
Formal Verification for Advanced Sensing Applications:
Data Pre-processing in the INSPEX System

Joe Razavi1, Richard Banach1, Suzanne Lesecq2, Olivier Debicki2, Nicolas Mareau2, Julie Foucault2,
Marc Correvon3 and Gabriela Dudnik3

1School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
2CEA, LETI, Minatec Campus, 17 Rue des Martyrs, F-38054 Grenoble Cedex, France.

3CSEM SA, 2002 Neuchatel, Switzerland.
{joseph.razavi,richard.banach}@manchester.ac.uk,

{suzanne.lesecq,olivier.debicki,nicolas.mareau,julie.foucault}@cea.fr,
{marc.correvon,gabriela.dudnik}@csem.ch

Keywords: Formal Modelling, Sensor Processing, Embedded Devices, Wearable Technology, Assistive Technology.

Abstract: The INSPEX project aims to miniaturize state-of-the-art obstacle detection technology comprising heteroge-
neous sensors and advanced processing, so that it can be used for wearable devices. The project focuses on
enhancing the white cane used by some visually impaired and blind people. Due to high demand for reliabil-
ity and performance, the project is a good candidate for the use of formal methods. In this paper, we report
lessons we have learned from formal modelling exercises related to the pre-processing of sensor information
in INSPEX.

1 INTRODUCTION

At rare and exciting moments, progress in informa-
tion technology makes an impact on everyday life so
great that everybody feels that things have changed.
In this generation, innovations in sensing technolo-
gies, machine learning, and the wide availability of
portable computing in the form of smartphones are
making the kind of revolutionary changes that per-
sonal computing and the internet did a generation ago.

One such prominent change is in the application
of sensors in the automotive industry, in such con-
texts as assisted parking and automatic management
of headlights, not to mention autonomous driving.

Another is in the realm of assistive technology. In
this paper, we describe some aspects of work on the
INSPEX project, which aims to bring state-of-the-art
obstacle detection capabilities to domains requiring
small, light, power efficient hardware. The project’s
particular focus is on assistive technology for visually
impaired and blind people, and thus it also incorpo-
rates new techniques for the presentation of obstacle
information suited to this use. The goal is to produce
a prototype system which can be mounted on a white
cane as traditionally used by many visually impaired
people. The specific aim of this paper is to discuss
the application of formal methods in this area. We at-

tend principally to those aspects concerning the pre-
processing of sensor data.

We begin by motivating this use case as one
for which the application of advances in sensing,
data processing, and information presentation are ger-
mane. We then briefly describe the details of the
project, and describe the relevance of formal methods
to the project’s goals. We go on to describe lessons
learned about the application of formal techniques in
this domain, gleaned from our experience so far, fin-
ishing by using a simplified example from INSPEX to
highlight one aspect of this.

1.1 Augmenting the Capabilities of the
White Cane

A number of attempts by students and researchers to
attach sensors to the white canes which are an estab-
lished tool for visually impaired and blind people are
visible in the literature (Connoly, 2012; Wang and
Kuchenbecker, 2012). Indeed, there are already com-
mercially available white canes enhanced by the addi-
tion of sensors (UlraCane, 2012; SmartCane, 2018).
One might wonder why a piece of equipment with
such a long history of successful use needs modifi-
cation, but in fact the argument is compelling. While



visually impaired people are experts at using the tac-
tile feedback from the cane to understand their sur-
roundings at ground level, a white cane, by its nature,
can not give any warning about obstacles at chest or
head level. Whether they are low branches in natu-
ral settings, or signs, cordons, or temporary fences in
an urban environment, such obstacles are extremely
common, and an unexpected collision with them has
the potential to cause serious injury. This represents
an unfortunate constraint on personal independence,
since it means proceeding with great caution, and pos-
sibly making use of a guide dog, a sighted friend or
assistant, or otherwise unwanted hats or similar head-
wear.

The addition of a range sensor to the cane which
points upwards can help with this problem. As the
user sweeps the cane, receiving tactile feedback from
the ground, they also receive feedback from the sensor
about the distance to the nearest obstacle at a higher
level.

To advance the state of the art we should therefore
ask: how can the next generation of this technology
improve on what currently exists? There are lots of
possibilities. A crucial one is that what exists today
typically relies on a single sensor, say one based on
sonar, radar, or a laser. Each type of sensor has its
own strengths and weaknesses. Sensors may perform
poorly for surfaces with certain reflectivities, curva-
tures or other properties, or in conditions of varying
ambient light and humidity, whereas other sensors are
likely to have complementary capabilities. Similarly,
some sensors are well suited to resolving small or dis-
tant objects, but have a narrow field of view, whereas
others may resolve detail less well, but cover a broad
area.

Another important potential improvement is in the
cognitive load placed on the user. When the feed-
back presented to the user is in the form of rela-
tively direct range readings from the sensor, the user’s
brain must do the work of interpreting this informa-
tion and reconstructing the three dimensional environ-
ment. This may involve getting used to the quirks and
idiosyncrasies of the sensor. In a system with multi-
ple sensors, this problem would be compounded. The
user must then combine this with their model of the
ground-level situation, their plans and route, and their
knowledge of contextual issues such as the location of
pedestrian crossings and amenities.

By combining the inputs of multiple sensors, and
processing them to make the most useful informa-
tion more salient to the user, the usefulness of cane-
mounted sensors could be greatly improved: these are
the prospects identified by the INSPEX project; its
aim is to realize them. This entails that significant

technical challenges be met.
In INSPEX, the feedback given to the visually

impaired user is presented via 3D immersive sound,
transmitted to the user via binaural headphones. In
order to be convincing for the user, the sound picture
must be stable with respect to a 3D inertial frame,
so as well as the issues of cognitive load etc., dis-
cussed above, the INSPEX system must be aware of
the user’s head movements, in order to achieve the
needed spatial stability for the sound image. This
adds another technical challenge.

1.2 The INSPEX Project

The INSPEX project (INSPEX Homepage, 2017) is
an international collaboration with the goal of devel-
oping a small, lightweight system which combines the
inputs of multiple sensors and integrates their read-
ings into a three dimensional model of the obstacles in
its surroundings. Such a system would have multiple
potential applications, including autonomous drones
and fire-fighters working in low-visibility conditions.
The main focus, however, is on the use case of as-
sistive technology which could be attached to a white
cane, as described above.

Achieving this ambition means facing several fun-
damental obstacles. To be a useful tool to a visually
impaired person, INSPEX must provide reliable, high
performance functionality over the course of many
hours. If the user is required to stop several times
per day to re-charge batteries, then their independence
and quality of life will not have been significantly im-
proved. At the same time, the system must be held
in the hand and moved continuously by the muscles
of the wrist for long stretches of time. This implies
that the system must be lightweight; otherwise, rather
than enhancing their day-to-day life, the system could
cause injury to the user. These requirements translate
into a number of technical challenges.

First, the sensors themselves need to be signifi-
cantly miniaturized, and their weight and power con-
sumption must be reduced. Concomitantly, the com-
putation power needed for processing must be tightly
controlled, so that lighter, more efficient processors
can be used. For this reason, the standard Occu-
pancy Grid algorithm used for obstacle detection in
the automotive domain has had to be significantly op-
timized for architectures with fewer facilities than its
usual implementations (Dia et al., 2017). This con-
straint also implies that clever optimizations will be
required throughout the basic utility systems which
underpin the advanced data processing. These will
have to function with minimal memory, and will have
to share hardware resources with other parts of the



system, requiring them to be robust against competi-
tion for resources.

Second, power must be managed in a sophisti-
cated way. The needs of the data processing algo-
rithms for a supply of frequent, timely data must be
balanced against the overall requirement to conserve
power. Sensors and communication facilities cannot
be allowed to operate when they are not needed, yet
they must function at the proper time when their func-
tionality is required. This means that power manage-
ment cannot be treated as a simple matter, and some
of the system’s scarce computing power must be used
to determine when to supply power to which subsys-
tem.

Finally, the system must be robust, and guarantee
a certain level of performance. The project will not
be a success if it is possible, even under rare condi-
tions, for the user to rely on the system only to be
stranded by crashing, deadlock, or because of incor-
rect power consumption estimates. This must be true
for long-term use every day, in which one should as-
sume that all possible conditions will eventually be
encountered. To play a role in the user’s life which
is as fundamental as that played by a traditional white
cane, an obstacle detection system must be as depend-
able as that simple, effective piece of technology. This
requirement is in tension with the need for highly op-
timized code with advanced functionality in a highly
concurrent environment. Experts know well that it is
easy to introduce subtle bugs under such conditions.
These circumstances indicate the possibility for for-
mal methods to have a useful impact.

2 FORMAL METHODS

2.1 Applying Formal Methods in
Innovative Sensing Applications

Formal methods are a class of techniques which al-
low software to be compared against mathematical
models, providing an improved ability to detect subtle
functional and logical bugs, and, under good condi-
tions, prove that a system is free from certain classes
of problems. Formal methods are nowadays well-
established for safety-critical systems and mission-
critical infrastructure in industrial applications. These
techniques are becoming mature in settings wherein
the function of the system is well-defined. In the IN-
SPEX system, and in similar sensing applications, the
requirement for highly reliable, but sophisticated soft-
ware is a motivation to pursue the use of formal meth-
ods. However, the nature of an innovative project

focussing on sensing means that it is more difficult
to give a fixed, precise description of correct system
functioning a priori. This creates opportunities to
learn interesting methodological lessons in the appli-
cation of formal techniques.

2.1.1 Functioning Under Conditions of
Uncertainty

One difficulty in attempting formal verification of
such systems is that usually their main function is to
perform advanced statistical inference on incoming
data, or to apply novel heuristics to improve perfor-
mance in a complex, ill-defined domain. While one
can certainly employ static analysis to catch low-level
bugs, and one could attempt to show that the imple-
mentation code is a faithful version of the intended
algorithms, it may appear that beyond this, innovative
sensing applications are rather sterile from the point
of view of applied formal methods. After all, one can
as little hope to prove that INSPEX correctly identi-
fies all obstacles in an environment as to prove that a
spam filter catches all and only spam email.

However, even in the example of a spam filter,
one can still hope to prove that, for example, email
from whitelisted or blacklisted addresses is allowed
or blocked as appropriate. In the context of a sensing
application, there is a lot of scope to prove that the
data being supplied to the statistical analysis is of a
good quality and freshness, and satisfies any pertinent
constraints.

For example, many sensing systems require in-
coming data to be pre-processed into a form suit-
able for further computation. One could imagine that
this pre-processing consists of computing a function
f (x,y) of heterogeneous input data as frequently as
possible, but under certain constraints. We might
imagine that y values represent crucial readings, while
x values give contextual information. Thus, while x
values may be re-used, y values must be used at most
once. Moreover, a timing constraint must hold be-
tween the times when x and y values which are to be
combined were received, to ensure that the contextual
information x is really relevant to the reading y. Of
course, in real applications, these values x and y are
likely themselves to be composed of data from vari-
ous heterogeneous sources under constraints of their
own, and so on.

One easily foresees that under strict memory lim-
itations, and in the presence of autonomous sensors
providing information asynchronously, these types of
constraints can lead to difficult problems. One wants
to show that as long as the system receives enough
input information of the correct types, it outputs the
pre-processed data for statistical analysis with a rea-



sonable frequency. This could fail to happen if, for
example, small internal buffers become full, prevent-
ing the storage of new input data. This blocked data
might be precisely what is required to produce out-
put satisfying the operating constraints and thus dis-
charge some of the held data. The result of this sit-
uation would be deadlock. Conversely, if contextual
data is overwritten by incoming readings which rely
on it in order to be processed, this too will cause no
output ever to be produced. Finally, it is possible that
fresh data are discarded in order to finish processing
old data. This can impact the frequency and fresh-
ness of the data used for analysis, and consequently
the quality of information ultimately delivered to the
user.

Intermediate between simple low-level bug detec-
tion and issues of data frequency and quality are prob-
lems related to basic underpinning functionality. For
example, wherever there is communication, it is likely
that there are systems which must maintain a degree
of synchrony with each other. They may have to
do this under conditions in which they may be inter-
rupted, since they compete for scarce processor time
with other aspects of the system. One must show that
the algorithms used to maintain the required level of
synchrony can withstand these interruptions and con-
tinue to operate with reasonable performance. The
presence of communication also implies issues of en-
coding and decoding. For example, transmitted data
is frequently processed such that certain special se-
quences never occur. These sequences may be used
as delimiters or framing markers in packet-oriented
communication. Alternatively, they may be command
characters, which are common for hardware devices
such as low-power bluetooth modules: these often
have only one input line for both control commands
and data, using a special data sequence to switch from
one mode to another. This implies, at least, the appli-
cation of bit-stuffing, byte-stuffing, or string escaping
algorithms (Cheshire and Baker, 1999) which must be
correctly applied at one end of a communication, and
correctly inverted at the other.

These examples show that the main function of
an advanced sensing system is usually underpinned
by many subsystems which do have clearly defined
roles and correctness conditions. Verification of
conditions of this type can build upon existing work
which has been done to verify operating-system level
components. For example, there is a body of work
related to the verification of the real-time operating
system FreeRTOS (FreeRTOS, 2011; Divakaran
et al., 2015), which is widely used in this type of
application. From our point of view, it is interesting
that this work uses a multi-tool approach, starting

with refinement based tools to relate overall system
requirements to those of specific subsystems, and
then transitioning to tools designed to verify C code
in order to check that these subsystems correctly
perform their function.

2.1.2 Formal Methods and Design-Rich Projects

Another source of difficulty in applying formal meth-
ods to cutting-edge applications relates to projects
which have a significant element of ongoing design
activity. Such projects seek to discover the extent to
which innovative techniques can improve the state of
the art in their domain. At the start of the project,
it is not clear what level of performance is possible,
and what level of performance is necessary in order to
achieve meaningful success. Indeed, the whole point
of such exploratory development is that this is to be
discovered while the project is ongoing. This implies
that many aspects of the design will be open to modi-
fication throughout the project, as lessons are learned
from the implementation effort. This gives rise to sev-
eral challenges.

First, there may be requirements which appear
to be related to optimization, but which ultimately
turn out to be necessary for proper functioning. For
example, suppose one is working with a statistical
algorithm which performs best when its input is a
sparse matrix. During pre-processing, various heuris-
tics may be applied to try to find a representation
in which the data has this sparse form. At the out-
set, this appears to be a non-functional optimization.
However, it may be discovered that it is critical that
this step always attains some minimal level of per-
formance; otherwise, the later processing stages may
not perform well enough for the system to provide
the functionality needed. A similar situation occurs
for power management. A wide variety of tricks may
be employed to make power consumption as small as
possible, but it may not be known what level of power
consumption is acceptable. This can pose a challenge
not only for formal modelling, but also for require-
ments gathering.

Engineers will have invested a significant amount
of ingenuity in trying to make performance as good
as possible, and the properties of the output which are
thereby aimed for may be the focus of their explana-
tion of certain subsystems. It may very well be un-
clear which of these properties are necessary to avoid
crashes or deadlocks, which are required for a usable
level of functionality, and which are enhancements
which stretch the frontier of the possible. While it
is important to try to elicit this distinction from do-
main experts, it is equally important to recognize that



when the success of a project consists in improving
on the state of the art, the issue is not as clear cut as
we might like.

To deal with challenges of this type, two strategies
can be employed. Thus, one can try from the outset
to prove that these optimizations achieve a bare min-
imum of performance, such as universally improving
over the un-optimized situation. Furthermore, one
can again make use of a multi-tool approach, using
a tool such as PRISM (Kwiatkowska et al., 2011) to
find bounds on performance, possibly using conserva-
tively simplified models. If engineers are happy with
these bounds, other tools could be used to confirm that
the detailed design and implemented code adhere to
them.

A second set of challenges which proceed from
the innovative nature of cutting-edge projects relates
to the fact that these projects will often not start from
a blank slate, but instead proceed by modification of
previous work. One ought not to think of this as an er-
ror; instead, it arises from the nature of invention. Out
of the infinity of possible human wants, the produc-
tive innovator must choose to pursue those which are
realistically achievable. The best guide to this is a cul-
tivated sense of the directions in which existing work
admits modification. This precludes an idealized ver-
sion of formal development, in which code is derived
from abstract models. It necessitates a pragmatic ap-
proach, where models are derived partly from existing
code, as well as feedback from engineers about the in-
tended functioning of the system.

A crucial observation is that these systems are also
often developed in an iterative fashion, via a series
of prototypes. This is unavoidable in work where it
is unknown whether the proposed method will really
work, and lessons may have to be drawn from the
initial attempts which guide the final development.
This means that the effort put into discovering ab-
stract models of the initial version can be put to use to
guide the development of subsequent iterations. In-
deed, abstract models can provide a valuable alter-
native view of the situation to that revealed by code.
This is particularly useful because the low-level de-
tails may have to be radically different in different
prototypes of a system, once constraints coming from
fundamental hardware issues are discovered. For ef-
ficiency reasons, logically separate concerns may not
be well separated in the original code, and these may
need to be teased apart if the underlying structure of
the system changes. In addition, elements which were
necessary in one version may become obsolete in an-
other, but this may not be visible in highly-optimized
code. On the other hand, an abstract view of the sys-
tem can make this clear. A simplified example of this

type of phenomenon is discussed in the next section.

2.2 Formal Modelling in INSPEX

In the INSPEX system, we find many opportu-
nities for the fruitful application of formal tech-
niques. Examples abound in the power management
firmware relating, for example, to the need for circuits
which operate a high-power subsystem to always be
switched on when the system they manage is. In this
section, we focus on an example based on the sensor
pre-processing stage.

We imagine a system with multiple sensors, each
of which may transmit a reading to an acquisition
module at any time. The acquisition module then per-
forms a computation along the lines of that described
above, integrating the heterogeneous data received
into a form suitable for further processing. This data
is then encoded and transmitted to the main process-
ing platform which decodes it and works through the
items one by one.

Since memory usage is a critical issue, it is freed
as soon as possible. In the acquisition system, this
occurs once the data it contains has successfully been
transmitted. In the main processor, this occurs once it
has been used by the analysis algorithm.

It would be tempting to model these two subsys-
tems individually, as separate verification projects —
but this would be a mistake. One reason is visible
from the point of view of modelling in itself. The
inputs or outputs of these systems, corresponding to
the transmitted information, are quite complex, even
if one abstracts from the precise details of the encod-
ing. Furthermore, if it is ultimately decided that these
models should be combined to reason about global
behaviour, then one would have to grapple with en-
suring that refinements adding in these low-level de-
tails interact well with shared events. This suggests
considering the encoding, transmission, and decoding
together as a conceptual unit. It operates on much
simpler data and, conceptually, implements the fetch-
ing of pre-computed data by the main algorithm. This
simple subsystem could be decomposed, if required,
at a much later stage of refinement.

A more application oriented reason to leave out
this aspect in the abstract models of the system is
that the underlying connectivity of the hardware may
well change in a more advanced prototype. Since we
would like our abstract models to guide the transition
from one prototype to another, at an abstract level they
should express what such systems must have in com-
mon.

Therefore, in our abstract system, we have three
main kinds of events: sensors transmitting raw data,



pre-processing to compute combined values, and the
main algorithm consuming these pre-processed val-
ues. In addition, we have the action of freeing the
memory used to store these resources. In this paper,
we ignore how the memory related to raw values is
managed, focussing on when combined values may
be freed. In the abstract system, this can be done only
after they are used by the main algorithm.

In the INSPEX project, the majority of the formal
modelling is done using Event-B (Abrial, 2010) via
the Rodin tool (Abrial et al., 2010), though other tech-
niques also contribute. In Event-B, the above could
be modelled as follows. We assume the state of the
abstract system is given by a set messages represent-
ing the set of all integrated messages ever computed
by the pre-processing stage. We model the memory
status of messages and whether they have been con-
sumed by the main algorithm using two variable func-
tions, inMemory and used. These map elements of
messages to booleans. All three of these variables
are initialized to the empty set. We ignore the other
aspects of the state, which relate to the collection
and integration of raw messages received, although
one would include them in a complete model. Fo-
cussing on the consumption and deallocation of pro-
cessed messages, there are two corresponding events
in the abstract system, which we call consume and
f ree. We write these events in the Event-B formalism
as follows.

EVENTS
consume

ANY m
WHEN

m ∈ messages
inMemory(m) = T RUE
used(m) = FALSE

THEN
used(m) := T RUE

END
f ree

ANY m
WHEN

m ∈ messages
inMemory(m) = T RUE
used(m) = T RUE

THEN
inMemory(m) := FALSE

END

The ‘ANY’ clause of an event specifies its parame-
ters: in the case of both events above this is just the
message m which is to be consumed by the main al-
gorithm or deallocated. The ‘WHEN’ clause specifies
guards, conditions which must hold for the event to
take place; these are simply boolean conditions on the

parameters and the state variables of the model. The
‘THEN’ clause determines what the effect of the event
on the variables describing the system’s state is. For
both events above, this takes the form of changing the
value of a variable function on one of its arguments to
a new value. For example, in the event consume we
set used(m) to T RUE.

This abstract model might seem wrong, because
we know that in our concrete system, it is safe for
the pre-processing subsystem to free the data once
it has been transmitted to the main processor. How-
ever, the ‘memory’ of the abstract system is, in reality,
the combined memories of the two components of the
concrete system. To be freed in the abstract system
is, in some sense, no longer to exist in the memory of
either module. This guides the way we understand the
relationship between concrete and abstract systems in
refinement.

For this reason, it makes sense for the model to
remember every piece of data which is ever received,
even those which have been deallocated. Those which
are still in memory are marked as such, and a precon-
dition of any event which makes use of them must
then be that they are present in memory.

Performing one step of refinement, we would re-
fine the action by which the pre-processor makes data
available to the main algorithm so that it now includes
the step of transmission. This could be subsequently
refined to model the encoding and decoding, issues of
synchronization, and finally even bit-level modelling
of the sequence of transmitted signals.

In the concrete system, the notion of being present
in memory is elaborated so as to specify that an item
is present in the pre-processing subsystem or the main
processor (or both). The abstract notion of being
present in memory is simply the disjunction of these
conditions. The guards of various actions in the con-
crete system must specify which subsystem they re-
quire their data to be present on, thus strengthening
the abstract guards. At this intermediate level of ab-
straction, the transmission action essentially copies
data from one subsystem to another. This makes it
available for the second subsystem to use, but also
means that the first is free to deallocate it without dis-
turbing the abstract invariant that it be present some-
where in the system. It is this which explains why the
logic of deallocating transmitted information makes
sense.

In Event-B, we model the concrete system by re-
placing the inMemory function with two functions
inMainMemory and inPreMemory to represent be-
ing in the memory of the main module and the pre-
processing module respectively. We also add a new
function transmitted from messages to booleans to



model whether a message has been sent from the pre-
processing module to the main module.

Since we have removed the function inMemory,
we have to describe how this abstract variable can be
recovered from the concrete data. Following the rea-
soning above, we add an invariant, a property of the
state variables which must be true in every state, indi-
cating the intended relationship.

INVARIANTS
∀m ·m ∈ messages =⇒

inMemory(m) = T RUE ⇐⇒
(inPreMemory(m) = T RUE ∨
inMainMemory(m) = T RUE)

Unlike a normal invariant, which is a boolean
expression involving only the state variables of the
model it is part of, this invariant involves variables
from both the concrete system and the abstract sys-
tem. This special type of invariant is called a glueing
invariant. The fact that we intend the concrete system
to refine the abstract system must be made explicit,
and this is done by using the ‘REFINES’ keyword at
the appropriate place.

The consume and f ree events must now be mod-
ified so as to refer to the variables of the concrete
system. The f ree event is to be refined by multiple
events, which involves some subtlety. However, the
concrete version of the consume event is straightfor-
ward:

EVENTS
consume

REFINES consume
ANY m
WHEN

m ∈ messages
inMainMemory(m) = T RUE
used(m) = FALSE

THEN
used(m) := T RUE

END

We also add a new event transmit which models send-
ing a message from the pre-processing module to the
main module.

transmit
ANY m
WHEN

m ∈ messages
inPreMemory(m) = T RUE
transmitted(m) = FALSE

THEN
transmitted(m) := T RUE
inMainMemory(m) := T RUE

END

Note that as transmit does not refine any events of

the abstract system it must not have any effect on the
variables of the abstract system. This is true because
inMemory(m) is true whenever the event is triggered,
(because of the guard inPreMemory(m) = T RUE),
and it remains true afterwards.

We now turn to refining the f ree event. Conceptu-
ally, we replace this by two events, one to free trans-
mitted messages in the pre-processing module, and
one to free consumed messages in the main module.
However, a concrete event must either refine an ab-
stract event or else it must leave the abstract state un-
changed. To refine a abstract event, the guards of the
corresponding concrete event must imply those of the
abstract event, and the glueing invariant must be pre-
served by the concrete event if the abstract state is
changed simultaneously by the abstract event it re-
fines.

However, deallocating a message on just one of
the modules sometimes has no effect on the abstract
state (if the message is present in the memory of the
other module) or else it changes the state of inMemory
(if the other module has already deallocated the mes-
sage). For this reason, each of the two f ree operations
has two cases, one refining the abstract f ree and one
which does not affect the abstract state. Since the two
cases are very similar, it suffices to consider the oper-
ation of deallocation on the pre-processing module.

pre only f ree
ANY m
WHEN

m ∈ messages
inPreMemory(m) = T RUE
transmitted(m) = T RUE
inMainMemory(m) = T RUE

THEN
inPreMemory(m) := FALSE

END
pre last f ree

REFINES f ree
ANY m
WHEN

m ∈ messages
inPreMemory(m) = T RUE
transmitted(m) = T RUE
inMainMemory(m) = FALSE

THEN
inPreMemory(m) := FALSE

END

The fact that the guards of these events refer to the
state of the main module means that some care must
be taken when modelling each subsystem in isolation.
However, in practice the problems are not too severe,
since the effect on the local state of the preprocessing
module is the same in either case.



3 CONCLUSIONS

In this paper, we describe the application of formal
methods in the INSPEX project. This project aims to
develop a small, light and power efficient obstacle de-
tection system which incorporates heterogeneous sen-
sors and provides feedback to the user in the form of
three dimensional immersive sound.

We have set this work in the context of the prob-
lem of applying formal methods to projects featur-
ing continuously ongoing design, particularly in the
sensing domain. We hope that this report of our ex-
periences will be useful for others facing the need
for the increased dependability that formal techniques
can bring, in contexts where the design is volatile to
a significant degree. As applications of this type be-
come increasingly common, it is important to empha-
size the benefits of formal methods in such settings.

ACKNOWLEDGEMENTS

This project has received funding from the
European Union’s Horizon 2020 research
and innovation programme under grant agreement
No. 730953. The work was also supported in part by
the Swiss Secretariat for Education, Research and In-
novation (SERI) under Grant 16.0136 730953. We
thank them for their support.

REFERENCES

Abrial, J.-R. (2010). Modeling in Event-B: System and Soft-
ware Engineering. CUP.

Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S.,
Mehta, F., and Voisin, L. (2010). Rodin: an open
toolset for modelling and reasoning in Event-B. In-
ternational Journal on Software Tools for Technology
Transfer, 12(6):447–466.

Cheshire, S. and Baker, M. (1999). Consistent overhead
byte stuffing. IEEE/ACM Transactions on Network-
ing, 7(2):159–172.

Connoly, D. (2012). Grade 9 science fair wunderkind
creates a smarter white cane. Engineering.com,
http://www.engineering.com/DesignerEdge/
DesignerEdgeArticles/ArticleID/16419/Grade-9-
Science-Fair-Wunderkind-Creates-a-Smarter-White-
Cane.aspx.

Dia, R., Mottin, J., Rakotavao, T., Puschini, D., and Lesecq,
S. (2017). Evaluation of Occupancy Grid Resolu-
tion through a Novel Approach for Inverse Sensor
Modeling. In Proc. IFAC World Congress, FAC-
PapersOnLine, volume 50, pages 13841–13847.

Divakaran, S., D’Souza, D., Kushwah, A., Sampath, P.,
Sridhar, N., and Woodcock, J. (2015). Refinement-
Based Verification of the FreeRTOS Scheduler in
VCC. In Butler, Conchon, and Zaidi, editors, Proc.
ICFEM-15, volume 9407 of LNCS, pages 170–186.
Springer.

FreeRTOS (2011). https://www.freertos.org/.
INSPEX Homepage (2017). http://www.inspex-ssi.eu/.
Kwiatkowska, M., Norman, G., and Parker, D. (2011).

PRISM 4.0: Verification of probabilistic real-time sys-
tems. In Gopalakrishnan, G. and Qadeer, S., edi-
tors, Proc. 23rd International Conference on Com-
puter Aided Verification (CAV’11), volume 6806 of
LNCS, pages 585–591. Springer.

SmartCane (2018). http://smartcane.saksham.org/.
UlraCane (2012). https://www.ultracane.com/.
Wang, Y. and Kuchenbecker, K. (2012). Halo: Haptic alerts

for low-hanging obstacles in white cane navigation.
In 2012 IEEE Haptics Symposium (HAPTICS), pages
527–532.


