
Exploring Applications of Formal Methods in the
INSPEX Project

Joseph Razavi1, Richard Banach1, Olivier Debicki2,
Nicolas Mareau2, Suzanne Lesecq2, Julie Foucault2

1School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.

{richard.banach,joseph.razavi}@manchester.ac.uk
2Commissariat à l’Énergie Atomique et aux Énergies Alternatives, MINATEC Campus,

17 Rue des Martyrs, F-38054 Grenoble Cedex, France
{olivier.debicki,nicolas.mareau,suzanne.lesecq,julie.foucault}@cea.fr

Abstract. As formal methods become increasingly practical, there is a need to
explore their use in a variety of domains. Wearable sensing is a rapidly developing
area in which formal methods can provide tangible benefits to end users, facili-
tating the advance of cutting-edge technology where consumer trust is critical.
The INSPEX project aims to develop a miniaturized spatial exploration system
incorporating multiple sensors and state of the art processing, initially focused
on a navigation tool for visually impaired people. It is thus a useful test-case for
formal methods in this domain. Applying formal methods in the INSPEX devel-
opment process entailed adapting to realistic external pressures. The impact of
these on the modelling process is described, attending in particular to the rela-
tionship between human and tool-supported reasoning.

1 Introduction

The industrial application of formal methods is becoming increasingly common. In
safety-critical domains such as aerospace, train systems, and nuclear reactors, it is more
and more the case that one can reasonably expect their use [1, 3, 7, 14]. For the design
of CPUs, where the financial cost of failures is extreme, formal methods have become
standard [22]. This is starting to extend to other types of widely used infrastructure
such as operating system components and compilers [16], and famously, in the back-
end operations of large web-based companies.1

These fields, of course, do not exhaust the range of potential applications. Indeed,
a time may come when most software is developed using rigorous techniques, but this
future is at present rather remote. Instead, the frontier consists of complex systems
whose cost of failure is high, if not quite catastrophic. The development of systems
with these characteristics presents an ideal opportunity for formal methods researchers
and software engineers to engage with each other to make rigorous development more
applicable and ubiquitous.

1 We have in mind the use by Facebook [11] of behind-the-scenes verification tools, described
in [32], and as predicted almost a decade earlier by Meyer in [20].



The area of medical devices is evidently one in which the consequences of errors
may be permanently debilitating or fatal, and there, system construction is governed
by numerous standards, e.g. [17] for software. Adjacent to life-critical devices, there
is an expanding area of medical accessories, attempting to enhance the lives of their
users in significant if non-critical ways. Among the many specific kinds of device in
this category we mention ‘assistive technologies’ which aim to support users with spe-
cific needs to navigate a world principally designed without those needs in mind. If the
device functions as it should, the benefit is an increased ability to live independently.

In this paper, we examine the INSPEX system [18], one example of a navigation
aid for visually impaired people. Such navigation aids, if they are successful, may help
the user to carry out more complex journeys than they would usually feel comfortable
undertaking, and with less reliance on others to help them. From this benefit there arises
a concomitant cost: if the system should fail, the user may be left stranded in an unfa-
miliar area which they would otherwise have avoided, perhaps even having to wait for
assistance from friends, strangers or emergency services. While such an event would
clearly undermine the increased independence which the device should bring, it is not
the occurrence but the plausible probability of this kind of problem which is a threat to
the system’s usefulness: unless users can be reassured that failure is a remote possibility,
they can not rely on the technology.

While the most classical navigation aid for visually impaired people, the white cane,
is a simple and robust physical tool, the decreasing cost of sensors and increasing ubiq-
uity of portable or wearable computing provides new possibilities to imagine assistive
technologies. However, given the high reliability required and the complexity of the
technology involved, the issue of correctness presents a barrier to entry for anyone
wishing to provide such a product. Indeed, in some jurisdictions, devices of this type
are highly regulated, underscoring the challenge to be met.

For these reasons, the development of assistive technologies represents a key area in
which the industrial use of formal methods may expand. However, projects in this area
are likely to be conducted under significant time pressure, and to be led to a great extent
by technology and hardware development. Software components may be re-purposed
from previous development efforts which are unlikely to have employed a rigorous
methodology. These factors together eliminate two classical approaches for integrating
formal methods into a project. A top-down approach becomes impractical, because the
desire to leverage new technologies in a timely manner necessitates the use of existing
components where possible. On the other hand, an incremental use of static techniques
to analyse a system in deployment, as might be used for back-end technologies, is not
practical for stand-alone devices which must be highly reliable from the outset.

In this paper, we describe the effects of these constraints on the formal modelling
process, based on our experience working on the INSPEX project. In Section 2 the
INSPEX project is described in more detail. Our experiences with different strategies
for modelling under the constraints of the project are discussed in Section 3, and the
extent to which we have been able to support this activity with existing tools is reported
in Section 4. Concluding remarks are made in Section 5.

2



2 The INSPEX Project

The INSPEX project [18] aims to construct a wearable spatial exploration system, pro-
viding obstacle-detection and warning capabilities. Such systems in themselves are not
new, and indeed the traditional white cane used by some visually impaired or blind
people constitutes an example. Recently, advances in sensor technologies have made
it possible for consumer applications to utilize advanced electronics for this purpose.
This leads to enhanced white canes which incorporate range sensors such as ultrasound
or LiDAR. While the cane sweeps to detect ground-level obstacles, the sensor can scan
a head or body height, and the system can provide a warning beep or buzz if there is
an obstacle in its path. A selection of existing or projected systems based around the
advanced sensor idea includes Smartcane [28], Ultracane [31], Bawa [5] and Rango
[25].

INSPEX will design a small, light device, suitable, in the first instance, to be mounted
on a white cane to assist the blind and visually impaired. Further use cases include other
low-visibility domains such as fire-fighting in smoke filled environments, or the opera-
tion of small airborne drones. INSPEX advances the state of the art for such systems in
two ways.

First, incorporating ideas currently used for automotive applications, INSPEX com-
bines readings from multiple sensors into a single statistical model of the environment
[19, 27, 15, 30, 21]. Specifically, it makes use of a short range LiDAR, a long range
LiDAR, an ultra wide-band RADAR, and a MEMS ultrasound sensor. This is a sig-
nificant improvement over a single-sensor system because each sensor has different
characteristics and each performs best under different circumstances. Factors such as
light level, fog, rain, snow, reflectivity of the target or its distance and size, impact the
accuracy of data from different sensing methods in different ways. Combining these di-
verse measurements can lead to greater accuracy, and discrepancies between them can
reveal properties of environmental objects, such as translucency, which are not possible
with one type of reading alone. As part of the INSPEX project, the sensors themselves
have to be miniaturized and adapted to function in close proximity to each other. This
work is carried out in parallel by the Swiss Center for Electronics and Microtechnology,
the French Alternative Energies and Atomic Energy Commission, the Tyndall National
Institute Cork, and SensL Technologies.

Second, the INSPEX device integrates a significant amount of processing, so that
its output, rather than simple range readings, can consist of more meaningful data such
as a depth-map of the scanned environment, or the location of salient obstacles. This
saves the data consumer the effort of processing raw readings into a meaningful form.
This is significant in human-oriented applications, as traditionally the presence of, or
distance to, an obstacle in a particular direction is presented to the user rather directly,
in the form of sound or tactile feedback, leaving the user’s brain the task of extracting a
model of the environment. This will be a familiar experience to those readers who have
had to translate the more or less frequent beep of a car reversing sensor into sensible
manoeuvres, especially in the presence of small unexpected obstacles. Relieving this
cognitive load for users who must make constant use of the data from the sensors is sig-
nificant, and the processing performed by the INSPEX sensing unit allows a smartphone

3



application, developed with the French startup GoSense, to render the environment in a
3D ‘sound picture’, presented to the user via binaural headphones.

The system consists of many heterogeneous modules. There is the headset, the
smartphone and the environment sensing system. Within the sensing system, which is
where the focus of the technological development work is concentrated, the individual
sensors are provided by autonomous submodules (capable of being deployed individ-
ually in other applications), whose readings are combined using a software processing
subsystem for the digital information garnered.

These features make the INSPEX project an ideal test case for the application of
formal methods to the class of problems described in the previous section. The success
of the device crucially relies on its dependability, making formal methods attractive.
However, time constraints, fundamental technological challenges, and the necessary
re-use of existing components where possible mean that a pragmatic approach to the
formal modelling and verification process must be taken. In what follows, we outline
lessons learned from this project about how formal modelling can be incorporated in a
development process with these characteristics.

3 Modelling Approaches for INSPEX

As outlined above, when modelling the class of systems of interest in this paper, one
must frequently deal with bodies of existing code which have been modified so as to be
suitable for the project at hand. In contrast to the ideal application of formal methods, in
which formal modelling would be used to derive code from requirements, adding clarity
and detail progressively, a more ‘bottom up’ approach is clearly needed which relates
to the existing code as it is, and which acknowledges that requirements are somewhat
obscure, encoded implicitly in implementation details and engineers’ minds.

In beginning such a modelling exercise, we have found that there are two tempt-
ing mistakes which must be avoided. The first is to take ‘bottom up’ too literally, and
attempt to model the low-level of the code in complete detail. Under any plausible
constraints on time and personnel, an unmodified interpretation of this is clearly impos-
sible: in a system of any reasonable complexity, there are simply too many low-level
events to lead to the extraction of a sensible formal model.

At the level where the functioning of the operating system and libraries is considered
to be correct —perhaps leveraging existing work [13, 10]— the task has a semblance of
achievability, but this quickly turns into a mirage. It rapidly becomes clear that while
such a model may be constructible in the time available, there will be little time for
anything else. Given that the constructed model would be almost a copy of the code as
it is, little value would be added in terms of perception of the intended purpose of the
system, at the cost of great effort. Discrepancies would be hard to detect because of the
low-level focus, and, since the model would not be independent from the program, they
would be vastly more likely to originate in modeller error than to be genuine defects in
the system. While existing formalizations of operating system functionality are valuable
tools for modellers of higher level systems, the insights contained in them must be more
carefully deployed.

4



It must not be thought that these problems could be overcome by automated means.
While models could in principle be extracted from code, ameliorating the issue of the
quantity of work, the more fundamental problem of obtaining a copy of the existing
low-level artefact would remain. In a system like INSPEX, it would be difficult to anal-
yse such a model, even automatically, for problems more interesting than null pointer
dereferences or buffer overruns. For example, the main correctness property we care
about for the INSPEX system is liveness: we don’t want the system to stop producing
output unexpectedly or unreasonably. However, it is clear that there are lots of circum-
stances under which output is impossible.

In order to perform its analysis, the system requires sufficiently diverse input with
sufficient frequency. What exactly is meant by ‘sufficiently diverse’ and ‘with sufficient
frequency’ is not clear from a high-level point of view without considerable human
insight. It crucially depends on implementation details, essentially corresponding to the
way memory is managed. Even to understand that the problem can be stated in this
form, reducing the number of properties of the implementation to be determined to just
two frequencies, a high-level understanding of the code is needed. For the foreseeable
future, extracting this kind of conceptual information from a computer program remains
an unavoidably human task.

If the desire to start with the details as they exist is problematic, the opposite ten-
dency is equally dangerous. Given that the salient aspects of the code are only visible in
the light of a high-level understanding, it is tempting to try to run a traditional formal de-
velopment, from requirements, through specifications, culminating in implementation-
level models. These would then be compared with the existing code for discrepancies.
Of course, the likelihood that low level models obtained in this way would match the
real code would be remote. Furthermore, it would be a grave mistake to replace the
real-world code with something generated by the model, since the real code embodies a
wealth of practical experience about the efficient and robust implementation of the sys-
tem which a modeller is unlikely to be able to replicate, particularly in little time. For
this reason, the modeller must keep one eye on the code, though this starts to risk the
same problem as the approach above: the specification is no good if it just amounts to
saying that the abstract model does whatever the code does and thus the code is correct
with respect to the abstract model by default!

A more formidable obstacle is the scale of the problem of going from low-level
code to high-level properties suitable for a specification. As described above, coming to
understand the precise requirements that the system places on its inputs in order to func-
tion properly depends on a detailed understanding of the code. It would be hubristic to
imagine that a lengthy cogitation on the details would produce the required perspective
for a system of any reasonable complexity.

Both options considered above share the defect that a lot of time and effort is con-
sumed before any actual model results. This is a poor use of resources, as a widely
drawn lesson in applied formal methods is that much of their value is derived from the
human understanding of the system gained by producing models [14, 4]. These mod-
els (or from questions driven by constructing them) can be discussed with engineers,
revealing points of tension which may imply the presence of inadequate understanding
by any of the parties, or of bugs. This interactive process works best if comprehensible

5



models can be produced early in the whole design and implementation activity as it is
well known that the cost of fixing defects is roughly exponential in how far along the
development route they are discovered [29, 8, 23].

The resolution of these dilemmas has two aspects. The first is that engineers will al-
ready have a conceptual understanding of the code they have produced, which is likely
to be at an intermediate level of abstraction. They will be able to provide a description of
the functioning of the system at the level of data structures rather than low-level manip-
ulations. A model of this description has the advantage of being at the level engineers
already think about the system, facilitating discussion and helping to resolve ambi-
guities in natural language descriptions. Data structures are likely to be motivated by
non-functional considerations such as memory constraints or hardware requirements. In
some sense, a description of the system at this level is likely to describe the practical ob-
jectives met by the code at a level which abstracts from detailed manipulations, but leave
the ultimate purpose of the system’s actions implicit. Therefore, in addition to making
explicit how this description connects to the implementation details, the modeller must
also extract a specification of correctness with a reasonable degree of independence.

Once this mid-level model is in place, the task of producing high and low level
models is dramatically simplified. In a very idealized description, one might imagine
working recursively, always attempting to make half-steps in the directions of speci-
fication and implementation simultaneously, and filling in the gaps between existing
models. The distinctive property of this process of modelling is that refinement rela-
tions between models become formalizable all at once, as the end of the process of
interpolation is approached. This delays the construction of a formal proof that the sys-
tem behaves as it should, and prioritizes maximizing the amount of communication with
the development team.

In reality, the situation is likely to be a little worse than what has just been stated.
Producing models of the entire system, suitable to stand in relations of refinement to
each other, becomes increasingly difficult as low-level features are incorporated and get
in the way of clean abstraction. Instead, it is advisable to model whatever aspects of the
system seem amenable to modelling.

For example, in the INSPEX system, the incoming sensor readings are pre-processed
in various ways before being sent to the statistical algorithm which computes a repre-
sentation of the user’s environment. In the course of this processing, they spend time
in various internal buffers. In a high-level approximation to the system, one imagines
that the message contents themselves move around in these data structures, but in re-
ality only references are manipulated. This generates some subtle requirements. When
an abstract object simply disappears, its reference can not disappear: instead it must be
used to deallocate the resource referenced. More interestingly, when a piece of abstract
data passes from one buffer to another, in reality these buffers may be stored on separate
subsystems. In that case, the reference must not be sent. Instead, the data itself must be
sent, and the abstract value represented by a new reference to the copy.

In principle, these sorts of details are well captured by refinement, but in practice if
the algorithm at an abstract level is already complex, a model incorporating the lower
level details can become extremely unwieldy and in particular difficult to discuss with
engineers. Instead, the processes implementing individual steps of the low-level mem-

6



ory management procedures can be modelled. The resulting set of models, then, will
stand in a variety of relations to each other and to the code, focussing on select aspects
of the system chosen by human judgement.

4 Tool Support

Most of the modelling work for INSPEX has been done using Event-B [2] and the
Rodin tool [26]. The Event-B style of formal development constructs system models by
building state machines, with state spaces (not by any means restricted to finite cardi-
nalities) defined statically, and with the transitions between states defined by guarded
events written in a guarded command language. The Rodin tool reasons about the con-
sistency or otherwise of the model defined, by comparing the definition of the model’s
dynamics against the invariants and other properties that are included in the model’s
definition.

The choice of Event-B and Rodin was made principally on modelling grounds. We
found that Rodin, together with its recently incorporated SAT solving plugins [9] doing
the heavy lifting on the proving side, was very convenient for modelling timing-related
properties of systems. It performed better for our application, and could be more useful,
than tools which focus specifically on time. The reason is that systems such as ours do
not fit well the perspective on time that those alternative tools take. By contrast, in many
respects Rodin fits very well with the modelling process described here.

Of course, the ability to animate models using the ProB plug-in of Rodin [24] is
very useful for communicating the meaning of models to non-specialists. In addition,
the semi-interactive style of proof is well-suited to a modelling style in which much of
the issue of correctness is left to human discretion. Indeed, we often find that arguments
about data structures are often reducible by a combination of human and automated
effort into an intuitively obvious statement. This can be marked as ‘reviewed’ in Rodin,
allowing a record of the interplay of human and automated verification.

One might also think that some of the relationships between models alluded to
above which do not amount to refinement may be covered by some of the many plug-
ins available. Of the plug-ins available, those on model decomposition, and particularly
atomicity decomposition [12], seem most likely to be relevant. At present, however, use
of these tools presents the problem that one particular formalism out of many possibil-
ities for decomposition must be chosen to represent a relationship between subsystems
which is intuitively understood, but may correspond to each of the possibilities only
imperfectly. This work only seems justifiable if it is reasonably clear that it would form
part of a formal proof of correctness. We may return to this point in future work.

In addition to the relationships between different abstract models, there is also the
question of the relationship between these models and the code. For detailed enough
models, this relationship can be checked for plausibility by a human being, but this may
lead to low-level problems being overlooked. In the INSPEX project, we have made use
of the BLAST tool [6] to confirm aspects of our understanding of the code. BLAST was
selected as an initial tool to investigate for this purpose because of the availability of tu-
torial material, and crucially because of its specification language which is conceptually
close to the idea of guarded events.

7



For example, suppose that at a relatively high level of abstraction, we model a sensor
process which first allocates slot from a buffer, then fills this slot with a reading from the
sensor hardware, and goes back to waiting for free space to be available in the buffer.
Schematically, a standard way to model a simple state machine of that kind would be
to use a variable for the current state, an abstraction of the control state of the real
program. To check that the real code corresponds to the model at this level of abstrac-
tion, one might write a BLAST specification in the following way. First, a new variable
must be inserted into the code to model the state of the abstract system. To do this the
BLAST specification might begin with global int wait_for_buffer = 1;.
Next, events in the Event-B model are linked to the code by using BLAST events. In
the Event-B model, the sensor being allocated space in the buffer would correspond to
an event like the following.

GetBufferSlot
WHEN state = wait for buffer

available slots ≥ 1
THEN state := wait for reading

available slots := available slots− 1

In the C code, the event might correspond to calling a function allocateSlot(),
and the condition that there are available slots in the buffer might be indicated by a
pointer, next_slot being non-null. Supposing that we are confident that the function
allocateSlot() does reduce the number of free slots as required, and we only
want to check that the control state machine is accurate, we might write a BLAST event
as follows.

event {
pattern { buffer_slot = allocateSlot();}
guard { wait_for_buffer == 1 &&

next_slot != NULL }
action { wait_for_buffer == 0; }

}

BLAST will check that whenever the ‘pattern’ in the above specification occurs,
the ‘guard’ is true, and add the ‘action’ to the code to update the abstract state. This
is somewhat like checking a refinement relation between the C code and the Event-B
model. However, it relies on assumptions made by the modeller that the functions used
behave as expected, and that there are no sources of control flow changes, such as failure
to obtain a sensor reading or pre-emption by other threads, which have been ignored.
Once these assumptions have been documented, they can be discussed with engineers,
or used to guide the development of more detailed refinements of the Event-B models.

8



5 Conclusions

In this paper, we discussed the lessons learned from our formal modelling work on the
INSPEX project about the way in which formal methods can be expanded into domains
for which the usual accounts seem difficult to apply.

In particular, by treating formal tools as a way to explicitly represent human intu-
itions about the system, approximating the process of refinement by describing salient
levels of abstraction, as much value can be drawn out of the modelling process as pos-
sible in limited time. The drawbacks of this approach are that the partial models con-
structed can stand in various relationships to each other, which may reduce the applica-
bility of tools and delay the construction of proofs of correctness. In addition, describing
the assumptions linking formal models with the real system can become complex. Nev-
ertheless, formal methods can bring tangible benefits to projects where high reliability
is important, but practical needs make a process structured around the use of formal
methods unworkable.

Acknowledgement: This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ment No. 730953. The work was also supported in part by the Swiss Secretariat for
Education, Research and Innovation (SERI) under Grant 16.0136 730953. We thank
them for their support.

References

1. Abrial, J.R.: Formal Methods in Industry: Achievements, Problems Future. In: Proc.
ACM/IEEE ICSE 2006. pp. 761–768 (2006)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. CUP (2010)
3. Banach, R. (ed.): Special Issue on the State of the Art in Formal Methods, Journal of Uni-

versal Computer Science, vol. 13, (5) (2007)
4. Barnes, J.E.: Experiences in the industrial use of formal methods. Electronic Communica-

tions of the EASST 46 (2011)
5. Bawa: https://www.bawa.tech/
6. BLAST Tool: (2011), https://forge.ispras.ru/projects/blast/
7. Bowen, J., Hinchey, M.: Seven More Myths of Formal Methods. IEEE Software 12, 34–41

(1995)
8. Braude, E., Bernstein, M.: Software Engineering: Modern Approaches. Wiley (2011)
9. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Smt solvers for rodin. In: International Con-

ference on Abstract State Machines, Alloy, B, VDM, and Z. pp. 194–207. Springer (2012)
10. Divakaran, S., D’Souza, D., Kushwah, A., Sampath, P., Sridhar, N., Woodcock, J.:

Refinement-Based Verification of the FreeRTOS Scheduler in VCC. In: Butler, Conchon,
Zaidi (eds.) Proc. ICFEM-15. vol. 9407, pp. 170–186. Springer LNCS (2015)

11. Facebook:
https://en-gb.facebook.com

12. Fathabadi, A.S., Butler, M., Rezazadeh, A.: A systematic approach to atomicity decomposi-
tion in event-b. In: International Conference on Software Engineering and Formal Methods.
pp. 78–93. Springer (2012)

9



13. FreeRTOS: (2017), https://www.freertos.org/
14. Hall, A.: Seven Myths of Formal Methods. IEEE Software 7, 11–19 (1990)
15. Hall, D.: Mathematical Techniques in Multisensor Data Fusion. Artech House (2004)
16. Harrison, J.: Formal Proof — Theory and Practice. Notices of the AMS 55, 1395–1406

(2008)
17. IEC 62304: https://webstore.iec.ch/publication/22794
18. INSPEX Homepage: (2017), http://www.inspex-ssi.eu/
19. Kedem, B., De Oliveira, V., Sverchkov, M.: Statistical Data Fusion. World Scientific (2017)
20. Meyer, B.: How You Will be Programming Ten Years From Now. In: ACM SAC-10 Keynote
21. Moravec, H. and Elfes, A.: High Resolution Maps from Wide Angle Sonar. In: Proc. IEEE

ICRA (1985)
22. Pratt, V.: The Anatomy of the Pentium Bug. In: Proc. TAPSOFT-95. vol. 915, pp. 97–107.

Springer, LNCS (1995)
23. Pressman, R.: Software Engineering: A Practitioner’s Approach. McGraw Hill (2005)
24. ProB Tool: https://www3.hhu.de/stups/prob/
25. Rango: (2018), http://www.gosense.com/rango/
26. RODIN Tool: (2018), http://sourceforge.net/projects/rodin-b-sharp/ http://www.event-

b.org/
27. Scalise, L., Primiani, V., Russo, P.: Experimental Investigation of Electromagnetic Obstacle

Detection for Visually Impaired Users: A Comparison with Ultrasonic Sensing. IEEE Trans.
on Inst. and Meas. 61, 3047–3057 (2012)

28. Smartcane: (2017), https://www.phoenixmedicalsystems.com/assistive-technology/
smartcane/

29. Sommerville, I.: Software Engineering. Pearson (2015)
30. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)
31. Ultracane: (2017), https://www.ultracane.com/
32. Verhoef, M.: From Documents to Models: Towards Digital Continuity. In:

SAFECOMP/IMBSA-17 Keynote. https://drive.google.com/file/d/0B9DzO9PFER2xZDR
xLUpKVUdYZmM/view?usp=sharing

10


