mopointer equiv-
alence is required for matching any redex node, that is not evident fromad{tapf)).

« All execution graphs are balanced and state saturatdthen all redexes that are re-
written are standard redexes, the overwriting lenAb.5.10, applies to most redirec-
tions, in practice enabling the convenient representation of rewriting by packet store
manipulations.

Restriction M-1.11.6 (Systems, Rule Selection)For each~ O F there is a pair of sets
(N g Dg), whereN g consists of normal rules fd¥, andDr is non-empty and consists
of default rules foF. In an execution, when a chosen rotidentified and it is labelled

by F O F, rule selection is performed according to the following procedure:

If some rule fronN matches the chosen rdot
Then Sel={D ON ¢ | D matches at}
Else Sel=Dg

Choice of rule fronSelis nondeterministic.

From now on, we always assume that the systems we deal with conform to the above
restrictions, i.e. are MONSTR systems.

The last point in theoreril-1 .11.5 raises the issue of liveness and garbage which is ab-
sent from the discussion thus far, since if we are to overwrite some part of (the packet
store representation of) an execution graph, we need to be sure it will never be required
in the future, (we will say a little more about packet stores below). We say that a node
x is live iff one or more of the following hold: (1¢(x) = Root; (2) x is active i.e u(X)

= [J (3) x is accessible from a nodevia a normal arcf,, X) wherep is already live;

(4) x can access a nodevia a notification arcx, c) wherec is already live. If a node

x cannot be proved live on the basis of the preceding four conditions, we say it is gar-
bage. And an arc is live iff both its parent and child nodes are live, being garbage oth-
erwise. Given this, we can define the live subgraph (LSG) of a g&aph consisting

of those nodes and arcs Gfwhich are live. InM-1 we showed that this definition is
sound. Note particularly that the LSG does not necessarily satisfy all the properties re-
quired for it to be a term graph in the sense we have assumed thus far, as a live suspend-
ed node might well have garbage notification out-arcs, so that a node’s presence in the
LSG does not imply the presence of all its out-arcs in the LSG.

Below, we will need to refer to the following results concerning garbage.

Lemma M-1.5.10 (Overwriting lemma) LetG be a balanced graph, andéetL - G
be a standard redex for a ride= (P, root, Red Act). Denoting the result of contractum
building using a prime, as usual, let

Red, = {(g'(a). g(b) | (a. b) D Red g'(a) # g'(b)}
Let (g'(a), g'(b)) U Reg, and suppose
(1) o(a) #Root.
(2) There is nod/(c), g'(d)) U Reg, with g'(d) = g'(a).
(3) g(a dg(Ach.
Thenh(a) is garbage in the grapth produced by the rewrite.

Lemma M-1.5.11 (Moving lemma) Let G be a balanced graph, and getL - G be

a standard redex for a rul@ = (P, root, Red Act). Denoting the result of contractum
building using a prime, as usual, Red, be as in lemma/-1.5.10 and letd'(a), g'(b))

U Redj satisfy

(2) Thereis nod(c), g'(d)) O Req, with g'(d) = g'(a).

Thenh(a) has no in-arcs iHl.

3 SUSPENDING SEMANTICS

We return once more to the last point in theorkh .11.5. It contains the caveat that

all redexes that are rewritten are standard redexes. This is in fact more important than
it appears, since the soundness of the definition of garbage breaks down in its absence.
Now from the point of view of an abstract rewriting system, there is nothing to prevent
us from simply defining the rewriting relation to be restricted to standard redexes. How-
ever the MONSTR rewriting model is intended to capture a much more operationally

based machine model at a suitably abstract level and so simply restricting the rewriting
relation to a convenient subset of pairs of related graphs will not do. The way to achieve
this restriction is instead to introduce a new atomic action.

Suspending executions consist of three kinds of atomic action: notifications, rewrites
and suspensions. These are defined below. Whereas the first two are defined for arbi-
trary DACTL systems (i.e. systems that do not necessarily conform to the suite of re-
strictions we listed above), the last of these, suspensions, only make sense (in the form
to be described), for MONSTR systems. The next definition states the circumstances
under which each kind of action is performed.

Definition 3.1 (Execution Steps) Let G be a graph antlan active node o, the cho-
sen root. For suspending semantics, the kind of execution step to be perfortigd at
determined as follows.

If c)OCOV
Then Perform a natification dt
Else If For allk O Map(@(t)), u(a(t)[k]) =€ (andv(t)[K] =€)

‘““““‘““““““““““““
Then\ Perform a rewrite using a rule chosen
nondeterministically fronselwhere

If some rule fronN o(ty matches the chosen rdot
Then Sel={D ON 4 | D matches af}

Else Sel=Dgy

RO AN LV LN NN AN LN NN AN LA NN NN N NN NN\

Else Perform a suspensiontat

P O O O PP eLyey
P P o o P Lo Led

Note that the part in the highlighted box is just the usual MONSTR rule selection pro-
cedure, so that the only difference between suspending semantics and DACTL seman-
tics is when the explicit nodes that a normal ruledt) would need to match are non-

idle, whereupon a suspension occurs. Note that this is subtly different from requiring
that only rules having standard redexes ate eligible for selection. Even when some
Map(o(t)) arguments of a chosen rooare non-idle, a default rule far(t) would still

always have a standard redex, so could govern a rewtiteBatt suspending semantics
indicates a suspension instead. The rationale behind this is that when a distributed
packet store rewriting implementatioM{l .10) commences a rewrite, it begins by
sending out Constructor_Request messages, and these suspend on any non-idle
Map(o(t)) arguments before anything else is known about those arguments. Of course
when a suspending rewrite does occur, it will turn out that it is a rewrite of a standard
redex for sure.

Now we define the three kinds of suspending atomic action.

Definition 3.2 (Suspending Notification) These are defined exactly as for DACTL se-
mantics, reviewed above. Seel .3.11.

Definition 3.3 (Suspending Rewrites) These are defined exactly as for DACTL se-
mantics, reviewed above. Seel .3.10.

Definition 3.4 (Suspending Suspensions)Suppose is a chosen root in a grap,
o(t) O F and there is at least oké&l Map(o(t)) such thati(t)[K] is non-idle. Let

Suspf) = {k 0 Map(o(t)) | a(t)[K] is non-idle inG}
n=|Suspy |

Define the graph as follows.
(1) Ny=Ng
(2) oy=og
3 ay=0dg.

@) () = If x=t
Then #"
Else pg(X).

(5) VHXIK = If x=tandk O Suspl)
Then »
Else vg(¥)[K].

ThenH is the result of the suspension.

As above, we define the mapsy = rg y as the identity on nodes also for suspension
steps, in order to be able to track the fate of nodes through executions using a uniform
notation.

This completes the definition of the repertoire of actions available to suspending execu-
tions. [Fig. 5] shows a suspension step for a fragment of term graph rootedrdban
belled chosen root.

|:F[#F[o . .]

AN
G #H[j] K G #H[j] K

CA CA

Fig. 5. A suspension step.

Now we must consider the effect of the new suspension steps on properties of execu-
tions. First, the preservation of garbage. (Note that the next theorem is actually more
general than we need.)

Theorem 3.5 Let G be a balanced graph ahthe an active node df Let Suspl() be
defined as in definition 3.4 and letn = | Suspf) |. Suppose a suspension step is per-
formed att yielding graprH. Then

(1) Ifxis a garbage node G thenig y(x) is a garbage node bf.
(2) If(py ©) is a garbage arc @, then (g H(P)x, ' H(C)) is a garbage arc of.

Proof. We recall that a node is live iff, (1) it iRoot-labelled, or (2) it is active, or (3)
it is accessible from a live node via a normal arc, or (4) it can access a live node via a
notification arc. Otherwise it is garbage.

For a suspension step fraithe suspension redex consists of all atgs) of G, with
| O Suspf), and their constituent nodes. Sirtde active and all suspension redex arcs
are normal by balancedness, the suspension redex is e in

Consider a garbage nodén G. There is no proof of liveness afin G sox is not in

the suspension redex. Thus we consider the redex-emergent arcs. These are notification
arcs , t); normal arcst, g) for m O Suspf); normal arcs %, g) wherez = a(t)[l]

for | O Suspf); and finally notification arcsty,, 2). Before the suspension steémnd

all of these arcs are live.

After the suspension, thig y image oft in H will be suspended, thus will not be live
unless there is an alternative “nonlocal” proot'sfiveness inG not involvingt’s active
marking, or one of the's is active inG, or there is a “nonlocal” proof of suchzs live-
ness inG that did not involve the arct,(2). (The latter two cases allow us to deduce
ign(t) is live inH.) Thus inH, theig 1, images of the redex-emergent argg,(t) and

(tm, g) will not necessarily be live. Slmllarly thig; jy image of az node will not be live

in H unlesszis active inG, or there is an independent “nonlocal” proof of the liveness
of zin G not relying on the suspension redex. Thuslirtheig images of redex-emer-
gent arcs4,, g) and €, 2) need not be live.

Altogether, this means that for nodes and arcs outside the redex, the suspension step can
destroy proofs of liveness, but not create new ones. We conclude thatitimage of
X is garbage if.

For a garbage arg{, c), we argue that at least onebr c is garbage and thus outside
the suspension redex (. By the precedmg, |tsG y image is still garbage ifl. If p

is the garbage node, thera;@(p)k, ren(0) is obV|oust garbage. I is the garbage
node, then becausg (c) =ig n(C) for suspensionsg () is garbage i, giving the
conclusion. We are done©

Now we come to the first high point in the theory of the suspending model.

Theorem 3.6 (Properties of Suspending Semantics)Let R be a MONSTR system
and letG =[Gy, G;...] be an execution of the system according to suspending seman-
tics. Then

(1) Every rewrite in the execution is a rewrite of a standard redex.
(2) Every execution step preserves garbage.

(3) Every grapl; is balanced and state saturated.

Proof. By induction on executions. Clearly (3) holds for the initial graph, and (1) and
(2) hold for the initial rewrite. Suppose then (3) holds for all execution graphs up to and
includingG;_4, and (1) and (2) hold for all execution steps that le®fo,. By (3) we
know thatG;_; is balanced, hence @; is obtained fron5;_; by a rewrite, since all ex-
plicit non-root arguments of the redex are idle, the redex is standard, giving (1).

We know that rewrites of standard redexes preserve garbhadeS(7), that notifica-

tions preserve garbag®{l .5.8), and that suspensions preserve garbage (by theorem
3.5), so we have (2). Finally we know that rewrites and notifications preserve balanced-
ness and state saturatednddd (4.2 andM-I .4.4); so to get the result we need to check
suspensions. But it is easy to see that suspensions preserved balancedness; and since
all the new notification arcs created in a suspension have non-idle child nodes, state sat-
uratedness is preserved also. So we have (&;fovWe are done©

Thus changing DACTL semantics by the introduction of suspension steps, forces all ex-
ecutions to behave in the way that we would wish. The suspensions in fact enforce the
firewall principle M-I .7) in the suspending model, and this is the source of the pleasing
properties we have derived.

As the introduction of suspension steps is intended to work smoothly with the lower lev-
el aspects of the MONSTR model, we should check that suspensions translate well into
the world of packet store primitives describedMrl .6, and we should prove an appro-
priate adequacy theorem. We will not do this completely formally, mainly because sus-
pension steps are so simple; we content ourselves with a brief overview of packet stores,
and then we will examine a typical example.

A packet store representation of a MONSTR gr&ak contained within a set of packet
store locations. Each distinct noklef G is represented by a distinct packet at a location
x. The location contains: (s symbola(x); (2) xX's marking(x); (3) a sequence of
items each of which is either the uBitANK , or another locatios (a forward pointer);
(4) a return address spfx) containing a set of pairs such ask wherem is a packet
location andk is an index into the sequence of itemsyafa reversed pointer). The in-
variant that binds the packet store to the represented deaggserts that: (a) normal
arcs @, c) of G are in bijective correspondence with entrida k'th position of the se-
guence of items at, where locationg ande hold the representatives of nodeandc
respectively; (b) notification arcg c) of G are in bijective correspondence with en-
triesp.k in the return address set gfwhere location® ande hold the representatives
of nodesp andc respectively and th&th position of the sequence of items @is
BLANK.

In such an environment, the representation of suspension steps is simple enough. All
we need do, is to change the active marking in the root packet to a suitable suspension,
remove the root packet’s forward pointers to Mafogot)) non-idle child packets, re-
placing them bysLANK, and insert a reversed pointer to the relevant root packet item,
into the return address set of each such child packet.

This simple picture becomes slightly more complicated when we optimise the represen-
tation to allow garbage not to be represented, and permit the presehudicéction)
packets as intermediaries in the representation of arcs to allow the local implementation
of redirection (se®-1 .6 for a detailed discussion). Nevertheless the complications are
rather elementary and we merely give an example.

[Fig. 6] shows the packet store transformation for the suspension of [Fig. 5]. [Fig. 6.(a)]
shows the pre-state while [Fig. 6.(b)] shows the post-state. Note that the first child of
the root packet is assumed to have been exported to some other location in the packet
store, leaving behind a suspended which causes the suspension on that argument of
the root (as the argument itself is inaccessible), while the second child argisiteeif
accessible because it can be found by traversing an idle indirection chain (all the point-

#lInd| O | - el|ind| O

/"
-

Fig. 6.(a) Pre-state of the packet store for the suspension of [Fig. 5].

b
| —e

#lind| ¢

F| p -
N € |Ind
g\

O

:H://'

L |

dl A

Fig. 6.(b) Post-state of the packet store for the suspension of [Fig. 5].

ers that represent the arc in question point in the necessary direction), allowing the des-
tination packet to be retrieved, at which point the suspension is caused because the
argument itself is non-idle.

4 CORRECTNESS OF SUSPENDING EXECUTIONS

In this section we study the effect on correctness (with respect to DACTL semantics)
that the introduction of suspension steps generates. The first important result is below.

Theorem 4.1 LetR be a MONSTR system. L& =[G, G;...] be an execution dR
according to suspending semantlcs Let the domafa (fe. its set of indices) bil;.
Then there is an execution Bf GP [G o GDl .] according to DACTL semantics,
with domainNgp, such that there is a non-decreasing mafNg — NgP such that for
all'i O Ng,

(1) There is a graph structure isomorphimG; - GDé(i).

(2) x0OG;jisnon-idle = 6;(x) O GD5(i) is non-idle.

(3) xOG andu(x) =#" O u(8;(x)) =#™with 0< m<n (and#° =), so that
(4) xOGisactived 6(x) 0GP is active.

(5) (b ©) OG;isanormal ardd (6(p) 6i(c)) O GDé(i) is a normal arc.

(6) (P ©) is a notification arc i; and ©;(p)y, 6;(c)) is a normal arc iGDé(i)
O 6i(p) is active.

And

(7) Whenever execution st€y — G;j.q is a rewrite with root governed by rul®,

then execution steGDs(i) - GD5(i)+1 is a rewrite of a standard redex with root
6,(t) governed by rul®; and whenever execution st€p — G;,1 is a notification

fromt, then execution steBsg) — G)1 is a notification frond;(t).
Proof. We construcGP andd : Ng — Ngp as follows.
Step 0: Led(0) = 0 andzP, = G,. Clearly (1) — (6) hold for=0

Stepi + 1: Suppose we hawkfor j O[O0 ... i] and the correspondir@%)- There are
three cases depending on whetBgr, is obtained fronG; by notification, by rewriting,
or by a suspension.

Notification case. Let] G;j be the chosen root for the notifications() 00 C O V. By
hypothesi$;(t) i |s active, andj(e (t)) O C OV so that nod&;(t) is a possible root for a
not|f|cat|on inGP (i) Let GP 5(i)+1 be the result of performmg a notification @(t) in

GP 5() & and letd(i + 1) =9(i) + 1. Since there is a graph structure isomorph&m

G - GP &) (note that this does not require the node and arc markings to be faithfully
mapped by;; seeM-| .3.3), and notifications merely manlpulate the markings, there is
obviously a graph structure isomorphi8p, : Gjy; - GP §(i+1) 9iving (1).

We note that notifications onIy manipulate the markings in the notification rede; In
(resp.GP &) t (resp.6(t (3) is active and has its active marking replaced by the idle
marking |nG|+1 (resp. G si+1)- Noting also that non-idle parents d{resp.8;(t))
merely have one non- |dIe marklng changed to another when their out- atrcﬁseup

6;(t)) are notification arcs, we conclude that (2) is preserved by notifications. Since (3)
holds for the notification redexes @ andGP &) and not|f|cat|ons decrement non-zero
suspension marks (3) holds for the gras; andGP &(i+1)y Whence we quickly get

(4) forGj41 andGP si+1)- Itis easy to see that (5) is preserved as notifications normalise
all notification in-arcs of. Likewise for (6).

Rewrite case. By hypothed andGP &(i) are graph structure isomorphic, whence if
is the chosen root i, o(t) = a(6;(t)) ﬂ F. By (2) and (4) and the fact th&; has a
standard redex for some rule= (P, root, Red Act) for o(t) att, GP (i), has astandard
redex for the same rule 8f(t). And becaus® was ellglble for selection to govern the
stepG; - Gj4q, S0 isD to govern a stepsDa(,) - GP &i+1): Therefore we perform a
rewrite at6;(t) similar to the one dt

Let us compare the rewriting processes that creﬂ.g from G; andGP &G+1) from
GP 5 using the ruld. Letg;:L - G; andgP &)L - GP R0 be the redexes.

The two contractum building phases clearly allow the extensidh oG; — GP &) to
a graph structure isomorphism

B :G' - GDa(i)'

such that the obvious triangle involvingg : P — G;' andgP h P - GP &) com-
mutes. Since identically labelled and marked nodes and edges are added to correspond-
ing places, it is easy to see that (1) — (6) hoIcG‘OandG &) Viag;'.

Also the redirection phase admits a further extension to a graph structure isomorphism
n . n D n
Gi . Gi -G (i)

such that the triangle involving the node mags: P - G;" andgP i) P~ GP ()
commutes too. Since similar modlflcatlons are made to both graphs it is again easy to
see that (1) — (6) hold fas;" andGP &) Viag".

Likewise the activation phase finally yields the graph structure isomorphism
ei+l : Gi+1 - GDé(i+1)

such that the triangle involvinig,, : P - Gj4q andh §i+1): P - GP a(i+1) commutes,
and we easily see that (1) — (6) hold &, andGP &(i+1) Via Bj11.

Suspensmn case. Here we do not construct a new graph at all. \®g-+sBt= 5(i),

i+1) = =GP a()» and6;,. = 6;, noting in the latter case that markings are ignored by
theé maps; g|V|ng (1). As for notifications, we observe thatlif G; is the chosen root,
the marking ort changes fronfiito #", both of which are non- |dIe markings; otherwise
all node markings remain the same. This quickly yields (2) — (4); (5) is also easy to see.
The basic nature of suspensions ensures that (6) is preserved.

The above yields a sequence of execution steps for which property (7) is obvious by
construction.

If G is non-terminating, it is a DACTL executidaP. (We do not contemplate transfi-
nite executions in this paper). Otherwise it is a prefix of a DACTL execution, possibly
a proper one since there may be active nodes left over in theGthgtaph arising from
suspensions ifs not all of whose arguments subsequently notified. In such a case we
can complete the DACTL execution by performing rewrites and notifications according
to DACTL semantics until we either reach a final graph, or the execution does not ter-
minate. The result in either casd3S. ©

The close relationship betwe&handGP constructed above, extends to liveness and
garbage as follows.

Theorem 4.2 Assume the notation of theorem 4.1. Then for @INg,
1) xOGislive O 6;(x) OGPy is live.
(2) (Eweo)OGjisalivearcO (B;(p)y 6i(c) T GD5(i) is a live arc.

Proof. We start with the nodes. We use a form of induction on the size of a proof of the
liveness ofx O G;. (By the size of a proof presented in the sequent styM-bfFig.10,

we mean the sum of the number of occurrences of formulae and of the number of oc-
currences of inference steps in the proof, in an obvious way.) The precise induction hy-
pothesis is

If x O G; has a liveness prodf,; of sizen, then
8/(x) 0 GP) has a liveness pro6t°g)) of sizem< n.

If X is live because it iRoot-labelled or active, then by theorem 4.1.(1) or 4.1.(4) re-
spectivelyg;(x) is live in GDB(i).

If xis live because there is a normal apg, (X) with p live in G;, thenp has a smaller
liveness proof thar, and by theorem 4.1.(509{(p), 6;(X)) is a normal arc. By hypoth-
esis6;(p) is live, whence;(x) is live, both with proofs of requisite size.

If xis live because there is a notification axg, €) with c live in G;, thenc has a smaller
liveness proof thaw, and ©;(X),, 6;(C)) is either a notification arc or a normal arc. If
the former, the®;(c) is live by hypothesis, whend(x) is live, both with proofs of reg-
uisite size. If the latter, then by theorem 4.1.@&[Xx) is active anyway, whence live, by
a very small proof.

Since an arc is live iff both the parent and child nodes are live, we immediately deduce
the result for arcs©

Thus suspending executions map fairly straightforwardly into at least prefixes of
DACTL executions of the same system. If things go well, the suspensions of the sus-
pending execution subsequently receive enough notifications to reactivate their roots
and let a rewrite take place. When all suspensions are thus released, we get the same
final graph (assuming the execution terminates). We now study this further.

Definition 4.3 Let G; be an execution graph (for either suspending or DACTL seman-
tics). The execution dependency graph (EDG};afonsists of

(1) all notification arcs and their parent and child nodes,

(2) all non-idle nodes.

Note that like the live subgraph (LSG), the EDG need not satisfy all the invariants for
being a term graph, not least because not all out-arcs of a suspended node need be no-
tification arcs.

Theorem 4.4 Let G;be an execution graph of a suspending execiiioha MONSTR
systemR. Then

(1) (@ Allnodes ofG; are idle O
(b) The EDG ofGs is empty.

(2) (@ TheEDGofGisemptyd [
(b) Gsisthe final graph of the suspending MONSTR execufasf R, and
(c) Gxis the final graph of the associated DACTL execuGnof R.]

Proof. (1) is clearly true by balancedness. For (2),[{(a)b) since all nodes o&; are
idle, whence there is no candidate chosen root for another execution step. Also (a)
(c) by theorem 4.1.(2)©

Corollary 4.5 If Gis a suspending execution of a MONSTR sysfemwith final graph
Gy, and the EDG of5; is empty, then there is a DACTL executionfdfproducing the
same final graph.

N.B. In the following theorem, the two chains of implications are to be understood as
shorthand for {[(a)0 (b)] O[(b) O (c)]}

Theorem 4.6 Let G;be a suspending semantics execution graph of a MONSTR system
R. Then

(1) (@ Gscontains no active nodes
(b) The EDG ofG; contains no active nodes
(c) The EDG ofGs is non-empty = the EDG ofG; contains a suspended
node, and [there is a cycle of deadlocked suspended no@gsdanthere
is an idle stateholder at the head of a notification a,dpr both)].

(2) (@ The EDG of5; contains no active nodes
(b) Gyis the final graph of the suspending execufoof R [
(c) Gsis graph-structure isomorphic to a graph of the associated DACTL

executionGP of R.

Proof. Consider a node in the EDG of an execution gré&pbf R. If it is active, or an

idle stateholder at the head of a notification arc, it is a leaf of the EDG. If it is suspend-
ed, it has at least one child node. These remarks are true by balancedness and state sat-
uratedness. Moreover there are no other possibilities.

Consider a maximal path of the EDG containing at least one arc. Perforce it must start
at a suspended node, and must encounter more suspended nodes as long as it does not
find a leaf of the EDG, again by balancedness.

Now for (1), (a)d (b) is obvious. Also (b)J (c) because if the EDG d&; is non-
empty and it has no active nodes, then any leaf of the EDG must be an idle stateholder,
implying the presence of a suspended parent. If there is no leaf in the EDG, then since

G is finite, its EDG is finite, and so must consist of suspended nodes knotted together
in cycles. Part (2) is obvious)

Corollary 4.7 Let G; be a suspending semantics execution graph of a MONSTR sys-
temR. If the EDG ofG; contains either of the following:

(@ A cycle consisting of suspended nodes and notification arcs. Or:
(b) A garbage idle stateholder at the head of a notification arc.
Then no subsequent execution graph will have an empty EDG.

Proof. A suspended node which is either in a cycle of suspended nodes and notification
arcs, or is the ancestor (via a path of suspended nodes and notification arcs) of a gar-
baged idle stateholder, will remain permanently suspended by balancedness. In the
former case there is a deadlocked cycle of suspensions, in the latter case, a needed no-
tification from the idle stateholder will never materialise. So the EDG will remain non-
empty in each subsequent execution step.

Assuming we define correctness of a terminating suspending execution of a MONSTR
systemR, by the property that its final graph is marking-preserving isomorphic to the
final graph produced by a DACTL execution, then corollary 4.7 identifies some bad
things, which once they have occurred in an execution graph, preclude correctness sub-
sequently. The negations of these bad things lead to some good things which we can
use to assert correctness. The nextresultis perhaps the most important one in this paper.

Theorem 4.8 Let R be a MONSTR system, and |6t = [Gy, G;...] be a suspending
execution oR. Suppose the following hold.

(1) Foralli O Ng the EDG ofG; is acyclic.

(2) Foralli ONg if xO Gj is an idle stateholder child of a notification arc, then there
isai <jONg.

(3) G terminates.

ThenG is correct, i.e. its final grapB; can be obtained from a DACTL executionf®f

Proof. Consider the EDG d&;. Itis acyclic by (1), (thus in particular does not contain
any deadlocked cycles of suspensions). It contains no active nodesiisdenal by

(3), and it contains no idle stateholder node which is a child node of a natification arc
since if it did, there would have to be &r j O Ng andG; would not be final. Thus the
EDG of Gy is a finite directed acyclic graph without leaf nodes, hence empty. Ghus

is correct by theorem 4.4

Theorem 4.8 reduces correctness to three sub-problems. The firstis to establish the acy-
clicity of the EDG of any execution graph (the initial graph obviously has an acyclic
EDG). The second is to show that idle stateholder children of notification arcs ultimate-

ly always have the opportunity to participate in a suitable rewrite. The third is the prob-
lem of termination. All of these subproblems give reasonable prospects for static
analysis. Properties of rule systefdscan be formulated, that guarantee the relevant
properties of execution graphs. However, these topics are beyond the scope of this pa-
per and will be treated in depth elsewhere.

We continue this section by considering what happens when we take the preceding no-
tions modulo garbage, i.e. we ask the question whether we can establish the correctness
of a suspending execution with respect to a DACTL execution of the same system such
that the two final graphs differ only in garbage. Unfortunately this precludes use of our
most powerful tool, the emptiness of the EDG. Consequently the results below are fair-
ly weak. They are quoted without proof, being easy adaptations of preceding material.

Definition 4.9 Let G; be an execution graph (for either suspending or DACTL seman-
tics). The live execution dependency graph (LEDGpofonsists of

(1) all live notification arcs and their parent and child nodes,
(2) all live non-idle nodes.

As intheorem 4.6, the chains of implications and equivalences in the next two theorems,
are to be read as conjunctions of binary implications or equivalences.

Theorem 4.10 Let G; be a suspending execution graph of a MONSTR sy$terfihen

(1) Alllive nodes ofG; are idle =
(2) Giis the final graph of the suspending execuoof R =
(3) The LEDG ofG; is empty U

(4) The EDG ofG; is non-empty < there is a (garbage) deadlocked cycle of sus-

pended nodes, or a notification arc whose child node is an idle stateholder in the
EDG of Gy.

Theorem 4.11 Let G; be a suspending execution graph of a MONSTR sy$terfihen

(1) Ggcontains no active nodes
(2) Gsis the final graph of the suspending execuoof R -
(3) The LEDG ofG; contains no active nodes

(4) The LEDG is non-empty= there is a deadlocked cycle of suspended nodes, or
a notification arc whose child node is an idle stateholder in the LE[Ba of

The previous two results are very similar. Theorem 4.10 deals with emptiness of the
LEDG, which implies that nodes in the EDG must be non-active garbage. Theorem
4.11 deals with non-activeness of the LEDG, which permits live deadlocked cycles and
suspensions on stateholders, unlike theorem 4.10. Note that neither result is able to say
much about any associated DACTL execution, since the DACTL execution may well
manifest live parts of a graph which correspond to garbage in their suspending MON-
STR counterparts. Only if all such live parts commit garbage-theoretic suicide later in
the DACTL execution, may we anticipate a equivalence of executions up to garbage.
Clearly theorems of a general nature such as those above, will not be able to assert
whether this happens or not.

Finally for this section, we examine an example of a terminating system.

Example 4.12 We revisit the factorial example bFI .

S consists of
F = {Fac, Mul, Sub, Initial}
Cc={0,1,2,3,...}i.e. the naturals
V=0

Rules:

Sub[00]=>[D |
Sub[10]=>[|
... etc.... i.e. the normal delta rules for subtractign.

Sub[xy]=>##Sub["(X "] ;

Mul[0O0]=>T[0 |
Mul[10]=>[D |
... etc. ... i.e. the normal delta rules for multiplication.

Mul[x y] => ##Mul["Ik MY] ;
Fac[0]=>[1 ;

Fac[n] => #Mul[n MFac["(Bub[n1]]] ;
Initial => [Fac[5] ;

This is a fairly uncomplicated example. It is easy to show by a straightforward induc-
tion over suspending executions that any instance of an active function symbol in any
execution graph of the system has all of its matched arguments already idle. Sothe only
execution (there is only one as the system is completely deterministic) is a DACTL ex-
ecution and is automatically correct. Note how the default ruleStdr andMul are
effectively just programmed up versions of suspensions, and the fact that all matched
arguments turn out to be in constructor form is reflected in the fact that these rules are
never actually used.

However considering suspending semantics allows us to increase the concurrency in the
system, rewriting three of the default rules as follows.

Sub[xy]=>[Bub[k 0y]
Mull xy]=>Mul[x Oy]
Fac[n]=>[Mul[n (Fac[(Bub[n 1]]]

In this version, the three functions instantiated on the RHS oF#wedefault rule can

all attempt to rewrite as soon as an instance of that rule has completed its rewrite. Un-
fortunately all these functions are strict and need their arguments in constructor form
before they can progress the computation. So the only thing that happens if any of them
attempt to rewrite at any moment other than the point at which they become scheduled
to rewrite in the DACTL execution, is that they become suspended, only to be notified
later. Increasing the concurrency thus wastes work here. This is not untypical. If one
can deduce the dependencies in a computation well enough statically to program in the
requisite suspensions at contractum building time, it is always preferable to do so.
However this is not always possible, and then the suspension mechanism guarantees
that the computation does things in the right order nevertheless. However this is not the
only or even the main virtue of suspending semantics. The most important aspect of
suspensions is that they prevent, in an implementable manner, the collapse of the mutu-

ally reinforcing system of properties characterised by balancedness, state saturatedness,
and the soundness of garbage.

5 CORRECTNESS FOR NON-TERMINATING
EXECUTIONS

Since theorem 4.1 worked equally well for terminating and for non-terminating execu-
tions, it is desirable to extend the correctness results generated from it to non-terminat-
ing executions. Unfortunately, the main criterion available to us, the emptiness of the
EDG, is not applicable when the execution doesn’t terminate; by definition. We must
therefore be content with some sort of approximation to emptiness of the EDG, and dif-
ferent approximations will yield different notions of correctness. Pursuing such differ-
ent approximations can rapidly transform the study of correctness into a branch of point
set topology, a diversion which we do not wish to take in this paper, so we content our-
selves with the simplest feasable approximation.

Definition 5.1 Let G =[Gy, G;...] be a (non-terminating) suspending execution of a
MONSTR systenR. Suppose for ail O Ng, for all x 0 G;, there is am; , such that for
allj ONg withj = N; y, iGi,G-(X) is notin the EDG of5;. Then we say thds is pointwise
correct with respect to DACTL semantics.

Note that this definition provides a very weak notion of correctness: that of pointwise
approach to non-membership of the EDG by all nodes. Further, the fact that all nodes
eventually vacate the EDG, may not be useful; eg. the steadily increasing set of hence-
forth idle nodes that the definition promises, may in fact consist predominantly of gar-
bage.

Usually, showing that an execution satisfies a property like definition 5.1, will involve
some assumptions of fairness. This can be a complex subject [Francez (1986)]. Nor-
mally we will just make whatever assumptions are necessary to make progress. For def-
inition 5.1 specifically, it is generally enough to assume that every active node in an
execution graph, becomes a chosen root eventually.

The next definition gives us the ammunition to track the life history of a node through
an execution. A node may engage in a limited number of events depending on which
atomic action is next in the execution, and what part if any the node has to play in that
action. Thus a node may play no part at all, being an innocent bystander in the atomic
action; it may merely have its marking changed as the result of notification, activation
or suspension; or it may undergo redirection. There are no other possibilities. More
formally we have this definition.

Definition 5.2 Let G =[Gy, G;...] be a suspending execution of a MONSTR system
R. A node event chaif, for a nodexin a graphG; of G, is a maximal sequence of the
form

Ex=[(x X100k, My Y Ot Bz2:0)ke2, -]
such that the following are true.

(1) If(u,z: oy))mis an element o, thenz O G, andy, ando, are the marking and
symbol ofzin G, respectively. (l.g4(2) =y, ando(2) = o,.)

(2) If the first element in the sequence g & : 0), then eithek = 0 andx is the
initial node inGy, orxis notin the image of,_, ,. (I.e. the atomic action that

create$s, is arewrite, and s introduced during the contractum building phase.)
) If(HyY:0ym, (HZ:0)me1 are an adjacent pair of elementdjnthen

EITHER z= iGm’GWl(y) = er‘Gwl(y), o(2) = a(y), and one of the following
holds:

(@ The pair describe an identity eventypandpy = |,.

(b) The pair describe a notification eventypandpy, = Dandy, =&.

(c, d) The pair describe an activation eventyfoandy,, U {, #"(n=1)}andy,
=0

(e) The pair describe a decrement suspension evegtamdy,, = #1(n=2)
andp, =#""Mwithn-m=> 1.

() The pair describe a suspension eventfandy, = Dandu, = #1(n=1).
OR er,Gmﬂ(y) 4 iGm,Gm+1(y) and one of the following holds:

(g, h) The pair describe an activation eventyjoandz = iGm,G rml(y), andp, U
{e,3andp,=0

(i) The pair describe a redirection eventypandz =rg mG m+l(y)'

It is clear from definition 5.2.(2) and the fact tHais an execution, that identity events
apply to all nodes not affected by an execution step (a); that notification events apply
only to roots of notifications (b); that activation events apply only to nodes activated but
not redirected by a rewrite (c), or activated by a notification (d), or activated and redi-
rected by a rewrite in non-root position (g), or activated and redirected by a rewrite in
root position (h); that decrement suspension events apply only to non-root members of
a notification redex (e); that suspension events apply only to roots of suspensions (f);
and that redirection events apply only to nodes that are being redirected during a rewrite
(). Thus a node event chain starting at some node records what happens to that node
from a computational point of view. It is clear that by examining an adjacent pair of
elements in a node event chain, we can tell what sort of event they depict.

We observe that node event chains can share common suffixes when redirections redi-
rect one node to another, or several nodes to the same destination. They can share com-
mon prefixes too, but only when there is a node that is both activated and redirected
during some rewrite, participating in event types (g) and (i), or (h) and (i) simultaneous-

ly. We also point out that they share some of the characteristics of sequences of snap-
shots of a single location in the packet store representatiodsio6, albeit at a higher

level of abstraction — not requiring indirections, and ignoring arcs. (Evidently, two
node event chains share a common prefix exactly when the conditions of the overwrit-
ing lemmaM-I .5.10 do not hold at some location in the packet store, and one has to be
content with the weaker provisions of the moving lemiwtd .5.11.) [Fig. 7] gives a

state transition diagram for nodes classified by marking and symbol, and for the kinds
of permitted events according to suspending semantics. Thick lines represent redirec-
tions, where perforce the LHS and RHS nodes are different, while thin lines, suitably
labelled, represent the other kinds of events, where only one node (and its image under
IGmGmwp) 1S iNVolved. Identity events are not shown, for clarity. Note that there is a
pleasmg (though not exact) degree of symmetry about the diagram.

Lemma 5.3 LetG be a suspending execution of a MONSTR syskm_etx be a live

node of graplG, of G. Then (1(X) X : (X)), is an element of some node event chajp
of G.

Proof. By induction over executions. I8q, the one and only initial nodiitial is in
the common first elemeninitial : Initial)q in all node event chains that have a 0-sub-
scripted element. The result follows for subscript O.

Suppose the result holds up@j,. If the next execution ste3,, - G+1 IS not a re-

write then it is easy to see that theg, ., | g,,image ofx occurs in element (.)..1 in Ey

iff x occurs in the preceding elementj,,in E,. So if all the nodes of Lives,,)) occur

in m-subscripted elements of node event chains, then allitggir .,images occur in
m+1-subscripted elements of node event chains. Consequently we get the required re-

sult as LiveGpy1) U iy emer(LiVe(Gm)-

Otherwise the next execution st&, — G+ iS a rewrite. All contractum nodes in-
troduced during the rewrite are in the first{1-subscripted) elements of all corre-
sponding node event chains by definition 5.2.(2), so the conclusion holds for them
regardless of whether they are live@y,,, or not. So now consider Live(,). By the-

orem 3.6.(2), we know that Live{ , g 1(Gm)) U g eme1(Live(Gyy), so the conclu-

sion holds for all live nodes 06, subjected to an event of type other than (i) in
definition 5.2. For a node O G, subjected to an event of type (i), i>eis the LHS of

a redirection, we know thatis balanced and(x) # Root O C. Thus by the overwriting
lemmaM-1.5.10, theig,,, g4 IMmage ofx will not be live unless, eithex is also acti-
vated, orx is also the RHS of some other redirection (or both). But in these cases there
is anm+1-subscripted element. (i, gue1(X) ---)me1 IN SOMe node event chain that
records these possibilities)

Lemma 5.4 LetG be a suspending execution of a MONSTR sysfémLety =
igx ga(y*) in graphG,, be theig« g, image of a nodg* first introduced in grapls* of

, and leta be the smallest subscripisuch that for each elemeni/z: 6,), in every
node event chaii,, of G that has &-subscripted elemenit« g, (y*) # z Then the ex-
ecution stef5,_; -~ G, was a rewritey = ig,_; ga(X) for somex 0 G,_4, and in this
rewrite,x was the LHS but not the RHS of a redirection, was not activated, and was gar-
baged by the rewrite. And conversely.

Proof. A straightforward extension of lemma 5@.

Lemma5.5 LetG be a suspending execution of a MONSTR syskniLety be a node
of graphG,. of G, and letk be such that for each elemept, ¢ : 6,), in every node event
chainE,, of G that has &-subscripted elemeng# z. Then for anyq > k, there is nay-
subscripted element.(in’Gq(y) ...)q In any node event chain of

Proof. Suppose not. We know that a nogél G,,, of G first fails to be mentioned in
mt+1-subscripted elements of node event chain@ by being garbaged as the unacti-
vated LHS but not RHS of redirections by lemma 5.4. To be mentioned once more at

Idle

Idle

(::’ Idle
V

Fig. 7. State transition diagram for events in suspending semantics.

Act

Dec
250)

Act

Suspende
F

j =

Active

Susp

Act

Suspende
C

Not

Active

Act

Suspende
V

]\/\

Active

@ Dec
Sus

Not

some later execution step, it would have to at least become the RHS of a redirection, as
all other events relate to thg, .1 images of nodes. To achieve this in turn, requires

it to become a member of a standard redex, as the only alternative for a redirection RHS,
a contractum node, can only occur in the rewrite that creates it. But all standard redexes
are live, and garbage is persistent, so the proposal is impossible. We aré&done.

Continuing the analogy with the packet storeMbd , we see that nodes likein lemma

5.4, are those which in the packet store representation of rewritingliré, have their
representing packets overwritten, without their packet contents simultaneously being
moved to some other location; in other words, those packets which get “discarded with-
out trace”.

Definition 5.6 Letx be a node occurring in gragh in a suspending executids of a
MONSTR systenR. We say that % is eventually1” (or similar), iff there is arn > i
such that for alj > N, propertyl is true of theig; o image ofxin G;. Similarly letEy
be a node event chain fain G. We say that E, is eventuallyr”, iff there is anN such
that for allj = N, propertyr is true for all elements (); in E,.

Theorem 5.7 Let G be a non-terminating suspending MONSTR execution of a MON-
STR systenR. Suppose for alk occuring in graphs5; of G, and for all node event
chainsk, in G, the following hold.

(1) xis eventually not both the LHS of a redirection, and also either activated or the
RHS of a redirection of a rewrite Gf.

(2) Eyiseventually idle.

ThenG is a pointwise correct executionféfwith respect to DACTL semantics.

Proof. Consider a nodg of the execution, first introduced in a gra@i of G. Thus
eithera = 0 andx is the initial node, on > 0 andx was introduced during contractum
building in the rewriteG,_; — G,. We must show that there is arsuch that fok > N,
iGa,c(X¥) is notin the EDG of5. There are three cases.

Case 1: There is amsuch that fok > N, i, g, (X) is not in thek'th element of any node

event chain of5. Assumen is the smallest possible. Then by lemma BfonX is
garbage, by being the unactivated LHS of a redirection without being the RHS of a re-
direction, in the rewritéGy_; — Gy. In such a casis, gy (X) is necessarily idle and
balanced. By balancedness, all its out-arcs are also idle and garbage. Since it was not
the RHS of a redirection, it has no in-arcs, thus no non-idle ones. Soitis notinthe EDG
of Gy. Fork= N, this situation persists (fog, ¢, (X)), asiga g (X) continues to remain
asidle garbage, to have only idle garbage out-arcs, and noin-arcs. This follows because
nodes can only alter an idle marking or acquire in-arcs as the result of being in a stan-
dard redex, which requires them to be live.

Case 2: There ismsuch that fok > B, i, g (X) is in some node event chakif), whose
suffix of elements with subscriptsti for i non-negative, contains only events of types
(@) — (h) (i.e. anything except redirections). So for eath thes+i’th element ofg,,
containsig, gg+i(¥). BY (2), there is am > B such that foii non-negative, thei+i'th
element ok, containing g, gy4i(X). isidle. By balancedness,iif, cy.i(X) was inthe
EDG of G, it would have to be a stateholder with a notification in-arc from some sus-
pendedh 0 Gy,i. Such g would have to remain suspended forever, since receiving the
requisite notification entaiIQ;A’GNHﬂ(x) being active for some non-negatiyean im-

possibility. Thus there is a node event chéiy,say, containing the non-idle node
iGNH,GNHﬂ-(p) in eachn+i+j’th element of a suffix, which it is easy to see contains only
identity events. But this contradicts (2), which says thgats eventually idle. So we
conclude thaig, gy.;(X) was not in the EDG d&y,; after all.

Case 3: Everything else. In this case, formlfor all node event chaing,, say, that
haveig, gg(X) in theirs’th element, there is a non-negativeuch that elements.()g.;

and (..)g+i+1 Of Ey, depict a redirection event of rewri@s,; — Ggyj+1- SOig, Ggsi (¥

is the LHS of a redirection. lifg, gg,;(X) were neither activated nor the RHS of some
other redirection of the rewrit€g,; - Gg+j+1, We would be in case 1, as the rewrite
would garbagég, cg,i(X)- So eithelig, gg,;(X) is activated or is the RHS of a redirec-
tion. Sinces was arbitrary, there must be infinitely many indicessok; <k, < ... <

ki < ... at which the nodég, g (X) is both the LHS of a redirection, and also either ac-
tivated or the RHS of a redirection. But this is precluded by (1), so case 3 is empty. We
are done.©

Theorem 5.7 shows that under reasonable conditions, we can deduce correctness even
for non-terminating suspending executions. The formulation of sufficient conditions in
terms of node event chains and redirections, is frequently more convenient than defini-
tion 5.1, because the events in node event chains conform more closely to the way we
naturally think of the destiny of nodes in an execution as evolving.

We examine a couple of examples of non-terminating systems.
Example 5.8 We consider a version of the producer consumer examme of

S consists of
F = {Producer, Consumer, Reader, Writer, Initial}
C = {Item, Cons, Nil}
V = {Empty, Full}

Rules:
Producer => [Cons| Item [Producer] ;
Consumer[Cons[ht]] => #Consumer[(1] ;
Consumer[x] => #Consumer["X] ;

Reader[s:Fulll x]] => CCons[x #Reader[*y:Empty 1],s =¥ |
Reader[s:Empty | => #Reader[s] ;

Reader[x | => #Reader["X] ;

Writer[Cons[h t] s:Empty | => #Writer["G u:Fullf h]],s:=[u |
Writer[x:Cons[h t] s:Full] => #Writer[x s] ;

Writer[x y | => ##Writer["Ik "/] ;

Initial => #Consumer["#Reader[*s:Empty],
#Consumer["#Reader[s]],
x:#Writer["[Producer s |,
y:#Writer[“[Producer s ;

In this example, suspending semantics is actually needed for a smooth machine imple-
mentation as non-standard redexes can arise. For consider the first rules feebdth

er andWriter; both of which redirect their stateholder to an active node. Because of the
presence of multipl&keaders andWriters, schedules exist in whidReaders and
Writers attempt to pattern match their stateholder argument while it is still active. Sus-
pensions thus provide the natural way to handle this situation.

Another area in which suspending semantics can be exploited is in the rules that cause
the lists ofltems to be devoured bg€onsumers andWriters. If aConsumer wishes

to consume an item which has not yet been read byreeder it must wait, and like-

wise when alriter wishes to write an item not yet produced by ®ducer. Thisis
achieved by having each freshly creatédnsumer or Writer node activate and sus-
pend on its matched argument in the rules

Consumer[Cons[ht]] => #Consumer["1]
Writer[Cons[ht] s:Empty] => #Writer["Q u:Fulll h 1], s:=Cu

The programmed suspension ensures that Siarisumers andWriters only wake

once the relevant argument is@ons form. However there are races betweeon-
sumers and theilReaders andWriters and theiProducers. If the latter usually stay
ahead of the former so that t@®nsumers andWriters usually have their argument in
Cons form anyway, the activation and suspension of the above rules waste work and
the runtime suspension mechanism provides a more efficient synchronisation allowing
the rules to be replaced by

Consumer[Cons[ht]] => Consumer[t]
Writer[Cons[ht] s:Empty] => OWriter[t u:Fullfh]], s:=[u

We can verify that (either version of) the above system is pointwise correct if we make
the conventional fairness assumption that all active nodes eventually become chosen
roots. The key is to note that the live part of any execution graph is a semitree, i.e. there
is a unique non-backtracking unoriented live semipagttween any two live nodes of

any execution graph. This is trivially true for the initial graph and it is easy to check
that it is preserved by all the rules, being trivially preserved by notifications and suspen-
sions. This allows us to quickly see that no LHS of a redirection is ever activated. Fur-
thermore it is clear from a superficial examination of the rules that the RHS of every
redirection is a contractum node. Thus no redex node can be the LHS of a redirection
and either the RHS of a redirection or activated, even once let alone infinitely often. So
theorem 5.7.(1) holds. To establish theorem 5.7.(2) we need a rather more intricate in-
ductive argument which we will not describe in detail. Assuming fairness, this argu-
ment needs to prove that: (1) ealtbm node is created idle and remains so forever;

(2) eachCons node is created active, later notifies, possibly repeats an activation/noti-
fication cycle and eventually becomes idle garbage; (3) Eagbty node and eachull

node is created active, later notifies, and eventually is redirected, becoming idle gar-
bage; (4) each function node is created suspended and eventually receives the requisite
number of notifications and becomes active or is created active already, and rewrites,
eventually becoming idle garbage. [Fig. 8] which shows an execution graph of the sys-
tem, makes all of these statements at least plausible. These in turn are enough for the-
orem 5.7.(2), and hence for pointwise correctness.

1. We recall that a semipath in a directed graph just disregards the orientation of the arcs.

Consumer]|]/\C‘ons[/- -]/z:)ns[j ']/:;eader[|

Iltem Iltem

Empty

DWriter[]

Cons['/]/\E‘Producer

ltem
DWriter[]

\\Cons['/]/\C‘ons[j]/\E‘Producer

Item Item

Fig. 8. An execution graph of Producers and Consumers.

Example 5.9 In this example we display a MONSTR system that does not satisfy the
conditions of theorem 5.7. All of the rewrites of this system are in fact instances of the
example that we used to illustrate rewriting in [Section 2], [Fig. 4]. The one possible
execution of the system, has two stateholder nodes that are simultaneously the LHS and
RHS of redirections infinitely often. This property is used to ensure that neither of them
is eventually in every subsequent element of some node event chain (though they occur
in some node event chains infinitely many times), and this helps to ensure that they are
repeatedly in the EDG. Ironically, though the execution of this system is not pointwise
correct according to definition 5.1, we would much prefer to regard it as correct in some

wider sense, as it is in fact a DACTL execution; containing no suspension steps at all.
This merely illustrates the obvious fact that non-terminating executions can in general
be trickier to deal with than terminating ones.

S consists of
F = {F, Initial}
c=0
vV ={S}

Rules:
root.F[s:Sa]=>s,s:=[a, #F["aroot] ;
Flab]=>#F["&ab] ;
Initial => [(F[s:Sv:S] ;

[Fig. 9] illustrates the execution of this system showing only the live nodes in each ex-
ecution graph, (note that the difference between the top right and bottom left graphs of
[Fig. 9] and the result graph of [Fig. 4], is that [Fig. 4] includes the FHabelled node
which is garbage). Inrelation to this note also that whileRhmdes are constantly be-

ing garbaged and replenished, B@odess andv, are the same nodes in each graph
(i.e. they aréig g,,1 images rather than contractum instantiations), as a result of the
phenomena pointed out above. Consequently, there is a node evenEglsaiy) that
perpetually contains one or other of thesendv nodes alternately, and each picture of
the cyclic part of the execution in the figure, indicates which nodeks ioy thes . As

usual, dashed arrows represent redirections to be performed in the next step, and it is
clear that each suffix d&g contains an infinite number of redirection events where the
redirected node is the RHS as well as the LHS of redirections, becausedmadh visit

E; infinitely many times.

6 INDEPENDENCE

In this section, we examine the conditions under which the order of adjacent execution
steps of suspending executions is irrelevant. This is of interest when we wish to reason
about the correctness of specific systems. In general the relatively finegrained nature of
MONSTR rules means that larger atomic actions at a higher level of abstraction, may
have to be broken down into smaller subactions. Often this can generate a certain
amount of concurrency in the execution graph, as independent subactions are in princi-
ple able to execute simultaneously — which is modelled by interleaving them in either
order in the serial rewriting model. Combining such independence with any parallelism
in the original system can yield an astronomical number of execution sequences to con-
sider, especially when executions are infinite. Often large numbers of these differ only
in trivial ways, and the interchange theorems of this section help with this, by allowing
executions that differ only by sequences of permitted interchanges to be regarded as
equivalent. Ultimately one may be able to reduce all the executions to a standard form
if the understanding of the system is profound enough. For a concrete example of this
process see [Banach et al. (1995)].

Actually, to just say that independent actions may simply be interchanged is too sim-
plistic. In one case, choosing one action first obliterates the other; in another, one
choice entails an extra action. And in any case, the results we start with in this section
are expressed in a symmetric form which states that given an execution graph for which

Onitial

[]

/ \ 0 .
's:S V:S s:S [S
L N L L)

#0711 Fla 1.

N |:| \‘\'
.S vS s:S v:S
L) x '

Fig. 9. A non-terminating execution of the system featuring
two nodes that are repeatedly in the EDG.

two candidate next execution steps are available, one may perform them in either order
with equivalent results (provided suitable conditions hold). We return to these points
later.

Theorem 6.1 Let Gy =[Gy, Gy, ..., G\] be a prefix of a suspending execution of a
MONSTR systenR. Suppos&5, contains two active nodes # t, with { a(t;), o(t,)}

O C O V. For either choice of O {1, 2}, let j denote the other choice. LEj§ be ob-
tained by performing a notification frofnin Gy. Then

(1) HqandH, are graph structure isomorphic.

(2) rGN,Hi(tj) = iGN,Hi(tj) is an active constructor or stateholder, hence the root
of a potential notification step, k.

LetK; be obtained front; by notifying fromrg, ,(tj). Then

(3) Kj;andK, are marking preserving isomorphic.

Proof. This is relatively easy. Since notifications merely manipulate markings, (1) fol-
lows immediately since botH; andH, are graph structure isomorphic®,. Sincet;

is active inG,, it cannot be a suspended parent of a notification atg tius it is not
notified int;’s notification, andGN,Hi(t-) is active inH; so that (2) holds. As for (1Kq
andK, are graph structure isomorphic, so we must check that the markings coincide.
We know that the sets of notification arcs that comprise the notification redetyesnof

t, in Gy are disjoint. After notification, all of them end up as normal ardsjmandKo,.

Other arcs are unaffected.

For nodest; andt, lose their active marking; nodes not in either notification redex keep
their marking; parent nodes gfin the notification redex of, but not oft; decrement
their suspensions by the same amount during the notification of githvesfrg, 1. (t;);

and parent nodes of bothandt, in both notification redexes decrement their'suspen-
sions by the sum of two such amounts, ending with the same marking sira® ¢ b

= (n—b) —a. So we have (3), and thus the whole theor&m.

Theorem 6.2 Let Gy =[Gy, Gy, ..., Gy] be a prefix of a suspending execution of a
MONSTR systenR. Supposés, contains two active function nodes# s, with not

all Map(o(s)) arguments idle, i.e. such that foil {1, 2} there is at least oné; O
Map(o(s)) such thati(s)[k] is not idle inGy. For either choice of O {1, 2}, let j de-
note the other choice. Lé{; be obtained by performing a suspension frgrm Gy.
Then

(1) H;andH, are graph structure isomorphic.

(2) rGNyHi(Sj) = iGN‘Hi(sj) is an active function node, and hence the root
of a potential suspension stepHp

LetK; be obtained froni; by performing a suspension fror@NHi(%). Then

(3) KjyandK, are marking preserving isomorphic.

Proof. This is pretty similar to theorem 6.1, in that notifications turn notification arcs
into normal arcs, while suspensions turn normal arcs into notification arcs. So we will
be fairly brief.

Since suspensions merely manipulate markings we have (1) immediately. Also since
the only node marking that is changed in a suspension step is that of the suspension root,
and all nodes are non-idle afterwards iff they were non-idle before, (2) followand
andK, are graph structure isomorphic. Since the sets of normal arcs constituting the
two suspension redexes are disjoinGj) we get (3) easily©

Theorem 6.3 Let Gy =[Gy, Gy, ..., Gy] be a prefix of a suspending execution of a
MONSTR systenR. Supposés, contains an active function nodeuch that there is
at least on& O Map(o(s)) such thati(s)[K] is notidle inGy. Supposé&s, also contains
an active constructor or stateholder et

Susp = k O Map(o(s)) | a(9)[K] is non-idle inGy}
SuspNodes =X Gy | x = a(s)[K] for somek [Susp}

M = SuspNodes =t}

Let Hg be obtained by performing a suspension freim Gy, and letH; be obtained by
performing a notification frorhin Gy. Then

(1) HgandH, are graph structure isomorphic.

(2) oy Hdt) =igy H4l) is an active constructor or stateholder, hence the root

of a potential notification step I
I (D) = iy, Hy(S) is an active function node, and unlés$olds, is the

root of a potential suspension stegHin

Let K be obtained fronkig by performing a notification fromg, S(t), and let

Ki = If TT Then H,
Else The result of performing a suspension frxzmHt(s) in H;

Then

(3) KgandK; are marking preserving isomorphic.

Proof. As in the previous theorems, (1) is immediate. Sigcannot be in the notifi-

cation redex of in G, and since althougtmight be in the suspension redexsifi G,

the node markings of non-root nodes of suspension redexes do not change during sus-
pensions, we conclude (2), noting thasd only non-idle Map@(s)) argument was,

there is no potential suspension frog), Hi () in Hy sincerg,, Hi (t) is idle. Obviously

we find thatKgandK; are graph structure |somorph|c Sowe need to check the markings.

For arcs there are four disjoint cases: (a) all asgg), for any applicablé, which must
all be normal arcs isy; (b) other arcs of the suspension redex; (c) arcs of the notifica-
tion redex; (d) all remaining arcs.

For (a), if the suspension is done first, the constituent arcs become notification arcs of
Hg, and next become normal arcskof after the notification. If the notification is done

first, these arcs disappear from the suspension redgysimcer g, Ht (t) is idle, remain-

ing normal in the suspension step that follows if the suspensmn redey dontained

other than case (a) arcs. For cases (b) and (c) it is clear that they become notification
arcs and normal arcs respectively regardless of the order of the steps. Also case (d) arcs
are unaffected.

For nodes there are also four disjoint casess;(f)) the nodes of the notification redex;
(c) nodes in the suspension redex other than case (a) and case (b) nodes; (d) all remain-
ing nodes.

For (a), if the suspension is done firgg, 1 (S) becomes suspendedHfy, and in the
notification step receives notifications along all case (a) arcs. If the notification is done
first, sis unaffected during notification, but becomes suspended (on potentially fewer
arguments) during the subsequent suspension (if any). Itis clear that the net suspension
markings o, k (S) in Ksand onrg, ¢ (s) in K; are the same, as the extra suspensions
when the suspensmn is done first, match the notifications received from case (a) arcs in
the following notification. Obviously if the suspension redex consists solely of case (a)
arcs and their nodes, then all suspensi®asquires when suspension is first, are re-
leased in the notification, leaving, ¢ (s) active inKg; correspondmg to the complete
removal of the suspensmn redex | (because there are no remaining non- |dle($»ap(
arguments of g, Hi (9) in Hy) where notification is first, followed by a null suspension,

also leaving g, , Kt(s) active inK;. For case (b) and case (c) nodes, it is easy to see that

they undergo the same net change regardless of the order of the steps; likewise case (d)
nodes remain unaffected. This is enough for (3).

Theorem 6.4 Let Gy =[Gy, Gy, ..., Gy] be a prefix of a suspending execution of a
MONSTR systenR. Supposés, contains an active constructor or stateholder rtode
Supposés,, also contains an active function nofjall of whose Mapg(f)) arguments
are idle, and which is thus the root of a standard reglek - Gy for some ruleD =

(P, root, Red Acf). Let

M = t0Og(Act

Let H; be obtained by performing a notification franin Gy. Let H; be obtained by

rewriting the redex rooted &in G, via the usual phaseg: P - G\',g" : P - G\",

hi : P —» Hy, and associatddandr maps. Then

Q) (@ rGN,Hf(t) = iGN’Hf(t) is an active constructor or stateholder, hence the
root of a potential notification step k.

(b) rGN’Ht(f) = iGN’Ht(f) is an active function node, and
ht:rGN’Htog:L - H

is a standard redex f@, such that all of the Maj(r g, ,(f))) arguments
of rg,, 1 (f) are idle, hence is the redex of a potential rewritein

Let K be obtained fronH; by performing a notification fromg, (t). LetJ; be ob-
tained fromH; by rewriting the redex rooted fﬂbN,Ht(f) in Hy, via the usual phases
h:P - H, h P> H"j:P - J and associatadandr maps. Then

(2) If M Then rGN’Jt(t) is an active constructor or stateholder,
hence the root of a potential notification steg;in

Let

K¢ = If notll Then J;
Else The result of performing a notification frm@Nth(t) inJ;

Then

(3) KfandK; are marking preserving isomorphic.

Proof. A little thought shows that neithémor any off's Map(a(f)) arguments can be

in the notification redex, either because of the node markings or the node symbols in-
volved. However this does not preclude the natification redex nodes from occurring as
implicitly matched nodes of the rewriting redex. Because of the respective arc mark-
ings, it is clear that the sets of arcs of the two redexes are disjoint.

Consider performing the notification to cre&tge EvidentlyGy andH; are graph struc-

ture isomorphic. And since the only node whose active marking changes in this process
is titself, and no node becomes non-idle which was not non-idle previcrugﬁLMt(f) is

active inH; and (1).(b) follows. Let us compare the rewriting processes that drgate
from Gy andJ; from H, using the rul®. Let

0:Gy - H;

be the graph structure isomorphism mentioned already. The respective contractum
building phases clearly allow its extension to a graph structure isomorphism

e' : GN' nd Ht'

such that the obvious triangle involvimgy: P — Gy andh : P — H{ commutes. Ev-
idently the redirection phase admits a further extension to a graph structure isomor-
phism

e” :GNH R Ht”

such that the triangle involving the node mapis: P - Gy’ andh/’ : P - H" com-
mutes too. Likewise the activation phase finally yields the graph structure isomorphism

0" 1 Hf -
such that the triangle involvintg : P — Hf andj; : P —» J; commutes.

The definition of rewriting I1-1 .3.10) shows that the only active node of the rewritten
graph that can possibly end up idle in the result, is the root of the redex (if it is not one
of the activated nodes). The only other nodes that can undergo a change of marking are
the activated nodes which, if they start off idle, end up active. Thus we conclude that
sincet # f, g, (1) is active inHy, whence we have (1).(a). To get (2) and (3), we must
follow what happens to the markings of the other nodes, and to the markings of the var-
ious arcs too.

For nodes there are four disjoint cases:t(dp) nodes of the notification redex other
thant; (c) contractum nodes; (d) all other nodes.

For case (a), regardirigif rewriting is done first, we know that it is active ki so ends
up idle inKs after the notification. If notification is done first, then it is idleHiy and
then either is idle ir; if t O g(Act), or is active inJ; if t [g(AcY), giving us (2). In the
latter casefg, 4,(t) is a notification root inJ;, and doing the notification, makes it idle
in Ky, as requwed

For case (b) nodes, we note that they start out non-idle, and when notified, change their
marking from one non-idle marking to another (non-idle marking). By the definition of
rewriting, their markings are unaffected by activation. The relative order of rewriting
and notification(s) is thus immaterial for them and they end up with the same node
marking regardless.

For case (c), regarding (tlge image or theh, image of) aP — L nodeq, there are two
contributing subcases depending on the out-arcs &ubcase (c1) concerns all notifi-
cation out-arcs off whose child node is (a node whagemage, resphy’ image, is the
I,y IMage, resp. theg 1 image, of)t, or whose child node is the LHS of a redi-
rection @, b) 0 Redwhere ' the RHS node is (a node whgsémage, resphy’ image, is
therg, g, image, resp. theg v image, of)t. If there are such notification out-arcs,
then we haveT by M-1.11.4. (7) oM-1.11.4.(9), since can only have been matched to
an implicit node oL because of its active marking. Subcase (c2) concerns all other out-
arcs ofg.

Regarding the images @fin the various graphs, if notification is done first, the child
node of (cl) out-arcs dfy'(g) is idle in H', but active inJ;, whereuporj(q) receives

notifications along the (c1) out-arcs which decrease its suspension markipg.B.
Because of the earlier notification frairthe only suspended parents thgt ;(t) has,

are the parent nodes of these (c1) out-arcs.) If rewriting is done first, the child node of
(c1) out-arcs oty (q) is active inGy', hence irH;, whereupon the (c1) out-arcs join the
image of the notification redex iH;. hy(q) therefore receives notifications along the
(c1) out-arcs which decrease its suspension markitg.irSince by contractum build-

ing, the images ofj start with the same number of suspensions, and also have the same
number of (c1) out-arcs, the markings on therjmndK; are the same. The (c2) out-
arcs do not affect the node markings of contractum nodes.

Finally for case (d) nodes, it is clear that they end up with the same marking regardless
of the order of the steps, since either they retain the same marking throughout, or they
start idle and fall into the image @éfctat some point, thence acquiring the active mark-

ing.

For arcs, there are four disjoint cases: (a) arcs of the notification redex; (b) contractum
arcs in the (c1) subcase of case (c) for nodes discussed above; (c) all other contractum
arcs; (d) all other arcs.

For case (a) arcs, they start off as notification arcs, and end up as normal arcs, regardless
of the order of steps. Likewise for case (b) arcs; depending on order of steps, they either
become normal arcs at the same time as the case (a) arcs, or later, during the extra no-
tification. Case (c) and case (d) arcs retain their arc marking throughout, regardless of
the order of steps. We are dorte.

Theorem 6.5 Let Gy =[Gy, Gy, ..., G\] be a prefix of a suspending execution of a
MONSTR systenR. Supposés, contains an active function nodesuch that there is
at least on& 0 Map(o(s)) such thati(s)[K] is not idle inGy. Supposé&s, also contains
an active function nodg all of whose Mapg(f)) arguments are idle, and which is thus
the root of a standard redgx L - Gy for some ruleD = (P, root, Red Acf). Let

Susp = k O Map(@(s)) | a(9)[K] is non-idle inGy}
SuspNodes =X Gy | x = a(s)[K] for somek [0 Susp}

Susp = k O Map(©(s)) | a(9)[K] is idle inGy}
SuspNodes =X Gy | x = a(s)[K] for somek O Susp}

ActNodes =g(Act)
Let (root, b) O Redbe the root redirection @. Suppose
(A) fO SuspNodes op(b) #¢ or b0 Act
(B) ActNodesn SuspNodes £

Let Hg be obtained by performing a suspension frein Gy. Let H; be obtained by
rewriting the redex rooted &in G, via the usual phaseg: P - G\',g" : P - G\",
h¢ : P — Hy, and associateédandr maps. Then

Q) (@ rGN,Hf(s) = iGN,Hf(s) is an active function node bf; such that there is
at least on& [0 Map(o(rGN,Hf(s))) such thatx(rGN,Hf(s))[k] is not idle
in Hy. Hencerg, 1(s) the root of a potential suspension steplin

(b) rgyHdh) =igyHdf) is an active function node, and

hS:rGN'HSOg:L — HS

is a standard redex f@, such that all of the Map((rGN’Hs(f))) arguments
of rg,, ngf) are idle, hence is the redex of a potential rewritégin

Let K¢ be obtained fronH; by performing a suspension fror@N Hs (9). LetKgbe ob-
tained fromHg by rewntmg the redex rooted ag p(f) in Hg, V|a the usual phases
hy : P - Hg, h " P - H' ks P - K, and associatadandr maps. Then

(2) KfandKgare marking preserving isomorphic.

Proof. Obviouslyf # s sincef's Map(a(f)) arguments are idle arsk aren't. Equally
obviously,f's Map(o(f)) arguments do not include any suspension redex nodes since the
latter are non-idle. However, this does not prevent the suspension redex nodes from oc-
curring as implicitly matched arguments of the root of the rewriting redex. Because the
out-arcs of implicitly matched nodes of the rewriting redex are not part of that redex, it
is clear that the sets of arcs of the two redexes are disjoint.

Consider performing the suspension to crééteEvidentlyGy andHgare graph struc-

ture isomorphic. And since for suspensions, the only node whose marking changes at
allis sitself, rg, y(f) is active inHgand (1).(b) follows. Let us compare the rewriting
processes that cre&tgfrom Gy andK from Hg using the ruld®. Let

0:Gy - Hg

be the graph structure isomorphism mentioned already. The respective contractum
building phases clearly allow its extension to a graph structure isomorphism

0:Gy - H

such that the obvious triangle involving: P - Gy’ andhg : P -~ HS commutes. The
redirection phase admits a further extension to a graph structure isomorphism

. n n
8" : Gy — H

such that the triangle involving the node mags P —» G\ andhg" : P — HJ' com-
mutes too. Likewise the activation phase finally yields the graph structure isomorphism

0" :H; - Kg
such that the triangle involvintg : P — Hf andkg: P - Kg commutes.

As in the previous theorem, the definition of rewriting-(.3.10) shows that the only

active node of the rewritten graph that can possibly end up idle in the result, is the root

of the redex (if it is not one of the activated nodes). The only other nodes that can un-

dergo a change of marking are the activated nodes which, if they start off idle, end up
active. Thus we conclude that sirfees, rg, p(S) is active inHz. To get 1.(a), we must

show that there is at least one Map(G Hi (s))) argument ofrg, Hi (9) in Hf which is

non-idle. If {f} # SuspNodes, then since SuspNodes is nonempty, there is at least one

nodef #y O SuspNodes. Evidentlyis non-idle inGy, sorg Hy (y)= |G Hs (y) is non-

idle in H¢, and we are done. Otherwise by (A), we concluge that (f) IS non idle in

Hy, and thereforéi; has the arcig, Hf(s)m, "Gy, Hf(f)) for somem [Map(0(|GN Hf(s)))

which witnesses what we need.

To get (2) we must follow what happens to the markings on the nodes and arcs.

For arcs there are four disjoint cases: (a) all asgsf], for any applicablé O Susp,
which must all be normal arcs 18,; (b) other arcs of the suspension redex; (c) all arcs
(s X) not in the suspension redex, but wkhi] Map(o(s)); (d) all remaining arcs,
whether already existing i@, or introduced during rewriting, (this includes all arcs
(Sw X), for anyk O Map(©(9))).

For case (@) arcs, if rewriting is done first, they remain normal during the rewrite, and
sincef is redirected to a hon-idle node by (A), they become notification arcs after the
suspension. If the suspension is done first, they become notification arcs immediately,
and remain so during the rewrite.

For case (b) arcs, they are unaffected by rewriting, and become natification arcs after
the suspension, regardless of the order of steps. For case (c) arcs, if the rewrite is first,
they remain normal, and because of (B), their child nodes are not activated, whence they
remain normal after the suspension. If the suspension is first, they remain normal

through both the suspension and rewrite. For case (d) arcs, they retain the marking they
had inGy, or were given during contractum building, regardless of the order of steps.

For nodes there are five disjoint cases:£g}) f; (c) nodes in SuspNodes other tHan
(if applicable); (d) nodes iBuspNodes; (e) all remaining nodes, whether already exist-
ing in Gy, or introduced during rewriting.

For the case (b) nodeits marking is unaffected by the suspension, and it is quiesced,
or perhaps reactivated during the rewrite. This holds regardless of the order of the steps.
For the case (c) nodes, they start off non-idle, and remain so, regardless of the order of
steps, being unaffected by any activations from the rewrite. For the case (d) nodes, we
know by (B) that they are not activated, and this holds regardless of the order of steps,
so they remain idle either way. For case (e) nodes, either they retain the marking they
had inG,y, or were given during contractum building; or they undergo an activation.
This holds regardless of the order of the steps.

For the case (a) nodg if suspension is done first, its marking changes from active to
suspended, with as many suspensions in total, as there are arcs to case (c) nodes plus
arcs tof if fis a Map(s)) argument os. The marking remains during the rewriting

step. If rewriting is done first, the Mag(s)) argument arcs tb(if applicable), become
redirected to a non-idle node by (A), and the other M#g)) argument arcs to case (c)

and case (d) nodes remain, as neither case (c) nor case (d) nodes are redirected. Since
case (c) nodes are all non-idle before the rewrite and therefore non-idle after the rewrite,
and case (d) nodes are all idle before the rewrite and by (B) idle after the rewrite, the
the same number of suspensions are generated as for the other order of steps. We are
done. ©

The final result of this section, addressing the interchange of two rewrites, is the most
complex. Unlike the previous results which are “optimal” in a fairly clear sense, the
following theorem is not, in that some straightforward extensions may easily be imag-
ined. We comment on some of these below.

Theorem 6.6 Let Gy =[Gy, Gy, ..., G\] be a prefix of a suspending execution of a
MONSTR systenR. Supposés, contains two active function nodés# f,. Suppose
fori O {1, 2}, all of the Map(o(f;)) arguments of; are idle, and suppose therefore that
fi is the root of a standard redex: Lj — Gy for some ruleD; = (P;, root;, Red, Act).

For either choice of O {1, 2}, let j denote the other choice. Lif (the left subpattern of
P;) contains an explicit stateholder, let it Be If for somet; O P, (s, t;) O Red, then
we sayD; redirectss;, otherwise not.

Let
ActNodes = gj(Act)
MapNodes= {x O Gy | x = a(f;)[K] for somek O Map(a(f,)}
RedNodes= {x 00 Gy | x = gj(a) for (a, b) O Red such thag;(a) # g;(b)}
Suppose

(A) 0g1(s) =v1=Vvo,=0y(sp) O [Forbothi O{1, 2}, D; does not redirec]
(B) Foreithen {1, 2}, D, redirectss U [v; D MapNodesandy; [J MapNodes]
(C) (ActNodesU ActNodes) n ({f;, fi} U MapNodesl] MapNodeg = U

(D) For bothi O {1, 2},
0={(xy,2 0G?|xO RedNodesandy [J RedNodesandz [RedNodes
and x#z and &, y) = (gi(a), gj(b)) for (a, b) 0 Red
and §, 2) = (g;(c), g;(d)) for (c, d) U Reg}

Let H; be obtained by rewriting the redex rootedfidh Gy, via the usual phasey' :
P - Gy, g 1P - Gy, g'" : Pj - Hj, and associatedandr maps.

Then

(1) rouhif) =icyk(f) is an active function node &f;, and
hi = rGN’Hi O g] : |_J - Hi

is a standard redex fdp;, such that all of the Map:((rGN,Hi(fj))) arguments of
rey,H;i(fj) are idle, hence is the redex of a potential rewritd;in

LetK; be obtained front; by rewriting the redex rooted &g, ;(fj) in H;, via the usual
phasedy' : P; — H/, h"' 1P, - H", k : P, - K, and associateidcandr maps.

Then

(2) K;andK, are marking preserving isomorphic.

Proof. Sincef; # f;, both are active, and both have all Maff{)) arguments idle irGy,
we havef; [J MapNodegand vice versa. If botl; andD; are normal rules and both
feature a stateholder I andL;, then, ifv; #Z v;, then MapNJodqm MapNodegconsists
only of constructors. If; = v;, then MapNodgsn MapNodegcan includey; = v; pro-
vided neither is redirected. B is a normal rule bub; is a default rule, then MapN-
odes n MapNodegconsists only of constructors, and MapNgdedlapNodescan
include idle nodes with arbitrary symbols; and vice versa. If ligtandD; are default
rules, MapNoded] MapNodescan contain arbitrarily labelled idle nodes. And in any
event, nothing precludes the nodes ff} {1 MapNodegfrom occuring as implicitly
matched non-MapNodgsodes of theD; redex provided they are not activated Dy
and vice versa.

Suppose th®; redex is rewritten first. Sinde# f; andy; # fj, f; cannot be redirected by
theD,; rewrite. Also sincd; is active f;'s marking is unaffected by th; rewrite. There-
fore rGN Hi() =iy hi(f) i |s active |n’—|

Letx O MapNode§and suppos®; is a normal rule; consequentty(x) L C O V. If

o(x) O C, xis not redirectable, thus not redirected in yerewrite. Thusyg, Hi x) =

iGy, Hi (x) o(rg Hi () = olig,, Hi (x)), and so an araQotm ¢) of L; can be matched to

the arc (G Hi (P)m, Fahi (X)) = (rGN H;i(fm: Ty 1 (X)) in H, iff it can be matched to the

arc ({)m x) in GN If c(x) 0V, then assumlng that both rules feature a stateholder by
(A) elthervI # v; and the same conclusion holds since theewrite cannot redire

or alternatively;, = v and neither rewrite redirects=v;, and the conclusion holds also.
Clearly if one or other rule does not feature a stateholder, then we draw the same con-
clusion even more trivially.

So the explicit nodes df; and the arcs connecting them can be matchegsQy 00
Since by the MONSTR restrictions on patterhk.11.4.(4)), ho constraints are placed
on any implicit nodes of; (or their in-arcs) to achieve a matafy, H ©Y, matches all
of Lj to H;. Sorg n H; © gJ Lj - H;is a redex forDJ in H;. Since by (d) there is no
overlap between "the nodes actrvated in Bheewrite and (GN Hi © 9){fi} O MapN-
odey), rg,, Hi © G 1L - Hi is a standard redex fa@; in H;, grvrng us (1) for this case.

If D; is a default rule we need no specific graph structure constraints to be satisfied for
matchrng, as a default rule for a function symbol erI always have a redex whenever
there is a suitably labelled active node. Henggy; :Li - Hjis aredex foD; in

H;; indeed a standard redex. Not that this is adequate f)y |tself since we S'[Iﬁ need the
Map(a(f;)) arguments of theg, . image off; to be idle inH; else a suspension would
be forced ifr gy, i () attempted to rewrite ii;. By (B) v;is only in MapNodegif it is
not redirected bb,, so if itis in MapNodeg |t remains idle by (C), so we have (1) by
reasoning analogous to that used above. The remainder of (1) is a matter of symmetry.

It remains to establish the marking preserving isomorphism claimed in (2), which we
do in stages.

Stage 1.First we define a bijection between the node&ptndK,. Images ofGy in
K4 andK, are made to correspond, as are corresponding images of contractum nodes.
Thus

81Nk, - Nk,
where

e(iGN,Kl(X)) = iGN,Kz(X) for x O GN
B(iHy k. (91" (PD)) =ka(py) for py O Npy =N,
B(ky(P2)) =iH,Kk,(92" (P2) for p2 O Np, — N,

This is a bijection assuming that a sufficiently fussy construction for disjoint union dur-
ing contractum building has ensured all introduced nodes are distinct.

Now we extend to a graph structure isomorphism by checking out the arcs. This oc-
cupies three stages since we argue separately about arc tails and arc heads, and then
bring the two together in a third stage. So each arc is covered by one of the head cases
and one of the tail cases.

Stage 2.We first check the arc tails, which are easy since tails of arcs never move during
redirection. So the cases above for nodes exteimimediately to a bijection on tails
of arcs a®-related nodes have the same arity.

Stage 3.Since arc heads follow the redirection functions under rewriting, we next cal-
culate theryk. functions of all nodes, whe/ is as appropriate for the node in ques-
tion. Then we check thad expresses the right relationship between the various
possibilities. There are three cases: (a) nodeSpWwhereW is Gy; (b;) contractum
nodes introduced in thB; rewrite wheréW s eitherH; or K; depending on order of re-
writing.

Now we note straight away that for case¢)(lfor an instantiated contractum noxlesay
x=w(c;), for either version oW wherew: P; - W, we haverWKi(x) = iVV,Ki(X)- This is
because the first rewrite, @ say, only redirects nodes in RedNogesd the second
rewrite, perforce ob;, only redirects nodes ins, 1y,(RedNodeg =g ;(RedNodeg.
Neither of these includes any instantiated contractum nodes. am%(gi’”(ci))) =
e(iHiyKi(gi”'(ci))) =kj(c;) and symmetrically, as required.

For a case (a) nodethere are three subcases: (1) (RedNodes RedNodeﬁ;
(a.3) x U RedNodes (That RedNodgsh RedNodes= [follows easily from the hy-
potheses.)

For subcase (a.1), suppd3grewrites first. We have ¢ [RedNodeg n RedNodes
=0 so thatrGN,Hi(y) = iGN’Hi(y) forally U {x} [RedNodes Consequentlj/GN'Hi(x)

is not redirected in the subsequéhtrewrite, andGN,Ki(x) = iGN,Ki(x). By symmetry
we getrGN’Kj(x) = iGN’Kj(x) if D; rewrites first. Therefore by the first clause frwe
find B(r g, k,(X)) = 'y K,(X) @s required.

For subcase (a;2 suppos®; rewrites first, giving subsubcase (@) By assumption,
rGN,Hi(x) 3 iGN,Hi(x). There are three subcases: (a;d.c) in whichrg 1.(X) =g;"'(c),
whereg; is a contractum node of the rul®; (a.3.i.1) in which rGN’Hi(xj = igy,Hi (YD),
wherey; U RedNodegs (a.3.i.R) in which rGN’Hi(x) = iGN,Hi(yi)' wherey; O Red\f\lodeﬁ

For sub..case (a.gi.c), we calculaterg, k() = in; k(9" (ci)), by case (). For
;ub.._case (a.2|.|.), we calcglaterGN'Ki(% = rHi,Ki(rGN,Hi(x)) = rHi,Ki('GN,Hi(Vi)) =
;K (o, Hi V) = igy k(). sincey; L RedNodes

For sub..case (a.2.R), with rGN‘Hi(x) = iGN'Hi(yi), wherey; [l RedNodeg there are two
sub..cases: (a;d.R.C) in whichry; k.(ig, 1 (V) = ki(dj) whered, is a contractum node
of the ruleDy; (a.3.i.R.1) inwhichry, k.(iG, HiVi)) = iy k;(@), Withz O Gy. Inthe lat-
ter case, we know by (D) that the redirection targef;aifi the redesg; : Lj — Gy is not
in RedNodes

For sub..case (a.2.R.C), we calculate g, i;(X) = 'y k; (TG, Hi{(X)) = M k(o Hi (VD)
=ki(d;), by case (). For sub..case (a.2.R.I), we caIcufateGN,Ki(x) = Iy ki (FopHi ()
= k(o Hi) =igyk;(2) forz O Gy

Now suppose; rewrites first, giving subsubcase (g Sincex [l RedNodesand
RedNodesn RedNodes= L1, rg 1. (X) =igyHi(X), and sag, k:(X) = rHj'K.(iGN‘H.(x)).
There are now three subcases: tHe first is (a\.ch) in which rH.’K.(iGN‘H(x)) =K(c),
wheregc; is a contractum node of the rul®. Alternatively, if the tedirettion target of
N’H.(xi is not an instantiated contractum node, then it must bedfjg;. image of a
nodé ofGy by (1). So the other two cases are: {§.Q in which rHj’KjeiGNij(x)) =

i ; (T, (Y))), Wherey; O RedNodes and (a.2j.R) in which ryy, ki(igy,n;(X) =
iHj,Kj(rGN,HjJ(yjba wherey; 1 RedNodes

For sub..case (a.2.c), we calculate g k.(X) = Ig(cj), by case (j). For sub..case
(@.3.j.1), we calculate g, k; (%) = Iy k(o Hi() = Tk (M HO7) = ik k(o Hi05)

= 'GN,KJ'(Yj)7 sincey; [J RedNodejs

For sub..case (a.g.R), with rHj’K.(iGN’H.(x)) = iH.’Kj(rG ’Hj(yj)), wherey; [RedN-
odey, there are two sub.cases: (éiz).R.d) in which iH.’K.'?rG HO)) =in; k(g (d)
whered: is a contractum node of the rul; (a.a.j.R.b {n whith i K-('JGd,H-(Yj)) =

iH; ki(igy,Hi (%)) With z T Gy, In the latter case, we know by (D) that theé fedirection
ta+gét 0 jjin the redex; : Lj — Gy is not in RedNodes

For sub..case (a.4.R.C), we calculate g k(%) = 'y; ki (igy,Hi () = iH: ki (T, H; ()
= iHj,Kj(gj'”(d-)), 'by case (). For.sub.:cése (a.ﬁj.' 1), wé calculétérGN’Kj(x) =
rHj,Kj('GN,Hj(X)5 = iHy,kiTonH O7) =1 ki(ianH(3)) = ieyk(3) for 7 U Gy.

The eight possibilities above pair up nicely when we interchange the order of rewriting
in a given sequence. The following describes what happens.

When we interchange the order in case (ad, we get an instance of case (g.2)
and vice versa. The nodesandc; are identified, and the second and third clauses for
8 show thaB(rg,, k, (X)) =g, k,(X) as required.

When we interchange the order in casej(aLp, we get an instance of case (g.9 and
vice versa. The nodeg andy; are identified, and the first clause férshows that

B(r gy, k(M) =Ty k(¥ s required.
When we interchange the order in casej(arc), we get an instance of case (g-8.C)

and vice versa. The nodgsandy; are identified, the nodes andd; are identified, and
the second and third clauses @show thab(rg, k,(X)) = rGN'KZ(xﬁ as required.

When we interchange the order in case;(ar2!), we get an instance of case (g.R.)

and vice versa. The nodgsandy; are identified, and the nodesandz are identified,

for the latter of which we need to make essential use of hypothesis (D). Then the first
clause fo® shows thab(rg, k(X)) =rg,k,(X) as required.

This completes stage 3.

Stage 4.We now utilise the results of stage 3 to show that all ards;adndK, are re-
lated as required. There are three cases: (a) aBg;db;) instantiations of contractum
arcs ofD;.

Let (py,) be an arc of5y. ThenB(ig k,(P)) = iy k,(P) by stage 2, ané(rg, k,(C))
= rGN,KZ(c) by stage 3, so

8((i gy, k1 (P Ty ,k1(O)) = (iGy koPie TGy, Ko(C))
and we have what we need for case (a) arcs.

For case () arcs there are two subcases:pwhere the head is an instantiation of a
contractum node; () where the head is a matching image of a left pattern node.

For case (pc), let (py, €) be an arc between two contractum node®pf Case (P of
stage 3 assures us that the instantiations of nejtimar ¢ get redirected. The homo-

morphic nature of the contractum building phase, the second and third clauBgearidr
symmetry, then assure us that

O((1H1,k4 (91" (P THy k4 (92'(€)))) = (Ka(P)i k(C))

if D; =Dy, and
B((ka(P) K1(€))) = (i1, k(92" (Mo TH, k(92 (C)))
otherwise.

For case (p1), let (py, €) be an arc from a contractum nopéo a left pattern node of

D;. We first note that due to the homomorphic nature of the contractum building phase,
the homomorphisny;' : P; - Gy’ guarantees th&,;' has a copyg;'((pk, €)) of (P, C)

if D; rewrites first, and the homomorphisi: P; — H;’ guarantees thad;" has a copy,
hy'((py, ©)) of (pk, ©) if D; rewrites second. Case;)Iof stage 3 assures us that the in-
stantiations op do not get redirected. So f@; noting thaﬁGNi,,Hi(gi’(p)) =g'"(p)in

the first case, and_'i,’K.(hi’(p)) = ki(p) in the second case, we can use the second and
third clauses fof as above.

Forc, there will be a node O Gy such thaiGN,GNi,(x) = rGN,GNi’(X) = g;'(¢) in the first
case, andg, 1(X) = hy'(c) in the second case, given that we have clause (1) of the the-
orem. Now uéing stage 3 forJ Gy, (which allows us to factorise thgs k,(x) and
FGyKo(X) maps aGy;" and at;’), and symmetry, allows us to conclude that

B((icyy k197 (P Fony' K, (91'(9)))) = (Hy k(N2 (P THy Kko(N2'(C)))
if D; = D4, and

B((iHy Kk (M (ke THy k1 (M'(€))) = (IG5 k(92 (P Tz Ko(92'(C)))
otherwise.
At this point@ is a graph structure isomorphism.

Stage 5.Finally we turn our attention to the markings. This is easy given our assump-
tions about the ActNodes sets, since by (C), for any (ActNodes [ActNodes),

rGN,Ki(X) = iGN,Ki(X)-

There are eight disjoint cases;)(the rootf;; (b) nodes in (ActNodgsh ActNodes);
(c;) nodes in (ActNodgs- ActNodes); (d) nodes ofGy not in (ActNodes [J Act-
Nodes); () instantiations of contractum nodesif

For case (g, sincef; O ActNodes, f; is quiesced in th®; rewrite. Sincd; O ActNode
0 MapNodesit is unaffected by thé; rewrite. This holds regardless of order of re-

writing, Sop(ig, k,(f)) = Hligy k() = €.

For case (b), a nodein (ActNodes n ActNodes) which is idle inGy, is activated in
the first rewrite, and remains active through the second rewrite regardless of order. If
is non-idle inGy, the activations do not affect it. ﬁ(jGN,Kl(X)) = u(iGN’KZ(x)).

For case (9, a nodex in (ActNodes — ActNodes) which is idle inGy, is activated in
theD; rewrite and is unaffected by tti rewrite, again regardless of order.xlis non-
idle in Gy, theD; activation does not affect it. $ig,,k,(X)) = H(igy k,(X))-

For case (d), a node @ not in (ActNodeslJ ActNodes) retains the marking it has in
Gy, regardless of order. WiGN,Kl(X)) = u(iGN,KZ(x)).

For case (g, since activated nodes are always left subpattern nodes, the instantiations
of contractum nodes are not activated in the first rewrite, regardless of order. By (C),
(ActNodesO ActNodeﬂ n {f;, fj, vi, vj} = O, so the redirections of the first rewrite can-

not redirect a node to the instantiation of a contractum node (of the first rewrite), that in
the second rewrite, becomes part of the redex and is to be activated. So instantiations
of contractum nodes of the first rewrite are not activated in the second rewrite, for either
order. Hence

H(iH,K,(91"" (PD)) = K(Ka(pp) for pp O Np, — N,
H(k1(P2)) = M(iH, k(92" (P2))) for po L Np, — N,

This completes the argument for nodes. The argument for arcs is trivial since no arc
markings are changed in a rewrite. We are done.

As mentioned above, some easy extensions to the preceding theorem may be imagined.
For instance, instead of (A), we could allow also the trivial redirectiog wfitself. Or

we could allow more complex overlaps between the sets of activated nodes and sets of
matched nodes in the two redexes. Where activations make the MapNodes of the redex
of the following rewrite non-idle, additional notification steps may be introduced to pre-
clude a suspension in certain cases. Where the overlap of matched nodes includes the
stateholders non-trivially (as for instance when a statehold@yisfin MapNodeswith

D; a default rule), restrictions have to be imposed on the redirections of the stateholders.
In general, the interaction between the matched, activated, redirected, and notified
nodes within two arbitrary rewrites becomes extremely complex, and the extensions
proposed make any resulting “all purpose” theorem and its proof an exceptionally long-
winded listing of cases, even by the standards of what we did prove. Given the nature
of typical “useful and understandable” MONSTR systems, the theorem above is suffi-
cient for most practical purposes. (Note for instance that trivial redirections serve no
useful purpose; neither do activations of constructor MapNodes arguments, since these
can neither “do” anything themselves, nor notify anyone else.) Where a more powerful
interchange theorem might be needed in a specific situation, it is best established on a
case by case basis, by adding to the preceding case analysis.

Theorem 6.7 Let Gy = [Gg, Gy, ..., G\] be a prefix of a suspending execution of a
MONSTR systenRR. Suppose the hypotheses of one of theorems 6.1 — 6.6 apply. Then
with the notation used in that theorem (or the obviously analogous notdfigry,[G,,

Gy, ..., Gy ... Kq]is a prefix of a suspending executionkff, = [Gg, G, ..., Gy ... Kol

is a prefix of a suspending execution.

Proof. Beyond the facts established already in the theorems mentioned, all we need to
check, is that for the execution steps discussed in each particular case, conformance to
the execution strategy of suspending semantics in definition 3.1 holds for one order of
execution steps iff it holds for the other. But it is relatively obvious that this i®so.

There are three points that deserve to be further discussed now. The first, mentioned
previously, concerns the style of theorems 6.1 — 6.6. All of them concern a graph in
which two potential actions are available, and say that regardless of which is done first,
the other is still available afterwards (in a suitable, perhaps even trivial, form). The al-
ternative approach is to postulate that an execution prefix ends with two actions satisfy-

ing certain properties, and derive from this, that the order of the steps may be
interchanged. In the literature, in [Ehrig (1979)], [Ehrig (1986)] on the one hand, the
former is called parallel independence of steps while the latter is called sequential inde-
pendence; on the other hand, in [Lynch et al. (1994)], the former is called forward com-
mutativity of steps while the latter is called backward commutativity.

For most graph rewriting frameworks, where the structure of the nodes of graphs and
the operations on them permitted in a single execution step are relatively simple, the two
concepts are equivalent in the sense that a parallel independent pair corresponds to a se-
guential independent pair, and vice versa; and there is a body of theorems for each such
framework establishing the fact. The same is true for suspending semantics up to a
point: in some of the cases there is more to it than just swapping the execution steps in
guestion, as the reader will suspect by the nature of some of the preceding theorems.

Below we will list the corresponding sequential independence theorems in a rather ab-
breviated form, saying just enough to enable us to use the already established parallel
independence theorems to complete the interchange of steps. Enthusiastic readers will
have no trouble in filling in the details that state the sequential independence theorems
as completely standalone results, and the theorems that proclaim how the standalone se-
guential independence theorems are equivalent to the parallel independence theorems.

A second and related point concerns the closeness of the redexes involved in an inter-
change theorem. Many graph rewriting frameworks have simpler descriptions than
MONSTR, and it is often correspondingly easier to draw up the appropriate indepen-
dence theorems. It is relatively obvious that if the redexes for two execution steps are
“far enough apart” then the two steps can be interchanged. However, for useful MON-
STR systems, the redexes of logically independent steps must frequently overlap, and
so theorems that merely deal with the independence of steps having disjoint redexes are
insufficient. For pairs of execution steps dealt with in theorems 6.1 — 6.5 above, the
boundary between steps that are independent can be drawn precisely and fairly easily.
For the independence of rewrite steps though, we experience an almost palpable phys-
ical force between redexes. The closer we try to push two redexes together, the more
excruciating the case analysis of an independence proof becomes. As a result, we con-
tented ourselves with a suboptimal result, which nevertheless is still sufficient for the
majority of real applications, since these must not only embody a solution to the prob-
lem at hand, but also be relatively comprehensible to the humans who design and use
them. The latter aspect limits in practice the degree to which independent redexes ac-
tually overlap.

As afinal point, we mention that independence theorems provide a route to various for-
mulations of abstract semantics for graph rewriting systems via event structures. (See
eg. various papers in [Schneider and Ehrig (1993)], [Cuny et al. (1996)], [Corradini and
Montanari (1995)].) We avoid doing the same in this study for two reasons. On the one
hand, we are primarily interested in formulating what equivalences we can between dif-
ferent semantic models for MONSTR, and to do this it is sufficient to derive relation-
ships between different concrete executions, without worrying about the prospects for
collecting up sets of executions into equivalence classes in a convincing manner. On
the other hand, it is clear from theorems 6.3 and 6.4, and from considering simple ex-
amples of overlapping redexes for rewrites, that suspending semantics can manifest a
number of situations where the notion of conflict between events is more complex than
the elegant notion of symmetric conflict to be found in conventional treatments of event

structures ([Nielsen et al. (1981)], [Winskel (1986)], [Winskel (1988)]). It is probably
fair to say that a completely satisfactory treatment of asymmetric conflict in event struc-
tures has not yet appeared.

Here are the abbreviated sequential independence theorems. Note that the asymmetry
of the situations involving different types of execution step entails the existence of two
different theorems whereas one sufficed in the more symmetric case of parallel indepen-
dence. Note also the additional hypotheses required to exclude various cases in which
the second execution step might conceivably have been caused by the first.

Theorem 6.8 LetK =[Gy, Gy, ..., Gy, Hy, K1] be a prefix of a suspending execution

of a MONSTR systenR. Suppose the last two execution step&afare notifications,

from t; O Gy andt*, O H4 respectively. Then there is a notle Gy such that
FGuHy (t;) =t*,and such that the hypotheses of theorem 6.1 apgly tgin Gy. Con-
sequently the two notifications may be interchanged, yielding marking preserving iso-
morphic final graphs for the two resulting execution prefixes.

Theorem 6.9 LetK =[Gy, Gy, ..., Gy, Hy, K1] be a prefix of a suspending execution

of a MONSTR systenR. Suppose the last two execution step¥afare suspensions,

from s; O Gy ands*, O H; respectively. Then there is a nodgd Gy such that
FGy,H,(S2) =s*2and such that the hypotheses of theorem 6.2 apy 8 in Gy. Con-
sequently the two suspensions may be interchanged, yielding marking preserving iso-
morphic final graphs for the two resulting execution prefixes.

Theorem 6.10a LetK ;= [Gg, Gy, ..., Gy, Hg, KJ be a prefix of a suspending execution
of a MONSTR systenR. Suppose the last two execution step&afare a suspension,
from s 00 Gy and a notification front* [Hq respectively. Then there is a notg Gy
such thatg Hd (t) = t* and such that the hypotheses of theorem 6.3 appdyttm Gy
Consequently the suspension and notification may be interchanged, yiKldingnich
equals (g, Gy, ..., Gy, Hy, K{ if (in the notation of theorem 6.3), SuspNodest}, and
which equals@o, Gy, ..., Gy, K¢, omitting the suspension, otherwise; where in either
caseKg andK; are marking preserving isomorphic.

Theorem 6.10b LetK =[Gy, Gy, ..., Gy, Hy, K{] be a prefix of a suspending execution
ofa MONSTR systerﬁ& Suppose the last two execution stepKgfare a notification,
fromt O Gy and a suspension frosf O H, respectively. Then there is a nogsé] Gy
such thatg, Ht (s) = s* and such that the hypotheses of theorem 6.3 appyttio G,
Consequently the notification and suspension may be interchanged, yildimgich
equals (g, Gy, ..., Gy, Hg, K whereKg andK; are marking preserving isomorphic. A
similar execution prefix may be generateKi{: [Gg, Gy, ..., Gy, K{], with the last step

a natification from a nodel Gy which is the only non-idle Maja((s)) child of a func-
tion nodes O Gy; and agairKg andK; are marking preserving isomorphic.

Theorem 6.11a Let K =[Gy, Gy, ..., Gy, Hy, K{] be a prefix of a suspending execution
of a MONSTR systerR. Suppose the last two execution stepKgfare a rewrite from

f O Gy governed by a rul® = (P, root, Red Act), and a notification front* O H; re-
spectively Suppose [Hs is not the instantiation of a contractum nodeRof Then
there is a nodé O Gy such thatrg Hy (t) =t*. Supposé O Gy is not idle. Then the
hypotheses of theorem 6.4 appImem Gy. Consequently the rewrite and notification
may be interchanged, yieldirl§ ;, which equalsGq, G, ..., Gy, Hy, K{ if (in the no-
tation of theorem 6.4},00 g(Acf), and which equalsG3g, Gy, ..., Gy, Hy, Ji, K{l, includ-

ing an additional notification frorig, Jt(t) in J;, otherwise; where in either casg,and
K; are marking preserving |somorph|c

Theorem 6.11b LetK; =[Gy, G4, ..., Gy, Hy, Ki] be a prefix of a suspending execution
of a MONSTR systenR. Suppose the last two execution step&qfare a notification
from t O Gy, and a rewrite fronf* 0 H; governed by a rul® = (P, root, Red Ac)
respectively. Then there is a noflel Gy such thatg Ht(f) =f*. Suppose thatis not

a Map@(f)) argument of 0 Gy. Thenthe hypotheses of theorem 6.4 apply tin Gy.
Consequently the notification and rewrite may be interchanged, yielflingwvhich
equals g, Gy, ..., Gy, Hf, K¢l if (in the notation of theorem 6.43,00 g(Act); whereK;
andK; are marking preserving isomorphic. A similar execution prefix may be generated
if Ki= [Go, Gy, -, Gy, Hy, 3 K¢l, with the last step an additional notification from
FGa (t) in J; in case (in the notation of theorem 6.4)] g(Act); and agair; andK; are
marklng preserving isomorphic.

Theorem 6.12a LetK{=[Gg, Gy, ..., Gy, Hy, K¢] be a prefix of a suspending execution

of a MONSTR systenRR. Suppose the last two execution stepKafare a rewrite from

f 0 Gy governed by a rul® = (P, root, Red Act), and a suspension frogi [H; re-
spectively Supposs* O H; is not the instantiation of a contractum nodePof Then
there is a nods U Gy such thatrg Hs () =s*. Supposes U Gy is not idle. Suppose

the hypotheses of theorem 6.5 applysttbln Gy; in particular suppose (in the notation

of theorem 6.5), thaff [J SuspNodes qu(b) # € or b O Act], and that ActNodes Sus-
pNodes =1. Consequently the rewrite and suspension may be interchanged, yielding
Ks=[Gp Gy, ..., Gy, He, Kd, whereK; andK are marking preserving isomorphic.

Theorem 6.12b LetK =[Gy, Gy, ..., Gy, Hs, KJ be a prefix of a suspending execu-
tion of a MONSTR systerR. Suppose the last two execution stepKafare a suspen-
sion, froms 00 Gy, and a rewrite fronf* O Hggoverned by a rul® = (P, root, Red Ac)
respectively. Then there is a notlg G such thatg 1 (f) =f*. Suppose the hypoth-
eses of theorem 6.5 apply $of in Gy; in particular suppose (in the notation of theorem
6.5), that f O SuspNodes ou(b) # € or b O Act], and that ActNodes SuspNodes =
0. Consequently the suspension and rewrite may be interchanged, yiKldmngGy,

Gy, ..., Gy, Hy, Kil, whereK; andKg are marking preserving isomorphic.

Theorem 6.13 LetK =[Gy, Gy, ..., Gy, Hy, K{] be a prefix of a suspending execution
of a MONSTR systerR. Suppose the last two execution stepKqgfare rewrites, from
f, O Gy andf*, 00 H4, governed by rule®; = (P;, root;, Red, Act) fori =1 and 2 re-
spectively. Supposé, 00 H; is not the instantiation of a contractum nodeéPgf Then
there is a nod§ [J Gy such thatg, y,(f2) = 2. Supposéz 0 Gyis notidle. Suppose
the hypotheses of theorem 6.6 applly'ltdz in Gy; in particular suppose (in the notation
of theorem 6.6), that

(A) 01(s) =v1=Vvy,=0y(sp) O [Forbothi O{1, 2}, D; does not redirec]
(B) Foreither {1, 2}, D, redirectss U [v; Ll MapNodegandy; J MapNodes]
(C) (ActNodesU ActNodes) n ({f;, fi} U MapNodesl MapNodep = U
(D) For bothi O0{1, 2},
O={(xy,20G3|x0 RedNodesandy [RedNodesandz [RedNodes
and x#z and & vy) = (gi(a), gj(b)) for (a, b) O Red
and §, 2) = (g(c), g;(d)) for (c, d) U Redg}

Consequently the two rewrites may be interchanged, yielding marking preserving iso-
morphic final graphs for the two resulting execution prefixes.

7 CONCLUSIONS

In the previous sections we have defined suspending semantics for the MONSTR graph
rewriting language. We studied notions of correctness for suspending executions of a
MONSTR systenR in terms of their producing graphs that were in one sense or another
equivalent to graphs produced by DACTL executions of the same system. At best,
marking preserving isomorphism is the equivalence of choice, and one that fortunately,
gives us a powerful handle on correctness via properties of the EDG, especially for ter-
minating executions. In the process of exploring correctness, we were able to describe
conditions sufficient for correctness, which reduced the correctness problem to the so-
lution of a number of subproblems.

For terminating executions three subproblems sufficed:

. The acyclicity of the EDG.

. The absence of idle stateholder children of notification arcs in the final graph.
. Termination.

For non-terminating executions we had:

. Nodes are not simultaneously both the LHS and RHS of redirections indefinitely.
. Node event chains are eventually idle.

Readers will note that the subproblems listed above all involve properties of execution
graphs, i.e. they involve dynamic, or runtime properties of systems. Typically such
properties are undecidable; so to be able to state that there are systems whose suspend-
ing executions are correct for the kinds of reason that we have explored, we must look
for decidable approximations. Future papers will examine the stated subproblems in
depth, and in turn, approximate them by criteria decidable on the basis of a static anal-
ysis of rule systems.

A further important issue we examined was independence. We saw that the introduc-
tion of suspensions complicated the picture quite a bit; some of the independence results
required complexities such as the introduction of extra steps, or the elimination of one
of the original steps. In the face of this, it was safer in the short term, to restrict our
attention to concrete independence results rather than try to construct an abstract event
semantics for suspending systems. The latter is certainly a fascinating problem, given
the “closeness to reality” of suspending execution steps. They certainly seem to display
much of the contrariness of events in the real world, and this feature may be helpful in
the construction of a convincing theory of asymmetric conflict for them. But it also
seems likely that any attempt at such a theory might well be controversial to a greater
or lesser extent, so it is best left to another place. In the same vein, one can speculate
that even more convoluted combinations of execution steps may be proved interchang-
able (up to isomorphism of the graph produced), than we contemplated above. With re-
gard to abstract event semantics, such possibilities forcefully raise questions about the
very notion of what constitutes an event, and confirm that it is very much a “context sen-
sitive decision”, depending on what the creator of a particular theory hopes to achieve.
Again such matters are best avoided in this paper.

References

[Banach (1996)] Banach. R., MON&T — Fundamental Issues and the Design of MONSTR.
J.UCS,2, 164-216, (1996).

[Banach et al. (1995)] Banach R., Balazs J., Papadopoulos G., A Translation of the Pi-Calculus
into MONSTR. J.UCS, 335-394, (1995).

[Corradini and Montanari (1995)] Corradini A., Montanari U., (eds.) Proc. SEGRAGRA-95.
E.N.T.C.S.2 9-16, Elsevier, (1995).

[Ehrig (1979)] Ehrig H., Introduction to the Algebraic Theory of Graph Grammars (A survey).
in: L.N.C.S.73, 1-69, Springer, Berlin, (1979).

[Ehrig (1986)] Ehrig H., A Tutorial Introduction to the Algebraic Approach of Graph Grammars.
in: Third International Workshop on Graph Grammars, L.N.Q®H, 3-14, Springer, Ber-
lin, (1986).

[Francez (1986)] Francez N., Fairness. Springer, Berlin, (1986).

[Lynch et al. (1994)] Lynch N., Merritt M., Weihl W., Fekete A., Atomic Transactions. Morgan
Kaufmann, (1994).

[Nielsen et al. (1981)] Nielsen M., Plotkin G., Winskel G., Petri Nets, Event Structures and Do-
mains, Part |I. Theoretical Computer Sciefhi8e85-108, (1981).

[Cuny et al. (1996)] Cuny J., Ehrig H, Engels G., Rozenberg G. (eds.) Proc. Fifth International
Workshop on Graph Grammars and their Application to Computer Science 1994.
L.N.C.S.1073 Springer, Berlin, (1996).

[Schneider and Ehrig (1993)] Schneider H-J., Ehrig H., (eds.), Graph Transformations in Com-
puter Science. L.N.C.376, Springer, Berlin, (1993).

[Winskel (1986)] Winskel G., Event Structurea: Petri Nets, An Advanced Course, L.N.C.S.
255, 325-392, Springer, Berlin, (1986).

[Winskel (1988)] Winskel G., An Introduction to Event Structuris.Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. de Bakker, de Roever, Ro-
zenberg (eds.), L.N.C.854, 364-397, Springer, Berlin, (1988).

	MONSTR II — Suspending Semantics and Independence
	R. Banach (Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K. banach@cs.man...
	Abstract: The suspending semantic model for the execution of the MONSTR generalised term graph re...
	Key Words: Intermediate Languages, Term Graph Rewriting, MONSTR, Semantic Models.
	Category: D.1.3, D.3.1, F.3.2, F.4.2
	1 INTRODUCTION
	2 KEY IDEAS FROM MONSTR I
	3 SUSPENDING SEMANTICS
	4 CORRECTNESS OF SUSPENDING EXECUTIONS
	5 CORRECTNESS FOR NON-TERMINATING EXECUTIONS
	6 INDEPENDENCE
	7 CONCLUSIONS
	References

