
.

nds

rus

K.

a-
sep-

itting
del is
he es-
au-
hose

WIM
anager
ge of
of

dels
en-

hoc
matic
ro-

talk
sce-
epts.
vel
A Multiply Fibred Automaton Semantics
for IWIM

R. Banach
Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K

banach@cs.man.ac.uk

F. Arbab
Software Engineering Dept., CWI, Kruislaan 413, 1098 SJ Amsterdam, Netherla

farhad@cwi.nl

G. A. Papadopoulos
Computer Science Dept., University of Cyprus, 75 Kallipoleos St., Nicosia, Cyp

george@cs.ucy.ac.cy

J. R. W. Glauert
School of Information Systems, University of East Anglia, Norwich, NR4 7TJ, U.

J.Glauert@sys.uea.ac.uk

Abstract. The drawbacks of programming coordination activities directly within the applic
tions software that needs them are briefly reviewed. Coordination programming helps to
arate concerns, making complex coordination protocols into standalone entities; perm
separate development, verification, maintenance, and reuse. The IWIM coordination mo
described, and a formal automata theoretic version of the model is developed, capturing t
sentials of the framework in a fibration based approach. Specifically, families of worker
tomata have their communication governed by a state of a manager automaton, w
transitions correspond to reconfigurations. To capture the generality of processes in I
systems, the construction is generalised so that process automata can display both m
and worker traits. IWIM systems possess a large number of algebraic properties, a ran
which are described. The relationship with other formalisations of the IWIM conception
the coordination principle is explored.
Keywords. Coordination, IWIM, Automata, Fibration.

1 Introduction

The massively parallel systems that can be built today require programming mo
that explicitly deal with the concurrency of cooperation among large numbers of
tities in a single application. Today’s concurrent applications typically use ad
templates to coordinate the cooperation of their components, and this is sympto
of a lack of proper coordination frameworks for describing complex cooperation p
tocols in terms of simple primitives and structuring constructs.

In most real applications, there is no paradigm in which we can systematically
about cooperation of active entities, and in which we can compose cooperation
narios such as client-server, workers pool, etc., out of a set of more basic conc
Consequently, applications programmers must deal directly with the lower-le
1

t ap-
inter-
ever

ode
n from
on-
n-

dif-
t be

ifica-
euse

ca-
, inter-
mu-
muni-

ssage
efore,
igms
oop-

d co-
ston
ap-
ing
dent
Pa-
00),
vel
as Lin-
ction
his

del
au-
e-
es-

ker
hange
mily
le ar-
in-
communication primitives that instantiate the cooperation model of a concurren
plication. These primitives are generally scattered throughout the source code,
spersed with non-communication application code, and the cooperation model n
manifests itself in a tangible form. Thus it is not an identifiable piece of source c
that can be designed, developed, debugged, maintained, and reused, in isolatio
the rest of the application. This inability to deal with the cooperation model of a c
current application explicitly, contributes to the difficulty of developing working co
current applications containing large numbers of actively cooperating entities.

Despite the fact that the implementation of complex protocols is often the most
ficult part of a development, the end result is typically so nebulous that it canno
recognized as a commodity in its own right. This makes maintenance and mod
tion of the cooperation protocols much more difficult than necessary, and their r
next to impossible.

The two most popular models of communication within highly concurrent appli
tions are shared memory and message passing. In the shared memory model
process synchronisation primitives play the dominant role, with interprocess com
nication subordinate, whereas in the message passing model, interprocess com
cation is dominant, and synchronisation subordinate. The latter makes the me
passing model somewhat more flexible than the shared memory model and, ther
it is the dominant model used in concurrent applications. However, both parad
are too low-level to serve as a proper foundation for systematic construction of c
eration protocols as explicit, tangible pieces of software.

Such observations have led in recent years to an upsurge in activity in so-calle
ordination frameworks and languages. An early survey is [Malone and Crow
(1994)] which characterisies coordination as an emerging discipline. Various
proaches with roots in eg. the actor model [Agha (1986)], or in logic programm
[Shapiro (1989)], were instrumental in establishing coordination as an indepen
discipline. See [Ciancarini and Hankin (1996), Garlan and Le Metayer (1997),
padopoulos and Arbab (1998), Ciancarini and Wolf (1999), Porto and Roman (20
Omicini (2002)] for representative contemporary work. A number of higher le
perspectives have emerged. Among these are the tuple based approaches such
da [Gelernter (1985), Carriero and Gelernter (1989)], and by contrast, the conne
control based approaches amongst which we find the IWIM model. It is with t
model that this paper is concerned.

The rest of this paper contains the following. In Section 2 we survey the IWIM mo
informally. With this motivation covered, in Section 3 we develop a theoretical
tomaton-based model for IWIM, which we call the IWIM systems model. This is d
veloped gradually, as it is a fairly complicated construction, aiming to reflect the
sentials of IWIM in a credible manner. The underlying idea is that families of wor
automata perform their tasks under the supervision of a manager automaton. C
of state of the manager corresponds to reconfiguration, whereupon a different fa
of worker automata shoulders the burden. This basic idea is elaborated to enab
bitrarily complex hierarchies to be modelled. Although our model is reasonably
2

n-
he
lar
eir

ny
bra-

e are
pret-
nd we
ffered
n. In
sys-
ations
of
ring

on 7
nif-
ms.

eal
al.
, and
ugh
ent.
ts of
; we
tion:

els. A
Inde-

ge in
ent
cast

es of

does
for-

nt and
mmu-
volved, it falls short of capturing everything about IWIM or any specific impleme
tation of the IWIM idea, such as is to be found in the formal specification of t
MANIFOLD language [Arbab et al. (1993), Bonsangue et al. (2000)]. In particu
we abstract away from the ability of workers to continue with internal actions on th
own, which in the full IWIM model they can do irrespective of the attentions of a
manager. Our main purpose could be seen as being to explore the viability of fi
tion based ideas in the arena of reconfiguration problems.

In Section 4 we describe some algebraic properties of our IWIM systems. Thes
based primarily on the categorical ideas of pullbacks and pushouts, suitably inter
ed in the present context. A number of variations on these ideas are possible, a
consider a number of them. The completeness of the algebraic constructions o
turns out to be a relatively straightforward issue and also receives some attentio
Section 5 we discuss how the instantaneous reconfiguration aspect of our IWIM
tems can be generalised to model the asynchronous event based reconfigur
characteristic of real IWIM frameworks. In Section 6 we show how the model
Arbab, de Boer and Bonsangue [Arbab et al. (2000a)], a theoretical model featu
aspects of reconfiguration, can be captured within IWIM systems; and in Secti
we show how the model of Katis, Sabadini and Walters [Katis et al. (2000)], a sig
icantly different theoretical account, can also be captured within IWIM syste
Section 8 concludes.

2 The IWIM Model

In this section we review the generic coordination framework known as the Id
Worker Ideal Manager (IWIM) model [Arbab (1995), Arbab (1996), Arbab et
(1998)]. The basic concepts in the IWIM model are processes, events, ports
channels. A process is a black box with well defined ports of connection thro
which it exchanges units of information with the other processes in its environm
A port is a named opening in the bounding walls of a process through which uni
information are exchanged using standard I/O primitives such as read and write
assume that each port is used for the exchange of information in only one direc
either into the process (input port) or out of the process (output port).

The interconnections between the ports of processes are made through chann
channel connects a port of a producer process to a port of a consumer process.
pendent of the channels, there is an event mechanism for information exchan
IWIM. Events are broadcast by their sources into their environment, yielding ev
occurrences. In principle, any process in an environment can pick up a broad
event occurrence. In practice, usually only a few processes pick up occurrenc
each event, because only they are tuned in to the relevant sources.

The IWIM model supports anonymous communication: in general, a process
not, and need not, know the identity of the processes with which it exchanges in
mation. This concept reduces the dependence of a process on its environme
makes processes more reusable; it also makes the protocols governing such co
nication more reusable.
3

ator)
roc-
the

ica-
. In

her
nd to

n ap-
of
kers,

man-
ker
rocess

ped
w of
uar-
re-
nnel:

s and a
rce to

con-

e-

nd-
con-
ls of
s, a
.

. The
s are
one

con-
ta to

nnel,

t

renc-
teed to
A process in IWIM can be regarded as a worker process or a manager (or coordin
process. The responsibility of a worker process is to perform a task. A worker p
ess is not responsible for the communication that is necessary for it to obtain
proper input it requires to perform its task, nor is it responsible for the commun
tion that is necessary to deliver the results it produces to their proper recipients
general, no process in IWIM is responsible for its own communication with ot
processes. It is always the responsibility of a manager process to arrange for a
coordinate the necessary communications among a set of worker processes.

There is always a bottom layer of worker processes, called atomic workers, in a
plication. In the IWIM model, an application is built as a (dynamic) hierarchy
worker and manager processes on top of this layer. Aside from the atomic wor
the categorization of a process as a worker or a manager process is subjective: a
ager processman that coordinates the communication among a number of wor
processes, may itself be considered as a worker process by another manager p
responsible for coordinating the communication ofman with other processes.

In IWIM, a channel is a communication link that carries a sequence of bits, grou
into units. A channel represents a reliable, directed, and perhaps buffered, flo
information in time. Here, reliable means that the bits placed into a channel are g
anteed to flow through without loss, error, or duplication, and with their order p
served; and directed means that there are always two identifiable ends in a cha
a source and a sink. Once a channel is established between a producer proces
consumer process, it operates autonomously and transfers the units from its sou
its sink.

If we make no assumptions about the internal operation of the producer and the
sumer of a channelc, we must consider the possibility thatc may contain some pend-
ing units. The pending units of a channelc are the units that have already been d
livered toc by its producer, but not yet delivered byc to its consumer. The possibility
of the existence of pending units in a channel gives it an identity of its own, indepe
ent of its producer and consumer. It makes it meaningful for a channel to remain
nected at one of its ends, after it is disconnected from the other. The full detai
the IWIM model codify a number of variations on this theme, but for our purpose
channel will stay alive as long as one end or another is connected to a process

Worker processes have two means of communication: via ports, and via events
communication primitives that allow a process to exchange data through its port
conventional read and write primitives. A process can attempt to read data from
of its input ports. It hangs if no data is presently available through that port, and
tinues once data is made available. Similarly, a process can attempt to write da
one of its output ports. It hangs if the port is presently not connected to any cha
and continues once a channel connection is made to accept the data.

A processproccan also broadcast an evente to all other processes in its environmen
by raising that event. The identity of the eventetogether with the identity of the proc-
essproccomprise the event occurrence. A process can also pick up event occur
es broadcast by other processes and react to them. Certain events are guaran
4

tance
f the
en,

) and
el con-
own.
mu-
pted

mmu-
ork.
ation,
.

of
ugh
As

syn-
trict

odel
We
y, to
een
ase
sys-

ection
in the

ele-
to
con-

pro-
.

oke
tain
epre-
nlike
ow
ork.

tary
be broadcast in special circumstances; for example, termination of a process ins
always raises a special event to indicate its death. Our formal model in the rest o
paper will be quite limited in that we only model reconfiguration events. Even th
for simplicity, the modelling will be synchronous, a defect we address later.

A manager process can create new instances of processes (including itself
broadcast and react to event occurrences. It can also create and destroy chann
nections between various ports of the process instances it knows, including its
Creation of new process instances, as well as installation and dismantling of com
nication channels are done dynamically. Specifically, these actions may be prom
by event occurrences it detects. Each manager process typically controls the co
nications among a dynamic family of process instances in a data-flow like netw
The processes themselves are generally unaware of their patterns of communic
which may change in time, according to the decisions of a coordinator process

In our formal model, again for reasons of simplicity, we eschew the full generality
these concepts. Our process networks will turn out to be statically defined, tho
the execution trajectory through this stucture will be dynamically determined.
such they may be viewed as the static unwinding of an implicit but more succinct
tactic specification of dynamic behaviour, and the unwinding enables us to res
discussion to the semantic level alone, a welcome simplification.

3 IWIM Automata

In this section, we distil the essentials of the ideas just described, to create the m
which will serve as the basis for the semantics of IWIM in the rest of the paper.
build the model up in two steps. The first is based on a fibration-inspired strateg
reflect the way that IWIM events tear down and rebuild interconnections betw
families of processes. Accordingly, elementary IWIM automata will have in the b
a manager automaton, describing how the manager part of an elementary IWIM
tem moves, and above each state of the manager automaton, there will be a coll
of worker automata, connected together according to the prescription contained
manager state. The various worker collections are then integrated into a single
mentary IWIM system using an ‘above’ relation describing how workers relate
states of the manager, a construction inspired in essence by the Grothendieck
struction. As a result of this, each configuration of the overall automaton can be
jected down onto the relevant state of the manager in the manner of a fibration

The capacity of IWIM systems to reconfigure themselves via events that prov
managers into reconfiguration activities, is here modelled by mappings of cer
worker moves (that represent the raising of the event) to manager moves (that r
sent the reception and processing of the event, resulting in reconfiguration). U
genuine IWIM systems, this is a synchronous activity in our model, but we will sh
in Section 5 that the asynchronous aspects can be recaptured within our framew

Fig. 1 illustrates in pictures what we have just described in words for elemen
IWIM automata. It shows a collection of worker automata {A, B, C, D, E, S} sitting
5

orts
utput

and
utput
ring
e

ent
ans

st one
ernal
above a managerMan, forming an elementary IWIM system. The states ofMan i.e.
{ l, m, n} each map to communication networks consisting of directed graphs of p
and channels. The ports of these networks correspond bijectively to input and o
ports in the workers, who are ignorant of whence come their input messages
where their output messages are destined. Input ports are shown solid, while o
ports are hollow. Furthermore these bijections in large part mimic the substructu
of individual ports in IWIM into their private and public parts. Also following thes
bijections up to the workers reveals which workers are above which managem
states. Note that workerB is above more than one management state. This me
that whenManmakes a transition froml to m, B is unaffected and continues to work
as before. Attached to each channel is a queue of messages illustrated for ju
channel forl in the figure. Some of the channels can be external, such as the ext

l

m

n

a -o!v-› b

c -rec-› d

χ

[u, …]

A B

C

S
D E

Fig. 1

Man
6

rnal
put
ran-
by ad-

.

ut
se
els.

the
-
le-

the
ount

both
than
orker.
rod-
ork-
tems.
ions
heir

om-
pre-
being
man-
mic

tates
ete-
utom-
nage
clic
larly

t state
input channel for statel, and the external output channel forn; these allow connection
to and exchange of information with the outside world. Note however that exte
input can only take place whenl is the current management state, and external out
can only take place whenn is the current management state. The management t
sitions must specify what happens to the message queues. These are mapped
ditional data illustrated byχ in the figure and merged into the destination queues

Worker C shows a typical worker output transition; there are similar worker inp
transitions. The port of workerS shows that ports are really quite general purpo
concepts in IWIM, able to accomodate several incoming and outgoing chann
WorkerS itself can be seen as providing a serialisation service forB, C, D. Worker
D shows a reconfiguration event transition. The thick line from the transition to
manager illustrates that the atomic transition labelrec is mapped to the manager tran
sition fromm to n. In this manner the workers can provoke reconfigurations imp
mented by the manager.

In the second step of the two step strategy for building our IWIM system model,
elementary IWIM system construction just described is generalised to take acc
of the more flexible nature of real IWIM systems. Now, processes may manifest
manager and worker roles, worker processes may enjoy the attentions of more
one manager, and manager processes may enjoy the benefits of more than one w
To cope with this, we define IWIM worker-manager automata as asynchronous p
ucts of individual worker and manager automata. Also the relation connecting w
ers and managers becomes global. In this manner we get unrestricted IWIM sys
The previously mentioned properties continue to hold. In particular, configurat
of an unrestricted IWIM system can be projected down onto configurations of t
mangers.

Let us illustrate all this in another Figure. Fig 2 shows four worker-manager aut
ata,W, X, Y, Z. These are drawn as rectangles with the dashed horizontal line re
senting the division between the worker and manager facets, the manager facet
uppermost. The worker structure is suppressed in all cases, and the fact that the
ager parts ofX andYare empty is intended to indicate that these automata are ato
workers, with trivial manager facets. The arrows emanating from manager s
point to the worker facets under their control. Fig 2 illustrates that (almost) compl
ly general management relationships are permitted between worker-manager a
ata. In fact the only restriction is that an automaton’s manager facet cannot ma
it’s own worker facet. Of course in realistic settings, the kind of contorted and cy
dependencies occurring in Fig. 2 do not really arise. Far more plausible are regu
structured hierarchies with atomic workers in the bottommost layer.

3.1 Elementary IWIM Systems

Definition 3.1 An IWIM manager automaton is a triple (M, mI, R), whereM is a set
of management states,mI ∈ M is an initial state, andR is a set of reconfiguration tran-
sitions. These components are further stuctured as follows. Each managemen
m is itself the name of a pair (Pm, Cm), wherePm is a set of port names, andCm is a
7

atisfy
an-
(

ection
tput
u-
rget.

al-
set of channel names. There are two partial functionssm, tm : Cm → Pm that send
channels to source and target port names where they are defined. They s
dom(sm) ∪ dom(tm) = Cm, i.e. each channel is connected to at least one port — ch
nels not in dom(sm) are called external input channels, and channels not in domtm)
are called external output channels; channels in both dom(sm) and dom(tm) are called
internal channels. In a reconfiguration transition, writtenm -r-› n, ther is shorthand
for a partial injection on the channel namesχm,n : Cm → Cn. Also for each manage-
ment statem, we have an identity transitionm -idm-› m in which theχm,m partial in-
jection is a total identity.

The above definition characterises states of the manager automaton as conn
networks in which the ports do not have a unique orientation (as input or ou
ports). Different statesm, n may refer to the same connection network. Reconfig
rations identify some channels of the source state with some channels of the ta

Definition 3.2 An IWIM worker automaton is a triple (I, O, A), whereI is a set of
input ports, disjoint fromO a set of output ports; andA = (St, Init, Tr) is an automaton
with statesSt, of whichInit ∈ Stis an initial state, andTr ⊆ St× Act× Stis a transition
relation, whereAct is a set of actions of the formin?v or out!v or rec. In the first two
kinds of action,in ∈ I, out∈ O, and we assume that there is a global alphabet of v

Fig. 2

W X

Y

Z

8

of
will

ers

rs

a

n

e will
to

.

uesVal containingv. In the last kind,rec is just a name (intended to be the name
a reconfiguration transition as in Definition 3.1). Where convenient below, we
write transitions using the notationa -in?v-› b or a -out!v-› b or a -rec-› b. We define
TrI = {a -in?v-› b ∈ Tr}, TrO = {a -out!v-› b ∈ Tr}, TrR = {a -rec-› b ∈ Tr}, so that
Tr = TrI ∪ TrO ∪ TrR, the union being evidently disjoint. Additionally we defineRec
= {rec | a -rec-› b ∈ Tr} the alphabet of reconfiguration events of the worker.

So far, workers are automata of a fairly standard kind. Now we show how work
and managers are glued together.

Definition 3.3 An elementary IWIM system (Man, Wor) consists of an IWIM man-
ager automatonMan, an elementary workforceWor, and ancillary data to be de-
scribed below.Wor is a set of worker names together with a mapwor, which yields
for each workerw∈ Wor, an IWIM worker automatonwor(w). Furthermore we have:

(1) There is a relation ^ betweenWorand the management states ofMan. We write
w^m to say that a workerw is abovea management statem if the pair is in the
relation.

(2) If a workerw is above a management statem, then there is a maprw^m from the
rec actions ofwor(w), into reconfiguration transitionsm -r-› n of Man.

(3) For each management statem ∈ Man, there is a total bijectionλm : Pm → IOm
whereIOm is the disjoint union of all of the input and output ports of all worke
abovem; i.e. IOm = +∪k^m{ i | i ∈ Iwor(k)} +∪ +∪k^m{ o | o ∈ Owor(k)}.

(4) Associated to each channelc ∈ Cm (wherem is a management state), there is
queue of messages which we writec:[u0, u1, …]. Eachui is in Val. The front
of this queue isu0.

A configuration of an elementary IWIM system (Man, Wor) consists of:

(1) a statem of Man;

(2) a setests = {ak | ak ∈ Stwor(k), k ∈ Wor} of statesak one for each workerk;

(3) a setqs= {c:qc | c:qc = c:[u0, u1, …], c ∈ Cn, n ∈ M} of queues of messages
c:[u0, u1, …] one for each channel of each management state.

Note that in the above,estsmay equivalently be viewed as the range of a functio
which maps each worker to one of its states, so thatak is formally an ordered pair.
Since we are overwhelmingly concerned with the states and how they change, w
not use the more cumbersome functional apparatus. Similar remarks applyqs
though here some of the indexing information is routinely suppressed.

A configuration of an elementary IWIM system (Man, Wor) is initial iff: m is initial,
theak are also all initial, and the queues associated with all channels are empty

A transition of an elementary IWIM system (Man, Wor) in state (m, ests, qs) is one
of the following six kinds:
9

end

se
e).

ing
ere

ing
ere

put
(ENVI) The environment adds a value to the input end of a queue whose source
is not attached to any port (an external input channel’s queue).

c ∉ dom(sm) ,
c ∈ dom(tm) ,
qsrest = qs – {c:[… , un]}
—————————————
m —› m ,
ests —› ests ,
qs —› qsrest∪ {c:[… , un , u]}

(ENVO) The environment removes a value from the output end of a queue who
target end is not attached to any port (an external output channel’s queu

c ∉ dom(tm) ,
c ∈ dom(sm) ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
m —› m ,
ests —› ests ,
qs —› qsrest∪ {c:[u1, …]}

(IN) A worker automaton performs an input on one of its input ports, remov
the front element from an input queue attached to the port, of which th
must be at least one.

k^m , ak ∈ ests , ak -i?u-› bk ,
λm(p) = i ∈ Iwor(k) , tm(c) = p ,
estsrest = ests – {ak} ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
m —› m ,
ests —› estsrest∪ {bk} ,
qs —› qsrest∪ {c:[u1, …]}

(OUT) A worker automaton performs an output on one of its output ports, add
a value to the end of any output queue attached to the port, of which th
must be at least one.

k^m , ak ∈ ests , ak -o!u-› bk ,
λm(p) = o ∈ Owor(k) ,
∅ ≠ Out = {d | sm(d) = p} ,
estsrest = ests – {ak} ,
qsrest = qs – {d:[… , ud,nd

] | d ∈ Out}
———————————————————
m —› m ,
ests —› estsrest∪ {bk} ,
qs —› qsrest∪ {d:[… , ud,nd

, u] | d ∈ Out}

(FOR) A port performs a forwarding action, removing the front element from
an input queue attached to the port and inserting (a copy of) it to all out
queues attached to the port, of which there must be at least one.
10

te.
n
e.

ager
state

t
eues

at in-
n it
as a

input
rward-
my

tirely
The
sition
tm(c) = p ,
∅ ≠ Out = {d | sm(d) = p} ,
qsrest = qs – ({c:[u, u1, …]} ∪ {d:[… , ud,nd

] | d ∈ Out})
—————————————————————————————
m —› m ,
ests —› ests ,
qs —› qsrest∪ {c:[u1, …]} ∪ {d:[… , ud,nd

, u] | d ∈ Out}

NB. The above notation is intended to include the case thatc ∈ Out,
whereupon the front message ofc’s queue is moved to its tail.

(REC) A worker automatonkr performs arec actionakr -rec-› bkr, provoking a
reconfigurationm -r-› n of the elementary IWIM system, given by the
functionrkr^m. The manager automaton makes a transition to the new sta
Worker automatonkr completes its transition. Worker automata other tha
kr who are above both the old and new manager state remain as befor
Worker automata above the old but not the new manager state go into
suspension. Worker automata not above the old but above the new man
state are awakened. The queues of channels above the old manager
which are reassigned via the channel reconfiguration data are moved
according to that data, being merged with the existing queues at targe
channels and leaving the queues at originating channels empty. The qu
at other channels remain as before.

kr^m , akr ∈ ests , akr -rec-› bkr ,
rkr^m(rec) = m -r-› n = χm,n : Cm → Cn ,
estsrest = ests – {akr} ,
qsdel = {c:qc | c ∈ Cm, c ∈ dom(χm,n)} ∪ {d:qd | d ∈ Cn, d ∈ rng(χm,n)} ,
qsrest = qs – qsdel ,
qsdom = {c:[] | c ∈ Cm, c ∈ dom(χm,n)} ,
qsmerge = {d:qcd | c:qc, c ∈ Cm, c ∈ dom(χm,n),

d:qd, χm,n(c) = d ∈ Cn, d ∈ rng(χm,n),
qcd ∈ merge(qc, qd)}

———————————————————–
m —› n ,
ests —› estsrest∪ {bkr} ,
qs —› qsrest∪ qsdom∪ qsmerge

This transition system has some features that deserve comment. Note firstly th
put/output and forwarding activities are completely decoupled. For this reaso
makes little sense for the manager to connect up a port to use simultaneously
broadcasting device, and as an input device to the relevant worker, since the
messages and forwarded messages are necessarily disjoint. Thus since even fo
ing ports have to belong to some worker, it is best to invent special purpose dum
workers just for the purpose.

A second issue concerns the creation and destruction of processes. IWIM is en
virtuous regarding matters of life and death: there is no murder, only suicide.
most that managers can accomplish is anasthesia. When a reconfiguration tran
11

e the
current
man-
is able
en-

ansi-
ource
ral in-
com-

this
is al-

ons

tran-

king
tary
f the

l-
btain
takes a worker out of the current configuration because that worker is not abov
new current management state, the worker sleeps, because being above the
management state is a hypothesis of all six transition types. When the current
agement state once more becomes one which the worker is above, it wakes and
to participate in worker transitions again. It is the worker’s own responsibility to
ter a state out of which no transitions emerge if it wishes to die.

Thirdly there arises the issue of queue management during reconfiguration tr
tions. We have elected to merge assigned queues with existing ones (for given s
and target ports) as representing an abstraction of the potential presence of seve
dependent queues from the source to the target. The latter would require a more
plex notion of reconfiguration transition than we wish to get embroiled in.

Let EConfs(Man, Wor) be the set of all configurations of (Man, Wor). Equipping it
with the transitions just described makes it into a transition system. We regard
transition system as unlabelled, it being the case that the kind of step involved
ways deducible from the pair of configurations in question.

A run of (Man, Wor) is, in the normal manner, a sequence of contiguous transiti
of EConfs(Man, Wor), starting with an initial configuration:

(m, ests, qs) —› (m′, ests′, qs′) —› (m′′, ests′′, qs′′) —› …

Let Mngr(Man, Wor) be the set of manager states of configurations inEConfs(Man,
Wor). These are given by a function eπmanwhere eπman(m, ests, qs) = m. The set
Mngr(Man, Wor) can be equipped with transitions derived from the(REC)transitions
of EConfs(Man, Wor). Thus to the transition (m, ests, qs) —› (m′, ests′, qs′) corre-
sponds theMngr(Man, Wor) transition eπman(m, ests, qs) —› eπman(m′, ests′, qs′), i.e.
m—› m′, (we regard these transition as unlabelled too). We also add an identity
sitionm —› m to each manager state inMngr(Man, Wor).

Now although a particular worker may be above several manager states, ma
problematic the definition of a projection from the static structure of the elemen
IWIM system to its manager, the same is not true of the set of configurations o
elementary IWIM system and its transition system,EConfs(Man, Wor), as it relates
to the set of manager states. InEConfs(Man, Wor), some specific manager state a
ways indexes any worker state that forms part of a configuration, and so we o
the following result.

Proposition 3.4 Let (Man, Wor) be an elementary IWIM system. LetEConfs(Man,
Wor) be the associated transition system andMngr(Man, Wor) be the corresponding
set of manager transitions. Then there is a projection:

Πe : EConfs(Man, Wor) → Mngr(Man, Wor)

which maps states by:

(m, ests, qs) |→ m = eπman(m, ests, qs)

and which maps(REC) transitions by:
12

man-
odel
es be

l this
ffec-

uct
r
r

an-

such

t
is
er
au-

nsist-
lar

er
ager

r, we
man-
rom
jobs
(m, ests, qs) —› (m′, ests′, qs′)
|→

m —› m′ = eπman(m, ests, qs) —› eπman(m′, ests′, qs′)

and which maps(ENVI), (ENVO), (IN), (OUT), transitions to identity transitions:

(m, ests, qs) —› (m, ests′, qs′)
|→

m —› m

Proof. Obvious.

3.2 Unrestricted IWIM Systems

The previous section captures the essence of the process by which an individual
ager automaton manages a group of worker automata. However the IWIM m
does not restrict worker management to a single layer. Managers may themselv
workers managed by others, in time honoured hierarchical fashion. We mode
here by allowing managers to themselves acquire a worker facet. The result is e
tively a product of the two preceding constructions.

Definition 3.5 An IWIM worker-manager automaton is the asynchronous prod
of an IWIM worker automaton (I, O, A) as in Definition 3.2, and an IWIM manage
automaton (M, mI, R) as in Definition 3.1. That is to say, an IWIM worker-manage
automaton is of the form (I, O, A)⊗(M, mI, R), where (I, O, A) is called the worker
facet and (M, mI, R) is called the manger facet. The set of states of the worker-m
ager automaton isSt× M, with initial state (Init, mI), and there are two kinds of tran-
sitions: worker transitions such as (a, m) -w-› (b, m) wherea -w-› b is a transition of
(I, O, A) (and the manager facet remains unchanged), and manager transitions
as (a, m) -r-› (a, n) wherem -r-› n is a transition of (M, mI, R) (and the worker facet
remains unchanged).

The following is evident.

Proposition 3.6 An IWIM worker-manager automaton for which the worker face
is a single (initial) state IWIM worker automaton with empty transition relation
strongly bisimilar to an IWIM manager automaton. Also an IWIM worker-manag
automaton for which the manager facet is a single (initial) state IWIM manager
tomaton whose port and channel sets are empty, and with transition relation co
ing of just the obligatory (in this case empty) identity function, is strongly bisimi
to an IWIM worker automaton.

In view of this, we can refer to IWIM worker-manager automata with trivial work
facets as pure mangers, and to IWIM worker-manager automata with trivial man
facets as pure workers.

Now that individual automata are capable of both worker and manager behaviou
can define an unrestricted IWIM system as a community of automata where the
ager facets of individual automata manage their individual workforces drawn f
the same community, and the worker facets of individual automata each do their
13

n the
strial
sets

f the
stric-

en-

lly
n

ddi-
fer

t

-
.3
man-

nce-

-

rts

duct
coordinated by one or more manager facets, since we place no restriction o
number of bosses any poor labourer might have. In keeping with the best indu
practice, no worker is ever his own manager (no selfdetermination — no one
their own salary, nor signs off their own expense claims). Since the moves o
whole system are the moves of the individual elements, we need no additional re
tions beyond the no selfdetermination rule and the restrictions that apply to elem
tary IWIM systems, to have consistency.

Definition 3.7 An unrestricted IWIM systemWM is a set of IWIM worker-manager
automaton names calledWM, a subsetInitialWM ⊆ WM, together with ancillary data
described below. There are three maps:worman, wor, man, where for eachwm ∈
WM, worman(wm) is an IWIM worker-manager automaton,wor(wm) is its worker
facet, andman(wm) is its manager facet. We writemwm to say that statem is a state
of a facet of automatonwm, the facet intended being clear from the context; forma
mwm is an ordered pair, just as before. The states of a worker-manager automatowm
are thus written (awm, mwm), wherea is the state of the worker facet andm is the state
of the manager facet.

Moreover, other aspects of the notation for elementary IWIM systems acquire a
tional subscripting to indicate what part of the unrestricted IWIM system they re
to. Thus we havePmwm for the set of port names of statem of the manager facet
man(wm) of wm; likewiseCmwm is the corresponding set of channel names.

There is a binary above relation ^ wherewm′^mwm means that the worker face
wor(wm′) of automatonwm′ is above statemof the nontrivial manger facetman(wm)
of automatonwm. The no selfdetermination rule implies that wheneverwm′^mwm,
thenwm′ ≠ wm. The workforce {wm1, … , wmn} of automata whose worker facets
are above states of the manager facet ofwmis refered to as an elementary IWIM sub
system ofWM, and is an elementary IWIM system in the sense of Definition 3
when we disregard the manger facets of the workers and the worker facet of the
ager. ThusIOmwm is the set of input and output ports of the workforce abovemwm.
Specifically for an elementary IWIM subsystem:

(1) The above relation is inherited from the global one, and we will assume he
forth that no automaton is above the unique state of a trivial manager.

(2) There is a maprwm′^mwm of therec transitions of worker facets into reconfigura
tion transitions of the corresponding nontrivial manager facet.

(3) The total bijection property of manager ports to workforce input/output po
holds via a mapλmwm : Pmwm → IOmwm.

(Note that the no selfdetermination rule is consistent with the asynchronous pro
structure of the transitions for worker-manager automata. Otherwise somerwm̂ mwm
could force moves ofwm that were worker and manager moves simultaneously.)

Let WM be an unrestricted IWIM system. Then we defineWM# = {wm∈ WM | wm
has a nontrivial manager facet}.
14

ions.

eue.

ts,

t

A configuration (sts, qs) of an unrestricted IWIM system consists of:

(1) a setsts= {(awm, mwm) | wm∈ WM} of states (awm, mwm) one for each automaton
in WM;

(2) a setqs = {c:qc | c ∈ Cmwm, ∃ a • (awm, mwm) ∈ sts} of queues of messages
c:[u0, u1, …] one for each channelc ∈ Cmwm of each management statemwmof
each nontrivial manager facetman(wm).

As before, these configuration components are really the ranges of suitable funct

A configuration (sts, qs) of an unrestricted IWIM systemWM is initial iff: all states
in sts are initial in both facets, and all channel queues inqs are empty.

Let (sts, qs) be a configuration of an unrestricted IWIM systemWM. Then we can
define the manager part of (sts, qs) to beπman(sts) = {mwm | ∃ awm • (awm, mwm) ∈
sts, wm∈ WM#}.

A transition of an unrestricted IWIM systemWM in configuration (sts, qs) is one of
six kinds, patterned after elementary IWIM system transitions:

(ENVI) The environment adds a value to the end of an external input queue.

c ∉ ∪{dom(sm′wm′) | m′wm′ ∈ πman(sts)} ,
c ∈ dom(tmwm) , mwm∈ πman(sts) ,
qsrest = qs – {c:[… , un]}
—————————————
sts —› sts ,
qs —› qsrest∪ {c:[… , un, u]}

(ENVO) The environment removes a value from the end of an external output qu

c ∉ ∪{dom(tm′wm′) | m′wm′ ∈ πman(sts)} ,
c ∈ dom(smwm) , mwm∈ πman(sts) ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
sts —› sts ,
qs —› qsrest∪ {c:[u1, …]}

(IN) A worker facet of an automaton performs an input on one of its input por
of which there must be at least one.

k^mwm , mwm∈ πman(sts) ,
(ak, nk) ∈ sts , (ak, nk) -i?u-› (bk, nk) ,
λmwm(p) = i ∈ Iwor(k) , tmwm(c) = p ,
stsrest = sts – {(ak, nk)} ,
qsrest = qs – {c:[u, u1, …]}
—————————————–
sts —› stsrest∪ {(bk, nk)} ,
qs —› qsrest∪ {c:[u1, …]}

(OUT) A worker facet of an automaton performs an output on one of its outpu
ports, of which there must be at least one.
15

nager
lar
(ak, nk) ∈ sts , (ak, nk) -o!u-› (bk, nk) ,
∅ ≠ Out = {d | ∃ mwm∈ πman(sts), p • k^mwm,

λmwm(p) = o ∈ Owor(k), smwm(d) = p} ,
stsrest = sts – {(ak, nk)} ,
qsrest = qs – {d:[… , ud,nd

] | d ∈ Out}
———————————————————
sts —› stsrest∪ {(bk, nk)} ,
qs —› qsrest∪ {d:[… , ud,nd

, u] | d ∈ Out}

(FOR) A port performs a forwarding action.

k^m′wm′ , m′wm′ ∈ πman(sts) , tm′wm′(c) = p ,
∅ ≠ Out = {d | ∃ mwm∈ πman(sts), p • k^mwm,

λmwm(p) = o ∈ Owor(k), smwm(d) = p} ,
qsrest = qs – ({c:[u, u1, …]} ∪ {d:[… , ud,nd

] | d ∈ Out})
—————————————————————————————
sts —› sts ,
qs —› qsrest∪ {c:[u1, …]} ∪ {d:[… , ud,nd

, u] | d ∈ Out}

NB. The above notation is intended to include the case thatc ∈ Out,
whereupon the front message ofc’s queue is moved to its tail.

(REC) The worker facet of automatonkr performs arec actionakr -rec-› bkr,
moving to statebkr, and provoking reconfigurations of all the elementary
IWIM subsystems managed by manager facets above a current state
of whichkr sits. All these manager facets move to their respective new
management states. The queues of the channels managed by these ma
facets are mapped via the channel reconfiguration data for their particu
manager facet.

∅ ≠ Rmman = {mwm | mwm∈ πman(sts) • kr^mwm} ,
(akr, mkr) ∈ sts , (akr, mkr) -rec-› (bkr, mkr) ,
Rnman = {nwm | mwm∈ πman(sts) • kr^mwm,

rkr^mwm(rec) = mwm -r-› nwm = χmwm,nwm : Cmwm → Cnwm} ,
stsrest = sts – ({(akr, mkr)} ∪

 {(awm, mwm) | (awm, mwm) ∈ sts, mwm∈ Rmman}) ,
stspost = {(bkr, mkr)} ∪ {(awm, nwm) | (awm, mwm) ∈ sts,

mwm∈ Rmman, nwm∈ Rnman} ,
qsdel = {c:qc | c ∈ Cmwm, c ∈ dom(χmwm,nwm), mwm∈ Rmman} ∪

{ d:qd | d ∈ Cmwm, d ∈ rng(χmwm,nwm), mwm∈ Rmman, nwm∈ Rnman} ,
qsrest = qs – qsdel ,
qsdom = {c:[] | c ∈ Cmwm, c ∈ dom(χmwm,nwm), mwm∈ Rmman} ,
qsmerge = {d:qcd | c:qc, c ∈ Cmwm, c ∈ dom(χmwm,nwm),

d:qd, χmwm,nwm(c) = d ∈ Cmwm, d ∈ rng(χmwm,nwm),
mwm∈ Rmman, nwm∈ Rnman,
qcd ∈ merge(qc, qd)}

———————————————————–
sts —› stsrest∪ stspost ,
qs —› qsrest∪ qsdom∪ qsmerge
16

de-
eses
least
icide.
t be
y can

the

n-

ys-
The remarks made following the elementary IWIM subsystems transition system
scription apply with equal or greater force here. Thus all transitions have hypoth
that ensure that any active worker is being actively managed by being above at
one current mangement state. Also there is no murder, only anasthesia and su
Moreover, reconfiguration events simultaneously affect all mangers who migh
managing a particular worker facet. The structure of the model ensures that the
all do this without adversely interfering with each other.

Let Confs(WM) be the set of all configurations ofWM. Equipping it with the transi-
tions just described makes it into a transition system.

A run of WM is a sequence of contiguous transitions ofConfs(WM) starting with an
initial configuration:

(sts, qs) —› (sts′, qs′) —› (sts′′, qs′′) —› …

Let (sts, qs) be a configuration ofWM. Let Mngrs(WM) be the set of manager parts
of configurations inConfs(WM). It can be equipped with transitions derived from
those ofConfs(WM). Thus whenever (sts, qs) —› (sts′, qs′) is a(REC) transition of
Confs(WM), there is aMngrs(WM) transitionπman(sts) —› πman(sts′). We also add
an identity transitionπman(sts) —› πman(sts) to each manager part inMngrs(WM). As
previously, all of these transitions are unlabelled.

It will now not be surprising that despite the greater complexity we have here,
projection that we had in Section 3.1 can be recovered.

Proposition 3.8 Let WM be an unrestricted IWIM system. LetConfs(WM) be the
associated transition system, andMngrs(WM) be the associated manager parts tra
sition system. Then there is a projection:

Π : Confs(WM) → Mngrs(WM)

which maps states by:

(sts, qs) |→ πman(sts)

and which maps(REC) transitions by:

(sts, qs) —› (sts′, qs′)
|→

πman(sts) —› πman(sts′)

and which maps(ENVI), (ENVO), (IN), (OUT), transitions to identity transitions:

(sts, qs) —› (sts′, qs′)
|→

πman(sts) —› πman(sts′) = πman(sts)

Proof. Obvious.

In the remainder of the paper we will be concerned only with unrestricted IWIM s
tems, and will henceforth just refer to them as IWIM systems.
17

raic
large
for
and

hem-
asons
WIM

-

that

-

l

4 Algebraic Properties of IWIM Systems

The relatively clean structure of IWIM systems gives rise to a number of algeb
properties. In this section we describe a selection of these from among the
number of possibilities. We start by defining suitable notions of homomorphism
worker, manager, and worker-manager automata, and move on to pullback
pushout contructions using them; these being things focused on automata t
selves. We repeat the exercise for weakened notions of homomorphism, for re
that become clear when we subsequently consider contructions focused on I
systems. Finally, we consider completeness.

4.1 Contructions Centred on Automata

We start with the most obvious constructions.

Definition 4.1 (Worker Homomorphisms) Letwor1 = (I1, O1, A1 = (St1, Init1, Tr1))
andwor2 = (I2, O2, A2 = (St2, Init2, Tr2)) be worker automata. A worker homomor
phism fw : wor1 → wor2 is given by the functions:fw : St1 → St2 (overloading the
namefw), andϕ : I1 → I2, κ : O1 → O2, whereϕ andκ are bijections,fw(Init1) = Init2,
and whenever there is a transition of the forma -in?v-› b or a -out!v-› b or a -rec-› b
in Tr1, then we have a transitionfw(a) -ϕ(in)?v-› fw(b) or fw(a) -κ(out)!v-› fw(b) or
fw(a) -rec-› fw(b) respectively inTr2. The worker homomorphismfw : wor1 → wor2
is said to be injective, surjective, bijective etc., iff the set functionfw : St1 → St2 has
(any of) these properties. Below we will normally save on notation by assuming
the bijectionsϕ andκ are strict identities.

Definition 4.2 (Manager Homomorphisms) Let man1 = (M1, mI,1, R1) andman2
= (M2, mI,2, R2) be manager automata. A manager homomorphismfm : man1 → man2
is given by the functions:fm : M1 → M2 (overloading this timefm), and the set of func-
tions {fm,mP, fm,mC | m ∈ M1}, such thatfm(mI,1) = mI,2, and all the following hold:

• wheneverfm(m1) = m2 then ifm1 maps to (Pm1
, Cm1

) andm2 maps to (Pm2
, Cm2

)
thenfm,m1P : Pm1

→ Pm2
is a bijection, which further restricts to bijections be

tween rng(sm1
) and rng(sm2

), rng(tm1
) and rng(tm2

); andfm,m1C : Cm1
→ Cm2

is a
bijection, which further restricts to bijections between dom(sm1

) and dom(sm2
),

dom(tm1
) and dom(tm2

); and that:

fm,m1P sm1
 = sm2

fm,m1C and fm,m1P tm1
 = tm2

fm,m1C

• wheneverm1 -r-› n1 is a transition ofR1 given byχm1,n1
: Cm1

→ Cn1
, then we

have a transitionfm(m1) = m2 -r-› n2 = fm(n1) of R2 given byχm2,n2
: Cm2

→ Cn2
,

such thatfm,m1C restricts to a bijection between dom(χm1,n1
) and dom(χm2,n2

),
andfm,n1C restricts to a bijection between rng(χm1,n1

) and rng(χm2,n2
); and that:

fm,n1C χm1,n1
 = χm2,n2

fm,m1C

The manager homomorphismfm : man1 → man2 is said to be injective, surjective, bi-
jective etc., iff the set functionfm : M1 → M2 has these properties. Below we wil
18

ager

au-
normally save on notation by assuming that the family of bijections {fm,mP, fm,mC |
m ∈ M1} actually consists of strict identities.

Definition 4.3 (Worker-Manager Homomorphisms) Letwm1 = (I1, O1, A1)⊗(M1,
mI,1, R1) andwm2 = (I2, O2, A2)⊗(M2, mI,2, R2) be worker-manager automata. A
worker-manager homomorphism (fw, fm) : wm1 → wm2 consists of a worker homo-
morphismfw acting on the worker facets, and a manager homomorphismfm acting on
the manager facets. Also the worker-manager homomorphism (fw, fm) : wm1 → wm2
is said to be injective, surjective, bijective etc., iff the component worker and man
homomorphisms both are.

Definition 4.4 (Worker Pullbacks) Let wor1 = (I, O, A1 = (St1, Init1, Tr1)), wor2 =
(I, O, A2 = (St2, Init2, Tr2)), andwor• = (I, O, A• = (St•, Init•, Tr•)) be worker automata.
Let fw,1• : wor1 → wor• andfw,2• : wor2 → wor• be two worker homomorphisms. We
define the worker automatonwor = (I, O, A = (St, Init, Tr)), the worker pullback of
wor1 andwor2 with respect tofw,1• andfw,2•, as follows.

St = fw,1•–1(St•∩) × fw,2•–1(St•∩) whereSt•∩ = fw,1•(St1) ∩ fw,2•(St2)

Init = (Init1, Init2)

Tr = {(a1, a2) -in?v-› (b1, b2) | (a1, a2), (b1, b2) ∈ St,
a1 -in?v-› b1 ∈ Tr1,I, a2 -in?v-› b2 ∈ Tr2,I} ∪

{(a1, a2) -out!v-› (b1, b2) | (a1, a2), (b1, b2) ∈ St,
a1 -out!v-› b1 ∈ Tr1,O, a2 -out!v-› b2 ∈ Tr2,O} ∪

{(a1, a2) -rec-› (b1, b2) | (a1, a2), (b1, b2) ∈ St,
a1 -rec-› b1 ∈ Tr1,R, a2 -rec-› b2 ∈ Tr2,R}

Evidently the above is consistent, and there are projectionsfw,1 : wor → wor1 and
fw,2 : wor → wor2 that respectively delete thewor2 aspects andwor1 aspects fromwor
in the expected way.

Definition 4.5 (Manager Pullbacks) Let man1 = (M1, mI,1, R1), man2 = (M2, mI,2,
R2), andman• = (M•, mI,•, R•) be manager automata. Letfm,1• : man1 → man• and
fm,2• : man2 → man• be two manager homomorphisms. We define the manager
tomatonman= (M, mI, R), the manager pullback ofman1 andman2 with respect to
fm,1• andfm,2•, as follows.

M = fm,1•–1(M•∩) × fm,2•–1(M•∩) whereM•∩ = fm,1•(M1) ∩ fm,2•(M2)

mI = (mI,1, mI,2)

(m1, m2) ∈ M ⇒ (m1, m2) maps to (Pm, Cm) in man iff
(m1 maps to (Pm, Cm) in man1 and
m2 maps to (Pm, Cm) in man2 and
fm,1•(m1) = fm,2•(m2) maps to (Pm, Cm) in man•)

R = {(m1, m2) -r-› (n1, n2) | (m1, m2), (n1, n2) ∈ M,
m1 -r-› n1 ∈ R1, m2 -r-› n2 ∈ R2}

(m1, m2) -r-› (n1, n2) ∈ R ⇒ χ(m1, m2),(n1, n2) = χm1,n1
 = χm2,n2
19

into
-

aton

ll-

pro-

nical
clear
n al-
g ap-

ill
Note that this generates identity reconfigurations on (m1, m2) as identities onCm in
the appropriate way. Also the above is consistent, our notational saving coming
its own in the mapping of states ofmanto port-channel networks and their reconfig
urations. There are also projectionsfm,1 : man→ man1 andfm,2 : man→ man2 that
respectively delete theman2 aspects andman1 aspects frommanin the expected way.

Definition 4.6 (Worker-Manager Pullbacks) Let wm1 = (I, O, A1)⊗(M1, mI,1, R1),
wm2 = (I, O, A2)⊗(M2, mI,2, R2), andwm• = (I, O, A•)⊗(M•, mI,•, R•) be worker-man-
ager automata. Let (fw,1•, fm,1•) : wm1 → wm• and (fw,2•, fm,2•) : wm2 → wm• be two
worker-manager homomorphisms. Then we define the worker-manager autom
wm= (I, O, A)⊗(M, mI, R), the worker-manager pullback ofwm1 andwm2 with re-
spect to (fw,1•, fm,1•) and (fw,2•, fm,2•), as the asynchronous product of the worker pu
back offw,1• andfw,2• acting on the worker facets, and the manager pullback offm,1•

andfm,2• acting on the manager facets, in the natural manner. Inevitably we have
jectionsfwm,1 : wm→ wm1 andfwm,2 : wm→ wm2 that act in the expected way.

We move now to the pushout constructions. In order to avoid cumbersome tech
details, we assume that henceforth all the unions we mention are disjoint, so it is
for each element of such a union, which component it arises from. As is usual i
gebraic discussions, we can always arrange for unions to be disjoint by choosin
propriate (set theoretically) isomorphic variants of the structures we consider.

Definition 4.7 (Worker Pushouts) Let wor1 = (I, O, A1 = (St1, Init1, Tr1)), wor2 =
(I, O, A2 = (St2, Init2, Tr2)), andwor• = (I, O, A• = (St•, Init•, Tr•)) be disjoint worker
automata. Letfw,1• : wor• → wor1 andfw,2• : wor• → wor2 be two worker homomor-
phisms. We define the worker automatonwor = (I, O, A = (St, Init, Tr)), the worker
pushout ofwor1 andwor2 with respect tofw,1• andfw,2•, as follows.

St = St1 ∪ St2 / ~w where ~w is the finest equivalence relation generated
by the propositionsa1 = fw,1•(a•) ∧ fw,2•(a•) = a2 ⇒ a1 ~w a2
and we write [a]w for the equivalence class containinga

Init = [Init1]w = [Init2]w

Tr = {[a]w -in?v-› [b]w | [a]w, [b]w ∈ St, a -in?v-› b ∈ Tr1,I ∪ Tr2,I} ∪
{[a]w -out!v-› [b]w | [a]w, [b]w ∈ St, a -out!v-› b ∈ Tr1,O ∪ Tr2,O} ∪
{[a]w -rec-› [b]w | [a]w, [b]w ∈ St, a -rec-› b ∈ Tr1,R ∪ Tr2,R}

Evidently the above is consistent, and there are homomorphismsfw,1 : wor1 → wor
andfw,2 : wor2 → wor that identifywor1 aspects andwor2 aspects insidewor in the
expected way.

Definition 4.8 (Manager Pushouts) Let man1 = (M1, mI,1, R1), man2 = (M2, mI,2,
R2), andman• = (M•, mI,•, R•) be manager automata. Letfm,1• : man• → man1 and
fm,2• : man• → man2 be two manager homomorphisms. To save on notation we w
assume that the bijections {fm,1•,mP, fm,1•,mC | m ∈ M1} and { fm,2•,mP, fm,2•,mC |
m ∈ M2} are strict identities as previously. We define the manager automatonman=
(M, mI, R), the manager pushout ofman1 andman2 with respect tofm,1• andfm,2•, as
follows.
20

mor-

aton

r

ho-

hen
act
ose’

e-
d on

)
tive,
-
way
M = M1 ∪ M2 / ~m where ~m is the finest equivalence relation generated
by the propositionsm1 = fm,1•(m•) ∧ fm,2•(m•) = m2 ⇒ m1 ~m m2
and we write [m]m for the equivalence class containingm

mI = [mI,1]m = [mI,2]m

[m]m ∈ M ⇒ [m]m maps to (Pm, Cm) in man iff
(m maps to (Pm, Cm) in man1 or
m maps to (Pm, Cm) in man2 (or both))

R = {[m]m -r-› [n]m | [m]m, [n]m ∈ M, m -r-› n ∈ R1 ∪ R2}

[m]m -r-› [n]m ∈ R ⇒ χ[m]m,[n]m
 =

χm1,n1
if m1 ∈ [m]m, n1 ∈ [n]m, m1 -r-› n1 ∈ R1 or

χm2,n2
 if m2 ∈ [m]m, n2 ∈ [n]m, m2 -r-› n2 ∈ R2

(or both)

Note that this also generates identity reconfigurations on [m]m as identities onCm in
the appropriate way. Evidently the above is consistent, and there are homo
phismsfm,1 : man1 → manand fm,2 : man2 → man that identifyman1 aspects and
man2 aspects insideman in as expected.

Definition 4.9 (Worker-Manager Pushouts) Let wm1 = (I, O, A1)⊗(M1, mI,1, R1),
wm2 = (I, O, A2)⊗(M2, mI,2, R2), andwm• = (I, O, A•)⊗(M•, mI,•, R•) be worker-man-
ager automata. Let (fw,1•, fm,1•) : wm• → wm1 and (fw,2•, fm,2•) : wm• → wm2 be two
worker-manager homomorphisms. Then we define the worker-manager autom
wm= (I, O, A)⊗(M, mI, R), the worker-manager pushout ofwm1 andwm2 with re-
spect to (fw,1•, fm,1•) and (fw,2•, fm,2•), as the asynchronous product of the worke
pushout offw,1• andfw,2• acting on the worker facets, and the manager pushout offm,1•

andfm,2• acting on the manager facets, in the natural manner. Inevitably we have
momorphismsfwm,1 : wm1 → wmandfwm,2 : wm2 → wmthat act in the expected way.

As far as they go, the above constructions work well. There’s a snag however w
we come to try to utilise them within the context of an IWIM system. There, the f
that homomorphisms identify the manager interconnection structures ‘on the n
conflicts in pullback/pushout situations with the properties demaded of theλmwm and
rwm′^mwm functions of the IWIM system. We will see this in detail below. We cons
quently introduce alternative constructions that work better in this regard, base
the idea of asynchronous products that we have seen already.

Definition 4.10 (Asynchronous Worker Homomorphisms) Let wor1 = (I, O, A1 =
(St1, Init1, Tr1)) andwor2 = (I, O, A2 = (St2, Init2, Tr2)) be worker automata. An asyn-
chronous worker homomorphismfaw : wor1 → wor2 exists iff there is a functionfaw :
St1 → St2 such that whenever there is a transition (of any kind) froma to b in Tr1,
then there is a transition fromfaw(a) to faw(b) (and not necessarily of the same kind
in Tr2. The asynchronous worker homomorphism is said to be injective, surjec
bijective etc., iff the set functionfaw : St1 → St2 is. Note that we have adopted imme
diately a strict identity perspective on the input and output channels, optimising a
the bijections that would otherwise be needed.

21

ger

in-

e

or-

rker

on
by
ther

rel-
and

ions;
un-
ht
are
Definition 4.11 (Asynchronous Manager Homomorphisms) Let man1 = (M1,
mI,1, R1) andman2 = (M2, mI,2, R2) be manager automata. An asynchronous mana
homomorphismfam : man1 → man2 exists iff there is a functionfam : M1 → M2 such
that whenever there is a transition fromm to n in R1, then there is a transition from
fam(m) to faw(n) in R2. The asynchronous manager homomorphism is said to be
jective, surjective, bijective etc., iff the set functionfam : M1 → M2 is.

Definition 4.12 (Asynchronous Worker-Manager Homomorphisms) Let wm1 =
(I, O, A1)⊗(M1, mI,1, R1) andwm2 = (I, O, A2)⊗(M2, mI,2, R2) be worker-manager
automata. An asynchronous worker-manager homomorphism (faw, fam) : wm1 → wm2
consists of an asynchronous worker homomorphismfaw acting on the worker facets,
and an asynchronous manager homomorphismfam acting on the manager facets. Th
asynchronous worker-manager homomorphism (faw, fam) : wm1 → wm2 is said to be
injective, surjective, bijective etc., iff the component worker and manager homom
phisms both are.

Definition 4.13 ((Left and Right) Asynchronous Worker Pullbacks) Let wor1 =
(I, O, A1 = (St1, Init1, Tr1)), wor2 = (I, O, A2 = (St2, Init2, Tr2)), andwor• = (I, O, A•

= (St•, Init•, Tr•)) be worker automata. Letfaw,1• : wor1 → wor• andfaw,2• : wor2 →
wor• be two asynchronous worker homomorphisms. We define three kinds of wo
automata all denotedwor = (I, O, A = (St, Init, Tr)), namely the left, right, and arbi-
trary (i.e. with chosen initial state) asynchronous worker pullbacks ofwor1 andwor2
with respect tofaw,1• andfaw,2•, as follows. (Here as below, we economise on notati
by usingwor for all three types of automata, the left and right versions being of
far the most interest and thus highlighted in the definition’s name; the context or o
supplementary remarks, will clarify which is intended in each individual case).

St = faw,1•–1(St•∩) × faw,2•–1(St•∩) whereSt•∩ = faw,1•(St1) ∩ faw,2•(St2)

Init = (Init1, a2) ∈ St for a left asynchronous pullback
= (a1, Init2) ∈ St for a right asynchronous pullback
∈ St for an arbitrary asynchronous pullback

Tr = {(a1, a2) -in?v-› (b1, a2) | (a1, a2), (b1, a2) ∈ St, a1 -in?v-› b1 ∈ Tr1,I} ∪
{(a1, a2) -in?v-› (a1, b2) | (a1, a2), (a1, b2) ∈ St, a2 -in?v-› b2 ∈ Tr2,I} ∪
{(a1, a2) -out!v-› (b1, a2) | (a1, a2), (b1, a2) ∈ St, a1 -out!v-› b1 ∈ Tr1,O} ∪
{(a1, a2) -out!v-› (a1, b2) | (a1, a2), (a1, b2) ∈ St, a2 -out!v-› b2 ∈ Tr2,O} ∪
{(a1, a2) -rec-› (b1, b2) | (a1, a2), (b1, b2) ∈ St,

a1 -rec-› b1 ∈ Tr1,R, a2 -rec-› b2 ∈ Tr2,R}

Note that the choice of initial state is not canonically determined because of the
atively undemanding notion of homomorphism that we are using. Even the left
right asynchronous pullbacks are not themselves unique without further condit
eg. the choice of the initial state for the left asynchronous pullback is not unique
lessfaw,2•–1(faw,1•(Init1)) is a singleton. Analogous considerations apply for the rig
asynchronous pullback. Note furthermore that while input and output transitions
inherited individually fromTr1 andTr2, rec transitions are only inherited if they
match up in bothTr1 andTr2. This is for later convenience.

22

s

pull-
The asynchronous pullback worker automatawor possess partial asynchronou
worker projection homomorphismsπaw,1 : wor → wor1 andπaw,2 : wor → wor2, and
given in the case ofπaw,1 by:

πaw,1((a1, a2)) = a1

πaw,1((a1, a2) -in?v-› (b1, a2)) = a1 -in?v-› b1 wherea1 -in?v-› b1 ∈ Tr1,I
πaw,1((a1, a2) -out!v-› (b1, a2)) = a1 -out!v-› b1 wherea1 -out!v-› b1 ∈ Tr1,O
πaw,1((a1, a2) -rec-› (b1, b2)) = a1 -rec-› b1 wherea1 -rec-› b1 ∈ Tr1,R

with theTr2 based input and output transitions ofwor being outside the domain of
πaw,1. The definition ofπaw,2 is symmetric.

The partial projectionsπaw,1 andπaw,2, though partial on the static description ofwor,
extend to total projections,πaw,1* and πaw,2*, from runs ofwor to runs ofwor1 and
wor2 and given forπaw,1* by:

πaw,1*([tran0, tran1, tran2, …]) =
πaw,1(tran0) :: πaw,1*([tran1, tran2, …]) if tran0 ∈ dom(πaw,1)
πaw,1*([tran1, tran2, …]) otherwise

where thetrani are the individual transitions of the run. Symmetrically forπaw,2*.

There is of course the special case of this construction wherewor• is a one-state au-
tomaton with a self-loop, the result being called anasynchronous worker product
automaton. This has a distinguished initial state, namely (Init1, Init2).

Definition 4.14 ((Left and Right) Asynchronous Manager Pullbacks) Let man1
= (M1, mI,1, R1), man2 = (M2, mI,2, R2), andman• = (M•, mI,•, R•) be two disjoint man-
ager automata. Letfam,1• : man1 → man• andfam,2• : man2 → man• be two asynchro-
nous manager homomorphisms. We define the manager automataman= (M, mI, R),
the left, right, and arbitrary (i.e. with chosen initial state) asynchronous manager
backs ofman1 andman2 with respect tofam,1• andfam,2•, as follows.

M = fam,1•–1(M•∩) × fam,2•–1(M•∩) whereM•∩ = fam,1•(M1) ∩ fam,2•(M2)

mI = (mI,1, m2) ∈ M for a left asynchronous pullback
= (m1, mI,2) ∈ M for a right asynchronous pullback
∈ M for an arbitrary asynchronous pullback

(m1, m2) ∈ M ⇒ (m1, m2) maps inman to
(P(m1, m2) , C(m1, m2)) = (Pm,1 ∪+ Pm,2, Cm,1 ∪+ Cm,2) iff
(m1 maps to (Pm,1, Cm,1) in man1 and
m2 maps to (Pm,2, Cm,2) in man2)

R = {(m1, m2) -r-› (n1, m2) | (m1, m2), (n1, m2) ∈ M, m1 -r-› n1 ∈ R1} ∪
{(m1, m2) -r-› (m1, n2) | (m1, m2), (m1, n2) ∈ M, m2 -r-› n2 ∈ R2}

(m1, m2) -r-› (n1, m2) ∈ R ⇒ χ(m1, m2),(n1, m2) = χm1,n1
∪+ idCm2

if m1 -r-› n1 ∈ R1
(m1, m2) -r-› (m1, n2) ∈ R ⇒ χ(m1, m2),(m1, n2) = idCm1

∪+ χm1,n1
if m2 -r-› n2 ∈ R2

23

The
he in-

y self-

o-

er-

pull-

back
se of
mor-

e

ker
Note that we need disjoint unions in the definitions ofP(m1, m2) andC(m1, m2) as oth-
erwise there is a risk that the source or target function of somec ∈ C(m1, m2) might be
ambiguous. Note also that the identities come out correctly without extra work.
same considerations as for workers also pertain to the initial states here; thus t
itial state for the left asynchronous pullback is not unique unlessfam,2•–1(fam,1•(mI,1))
is a singleton, etc.

Because all manager automaton states are stipulated to have at least an identit
transition, there are total asynchronous worker projection homomorphismsπam,1 :
man→ man1 andπam,2 : man→ man2, given forπam,1 by:

πam,1((m1, m2)) = m1

πam,1((m1, m2) -r-› (n1, m2)) = m1 -r-› n1 wherem1 -r-› n1 ∈ R1
πam,1((m1, m2) -r-› (m1, n2)) = m1 -idm1

-› m1 wherem2 -r-› n2 ∈ R2

(and symmetrically forπam,2). It now goes without saying thatπam,1 andπam,2 extend
to runs in the predicted manner.

Equally obvious is the degenerate case of a one-stateman•, giving rise to theasyn-
chronous manager product automatonwith distinguished initial state (mI,1, mI,2).

Definition 4.15 ((Left and Right) Asynchronous Worker-Manager Pullbacks)
Let wm1 = (I, O, A1)⊗(M1, mI,1, R1), wm2 = (I, O, A2)⊗(M2, mI,2, R2), andwm• =
(I, O, A•)⊗(M•, mI,•, R•) be worker-manager automata. Let (faw,1•, fam,1•) : wm1 →
wm• and (faw,2•, fam,2•) : wm2 → wm• be two asynchronous worker-manager hom
morphisms. Then we define the worker-manager automatawm= (I, O, A)⊗(M, mI,
R), the left, right, and arbitrary (i.e. with chosen initial state) asynchronous work
manager pullbacks ofwm1 andwm2 with respect to (faw,1•, fam,1•) and (faw,2•, fam,2•),
as the asynchronous products of: the (left, right, arbitrary) asynchronous worker
backs of the worker facets with respect tofaw,1• andfaw,2•, and the (left, right, arbi-
trary) asynchronous manager pullbacks of the manager facets with respect tofam,1•

andfam,2•, in the natural manner.

The initial state and projection properties of asynchronous worker-manager pull
automata are inherited naturally from those of their constituents. Thus in the ca
the latter, there are partial asynchronous worker-manager projection homo
phisms (πaw,1, πam,1) : wm→ wm1 and (πaw,2, πam,2) : wm→ wm2, such that for (πaw,1,
πam,1), all transitions except worker transitions of the form ((a1, a2), (m1, m2)) -act-›
((a1, b2), (m1, m2)), whereact is a non-rec action ofTr2, are in dom((πam,1, πam,1)),
and symmetrically for (πaw,2, πam,2).

Obviously we also have in the expected way the degenerate case of a one-statwm•,
giving rise to theasynchronous worker-manager product automatonwith distin-
guished initial state ((Init1, Init2), (mI,1, mI,2)).

Definition 4.16 ((Left and Right) Asynchronous Worker Pushouts) Let wor1 =
(I, O, A1 = (St1, Init1, Tr1)), wor2 = (I, O, A2 = (St2, Init2, Tr2)), andwor• = (I, O, A•

= (St•, Init•, Tr•)) be disjoint worker automata. Letfaw,1• : wor• → wor1 andfaw,2• :
wor• → wor2 be two asynchronous worker homomorphisms. We define the wor
24

ely
.

y
rribly

po-
ll of
ess by-
ement

ger
automatawor = (I, O, A = (St, Init, Tr)), the left, right, and arbitrary (i.e. with chosen
initial state) asynchronous worker pushouts ofwor1 andwor2 with respect tofaw,1•

andfaw,2•, as follows.

St = St1 ∪ St2 / ~πaw where ~aw is the finest equivalence relation generated
by the propositionsa1 = faw,1•(a•) ∧ faw,2•(a•) = a2 ⇒ a1 ~aw a2
and we write [a]aw for the equivalence class containinga

Init = [Init1]aw for the left asynchronous pushout
= [Init2]aw for the right asynchronous pushout
∈ St for an arbitrary asynchronous pushout

Tr = {[a]aw -in?v-› [b]aw | [a]aw, [b]aw ∈ St, a -in?v-› b ∈ Tr1,I ∪ Tr2,I} ∪
{[a]aw -out!v-› [b]aw | [a]aw, [b]aw ∈ St, a -out!v-› b ∈ Tr1,O ∪ Tr2,O} ∪
{[a]aw -rec-› [b]aw | [a]aw, [b]aw ∈ St, a -rec-› b ∈ Tr1,R ∪ Tr2,R}

Note that this time we have exactly two canonical choices for intial state, nam
[Init1]aw and [Init2]aw. The ‘arbitrary’ possibility is retained for completeness’ sake

Evidently there are (total) asynchronous worker homomorphismsfaw,1 : wor1 → wor
andfaw,2 : wor2 → wor that identifywor1 aspects andwor2 aspects insidewor in the
expected way. These also have extensionsfaw,1* and faw,2* to runs.

Just as for pullbacks we have degenerate cases. Whenwor• is the empty worker au-
tomaton, andfaw,1• and faw,2• are empty maps, we get theleft, right andarbitrary
asynchronous sum worker automata. Note though, that despite the fact that the
constitute a very natural limiting case, asynchronous sum automata are not te
useful in themselves. Since the state space is the disjoint union of the two com
nents, whichever component contains the nominated initial state will contain a
the subsequent dynamics of the sum, and the other component becomes a usel
stander as its states are not accessible from the first component without some el
of pushout-like gluing.

Definition 4.17 ((Left and Right) Asynchronous Manager Pushouts)Let man1 =
(M1, mI,1, R1), man2 = (M2, mI,2, R2), andman• = (M•, mI,•, R•) be disjoint manager
automata. Letfam,1• : man• → man1 andfam,2• : man• → man2 be two asynchronous
manager homomorphisms. We define the manager automataman= (M, mI, R), the
left, right, and arbitrary (i.e. with chosen initial state) asynchronous mana
pushouts ofman1 andman2 with respect tofam,1• andfam,2•, as follows.

M = M1 ∪ M2 / ~am where ~am is the finest equivalence relation generated
by the propositionsm1 = fam,1•(m•) ∧ faw,2•(m•) = m2 ⇒ m1 ~am m2
and we write [m]am for the equivalence class containingm

mI = [mI,1]am for the left asynchronous pushout
= [mI,2]am for the right asynchronous pushout
∈ M for an arbitrary asynchronous pushout

[m]am ∈ M ⇒ [m]am maps to (P[m]am
, C[m]am

) =
+(∪{ Pm | m ∈ [m]am}, +∪{ Cm | m ∈ [m]am})

25

must

Also

r-

an-

outs

ntial
ith

ating
aton
idea
the
the
of

pecial
R = {[m]am -r-› [n]am | [m]am, [n]am ∈ M, m -r-› n ∈ R1 ∪ R2}

[m]am -r-› [n]am ∈ R ⇒
χ[m]am,[n]am

= χm1,n1
if m1 ∈ [m]am, n1 ∈ [n]am, m1 -r-› n1 ∈ R1 or

χm2,n2
 if m2 ∈ [m]am, n2 ∈ [n]am, m2 -r-› n2 ∈ R2

[m]am -id-› [m]am ∈ R ⇒
χ[m]am,[n]am

 = id[m]am
 : C[m]am

→ C[m]am

We need disjoint unions in the definitions ofP[m]am
andC[m]am

exactly as before.
Note also the reconfiguration transitionsχ[m]am,[n]am

of the pushouts are just the
reconfiguration transitions of the components, seen as partial injections onC[m]am

.
However in this instance, unlike for the preceding manager constructions, we
add explicit identities on the states, as they do not arise naturally otherwise.

As in the previous case, we have exactly two canonical choices of initial state.
there are total asynchronous manager homomorphismsfam,1 : man1 → manandfam,2 :
man2 → manthat identifyman1 aspects andman2 aspects insidemanas expected,
and which also have extensionsfam,1* and fam,2* to runs.

Definition 4.18 ((Left and Right) Asynchronous Worker-Manager Pushouts)
Let wm1 = (I, O, A1)⊗(M1, mI,1, R1), wm2 = (I, O, A2)⊗(M2, mI,2, R2), andwm• = (I,
O, A•)⊗(M•, mI,•, R•) be worker-manager automata. Let (faw,1•, fam,1•) : wm• → wm1
and (faw,2•, fam,2•) : wm• → wm2 be two asynchronous worker-manager homomo
phisms. Then we define the worker-manager automatonwm= (I, O, A)⊗(M, mI, R),
the left, right, and arbitrary (i.e. with chosen initial state) asynchronous worker-m
ager pushouts ofwm1 andwm2 with respect to (faw,1•, fam,1•) and (faw,2•, fam,2•), as the
asynchronous products of: the (left, right, arbitrary) asynchronous worker push
of the worker facets with respect tofaw,1• andfaw,2•, and the (left, right, arbitrary) asyn-
chronous worker pushouts of the manager facets with respect tofam,1• andfam,2•, in
the natural manner. Inevitably we have asynchronous homomorphisms (faw,1, fam,1) :
wm1 → wm and (faw,2, fam,2) : wm2 → wm that act in the expected way.

One natural application for an asynchronous pushout, is that of imitating seque
composition of automata. If one identifies a suitable ‘final’ state of automaton A w
the initial state of automaton B, and forms the left asynchronous pushout, nomin
the initial state of A as the initial state of the pushout, then the pushout autom
admits a run that reaches the final state of A to continue on into B. However this
is not completely robust. If the initial state of automaton B has in-transitions and
final state of automaton A has out-transitions, the run may eventually return to
initial state of B and continue back into A once more. A more bulletproof way
modelling sequential composition will be discussed below.

We now give constructions that we call condensations. They can be seen as s
cases of the asynchronous pushout constructions.

Definition 4.19 (Worker State Condensation) Let wor = (I, O, A = (St, Init, Tr))
be a worker automaton, and letθw be an equivalence relation onSt. We define the
condensed worker automatonwor/θw = (I, O, A/θw = (St/θw, [Init]θw

, Tr/θw)), where

26

s are
is not
shout

ore
-

ous
at we

phic

au-
[Init]θw
is the equivalence class ofInit underθw, andTr/θw is given bya -act-› b ∈ Tr

iff [a]θw
 -act-› [b]θw

∈ Tr/θw.

Thus the state condensation simply goups states together and the transition
mapped to transitions from the source equivalence class to the target one. It
hard to see this as (isomorphic to) a special case of the asynchronous worker pu
of two copies ofwor, wor1 andwor2, with respect to awor• and asynchronous homo-
morphismsfaw,1• : wor• → wor1 andfaw,2• : wor• → wor2, whose structure we sketch
next (though the direct construction is easier to comprehend).

The statesSt• of wor• are pairs (a1, a2) such thata1 θw a2. The mapsfaw,1• andfaw,2•

are the left and right projections on these pairs. The initial state is (Init1, Init2). Tran-
sitions are inherited componentwise in the usual way.

Definition 4.20 (Manager State Condensation)Letman= (M, mI, R) be a manager
automaton, and letθm be an equivalence relation onM. We define the condensed
manager automatonman/θm = (M/θm, [mI]θm

, R/θm), where [mI]θm
is the equivalence

class ofmI underθm, andR/θm is given bym -r-› n ∈ R iff [m]θm
-r-› [n]θm

∈ R/θm.
Above each [m]θm

 in M/θm we have the port-channel network:

(P[m]θm
, C[m]θm

) = +(∪{ Pm | m ∈ [m]θm
}, +∪{ Cm | m ∈ [m]θm

})

where we insist that the union operations are disjoint as previously. Furtherm
each transition [m]θm

-r-› [n]θm
of R/θm, corresponds to the reconfiguration partial in

jection:

χ[m]θm,[n]θm
 = χm,n if m -r-› n ∈ R

As above, there is no difficulty in interpreting this as isomorphic to an asynchron
manager pushout construction, and in harmony with that observation, we note th
must explicitly add identity reconfiguration transitions in the form:

[m]θm
 -id-› [m]θm

 = id[m]θm
 : C[m]θm

→ C[m]θm

to make it into a well defined manager.

For determinism reflecting relationsθm, i.e. ones such that:

m, m′ ∈ [m]θm
, n, n′ ∈ [n]θm

, m -r-› n, m′ -r′-› n′ ∈ R
⇒

m = m′, n = n′, r = r′ or m ≠ m′, n ≠ n′, r ≠ r′

there is an alternative construction of some interest, which however is not isomor
to a special case of asynchronous manager pushout.

Definition 4.21 (Determinism Reflecting Manager State Condensation)Let man
= (M, mI, R) be a manager automaton, and letθm be a determinism reflecting equiv-
alence relation onM. We define the determinism reflecting condensed manager
tomatonman/Dθm = (M/Dθm, [mI]θm

, R/Dθm), in which M/Dθm = M/θm, [mI]θm
is the

equivalence class ofmI underθm, andR/Dθm is given by the equivalencem -r-› n ∈ R
iff [m]θm

-R-› [n]θm
∈ R/Dθm, whereR = ∪{ r | m -r-› n ∈ R, m ∈ [m]θm

, n ∈ [n]θm
},

i.e. we accumulate all reconfiguration transitions between states in [m]θm
and [n]θm

to
27

-

tran-
:

re-

ism

f

d

-

ork-
-
-

note
d we
ere
htly
e that
real
one
l no-

t un-
of

l this
the
build a transition ofR/Dθm. Above each [m]θm
in M/Dθm we have the port-channel net

work:

(P[m]θm
, C[m]θm

) = +(∪{ Pm | m ∈ [m]θm
}, +∪{ Cm | m ∈ [m]θm

})

where we need the union operations to be disjoint as always. Furthermore each
sition [m]θm

-R-› [n]θm
of R/Dθm, corresponds to the reconfiguration partial injection

χ[m]θm,[n]θm
 = ∪{ χm,n | m ∈ [m]θm

, n ∈ [n]θm
}

which are well defined by the determinism reflecting property. This time, the
quired identities come for free, as is easy enough to see.

The alert reader may be wondering why not, instead of insisting on the determin
reflecting property, to define a transition [m]θm

-R-› [n]θm
we did not simply consider

a collection of individual transitionsm -r-› n ∈ R that made the union definition of
χ[m]θm,[n]θm

unproblematic. For given [m]θm
and [n]θm

, one could have taken the set o
these possibilities as the family of transitions from [m]θm

to [n]θm
. The answer to this

will come below.

Definition 4.22 (Worker-Manager State Condensation) Let wm= wor⊗man=
(I, O, A = (St, Init, Tr))⊗(M, mI, R) be a worker-manager automaton, and letθw and
θm be equivalence relations onStandM respectively. Then we define the condense
worker-manager automatonwm/(θw,θm) = wor/θw⊗man/θm as the asynchronous
product of the condensed worker automatonwor/θw and the condensed manager au
tomatonman/θm.

Definition 4.23 (Determinism Reflecting Worker-Manager State Condensation)
Let wm= wor⊗man= (I, O, A = (St, Init, Tr))⊗(M, mI, R) be a worker-manager au-
tomaton, and letθw andθm be equivalence relations onStandM respectively withθm
determinism reflecting. Then we define the determinism reflecting condensed w
er-manager automatonwm/D(θw,θm) = wor/θw⊗man/Dθm as the asynchronous prod
uct of the condensed worker automatonwor/θw and the determinism reflecting con
densed manager automatonman/Dθm.

The preceding completes the description of our automata-centred notions. We
that these featured at times disjoint unions and at other times normal ones, an
consider here the significance of the two different kinds. While mathematically th
is no special significance one way or the other, the two types of union having slig
different theoretical properties, the difference becomes more acute if we suppos
we are dealing with mathematical models of actual computing systems. In the
world distinct systems have a tendency to retain their distinct identities unless
takes active steps to obscure them. This makes disjoint union the more natura
tion. However one can understand conventional union as arising from a disjoin
ion via the identification, under a partial equivalence relation, of distinct copies
‘the same thing’. This is just a pushout inSet. In the real world one would have to
construct some aparatus in order to implement the identification, but in genera
is feasible. It is on this reading of conventional union (i.e. the tacit assumption of
28

aper

and

ions

itions
two
total

ave

than

IM
s

existence of the requisite partial equivalence relation), that the rest of this p
should be understood.

4.2 Contructions Centred on Systems

The next definition enables two IWIM systems to be brought together into one,
to work alongside one another.

Definition 4.24 (Asynchronous Product of Systems)Let WM1, WM2 be disjoint
IWIM systems. We define the asynchronous product IWIM systemWM1⊗WM2 as
follows. Its set of automaton names isWM1∪WM2. Similarly, all the other compo-
nents are given by (disjoint) unions. Thusworman⊗ = worman1∪worman2 ; ^⊗ =
^1∪^2 ; r⊗ = r1∪r2 ; λ⊗ = λ1∪λ2. A configuration ofWM1⊗WM2 is of the form
(sts1∪sts2, qs1∪qs2), which, because of the disjointness ofWM1 andWM2, can be
decomposed into a configuration (sts1, qs1) of WM1 and a configuration (sts2, qs2) of
WM2. Among these configurations, the initial configurations are those configurat
(stsI,1∪stsI,2, qsI,1∪qsI,2) of WM1⊗WM2 built out of initial configurations (stsI,1,
qsI,1) of WM1 and (stsI,2, qsI,2) of WM2. Finally, the dynamics ofWM1⊗WM2 is eas-
ily given by the following rules:

(sts1, qs1) —› (sts1′, qs1′) ; (sts2, qs2) a config ofWM2
————————————————————————————
(sts1∪sts2, qs1∪qs2) —› (sts1′∪sts2, qs1′∪qs2)

and

(sts1, qs1) a config ofWM1 ; (sts2, qs2) —› (sts2′, qs2′)
————————————————————————————
(sts1∪sts2, qs1∪qs2) —› (sts1∪sts2′, qs1∪qs2′)

We see that the transitions of the asynchronous product are the individual trans
of the component systems interpreted in the context of the product system. The
components thus evolve independently of one another. This property leads to a
surjective relation between pairs of runs ofWM1 andWM2, and runs ofWM1⊗WM2
given by arbitrarily interleaving the steps of the run ofWM1 and the run ofWM2. The
states of the two runs are just combined in union in the obvious way. Thus if we h
for WM1: (sts1, qs1) —› (sts1′, qs1′) —› (sts1′′, qs1′′) —› … , and forWM2 we have:
(sts2, qs2) —› (sts2′, qs2′) —› (sts2′′, qs2′′) —› … , then one possible interleaving
yields for WM1⊗WM2: (sts1∪sts2, qs1∪qs2) —› (sts1′∪sts2, qs1′∪qs2) —›
(sts1′∪sts2′, qs1′∪qs2′) —› (sts1′∪sts2′′, qs1′∪qs2′′) —› … . One consequence of
this structure is that the converse relation, from runs ofWM1⊗WM2 to pairs of runs
of WM1 andWM2, is a pair of projections, given by simply striking out allWM2 steps
and portions of state/queue sets to get theWM1 run, and striking out allWM1 steps
and portions of state/queue sets to get theWM2 run.

Corresponding to the product notion we have a sum notion. This is less pointless
the corresponding notion for automata for reasons indicated below.

Definition 4.25 (Left and Right Asynchronous Sum of Systems)Let WM1, WM2
be disjoint IWIM systems. We define the the left and right asynchronous sum IW
systemsWM1‹⊕WM2 andWM1⊕›WM2 respectively, exactly as we do asynchronou
29

f

the
inac-
e-
The

ions
well
are
iring

-

products,exceptfor the initial configurations. Instead, an initial configuration o
WM1‹⊕WM2 is of the form (stsI,1∪∅2, qsI,1∪∅2) with (stsI,1, qsI,1) initial in WM1,
while an initial configuration ofWM1⊕›WM2 is of the form (∅1∪stsI,2, ∅1∪qsI,2)
with (stsI,2, qsI,2) initial in WM2.

Given the decoupled way that the dynamics of the two components inWM1‹⊕WM2
andWM1⊕›WM2 (and inWM1⊗WM2 also) evolve, it is clear that inWM1‹⊕WM2
the WM2 component is inactive, since theWM2 component of an initial configura-
tions of WM1⊕›WM2 is ∅ and consequently remains∅ throughout any run. In
WM1⊕›WM2 the roles ofWM1 andWM2 are reversed, and it isWM1 that is useless.
What makes the definitions ofWM1‹⊕WM2 andWM1⊕›WM2 (and to an extent
WM1⊗WM2 also) not purposeless, is the fact that by using constructions from
preceding subsection on the automata in the asynchronous sum or product, the
tive part may be nontrivially coupled to the active one. For this to work in a well d
fined way we need to check appropriate conditions for each of the constructions.
rest of this section states, in the form of a series of propositions, sufficient condit
under which application of these various constructions keeps an IWIM system
defined. As one might imagine when working with sufficient conditions, these
not unique, and we restrict ourselves to relatively straightforward ones not requ
fixed point constructions, in keeping with the rest of the paper.

First we need some notation. LetR be a relation fromA to B, i.e. R ⊆ A × B, and
D ⊆ A, E ⊆ B. Then we define:

D <−| R = R – D × B
R |−> E = R – A × E

Proposition 4.26 (Worker-Manager Pullbacks in Systems)Let WMbe an IWIM
system, and letwm1 = (I, O, A1)⊗(M1, mI,1, R1) andwm2 = (I, O, A2)⊗(M2, mI,2, R2)
be worker-manager automata ofWM. Let wm• be another worker-manager automa
ton, and (fw,1•, fm,1•) : wm1 → wm•, (fw,2•, fm,2•) : wm2 → wm• be two worker-manager
homomorphisms. Letwm= (I, O, A)⊗(M, mI, R) be the worker-manager pullback
of wm1 andwm2 with respect to (fw,1•, fm,1•) and (fw,2•, fm,2•) with attendant projec-
tionsfwm,1 : wm→ wm1 andfwm,2 : wm→ wm2. Suppose the following hold:

(1) For i ≠ j ∈ {1, 2}, wmi^m′wm′ ⇒ ¬ wmj^m′wm′.

(2) For i ≠ j ∈ {1, 2}, ¬ wmj^mwmi for anym ∈ Mi.

(3) For i ∈ {1, 2}, wm′^mwmi ⇒ fm,i•(m) ∈ M•∩.

(4) For (m1, m2) ∈ M, wm′^m1,wm1 ⇔ wm′^m2,wm2, and
fm,1• rwm′^m1,wm1

 = fm,2• rwm′^m2,wm2

ThenWM* = (WM – {wm1, wm2}) ∪ {wm} with ancillary data given by:

^* = ({wm1, wm2} <−| ^ |−> (M1,wm1 ∪ M2,wm2)) ∪
{ wm̂ *m′wm′ | wmi^m′wm′, i ∈ {1, 2}} ∪
{ wm′^*(m1, m2)wm | (m1, m2) ∈ M, wm′^m1wm1, wm′^m2wm2}
30

e

e

λ* = ((M1,wm1 ∪ M2,wm2) <−| λ |−> (IOwm1 = IOwm2)) ∪
{ λ*m′wm′(p) = io ∈ IOwm | λm′wm′(p) = io ∈ IOwmi, i ∈ {1, 2}} ∪
{ λ* (m1, m2)wm(p) = io ∈ IOwm′ | (m1, m2) ∈ M, p ∈ Pm1wm1

 = Pm2wm2
,

λm1wm1
(p) = λm2wm2

(p) = io ∈ IOwm′}

r* = ((Rec1 ∪ Rec2) <−| r |−> (R1,wm1 ∪ R2,wm2)) ∪
{ r*wm̂ *m′wm′(rec) = m′wm′ -r-› n′wm′ |

rwmi^m′wm′(rec) = m′wm′ -r-› n′wm′, i ∈ {1, 2}} ∪
{ r*wm′^*(m1, m2)wm(rec) = (m1, m2)wm -r-› (n1, n2)wm |

rwm′^m1wm1
(rec) = m1,wm1 -r-› n1,wm1,

rwm′^m2wm2
(rec) = m2,wm2 -r-› n2,wm2,

fm,1•(m1,wm1 -r-› n1,wm1) = fm,2•(m2,wm2 -r-› n2,wm2)}

InitialWM* = (sts*, qs*)
 where

sts* = (sts – INIS) ∪ {(Initwm, mI,wm)} if sts∩ INIS ≠ ∅
sts otherwise

qs* = (qs– INIQ) ∪ { d:[] | d ∈ CmI,wm} if sts∩ INIS≠ ∅
qs otherwise

 and where INIS = {(Initwm1, mI,wm1), (Initwm2, mI,wm2)},
INIQ = {d:[] | d ∈ CmI,1wm1

∪ CmI,2wm2
},

InitialWM = (sts, qs)

is a well defined IWIM system.

Proof. It is sufficient to check four things. First, that ^* is well defined. For this w
observe that replacingwmi^m′wm′ with wm̂ *m′wm′ is well defined since (2) guaran-
tees thatwm′ can never bewmj. Likewise, replacingwm′^m1wm1 andwm′^m2wm2 by
wm′^*(m1, m2)wm for pairs (m1, m2) is well defined since (2) guarantees thatwm′ can
never bewmi or wmj, (3) guarantees that anym1wm1 or m2wm2 belowwm′ gets paired
in the construction of the manager pullback, and (4) guarantees thatwm′ is above one
of m1wm1 or m2wm2 iff it is above the other.

Second, thatλ* is a bijection. For this we see that replacingλm′wm′(p) = io ∈ IOwmi
by the correspondingio ∈ IOwmis well defined since (2) guarantees thatwm′ can nev-
er bewmi or wmj, (1) guarantees that at most one of them is abovewm′, and the pull-
back construction guarantees thatIOwmi = IOwm. Likewise, mappingλ* (m1, m2)wm(p)
to io ∈ IOwm′ whenever bothλm1wm1

(p) andλm2wm2
(p) map to it is sound since (2)

guarantees thatwm′ can never bewm1 or wm2, (3) guarantees that anym1wm1 or
m2wm2 below wm′ gets paired, (4) guarantees thatwm′ is above one ofm1wm1 or
m2wm2 iff it is above the other, and the pullback construction guarantees thatm1wm1
andm2wm2 (and hence (m1, m2)wm) have the same port channel network. (N.B. In th
definition ofλ* we used the notation… λ |−> (IOwm1 = IOwm2)) ∪ … with the obvious
interpretation, for emphasis. Similarly below.)

Third, r* is a function. On the one hand, anyrec transition ofwor(wm) comes from
rec transitions inwm1 andwm2, exactly one of which will have anrwmi^m′wm′ image
by (1); so mapping thewor(wm) transition in the same way underr*wm̂ *m′wm′ is well

31

ove
a

y re-

-

f

defined. On the other hand, by (3) anyrec transition of awm′ above anymwmi, is
above anm that forms a pair (m1, m2) in the pullback. By (4) thefm,1• rwm′^m1,wm1
andfm,2• rwm′^m2,wm2

images of thisrec transition will coincide inwm•; therefore we
get a unique (m1, m2)wm -r-› (n1, n2)wm reconfiguration transition inwm to which to
map therec transition inwm′.

Finally, if the initial state of either ofwm1, wm2 is in thestscomponent ofInitialWM,
then thewmi in question must either have a nontrivial manager facet, or be ab
somemI,wm′ with wm′ ∈ WM#, by the conditions for initial configurations. In such
case thests* component ofInitialWM* must contain the (Initwm, mI,wm) state ofwm
to satisfy the same conditions; otherwise not. For the initial queues, we merel
place any queues belonging towm1, wm2 with ones forwm as required.

Proposition 4.27 (Worker-Manager Pushouts in Systems)Let WM be an IWIM
system, and letwm1 = (I, O, A1)⊗(M1, mI,1, R1) andwm2 = (I, O, A2)⊗(M2, mI,2, R2)
be worker-manager automata ofWM. Let wm• be another worker-manager automa
ton, and (fw,1•, fm,1•) : wm• → wm1, (fw,2•, fm,2•) : wm• → wm2 be two worker-manager
homomorphisms. Letwm= (I, O, A)⊗(M, mI, R) be the worker-manager pushout o
wm1 andwm2 with respect to (fw,1•, fm,1•) and (fw,2•, fm,2•) with attendant homomor-
phismsfwm,1 : wm1 → wm andfwm,2 : wm2 → wm. Suppose the following hold:

(1) For i ≠ j ∈ {1, 2}, wmi^m′wm′ ⇒ ¬ wmj^m′wm′.

(2) For i ≠ j ∈ {1, 2}, ¬ wmj^mwmi for anym ∈ Mi.

(3) For i, j ∈ {1, 2}, m1, m2 ∈ [m]m ∈ M, wm′^m1,wmi ⇔ wm′^m2,wmj and
fm,i rwm′^m1,wmi

 = fm,j rwm′^m2,wmj

(4) Rec1 = Rec2.

ThenWM* = (WM – {wm1, wm2}) ∪ {wm} with ancillary data given by:

^* = ({wm1, wm2} <−| ^ |−> (M1,wm1 ∪ M2,wm2)) ∪
{ wm̂ *m′wm′ | wmi^m′wm′, i ∈ {1, 2}} ∪
{ wm′^*[m]m,wm | [m]m ∈ M, (wm′^mwm1 or wm′^mwm2)}

λ* = ((M1,wm1 ∪ M2,wm2) <−| λ |−> (IOwm1 = IOwm2)) ∪
{ λ*m′wm′(p) = io ∈ IOwm | λm′wm′(p) = io ∈ IOwmi, i ∈ {1, 2}} ∪
{ λ* [m]m,wm(p) = io ∈ IOwm′ | [m]m ∈ M, p ∈ Pmwmi

,
λmwmi

(p) = io ∈ IOwm′, i ∈ {1, 2}}

r* = ((Rec1 ∪ Rec2) <−| r |−> (R1,wm1 ∪ R2,wm2)) ∪
{ r*wm̂ *m′wm′(rec) = m′wm′ -r-› n′wm′ |

rwmi^m′wm′(rec) = m′wm′ -r-› n′wm′, i ∈ {1, 2}} ∪
{ r*wm′^*[m]m,wm(rec) = [m]m,wm -r-› [n]m,wm |

rwm′^mwmi
(rec) = mwmi -r-› nwmi, i ∈ {1, 2}}

InitialWM* = (sts*, qs*)
 where

sts* = (sts – INIS) ∪ {(Initwm, mI,wm)} if sts∩ INIS ≠ ∅
sts otherwise

32

of

ll of

s in

ave
eir

of
qs* = (qs– INIQ) ∪ { d:[] | d ∈ CmI,wm} if sts∩ INIS≠ ∅
qs otherwise

 and where INIS = {(Initwm1, mI,wm1), (Initwm2, mI,wm2)},
INIQ = {d:[] | d ∈ CmI,1wm1

∪ CmI,2wm2
},

InitialWM = (sts, qs)

is a well defined IWIM system.

Proof. There are four things to establish. First, that ^* is well defined. Neither
wm1 or wm2 is above the other by (2). Therefore it is sufficient to replacewmi^m′wm′
with wm̂ *m′wm′. Likewise replacingwm′^m1wm1 or wm′^m2wm2 by wm′^*[m]m,wm
is well defined since (2) ensures thatwm′ can never bewm1 or wm2, and (3) guaran-
tees that wheneverwm′ is above somem1wm1 or m2wm2 contributing to [m]m, then it
is above all suchm ∈ [m]m.

Second, thatλ* is a bijection. We see that replacingλm′wm′(p) = io ∈ IOwmi by the
correspondingio ∈ IOwm is well defined since (2) guarantees thatwm′ can never be
wmi or wmj, (1) guarantees that at most one of them is abovewm′, and the pushout
construction guarantees thatIOwmi = IOwm. Likewise, mappingλ* [m]m,wm(p) to io ∈
IOwm′ wheneverλmwmi

(p) maps to it for somemwmi ∈ [m]m,wm is sound, since (2)
guarantees thatwm′ can never bewm1 or wm2, (3) guarantees thatwm′ is above all
mwmi ∈ [m]m,wmor none of them, and the pushout construction guarantees that a
them (and hence [m]m,wm) have the same port channel network.

Third, r* is a function. On the one hand, anyrec transition ofwor(wm) comes from
a rec transition in eitherwm1 or wm2 (or both), and for exactly one of these will an
rwmi^m′wm′ be defined by (1). By (4), the sets ofrecevents ofwor(wm1) andwor(wm2)
are equal, so that arec event ofwor(wm) will be in the domain of eitherrwmi^m′wm′,
making the definition ofr*wm̂ *m′wm′(rec) unambiguous. On the other hand, anyrec
transition of awm′ above anymwmi, either ends up above a singleton [m]m in wm, in
which case the replacement ofrwm′^mwmi

(rec) by r*wm′^*[m]m,wm(rec) is immediately
unambiguous, or not. If not, we know by (3) that all therwm′^mwmi

(rec) map viafm,i
to the samewmreconfiguration transition [m]m,wm -r-› [n]m,wm, making the replace-
ment unambiguous also. Finally, for the initial configurations, the argument is a
the previous proposition.

It is clear that in the preceding constructions some fairly demanding condition h
to hold. For greater flexibility with pullbacks and pushouts, we now consider th
asynchronous analogues.

Proposition 4.28 ((Left and Right) Asynchronous Worker-Manager Pullbacks in
Systems) Let WMbe an IWIM system, and letwm1 = (I, O, A1)⊗(M1, mI,1, R1) and
wm2 = (I, O, A2)⊗(M2, mI,2, R2) be worker-manager automata ofWM. Let wm• be
another worker-manager automaton, and (faw,1•, fam,1•) : wm1 → wm•, (faw,2•, fam,2•) :
wm2 → wm• be two asynchronous worker-manager homomorphisms. Letwm =
(I, O, A)⊗(M, mI, R) be the left or right asynchronous worker-manager pullback
wm1 andwm2 with respect to (faw,1•, fam,1•) and (faw,2•, fam,2•) with attendant projec-
tionsfawm,1 : wm→ wm1 andfawm,2 : wm→ wm2. Suppose the following hold:

33

ei-
ce

s
er
(1) For i ≠ j ∈ {1, 2}, wmi^m′wm′ ⇒ ¬ wmj^m′wm′.

(2) For i ≠ j ∈ {1, 2}, ¬ wmj^mwmi for anym ∈ Mi.

(3) For i ∈ {1, 2}, wm′^mwmi ⇒ fam,i•(m) ∈ M•∩.

(4) For i ≠ j ∈ {1, 2}, wm′^mi,wmi ⇒ ¬ wm′^mj,wmj.

ThenWM* = (WM – {wm1, wm2}) ∪ {wm} with ancillary data given by:

^* = ({wm1, wm2} <−| ^ |−> (M1,wm1 ∪ M2,wm2)) ∪
{ wm̂ *m′wm′ | wmi^m′wm′, i ∈ {1, 2}} ∪
{ wm′^*(m1, m2)wm | (m1, m2) ∈ M, (wm′^m1wm1 or wm′^m2wm2)}

λ* = ((M1,wm1 ∪ M2,wm2) <−| λ |−> (IOwm1 = IOwm2)) ∪
{ λ*m′wm′(p) = io ∈ IOwm | λm′wm′(p) = io ∈ IOwmi, i ∈ {1, 2}} ∪
{ λ* (m1, m2)wm(p) = io ∈ IOwm′ | (m1, m2) ∈ M, p ∈ Pm1wm1

∪+ Pm2wm2
,

(wm′^m1wm1, λm1wm1
(p) = io ∈ IOwm′ or

wm′^m2wm2, λm2wm2
(p) = io ∈ IOwm′)}

r* = ((Rec1 ∪ Rec2) <−| r |−> (R1,wm1 ∪ R2,wm2)) ∪
{ r*wm̂ *m′wm′(rec) = m′wm′ -r-› n′wm′ |

rwmi^m′wm′(rec) = m′wm′ -r-› n′wm′, i ∈ {1, 2}} ∪

{ r*wm′^*(m1, m2)wm(rec) = (m1, m2)wm -r-› (n1, m2)wm |
rwm′^m1wm1

(rec) = m1,wm1 -r-› n1,wm1} ∪

{ r*wm′^*(m1, m2)wm(rec) = (m1, m2)wm -r-› (m1, n2)wm |
rwm′^m2wm2

(rec) = m2,wm2 -r-› n2,wm2}

InitialWM* = (sts*, qs*)
 where

sts* = (sts – INIS) ∪ {(Initwm, mI,wm)} if sts∩ INIS ≠ ∅
sts otherwise

qs* = (qs– INIQ) ∪ { d:[] | d ∈ CmI,wm} if sts∩ INIS≠ ∅
qs otherwise

 and where INIS = {(Initwm1, mI,wm1), (Initwm2, mI,wm2)},
INIQ = {d:[] | d ∈ CmI,1wm1

∪ CmI,2wm2
},

InitialWM = (sts, qs)

is a well defined IWIM system.

Proof. As usual there are four things to establish. First, that ^* is well defined. N
ther of wm1 or wm2 is above the other by (2). Therefore it is sufficient to repla
wmi^m′wm′ with wm̂ *m′wm′. Likewise, replacingwm′^m1wm1 by wm′^*(m1, m2)wm
for all m2 such that (m1, m2) is a state ofman(wm) is well defined since (3) guarantee
that anym1wm1 or m2wm2 belowwm′ gets paired in the construction of the manag
pullback.

Second, thatλ* is a bijection. Given a management state (m1, m2)wm of wm, then
with the definition of ^*, λ* (m1, m2)wm becomes the disjoint union ofλm1wm1

and

34

the

exists
,

of
λm2wm2
. This succeeds since (3) guarantees that any management statesm1wm1 or

m2wm2 with nonempty communication network get paired, and (4) ensures that
families of workers above anym1wm1 andm2wm2 are disjoint, so that the disjoint union
of the bijections is a bijection. Also by (1) at most one ofwm1, wm2 is above any
m′wm′, so that replacing anyio ∈ IOwmi in the range ofλm′wm′(p) by the corresponding
io ∈ IOwm generates no problems.

Third, r* is a function. By (1) again, for at most onei ∈ {1, 2} doesrwmi^m′wm′ exist.
Thus defining ther*wm̂ *m′wm′ image of arecevent accordingly is sound. Also, given
some (m1, m2)wm, replacing therwm′^m1wm1

or rwm′^m2wm2
image ofrec by the recon-

figuration transition (m1, m2)wm-rec-› (n1, m2)wmor (m1, m2)wm-rec-› (m1, n2)wmre-
spectively, is well defined because (4) ensures that exactly one of these cases
(thus makingr*wm′^*(m1, m2)wm single valued). Finally for the initial configurations
the argument is as in previous cases.

Proposition 4.29 ((Left and Right) Asynchronous Worker-Manager Pushouts in
Systems) Let WMbe an IWIM system, and letwm1 = (I, O, A1)⊗(M1, mI,1, R1) and
wm2 = (I, O, A2)⊗(M2, mI,2, R2) be worker-manager automata ofWM. Let wm• be
another worker-manager automaton, and (faw,1•, fam,1•) : wm• → wm1, (faw,2•, fam,2•) :
wm• → wm2 be two asynchronous worker-manager homomorphisms. Letwm =
(I, O, A)⊗(M, mI, R) be the left or right asynchronous worker-manager pushout
wm1 andwm2 with respect to (faw,1•, fam,1•) and (faw,2•, fam,2•) with attendant homo-
morphismsfawm,1 : wm→ wm1 andfawm,2 : wm→ wm2. Suppose the following hold:

(1) For i ≠ j ∈ {1, 2}, wmi^m′wm′ ⇒ ¬ wmj^m′wm′.

(2) For i ≠ j ∈ {1, 2}, ¬ wmj^mwmi for anym ∈ Mi.

(3) |{m | m ∈ [m]am ∈ M, (wm′^mwm1 or wm′^mwm2)}| ≤ 1.

ThenWM* = (WM – {wm1, wm2}) ∪ {wm} with ancillary data given by:

^* = ({wm1, wm2} <−| ^ |−> (M1,wm1 ∪ M2,wm2)) ∪
{ wm̂ *m′wm′ | wmi^m′wm′, i ∈ {1, 2}} ∪
{ wm′^*[m]am | [m]am∈ M, (wm′^mwm1 or wm′^mwm2)}

λ* = ((M1,wm1 ∪ M2,wm2) <−| λ |−> (IOwm1 = IOwm2)) ∪
{ λ*m′wm′(p) = io ∈ IOwm | λm′wm′(p) = io ∈ IOwmi, i ∈ {1, 2}} ∪
{ λ* [m]am,wm(p) = io ∈ IOwm′ | [m]am ∈ M, λmwmi

(p) = io ∈ IOwm′,
p ∈ +∪{ Pmwmi

| m∈ [m]am, i ∈ {1, 2}}}

r* = ((Rec1 ∪ Rec2) <−| r |−> (R1,wm1 ∪ R2,wm2)) ∪
{ r*wm̂ *m′wm′(rec) = m′wm′ -r-› n′wm′ |

rwmi^m′wm′(rec) = m′wm′ -r-› n′wm′, i ∈ {1, 2}} ∪
{ r*wm′^*[m]am,wm(rec) = [m]am,wm -r-› [n]am,wm |

rwm′^mwmi
(rec) = mwmi -r-› nwmi, i ∈ {1, 2}}
35

ei-

tate
f
e of

s

in

act-
braic
e pos-

rk-

ded
bel

tom-
ns on
a (not

con-
l con-
InitialWM* = (sts*, qs*)
 where

sts* = (sts – INIS) ∪ {(Initwm, mI,wm)} if sts∩ INIS ≠ ∅
sts otherwise

qs* = (qs– INIQ) ∪ { d:[] | d ∈ CmI,wm} if sts∩ INIS≠ ∅
qs otherwise

 and where INIS = {(Initwm1, mI,wm1), (Initwm2, mI,wm2)},
INIQ = {d:[] | d ∈ CmI,1wm1

∪ CmI,2wm2
},

InitialWM = (sts, qs)

is a well defined IWIM system.

Proof. As usual there are four things to establish. First, that ^* is well defined. N
ther ofwm1 or wm2 is above the other by (2). So it is sufficient to replacewmi^m′wm′
with wm̂ *m′wm′; and to replacewm′^m1wm1 or wm′^m2wm2 with wm′^*[m]am,wm for
the [m]am that containsm1 or m2.

Second, thatλ* is a bijection. We replace the individual bijectionsλm1wm1
andλm2wm2

by aggregates of them,λ* [m]wm, a process which leaves none out because every s
in M1 ∪ M2 enters some equivalence class or other inM, and causes no overlap o
aggregated codomains by (3), preserving bijectiveness. Also by (1) at most on
wm1, wm2 is above anym′wm′, so that replacing anyio ∈ IOwmi in the range of
λm′wm′(p) by the correspondingio ∈ IOwm generates no problems either.

Third, r* is a function. By (1) again, for at most onei ∈ {1, 2} doesrwmi^m′wm′ exist.
Thus defining ther*wm̂ *m′wm′ image of arec event in agreement with that case i
sound. Equally, substituting therwm′^m1wm1

or rwm′^m2wm2
image of somerecevent by

the transition [m]am,wm -r-› [n]am,wm, where the latter comes frommwmi -r-› nwmi via
rwm′^mwmi

, is uniquely defined, because for anywm′ there is only onemwmi for which
rwm′^mwmi

exists by (3). Finally, for the initial configurations, the argument is as
the previous cases.

The preceding results illustrate that various pullback and pushout constructions
ing on automata can be placed in the context of systems to give well defined alge
operations on systems. However what has been described does not exhaust th
sibilities. One could always imagine different ways of plumbing up the ^*,λ*, and
r* data, especially if other useful properties obtained in the system.

On a different tack, one could consider a hybrid notion of homomorphism for wo
ers, which while insisting that input, output, andrec transitions mapped to input, out-
put, andrec transitions respectively, did not insist that the data for these correspon
exactly. This would yield the opportunity of using the pair of values involved, to la
a transition of the worker facet of a yet other notion of pullback or pushout.

More intriguingly, since the worker and manager facets of a worker-manager au
aton are as independent as they are here, one could consider hybrid constructio
automata featuring say an asynchronous pushout on the manager facets and
asynchronous) pullback on the worker facets. Given the variety of component
structions that we have hinted at above, a large number of potential system leve

36

ation

sys-

he
structions can be contemplated this manner, and we leave their further investig
to the enthusiastic reader.

We turn now to the remaining automaton level constructions and examine their
tem level consequences.

Proposition 4.30 (Worker-Manager State Condensation in Systems)Let WMbe
an IWIM system and letwm= wor⊗man= (I, O, A = (St, Init, Tr))⊗(M, mI, R) be a
worker-manager automaton ofWM. Letθw andθm be equivalence relations onStand
M respectively and letwm/(θw,θm) = wor/θw⊗man/θm be the corresponding con-
densed worker-manager automaton. Suppose the following holds:

(1) |{m | m ∈ [m]θm
, [m]θm

∈ M/θm, (wm′^mwm)}| ≤ 1.

ThenWM* = (WM – {wm}) ∪ {wm/(θw,θm)} with ancillary data given by:

^* = ({wm} <−| ^ |−> M) ∪ {wm/(θw,θm)^*m′wm′ | wm̂ m′wm′} ∪
{ wm′^*[m]θm

| [m]θm
∈ M/θm, wm′^mwm}

λ* = (M <−| λ |−> IOwm) ∪
{ λ*m′wm′(p) = io ∈ IOwm/(θw,θm) | λm′wm′(p) = io ∈ IOwm} ∪
{ λ* [m]θm

(p) = io ∈ IOwm′ | [m]θm
∈ M/θm, λmwm(p) = io ∈ IOwm′,

p ∈ +∪{Pmwm | m ∈ [m]θm
}}

r* = (Rec <−| r |−> R) ∪
{ r*wm/(θw,θm)^*m′wm′(rec) = m′wm′ -r-› n′wm′ |

rwm̂ m′wm′(rec) = m′wm′ -r-› n′wm′} ∪
{ r*wm′^*[m]θm,wm/(θw, θm)(rec) = [m]θm,wm/(θw,θm) -r-› [n]θm,wm/(θw,θm) |

rwm′^mwm(rec) = mwm -r-› nwm}

InitialWM* = (sts*, qs*)
 where

sts* = (sts – INIS) ∪ {(Initwm/(θw,θm), mI,wm/(θw,θm))}
if sts∩ INIS ≠ ∅

sts otherwise

qs* = (qs – INIQ) ∪ {d:[] | d ∈ CmI,wm/(θw, θm)}
if sts∩ INIS ≠ ∅

qs otherwise
 and where INIS = {(Initwm, mI,wm)},

INIQ = {d:[] | d ∈ CmI,wm},
InitialWM = (sts, qs)

is a well defined IWIM system.

Proof. Mostly this is a simple adaptation of Proposition 4.29 so we will be brief. T
definition of ^* is unproblematic. Forλ*, (1) assures bijectiveness of theλ* [m]θm

(p)
terms, while theλ*m′wm′(p) terms are bijective sincewm andwm/(θw,θm) have the
same input and output channel sets. Also it is easy to prover* is a function. For the
initial configurations, we replacewmcomponents bywm/(θw,θm) components if re-
quired.

37

s:

hy

t

Proposition 4.31 (Determinism Reflecting Worker-Manager State Condensation
in Systems) Let WM be an IWIM system and letwm= wor⊗man= (I, O, A = (St,
Init, Tr))⊗(M, mI, R) be a worker-manager automaton ofWM. Let θw andθm be
equivalence relations onStandM respectively and suppose thatθm is determinism
reflecting. Letwm/D(θw,θm) = wor/θw⊗man/Dθm be the corresponding determinism
reflecting condensed worker-manager automaton. Suppose the following hold

(1) |{m | m ∈ [m]θm
, [m]θm

∈ M/Dθm, (wm′^mwm)}| ≤ 1.

ThenWM* = (WM – {wm}) ∪ {wm/D(θw,θm)} with ancillary data given by:

^* = ({wm} <−| ^ |−> M)IOwm{ wm/D(θw,θm)^*m′wm′ | wm̂ m′wm′} ∪
{ wm′^*[m]θm

| [m]θm
∈ M/Dθm, wm′^mwm}

λ* = (M <−| λ^ |−> IOwm) ∪
{ λ*m′wm′(p) = io ∈ IOwm/D(θw,θm) | λm′wm′(p) = io ∈ IOwm} ∪
{ λ* [m]θm

(p) = io ∈ IOwm′ | [m]θm
∈ M/Dθm, λmwm(p) = io ∈ IOwm′,

p ∈ ∪{Pmwm | m ∈ [m]θm
}}

r* = (Rec <−| r |−> R) ∪
{ r*wm/D(θw,θm)^*m′wm′(rec) = m′wm′ -r-› n′wm′ |

rwm̂ m′wm′(rec) = m′wm′ -r-› n′wm′} ∪
{ r*wm′^*[m]θm,wm/D(θw,θm)(rec) = [m]θm,wm/D(θw,θm) -R-› [n]θm,wm/D(θw,θm) |

rwm′^mwm(rec) = mwm -r-› nwm,
r ∈ R = {r | m -r-› n ∈ R, m ∈ [m]θm

, [m]θm
∈ M/Dθm,

n ∈ [n]θm
, [n]θm

∈ M/Dθm}}

InitialWM* = (sts*, qs*)
 where

sts* = (sts – INIS) ∪ {(Initwm/D(θw,θm), mI,wm/D(θw,θm))}
if sts∩ INIS ≠ ∅

sts otherwise
qs* = (qs – INIQ) ∪ {d:[] | d ∈ CmI,wm/D(θw,θm)

}
if sts∩ INIS ≠ ∅

qs otherwise
 and where INIS = {(Initwm, mI,wm)},

INIQ = {d:[] | d ∈ CmI,wm},
InitialWM = (sts, qs)

is a well defined IWIM system.

Proof. This is almost identical to Proposition 4.30 and is omitted.

Incidentally, Proposition 4.31 solves the riddle posed after Definition 4.21, i.e. w
not define a transition [m]θm

-R-› [n]θm
as any set of transitionsm-r-› n ∈ Rthat makes

the union definitions ofρ[m]θm,[n]θm
andχ[m]θm,[n]θm

sound. The answer is that withou
a canonical choice for the transition [m]θm

-R-› [n]θm
, there is no canonical way to

maker*wm′^[m]θm,wm/D(θw,θm) into a function.

38

first
ut, to
ction
and

esh
on.

re is
We end this subsection with three almost trivial but useful constructions. The
merely glues the free end of an external output to the free end of an external inp
make a new internal channel. The second, removes a tuple from the partial inje
on channels in a reconfiguration transition; and the third augments the domain
range of the partial injection on channels in a reconfiguration transition with a fr
tuple; enabling the benefits of the first construction to be felt after a reconfigurati

Proposition 4.32 (External Channel Piping in Systems)Let WMbe an IWIM sys-
tem and letwm= wor⊗man= (I, O, A = (St, Init, Tr))⊗(M, mI, R) be a worker-man-
ager automaton ofWM. Letm∈ M be a manager state ofman, which maps to (Pmwm,
Cmwm). Suppose {cei, ceo} ⊆ Cmwm thatcei is an external input channel, and thatceo is
an external input channel. Letcio be fresh. ThenWM* = (WM – {wm}) ∪ { wm*},
given below, is a well defined IWIM system.

wm* = wor⊗man* where
man* = (M, mI, R*) and m |→ (Pmwm, Cmwm*)
where Cmwm* = (Cmwm – {cei, ceo}) ∪ {cio} and

smwm* = ({ceo} <−| smwm) ∪ {cio |→ smwm(ceo)}
tmwm* = ({cei} <−| smwm) ∪ {cio |→ tmwm(cei)}

Proposition 4.33 (Restricted Reconfiguration in Systems)Let WM be an IWIM
system and letwm= wor⊗man= (I, O, A = (St, Init, Tr))⊗(M, mI, R) be a worker-
manager automaton ofWM. Let mwm -r-› nwm∈ Rbe a reconfiguration transition of
wmwith r = χmwm,nwm : Cmwm → Cnwm. Suppose further thatχmwm,nwm(cmwm) = cnwm.
ThenWM* = (WM– {wm}) ∪ { wm*}, given below, is a well defined IWIM system.

wm* = wor⊗man* where
man* = (M, mI, R*) and
R* = (R – {mwm -r-› nwm = χmwm,nwm : Cmwm → Cnwm}) ∪

 {mwm -r*-› nwm = χ*mwm,nwm =
χmwm,nwm – {cmwm

|→ cnwm} : Cmwm → Cnwm}

Note that the restricting operation can be applied unconditionally (assuming the
a tuple to remove in the first place). Even with an empty resultingχmwm,nwm there is
still a transitionr* to act as target for any neededrwm̂ m′wm′ function.

Proposition 4.34 (Extended Reconfiguration in Systems)Let WM be an IWIM
system and letwm= wor⊗man= (I, O, A = (St, Init, Tr))⊗(M, mI, R) be a worker-
manager automaton ofWM. Let mwm -r-› nwm∈ Rbe a reconfiguration transition of
wmwith r = χmwm,nwm : Cmwm → Cnwm. Suppose further thatcmwm ∈ Cmwm although
cmwm ∉ dom(χmwm,nwm), andcnwm ∈ Cnwm althoughcnwm ∉ ran(χmwm,nwm). ThenWM*
= (WM – {wm}) ∪ {wm*}, given below, is a well defined IWIM system.

wm* = wor⊗man* where
man* = (M, mI, R*) and
R* = (R – {mwm -r-› nwm = χmwm,nwm : Cmwm → Cnwm}) ∪

 {mwm -r*-› nwm == χ*mwm,nwm =
χmwm,nwm ∪ {cmwm

|→ cnwm} : Cmwm → Cnwm}}
39

.e. to
om-
ker-
n-

tom-
can
ess

hen

with-
4.3 Completeness

In this subsection we consider a question converse to those dealt with hitherto, i
what extent can an arbitrary IWIM system be assembled from more primitive c
ponents using the operations already described. Now intuitively, an arbitrary wor
manager automatonwm = wor⊗mancan be seen (up to isomorphism) as an asy
chronous pushout ofp-worandp-man, wherep-wor is a pure worker containingwm’s
worker facet, andp-manis a pure manager containingwm’s manager facet. This
thought allows us to pull apart an arbitrary entanglement of worker-manager au
ata into what are effectively disjoint elementary IWIM subsystems. These in turn
be built up out of smaller primitives, and this provides the basis of our completen
result.

To cope with the requirement that an asynchronous worker pushout only works w
theI andO channel sets are exactly the same, we define an (I, O)-pure manager to be
a worker-manager automaton in which the worker facet is a one state automaton
out transitions, but equipped nevertheless with input and output channel setsI andO.

Proposition 4.35 (Worker-Manager Pull-Apart in Systems) Let WMbe an IWIM
system and letwm= wor⊗man= (I, O, A = (St, Init, Tr))⊗(M, mI, R) be a worker-
manager automaton ofWM. Let p-worbe a pure worker with worker facetwor, and
p-man be an (I, O)-pure manager with manager facetman.

ThenWM* = (WM – {wm}) ∪ {p-wor, p-man} with ancillary data given by:

^* = ({wm} <−| ^ |−> M) ∪ {p-wor̂ *m′wm′ | wm̂ m′wm′} ∪
{ wm′^*mp-man| m ∈ M, wm′^mwm}

λ* = (M <−| λ |−> IO) ∪
{ λ*m′wm′(p) = io ∈ IOp-wor | λm′wm′(p) = io ∈ IOwm} ∪
{ λ*mp-man(p) = io ∈ IOwm′ | p ∈ Pmwm, m ∈ M, wm′^mwm,

λmwm(p) = io ∈ IOwm′}

r* = (Rec <−| r |−> R) ∪
{ r*p-wor̂ *m′wm′(rec) = m′wm′ -r-› n′wm′ |

rwm̂ m′wm′(rec) = m′wm′ -r-› n′wm′} ∪
{ r*wm′^*mp-man)(rec) = mp-man -r-› np-man∈ R |

rwm′^mwm(rec) = mwm -r-› nwm}

InitialWM* = (sts*, qs*)
 where

sts* = (sts – INIS) ∪
{(Initp-wor, mI,p-wor), (Initp-man, mI,p-man)}
if sts∩ INIS ≠ ∅

sts otherwise
qs* = (qs – INIQ) ∪ {d:[] | d ∈ CmI,p-man}

if sts∩ INIS ≠ ∅
qs otherwise

40

ger

c-

cor-

-

c-
ager
only
ique

into
giv-
such
com-
ll be a
is

table

vent
ba-

hose
au-
cet.

Since
rther
are a
will
 and where INIS = {(Initwm, mI,wm)},
INIQ = {d:[] | d ∈ CmI,wm},
InitialWM = (sts, qs)

is a well defined IWIM system.

Proof. This is straightforward when we realise that the trivial worker and mana
facets introduced by this procedure are not above or below anything else.

Proposition 4.36 (Worker-Manager Pull-Apart Reconstruction in Systems) Let
WMbe an IWIM system and letwm= wor⊗man= (I, O, A = (St, Init, Tr))⊗(M, mI,
R) be a worker-manager automaton ofWM. Let WM* be obtained as described in
Proposition 4.35. Letwm• be a worker-manager automaton with trivial manager fa
et, trivial worker facet but with sets of input and output channels (I, O). Suppose
(faw,1•, fam,1•) : wm• → p-wor and (faw,2•, fam,2•) : wm• → p-manare the obvious two
asynchronous worker-manager homomorphisms that identify the initial states in
responding facets in the expected way. ThenWM**, the asynchronous worker-man-
ager pushout of (faw,1•, fam,1•) and (faw,2•, fam,2•) exists, and is set theoretically isomor
phic toWM.

Proof. It is easy to check that conditions (1)-(3) for the applicability of the constru
tion in Proposition 4.29 are satisfied so that the asynchronous worker-man
pushout exists. Furthermore, the claimed isomorphism is easy to see since the
nontrivial equivalence classes of states contain just an initial state, and the un
state from the other component.

In this manner, an arbitrarily complicated IWIM system can be decomposed
what are effectively elementary IWIM subsystems, the reverse of this procedure
ing us a recipe for rebuilding the desired system from such components. In turn
an elementary subsystem can be built up from trivial one-state or one-transition
ponents. Since elementary subsystems are basically tree-structured, there wi
variety of ways to do this in a well founded way, so we will not go into details. Th
supports our claim that the techniques discussed here, with the addition of sui
lower level techniques for building elementary subsystems, are complete.

5 IWIM Systems with Delayed Reconfigurations
Now we tackle the problem of the asynchronous nature of true IWIM system e
processing. As noted previously, this can be captured within our framework. The
sic idea is simple. We introduce fresh pure worker automata, delay automata, w
job is to buffer the reconfiguration events generated by the worker facets of the
tomata of the original model on their way to the relevant destination manager fa
The way this is done is to change therec events of the original model intorec mes-
sages to the delay automata, who then subsequently raise the required event.
buffering is already implicit in the message queues used by worker facets, and fu
buffering can be achieved by retaining information in automaton states, there
number of ways one can imagine of implementing such an idea. In the one we
follow, the workers each acquire an extra output port through which to sendrecmes-
41

an-
This
vant

ers be-
man-
iest to

er.

r
ity of

ns:

empty
g

be in-
tran-

had
en

stent
con-
n ac-
n the
-
eing

gura-
iour
ome
n and

ave
can

nly
oring
roni-
sages instead of raisingrec events. Connected to these extra output ports, are ch
nels leading to delay automata, one per manager facet in charge of the worker.
ensures that therec messages are broadcast asynchronously towards each rele
manager. (Because event processing takes place simultaneously by all manag
low a worker, we need to ensure that each delay automaton is above only one
ager. To ensure the correct separation of concerns between automata it is eas
introduce delay automata on a per perwm′^mwmtuple basis.) Upon receipt of therec
message, the delay automaton raises the corresponding event with the manag

Assuming that some particular worker facet is abovek manager facets, the behaviou
of the original system can be recovered as long as there is always the possibil
performing the following 2k+1 step sequence of the new system instead of arec tran-
sition of the original system, in a manner uninterrupted by other system transitio

(1) the worker facet transmits the relevantrec value through its extra output port
onto then delay channels leading to then delay automata corresponding to then
manager facets above which it sits,

(2i) delay automatoni receives therec value from delay channeli, recording it in
its state,

(3i) delay automatoni performs arec transition causing manager faceti to perform
the required reconfiguration.

This sequence of steps preserves the property that all delay channels remain
except between steps (1) and (2i), which is correspondingly consistent with enablin
them to be executed without interruptions.

On the other hand, if we consider that the execution of these steps can indeed
terrupted, as allowed by the asynchrony inherent in the fragmenting of a single
sition into several, other outcomes become possible. Since the original system
only synchronous reconfigurations, it provides no definition of what might happ
should a reconfiguration be attempted nonatomically, and any evolution consi
with the semantics is permissible. For example, a context dependent notion of re
figuration can be created by having delay automata raise different reconfiguratio
tions in manager facets, depending on what reconfigurations intervened betwee
receiving of some particularrec value from a worker, and the raising of the corre
sponding reconfiguration event in the manager; the information to manage this b
kept in a delay automaton’s state, suitably managed through intervening reconfi
tions. And depending on what policy is adopted for the introduction and behav
of the delay automata, different policies for the handling of pending events bec
possible. Moreover being themselves workers, delay automata can be woke
suspended during reconfiguration transitions, further tuning this aspect.

One canonical possibility for dealing with reconfigurations that attempt to interle
other reconfiguration actions, is to enforce a strict sequentialisation policy. This
be done by ensuring that once arec message arrives at a delay automaton, the o
thing the delay automaton can then do is to raise the corresponding event, ign
further inputs till it has done so. We call this arrangement the standard asynch
sation of an IWIM system, and we now present the technical details.
42

on

t-

ager

re the
SupposeWM is an IWIM system with the usual notations, i.e. typical automat
namewm mapping to (I, O, A = (St, Init, Tr))⊗(M, mI, R), with manager statesm
mapping to networks (Pmwm, Cmwm), and reconfigurationsmwm -r-› nwm = χmwm,nwm :
Cmwm → Cnwm; and with ancillary data given bywm′^mwm, λmwm, rwm′^mwm.

The standard asynchronisation ofWM, which we call hereWM*, has the set of au-
tomaton namesWM* = WM ∪ { ∆.wm′.m.wm| wm′^mwm}. We assume all of these
∆.wm′.m.wmnames are fresh, and introduce for each∆.wm′.m.wmname, for future
convenience, fresh port, channel, and input and output port names1:

∆.wm′.m.wms , ∆.wm′.m.wmt , ∆.wm′.m.wmch , ∆.wm′.m.wmi , ∆.wm′o

If wmmaps to (I, O, A = (St, Init, Tr))⊗(M, mI, R) in WM, in WM*, wmmaps to (I,
O*, A* = (St, Init, Tr*)) ⊗(M, mI, R*).

The input portsI of the worker facet ofwmremain unchanged. However for the ou
put ports we haveO* = O ∪ { ∆.wmo}. The worker facet automatonwor(wm) itself
is given by the same state spaceSt, initial stateInit, and:

Tr* = TrI ∪ TrO ∪ {a -∆.wmo!rec-› b | a -rec-› b ∈ TrR}

This ensures thatrec messages can be sent over∆.wmo to all delay automata
∆.wm.m′.wm′. To ensure that these are handled properly, we examine the man
facet ofwm.

In the manager facetman(wm), the state spaceM and initial statemI remain un-
changed. Statem however maps to the communication network (P*mwm, C*mwm)
where:

P*mwm = Pmwm ∪ {∆.wm′.m.wms, ∆.wm′.m.wmt | wm′^mwm}
C*mwm = Cmwm ∪ {∆.wm′.m.wmch | wm′^mwm})

s*mwm = smwm ∪ {∆.wm′.m.wmch |→ ∆.wm′.m.wms | wm′^mwm}
t*mwm = tmwm ∪ {∆.wm′.m.wmch |→ ∆.wm′.m.wmt | wm′^mwm}

Finally, if mwm -r-› nwm = χmwm,nwm : Cmwm → Cnwm is a reconfiguration transition of
R, there is a corresponding transition ofR* given by χ*mwm,nwm : C*mwm → C*nwm
whereχ*mwm,nwm = χmwm,nwm interpreted as a partial injection onC*mwm.

Standing between the worker and manager facets of the preceding automata, a
delay automata themselves. A delay automaton name∆.wm′.m.wmmaps to a pure
worker given by:

(I∆.wm′.m.wm, O∆.wm′.m.wm, A∆.wm′.m.wm =
(St∆.wm′.m.wm, Init∆.wm′.m.wm, Tr∆.wm′.m.wm))⊗({ ♦}, ♦, ∅)

Here:

I∆.wm′.m.wm = {∆.wm′.m.wmi | wm′^mwm}

1. The last of these is not an error.
43

of

y
ully

a sep-

ove.

iate

nt

se-
while O∆.wm′.m.wm= ∅. The worker automatonA∆.wm′.m.wmis given by the state
space:

St∆.wm′.m.wm = Recwm′ +∪ { Init∆.wm′.m.wm}

and the initial stateInit∆.wm′.m.wm is the one named as such. The transitions
A∆.wm′.m.wm are given by:

Tr∆.wm′.m.wm = {Init∆.wm′.m.wm -∆.wm′.m.wmi?rec-› rec | rec ∈ Recwm′} ∪
{ rec -rec-› Init∆.wm′.m.wm| rec ∈ Recwm′}

where we have abused notation a little by allowingrec to name the state reached b
inputting arec message (not to mention its original use as event name), hopef
without causing confusion. It is now clear that the delay automaton inputs arecmes-
sage coming from the original worker, and then provokes arec reconfiguration event
in the manager at a later point.

To connect all this together, we give the above relation, which is:

^* = ^ ∪ {∆.wm′.m.wm̂ *mwm | wm′^mwm}

and theλ*mwm bijections which are:

λ*mwm = λmwm ∪ {∆.wm′.m.wms |→ ∆.wm′o | wm′^mwm} ∪
{ ∆.wm′.m.wmt |→ ∆.wm′.m.wmi | wm′^mwm}

Note how in the first line of the above the original worker’s output port∆.wm′o is
shared by as many managers as it has, each controlling an individual queue to
arate∆.wm′.m.wm delay automaton.

Finally ther*∆.wm′.m.wm̂ *mwm functions are given by:

r*∆.wm′.m.wm̂ *mwm(rec) = mwm -r-› nwm

iff rwm′^mwm(rec) = mwm -r-› nwm.

It is now clear that this construction has the properties indicated informally ab
Thus whereas inWM, a workerwm′ above a manger statemwmcan perform the step
a -rec-› b simultaneously with each implicated manager’s performing the appropr
mwm -r-› nwm (becauserwm′^mwm mapsrec to mwm -r-› nwm), in WM*, wm′ can no
longer do this directly. Instead it passes arec message to∆.wm′.m.wmvia a single
a -∆.wm′o!rec-› b action which causesrecmessages to be broadcast onto all releva
channels∆.wm′.m.wmch. If such a channel was previously empty, then∆.wm′.m.wm
can swallow therecmessage by performing anInit∆.wm′.m.wm-∆.wm′.m.wmi?rec-› rec
input from the same channel. This obtains by the fact that ports∆.wm′o and
∆.wm′.m.wmi are connected via∆.wm′.m.wmch, sinceλ* mwm connects∆.wm′o to
∆.wm′.m.wms = s*mwm(∆.wm′.m.wmch), and also connectst*mwm(∆.wm′.m.wmch) =
∆.wm′.m.wmt to ∆.wm′.m.wmi. Sincer* ∆.wm′.m.wm̂ *mwm maps the only available
∆.wm′.m.wmtransitionrec -rec-› Init∆.wm′.m.wmto the reconfigurationmwm -r-› nwm,
it follows that when∆.wm′.m.wmperformsrec -rec-› Init∆.wm′.m.wm, it provokes the
desired reconfigurationmwm-r-› nwm. Thus if∆.wm′.m.wmch was empty at the outset,
the simulation of one manager’s reconfiguration by a delayed but uninterrupted
44

onse-
o be
vided
invo-

, and

ing
ic

s the

ngue
del,

om-
onent

con-
on-
chan-

mpo-
se it
elves

nect-

nnect-
t

nd is
nsi-
quence of steps is available. Evidently when several managers need to react, c
quent on the same original atomic reconfiguration, similar simulations can als
constructed. These simulations may also be interleaved with other actions, pro
none of the other actions ‘beat the sequence to the tape’, where the ‘tape’ is the
cation of arec step mapped by ar*∆.wm′.m.wm̂ *mwm to a change of configuration of
the managerwm, while the manager remains in the original statem. Examples of oth-
er actions that can safely be interleaved in this manner are ordinary I/O actions
reconfigurations not involving any of the automata involved.

Proposition 5.1 The construction just given is idempotent, in the sense that apply
it n more times toWM* results in a system which can simulate an atom
reconfiguration ofWM that involvesk managers in 2k(n+1)+1 uninterrupted steps.

The straightforward if tedious proof rests on the observation that inWM*, the only
worker abovemwm capable of provoking a reconfiguration is a∆.wm′.m.wm, so that
the next application of the construction replaces each∆.wm′.m.wm’s rec steps by a
three step sequence etc. Thus iterated application of the construction exemplifie
fact that a chain of buffers is behaviourally equivalent to a single buffer.

6 The Arbab, de Boer, Bonsangue Model

In this section we show how the model proposed by Arbab, de Boer and Bonsa
in [Arbab et al. (2000a)] (see also [Arbab et al. (2000b)]), henceforth the ABB mo
can be subsumed within our framework. In the ABB model, there is a family ofcom-
ponents. Each component is a transition system similar to one of our worker aut
ata, and it has access to a set of channel ends to which it is connected. A comp
may output values along channel source ends (eg.c) to which it is connected, and
may input values from channel sink ends (eg.c) to which it is connected. The state
transitions for these actions are of the forma -c!v-› b anda -c?v-› b respectively, and
these are the only kinds of action that components may perform. The dynamic re
figurability of ABB systems comes from the fact that they can alter their set of c
nected channel ends by sending and receiving channel end identities along the
nels themselves. Thus if a component possesses channel endsc, d, it may relinquish
possession ofd by a transition likea -c!d-› b; likewisea -c!d-› b relinquishes posses-
sion ofd. Likewise possession ofd or d can be gained bya -c?d-› b or a -c?d-› b. It
is tacitly assumed that since channels are point to point connections, once a co
nent has relinquished possession of a channel end, it will no longer attempt to u
until it has received it once again from some other component. Channels thems
are queues in the ABB model, just as they are in ours, and when a channel end,d (re-
sp.d) say, becomes detached from the component to which it was previously con
ed by being output along channelc say, no inputs overd (resp. outputs overd) can
take place until the relevant message has been consumed by the component co
ed to the sink end ofc, whereupond (resp.d) becomes available to that componen
for communication purposes. Output and input transitions in which a channel e
respectively transmitted or received are called reconfiguring output and input tra
tions.

WM*…*
n+1—
45

nd-
BB
m is
t of

the
e-

-

t

n

We will now describe the mapping of a family of ABB components to a correspo
ing IWIM system. Note that since channels are not created dynamically in the A
model, the complete set of channels that figure in an execution of an ABB syste
known at initialisation time, and given an ABB system, we call this complete se
channelsCH. From this we create the five disjoint alphabets:

CHi = {chi | ch ∈ CH}
CHo = {cho | ch ∈ CH}
CHs = {chs | ch ∈ CH}
CHt = {cht | ch ∈ CH}
CHch = {chch | ch ∈ CH}

Let C1 … Cn be a family of ABB components. For eachCi we construct a transition
systemKi as follows. LetCi be (Sti, Initi, Tri, ri) whereSti is a set of states of which
Initi is an initial state,Tri is a transition relation containing transitionsa -out!v-› b or
a -in?v-› b (with in, out∈ CH), andri is the initial value of the dynamically changing
set of channel ends possessed byCi. By the remarks above we can assume thatCH
= {ch | for somei, ch ∈ ri or ch ∈ ri}. For simplicity we will assume that each end
of each channel inCH is in someri.

Now we setKi to be the transition system given by (Sti*, Initi*, Tri*), where the set
of states isSti* = Sti ∪ newSti, with Initi* = Initi, andTri* is given as follows (also
implicitly defining the fresh statesnewSti). Each transitiona -out!v-› b or a -in?v-› b
of Ci wherev is not a channel end yields a transitiona -outo!v-› b or a -ini?v-› b of Ki.
Moreover each reconfiguring outputa -out!ch-› b of Ci is replaced by two transitions
a -outo!cho-› ab-rec(outo!cho)-› b, whereab is a fresh state innewSti andrec(outo!cho)
is a reconfiguration action where the intention is to simulate the detaching of
channel endcho from the component in a manner that will be made clear below. Lik
wise if the channel end being detached isch rather thanch, Ki will contain the se-
quencea -outo!chi-› ab -rec(outo!chi)-› b. A similar arrangement holds for reconfig
uring input transitionsa -in?ch-› b or a -in?ch-› b. We have respectivelya -ini?cho-›
ab -rec(ini?cho)-› b anda -ini?chi-› ab -rec(ini?chi)-› b.

For technical reasons, it is not sufficient to work with just theKi. GivenKi, let θi
+a

be a finite directed path through the transition system ofKi (i.e. a finite sequence of
contiguous transitions ofKi), starting at statea. Let Ki

a be the transition system de-
termined by the set of paths: {θi

+a | θi
+a is a path through the transition system ofKi

starting ata, and if θi
+a contains arec transition, there is only one and it is the las

transition ofθi
+a}.

Given aθi
+a, let θi

a be the result of erasing fromθi
+a all non-rec transitions (so the

transitions listed inθi
a will not be contiguous, neither will they necessarily mentio

a). Let φ(θi
+a), φ(θi

a) denote the final state reached by such aθi
+a or θi

a. Define
Θi

a = {θi
a | θi

+a is a path through the transition system ofKi starting ata}; conse-
quentlyΘi

a is partially ordered by the prefix relation. We writeθi
+, θi, Θi to denote

θi
+Initi, θi

Initi, Θi
Initi. Let:

M = ∏{ Θi | i ∈ {1 … n}}
46

aton

g:

r

The rest of the construction will proceed by recursion on the structure ofM, which is
again partially ordered by the prefix relation. We construct a pure manger autom
pm, whose space of states isM, and above eachm ∈ M, there will be a collection of
pure worker automata crafted from theKi

a transition systems2.

The base case ism= []×[]×…×[]. Above thismwe have the collection of pure work-
erspwi

[] for i ∈ {1 … n}, wherepwi
[] is given by (CHii

[] , CHoi
[] , Ki

Initi), with CHii
[]

= {chi | chi ∈ CHi, ch∈ ri} and CHoi
[] = {cho | cho ∈ CHo, ch ∈ ri}. Note thatIniti =

φ([]) (with the understanding that [] is the empty path throughKi).

The manager statem maps to (Pm, Cm) where:

Pm = {chs | chs ∈ CHs, ch ∈ ri} ∪ {cht | cht ∈ CHt, ch ∈ ri}
Cm = {chch | {chs, cht} ∩ Pm ≠ ∅}

and thesm, tm maps function in the way we would expect, i.e.sm(chch) = chs and
tm(chch) = cht. The link between the manager and the workers is also unsurprisin

λm = {cht |→ chi | chi ∈ CHii
[] } ∪ {chs |→ cho | cho ∈ CHoi

[] }

pwi
[]^m

completing the base case.

Now suppose thatm = (θ1 … θn) and supposem′ = (θ1 … θi′ … θn) whereθi′ =
θi@[ai -rec(outo!cho)-› bi], and where the transitionai -rec(outo!cho)-› bi is aKi- im-
mediate successor reconfiguring transition to the last one inθi. The manager statem
which maps to (Pm, Cm) is transformed tom′ which maps to (Pm′, Cm′) where:

Pm′ = Pm – {chs}
Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅}

and thesm′, tm′ maps work as expected, i.e.sm′(chch) = chs andtm′(chch) = cht. It now
makes sense to define the manager reconfiguration transitionm -r-› m′ as the partial
injection

χm,m′ : Cm → Cm′

which is the maximal identity function onCm ∩ Cm′.

Suppose that abovemwe had then pure workers {pwj
θj | j ∈ {1 … n}}. Then above

m′ we will also haven pure workers. Forj ≠ i, pwj
θj will continue to be abovem′ and

the reconfiguration transitionm -r-› m′ will leave it in the same state as it was. Fo
the casej = i we have instead the pure workerpwi

θi′ = (CHii
θi′, CHoi

θi′, Ki
φ(θi′)) where:

CHii
θi′ = CHii

θi

CHoi
θi′ = CHoi

θi – {cho}

and so we can summarise the above map form′ as:

{ pwj
θj^m′ | pwj

θj^m, j ∈ {1 … n} – { i}} ∪ {pwi
θi′^m′}

2. Since there is only one nontrivial manager, we suppress the ‘pm’ tags for convenience.
47

perty
d nei-
s that

into
t the

sy to
the
and

d to
nnel
er.

atis
med
u-
Theλm′ map is:

λm′ = λm – {chs |→ cho}

and we have that:

rpwiθi^m(rec(outo!cho)) = m -r-› m′

which completes the piece of the recursion for the case of arec(outo!cho) reconfigu-
ration. If we consider insteadrec(outo!chi), rec(ini?cho), rec(ini?chi) reconfigurations,
the above is modified respectively by:

CHii
θi′ = CHii

θi – {chi} ; CHoi
θi′ = CHoi

θi ;
Pm′ = Pm – {cht} ; Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅} ;
λm′ = λm – {cht |→ chi}

CHii
θi′ = CHii

θi ; CHoi
θi′ = CHoi

θi ∪ {cho} ;
Pm′ = Pm ∪ {chs} ; Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅} ;
λm′ = λm ∪ {chs |→ cho}

CHii
θi′ = CHii

θi ∪ {chi} ; CHoi
θi′ = CHoi

θi ;
Pm′ = Pm ∪ {cht} ; Cm′ = {chch | {chs, cht} ∩ Pm′ ≠ ∅} ;
λm′ = λm ∪ {cht |→ chi}

together with the obvious consequences. Since the ABB system enjoys the pro
that a component cannot give away a channel end that it is not connected to an
ther does it ever receive a channel end that it already possesses, it readily follow
the set operations above are nonnull.

Beyond these there are the expected identity transitions on states ofM of course,
which completes the construction. Thus we have cut up the original ABB system
a collection of pieces that can be reassembled as an IWIM system, in order tha
latter is able to achieve the same effect as the original system. In fact it is ea
convince onself that the IWIM system constructed from a given ABB system by
above technique is able to simulate it in the sense that non-reconfiguring inputs
outputs correspond bijectively, while reconfiguring inputs and outputs correspon
sequences of two steps in the IWIM system, the first to receive or transmit the cha
end identifier, the second to provoke the desired reconfiguration via the manag

7 The Katis, Sabadini, Walters Model

In this section we consider a model proposed by Katis, Sabadini and Walters in [K
et al. (2000)], henceforth the KSW model, and show how it too can be subsu
within our framework. In the KSW model, the main entity of interest is the CP a
tomaton. A CP automatonG = (G, X, Y, A, B, ∂0, ∂1, γ0, γ1), consists of a directed
graphG = (G0, G1) whereG0 is the set of nodes andG1 is the set of arcs, together
with four maps:

∂0 : G1 → X ; ∂1 : G1 → Y ; γ0 : A → G0 ; γ1 : B → G0
48

aton,
c-

aps
m-

ents
uine
CP

n, is
ally,
chro-

et
n-

ppro-
cher

truct
ism
aton

WIM

rk-

er’s

n-
com-
fact
eful
will
These work as follows. The arcs of the graph represent transitions of the autom
whose states are the nodes. The setsX andY are input and output alphabets respe
tively. Thus the maps∂0 : G1 → X and∂1 : G1 → Ydescribe which input letter a tran-
sition of the graph consumes, and which output letter it produces. Since both m
are total, each transition involves both input and output. We will write a CP auto
aton transition as:

s -(ind, arc, outd)-› t

wheres andt are states,arc is the arc carrying the transition, andind, outdare the
input and output data. (In [Katis et al. (2000)], the authors also admit null elem
in bothX andYalphabets, to aid abstraction and to represent the absence of gen
communication during a step.) Communication is synchronous, thus when two
automata communicate, the symbol output by the producer of the communicatio
simultaneously input by the consumer of the communication. Most emphatic
there are no queues in the model: communication in this model is above all a syn
nisation mechanism.

The setsA andB (called the in-condition and out-condition respectively in [Katis
al. (2000)]), are to do with initialisation and finalisation, though in a slightly no
standard manner. Specifically, theγ0-image ofA is the set of entry points into the CP
automaton, i.e. initial states, and theγ1-image ofB is the set of exit points, i.e. final
states, of the automaton — except that when CP automata are combined in the a
priate way, then subsets of entry or exit points may be identified, leading to a ri
gamut of possibilities parameterised by partitions ofγ0(A) andγ1(B).

CP automata are endowed with a number of algebraic operations, which cons
more complex CP automata out of simpler ones. We will model the KSW formal
by mapping CP automata to IWIM systems, and then showing how the CP autom
algebraic operations can be reflected in constructions on the corresponding I
systems.

Let G = (G = (G0, G1), X, Y, A, B, ∂0, ∂1, γ0, γ1) be a CP automaton. We build an
IWIM system corresponding toG, and consisting of a pure manager and a pure wo
er. The pure managerpmhas one-state♦ which maps to ({ps, pt}, { chs, cht}) with
s♦(chs) = ps andt♦(cht) = pt (and withs♦(cht) andt♦(chs) undefined). The state♦ is
initial and the only transition of the manager is the identity. Clearly the manag
structure is independent ofG.

The pure workerpw is ({pi}, { po}, (St, Init, Tr)) where the transition systemTr is con-
structed thus. For eachG transitions -(ind, arc, outd)-› t, Tr contains the two step
sequences -pi?ind-› arc -po!outd-› t ; this makes it clear thatSt= G0 ∪ G1 (we will
tacitly assume that this union is disjoint). RegardingInit, we can chooseanystates0
in γ0(A) to beInit. Thus the mapping from CP automata to IWIM systems is in ge
eral one to many. In reality of course, examples of CP automata that represent
plete systems typically have unique initial states, reflecting the often observed
that most real systems start in a well defined condition. The plurality comes in us
when component CP automata are combined to form the a larger system. We
49

l, one
-

can
itial
P au-

that

in the
nary
am-

nous

d-

in
comment on this further below. More generally,γ0(A) andγ1(B) are sets of states of
the pure workerpw.

Our basic construction is nearly complete. All that remains is to note that theλ map-
ping is given by:

λ♦(ps) = po ; λ♦(pt) = pi

that the above mapping is given by:

pŵ ♦pm

and that since there are norec actions in the worker, ther map is empty.

Note the following invariant of the generated IWIM system: regardless ofG, there is
exactly one pure worker, one one-state pure manager, one external input channe
external output channel, andγ0(A) andγ1(B) can be identified with sets of configura
tions of the pure worker.

We can easily see that whatever the initial state of the given CP automaton, we
find an IWIM system from among the possibilities constructed, with the same in
state; and which furthermore simulates it in the sense that the execution of a C
tomaton transition inputtingx and outputtingy, corresponds in the IWIM system to
the input from the input queue ofx and the output onto the output queue ofy, in that
order. (The alternative order leads to an equally acceptable construction.) Note
in the IWIM system these are comunications with the environment.

We now move on to constructions on CP automata and how these are reflected
corresponding IWIM systems; the principal ones that we must consider are bi
combinators. We will subscript with the name of the relevant automaton to dis
biguate when notations would otherwise clash.

Communicating Parallel Composition. LetG = (G = (G0, G1), X, Y, A, B, ∂0,G, ∂1,G,
γ0,G, γ1,G) andH = (H = (H0, H1), Y, Z, C, D, ∂0,H, ∂1,H, γ0,H, γ1,H) be CP automata.
Then the communicating parallel composition ofG andH, written G ⋅H, is the CP
automaton:

G ⋅H = (G⋅H = (G0 × H0, G1⋅H1 = {(g, h) | g ∈ G1, h ∈ H1, ∂1,G (g) = ∂0,H (h)}),
X, Z,
A × C, B × D,
∂0,G ⋅H (g, h) = ∂0,G (g), ∂1,G ⋅H (g, h) = ∂1,H (h),
γ0,G ⋅H = γ0,G × γ0,H , γ1,G ⋅H = γ1,G × γ1,H)

This definition makes clear the statement above that communication is synchro
in the KSW model. The input and output labels on an arc (g, h) of the combined sys-
tem are∂0,G (g) and∂1,H (h) respectively, while the very existence of the arc is pre
icated on the condition∂1,G(g) = ∂0,H (h), which supports the interpretation that arcg
output and arch input the same symbol. This is the only notion of communication
the KSW model.
50

-

f

e

ica-

s

-

We model the communicating parallel composition ofG andH at the IWIM system
level as follows. SupposeWMG is an IWIM system representingG, andWMH is an
IWIM system representingH. We assume that bothWMG andWMH each have a pure
worker,pwG andpwH respectively, a one-state pure manager,pmG andpmH respec-
tively, an external input channelcht,G andcht,H respectively, an external output chan
nel chs,G andchs,H respectively, thatγ0,G(A) andγ1,G(B) can be identified with a set
of states ofpwG, and thatγ0,H(C) andγ1,H(D) can be identified with a set of states o
pwH. The IWIM systemWMG ⋅H we seek can be generated fromWMG andWMH as
follows.

There is the usual one-state pure managerpmG ⋅H as above. The corresponding pur
workerpwG ⋅H = ({pi}, { po}, (StG ⋅H, InitG ⋅H, TrG ⋅H)) is built frompwG andpwH by de-
fining StG ⋅H = StG × StH, InitG ⋅H = (InitG, InitH), and forTrG ⋅H, whenever we have a
pair of transitions inTrG of the formsG -pi?ind-› arcst,G -po!val-› tG, and a pair of tran-
sitions inTrH of the formsH -pi?val-› arcst,H -po!outd-› tH, we form theTrG ⋅H transi-
tions (sG, sH) -pi?ind-› (arcst,G, arcst,H) -po!outd-› (tG, tH). It is clear that this proce-
dure only succeeds because of the special structure of the transition systemsTrG and
TrH. We can now identifyγ0,G ⋅H(A × C) with states corresponding toγ0,G(A) ×
γ0,H(C), andγ1,G ⋅H(B × D) with states corresponding toγ1,G(B) × γ1,H(D); and the rest
of the data for the IWIM systemWMG ⋅H is routine.

It is obvious thatWMG ⋅H is able to simulateG ⋅H in a straightforward manner pro-
videdWMG can simulateG andWMH can simulateH.

Parallel Composition without Communication. Let G = (G = (G0, G1), X, Y, A, B,
∂0,G, ∂1,G, γ0,G, γ1,G) andH = (H = (H0, H1), Z, W, C, D, ∂0,H, ∂1,H, γ0,H, γ1,H) be CP
automata. Then the noncommunicating parallel composition ofG andH, writtenG ×
H, is the CP automaton:

G × H = (G × H = (G0 × H0, G1 × H1), X × Z, Y × W, A × C, B × D,
∂0,G × H (g, h) = ∂0,G (g) × ∂0,H (h), ∂1,G × H (g, h) = ∂1,G (g) × ∂1,H (h),
γ0,G × H = γ0,G × γ0,H , γ1,G × H = γ1,G × γ1,H)

This noncommunicating parallel composition still features synchronous commun
tion, but this time of pairs of data values.

We model the noncommunicating parallel composition ofG andH at the IWIM sys-
tem level thus. LetWMG andWMH be IWIM systems representingG andH respec-
tively. We assume thatWMG andWMH have pure workers,pwG andpwH, one-state
pure managers,pmG andpmH, external input channelscht,G andcht,H, external output
channelschs,G andchs,H, thatγ0,G(A) andγ1,G(B) can be identified with a set of state
of pwG, and thatγ0,H(C) andγ1,H(D) can be identified with a set of states ofpwH.
Then we proceed as follows to constructWMG × H.

There is the usual one-state pure managerpmG × H as above. We build a correspond
ing pure workerpwG × H = ({pi}, { po}, (StG × H, InitG × H, TrG × H)) from pwG andpwH
by definingStG × H = StG × StH, InitG × H = (InitG, InitH), and forTrG × H, whenever we
have a pair of transitions inTrG of the formsG -pi?indG-› arcst,G -po!outdG-› tG, and a
51

have

d

-

,

-

pair of transitions inTrH of the formsH -pi?indH-› arcst,H -po!outdH-› tH, we form the
TrG × H transition pair:

(sG, sH) -pi?(indG, indH)-› (arcst,G, arcst,H) -po!(outdG, outdH)-› (tG, tH).

We can now identifyγ0,G × H(A × C) with states corresponding toγ0,G(A) × γ0,H(C),
andγ1,G × H(B × D) with states corresponding toγ1,G(B) × γ1,H(D); and the rest of the
data forWMG × H is routine.

It is obvious thatWMG × H is able to simulateG × H in a straightforward manner
providedWMG can simulateG andWMH can simulateH.

Up to now, the in-conditions and out-conditions of the component CP automata
played a passive role; the next construction remedies this.

Restricted Sum. Let G = (G = (G0, G1), X, Y, A, B, ∂0,G, ∂1,G, γ0,G, γ1,G) andH =
(H = (H0, H1), X, Y, B, C, ∂0,H, ∂1,H, γ0,H, γ1,H) be CP automata. Then the restricte
sum ofG andH, writtenG + H, is the CP automaton:

G + H = (G + H = (G0 + H0 / ~B where ~B is the finest equivalence
relation generated byγ1,G(b) ~B γ0,H(b) (and we write
[g]B for the equivalence class containingg), G1 + H1),

X, Y, A, C,
∂0,G + H = ∂0,G + ∂0,H, ∂1,G + H = ∂1,G + ∂1,H,
γ0,G + H = γ0,G , γ1,G + H = γ1,H)

(As expected, the sources and targets of the arcs inG1 + H1 are the equivalence class
es of the corresponding sources and targets inG0 andH0.)

Let WMG andWMH be IWIM systems representingG andH respectively. We as-
sume thatWMG andWMH have pure workers,pwG andpwH, one-state pure managers
pmG andpmH, external input channelscht,G andcht,H, external output channelschs,G
andchs,H, thatγ0,G(A) andγ1,G(B) can be identified with a set of states ofpwG via
mapsγw0,G : A → StG, γw1,G : B → StG, and thatγ0,H(B) andγ1,H(C) can be identified
with a set of states ofpwH via mapsγw0,H : B → StH, γw1,H : C → StH. We proceed
as follows to constructWMG + H.

There is the usual one-state pure managerpmG + H as above. We build a correspond
ing pure workerpwG + H = ({pi}, { po}, (StG + H, InitG + H, TrG + H)) from pwG andpwH
by defining:

StG + H = StG + StH / ~B where ~B is the finest equivalence relation
generated byγw1,G(b) ~B γw0,H(b) (and we write
[s]B for the equivalence class containings)

InitG + H = [InitG]B

TrG + H = {[s]B -pi?v-› [t]B | [s]B, [t]B ∈ St, s -pi?v-› t ∈ TrG,I ∪ TrH,I} ∪
 {[s]B -po!v-› [t]B | [s]B, [t]B ∈ St, s -po!v-› t ∈ TrG,O ∪ TrH,O}

That this works as desired is conditional on the observation that in bothpwG andpwH,
the states picked out byγw0,G, γw1,G, γw0,H, γw1,H are, so to speak, ‘G0-states’ and not
52

ugh
ally

it

‘ad-
for
e in-
to the

cted
, in
-

self,

se-

nal

an-
M

n-

the
‘arc-states’. This can be assured by choosingγw0,G, γw1,G, γw0,H, γw1,H to beγ0,G,
γ1,G, γ0,H, γ1,H in the base case construction, whereupon it evidently persists thro
the binary combinator simulations we have described, and enables us to form
identify γ0,G + H = γ0,G with a set of states ofpwG + H via γw0,G + H : A → StG + H =
γw0,G / ~B and to identifyγ1,G + H = γ1,H with a set of states ofpwG + H via γw1,G + H :
C → StG + H = γw1,H / ~B. With this confirmed, the construction ofStG + StH / ~B re-
sults in a glueing ofs -pi?ind-› arc -po!outd-› t sequences only at their ends, and
then becomes easy to see that the given recipe gives us an IWIM systemWMG + H
capable of simulating the CP automatonG + H, if WMG simulatesG andWMH sim-
ulatesH.

Two points deserve comment. Firstly, [Katis et al. (2000)] speak of the need to
just’ the in-conditions or out-conditions of a CP automaton in order to make it fit
some particular purpose. More than anything else this is an indication that thes
terconnection aspects of the automaton are really properties that belong more
interconnection mechanism itself, than to the automata involved.

Refering back to our IWIM system scenario, we have recognised this, and refle
it in the design of our various IWIM system pullback and pushout operations
which the intermediate worker-managerwm• was outside the system being manipu
lated, i.e.wm• (and its attendant homomorphisms) parameterise the operation it
and do not form part of the entities being operated on.

Secondly if, following [Katis et al. (2000)], we intend the restricted sum to model
quential composition, the construction ofWMG + H, though faithful to the CP autom-
atonG + H, suffers from the weakness pointed out in Section 4, namely that if a fi
state ofG has out-transitions, and a corresponding initial state ofH has in-transi-
tions, then a run may wander fromG to H and then back in toG. The IWIM system
paradigm offers more flexibility here, allowing the expression of an irreversible tr
sition fromG to H. We describe the details, resulting in the construction of an IWI
systemWM*G + H that simulatesG + H in a different way.

Suppose inG0 + H0 / ~B above, there arek of the equivalence classes that are no
singletons, i.e. there arek classes that glue at least one element ofG0 to at least one
element ofH0 (the remaining classes just containing individual elements outside
ranges ofγ1,G(B) andγ0,H(B)). Call them:

[γw1,G(b)1], [γw1,G(b)2] … [γw1,G(b)k]

Now partition each of [γw1,G(b)1] … [γw1,G(b)k] into two subsets each:

[γw1,G(b)1]G = [γw1,G(b)1] ∩ G0 and [γw1,G(b)1]H = [γw1,G(b)1] ∩ H0
…

[γw1,G(b)k]G = [γw1,G(b)k] ∩ G0 and [γw1,G(b)k]H = [γw1,G(b)k] ∩ H0

all nonempty by our assumptions. Replacing inStG + H the [γw1,G(b)1] … [γw1,G(b)k]
by the [γw1,G(b)1]G, [γw1,G(b)1]H … [γw1,G(b)k]G, [γw1,G(b)k]H is tantamount to gen-
erating a new equivalence relation, which we callB* , on the state spaceStG + StH.
This is the finest relation generated by the two families of clauses:
53

to

n on

y

l sys-
qual-

pects

n-
the

hen

.

ager

d

e

(γw1,G(b) ~B γw0,H(b) = γw0,H(c) ~B γw1,G(c)) ⇒ γw1,G(b) ~B* γw1,G(c))

(γw0,H(b) ~B γw1,G(b) = γw1,G(c) ~B γw0,H(c)) ⇒ γw0,H(b) ~B* γw0,H(c))

Now we define:

St*G + H = (StG + H – {[γw1,G(b)1] … [γw1,G(b)k]}) ∪
{[γw1,G(b)1]G, [γw1,G(b)1]H … [γw1,G(b)k]G, [γw1,G(b)k]H}

Init*G + H = [InitG]B*

Tr*G + H = {[s]B* -pi?v-› [t]B* | [s]B*, [t]B* ∈ St, s -pi?v-› t ∈ TrG,I ∪ TrH,I} ∪
{[s]B* -po!v-› [t]B* | [s]B*, [t]B* ∈ St, s -po!v-› t ∈ TrG,O ∪ TrH,O} ∪
{[s]B* -rec-› [t]B* | s = γw1,G(b) = γw0,H(b) = t , b ∈ B}

By distinguishing theG from theH components of the glueing states, we are able
introducerec transitions from one to the other. All of theserec transitions are above
the unique state of the pure manager, and all map to the identity reconfiguratio
the corresponding port/channel network ({ps, pt}, { chs, cht}). Since the pure worker
remains above this state when such arec transition is executed, itsrec transition com-
pletes and the run continues in theH component; however this time there is no wa
back to theG component, even if there are in-transitions to the initial state ofH used,
and out-transitions from the final state ofG reached.

This all works adequately, but is still open to the criticism that pure workerpwG, its
useful life over when the locus of control moves into thepwH part of the system, re-
mains alive, though defunct, preventing its resources from being reused. In a rea
tem, it would be garbage collected releasing its resources for other activities. E
ly, a demand driven implementation might well not create thepwH part of the system
until it was needed. Our IWIM system model enables us to express these as
though we will not go into all the formal details. Here is the general idea.

We split the state of the pure manager into two; and (a modified)pwG is above the
new initial state, whilepwH is above the other state. There is a reconfiguration tra
sition from the former to the latter, whose data is the identity reconfiguration on
port/channel network ({ps, pt}, { chs, cht}). The modification topwG entails adding
the [γw1,G(b)1]G … [γw1,G(b)k]G states described previously to its state space, and t
addingrec transitions to a typical [γw1,G(b)j]G state from each of its comprising
γw1,G(b)j states. Theserec transitions map to the reconfiguration mentioned above

It is clear that the behaviours of the resulting system are as follows. The man
starts in its initial state; consequently the modifiedpwG is active. It executes until it
reaches aγw1,G(b)j state and proceeds to perform theγw1,G(b)j -rec-› [γw1,G(b)j]G tran-
sition. This maps to the reconfiguration step of the manager, and becausepwH is
above the new manager state, the modifiedpwG leaves the system configuration an
pwH joins it, starting in its initial state.

This story holds up ifH has a unique initial state. If not, an unwinding techniqu
similar to that used in our ABB system simulation must be employed.
54

onse-
the

tions,
si-
mo-

e of
y idea
bor-

ome
ribed.
rang-
ions
list of

ign of
era-
the

fos-
that
d hoc
tter it
el, to
alge-
es to

del
into
ever-
com-
f the
ately,
s of
ing
at-

lge-
tions
mpo-
rallel
s.
Furthermore, the nontrivial state space now introduced for the manager has c
quences for all the combinators. A product-like construction must be used on
manager states for the communicating and noncommunicating parallel composi
while a sum-like construction, involving the introduction of reconfiguration tran
tions must be used for the restricted sum. We leave the fascinating details for the
tivated reader.

8 Conclusions

In the preceding sections we have introduced a formal model for capturing som
the essence of the IWIM concept in an automata based framework. Since the ke
in IWIM is that manger processes exercise some degree of control over their su
dinate workers, expressing this in a theoretical framework inevitably leads to s
complexity, and we have seen this reflected in the constructions we have desc
Despite this, the model that emerges enjoys a selection of appealing properties,
ing from the projection results of Section 3, to the various algebraic construct
presented in Section 4, which as we said, contains a by no means exhaustive
such possibilities.

Part of the reason for these appealing phenomena rests in the fact that the des
the model was tacitly undertaken in a manner in sympathy with categorical imp
tives — though no explicit mention was made of categorical concepts aside from
naming of constructions in Section 4 — a strategy which was conducive to the
tering of relatively elegant structural properties. Still it is by no means the case
such categorical properties are the only ones of practical interest, as the more a
constructions of Sections 5, 6 and 7 made abundantly clear. Regarding the la
is noteworthy that despite the emphasis on algebraic structures in the KSW mod
capture the KSW ideas in our own model, we were not able to make use of the
braic combinators we spent time describing in Section 4. One observation suffic
make clear why this is not in hindsight unexpected.

Consider communicating parallel composition. The most appealing way to mo
this using the techniques from Section 4, is to pipe the output of the first worker
the input of the second. This idea gives a system that behaves as expected. N
theless there is a problem when one wishes to form the restricted sum of such a
municating parallel composition with another system. What are the final states o
parallel composition that one can glue to the other system? They are, unfortun
pairs of final states of the communicating components, implicit in configuration
the system, but not explicit in the static description of the system without unwind
it (essentially this unwinding is what the ad hoc construction given for communic
ing parallel composition accomplishes). So the obvious way of modelling the a
braic operators of the KSW theory (which are combinators on the static descrip
of KSW systems), as combinators on the static descriptions of the translated co
nents, does not succeed. In particular we cannot translate communicating pa
compositions of KSW systems into networks of communicating IWIM subsystem
55

any
ption
both
ilt out
tems,

ith
f the
ems,
mes
re-
trib-
wn

od-
dels,
ance
a)].
SW
al-
rmal
tions,
are
vid-

ad
alge-
rmer
icol-

no
arly,

f alge-
de-
ned
a-
m in
It is

on-
sid-
rising
ely-
rties

in
the ca-
This is a consequence of the fact that the KSW model is a global state model, i.e
state of a configuration is precisely one of the states occurring in the static descri
of the system. This does not happen in the ABB model, nor in ours, because in
cases the states of runtime configurations, are more complicated structures bu
of the states mentioned in the static description of the system. For such sys
which (let us face it) give a more natural account of typical distributed systems w
their de facto distributed global state, the notion of sequential composition, one o
objectives of the sum construction, is a non-trivial issue. Concerning such syst
sequential composition is: either ignored completely; or is a feature that beco
available only after a substantial investment of theoretical effort (to perform the
quired unwinding); or in practical scenarios, requires the use of a serviceable dis
uted termination algorithm. Petri nets (see eg. [Best et al. (2000)]) is a well kno
formalism that exhibits the same characteristics.

The fact that we were able to simulate other formal approaches to IWIM in our m
el, means that we gain the capability of inheriting results obtained in these mo
in ours. One particular instance that comes to mind concerns the deadlock avoid
results proved under suitable conditions for the ABB model in [Arbab et al. (2000
Another concerns the algebraic operations considered in the context of the K
model in [Katis et al. (2000)], which helped to stimulate the development of the
gebraic properties of ours. Regarding the latter, we have not confronted the no
questions that arise concerning the coherence of combinations the various opera
commutativity, associativity, and so on. However, recognising that our models
built using elementary set theoretic machinery, we do not anticipate problems pro
ed we are prepared to take results up to set theoretic isomorphism.

The juxtaposition of conventionally inspired algebraic properties with the more
hoc constructions appearing directly afterwards, illustrates that the agendas of
bra and of system design cannot always be relied upon to coincide. While the fo
can give a useful perspective at a high level of abstraction, more specialised ‘br
lage’ is often needed to accomplish desired lower level goals while expending
more than a reasonable amount of effort. To put it another way, perhaps more cle
the way a system can be decomposed as recommended by a particular suite o
braic primitives, may well not coincide with the way that the same system can be
composed respecting ‘application level concerns’. The former are normally desig
with genericity in mind, while the latter can exploit specific (and usually crucial) fe
tures of the application to achieve a much more natural account for the syste
question, even if the techniques utilised do not generalise to arbitrary systems.
no more than a little ironic that in this paper, this point has been illustrated by c
sidering the naturally arising generic algebraic primitives of one model, and con
ering the question of how these might best be expressed using the naturally a
generic algebraic primitives of another model. More generally it illustrates that r
ing on some fixed set of algebraic or other tools, and ignoring the tighter prope
that specific systems enjoy, restricts expressivity.

Finally we observe that coordination models different from the IWIM one, and
particular the global state tuple based approaches, must nevertheless embody
56

for
f-
bli-

e of

IT

S-

n.

ules

age

bile

G.
age

roc.

CO-

. CO-

p.

ts:

ic.
pacity for disentangling management from worker aspects, so readily done
IWIM, even if only implicitly. The challenge of extracting this structure from so di
ferent looking starting points remains an intriguing issue to explore in future pu
cations.

Acknowledgement

The work described in this paper was partially supported by the EU in the cours
the KIT-INCO Project SEEDIS (Contract No. 962114).

References

Agha G. (1986); Actors: A Model of Concurrent Computation in Distributed Systems. M
Press.

Arbab F. (1995); Coordination of Massively Concurrent Activities. CWI Tech. Rep. C
R9565.

Arbab F. (1996); The IWIM Model for Coordination of Concurrent Activities.in: Proc. CO-
ORD-96, Ciancarini, Hankin (eds.), LNCS1061, 34-56, Springer.

Arbab F., Herman I., Spilling P. (1993); An overview of Manifold and its Implementatio
Concurrency: Practice and Experience5, 23-70.

Arbab F., Blom C. L., Burger F. J., Everaars C. T. H. (1998); Rusable Coordination Mod
for Massively Concurrent Applications. Software: Practice and Experience28, 703-735.

Arbab F., de Boer F. S., Bonsangue M. M. (2000a); A Logical Interface Description Langu
for Components.in: Proc. COORD-00, Porto, Roman (eds.), LNCS1906, 249-266,
Springer.

Arbab F., de Boer F. S., Bonsangue M. M. (2000b); A Coordination Language for Mo
Components.in: Proc. ACM SAC-00, 166-173.

Best E., Devillers R., Koutny M. (2000); Petri Net Algebra. Springer.

Bonsangue M. M., Arbab F., de Bakker J. W., Rutten J. J. M. M., Scutellà A., Zavattaro
(2000); A Transition System Semantics for the Control-Driven Coordination Langu
MANIFOLD. Theor. Comp. Sci.240, 3-47.

Carriero N., Gelernter D. (1989); LINDA in Context. Comm. ACM32, 444-458.

Ciancarini P., Hankin C. H. L. (eds.) (1996); Coordination Languages and Models 1996 (P
COORD-96). LNCS1061, Springer.

Ciancarini P., Wolf A. L. (eds.) (1999); Coordination Languages and Models 1999 (Proc.
ORD-99). LNCS1594, Springer.

Garlan D., Le Metayer D. (eds.) (1997); Coordination Languages and Models 1997 (Proc
ORD-97). LNCS1282, Springer.

Gelernter D. (1985); Generative Communication in Linda. ACM Trans. Prog. Lang. Sys.7, 80-
112.

Katis P., Sabadini N., Walters R. F. C. (2000); A Formalisation of the IWIM Model.in: Proc.
COORD-00, Porto, Roman (eds.), LNCS1906, 267-283, Springer.

Malone T., Crowston K. (1994); The Interdisciplinary Study of Coordination. ACM Com
Surv.26, 87-119.

Omicini A., Zambonelli F., Klusch M., Tolksdorf R. (2002); Coordination of Internet Agen
Models, Technologies, and Applications. Springer.

Papadopoulos G. A., Arbab F. (1998); Coordination Models and Languages.in: Advances in
Computers — The Engineering of Large Systems, Zelkowitz (ed.), 329-400, Academ
57

CO-
Porto A., Roman G-C. (eds.) (2000); Coordination Languages and Models 2000 (Proc.
ORD-00). LNCS1906, Springer.

Shapiro E. (1989); The Family of Concurrent Logic Languages. ACM Comp. Surv.21, 412-
510.
58

	A Multiply Fibred Automaton Semantics for IWIM
	R. Banach Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K. banach@cs.man....
	F. Arbab Software Engineering Dept., CWI, Kruislaan 413, 1098 SJ Amsterdam, Netherlands farhad@cw...
	G. A. Papadopoulos Computer Science Dept., University of Cyprus, 75 Kallipoleos St., Nicosia, Cyp...
	J. R. W. Glauert School of Information Systems, University of East Anglia, Norwich, NR4 7TJ, U.K....
	Abstract. The drawbacks of programming coordination activities directly within the applications s...
	1 Introduction
	2 The IWIM Model
	3 IWIM Automata
	3.1 Elementary IWIM Systems
	c œ dom(sm) , c Œ dom(tm) , qsrest = qs – {c:[º , un]}
	c œ dom(tm) , c Œ dom(sm) , qsrest = qs – {c:[u, u1, º]}
	k^m , ak Œ ests , ak -i?u-› bk , lm(p) = i Œ Iwor(k) , tm(c) = p , estsrest = ests – {ak} , qsres...
	k^m , ak Œ ests , ak -o!u-› bk , lm(p) = o Œ Owor(k) , Æ ¹ Out = {d | sm(d) = p} , estsrest = est...
	tm(c) = p , Æ ¹ Out = {d | sm(d) = p} , qsrest = qs – ({c:[u, u1, º]} » {d:[º , ud,nd] | d Œ Out})
	kr^m , akr Œ ests , akr -rec-› bkr , rkr^m(rec) = m -r-› n = cm,n : Cm Æ Cn , estsrest = ests – {...

	3.2 Unrestricted IWIM Systems
	c œ »{dom(sm¢wm¢) | m¢wm¢ Œ pman(sts)} , c Œ dom(tmwm) , mwm Œ pman(sts) , qsrest = qs – {c:[º ,...
	c œ »{dom(tm¢wm¢) | m¢wm¢ Œ pman(sts)} , c Œ dom(smwm) , mwm Œ pman(sts) , qsrest = qs – {c:[u, u...
	k^mwm , mwm Œ pman(sts) , (ak, nk) Œ sts , (ak, nk) -i?u-› (bk, nk) , lmwm(p) = i Œ Iwor(k) , tmw...
	(ak, nk) Œ sts , (ak, nk) -o!u-› (bk, nk) , Æ ¹ Out = {d | $ mwm Œ pman(sts), p • k^mwm, lmwm(p) ...
	k^m¢wm¢ , m¢wm¢ Œ pman(sts) , tm¢wm¢(c) = p , Æ ¹ Out = {d | $ mwm Œ pman(sts), p • k^mwm, lmwm(p...
	Æ ¹ Rmman = {mwm | mwm Œ pman(sts) • kr^mwm} , (akr, mkr) Œ sts , (akr, mkr) -rec-› (bkr, mkr) , ...

	4 Algebraic Properties of IWIM Systems
	4.1 Contructions Centred on Automata
	4.2 Contructions Centred on Systems
	(sts1, qs1) —› (sts1¢, qs1¢) ; (sts2, qs2) a config of WM2
	(sts1, qs1) a config of WM1 ; (sts2, qs2) —› (sts2¢, qs2¢)

	4.3 Completeness

	5 IWIM Systems with Delayed Reconfigurations
	6 The Arbab, de Boer, Bonsangue Model
	7 The Katis, Sabadini, Walters Model
	8 Conclusions
	Acknowledgement
	References

