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Abstract. The drawbacks of programming coordination activities directly within the applica-
tions software that needs them are briefly reviewed. Coordination programming helps to sep-
arate concerns, making complex coordination protocols into standalone entities; permitting
separate development, verification, maintenance, and reuse. The IWIM coordination model is
described, and a formal automata theoretic version of the model is developed, capturing the es-
sentials of the framework in a fibration based approach. Specifically, families of worker au-
tomata have their communication governed by a state of a manager automaton, whose
transitions correspond to reconfigurations. To capture the generality of processes in IWIM
systems, the construction is generalised so that process automata can display both manager
and worker traits. IWIM systems possess a large number of algebraic properties, a range of
which are described. The relationship with other formalisations of the IWIM conception of
the coordination principle is explored.
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1 Introduction

The massively parallel systems that can be built today require programming models
that explicitly deal with the concurrency of cooperation among large numbers of en-
tities in a single application. Today’s concurrent applications typically use ad hoc
templates to coordinate the cooperation of their components, and this is symptomatic
of alack of proper coordination frameworks for describing complex cooperation pro-
tocols in terms of simple primitives and structuring constructs.

In most real applications, there is no paradigm in which we can systematically talk
about cooperation of active entities, and in which we can compose cooperation sce-
narios such as client-server, workers pool, etc., out of a set of more basic concepts.
Consequently, applications programmers must deal directly with the lower-level



communication primitives that instantiate the cooperation model of a concurrent ap-
plication. These primitives are generally scattered throughout the source code, inter-
spersed with non-communication application code, and the cooperation model never
manifests itself in a tangible form. Thus it is not an identifiable piece of source code
that can be designed, developed, debugged, maintained, and reused, in isolation from
the rest of the application. This inability to deal with the cooperation model of a con-
current application explicitly, contributes to the difficulty of developing working con-
current applications containing large numbers of actively cooperating entities.

Despite the fact that the implementation of complex protocols is often the most dif-

ficult part of a development, the end result is typically so nebulous that it cannot be
recognized as a commaodity in its own right. This makes maintenance and modifica-
tion of the cooperation protocols much more difficult than necessary, and their reuse
next to impossible.

The two most popular models of communication within highly concurrent applica-
tions are shared memory and message passing. In the shared memory model, inter-
process synchronisation primitives play the dominant role, with interprocess commu-
nication subordinate, whereas in the message passing model, interprocess communi-
cation is dominant, and synchronisation subordinate. The latter makes the message
passing model somewhat more flexible than the shared memory model and, therefore,
it is the dominant model used in concurrent applications. However, both paradigms
are too low-level to serve as a proper foundation for systematic construction of coop-
eration protocols as explicit, tangible pieces of software.

Such observations have led in recent years to an upsurge in activity in so-called co-
ordination frameworks and languages. An early survey is [Malone and Crowston
(1994)] which characterisies coordination as an emerging discipline. Various ap-
proaches with roots in eg. the actor model [Agha (1986)], or in logic programming
[Shapiro (1989)], were instrumental in establishing coordination as an independent
discipline. See [Ciancarini and Hankin (1996), Garlan and Le Metayer (1997), Pa-
padopoulos and Arbab (1998), Ciancarini and Wolf (1999), Porto and Roman (2000),
Omicini (2002)] for representative contemporary work. A number of higher level
perspectives have emerged. Among these are the tuple based approaches such as Lin-
da [Gelernter (1985), Carriero and Gelernter (1989)], and by contrast, the connection
control based approaches amongst which we find the IWIM model. It is with this
model that this paper is concerned.

The rest of this paper contains the following. In Section 2 we survey the IWIM model
informally. With this motivation covered, in Section 3 we develop a theoretical au-
tomaton-based model for IWIM, which we call the IWIM systems model. Thisis de-
veloped gradually, as it is a fairly complicated construction, aiming to reflect the es-
sentials of IWIM in a credible manner. The underlying idea is that families of worker
automata perform their tasks under the supervision of a manager automaton. Change
of state of the manager corresponds to reconfiguration, whereupon a different family
of worker automata shoulders the burden. This basic idea is elaborated to enable ar-
bitrarily complex hierarchies to be modelled. Although our model is reasonably in-



volved, it falls short of capturing everything about IWIM or any specific implemen-
tation of the IWIM idea, such as is to be found in the formal specification of the
MANIFOLD language [Arbab et al. (1993), Bonsangue et al. (2000)]. In particular
we abstract away from the ability of workers to continue with internal actions on their
own, which in the full IWIM model they can do irrespective of the attentions of any
manager. Our main purpose could be seen as being to explore the viability of fibra-
tion based ideas in the arena of reconfiguration problems.

In Section 4 we describe some algebraic properties of our IWIM systems. These are
based primarily on the categorical ideas of pullbacks and pushouts, suitably interpret-
ed in the present context. A number of variations on these ideas are possible, and we
consider a number of them. The completeness of the algebraic constructions offered
turns out to be a relatively straightforward issue and also receives some attention. In
Section 5 we discuss how the instantaneous reconfiguration aspect of our IWIM sys-
tems can be generalised to model the asynchronous event based reconfigurations
characteristic of real IWIM frameworks. In Section 6 we show how the model of
Arbab, de Boer and Bonsangue [Arbab et al. (2000a)], a theoretical model featuring
aspects of reconfiguration, can be captured within IWIM systems; and in Section 7
we show how the model of Katis, Sabadini and Walters [Katis et al. (2000)], a signif-
icantly different theoretical account, can also be captured within IWIM systems.
Section 8 concludes.

2 The IWIM Model

In this section we review the generic coordination framework known as the Ideal
Worker Ideal Manager (IWIM) model [Arbab (1995), Arbab (1996), Arbab et al.
(1998)]. The basic concepts in the IWIM model are processes, events, ports, and
channels. A process is a black box with well defined ports of connection through
which it exchanges units of information with the other processes in its environment.
A port is a named opening in the bounding walls of a process through which units of
information are exchanged using standard /O primitives such as read and write; we
assume that each port is used for the exchange of information in only one direction:
either into the process (input port) or out of the process (output port).

The interconnections between the ports of processes are made through channels. A
channel connects a port of a producer process to a port of a consumer process. Inde-
pendent of the channels, there is an event mechanism for information exchange in
IWIM. Events are broadcast by their sources into their environment, yielding event
occurrences. In principle, any process in an environment can pick up a broadcast
event occurrence. In practice, usually only a few processes pick up occurrences of
each event, because only they are tuned in to the relevant sources.

The IWIM model supports anonymous communication: in general, a process does
not, and need not, know the identity of the processes with which it exchanges infor-
mation. This concept reduces the dependence of a process on its environment and
makes processes more reusable; it also makes the protocols governing such commu-
nication more reusable.



A process in IWIM can be regarded as a worker process or a manager (or coordinator)
process. The responsibility of a worker process is to perform a task. A worker proc-
ess is not responsible for the communication that is necessary for it to obtain the
proper input it requires to perform its task, nor is it responsible for the communica-
tion that is necessary to deliver the results it produces to their proper recipients. In
general, no process in IWIM is responsible for its own communication with other
processes. It is always the responsibility of a manager process to arrange for and to
coordinate the necessary communications among a set of worker processes.

There is always a bottom layer of worker processes, called atomic workers, in an ap-
plication. In the IWIM model, an application is built as a (dynamic) hierarchy of
worker and manager processes on top of this layer. Aside from the atomic workers,
the categorization of a process as a worker or a manager process is subjective: a man-
ager procesmanthat coordinates the communication among a number of worker
processes, may itself be considered as a worker process by another manager process
responsible for coordinating the communicatiomainwith other processes.

In IWIM, a channel is a communication link that carries a sequence of bits, grouped
into units. A channel represents a reliable, directed, and perhaps buffered, flow of
information in time. Here, reliable means that the bits placed into a channel are guar-
anteed to flow through without loss, error, or duplication, and with their order pre-
served; and directed means that there are always two identifiable ends in a channel:
a source and a sink. Once a channel is established between a producer process and a
consumer process, it operates autonomously and transfers the units from its source to
its sink.

If we make no assumptions about the internal operation of the producer and the con-
sumer of a channel we must consider the possibility thatnay contain some pend-

ing units. The pending units of a chanmare the units that have already been de-
livered toc by its producer, but not yet delivered byo its consumer. The possibility

of the existence of pending units in a channel gives it an identity of its own, independ-
ent of its producer and consumer. It makes it meaningful for a channel to remain con-
nected at one of its ends, after it is disconnected from the other. The full details of
the IWIM model codify a number of variations on this theme, but for our purposes, a
channel will stay alive as long as one end or another is connected to a process.

Worker processes have two means of communication: via ports, and via events. The
communication primitives that allow a process to exchange data through its ports are
conventional read and write primitives. A process can attempt to read data from one
of its input ports. It hangs if no data is presently available through that port, and con-
tinues once data is made available. Similarly, a process can attempt to write data to
one of its output ports. It hangs if the port is presently not connected to any channel,
and continues once a channel connection is made to accept the data.

A procesgroccan also broadcast an evertb all other processes in its environment

by raising that event. The identity of the eveivgether with the identity of the proc-
essproccomprise the event occurrence. A process can also pick up event occurrenc-
es broadcast by other processes and react to them. Certain events are guaranteed to



be broadcast in special circumstances; for example, termination of a process instance
always raises a special event to indicate its death. Our formal model in the rest of the
paper will be quite limited in that we only model reconfiguration events. Even then,
for simplicity, the modelling will be synchronous, a defect we address later.

A manager process can create new instances of processes (including itself) and
broadcast and react to event occurrences. It can also create and destroy channel con-
nections between various ports of the process instances it knows, including its own.
Creation of new process instances, as well as installation and dismantling of commu-
nication channels are done dynamically. Specifically, these actions may be prompted
by event occurrences it detects. Each manager process typically controls the commu-
nications among a dynamic family of process instances in a data-flow like network.
The processes themselves are generally unaware of their patterns of communication,
which may change in time, according to the decisions of a coordinator process.

In our formal model, again for reasons of simplicity, we eschew the full generality of
these concepts. Our process networks will turn out to be statically defined, though
the execution trajectory through this stucture will be dynamically determined. As
such they may be viewed as the static unwinding of an implicit but more succinct syn-
tactic specification of dynamic behaviour, and the unwinding enables us to restrict
discussion to the semantic level alone, a welcome simplification.

3 IWIM Automata

In this section, we distil the essentials of the ideas just described, to create the model
which will serve as the basis for the semantics of IWIM in the rest of the paper. We
build the model up in two steps. The first is based on a fibration-inspired strategy, to
reflect the way that IWIM events tear down and rebuild interconnections between
families of processes. Accordingly, elementary IWIM automata will have in the base

a manager automaton, describing how the manager part of an elementary IWIM sys-
tem moves, and above each state of the manager automaton, there will be a collection
of worker automata, connected together according to the prescription contained in the
manager state. The various worker collections are then integrated into a single ele-
mentary IWIM system using an ‘above’ relation describing how workers relate to
states of the manager, a construction inspired in essence by the Grothendieck con-
struction. As a result of this, each configuration of the overall automaton can be pro-
jected down onto the relevant state of the manager in the manner of a fibration.

The capacity of IWIM systems to reconfigure themselves via events that provoke
managers into reconfiguration activities, is here modelled by mappings of certain
worker moves (that represent the raising of the event) to manager moves (that repre-
sent the reception and processing of the event, resulting in reconfiguration). Unlike
genuine IWIM systems, this is a synchronous activity in our model, but we will show

in Section 5 that the asynchronous aspects can be recaptured within our framework.

Fig. 1 illustrates in pictures what we have just described in words for elementary
IWIM automata. It shows a collection of worker automatg B, C, D, E, S} sitting



above a managérian, forming an elementary IWIM system. The stated/zni.e.

{l, m, n} each map to communication networks consisting of directed graphs of ports
and channels. The ports of these networks correspond bijectively to input and output
ports in the workers, who are ignorant of whence come their input messages and
where their output messages are destined. Input ports are shown solid, while output
ports are hollow. Furthermore these bijections in large part mimic the substructuring
of individual ports in IWIM into their private and public parts. Also following these
bijections up to the workers reveals which workers are above which management
states. Note that workds is above more than one management state. This means
that whenMan makes a transition frorhto m, B is unaffected and continues to work

as before. Attached to each channel is a queue of messages illustrated for just one
channel foll in the figure. Some of the channels can be external, such as the external




input channel for statie and the external output channel fgthese allow connection

to and exchange of information with the outside world. Note however that external
input can only take place wheiis the current management state, and external output
can only take place whamis the current management state. The management tran-
sitions must specify what happens to the message queues. These are mapped by ad-
ditional data illustrated by in the figure and merged into the destination queues.

Worker C shows a typical worker output transition; there are similar worker input
transitions. The port of worke® shows that ports are really quite general purpose
concepts in IWIM, able to accomodate several incoming and outgoing channels.
Worker Sitself can be seen as providing a serialisation servic&f@, D. Worker

D shows a reconfiguration event transition. The thick line from the transition to the
manager illustrates that the atomic transition labels mapped to the manager tran-
sition frommto n. In this manner the workers can provoke reconfigurations imple-
mented by the manager.

In the second step of the two step strategy for building our IWIM system model, the
elementary IWIM system construction just described is generalised to take account
of the more flexible nature of real IWIM systems. Now, processes may manifest both
manager and worker roles, worker processes may enjoy the attentions of more than
one manager, and manager processes may enjoy the benefits of more than one worker.
To cope with this, we define IWIM worker-manager automata as asynchronous prod-
ucts of individual worker and manager automata. Also the relation connecting work-
ers and managers becomes global. Inthis manner we get unrestricted IWIM systems.
The previously mentioned properties continue to hold. In particular, configurations
of an unrestricted IWIM system can be projected down onto configurations of their
mangers.

Let us illustrate all this in another Figure. Fig 2 shows four worker-manager autom-
ata,W X, Y, Z. These are drawn as rectangles with the dashed horizontal line repre-
senting the division between the worker and manager facets, the manager facet being
uppermost. The worker structure is suppressed in all cases, and the fact that the man-
ager parts oK andY are empty is intended to indicate that these automata are atomic
workers, with trivial manager facets. The arrows emanating from manager states
point to the worker facets under their control. Fig 2 illustrates that (almost) complete-
ly general management relationships are permitted between worker-manager autom-
ata. In fact the only restriction is that an automaton’s manager facet cannot manage
it's own worker facet. Of course in realistic settings, the kind of contorted and cyclic
dependencies occurring in Fig. 2 do not really arise. Far more plausible are regularly
structured hierarchies with atomic workers in the bottommost layer.

3.1 Elementary IWIM Systems

Definition 3.1 An IWIM manager automaton is a tripl&|( m;, R), whereM is a set

of management states, 0 M is an initial state, an®is a set of reconfiguration tran-
sitions. These components are further stuctured as follows. Each management state
mis itself the name of a paiP, Cy,), whereP,,is a set of port names, ai@, is a



set of channel names. There are two partial functgps,, : Cy, — P, that send
channels to source and target port names where they are defined. They satisfy
dom(,y) O domt,) = C,, i.e. each channel is connected to at least one port — chan-
nels not in domg,,) are called external input channels, and channels not intgpm(

are called external output channels; channels in both g§gmtd dom(,,) are called
internal channels. In a reconfiguration transition, writtesr-> n, ther is shorthand

for a partial injection on the channel namgg,, : Cy, — Cp,. Also for each manage-
ment staten, we have an identity transitiom -id,,;-> min which thex,, , partial in-

jection is a total identity.

The above definition characterises states of the manager automaton as connection
networks in which the ports do not have a unique orientation (as input or output
ports). Different states), n may refer to the same connection network. Reconfigu-
rations identify some channels of the source state with some channels of the target.

Definition 3.2 An IWIM worker automaton is a triplel { O, A), wherel is a set of
input ports, disjoint fron© a set of output ports; anl= (St Init, Tr) is an automaton
with statesSt of whichInit O Stis an initial state, andir (J Stx Actx Stis a transition
relation, wheréActis a set of actions of the forinv or outlv or rec. In the first two
kinds of actionjn O I, outd O, and we assume that there is a global alphabet of val-

Fig. 2



uesVal containingv. In the last kindyecis just a name (intended to be the name of
a reconfiguration transition as in Definition 3.1). Where convenient below, we will
write transitions using the notati@tin?v-> b or a-outlv-> b ora-rec-> b. We define

Tr ={a-inv->b O Tr}, Trg={a-outtv-> b 0 Tr}, Trg={a-rec> b O Tr}, so that
Tr=Tr O Trg O Trg, the union being evidently disjoint. Additionally we defiRec

= {rec|a-rec> b 0 Tr} the alphabet of reconfiguration events of the worker.

So far, workers are automata of a fairly standard kind. Now we show how workers
and managers are glued together.

Definition 3.3 An elementary IWIM systemMan, Wor) consists of an IWIM man-
ager automatoMan, an elementary workforc&/or, and ancillary data to be de-
scribed below.Wor is a set of worker names together with a nvaqr, which yields
for each workew O Wor, an IWIM worker automatowor(w). Furthermore we have:

(1) There is a relation * betweétor and the management statesvdn. We write
w mto say that a workew is abovea management state if the pair is in the
relation.

(2) If aworkerw is above a management statethen there is a ma,,, from the
rec actions ofwor(w), into reconfiguration transitioma -r-> n of Man.

(3) For each management staté] Man, there is a total bijection,,: P, —» 10,
wherelO,, is the disjoint union of all of the input and output ports of all workers
abovem; i.e.10m= Fiafi |1 O lyorggt B Hiar{ 010 0 Oprqiol-

(4) Associated to each chanrell C,,, (wheremis a management state), there is a
queue of messages which we writéug, uy, ... ]. Eachy;is inVal. The front
of this queue islg.

A configuration of an elementary IWIM systeMdn, Wor) consists of:
(1) a staten of Man;
(2) aseests={ay | ay [ Styor), k 1 Wor} of statesa, one for each worke,

(3) asetgs={cq; | c:q. = C:[ug, Uy, ... ], c O C,,, n O M} of queues of messages
C:[ug, Uy, ... ] one for each channel of each management state.

Note that in the abovesstsmay equivalently be viewed as the range of a function
which maps each worker to one of its states, so #has formally an ordered pair.
Since we are overwhelmingly concerned with the states and how they change, we will
not use the more cumbersome functional apparatus. Similar remarks apy to
though here some of the indexing information is routinely suppressed.

A configuration of an elementary IWIM systerlén, Wor) is initial iff: mis initial,
the g are also all initial, and the queues associated with all channels are empty.

A transition of an elementary IWIM systervian, Wor) in state (n, ests q9) is one
of the following six kinds:



(ENVI)

(ENVO)

(IN)

(OUT)

(FOR)

The environment adds a value to the input end of a queue whose source end
is not attached to any port (an external input channel’s queue).

c O domG,,) ,

c O dom¢,y) ,

QSest=ads—{c ... , upl}

m—m,

ests—> ests,

as— Qsestt {C[ .. , Un, UJ}

The environment removes a value from the output end of a queue whose
target end is not attached to any port (an external output channel’s queue).

cOdom¢,) ,

cOdomG,,) ,

QSest=0s—{c[u, uy, ... |}

m—m,

ests—> ests,

as—> Qsest {C:[uy, .. I}

A worker automaton performs an input on one of its input ports, removing
the front element from an input queue attached to the port, of which there
must be at least one.

k*m , a O ests, g -i?u-> by,
Am(P) =1 U lyork) - tm(©) =P,
esSt$est= ests— {a} ,
QSest=as—{c[u, uy, ... ]}
m—m,

ests— estsetd {by |
as—> Qsest {C:[uy, .. I}

A worker automaton performs an output on one of its output ports, adding
a value to the end of any output queue attached to the port, of which there
must be at least one.

k*m, g O ests, g -0'u-> by,

Am(P) =0 1 Owor(y) -

O # Out={d| sy() =p},

estsest= ests— {a} ,

OSest=ds—{d:[ ... , Ugpyl [ d O Out
m—m,

ests— estsetd {by |

gs—> QSestU {d:[ ... , Uy, Ul [d O Outt

A port performs a forwarding action, removing the front element from
an input queue attached to the port and inserting (a copy of) it to all output
queues attached to the port, of which there must be at least one.

10



(REC)

tm(©) =p,
0 #Out={d|s(d) =p},

QSest=0ds— ({c:[u, ug, ... I} O{d:[ ... ,ugp,l |d 0 Out)
m—m,

ests—> ests,

gs—> QSestU {C:[ug, ... I} O{d:[ ... ,ugp, u] [d O Out

NB. The above notation is intended to include the case fhadut,
whereupon the front messagectsf queue is moved to its tail.

A worker automatoik, performs aec actionay, -rec-> by, provoking a
reconfiguratiorm -r-> n of the elementary IWIM system, given by the
functionr, A, The manager automaton makes a transition to the new state.
Worker automatotk, completes its transition. Worker automata other than

k., who are above both the old and new manager state remain as before.
Worker automata above the old but not the new manager state go into
suspension. Worker automata not above the old but above the new manager
state are awakened. The queues of channels above the old manager state
which are reassigned via the channel reconfiguration data are moved
according to that data, being merged with the existing queues at target
channels and leaving the queues at originating channels empty. The queues
at other channels remain as before.

k"m, a O ests, a -rec> by,
Nerm(red) =m-r->n=xm,:Cp - Cy,
estgest= ests—{a} ,
Osyel = {€:0c | ¢ U Cpy, ¢ O dom )} U {d:qy |d O Cp, d T mgKmp)}
OSest= US— Oyel -
dstom={c:l ¢ O Cpy,, ¢ O dommp)}
OSmerge™ {d:0cq | €:0c, € U Cryy, ¢ U domy, ),
d:0g, Xmn(€) =d O C,, d T mgXmpn),
g U mergeqe, dg)}

m—n,
ests— estgest [ {by}
0S—> OSestt AS%om U ASmerge

This transition system has some features that deserve comment. Note firstly that in-
put/output and forwarding activities are completely decoupled. For this reason it
makes little sense for the manager to connect up a port to use simultaneously as a
broadcasting device, and as an input device to the relevant worker, since the input
messages and forwarded messages are necessarily disjoint. Thus since even forward-
ing ports have to belong to some worker, it is best to invent special purpose dummy
workers just for the purpose.

A second issue concerns the creation and destruction of processes. IWIM is entirely
virtuous regarding matters of life and death: there is no murder, only suicide. The
most that managers can accomplish is anasthesia. When a reconfiguration transition

11



takes a worker out of the current configuration because that worker is not above the
new current management state, the worker sleeps, because being above the current
management state is a hypothesis of all six transition types. When the current man-
agement state once more becomes one which the worker is above, it wakes and is able
to participate in worker transitions again. It is the worker’s own responsibility to en-

ter a state out of which no transitions emerge if it wishes to die.

Thirdly there arises the issue of queue management during reconfiguration transi-
tions. We have elected to merge assigned queues with existing ones (for given source
and target ports) as representing an abstraction of the potential presence of several in-
dependent queues from the source to the target. The latter would require a more com-
plex notion of reconfiguration transition than we wish to get embroiled in.

Let EConf¢Man, Wor) be the set of all configurations dfian, Wor). Equipping it

with the transitions just described makes it into a transition system. We regard this
transition system as unlabelled, it being the case that the kind of step involved is al-
ways deducible from the pair of configurations in question.

A run of (Man, Wor) is, in the normal manner, a sequence of contiguous transitions
of EConfgMan, Wor), starting with an initial configuration:

(m, ests g9 —> (N1, ests$, gs) — (M, ests, gs’) — ...

Let Mngr(Man, Wor) be the set of manager states of configurationrs@onfgMan,

Wor). These are given by a functiomg,, where &t,,{m, ests gqs) = m. The set
Mngr(Man, Wor) can be equipped with transitions derived from ¢gREC)transitions

of EConf¢gMan, Wor). Thus to the transitionnf, ests gs) —> (N, ests, gs) corre-
sponds thé/ingr(Man, Wor) transition &t,,,{m, ests qs) — e, (M, ests$, gs), i.e.

m—> ', (we regard these transition as unlabelled too). We also add an identity tran-
sitionm —> mto each manager stateNtngr(Man, Wor).

Now although a particular worker may be above several manager states, making
problematic the definition of a projection from the static structure of the elementary
IWIM system to its manager, the same is not true of the set of configurations of the
elementary IWIM system and its transition systéeGonf§Man, Wor), as it relates

to the set of manager states. EConfg§Man, Wor), some specific manager state al-
ways indexes any worker state that forms part of a configuration, and so we obtain
the following result.

Proposition 3.4 Let (Man, Wor) be an elementary IWIM system. LEConf¢gMan,
Wor) be the associated transition system &fryr(Man, Wor) be the corresponding
set of manager transitions. Then there is a projection:

e : EConf§Man, Wor) — Mngr(Man, Wor)
which maps states by:

(m, ests g9 1- M= EpadM, ests g9
and which mapéREC)transitions by:

12



(m, ests g9 —> (M, ests, gs)

|—
m—> M = €My {M, ests q9) — e, (N, ests, gs)
and which mapgENVI), (ENVO), (IN), (OUT), transitions to identity transitions:

(m, ests g9 —> (m, ests, gs)
-

m—m

Proof. Obvious.©

3.2 Unrestricted IWIM Systems

The previous section captures the essence of the process by which an individual man-
ager automaton manages a group of worker automata. However the IWIM model
does not restrict worker management to a single layer. Managers may themselves be
workers managed by others, in time honoured hierarchical fashion. We model this
here by allowing managers to themselves acquire a worker facet. The resultis effec-
tively a product of the two preceding constructions.

Definition 3.5 An IWIM worker-manager automaton is the asynchronous product

of an IWIM worker automatonl( O, A) as in Definition 3.2, and an IWIM manager
automaton{l, m;, R) as in Definition 3.1. That is to say, an IWIM worker-manager
automaton is of the formi (O, A)O (M, m;, R), where (, O, A) is called the worker

facet and 1, m;, R) is called the manger facet. The set of states of the worker-man-
ager automaton iStx M, with initial state (nit, m), and there are two kinds of tran-
sitions: worker transitions such ag M) -w-> (b, m) wherea -w-> b is a transition of

(1, O, A) (and the manager facet remains unchanged), and manager transitions such
as @, m) -r-> (a, n) wherem-r-> nis a transition of 1, m, R) (and the worker facet
remains unchanged).

The following is evident.

Proposition 3.6 An IWIM worker-manager automaton for which the worker facet

is a single (initial) state IWIM worker automaton with empty transition relation is
strongly bisimilar to an IWIM manager automaton. Also an IWIM worker-manager
automaton for which the manager facet is a single (initial) state IWIM manager au-
tomaton whose port and channel sets are empty, and with transition relation consist-
ing of just the obligatory (in this case empty) identity function, is strongly bisimilar

to an IWIM worker automaton.

In view of this, we can refer to IWIM worker-manager automata with trivial worker
facets as pure mangers, and to IWIM worker-manager automata with trivial manager
facets as pure workers.

Now that individual automata are capable of both worker and manager behaviour, we
can define an unrestricted IWIM system as a community of automata where the man-
ager facets of individual automata manage their individual workforces drawn from

the same community, and the worker facets of individual automata each do their jobs
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coordinated by one or more manager facets, since we place no restriction on the
number of bosses any poor labourer might have. In keeping with the best industrial

practice, no worker is ever his own manager (no selfdetermination — no one sets
their own salary, nor signs off their own expense claims). Since the moves of the

whole system are the moves of the individual elements, we need no additional restric-
tions beyond the no selfdetermination rule and the restrictions that apply to elemen-
tary IWIM systems, to have consistency.

Definition 3.7 An unrestricted IWIM systeritVM s a set of IWIM worker-manager
automaton names call&iM, a subselnitial\y,, O WM, together with ancillary data
described below. There are three mapsrman wor, man where for eactwm O
WM, wormar{wm) is an IWIM worker-manager automatowpr(wm) is its worker
facet, andnan(wm) is its manager facet. We writg,,,,to say that statenis a state

of a facet of automatowm, the facet intended being clear from the context; formally
m,miS an ordered pair, just as before. The states of a worker-manager autamaton
are thus writtend,,,, m,n), wherea s the state of the worker facet ands the state

of the manager facet.

Moreover, other aspects of the notation for elementary IWIM systems acquire addi-
tional subscripting to indicate what part of the unrestricted IWIM system they refer
to. Thus we havé, for the set of port names of stateof the manager facet
man(wm) of wnt likewiseCy, . is the corresponding set of channel names.

There is a binary above relation ~ whererim,,,, means that the worker facet
wor(wnT) of automatorwni is above staten of the nontrivial manger facehar(wm)

of automatorwm The no selfdetermination rule implies that whenewer”m,,,
thenwm #wm The workforce fvmy, ... , wm,} of automata whose worker facets

are above states of the manager facevwiis refered to as an elementary IWIM sub-
system ofWM, and is an elementary IWIM system in the sense of Definition 3.3
when we disregard the manger facets of the workers and the worker facet of the man-
ager. ThudO, - is the set of input and output ports of the workforce aboyg,
Specifically for an elementary IWIM subsystem:

(1) The above relation is inherited from the global one, and we will assume hence-
forth that no automaton is above the unique state of a trivial manager.

(2) There is a mapyirm,, Of therectransitions of worker facets into reconfigura-
tion transitions of the corresponding nontrivial manager facet.

(3) The total bijection property of manager ports to workforce input/output ports
holds via a mapn,,..: Pmum = 1Omunr

(Note that the no selfdetermination rule is consistent with the asynchronous product
structure of the transitions for worker-manager automata. Otherwise ISgNg,,.,
could force moves affmthat were worker and manager moves simultaneously.)

Let WM be an unrestricted IWIM system. Then we defii®f = {wm 0 WM | wm
has a nontrivial manager facet}.
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A configuration §ts g9 of an unrestricted IWIM system consists of:

(1) asests={(aym Mym | WwmO WM} of states &, Mym one for each automaton
in WM,

(2) asetgs={cq.|cOCy,, Da* (@ym Myy O stg of queues of messages
c:[ug, Uy, ... ] one for each channell C,, of each management statg,, of
each nontrivial manager faaaan(wm).

As before, these configuration components are really the ranges of suitable functions.

A configuration éts g9 of an unrestricted IWIM systetwM is initial iff: all states
in stsare initial in both facets, and all channel queuessiare empty.

Let (sts g9 be a configuration of an unrestricted IWIM syst&M. Then we can

define the manager part dft§ g9 to bett,5{st9 = {Mym| Jaym® @wm Mym T
sts wm O WM.

A transition of an unrestricted IWIM systeWYM in configuration §ts qs) is one of
six kinds, patterned after elementary IWIM system transitions:

(ENVI) The environment adds a value to the end of an external input queue.

¢ 0 LH{dom(Syy) | My O Tinar(StS}
¢ O domty,,.») » Mym D ThadSts
ASest=ds—{c[ ..., unl}

Sts—> sts,

05— QSestt {C:[ .., Up, U}

(ENVO) The environment removes a value from the end of an external output queue.

¢ 0 LHdomM ) | My 0 ThnarStS}
¢ O domy,) » Mym 0 ThnadSts
OSest=0as—{c:[u, uy, ... I}

sts—o> sts,
as—> Qsest {C:[uy, .. I}

(IN) A worker facet of an automaton performs an input on one of its input ports,
of which there must be at least one.

KMy s Mym 8 TinadSts

(&, N O sts, (&, N -1?2u-> (b, Ny ,
AP =10 lwor(k) Mnem© =P,
St§est= Sts—{(a, NW}
QSest=0as—{c[u, uy, ... I}

sts—> stgestH {(by, N}
as— dsestl {C:[uy, ... I}

(OUT) A worker facet of an automaton performs an output on one of its output
ports, of which there must be at least one.
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(FOR)

(REC)

(&, N O sts, (&, ny) -olu-> (by, ny) ,

0 #Out={d| Omym U TnadSty, p « K*mym,
Amu(P) =0 0 Ouor(k)s Smun(d) =P}

StSest= Sts— {(ax, NW} ,

OSest=0as—{d:[ ... , Ugpn ] [d T Outt

Sts—> stgestH {(bw, MW}
gs—> OSestU {d:[ ... , Uy, Ul [d O Outt

A port performs a forwarding action.

K'Y it s Myt O TinadSt9 5ty (©) =P,
0 # Out={d| Omym U TyadSts, p « K*mym,

AP =00 owor(k)- Smynd =P},
OSest=0s— ({c:[u, ug, ... I} O{d:[ ... ,ugp,] |d O Out)

sts—> sts,
gs—> ASestU {C:[ug, ... I} O {d[ ... ,ugpn, u] |d O Outt

NB. The above notation is intended to include the case fhadut,
whereupon the front messagectsf queue is moved to its tail.

The worker facet of automatdn performs aec actiona, -rec-> by,

moving to statdy, and provoking reconfigurations of all the elementary

IWIM subsystems managed by manager facets above a current state

of whichk; sits. All these manager facets move to their respective new
management states. The queues of the channels managed by these manager
facets are mapped via the channel reconfiguration data for their particular
manager facet.

0 # RMnan= {Mym | Mym U TinadSt9 * kK "My,
(& M) O sts, (@, M) -rec> (b, my,) ,
RMnan= {Mwm | Mym U TimadSt9 k" "mym,
rkrAn\Nm(rec) = m/vm -r-> r-IWTT'I = Xn’\Nm,nwm : CmNm - Cn\Nm} !
Stgest=Sts— ({(ax, M)} O
{(@wm Mym) | (@ym Mym) O sts My, O RMpa4)
Stshost= {(B: M)} T {(@wm N | (@wm My L sts
Mym U RMnan fym U RMnant
q%e| = {C:qc | c D CmNm’ c D domO(TT\Nm,an*)’ mNm D Rmnar} D
{d:qq1d 0 Cryppry d 0 MIXmymird» Mvm H RMnan Mwm 0 RMnag
OSest= dS—0yel »
Asiom = {C:l] | ¢ 0 Cryyyry € 1 dOMK iy Mam B RMat
ASmerge= {d:0cd | €:0c, € U Cpy,py € B dOMK iy,
d:dgs Xmumnwr(© =9 0 Cryyre d 0 MK i1y
Mym U RMnan Mwm U RMnan
Ocq L mergeqc, dg)}

Sts—> Stgest Stgosts
0S—> OSestH A%om U ASmerge
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The remarks made following the elementary IWIM subsystems transition system de-
scription apply with equal or greater force here. Thus all transitions have hypotheses
that ensure that any active worker is being actively managed by being above at least
one current mangement state. Also there is no murder, only anasthesia and suicide.
Moreover, reconfiguration events simultaneously affect all mangers who might be
managing a particular worker facet. The structure of the model ensures that they can
all do this without adversely interfering with each other.

Let Conf§WM) be the set of all configurations /M. Equipping it with the transi-
tions just described makes it into a transition system.

A run of WM is a sequence of contiguous transition<oihf¢WM) starting with an
initial configuration:

(sts q9) — (sts, gs) —> (sts', gs’) —> ...

Let (sts g9 be a configuration ofVM. Let MngrqWM) be the set of manager parts
of configurations inConf§WM). It can be equipped with transitions derived from
those ofConf§WM). Thus wheneversts g9 —> (sts, gs) is a(REC)transition of
Conf§WM), there is aMngrgWM) transitionTt, 5 {St9 — Tiha{Sts). We also add
an identity transitior,,, {St9 — T4y, {St9 to each manager part MngrfWM). As
previously, all of these transitions are unlabelled.

It will now not be surprising that despite the greater complexity we have here, the
projection that we had in Section 3.1 can be recovered.

Proposition 3.8 Let WM be an unrestricted IWIM system. L€onf{WM) be the
associated transition system, avdgrWM) be the associated manager parts tran-
sition system. Then there is a projection:

M : ConffWM) —» MngrqWM)
which maps states by:

(sts g9) 1- Tina{Sty
and which mapéREC)transitions by:

(sts g9 — (sts, gs)

|-
TinarSt9 — Tinar(Sts)
and which mapgENVI), (ENVO), (IN), (OUT), transitions to identity transitions:

(sts g9 — (sts, gs)

| —
TinarSt9 — Tina{StS) = TnaSty
Proof. Obvious.©

In the remainder of the paper we will be concerned only with unrestricted IWIM sys-
tems, and will henceforth just refer to them as IWIM systems.
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4 Algebraic Properties of IWIM Systems

The relatively clean structure of IWIM systems gives rise to a number of algebraic
properties. In this section we describe a selection of these from among the large
number of possibilities. We start by defining suitable notions of homomorphism for
worker, manager, and worker-manager automata, and move on to pullback and
pushout contructions using them; these being things focused on automata them-
selves. We repeat the exercise for weakened notions of homomorphism, for reasons
that become clear when we subsequently consider contructions focused on IWIM
systems. Finally, we consider completeness.

4.1 Contructions Centred on Automata
We start with the most obvious constructions.

Definition 4.1 (Worker Homomorphisms) Letwory = (11, Oy, A; = (St Inity, Try))
andwor, = (15, Oy, Ay = (Sb, Inity, Try)) be worker automata. A worker homomor-
phismf, : wor; — wor; is given by the functionsf, : St — St (overloading the
namef,), andd : I; - |5, K: O - Oy, wherep andk are bijectionsf,,(Init;) = Init,,

and whenever there is a transition of the faarin?v-> b ora -outiv-> bora-rec> b

in Trq, then we have a transitidi(a) -¢(in)?v-> f,(b) or f,(a) -k(oud)!v-> f,(b) or

fu(8) -rec> f,(b) respectively infr,. The worker homomorphisty, : wor; — wor,

is said to be injective, surjective, bijective etc., iff the set funcfipnSy, - St has

(any of) these properties. Below we will normally save on notation by assuming that
the bijectionsp andk are strict identities.

Definition 4.2 (Manager Homomorphisms) Let man = (Mq, m; 5, R;) andmarp
= (M2, m 5, Ry) be manager automata. A manager homomorpfijsrmany - marp
is given by the functiond;, : M; — M, (overloading this timé,)), and the set of func-
tions {fy, mp fmmc| MO My}, such thatf,,(m; 1) =m, 5, and all the following hold:

*  whenevef,(my) = m, then ifmy maps to By, Cy, ) andm, maps to By, Cry)
thenfy, mp 1 Pm; — Pm, IS @ bijection, which further restricts to bijections be-
tween rngéy, ) and rgéy,,), rMatmy,) and mgty,); andfy mc: Cm, - Cyyisa
bijection, which further restricts to bijections between dgg(and domg,)),
domgy,) and domi,, ); and that:

fm,m1PO Smy = szofm,mlc and fm,m1PO ty, = tmzofm,mlc

* whenevemy -r-> ny is a transition ofR; given byXm, n, : C, - Cp,, then we
have a transitioffy,(my) = m, -r-> ny = f,(ny) of Ry given byX, n, : Crn, = Chp,
such thatfy, m,c restricts to a bijection between dogy(, n,) and domgp, n,),
andfy, , c restricts to a bijection between rngy, »,) and rng§m,»,); and that:

fin.nc o Xmyny = Xmpiny © fnmyc

The manager homomorphisip: man, — mar, is said to be injective, surjective, bi-
jective etc., iff the set functiofy, : M; - M, has these properties. Below we will
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normally save on notation by assuming that the family of bijectidpsb fnmc |
m [ M4} actually consists of strict identities.

Definition 4.3 (Worker-Manager Homomorphisms) Letwmy = (11, 01, A))O(Mq,

m 1, Ry) andwm, = (I, Oy, Ap) (Mg, my 5, Ry) be worker-manager automata. A
worker-manager homomorphisr,(f,) : wm, — wm, consists of a worker homo-
morphismf,, acting on the worker facets, and a manager homomorphjsting on

the manager facets. Also the worker-manager homomorpHijsfp)X: wmy, — wimy

is said to be injective, surjective, bijective etc., iff the component worker and manager
homomorphisms both are.

Definition 4.4 (Worker Pullbacks) Letwory = (I, O, Ay = (St Initq, Try)), wor, =
(1,0, Ay = (S, Inity, Tro)), andwor’ = (I, O, A" = (St, Init", Tr")) be worker automata.
Letf, ;- wor; — wor® andf,, »* : wor, — wor" be two worker homomorphisms. We
define the worker automatamor = (I, O, A = (St, Init, Tr)), the worker pullback of
wor; andwor, with respect tdy, 1+ andf,, »*, as follows.

St = fi, 1 X(St") x f,,»7{St") where St" =1,,1(St) n f,,2*(Sb)
Init = (Inity, Init,)
Tr = {(a1, &) -inAv-> (by, by) | (a1, &), (b1, by) O St
aq -inv-> bl O Tr1,|, a -inv-> b2 O Tr2'|} O
{(aq1, &) -outv-> (by, b)) | (&1, &), (by, by) O St
aq -outlv-> bl O Trlyo, a -outlv-> bz O Trzyo} a
{(a1, &) -rec> (by, by) | (aq, @), (by, by) U St
aq -rec> by 0 Try g, ap -rec-> by 0 Trp g}

Evidently the above is consistent, and there are projecfipps wor — wor; and
fu.2 : wor — wor, that respectively delete theor, aspects andor; aspects fromvor
in the expected way.

Definition 4.5 (Manager Pullbacks) Letman = (M4, m; 1, Ry), marp = (Mg, my 5,

Ry), andmari = (M, m +, R') be manager automata. L : man, — mari and

fn2 - man, — mari be two manager homomorphisms. We define the manager au-
tomatonman= (M, m;, R), the manager pullback ahary andmary with respect to

fim 1° andfy, -+, as follows.

M = fm,l'_l(M.m) x fm,2°_1(M.m) whereM*" =fn1:(Mp n iy (M)
my = (M1, M o)

(m,my)OM O (my, mp) maps to Ry, C,y) in maniff
('my; maps toR,,,, Cy) in man; and
m, maps to R, C,) in mar, and
fn,1°(my) =Ty 2*(Mp) maps to Ry, Cppy) inmari')

R = {(my, mp) -r-> (ng, np) | (My, my), (g, np) O M,
my -r->ny ORy, mp -r-> ny O Ry}

(my, mp) -r-> (ng, n)) DR O X(my, mp),(n, np) = Xmy,ny = Xmp,ny
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Note that this generates identity reconfigurationsrop (n,) as identities orC,,, in

the appropriate way. Also the above is consistent, our notational saving coming into
its own in the mapping of states ofanto port-channel networks and their reconfig-
urations. There are also projectidigs; : man — man andfy, , : man - man, that
respectively delete thman, aspects anthan, aspects fronmanin the expected way.

Definition 4.6 (Worker-Manager Pullbacks) Letwmy = (I, O, A)) (Mg, m; 1, Ry),

wm, = (1, O, Ap) (Mg, m; 5, Ry), andwm = (I, O, A) O (M°, m; +, R') be worker-man-

ager automata. Lefys*, fy 1) - wmy — wmi and €, »*, f, 2*) - wm, — wn be two
worker-manager homomorphisms. Then we define the worker-manager automaton
wm= (I, O, A)O(M, m;, R), the worker-manager pullback wfim, andwm, with re-

spect tofy 1°, f 1*) and €, 2*, fn 2*), as the asynchronous product of the worker pull-
back off,, 1+ andf,, »» acting on the worker facets, and the manager pullbadk f
andfy, »» acting on the manager facets, in the natural manner. Inevitably we have pro-
jectionsfy,, 1 : wm - wmy andfy, o : wm - wimy, that act in the expected way.

We move now to the pushout constructions. In order to avoid cumbersome technical
details, we assume that henceforth all the unions we mention are disjoint, so itis clear
for each element of such a union, which component it arises from. As is usual in al-
gebraic discussions, we can always arrange for unions to be disjoint by choosing ap-
propriate (set theoretically) isomorphic variants of the structures we consider.

Definition 4.7 (Worker Pushouts) Letwor; = (I, O, A; = (S, Inity, Try)), wor, =
(1, O, Ay = (Sb, Init,, Trz)) andwor” = (I, O, A’ = (S, Init*, Tr)) be disjoint worker
automata. Lef, 1+ : wor® — wor; andf,, ,* : wor® — wor, be two worker homomor-
phisms. We define the worker automatear = (I, O, A = (St Init, Tr)), the worker
pushout ofvor; andwor, with respect tdy, 1+ andf,, »+, as follows.

St = St O St/ ~, where g is the finest equivalence relation generated
by the propositionsa; =f, ;+(@") Of, (@) =a, 0 a; ~, a
and we write §],, for the equivalence class containig

Init = [Inity], = [Init,],,

Tr = {[a],, -in>-> [b], | [a]y [0l O St a-ina->b0OTry O Try 3 O
{[a],, -outiv-> [b], | [a]y, [b]y, O St a-outv->b 0 Try o0 Trp o} O
{[a], -rec> [b], | [aly, [b]y, O St a-rec>b 0 Try g0 Trp g}

Evidently the above is consistent, and there are homomorplijsmswvor; — wor
andf,, , : wor, — wor that identifywor; aspects andor, aspects insidevor in the
expected way.

Definition 4.8 (Manager Pushouts) Let mary = (Mq, m; 1, Ry), man, = (My, m 5,

Ry), andmari = (M, m +, R') be manager automata. L, : mari — man and
fn2 2 marl - mar, be two manager homomorphisms. To save on notation we will
assume that the bijectiond,{1* mp fn.1°mc | MO Mg} and {fy, 2* mp fn 2 mc |

m 0 My} are strict identities as previously. We define the manager autonnaor

(M, m;, R), the manager pushout ofany andman, with respect tdy, ;* andfy, »*, as
follows.
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M = M;0OM,/~, where 3 is the finest equivalence relation generated
by the propositiongmy = fy, 12(m") Oy, »(M) =mp 0 my ~; My
and we write fn],, for the equivalence class containimg

my = [my 1] = [M 2]

[M,OM O [m], maps toR,, C,) in maniff
(mmaps to Ry, Cy) in man, or
m maps to R, Cy) in mary, (or both) )

R = {[mly -r-> [Ny [ [Mly, ] O M, m-r->n0ORy O Ry}

[Mlp -r-> [N OR O X (] =
0 Xmyny if Mg O (Mg, ng O[N], my -r->ng O Ry or
U X,y if mp O [M], np O[N]y, My -r>np O Ry
(or both)

Note that this also generates identity reconfigurationswp ps identities orC,, in

the appropriate way. Evidently the above is consistent, and there are homomor-
phismsfy, ; : man, - manandfy, , : mar, — manthat identifymany aspects and
mary, aspects insidmanin as expected.

Definition 4.9 (Worker-Manager Pushouts) Letwm, = (I, O, Aj)) 0 (M1, my 1, Ry),

wm, = (1, O, Ap) 0 (M, m; 5, Ry), andwm' = (I, O, A) O (M°, m; +, R') be worker-man-

ager automata. Letf(;, fy, 12) : wm' — wmy and €, »*, f, 2) - wii — wmy, be two
worker-manager homomorphisms. Then we define the worker-manager automaton
wm= (I, O, AO(M, m;, R), the worker-manager pushoutwfy andwnm, with re-

spect to {, 1°, fy 1°) and €, >, fy, 2°), @s the asynchronous product of the worker
pushout of,, ;» andf,, »* acting on the worker facets, and the manager pushditef
andf,, »* acting on the manager facets, in the natural manner. Inevitably we have ho-
momorphismd,, 1 : wmy — wmandf,,, »: wm, — wmthat act in the expected way.

As far as they go, the above constructions work well. There’s a snag however when
we come to try to utilise them within the context of an IWIM system. There, the fact
that homomorphisms identify the manager interconnection structures ‘on the nose’
conflicts in pullback/pushout situations with the properties demaded aff)eand
wmiAmam fUNCtions of the IWIM system. We will see this in detail below. We conse-
quently introduce alternative constructions that work better in this regard, based on
the idea of asynchronous products that we have seen already.

Definition 4.10 (Asynchronous Worker Homomorphisms) Letwor; = (I, O, A; =

(St Initq, Try)) andwor, = (I, O, Ay, = (Sb, Init,, Tr,)) be worker automata. An asyn-
chronous worker homomorphisiy, : wor; — wor, exists iff there is a functiofy,, :

Sy — St such that whenever there is a transition (of any kind) fieoto b in Try,

then there is a transition frofg,(a) to f,,(b) (and not necessarily of the same kind)

in Tro. The asynchronous worker homomorphism is said to be injective, surjective,
bijective etc., iff the set functiofy, : St - St is. Note that we have adopted imme-
diately a strict identity perspective on the input and output channels, optimising away
the bijections that would otherwise be needed.
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Definition 4.11 (Asynchronous Manager Homomorphisms) Let man = (Mq,

m, 1, Ry) andman, = (M, m; », Ry) be manager automata. An asynchronous manager
homomorphisni,,, : man, -~ man, exists iff there is a functiofy,, : M; - M, such

that whenever there is a transition framto n in Ry, then there is a transition from
fam(mM) to fa,(N) in Ry, The asynchronous manager homomorphism is said to be in-
jective, surjective, bijective etc., iff the set functign : M; - M, is.

Definition 4.12 (Asynchronous Worker-Manager Homomorphisms) Letwm, =

(1, 6, A)T(Mg, m 5, Ry) andwmy, = (I, O, Ay) I (Mo, m; 5, Ry) be worker-manager
automata. Anasynchronous worker-manager homomorpffijgryg) : wmy — wim,
consists of an asynchronous worker homomorpHigracting on the worker facets,
and an asynchronous manager homomorpffijsracting on the manager facets. The
asynchronous worker-manager homomorphig ) : wmy, — wm, is said to be
injective, surjective, bijective etc., iff the component worker and manager homomor-
phisms both are.

Definition 4.13 ((Left and Right) Asynchronous Worker Pullbacks) Letwor; =

(1, O, Ay = (St, Initq, Try)), wor, = (I, O, Ay = (S, Inity, Try)), andwor’ = (1, O, A’

= (St, Init", Tr*)) be worker automata. Lé,;*: wor; — wor andfy, »* : wor, —

wor" be two asynchronous worker homomorphisms. We define three kinds of worker
automata all denotedor = (I, O, A = (St Init, Tr)), namely the left, right, and arbi-
trary (i.e. with chosen initial state) asynchronous worker pullbacksoof andwor,

with respect td,,, ;- andfy,, »*, as follows. (Here as below, we economise on notation
by usingwor for all three types of automata, the left and right versions being of by
far the most interest and thus highlighted in the definition’s name; the context or other
supplementary remarks, will clarify which is intended in each individual case).

St = fay 17 H(SE") X Ty (St") where St =1y, 1(St) N foy 22 (Sh)

Init (Init4, ay) O St for a left asynchronous pullback
(a1, Inity) O St for a right asynchronous pullback

og st for an arbitrary asynchronous pullback

Tr = {(al, a2) -inv-> (bl, az) | (al, az), (bl’ az) O st aq -in?v-> bl O Tr11|} O
{( aq, a2) -inv-> (al, bz) | (al, az), (al, bz) O st a -in?v-> b2 O Tr21|} O
{( aq, a2) -outlv-> (bl' az) | (al, az), (bll az) O St aq -outlv-> bl O Trl,o} O
{( aq, a2) -outlv-> (al, bz) | (al, az), (al, b2) O St ay -outlv-> b2 O Tr2,o} O

{(ay, ay) -rec> (by, by) | (&g, &), (by, by) U St
aj -rec> by 0 Try g, ap -rec> by 0 Trp g}

Note that the choice of initial state is not canonically determined because of the rel-
atively undemanding notion of homomorphism that we are using. Even the left and
right asynchronous pullbacks are not themselves unique without further conditions;
eg. the choice of the initial state for the left asynchronous pullback is not unique un-
Iessfaw’z-‘l(fawyl-(lnitl)) is a singleton. Analogous considerations apply for the right
asynchronous pullback. Note furthermore that while input and output transitions are
inherited individually fromTr, andTr,, rec transitions are only inherited if they
match up in botfr; andTr,. This is for later convenience.
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The asynchronous pullback worker automatar possess partial asynchronous
worker projection homomorphisntg,, ; : wor — wor; andrg,, » : wor — wor,, and
given in the case at,, ; by:

Tay,1((@1, @) =&y

Ty 1((g, @) -iINA-> (by, @y)) =@y -in-> by whereay -inwv-> by O Trq |
Ty 1((21, @) -outiv-> (by, ap)) = a4 -outiv-> by wherea; -outiv-> by 0 Trg o
Ty 1((1, @) -rec> (by, by)) =a; -rec> by wherea; -rec> by 0 Try g

with the Tr, based input and output transitionswér being outside the domain of
T,y1- 1he definition oft,, » is symmetric.

The partial projectionsy, 1 andTy, », though partial on the static descriptionvedr,
extend to total projectionst,, 1* and 1, o*, from runs ofwor to runs ofwor; and
wor, and given fom,, 1* by:

Ty, 1*([ trang, trany, trany, ... ]) =

O Taw,(trang) =2 Ty, 1*((trany, trany, ... ])  if trang 0 dom(, 1)
O T,y 1*([trany, tran,, ... ]) otherwise

where thetran; are the individual transitions of the run. Symmetricallyrigr,*.

There is of course the special case of this construction wiiereis a one-state au-
tomaton with a self-loop, the result being calledssmynchronous worker product
automaton. This has a distinguished initial state, namétit {, Init,).

Definition 4.14 ((Left and Right) Asynchronous Manager Pullbacks) Let man

= (Mg, m 1, Ry), mary = (Mg, m; 5, Ry), andmari = (M*, m; «, R) be two disjoint man-
ager automata. Léf, ,*: man — mari andf,, »* : man, —~ mari be two asynchro-
nous manager homomorphisms. We define the manager autoraata(M, m;, R),

the left, right, and arbitrary (i.e. with chosen initial state) asynchronous manager pull-
backs ofman andmar, with respect td,y, 1+ andf,, -+, as follows.

M = am,l'_l(M.n) ><fam,2'_l('v|.m) whereM™" =fam,1:(M1) N fam 22(M)

m, = (m 1, mp) OM for a left asynchronous pullback
%z (mg, my2) OM  for a right asynchronous pullback
oo™ for an arbitrary asynchronous pullback

(m,my)OM O (my, mp) maps inmanto

(P(ml, mp) C(ml, mg)) = (Pm18 Ppo Cp1 B Cyo) iff
(Mg maps to Ry, 1, Cy, 1) in many and

my maps to B, o, Cpy o) in marny)

R = {(my, mp) -r-> (ng, mp) [ (Mg, Mp), (g, Mp) O M, my -r->ny DR} O
{(myq, mp) -r-> (Mg, np) | (My, My), (Mg, Np) O M, My -r-> Ny 0 Ry}

(my, mp) -r->(ny, mp) DR O X(my, mp), (g, mp) :?(ml,nl i idCmz ?f my-r->n ORy
(my, my) -r-> (my, ny) DR O X(my, mp), (M, n) = 'del | Xmyn; if my-r>n, OR,
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Note that we need disjoint unions in the definitionsgf, 1, andCy, m, as oth-
erwise there is a risk that the source or target function of sDMEyy, m, Might be
ambiguous. Note also that the identities come out correctly without extra work. The
same considerations as for workers also pertain to the initial states here; thus the in-
itial state for the left asynchronous pullback is not unique urﬂaq§§_1(fam71-(m|yl))

is a singleton, etc.

Because all manager automaton states are stipulated to have at least an identity self-
transition, there are total asynchronous worker projection homomorphiggs
man - man andry, » : man - mary, given forr, 1 by:

T, 1((Mg, Mp)) =my

T 1((My, Mp) -r-> (N, Mp)) =my -r-> Ny wheremy -r->ng O Ry
Tm, 1((Mg, My) -r-> (My, Np)) =My —idm1-> my  wheremy, -r->n, O Ry

(and symmetrically forg,, -). It now goes without saying that,, 1 andr,, , extend
to runs in the predicted manner.

Equally obvious is the degenerate case of a one-stat®, giving rise to theasyn-
chronous manager product automatorwith distinguished initial stateny ;, m ,).

Definition 4.15 ((Left and Right) Asynchronous Worker-Manager Pullbacks)

Let wmy = (l, O, Al)D (Ml’ m|'1, Rl)’ wnm, = (l, O, A2)|:| (Mz, m|‘2, Rz), andwm =

(1,0, A)O(M’, m +, R) be worker-manager automata. L&f,G°, fan 1°) - Wy —

wr and €y, 2, fam 2?) - WM, — wm' be two asynchronous worker-manager homo-
morphisms. Then we define the worker-manager automata (I, O, A)OJ (M, my,

R), the left, right, and arbitrary (i.e. with chosen initial state) asynchronous worker-
manager pullbacks afim; andwm, with respect tofg, 1°, fam 1°) and €y, 2°s fam 2°),

as the asynchronous products of: the (left, right, arbitrary) asynchronous worker pull-
backs of the worker facets with respectffp- andf,, »*, and the (left, right, arbi-
trary) asynchronous manager pullbacks of the manager facets with respgei-to
andf,y, ¢, in the natural manner.

The initial state and projection properties of asynchronous worker-manager pullback
automata are inherited naturally from those of their constituents. Thus in the case of
the latter, there are partial asynchronous worker-manager projection homomor-
phisms Gy 1, Thm, 1) - WM - wimy and (T, 2, Ty 2) - WM — wimy, such that fori,, 4,

Ty 1), all transitions except worker transitions of the forray((ay), (my, my)) -act>

((a4, by), (my, my)), whereactis a nonrec action of Tr,, are in dom((y 1, Ty 1))

and symmetrically forrg, >, Ty, 2)-

Obviously we also have in the expected way the degenerate case of a onerstate
giving rise to theasynchronous worker-manager product automatorwith distin-
guished initial state [it,, Initp), (M 1, M, 2)).

Definition 4.16 ((Left and Right) Asynchronous Worker Pushouts) Let wory =
(1, O, A1 = (SY, Initq, Try)), wor, = (I, O, Ay = (Sb, Init,, Try)), andwor” = (I, O, A’
= (St, Init®, Tr")) be disjoint worker automata. L&, q: wor" — wory andfy, o :
wor” - wor, be two asynchronous worker homomorphisms. We define the worker
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automatavor = (I, O, A = (St Init, Tr)), the left, right, and arbitrary (i.e. with chosen
initial state) asynchronous worker pushoutsaafr; andwor, with respect td, 1*
andf,, -+, as follows.

St = Sy O St/ ~m,, where 7z, is the finest equivalence relation generated
by the propositionsa; =fy, 1°(@") Ofyy (@) =2, 0 a3~y
and we write ], for the equivalence class containeg

Init = [Init{],, for the left asynchronous pushout
%z [Inity],, for the right asynchronous pushout
og st for an arbitrary asynchronous pushout

Tr = {[a]ay -InA-> [b] 5y | [@law [Olaw O St a-inv->b 0 Try O Try )} O
{[a]aw -outiv-> [b] 4y | [@]qys [blay O St a-outv->b O Try o0 Try of O
{[ alaw -rec> [blay | [alaw [blaw U St a-rec>b 0 Try g0 Trp g}

Note that this time we have exactly two canonical choices for intial state, namely
[Init4],, and [nit,],,. The ‘arbitrary’ possibility is retained for completeness’ sake.

Evidently there are (total) asynchronous worker homomorphfgms wor; — wor
andfy, » : wor, — wor that identifywor; aspects and/or, aspects insidevor in the
expected way. These also have extendigng andf,, ,* to runs.

Just as for pullbacks we have degenerate cases. Wbeiis the empty worker au-
tomaton, and,, ;* andf,, »» are empty maps, we get tieft, right andarbitrary
asynchronous sum worker automata Note though, that despite the fact that they
constitute a very natural limiting case, asynchronous sum automata are not terribly
useful in themselves. Since the state space is the disjoint union of the two compo-
nents, whichever component contains the nominated initial state will contain all of
the subsequent dynamics of the sum, and the other component becomes a useless by-
stander as its states are not accessible from the first component without some element
of pushout-like gluing.

Definition 4.17 ((Left and Right) Asynchronous Manager Pushouts)Let man, =

(Mg, my 1, Ry), mary = (Mg, my 5, Ry), andmari = (M°, m; +, R) be disjoint manager
automata. Let,,;+: mari - man andf,y o : mari - mary be two asynchronous
manager homomorphisms. We define the manager autanata (M, m;, R), the

left, right, and arbitrary (i.e. with chosen initial state) asynchronous manager
pushouts ofnan andmary with respect td,y, 1+ andf,, >+, as follows.

M = M;0OM,/~,, where 3, is the finest equivalence relation generated
by the propositionsmy =f,, 12(m") Ofy, (M) =mp O My~ My
and we write in] ,,, for the equivalence class containimg

m = [m 1]am for the left asynchronous pushout
%= [M 2lay for the right asynchronous pushout
od ™ for an arbitrary asynchronous pushout

(M OM O [m]y, maps to IP[m]am’ C[m]am) =
(H{PL MO [Mlgp}, BH{CuIMO M)
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R = {[mlam > [N]am | [Mlam, [N]am ©M, m-r->n 0 Ry U Ry}

[Mlgy -r-> [N]gm DR O _
X[mlam[Nlam = [ Xmq,na '_f My O [M]am, ng O [N]ay, My -r->ng DRy or
OXmpny 1 Mo O [M]g, N2 O [N, Mp 1> N O Ry
(Mg <G> Mg OR O
X[m]am[n]am = Id[m]am: C[m]am - C[m]am

We need disjoint unions in the definitions Bfyy,  andCyy,., exactly as before.
Note also the reconfiguration transitioRgy, .. in., ©f the pushouts are just the
reconfiguration transitions of the components, seen as partial injectiofS§pn.
However in this instance, unlike for the preceding manager constructions, we must
add explicit identities on the states, as they do not arise naturally otherwise.

As in the previous case, we have exactly two canonical choices of initial state. Also
there are total asynchronous manager homomorptigmsman - manandf,y, »:

mar, — manthat identifyman aspects andhar, aspects insidenanas expected,

and which also have extensidgs ;* andf,y, »* to runs.

Definition 4.18 ((Left and Right) Asynchronous Worker-Manager Pushouts)
Letwmy = (I, O, A)) O (Mg, my 1, Ry), wmp = (I, O, Ap) 0 (My, m; 5, Ry), andwnr = ({1,

O, A)O(M’, m -, R) be worker-manager automata. L&f,Ge, fam 1°) - Wi — wmy

and (2" fam 27) : WM — wmy, be two asynchronous worker-manager homomor-
phisms. Then we define the worker-manager automatar (1, O, A)O (M, m;, R),

the left, right, and arbitrary (i.e. with chosen initial state) asynchronous worker-man-
ager pushouts afm; andwmy, with respect tofg, 1+, fay 1°) and €y, 2*, fam 2), as the
asynchronous products of: the (left, right, arbitrary) asynchronous worker pushouts
of the worker facets with respecttg, ;- andf,, »*, and the (left, right, arbitrary) asyn-
chronous worker pushouts of the manager facets with respégt foandf,y, o+, in

the natural manner. Inevitably we have asynchronous homomorpHigmsi{, 1)

wmy - wmand {2, fam 2) - WM, — wmthat act in the expected way.

One natural application for an asynchronous pushout, is that of imitating sequential
composition of automata. If one identifies a suitable ‘final’ state of automaton A with
the initial state of automaton B, and forms the left asynchronous pushout, nominating
the initial state of A as the initial state of the pushout, then the pushout automaton
admits a run that reaches the final state of A to continue on into B. However this idea
is not completely robust. If the initial state of automaton B has in-transitions and the
final state of automaton A has out-transitions, the run may eventually return to the
initial state of B and continue back into A once more. A more bulletproof way of
modelling sequential composition will be discussed below.

We now give constructions that we call condensations. They can be seen as special
cases of the asynchronous pushout constructions.

Definition 4.19 (Worker State Condensation) Let wor = (I, O, A = (St Init, Tr))
be a worker automaton, and I} be an equivalence relation @t We define the
condensed worker automatemr/8,, = (I, O, A8, = (St8,, [Init]g,, Tr/B,)), where
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[Init]g, is the equivalence class bfit under6,,, andTr/6,, is given bya -act> b I Tr
iff [a]g, -act> [b]g, [ Tr/6,,

Thus the state condensation simply goups states together and the transitions are
mapped to transitions from the source equivalence class to the target one. It is not
hard to see this as (isomorphic to) a special case of the asynchronous worker pushout
of two copies ofwor, wory andwor,, with respect to avor” and asynchronous homo-
morphismsf,, 1* : wor' — wor; andfy, »* : wor' — wor,, whose structure we sketch

next (though the direct construction is easier to comprehend).

The statesSt of wor® are pairs &, a,) such thag 6, a,. The mapd,, ;* andf,, »*
are the left and right projections on these pairs. The initial statrits,(Init,). Tran-
sitions are inherited componentwise in the usual way.

Definition 4.20 (Manager State Condensation)Let man= (M, m;, R) be a manager
automaton, and I, be an equivalence relation dh. We define the condensed
manager automatanan®,, = (M/6,,, [m]g_, R/6y,), where fn]g_ is the equivalence
class ofmy under8y,, andR/6, is given bym -r-> n O Riff [mlg_-r-> [n]g [ R6,.
Above eachifig in M/6, we have the port-channel network:

(Pimig,» Cimlg,) = (BH{PmImDO [mlg }, B{CyImD [mg })

where we insist that the union operations are disjoint as previously. Furthermore
each transitionrfilg_ -r-> [n]g  of R/By,, corresponds to the reconfiguration partial in-
jection:

Ximlo, (e, = Xmn i M-r>n0OR

As above, there is no difficulty in interpreting this as isomorphic to an asynchronous
manager pushout construction, and in harmony with that observation, we note that we
must explicitly add identity reconfiguration transitions in the form:

(Mg, -id-> [Mlg,, = idmq, - Cimig, = Cim,
to make it into a well defined manager.
For determinism reflecting relatiofig, i.e. ones such that:

mm [m]em, nn 0O [n]em, m-r->n,m -r'->n' OR
0
m=m,n=n,r=r" ormZm,n#n,r#r'

there is an alternative construction of some interest, which however is not isomorphic
to a special case of asynchronous manager pushout.

Definition 4.21 (Determinism Reflecting Manager State Condensation).etman

= (M, m;, R) be a manager automaton, andfgtbe a determinism reflecting equiv-
alence relation oM. We define the determinism reflecting condensed manager au-
tomatonman,8y, = (M/p6y,, [M]g,, Rib6py), in which M/p6, = M/By,, [my]g, is the
equivalence class @f underf,,, andR/,6,, is given by the equivalenca-r->nOR

iff [mlg, -R-> [n]g, O} Riobpy, Wherer = d?r [m-r>n0OR mO[mlg ,nO[n]g },

i.e. we accumulate all reconfiguration transitions between stateggnand jjg  to

27



build a transition oR/p0,. Above eachif]g_in M/;6;,, we have the port-channel net-
work:

(Pimig,» Cimlg,) = (BH{PmImDO [mlg }, B{CyImD [mlg })

where we need the union operations to be disjoint as always. Furthermore each tran-
sition [m]g _-R-> [n]g_ of R/x6y,, corresponds to the reconfiguration partial injection:

Ximg, inle, = LHXmn MO [mlg,, n O [nlg, }

which are well defined by the determinism reflecting property. This time, the re-
quired identities come for free, as is easy enough to see.

The alert reader may be wondering why not, instead of insisting on the determinism
reflecting property, to define a transitiamp_ -R-> [n]g, we did not simply consider

a collection of individual transitions1 -r-> n 0 R that made the union definition of
Ximig,[ne,, unproblematic. For givemflg and []g_, one could have taken the set of
these possibilities as the family of transitions framjg to [n]g . The answer to this

will come below.

Definition 4.22 (Worker-Manager State Condensation) Let wm= wor(dman=
(1,0, A= (St Init, Tr)) O (M, m;, R) be a worker-manager automaton, andd|gand

6, be equivalence relations @tandM respectively. Then we define the condensed
worker-manager automatomm/(6,,6,,,) = wor/8,,0man@,, as the asynchronous
product of the condensed worker automaiat/6,, and the condensed manager au-
tomatonmariQp,.

Definition 4.23 (Determinism Reflecting Worker-Manager State Condensation)
Letwm=worOman= (I, O, A= (St Init, Tr)) O (M, m;, R) be a worker-manager au-
tomaton, and led,, and6,, be equivalence relations GtandM respectively withd,,
determinism reflecting. Then we define the determinism reflecting condensed work-
er-manager automatomny,(6,,6,,) = wor/6,,d man,6,, as the asynchronous prod-

uct of the condensed worker automateor/6,, and the determinism reflecting con-
densed manager automatoan;,6,,.

The preceding completes the description of our automata-centred notions. We note
that these featured at times disjoint unions and at other times normal ones, and we
consider here the significance of the two different kinds. While mathematically there
is no special significance one way or the other, the two types of union having slightly
different theoretical properties, the difference becomes more acute if we suppose that
we are dealing with mathematical models of actual computing systems. In the real
world distinct systems have a tendency to retain their distinct identities unless one
takes active steps to obscure them. This makes disjoint union the more natural no-
tion. However one can understand conventional union as arising from a disjoint un-
ion via the identification, under a partial equivalence relation, of distinct copies of
‘the same thing’. This is just a pushout3at. In the real world one would have to
construct some aparatus in order to implement the identification, but in general this
is feasible. Itis on this reading of conventional union (i.e. the tacit assumption of the
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existence of the requisite partial equivalence relation), that the rest of this paper
should be understood.

4.2 Contructions Centred on Systems

The next definition enables two IWIM systems to be brought together into one, and
to work alongside one another.

Definition 4.24 (Asynchronous Product of Systems) Let WM;, WM, be disjoint
IWIM systems. We define the asynchronous product IWIM systélmh (WM, as
follows. Its set of automaton nameswévl DWM,. Similarly, all the other compo-
nents are given by (disjoint) unions. Thwerman; = worman Oworman, ; o =
MO%2; rg =r0r,; Ag = A1 0A,. A configuration ofWM; OWM, is of the form
(sts Usts, gs,110sy), which, because of the disjointnesswWwivi; andWM,, can be
decomposed into a configuratiostg, qs;) of WM, and a configuratiorsts, gs,) of
WM,. Among these configurations, the initial configurations are those configurations
(stg10sts 5, as,100s ») of WM; DWM, built out of initial configurations sts ;,
gs,1) of WM, and 6ts o, gs ») of WM. Finally, the dynamics oVM; WM, is eas-
ily given by the following rules:

(sts, as)) — (sts', gsy') ; (Sts, gsy) a config ofWM,
(stsUsts, gs,Udsy) — (sty' Usts, gs;' sy

and

(stsi, gsy) a config oM, ; (sts,, 0sy) — (Sts)', 0)
(st Usts, gs;Hasy) — (stsUsts’, qs; 1 gsy)

We see that the transitions of the asynchronous product are the individual transitions
of the component systems interpreted in the context of the product system. The two
components thus evolve independently of one another. This property leads to a total
surjective relation between pairs of runswivi; andWM,, and runs oiWVM; O WM,

given by arbitrarily interleaving the steps of the run/éi; and the run o'WM,. The

states of the two runs are just combined in union in the obvious way. Thus if we have
for WM;: (sts, gsy) — (sts', as') — (sts’, gs,"') —> ..., and forWM, we have:

(st, 9) — (sts, 0S)’) — (sts'"", 0s'’) —> ..., then one possible interleaving
yields for WM OWM,: (sts Osts,, qs,0009s;) —> (sts' Osts,, qs;' 0 gsy) —>
(stg'Osts', g5’ 00gs)) — (stg'Osts”, g5'0gs)’) —> ... . One consequence of

this structure is that the converse relation, from rung/dd, 0 WM, to pairs of runs

of WM; andWM,, is a pair of projections, given by simply striking out @iV, steps

and portions of state/queue sets to get\iid; run, and striking out alWM; steps

and portions of state/queue sets to get/\thd run.

Corresponding to the product notion we have a sum notion. This is less pointless than
the corresponding notion for automata for reasons indicated below.

Definition 4.25 (Left and Right Asynchronous Sum of Systems)Let WM, WM,
be disjoint IWIM systems. We define the the left and right asynchronous sum IWIM
systemaVM, <0 WM, andWM, O>WM, respectively, exactly as we do asynchronous
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products,exceptfor the initial configurations. Instead, an initial configuration of
WM, <O0WM, is of the form 6tg 1 00, g5 1T [p) with (stg 4, s 1) initial in WM,
while an initial configuration otWM; [1>WM, is of the form (1,1 0sts », 01005 2)
with (sts o, g5 ) initial in WM,.

Given the decoupled way that the dynamics of the two compone8vixOWM,
andWM, >WM, (and inWM; O WM, also) evolve, it is clear that WM, <OWM,

the WM, component is inactive, since thgM, component of an initial configura-
tions of WM, 0>WM, is O and consequently remains throughout any run. In
WM, O0>WM, the roles oWWM; andWM, are reversed, and it \WM,; that is useless.
What makes the definitions VM, <0WM, and WM, >WM, (and to an extent
WM, OWM, also) not purposeless, is the fact that by using constructions from the
preceding subsection on the automata in the asynchronous sum or product, the inac-
tive part may be nontrivially coupled to the active one. For this to work in a well de-
fined way we need to check appropriate conditions for each of the constructions. The
rest of this section states, in the form of a series of propositions, sufficient conditions
under which application of these various constructions keeps an IWIM system well
defined. As one might imagine when working with sufficient conditions, these are
not unique, and we restrict ourselves to relatively straightforward ones not requiring
fixed point constructions, in keeping with the rest of the paper.

First we need some notation. LBtbe a relation fromAto B, i.e.RO A x B, and
D OA, EOB. Then we define:

D «sR=R-DxB
Rpr E=R-AXE

Proposition 4.26 (Worker-Manager Pullbacks in Systems) Let WM be an IWIM
system, and levm; = (I, O, A7) 0 (My, m; 1, Ry) andwmy, = (I, O, Ap)) (Mg, my 5, Ry)

be worker-manager automataWwiM. Letwni be another worker-manager automa-
ton, and §, 1°, f 1) - wmy — wrrl, (£, *, fy 2*) - wmp — wim' be two worker-manager
homomorphisms. Levm= (I, O, A)O(M, m;, R) be the worker-manager pullback
of wmy andwm, with respect tof(, 1+, f, 1°) and €, >, f, 2*) with attendant projec-
tionsfy, 1 wm - wmy andf,, o : wm - wm,. Suppose the following hold:

(1) Fori#j {1, 2}, wm 'y O = wm iy

(2) Fori#jU{1,2}, ~ wm*myy, for anym M;.

(3) Fori O{1, 2}, wm™my,q, O foie(m) OM™".

(4) For (g, my) O M, wmi™my = WMy, @nd

fn, 17 © PwntAmy . = 2" © T Amo i,
ThenWM* = (WM — {wmy, wmp}) O {wm} with ancillary data given by:
o= ({fwmg, wmp < N B (Ml,wml 0 MZ,sz)) 0
LW It g | WAy, 0 {1, 23} O
{wmt™(my, mo)yym | (My, Mp) T M, Wil mygyy ey, W My}
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A = (Myymy O Mayny) <A P (I0ymy =10um) O
{ A mym(P) =i0 D.Iowml)\mwm(p) =i0o 0 10y, i {1, 2}} O
{N (rm, moun(P) =10 0 10yq | (Mg, Mp) M, p 0 Pryy = Py
)\mlwml(p) = )\mZsz(p) =io |me}

r* = (Reg0Reg) €1 ”» (Riym U Rowmp) U
{r* Wi (r€0) = My 1> Ny |
MwmAmwn (F€C) = Mg =1-> My, i O {1, 21} O
{r* winins(my, mp)wn(€0) = (Mg, Mo)yym -r-> (N1, N2y |
erAmlwml(rec) =My iy T Moy
Mt mawm(€C) = Moy ~-> N2 s
fm,l'(ml,wrm -r-> n1,wrm) = fm,2'(mz,wmz -r-> n2,wmz)}

Initial\y\ = (StS, qs¥)
where
sts" = [ (sts—INIS) O {(Initypy, My} if stsn INIS# 0
O sts otherwise
gs’ = (gs—INIQ) U {d:[] |[dTU Cpy .t if stsn INIS# [
O gsotherwise
and where INIS = {(Inityyny,, M ), (Nt M W)}
INIQ ={d:[] |d O Cry 1y, I Cry sy
Initial\yy = (Sts 99

is a well defined IWIM system.

Proof. Itis sufficient to check four things. First, that ~* is well defined. For this we
observe that replacingm”nt,,,y with wn™* s is well defined since (2) guaran-
tees thatvn can never bev). Likewise, replacingvmmyy,, andwm”mpy,y, by
wmi™*(my, my),mfor pairs g, my) is well defined since (2) guarantees theitl can
never bevm or wnj, (3) guarantees that amy,,y Or My, belowwnt gets paired

in the construction of the manager pullback, and (4) guaranteesttias above one

of Myyyry OF My, iff it is above the other.

Second, thak* is a bijection. For this we see that replacihg, .(p) =io 010y,
by the correspondinig O 10,,,,is well defined since (2) guarantees that can nev-
er bewm orwmy, (1) guarantees that at most one of them is alvavg and the pull-
back construction guarantees th@f,,, = 10y, Likewise, mappind\* i my),(P)
toio O 10,y Whenever both\mlwml(p) and)\mm(p) map to it is sound since (2)
guarantees thatn can never bavm or wm, (3) guarantees that amyy,,, or
Mowm, belowwni gets paired, (4) guarantees thati is above one ofny,y, or
Moy, Iff it is above the other, and the pullback construction guaranteesrifjat
andmy,n, (@nd hencery, mp),,;) have the same port channel network. (N.B. In the
definition ofA* we used the notation. A & (10, =10,,my,)) O ... with the obvious
interpretation, for emphasis. Similarly below.)

Third, r* is a function. On the one hand, amgc transition ofwor(wm) comes from
rec transitions inrwnm, andwmm, exactly one of which will have anymnyy,, image
by (1); so mapping thevor(wm) transition in the same way undeft, iy, iS well
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defined. On the other hand, by (3) argc transition of awni above anym,, is

above amrm that forms a pairrfy, ny) in the pullback. By (4) théy 1o 'yniamy o,

andfy, 5 © Myntamg,, IMages of thisectransition will coincide inwn’; therefore we
get a uniquerfy, My)ym-r-> (N1, No)yym reconfiguration transition immto which to
map therec transition inwni.

Finally, if the initial state of either ofvimy, wi, is in thestscomponent ofnitial

then thewm in question must either have a nontrivial manager facet, or be above
somem yyy With wni [ WM, by the conditions for initial configurations. In such a
case thests component ofinitial ) must contain thelgity,,, m ) state ofwm

to satisfy the same conditions; otherwise not. For the initial queues, we merely re-
place any queues belongingvay, wm, with ones fomas required ©

Proposition 4.27 (Worker-Manager Pushouts in Systems)Let WM be an IWIM
system, and levm; = (I, O, A7) 0 (My, m; 1, Ry) andwmy, = (I, O, Ap)) (Mg, my 5, Ry)

be worker-manager automataWwiM. LetwnT be another worker-manager automa-
ton, and {, 1°, fy 1) - wm' — wimy, (f, o*, iy 2*) - Wi — wmy, be two worker-manager
homomorphisms. Levm= (I, O, A) (M, m;, R) be the worker-manager pushout of
wmy, andwmy, with respect tof(, ;°, f;, 1°) and €, >, f, 2*) with attendant homomor-
phismsf,y, 1 - wmy - wmandf,, » : wm, -~ wm Suppose the following hold:

(1) Fori#j {1, 2}, wm My O = wm iy
(2) Fori#jU{1,2}, ~ wm*myy for anym M;.
(3) Fori,j O{1, 2}, my, mp O [m], O M, wmi™my g = wmmyy and

fnji MwrriAmy wm fm,j © fwmiAmg wm
(4) Reg =Reg.
ThenWM* = (WM — {wmy, wmp}) O {wm} with ancillary data given by:

({Wmlv sz} s p (Ml,wrm 0 MZng)) O
{wmmlyng | wmymlyy, i 04{1, 23} O

{wm™[m] g wm | [M] O M, (W my,, orwim~my,,)}

A= (M O MZ,WW) <sAp (I0ym = I(_)W,m)) O _
Mm@ = |o_D IOwm | Anrym(P) =10 O 10y, i O{1, 2}} O
{N* [minwn(P) =10 OOy | [M]yy UM, p 0O Py
)\mNm(p) =io 010y, 1 O{1, 2}}
r* = (Reg0Reg) <1 ” (Riywm U Rowmp) U
{7 Wity (T€CQ) = My 1> Ny |
Fwm i wn (1€C) = My 1> Myyey, 1 0 {1, 21} O
{r WA i mawn(€C) = [M iy ym > ['j‘]m,wm|
erAmNm(rec) = Mym 1> Ny, | 0 {1, 2}}
Initial - = (St gs¥)
where
sts* = [ (sts—INIS) O {(Inityy, my )} if stsn INISz 0
O sts otherwise

Nk
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gs* = (gs=INIQ) U {d:[] |[dT Cy, .t if stsn INIS# DI
0 gsotherwise
and where INIS = {(Inityyy,, M ), Nty M W)}
INIQ ={d:[] |d O Cry 1y, U Cry mph
Initial\yy = (Sts 9

is a well defined IWIM system.

Proof. There are four things to establish. First, that ~* is well defined. Neither of
wmy, or wim, is above the other by (2). Therefore it is sufficient to replaog*m,

with wm™my, 4. Likewise replacingvmmym, or wm”mpyyy, by wm™*[m]y, \ym

is well defined since (2) ensures thatl can never bevmy or wim, and (3) guaran-
tees that whenevevni is above somen,,, Or Mmy,m, contributing to fr], then it

is above all sucim O [m];,.

Second, thah* is a bijection. We see that replacingy,,,(p) = io O 10, by the
correspondingo O 10,,,,is well defined since (2) guarantees thai can never be

wm or wnj, (1) guarantees that at most one of them is alvowg and the pushout
construction guarantees tH&,, = 10,,,, Likewise, mapping\* (. ,.(P) toio [

IOwni Whenevem,  (p) maps to it for somen,n, O [M]y, wm is sound, since (2)
guarantees thavim can never bavmy or wm, (3) guarantees than is above all

Mym O [M]y, wmor none of them, and the pushout construction guarantees that all of
them (and hence], ) have the same port channel network.

Third, r* is a function. On the one hand, amgc transition ofwor(wm) comes from
arectransition in eithemwny or wimp, (or both), and for exactly one of these will an
N'wmAntwr D€ defined by (1). By (4), the setsret events ofvor(wmy) andwor(wnm)
are equal, so thatmc event ofwor(wm) will be in the domain of either,yy
making the definition of* ,;n+ny, . (r€C) unambiguous. On the other hand, aey
transition of avm above anym,,,, either ends up above a singleten| [, in wm, in
which case the replacement mmAmNm(rec) BY I* it mjmwn("€C) IS immediately
unambiguous, or not. If not, we know by (3) that all mﬁAmm(rec) map viafy, ;

to the samavmreconfiguration transitiomfly, wm -r-> [Nl wm Making the replace-
ment unambiguous also. Finally, for the initial configurations, the argument is as in
the previous proposition

It is clear that in the preceding constructions some fairly demanding condition have
to hold. For greater flexibility with pullbacks and pushouts, we now consider their
asynchronous analogues.

Proposition 4.28 ((Left and Right) Asynchronous Worker-Manager Pullbacks in
Systems) LetWMbe an IWIM system, and letm, = (I, O, A;) 0 (M4, m; 1, Ry) and
wm, = (I, O, Ay) 0(My, my 5, Ry) be worker-manager automata\WM. Letwni be
another worker-manager automaton, aigg, fay 1°) - wmy — wirl, (fy ¢, fam 2°)
wm, — wm be two asynchronous worker-manager homomorphisms.whet
(1,0, AOM, m, R) be the left or right asynchronous worker-manager pullback of
wmy andwmy, with respect tofgy, 1, fay 1°) and €y, 2*, fam 2°) With attendant projec-
tionsfyym 1 : wm - wmy andfy,y, o - wm - wm,. Suppose the following hold:
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(1) Fori#jU{1, 2}, wm My O = wm iy
(2) Fori#jO{1, 2}, = wm My, for anym O M;.
(3) Fori O{1, 2}, wri mym O fypjo(m) O M™".
(4) Fori#jO{1, 2}, wr™my ym O = wni™ -
ThenWM* = (WM — {wmy, wp}) O {wm} with ancillary data given by:
{wmy, wp} <2 B (Mg yymy O Moywmp)) O

LW ity | WAy, 0 {1, 23} O

{wm™(my, Mo)ym | (Mg, Mp) O M, (Wi My OF Wi gy )}
A = (Myym O M2,vymz) AP (I0ym = IQsz)) U .

M (@) =10 O 1Oy m | Ay (P) =10 O 10y, 1 O {1, 2}} O

{A* (my, maywm(P) =10 O 1Oy | (Mg, Mmp) OM, p I Prmiwmy i Prrowmy
(wm My, )\mlwml(p) =i0 O 10y or

W Dy, Ay (P) =10 01Oy}
((Reg O Reg) <1 & (R ywm 0 Rowm)) O

L Wity (€)= Mg =1=> Wy | .
FwmAmtwm(F€0) = My 1> Nyyny, 1 0{1, 23} O

N*

r*

{r* winins(my, me)wn(€0) = (Mg, Mp)yym -r-> (N1, M) yym |
Mt (€C) = My ywmy > Ny} U

{r* wintns(my, me)wn(r€0) = (Mg, Mp)yym -r-> (Mg, N2)yym |
Mt mowm,(€C) = Moy ~-> N2 wmp}

Initial - = (St gs¥)
where
sts* = [ (sts—INIS) O {(Inityyy, my )} if stsn INISz [
0 sts otherwise
gs* = ;(gs—INIQ) O {d:[] |[dT Cpy ¢ if stsn INISz [
0 gsotherwise
and where INIS = {(Init,yn,, M wmy), Nty M W}
INIQ = {d:[] |d O Cpy 3, B Cry syt
Initial = (Sts g9

is a well defined IWIM system.

Proof. As usual there are four things to establish. First, that ** is well defined. Nei-
ther ofwmy, or wiy, is above the other by (2). Therefore it is sufficient to replace
wmAm', with wn™*m',, . Likewise, replacingvimy,,,, by wm”*(my, mp)yym

for all m, such thatify, my,) is a state omar(wm) is well defined since (3) guarantees
that anymy,y, OF Myym, belowwnt gets paired in the construction of the manager
pullback.

Second, thah* is a bijection. Given a management stame, (m),,m of wm, then

with the definition of **, A* iy, ), becomes the disjoint union afy, . and
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)\mZWW. This succeeds since (3) guarantees that any managementrsigtgsor
Moy With Nnonempty communication network get paired, and (4) ensures that the
families of workers above any,,,, andmy,,,, are disjoint, so that the disjoint union

of the bijections is a bijection. Also by (1) at most onevafy, wm, is above any

M i, SO that replacing ang [ 10, in the range ok, ,(p) by the corresponding

io O 10y, generates no problems.

Third, r*is a function. By (1) again, for at most omé&l {1, 2} doesr yany . EXist.

Thus defining the* . IMage of aecevent accordingly is sound. Also, given
some (g, Mp)yym replacing the yniamy,m OF Mwmismpwy, IMage ofrec by the recon-
figuration transitionify, Mp)ym-rec> (N1, My)wmOr (My, My)\wm-rec> (Mg, No)yymre-
spectively, is well defined because (4) ensures that exactly one of these cases exists
(thus making™ yins(my, mp)wm Single valued). Finally for the initial configurations,

the argument is as in previous cases.

Proposition 4.29 ((Left and Right) Asynchronous Worker-Manager Pushouts in
Systems) LetWMbe an IWIM system, and letm, = (I, O, A;) 0 (M4, m; 1, Ry) and
wm, = (I, O, Ay) O(My, my 5, Ry) be worker-manager automata\WM. Letwni be
another worker-manager automaton, aigg, fay 1°) - wr' — wmy, (fy, ¢, fam 2°)

wm - wm, be two asynchronous worker-manager homomorphisms. whet
(1,0, AAO(M, m, R) be the left or right asynchronous worker-manager pushout of
wmy andwmy, with respect tofg, 1°, fay 1) and €y, 2, fam 2*) With attendant homo-
morphismdyy, 1 - Wwm - wmy andfy,, 2 - wm - wim,. Suppose the following hold:

(1) Fori#j {1, 2}, wm My O = wm iy
(2) ForizjO{1, 2}, = wm My, for anym O M;.
(3) KmImO [M]yn O M, W My, or Wi My )} < 1.

ThenWM* = (WM — {wnmy, wp}) O {wm} with ancillary data given by:

Nk

((wm, wimy} <A B (Mg O Maairg) O
{WIT My | WA g, 0L, 2} O

{wnd™[mlgm, | [Mlgm O M, (W myy, orwim”myy,)}

((Ml,wml 0 MZ,sz) SAP (lowml = |mez)) O
(N e () 210 01 10y | Aty (P) = 10 0 104, i 0 {1, 2}} O
{N [ amwrnP) =10 O 10wy | [Mlgm O M, Ay, () =0 T 1Oy,
POl BB{Ppy | MO (Ml 041, 2}

r* = (Reg0Reg) €1 ”» (Ryywm O Rowmp) O
{1 Wi g (r€Q) = M yyg =1=> Wy |
Mwm Aty (F€C) = My 1> My, i O {1, 23} O
{r* Wit mamwr(€0) = [Mlamwm 7= [Namwm|
erAmNm(rec) = Mym 1> Nyme | 0 {1, 2}}

)\*
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Initial\y\x = (S, qs¥)
where
sts' = [ (sts—INIS) O {(Inityymy, My} if stsn INIS# 0
O sts otherwise
gs* = (gs=INIQ) U {d:[] |[dT Cy, .t if stsn INIS# DI
0 gsotherwise
and where INIS = {(Inityyy,, M ), Nty M W)}
INIQ ={d:[] [dOC nye
Initial\yy = (Sts 9

M, 1w m ,2wmz}’

is a well defined IWIM system.

Proof. As usual there are four things to establish. First, that ~* is well defined. Nei-
ther ofwmy or wn, is above the other by (2). So itis sufficient to replaeg”m,,

with wnm™*m',,; and to replacevm“myyy, or wi myy ., with wm [ mj;p, \ym for

the [m],,, that containsn, or m,.

Second, that* is a bijection. We replace the individual bijectio}n,$Ilel and)\mvmZ

by aggregates of them(nj,,., @ process which leaves none out because every state
in M1 O M, enters some equivalence class or othe¥lirand causes no overlap of
aggregated codomains by (3), preserving bijectiveness. Also by (1) at most one of
wmy, wny, is above anym'y,, So that replacing anio O 10,,, in the range of
Armwm(P) DY the correspondinig O 10,,,, generates no problems either.

Third, r* is a function. By (1) again, for at most oné&l {1, 2} doesr . EXist.
Thus defining the™  p+ . IMage of arec event in agreement with that case is
sound. Equally, substituting tgniamy,,m, OF M'wirmaym, IMage of someecevent by
the transition ] 4 wm ="-> [N]am wm Where the latter comes fromy,, -r-> ny, via
MWty is uniquely defined, because for any there is only onen,,, for which
Mt mam exists by (3). Finally, for the initial configurations, the argument is as in
the previous cases?

The preceding results illustrate that various pullback and pushout constructions act-
ing on automata can be placed in the context of systems to give well defined algebraic
operations on systems. However what has been described does not exhaust the pos-
sibilities. One could always imagine different ways of plumbing up the\** and

r* data, especially if other useful properties obtained in the system.

On a different tack, one could consider a hybrid notion of homomorphism for work-
ers, which while insisting that input, output, aret transitions mapped to input, out-
put, andrectransitions respectively, did not insist that the data for these corresponded
exactly. This would yield the opportunity of using the pair of values involved, to label
a transition of the worker facet of a yet other notion of pullback or pushout.

More intriguingly, since the worker and manager facets of a worker-manager autom-
aton are as independent as they are here, one could consider hybrid constructions on
automata featuring say an asynchronous pushout on the manager facets and a (not
asynchronous) pullback on the worker facets. Given the variety of component con-
structions that we have hinted at above, a large number of potential system level con-
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structions can be contemplated this manner, and we leave their further investigation
to the enthusiastic reader.

We turn now to the remaining automaton level constructions and examine their sys-
tem level consequences.

Proposition 4.30 (Worker-Manager State Condensation in Systems) et WMbe
an IWIM system and levm=wordman= (I, O, A= (St Init, Tr)) O (M, m;, R) be a
worker-manager automaton\afM. Let86,, and6,, be equivalence relations &tand
M respectively and letvnv(8,,8,,) = wor/8,,00 man@,, be the corresponding con-
densed worker-manager automaton. Suppose the following holds:

(1) Hm{m0O [mlg,, [mlg, 0 M6y, (wi*mym)}| < 1.
ThenWM* = (WM — {wm}) O {wn¥(8,,6,,)} with ancillary data given by:

M= (fwmp 9~ M) O {wm/(8,,6,)™ My | wmtm'y, oy} O
{wm™[mlg | [m]g, O M/B, wm”myt

A =M <sAp 10,0
{A* tym(P) =10 D 1Oy ny(g,,6,) | Aty (P) =10 U 1Oyt T

{\* (o, (P) =10 0 10y | [Mg, 0 M/B, Ay, (P) =10 0 10y,
pO0 H{Py,ImO [mlg }}

r = (Rec<rp RO
(P /(BB e (T€D) = My -5 Wy |
M (€0 = My 1> Ny} O
{r* wrir mle, wie,, o) (F€9) = [Me, wini(8,,6m) > [Ngmwimi(8,,6m) |
MwmAmm(F€C) = Mym 1> Nyt

Initial - = (St gs¥)
where
Stg = (StS— |N|S) a {( |nitwml(ewlem), mLWm:(eW’Bm))}
% if stsn INIS#[O
O sts otherwise

q§ = (qS_INIQ) 0 {d[] |d O le,wrﬂ(ew, em)}
% if stsn INIS#[O
O gsotherwise
and where INIS = {(Init,yy, M )}
INIQ ={d:[] |d T Cry \yts
Initial\yy = (Sts 9

is a well defined IWIM system.

Proof. Mostly this is a simple adaptation of Proposition 4.29 so we will be brief. The
definition of ~* is unproblematic. Fok*, (1) assures bijectiveness of thé[mlem(p)
terms, while the\*, (p) terms are bijective sincem andwn/(6,,6,,) have the
same input and output channel sets. Also it is easy to proigea function. For the
initial configurations, we replacem components bywm/(6,,,8,,) components if re-
quired. ©
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Proposition 4.31 (Determinism Reflecting Worker-Manager State Condensation
in Systems) Let WM be an IWIM system and letm= wor(Oman= (I, O, A= (St
Init, Tr))d (M, m;, R) be a worker-manager automaton\WwM. Let6,, and6,, be
equivalence relations oftandM respectively and suppose tty, is determinism
reflecting. Letwm/,(6,,6,,) = wor/6,,0 mar,0,, be the corresponding determinism
reflecting condensed worker-manager automaton. Suppose the following holds:

(1) Km|mO[mlg , (Mg, O M/o8y, (Wni™my)} < 1.
ThenWM* = (WM — {wm}) O {wnY,(8,,6,,)} with ancillary data given by:

Nk

({wmp <~ B M)IOy {f WY (0, 00) N My [ Wy} O
{wm™ | m]em | [m]em O M/pBp, W my,t

M = (M <A B 104y O
{ A mym(P) =i0 O IOWMD(BW,Gm) | Aty (P) =10 O 1Oyt [
{M g, (P) =10 0 10y | [Mlg,, O M/sBim, A (P) = i0 O 10y,
PO LH{Pmyy MO [mlg, }}

r* = (Recsrp RO
{1 Wino(Bu By mwm (€C) = My -F-> My |
Mty (F€C) = My 1> My} O
{r*Wm"*[ M) gy, Wiy aN,em)(reC) = [m]em,wm'o(ew,em) -R-> [n]em,WITYD(GW,em) |
Mt Amyn(1€C) = Mym ~-> Ny
ror={r|m-r-n0R m0O[mlg , [Mg [ M/8y,
n O [o,, [nlg,, 01 M/B}}

Initial e = Gt 0sY)
where
sts' = 3 (sts—INIS) O {(Inityyryy(8,,0,) M, wimio(6,6m)}
% if stsn INIS# O
O sts otherwise
gs* =3 @s=INIQ) U {d:[] |d T Cip 6,6}
% if stsn INIS# O
O gsotherwise
and where INIS = {(Inity,, m ym}
INIQ = {d:[] |d O Cpyy ot
Initial yy = (Sts qs)

is a well defined IWIM system.
Proof. This is almost identical to Proposition 4.30 and is omitted.

Incidentally, Proposition 4.31 solves the riddle posed after Definition 4.21, i.e. why
not define atransitiomflg_ -R-> [n]g  as any set of transitioma-r-> n [J Rthat makes

the union definitions ofyryq njg,, @NAX (e, [re, SOUN. The answer is that without

a canonical choice for the transitioml  -R-> Tn]em, there is no canonical way to
Maker wmn[mg, w0, MO & function.
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We end this subsection with three almost trivial but useful constructions. The first
merely glues the free end of an external output to the free end of an external input, to
make a new internal channel. The second, removes a tuple from the partial injection
on channels in a reconfiguration transition; and the third augments the domain and
range of the partial injection on channels in a reconfiguration transition with a fresh
tuple; enabling the benefits of the first construction to be felt after a reconfiguration.

Proposition 4.32 (External Channel Piping in Systems)Let WMbe an IWIM sys-
tem and leivm=worOman= (I, O, A= (St Init, Tr)) O (M, m;, R) be a worker-man-
ager automaton VM. Letm [ M be a manager state ofan which maps toRy, .
Crwm)- Suppose €, oot U Cpy,,. thatcg is an external input channel, and tiegg is
an external input channel. Lef be fresh. ThetwM* = (WM — {wm}) O {wn#},
given below, is a well defined IWIM system.

wnt = worOmart where
mart = (M, m;, R*) and mi- (P, Cnr)
where Cp,, % = (Cpy,, — {Ceir Ceod) U {Cio} and
Smwnt = {Ceo} < S & {Cio 1= Smum(Ce0)}
trmr = {Cei} < S U {Ci0 1= tryn(Cei)}

Proposition 4.33 (Restricted Reconfiguration in Systems)Let WM be an IWIM
system and letvm= worCman= (I, O, A= (St Init, Tr))J (M, m;, R) be a worker-
manager automaton /M. Letm,,-r-> n,,, 0 Rbe a reconfiguration transition of

WMWIth 1 = Xmmnwm - Cmwm = Crune SUPPOSE further thady, - nurCmum = S
ThenWM* = (WM-{wm}) O {wnt}, given below, is a well defined IWIM system.

wnt = worOmart where
mart = (M, m;, R¥) and
R*= (R={Mym "> Mum = Xmumnwm - Cmum = Cramd) U
{m\Nm %> nWm:X*mNmnwm:
Xmwmwm ~ {Cmum '~ Crwrd © Crmaen = Crvrd

Note that the restricting operation can be applied unconditionally (assuming there is
atuple to remove in the first place). Even with an empty resulting, n,. there is
still a transitionr* to act as target for any needggnny,,, function.

Proposition 4.34 (Extended Reconfiguration in Systems)Let WM be an IWIM
system and letvm=worCOman= (I, O, A= (St Init, Tr))O (M, m;, R) be a worker-
manager automaton /M. Letm,,,-r-> n,,, 0 Rbe a reconfiguration transition of
wmwith r = Xm e s Cmm = Crwne SUPPOSe further tha, 0 Cg, - although
Crrem O dOMK 1y nnd» @NAC,, - O Cy - althoughey,, O ran mmnwm - ThENWM*

= (WM-—{wm}) O {wnt}, given below, is a well defined IWIM system.

wnt = worOmart where
mart = (M, m;, R¥) and
R*= (R={Mym "> Mum = Xmumnwm - Crmum = Crand) U
{m\Nm %> Mym == X* MwmNwm =
Xmwmnwm 5 {Cmum = Crumd * Crm = Crgt?
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4.3 Completeness

In this subsection we consider a question converse to those dealt with hitherto, i.e. to
what extent can an arbitrary IWIM system be assembled from more primitive com-
ponents using the operations already described. Now intuitively, an arbitrary worker-
manager automatowm = wor[dmancan be seen (up to isomorphism) as an asyn-
chronous pushout gi-worandp-man wherep-woris a pure worker containingms
worker facet, angp-manis a pure manager containingrs manager facet. This
thought allows us to pull apart an arbitrary entanglement of worker-manager autom-
ata into what are effectively disjoint elementary IWIM subsystems. These in turn can
be built up out of smaller primitives, and this provides the basis of our completeness
result.

To cope with the requirement that an asynchronous worker pushout only works when
thel andO channel sets are exactly the same, we definé, &){pure manager to be
aworker-manager automaton in which the worker facet is a one state automaton with-
out transitions, but equipped nevertheless with input and output channiehad(s.

Proposition 4.35 (Worker-Manager Pull-Apart in Systems) LetWMbe an IWIM
system and letvm=worOman= (I, O, A = (St Init, Tr))O (M, m;, R) be a worker-
manager automaton 9¥M. Let p-worbe a pure worker with worker facetor, and
p-manbe an [, O)-pure manager with manager fao®n

ThenWM* = (WM —{wm}) O {p-wor, p-mar} with ancillary data given by:

M= (fwmp 9~ e M) O {p-wor™ m | wmtmy, 4} O
WM My man| M O M, wiiAmyq}

A= MsAp I0)O
{ A mym(P) =10 O 10p wor | Antyy(P) =10 O 10yt U
{)\* mp-man(p) =io 0 |me | p O PTT\Nm' m [ M, WmAmNm,
Amyr(P) =10 T 1Oy}

r* = (Recsrp RO
{1 p-worvs i (F€0) = My 1> Ny |
Mty (1€C) = Mg 1> Ny} O
{r* Wt~ my man ("€9) = Mp-man-r-> Np-man! R
MwmAmm(F€0) = Mym 1> Nyt

Initial\yp = (6ts,, gs¥)
where

St = (sts—INIS) O

0O {(Initywor M p-wons (INitp-man M p-man}
if stsn INISZ0O

0 sts otherwise

gs* = 1 @s—INIQ) O {d:[] |dO leyp_mar}
% if stsn INISz 0O
O gsotherwise
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and where INIS = {(Init,yy, M )}

INIQ = {[] | d 0 Cy o,
Initial yy = (Sts q9

is a well defined IWIM system.

Proof. This is straightforward when we realise that the trivial worker and manager
facets introduced by this procedure are not above or below anything=else.

Proposition 4.36 (Worker-Manager Pull-Apart Reconstruction in Systems) Let
WMbe an IWIM system and letm= worOman= (I, O, A= (St Init, Tr)) O (M, m,

R) be a worker-manager automatonWwiM. Let WM* be obtained as described in
Proposition 4.35. Letvm' be a worker-manager automaton with trivial manager fac-
et, trivial worker facet but with sets of input and output channkl©f. Suppose
(faw,2® fam,1%) - Wt — p-worand €y, 2*, fam 2*) : Wi — p-manare the obvious two
asynchronous worker-manager homomorphisms that identify the initial states in cor-
responding facets in the expected way. Theéd**, the asynchronous worker-man-
ager pushout offg,, 1*, fyy 1°) and €, 2*, fam 2°) eXists, and is set theoretically isomor-
phic toWM.

Proof. Itis easy to check that conditions (1)-(3) for the applicability of the construc-
tion in Proposition 4.29 are satisfied so that the asynchronous worker-manager
pushout exists. Furthermore, the claimed isomorphism is easy to see since the only
nontrivial equivalence classes of states contain just an initial state, and the unique
state from the other componeni®.

In this manner, an arbitrarily complicated IWIM system can be decomposed into
what are effectively elementary IWIM subsystems, the reverse of this procedure giv-
ing us a recipe for rebuilding the desired system from such components. Inturn such
an elementary subsystem can be built up from trivial one-state or one-transition com-
ponents. Since elementary subsystems are basically tree-structured, there will be a
variety of ways to do this in a well founded way, so we will not go into details. This
supports our claim that the techniques discussed here, with the addition of suitable
lower level techniques for building elementary subsystems, are complete.

5 IWIM Systems with Delayed Reconfigurations

Now we tackle the problem of the asynchronous nature of true IWIM system event
processing. As noted previously, this can be captured within our framework. The ba-
sic idea is simple. We introduce fresh pure worker automata, delay automata, whose
job is to buffer the reconfiguration events generated by the worker facets of the au-
tomata of the original model on their way to the relevant destination manager facet.
The way this is done is to change tiee events of the original model intec mes-

sages to the delay automata, who then subsequently raise the required event. Since
buffering is already implicit in the message queues used by worker facets, and further
buffering can be achieved by retaining information in automaton states, there are a
number of ways one can imagine of implementing such an idea. In the one we will
follow, the workers each acquire an extra output port through which torseemdes-
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sages instead of raisimgc events. Connected to these extra output ports, are chan-
nels leading to delay automata, one per manager facet in charge of the worker. This
ensures that theec messages are broadcast asynchronously towards each relevant
manager. (Because event processing takes place simultaneously by all managers be-
low a worker, we need to ensure that each delay automaton is above only one man-
ager. To ensure the correct separation of concerns between automata it is easiest to
introduce delay automata on a per pan”“m,,,,tuple basis.) Upon receipt of thec
message, the delay automaton raises the corresponding event with the manager.

Assuming that some particular worker facet is ablowganager facets, the behaviour

of the original system can be recovered as long as there is always the possibility of
performing the following R+1 step sequence of the new system instead®d tran-

sition of the original system, in a manner uninterrupted by other system transitions:

(1) the worker facet transmits the releveet value through its extra output port
onto then delay channels leading to thelelay automata corresponding to the
manager facets above which it sits,

(2)) delay automatonreceives theec value from delay channglrecording it in
its state,

(3j) delay automatonperforms aec transition causing manager facéd perform
the required reconfiguration.

This sequence of steps preserves the property that all delay channels remain empty
except between steps (1) ang)(#vhich is correspondingly consistent with enabling
them to be executed without interruptions.

On the other hand, if we consider that the execution of these steps can indeed be in-
terrupted, as allowed by the asynchrony inherent in the fragmenting of a single tran-
sition into several, other outcomes become possible. Since the original system had
only synchronous reconfigurations, it provides no definition of what might happen
should a reconfiguration be attempted nonatomically, and any evolution consistent
with the semantics is permissible. For example, a context dependent notion of recon-
figuration can be created by having delay automata raise different reconfiguration ac-
tions in manager facets, depending on what reconfigurations intervened between the
receiving of some particulaec value from a worker, and the raising of the corre-
sponding reconfiguration event in the manager; the information to manage this being
kept in a delay automaton’s state, suitably managed through intervening reconfigura-
tions. And depending on what policy is adopted for the introduction and behaviour
of the delay automata, different policies for the handling of pending events become
possible. Moreover being themselves workers, delay automata can be woken and
suspended during reconfiguration transitions, further tuning this aspect.

One canonical possibility for dealing with reconfigurations that attempt to interleave
other reconfiguration actions, is to enforce a strict sequentialisation policy. This can
be done by ensuring that onceex message arrives at a delay automaton, the only
thing the delay automaton can then do is to raise the corresponding event, ignoring
further inputs till it has done so. We call this arrangement the standard asynchroni-
sation of an IWIM system, and we now present the technical details.
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SupposaNM is an IWIM system with the usual notations, i.e. typical automaton
namewm mapping to [, O, A = (St Init, Tr))O (M, m;, R), with manager states

mapping to networksH, ... Cn,.), and reconfigurationsyym, -r-> Nym= Xmumnwm -
Crvwm ~ Cnume @nd with ancillary data given ym ™ mym, Amye TwiriAmnr

The standard asynchronisation\&M, which we call heraVM*, has the set of au-
tomaton name8VM* = WM O {A.wm.m.wm| wm”m,,,}. We assume all of these
A.wm.m.wmnames are fresh, and introduce for e&clwni.m.wmname, for future
convenience, fresh port, channel, and input and output port hames

Awm.mwn , Awnr.mwm , Awnm.mwm, , Awm.mwm , Awm,

If wmmaps to [, O, A= (St Init, Tr))O (M, m;, R) in WM, in WM*, wmmaps to [,
O*, A* = (St Init, Tr*)) O(M, m;, R*).

The input portd of the worker facet ofvmremain unchanged. However for the out-
put ports we hav®* = O 00 {A.wm,}. The worker facet automatowor(wm) itself
is given by the same state sp&tenitial statelnit, and:

Tr*=Tr O Tro O {a-A.wmylrec> b |a-rec> b O Trg}

This ensures thatec messages can be sent ovewm, to all delay automata
A.wm.m.wm. To ensure that these are handled properly, we examine the manager
facet ofwm

In the manager facehar(wm), the state spackl and initial statem; remain un-
changed. Staten however maps to the communication netwok . C*, )
where:

P* wm = P O {A.Wmi.m.wm, A.wmi.m.wm | wmi~my,
C* mum = Cmm O {A.wi.m.wmgy, [ wimi”my, .}

S* tmwm = Smwm D {A-W.m.wmy, 1 Awnmi.m.wng | wim~m,, .}
™ mm = tmm O {A-Wm.m.wmy, - Awrd.m.wm | wim~my, .}

Finally, if Mym-r-> Nym = Xmumnwm - Cmum = Crum IS @ reconfiguration transition of
R, there is a corresponding transition®Rf given by x*, -0 C* > Cpy
wherex* m,mnwm = Xmwmnwm INtETPreted as a partial injection Ghy,

Standing between the worker and manager facets of the preceding automata, are the
delay automata themselves. A delay automaton nAmvet.m.wmmaps to a pure
worker given by:

(I A wrrt.m.wm OA.Wm.m.Wm Anwni.m.wm=
(St wirt.mwm Mita wit.mwm Trawmt.mwnd) 2 ({¢} ¢, 0)

Here:

A wrd.mawm= {A-wn.m.wm | wmi®my,}

1. The last of these is not an error.
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while Op wm.mwm= C. The worker automatoA, wni m.wmiS diven by the state
space:

St wit.mwm= R€Gyn B {Inita wii mwnt

and the initial staténitp . m.wmiS the one named as such. The transitions of
Ap wri.m.wmare given by:

Tra wird.mawm= {UNIEA Wi mawm-A-wi.m.wifrec-> rec | rec O Regy} U
{rec-rec> Initp ywni.m.wml rec 0 Regyn}

where we have abused notation a little by allowiagto name the state reached by
inputting arec message (not to mention its original use as event name), hopefully
without causing confusion. Itis now clear that the delay automaton inpatsaes-
sage coming from the original worker, and then provokeecaeconfiguration event

in the manager at a later point.

To connect all this together, we give the above relation, which is:
Ax = A0 {Awm.mawr?™ my,, | wmAmg
and then*,, _ bijections which are:

A m = Amm & {AW.mawng i Awni, | wm A my,p O
{Awm.m.wm - Awnd.m.wm | wm®mg,}

Note how in the first line of the above the original worker’s output gawmn, is
shared by as many managers as it has, each controlling an individual queue to a sep-
arateA.wni.m.wmdelay automaton.

Finally ther* a i m.wm*mum, fUNCtions are given by:
I Awirt.m.wnt* man(T€0) = Mym -F-> Ny

iff romiamyn(F€C) = Mym =1-> Ny

It is now clear that this construction has the properties indicated informally above.
Thus whereas iWWM, a workerwni above a manger stama,,,,can perform the step
a-rec-> b simultaneously with each implicated manager’s performing the appropriate
Mym -I-> Nym (because yyiam,,, Mapsrec to My, -r-> Ny, in WM, wni can no
longer do this directly. Instead it passesa message té.wni.m.wmvia a single
a-A.wmylrec> b action which cause®c messages to be broadcast onto all relevant
channelsh.wmi.m.wmy,. If such a channel was previously empty, thewni.m.wm

can swallow theec message by performing &mita i m.wm-2-wni.m.wnfrec-> rec

input from the same channel. This obtains by the fact that pbsi, and
A.wni.m.wm are connected vid.wni.m.wmy, sinceA*,, —connectsA.wni, to
A.wm.m.wny = s*, (A.wnl.m.wmy,), and also connects , (A.wni.m.wmy) =
A.wnd.m.wmto Awnml.m.wm SinCer* o wmi.m.wm+*mym Maps the only available
A.wm.m.wmtransitionrec -rec-> Init yny.m.wmto the reconfiguratiom, -r-> Ny,

it follows that whenA.wni.m.wmperformsrec -rec-> Initp wni.m.wm it Provokes the
desired reconfiguratiomy,y,-r-> Ny, Thus ifA.wrm.m.wmy, was empty at the outset,
the simulation of one manager’s reconfiguration by a delayed but uninterrupted se-
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quence of steps is available. Evidently when several managers need to react, conse-
quent on the same original atomic reconfiguration, similar simulations can also be
constructed. These simulations may also be interleaved with other actions, provided
none of the other actions ‘beat the sequence to the tape’, where the ‘tape’ is the invo-
cation of arec step mapped by B A ywni.m.wm*mam {0 @ change of configuration of

the managewm, while the manager remains in the original stateExamples of oth-

er actions that can safely be interleaved in this manner are ordinary I/O actions, and
reconfigurations not involving any of the automata involved.

Proposition 5.1 The construction just given is idempotent, in the sense that applying
it n more times toNVM* results in a systenWM*..*  which can simulate an atomic
reconfiguration oiWMthat involvesk managers in @n+1)+1 uninterrupted steps.

The straightforward if tedious proof rests on the observation theflft, the only
worker abovem,,,, capable of provoking a reconfiguration ig\avii.m.wm so that

the next application of the construction replaces eagimi.m.wn's rec steps by a

three step sequence etc. Thus iterated application of the construction exemplifies the
fact that a chain of buffers is behaviourally equivalent to a single buffer.

6 The Arbab, de Boer, Bonsangue Model

In this section we show how the model proposed by Arbab, de Boer and Bonsangue
in[Arbab et al. (2000a)] (see also [Arbab et al. (2000b)]), henceforth the ABB model,
can be subsumed within our framework. Inthe ABB model, there is a famidgiof
ponents Each component is a transition system similar to one of our worker autom-
ata, and it has access to a set of channel ends to which it is connected. A component
may output values along channel source endsdetp which it is connected, and

may input values from channel sink ends (€gto which it is connected. The state
transitions for these actions are of the faant!v-> b anda -cv-> b respectively, and

these are the only kinds of action that components may perform. The dynamic recon-
figurability of ABB systems comes from the fact that they can alter their set of con-
nected channel ends by sending and receiving channel end identities along the chan-
nels themselves. Thus if a component possesses channd, endsnay relinquish
possession al by a transition likea -c!d-> b; likewisea -c!d-> b relinquishes posses-

sion ofd. Likewise possession aford can be gained bg -c?d-> b ora-c?d-> b. It

is tacitly assumed that since channels are point to point connections, once a compo-
nent has relinquished possession of a channel end, it will no longer attempt to use it
until it has received it once again from some other component. Channels themselves
are queues in the ABB model, just as they are in ours, and when a channeé(exd,

sp.d) say, becomes detached from the component to which it was previously connect-
ed by being output along channesay, no inputs oved (resp. outputs ove) can

take place until the relevant message has been consumed by the component connect-
ed to the sink end of, whereupord (resp.d) becomes available to that component

for communication purposes. Output and input transitions in which a channel end is
respectively transmitted or received are called reconfiguring output and input transi-
tions.
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We will now describe the mapping of a family of ABB components to a correspond-
ing IWIM system. Note that since channels are not created dynamically in the ABB
model, the complete set of channels that figure in an execution of an ABB system is
known at initialisation time, and given an ABB system, we call this complete set of
channelCH. From this we create the five disjoint alphabets:

CH, = {ch |chO CH}
CH, = {ch, | ch 0 CH}
CH, = {ch, | ch [ CH}
CH, = {ch | ch [ CH}
CHch = {Chch | chd CH}

LetC; ... C,be a family of ABB components. For ea€hwe construct a transition
systermK; as follows. LetC; be S, Initj, Tr;, r;) whereSt is a set of states of which
Init; is an initial state]T; is a transition relation containing transitioasoutiv-> b or
a-inv-> b (with in, outd CH), andr; is the initial value of the dynamically changing
set of channel ends possessedday By the remarks above we can assume @idt
={ch|for somei, ch O r; orch O r;}. For simplicity we will assume that each end
of each channel i€H is in some;.

Now we setK; to be the transition system given bgi¢, Init;*, Tr*), where the set

of states isSt* = St U newSt, with Initj* = Init;, andTr;* is given as follows (also
implicitly defining the fresh stategwSt). Each transitiora -outiv-> b ora-inv-> b

of C; wherev is not a channel end yields a transit@rout,!v-> b or a -inj»-> b of K;.
Moreover each reconfiguring outpaitoutich-> b of C; is replaced by two transitions
a-outy!chy-> ab-rec(outy!chy)-> b, whereabis a fresh state inewSt andrec(out,!chy)

is a reconfiguration action where the intention is to simulate the detaching of the
channel endh, from the component in a manner that will be made clear below. Like-
wise if the channel end being detachedlisrather tharch, K; will contain the se-
guencea -ouiy!ch-> ab -rec(outy!ch)-> b. A similar arrangement holds for reconfig-
uring input transitions -in?ch-> b or a -in?ch-> b. We have respectively -in,ch,->

ab -req(in;chy)-> b anda -injch-> ab -req(injch)-> b.

For technical reasons, it is not sufficient to work with just Kge GivenK;, let 6,2

be a finite directed path through the transition syster;df.e. a finite sequence of
contiguous transitions df;), starting at stata. LetK;? be the transition system de-
termined by the set of pathsB{@ | 6;"is a path through the transition systemkof
starting ata, and if 8@ contains aec transition, there is only one and it is the last
transition of; *4}.

Given a6, let 6;2 be the result of erasing fro8) "2 all non+ec transitions (so the
transitions listed irg;2 will not be contiguous, neither will they necessarily mention
a). Let @(6;"®), ¢(6;% denote the final state reached by suc™@ or 6,2. Define
0,2={6,2| 6,"2is a path through the transition systemiqfstarting ata}; conse-
quently®;@is partially ordered by the prefix relation. We wri¢, 6;, ©, to denote
9i+lniti’ eih’\iti, eih‘liti. Let:

M=o i Ol ... N}
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The rest of the construction will proceed by recursion on the structuvk which is

again partially ordered by the prefix relation. We construct a pure manger automaton
pm, whose space of statesh and above eactm [0 M, there will be a collection of

pure worker automata crafted from #@ transition systen‘?s

The base casem=[]x[] x...X[]. Above thismwe have the collection of pure work-
erspwll fori O{1 ... n}, wherepwl! is given by CH;ll, CH,ll, K", with CH;[!
={ch|ch O CH, chOr;}and CHyll = {ch, | ch, O CH,, ch O r;}. Note thatinit; =
@([]) (with the understanding that [] is the empty path throkigh

The manager state maps to R, C,) where:

Pn={ch|chy 0 CHs,chOr} O {ch|ch OCH,chOr;}
Cm = {che [{chs, ch} n Py # T}

and thes,, t,,, maps function in the way we would expect, isg(chy,) = chy and
tm(che,) = ch. The link between the manager and the workers is also unsurprising:

Am={ch 1~ ch|ch O CH;ll} O {chy 1~ chy | ch, O CHyl}
pwllm
completing the base case.

Now suppose thain = (8, ... 6,)) and supposeY = (6; ... 6" ... 6,) where§;' =
6,@[a; -rec(outy!chy)-> bj], and where the transitios -req(out,!chy)-> b; is aK;- im-
mediate successor reconfiguring transition to the last ofig ifihe manager stata
which maps toR,,,, C,) is transformed tot which maps toK,;, C,y) where:

Py = Pm—{ch}

Crr = {chyn [ {chs, ch} n Py # U}
and thes,y, t,y maps work as expected, isy(chy) = chy andty(chy) = ch. 1t now
makes sense to define the manager reconfiguration transitiosn m' as the partial
injection

Xmnt : Cm = Ciy
which is the maximal identity function @}, n Cy.

Suppose that abovawe had then pure workers {)V\/jej [jO{1 ... n}}. Thenabove
m we will also haven pure workers. For#i, pwjei will continue to be aboven and
the reconfiguration transitiom -r-> nf will leave it in the same state as it was. For
the cas¢ =i we have instead the pure workmm® = (CH; %', CH,%", K;%8") where:
CH;® =CH;®
CHy = CHy % — {chy)
and so we can summarise the above mapfas:

{pwiej/\m |pWiGj/\m,j O{1..n—{i}} O {|0W.9i"‘m'}

2. Since there is only one nontrivial manager, we suppresprthéags for convenience.
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TheA,y map is:

Ant = A= {chy 1~ chy}

and we have that:

rowenm(rec(out!chy)) = m-r->

which completes the piece of the recursion for the caseref(@aut,!ch,) reconfigu-
ration. If we consider insteago(out,!chy), req(injch,), rec(in;?ch) reconfigurations,
the above is modified respectively by:

CH;® =CH% —{ch} ; CH® =CH,® ;
Pri =Pm—{ch} ; Cy ={chy [{ch;, ch} n Py 20}
At =Am—{ch - ch}

CH® =CH% ; CH,® =CHy* O {ch;} ;
P =Pm O {ch} ; Coy = {chy | {chs, ch} n Py #0}
At =Am 0 {chy - chy}

CH;% =CH;% O {ch} ; CHy¥ =CHyY ;
Pry =Pm U {ch} ; Coy = {chy[{ch, ch} n Py # 0} ;
)\ml :)\m [l {Ch - Ch}

together with the obvious consequences. Since the ABB system enjoys the property
that a component cannot give away a channel end that it is not connected to and nei-
ther does it ever receive a channel end that it already possesses, it readily follows that
the set operations above are nonnull.

Beyond these there are the expected identity transitions on staMobtourse,
which completes the construction. Thus we have cut up the original ABB system into
a collection of pieces that can be reassembled as an IWIM system, in order that the
latter is able to achieve the same effect as the original system. In fact it is easy to
convince onself that the IWIM system constructed from a given ABB system by the
above technique is able to simulate it in the sense that non-reconfiguring inputs and
outputs correspond bijectively, while reconfiguring inputs and outputs correspond to
sequences of two steps in the IWIM system, the first to receive or transmit the channel
end identifier, the second to provoke the desired reconfiguration via the manager.

7 The Katis, Sabadini, Walters Model

In this section we consider a model proposed by Katis, Sabadini and Walters in [Katis
et al. (2000)], henceforth the KSW model, and show how it too can be subsumed
within our framework. In the KSW model, the main entity of interest is the CP au-
tomaton. A CP automato@ = (G, X, Y, A, B, 9, 91, Yo, Y1), consists of a directed
graphG = (G, G1) whereGy is the set of nodes ar@; is the set of arcs, together
with four maps:

0g:G1 - X;01:G1-Y;Y9:A-Gp; v1:B- Gg
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These work as follows. The arcs of the graph represent transitions of the automaton,
whose states are the nodes. The ¥edsdY are input and output alphabets respec-
tively. Thus the map8gy: G; - Xandd, : G; - Y describe which input letter a tran-
sition of the graph consumes, and which output letter it produces. Since both maps
are total, each transition involves both input and output. We will write a CP autom-
aton transition as:

s-(ind, arc, outd-> t

wheres andt are statesarc is the arc carrying the transition, aimtl, outd are the

input and output data. (In [Katis et al. (2000)], the authors also admit null elements
in bothX andY alphabets, to aid abstraction and to represent the absence of genuine
communication during a step.) Communication is synchronous, thus when two CP
automata communicate, the symbol output by the producer of the communication, is
simultaneously input by the consumer of the communication. Most emphatically,
there are no queues in the model: communication in this model is above all a synchro-
nisation mechanism.

The setsA andB (called the in-condition and out-condition respectively in [Katis et

al. (2000)]), are to do with initialisation and finalisation, though in a slightly non-
standard manner. Specifically, thgimage ofA is the set of entry points into the CP
automaton, i.e. initial states, and theimage ofB is the set of exit points, i.e. final
states, of the automaton — except that when CP automata are combined in the appro-
priate way, then subsets of entry or exit points may be identified, leading to a richer
gamut of possibilities parameterised by partitiong,0%) andy;(B).

CP automata are endowed with a number of algebraic operations, which construct
more complex CP automata out of simpler ones. We will model the KSW formalism
by mapping CP automata to IWIM systems, and then showing how the CP automaton
algebraic operations can be reflected in constructions on the corresponding IWIM
systems.

Let G = (G = (Gp, G1), X, Y, A, B, 0, 91, Yo, Y1) be a CP automaton. We build an
IWIM system corresponding 16, and consisting of a pure manager and a pure work-
er. The pure manag@m has one-state which maps to (ps, pg, { ch, ch}) with

s, (chy) = ps andt, (ch) = p; (and withs, (ch) andt, (chy) undefined). The stateis
initial and the only transition of the manager is the identity. Clearly the manager’s
structure is independent Gf

The pure workepwis ({p}, { P}, (St Init, Tr)) where the transition systefi is con-
structed thus. For eadh transitions -(ind, arc, outd)-> t, Tr contains the two step
sequencs -p;7ind-> arc -pyloutd- t ; this makes it clear thadt= Gg 0 G (we will

tacitly assume that this union is disjoint). Regardinig, we can choosanystates,

in yo(A) to belnit. Thus the mapping from CP automata to IWIM systems is in gen-
eral one to many. In reality of course, examples of CP automata that represent com-
plete systems typically have unique initial states, reflecting the often observed fact
that most real systems start in a well defined condition. The plurality comes in useful
when component CP automata are combined to form the a larger system. We will
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comment on this further below. More generalfy(A) andy;(B) are sets of states of
the pure workepw:.

Our basic construction is nearly complete. All that remains is to note thatrirego-
ping is given by:

)\o (ps) =Po }\o (pt) =p
that the above mapping is given by:
PW* bm
and that since there are rax actions in the worker, themap is empty.

Note the following invariant of the generated IWIM system: regardle&s, tifiere is
exactly one pure worker, one one-state pure manager, one external input channel, one
external output channel, aig(A) andy;(B) can be identified with sets of configura-
tions of the pure worker.

We can easily see that whatever the initial state of the given CP automaton, we can
find an IWIM system from among the possibilities constructed, with the same initial
state; and which furthermore simulates it in the sense that the execution of a CP au-
tomaton transition inputting and outputtingy, corresponds in the IWIM system to

the input from the input queue &fand the output onto the output queueyoi that

order. (The alternative order leads to an equally acceptable construction.) Note that
in the IWIM system these are comunications with the environment.

We now move on to constructions on CP automata and how these are reflected in the
corresponding IWIM systems; the principal ones that we must consider are binary
combinators. We will subscript with the name of the relevant automaton to disam-
biguate when notations would otherwise clash.

Communicating Parallel Composition. LetG = (G = (G, Gp), X, Y, A, B, 9p 6, 01 6.
yO,G’ yl,G) andH = (H = (Ho, H]_), Y, Z, C,D, OO’H, al’H, yO,H’ yl,H) be CP automata.
Then the communicating parallel composition®fandH, written G H, is the CP
automaton:

G = (GE = (Gp x Ho, G 1 ={(g,h) |9 0 Gy, h T Hy, 01 5(9) = 9o (M)3),
X, Z,
AxC,BxD,
doc m (@ h) =006 (9), 916 m (9, h) =014 (h),
Yoc B =YoG XYoH  Yicm =YiG X VYiH)

This definition makes clear the statement above that communication is synchronous
in the KSW model. The input and output labels on an grd) of the combined sys-

tem ared ; (9) andd, i (h) respectively, while the very existence of the arc is pred-
icated on the conditiod; ;(g) = dp 4 (h), which supports the interpretation that grc
output and art input the same symbol. This is the only notion of communication in
the KSW model.
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We model the communicating parallel compositiorCoandH at the IWIM system
level as follows. Suppos&/M; is an IWIM system representirfg, andWM, is an
IWIM system representinbl. We assume that botWMg; andWMy each have a pure
worker, pwg andpwy respectively, a one-state pure managet; andpry respec-
tively, an external input channeh g andch , respectively, an external output chan-
nelch  andch  respectively, thayg (A) andy; (B) can be identified with a set
of states opwg, and thaty 14 (C) andy; (D) can be identified with a set of states of
pwy. The IWIM systemWMg i we seek can be generated frifivlg andWMy as
follows.

There is the usual one-state pure manguyey as above. The corresponding pure
workerpwg g = ({ P} { Po}: (St m» INitg g, Trem)) is built from pwg andpwy by de-
fining S = St x Sy, Initg = (Initg, Inity), and forTrg g, whenever we have a
pair of transitions infrg of the forms; -p;7ind-> arcg; g -p,!val-> tg, and a pair of tran-
sitions inTry of the forms, -p/val-> arcg;} -p,loutd-> ty, we form theTrg g transi-
tions (g, S4) -pANd-> (arcg; s, arcsyy) -Poloutd> (i, ty). Itis clear that this proce-
dure only succeeds because of the special structure of the transition sysgeansl
Try. We can now identifyyy g i (A x C) with states corresponding g g (A) %
Yon(C), andy; g (B x D) with states corresponding ¥ (B) % y; 11(D); and the rest
of the data for the IWIM systeMVMg g is routine.

It is obvious thaWMg y is able to simulatés (H in a straightforward manner pro-
vided WM can simulatés andWMy can simulaté.

Parallel Composition without Communication. LetG = (G = (Gg, Gy), X, Y, A, B,
006 916 Yoo Yi,e) andH = (H = (Ho, Hy), Z, W, C, D, dp, 91 1, Yo - Yo ) bE CP
automata. Then the noncommunicating parallel compositiéharfdH, writtenG x
H, is the CP automaton:

GxH=(GxH =(GyxHg Gy xHp), XxZ YxW AXC,BxD,
006 xH (9, ) =006 (9) X gy (h), 016 x4 (@, h) =01 5(0) x 314 (D),
Yoo xH =Yoe XYoH YLGxH =Y16 X YiH)

This noncommunicating parallel composition still features synchronous communica-
tion, but this time of pairs of data values.

We model the noncommunicating parallel compositiob@ndH at the IWIM sys-
tem level thus. LeWMg andWM, be IWIM systems representifigandH respec-
tively. We assume thavMg; andWMy have pure workergwg andpwy, one-state
pure managergm; andpmy, external input channetdy ; andch y, external output
channelgh ; andch i, thatyy ¢ (A) andy; ¢ (B) can be identified with a set of states
of pwg, and thatyy 11(C) andy; (D) can be identified with a set of states fi;.
Then we proceed as follows to constid¥l; « .

There is the usual one-state pure mangyey «x 4 as above. We build a correspond-
ing pure workepwg « 4 = ({ P}, { Po}s (St x 1, INitg x 1y Trg x 1)) from pwg andpwy

by definingSt « 4 = Sk % Sty, Initg « y = (Initg, Inity), and forTrg « 1, whenever we
have a pair of transitions ifirg of the forms; -p2indg-> arcg; -p,!outds-> t, and a
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pair of transitions infry of the forms,, -p;7ndy-> arcg; y -py!outd,-> ty, we form the
Trg x y transition pair:

(Sg» sH) -Pi?(ndg, indy)-> (arcsyg, arcsip) -Po!(outds, outdy)-> (tg, thy)-

We can now identifyyg ; x (A % C) with states corresponding g g (A) * Yo 1(C),
andy; g x (B x D) with states corresponding 1@ ¢ (B) % y; 4(D); and the rest of the
data forWM «  is routine.

It is obvious thatWM x y is able to simulatés x H in a straightforward manner
providedWMg can simulatés andWM, can simulaté.

Up to now, the in-conditions and out-conditions of the component CP automata have
played a passive role; the next construction remedies this.

Restricted Sum. LetG = (G = (Gg, Gy), X, Y, A, B, 9y, 916 Yo Y1,6) andH =
(H =(Hp, Hy), X, Y, B, C, 0g 1y, 01 1, Yo s Yau) b€ CP automata. Then the restricted
sum ofG andH, writtenG + H, is the CP automaton:

G+H = (G +H=(Gy+Hgy/~s where 5 is the finest equivalence
relation generated by; g(b) ~g Yo 4(b) (and we write
[g]g for the equivalence class containggG, + Hy),
X, Y, A C,
00G +H =006 * OoH, 016 +1 =016 + 014,
YoG+H =YoG » Y1G +H = Y1)

(As expected, the sources and targets of the arGg inH; are the equivalence class-
es of the corresponding sources and targe® andH.)

Let WM and WM, be IWIM systems representirfg andH respectively. We as-
sume thaWWMg andWMy have pure workergwg andpwy, one-state pure managers,
pms andpmy, external input channetsh g andch y, external output channets$y
andchg iy, thatyp g (A) andy; g(B) can be identified with a set of states i via
mapsywoc - A -~ Sk, Ywac : B - Sk, and thaty 1(B) andy; 1(C) can be identified
with a set of states giwy via mapsyyon : B - Shy, Yya i - C ~ Sty We proceed
as follows to construaVM 4 .

There is the usual one-state pure manguey . 4 as above. We build a correspond-

ing pure workepwe 1 = ({p, { Po}, (S + 1, INitg + . Tr + 1)) from pwg andpwyy
by defining:

St +H = Sk + Sy / ~ where 5 is the finest equivalence relation
generated bWy, () ~5 Ywon(0) (and we write
[s]g for the equivalence class containg)g

|nitG +H = [lnitG]B

Trg +n = {[Slg -p-> [tg | [S]e [t]ls O St s -pv-> t O Trg, O Tryy )} O
{[sle -Po'v-> [Ue | [S]e: [tle U St S-potv-> 1 0 Trg o 0 Tryy o}

That this works as desired is conditional on the observation that irgvetlandpwy,
the states picked out b0 6, Y1 G» YwoH: Ywi H @r€, SO to speakiy-states’ and not
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‘arc-states’. This can be assured by choosigc, Ywic: YwoH: YwaH 1O beYog,

Y16: Yor: Y1 in the base case construction, whereupon it evidently persists through
the binary combinator simulations we have described, and enables us to formally
identify Yo g + 1 = Yo With a set of states @fwg + 4 ViaYyog +H A > S+ p =

Ywo / s @nd to identifyy; g 4 =y; y With a set of states @fwg + y Via Y16 +H

C - St + 1 =Ywapn/ ~s With this confirmed, the construction 8%; + S, / ~ re-

sults in a glueing o6 -p;7nd-> arc -p,!outd> t sequences only at their ends, and it
then becomes easy to see that the given recipe gives us an IWIM syéigm
capable of simulating the CP automafsr H, if WMg simulatesG andWM,, sim-
ulatesH.

Two points deserve comment. Firstly, [Katis et al. (2000)] speak of the need to ‘ad-
just’ the in-conditions or out-conditions of a CP automaton in order to make it fit for
some particular purpose. More than anything else this is an indication that these in-
terconnection aspects of the automaton are really properties that belong more to the
interconnection mechanism itself, than to the automata involved.

Refering back to our IWIM system scenario, we have recognised this, and reflected
it in the design of our various IWIM system pullback and pushout operations, in
which the intermediate worker-managem’ was outside the system being manipu-
lated, i.ewm (and its attendant homomorphisms) parameterise the operation itself,
and do not form part of the entities being operated on.

Secondly if, following [Katis et al. (2000)], we intend the restricted sum to model se-
guential composition, the construction\V; .. iy, though faithful to the CP autom-
atonG + H, suffers from the weakness pointed out in Section 4, namely that if a final
state ofG has out-transitions, and a corresponding initial statkl ohas in-transi-
tions, then a run may wander frogito H and then back in t&. The IWIM system
paradigm offers more flexibility here, allowing the expression of an irreversible tran-
sition fromG to H. We describe the details, resulting in the construction of an IWIM
systemWM ; , iy that simulate& +H in a different way.

Suppose irGy + Hg / ~g above, there ark of the equivalence classes that are non-
singletons, i.e. there aleclasses that glue at least one elemerBgto at least one
element ofHg (the remaining classes just containing individual elements outside the
ranges of/; (B) andyp (B)). Call them:

Vw01, [Yar,c(0)2] --- [V, (D)
Now partition each ofyf;y g (b)1] ... [Vwa (D)Wl into two subsets each:

[Ywrc(01l = g1 N Go and YwicM1ln = [Ywa s (01 n Ho

[ywl,G(b)I.(jéS = Y c(®d n Go and Y1 c(OH = [Ywr,c(P)d N Ho

all nonempty by our assumptions. Replacingig, i the 1 c(0)1] - [Viva (P

by the b1 6(0)le: [Ywa,6 (01l - [Ywr,c (e, [Ywa 6 (D) is tantamount to gen-
erating a new equivalence relation, which we @allon the state spacg{; + Si,.

This is the finest relation generated by the two families of clauses:
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(Yw1,6(®) ~& YwoH(B) = Yo H(CS) ~B Yu1,6(0) U Yw1c(D) ~& Yw1c(C))
(Yo H(0) ~5 Y1 6(0) =Yw1,6(C) ~& Ywo H(O) O YwoH(0) ~& YwoH(C))

Now we define:

Stg+n=Ck+n —{Ywrc®1l - Yz cBdh) U
{{Ywrc(®1le: Ywic®)H - [Ywic(Ode: [YwicOdn}

|nit*G +H = [lnitG]B*

TG4 = ([ PN e [ [, e 0 StS PNt 0 Trgy O Try} O
{[Sles -Po!v-> [tlg | [Slg+s [tla O St s-polv->t O TrgoU TrH’O} O
{[sle 10> [tler 15 =Y 6(b) = Yo (®) =t , b O B}

By distinguishing thds from theH components of the glueing states, we are able to
introducerec transitions from one to the other. All of thesee transitions are above

the unique state of the pure manager, and all map to the identity reconfiguration on
the corresponding port/channel networkd{pg, { chs, ch}). Since the pure worker
remains above this state when sughetransition is executed, itectransition com-
pletes and the run continues in the component; however this time there is no way
back to théG component, even if there are in-transitions to the initial statd afsed,

and out-transitions from the final state®feached.

This all works adequately, but is still open to the criticism that pure wopkey; its

useful life over when the locus of control moves into fivey part of the system, re-
mains alive, though defunct, preventing its resources from being reused. In areal sys-
tem, it would be garbage collected releasing its resources for other activities. Equal-
ly, a demand driven implementation might well not createiwg part of the system

until it was needed. Our IWIM system model enables us to express these aspects
though we will not go into all the formal details. Here is the general idea.

We split the state of the pure manager into two; and (a modifiegd)is above the
new initial state, whileowy is above the other state. There is a reconfiguration tran-
sition from the former to the latter, whose data is the identity reconfiguration on the
port/channel network €, p}, { chs, ch}). The modification topwg entails adding

the [yw1 c(0)1lG --- [Yw1 c(D)l G States described previously to its state space, and then
addingrec transitions to a typicaly,; g(b);]¢ state from each of its comprising
Yw1,c(b); states. Theseectransitions map to the reconfiguration mentioned above.

It is clear that the behaviours of the resulting system are as follows. The manager
starts in its initial state; consequently the modiffeg; is active. It executes until it
reaches &, g (b); state and proceeds to perform thg ¢ (b); -rec-> [y 6 (0);] tran-

sition. This maps to the reconfiguration step of the manager, and bepeysis
above the new manager state, the modified leaves the system configuration and
pwy joins it, starting in its initial state.

This story holds up iH has a unique initial state. If not, an unwinding technique
similar to that used in our ABB system simulation must be employed.
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Furthermore, the nontrivial state space now introduced for the manager has conse-
quences for all the combinators. A product-like construction must be used on the
manager states for the communicating and noncommunicating parallel compositions,
while a sum-like construction, involving the introduction of reconfiguration transi-
tions must be used for the restricted sum. We leave the fascinating details for the mo-
tivated reader.

8 Conclusions

In the preceding sections we have introduced a formal model for capturing some of
the essence of the IWIM concept in an automata based framework. Since the key idea
in IWIM is that manger processes exercise some degree of control over their subor-
dinate workers, expressing this in a theoretical framework inevitably leads to some
complexity, and we have seen this reflected in the constructions we have described.
Despite this, the model that emerges enjoys a selection of appealing properties, rang-
ing from the projection results of Section 3, to the various algebraic constructions
presented in Section 4, which as we said, contains a by no means exhaustive list of
such possibilities.

Part of the reason for these appealing phenomena rests in the fact that the design of
the model was tacitly undertaken in a manner in sympathy with categorical impera-
tives — though no explicit mention was made of categorical concepts aside from the
naming of constructions in Section 4 — a strategy which was conducive to the fos-
tering of relatively elegant structural properties. Still it is by no means the case that
such categorical properties are the only ones of practical interest, as the more ad hoc
constructions of Sections 5, 6 and 7 made abundantly clear. Regarding the latter it
is noteworthy that despite the emphasis on algebraic structures in the KSW model, to
capture the KSW ideas in our own model, we were not able to make use of the alge-
braic combinators we spent time describing in Section 4. One observation suffices to
make clear why this is not in hindsight unexpected.

Consider communicating parallel composition. The most appealing way to model
this using the techniques from Section 4, is to pipe the output of the first worker into
the input of the second. This idea gives a system that behaves as expected. Never-
theless there is a problem when one wishes to form the restricted sum of such a com-
municating parallel composition with another system. What are the final states of the
parallel composition that one can glue to the other system? They are, unfortunately,
pairs of final states of the communicating components, implicit in configurations of
the system, but not explicit in the static description of the system without unwinding

it (essentially this unwinding is what the ad hoc construction given for communicat-
ing parallel composition accomplishes). So the obvious way of modelling the alge-
braic operators of the KSW theory (which are combinators on the static descriptions
of KSW systems), as combinators on the static descriptions of the translated compo-
nents, does not succeed. In particular we cannot translate communicating parallel
compositions of KSW systems into networks of communicating IWIM subsystems.
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This is a consequence of the fact that the KSW model is a global state model, i.e any
state of a configuration is precisely one of the states occurring in the static description
of the system. This does not happen in the ABB model, nor in ours, because in both
cases the states of runtime configurations, are more complicated structures built out
of the states mentioned in the static description of the system. For such systems,
which (let us face it) give a more natural account of typical distributed systems with
their de facto distributed global state, the notion of sequential composition, one of the
objectives of the sum construction, is a non-trivial issue. Concerning such systems,
sequential composition is: either ignored completely; or is a feature that becomes
available only after a substantial investment of theoretical effort (to perform the re-
quired unwinding); or in practical scenarios, requires the use of a serviceable distrib-
uted termination algorithm. Petri nets (see eg. [Best et al. (2000)]) is a well known
formalism that exhibits the same characteristics.

The fact that we were able to simulate other formal approaches to IWIM in our mod-
el, means that we gain the capability of inheriting results obtained in these models,
in ours. One particular instance that comes to mind concerns the deadlock avoidance
results proved under suitable conditions for the ABB model in [Arbab et al. (2000a)].
Another concerns the algebraic operations considered in the context of the KSW
model in [Katis et al. (2000)], which helped to stimulate the development of the al-
gebraic properties of ours. Regarding the latter, we have not confronted the normal
questions that arise concerning the coherence of combinations the various operations,
commutativity, associativity, and so on. However, recognising that our models are
built using elementary set theoretic machinery, we do not anticipate problems provid-
ed we are prepared to take results up to set theoretic isomorphism.

The juxtaposition of conventionally inspired algebraic properties with the more ad
hoc constructions appearing directly afterwards, illustrates that the agendas of alge-
bra and of system design cannot always be relied upon to coincide. While the former
can give a useful perspective at a high level of abstraction, more specialised ‘bricol-
lage’ is often needed to accomplish desired lower level goals while expending no
more than a reasonable amount of effort. To put it another way, perhaps more clearly,
the way a system can be decomposed as recommended by a particular suite of alge-
braic primitives, may well not coincide with the way that the same system can be de-
composed respecting ‘application level concerns’. The former are normally designed
with genericity in mind, while the latter can exploit specific (and usually crucial) fea-
tures of the application to achieve a much more natural account for the system in
question, even if the techniques utilised do not generalise to arbitrary systems. Itis
no more than a little ironic that in this paper, this point has been illustrated by con-
sidering the naturally arising generic algebraic primitives of one model, and consid-
ering the question of how these might best be expressed using the naturally arising
generic algebraic primitives of another model. More generally itillustrates that rely-
ing on some fixed set of algebraic or other tools, and ignoring the tighter properties
that specific systems enjoy, restricts expressivity.

Finally we observe that coordination models different from the IWIM one, and in
particular the global state tuple based approaches, must nevertheless embody the ca-
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pacity for disentangling management from worker aspects, so readily done for
IWIM, even if only implicitly. The challenge of extracting this structure from so dif-
ferent looking starting points remains an intriguing issue to explore in future publi-
cations.
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