
Modelling Hybrid Systems in Event-B and Hybrid
Event-B: A Comparison of Water Tanks

Richard Banach1 and Michael Butler2

1School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk
2School of Electronics and Computer Science, University of Southampton,

Highfield, Southampton, SO17 1BJ, U.K.
mjb@ecs.soton.ac.uk

Abstract. Hybrid and cyberphysical systems pose significant challenges for a
formal development formalism based on pure discrete events. This paper com-
pares the capabilities of (conventional) Event-B for modelling such systems with
the corresponding capabilities of the Hybrid Event-B formalism, whose design
was intended expressly for such systems. We do the comparison in the context of
a simple water tank example, in which filling and emptying take place at differ-
ent rates, necessitating a control strategy to ensure that the safety invariants are
maintained. The comparative case study is followed by a general discussion of
issues in which the two approaches reveal different strengths and weaknesses. It
is seen that restricting to Event-B means handling many more things at the meta
level, i.e. by the user, than is the case with its Hybrid counterpart.

1 Introduction

Hybrid [9] and cyberphysical [10] systems pose significant challenges for a formal de-
velopment formalism based on discrete events. A number of compromises are needed
in order to allow a discrete event formalism to relate to the important continuous aspects
of the behaviour of such systems. Formalisms that are more purpose built address such
concerns more easily. This paper compares the capabilities of (conventional) Event-B
(EB) for modelling such systems with the capabilities of the more purposely designed
Hybrid Event-B (HEB). We do the comparison in the context of a simple water tank
example, in which filling and emptying take place at different rates, necessitating a con-
trol strategy to ensure that the required safety invariants are maintained. This familiar
scenario makes the discussion easier to follow. The example was modelled using EB in
[8] using facilities built in EB for expressing certain continuous features of behaviour.

The rest of this paper is as follows. Section 2 overviews the HEB framework, and
shows how EB results from forgetting the novel elements of HEB. Section 3 briefly
recalls the water tank problem. Then Section 4 overviews the development in [8], which
is a detailed study of the water tank example in the EB framework. Section 5 looks at a
comparative (though on-paper-only) study of the same problem in HEB. Section 6 then
embarks on a general comparison of the pros and cons of the EB and HEB approaches.
Section 7 concludes.

MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x, y
VARIABLES u
INVARIANTS

x, y, u ∈ R,R,N
EVENTS

INITIALISATION
STATUS ordinary
WHEN

t = 0
THEN

clk, x, y, u := 1, x0, y0, u0
END

.

.
MoEv

STATUS ordinary
ANY i?, l, o!
WHERE

grd(x, y, u, i?, l, t, clk)
THEN

x, y, u, clk, o! :|
BApred(x, y, u, i?, l, o!,
t, clk, x′, y′, u′, clk′)

END
.

.
PliEv

STATUS pliant
INIT iv(x, y, t, clk)
WHERE grd(u)
ANY i?, l, o!
COMPLY

BDApred(x, y, u,
i?, l, o!, t, clk)

SOLVE
D x =
φ(x, y, u, i?, l, o!, t, clk)

y, o! :=
E(x, u, i?, l, t, clk)

END
END

Fig. 1. A schematic Hybrid Event-B machine.

2 An Outline of Hybrid Event-B, and of Event-B

In this section we outline Event-B and Hybrid Event-B for a single machine. Because it
is more complex, we describe Hybrid Event-B first via Fig. 1, and show how it reduces
to Event-B (which of course came earlier) by erasing the more recently added elements.

Fig. 1 shows a schematic Hybrid Event-B machine. It starts with declarations of
time and of a clock. Time is a first class citizen in that all variables are functions of
time (which is read-only), explicitly or implicitly. Clocks are assumed to increase like
time, but may be set during mode events. Variables are of two kinds. There are mode
variables (like u) which take their values in discrete sets and change their values via
discontinuous assignment in mode events. There are also pliant variables (such as x, y),
declared in the PLIANT clause, which typically take their values in topologically dense
sets (normally R) and which are allowed to change continuously, such change being
specified via pliant events.

Next are the invariants. These resemble invariants in discrete Event-B, in that the
types of the variables are asserted to be the sets from which the variables’ values at any
given moment of time are drawn. More complex invariants similarly are predicates that
are required to hold at all moments of time during a run.

Then, the events. The INITIALISATION has a guard that synchronises time with the
start of any run, while all other variables are assigned their initial values as usual.

Mode events are analogues of events in discrete Event-B. They can assign all ma-
chine variables (except time). The schematic MoEv of Fig. 1, has parameters i?, l, o!,
(input, local, and an output), and a guard grd. It also has the after-value assignment
specified by the before-after predicate BApred, which can specify the after-values of all
variables (except time, inputs and locals).

Pliant events are new. They specify the continuous evolution of the pliant variables
over an interval of time. Fig. 1 has a schematic pliant event PliEv. There are two guards:
iv, for specifying enabling conditions on the pliant variables, clocks, and time; and grd,
for specifying enabling conditions on the mode variables.

The body of a pliant event contains three parameters i?, l, o!, (input, local, and out-
put, again) which are functions of time, defined over the duration of the pliant event.
The behaviour of the event is defined by the COMPLY and SOLVE clauses. The SOLVE

clause contains direct assignments, e.g. of y and output o! (to time dependent functions);
and differential equations, e.g. specifying x via an ODE (with D as the time derivative).

The COMPLY clause can be used to express any additional constraints that are re-
quired to hold during the pliant event via the before-during-and-after predicate BDApred.
Typically, constraints on the permitted ranges of the pliant variables, can be placed here.
The COMPLY clause can also specify at an abstract level, e.g. stating safety properties
for the event without going into detail.

Briefly, the semantics of a Hybrid Event-B machine consists of a set of system
traces, each of which is a collection of functions of time, expressing the value of each
machine variable over the duration of a system run.

Time is modeled as an interval T of the reals. A run starts at some initial mo-
ment of time, t0 say, and lasts either for a finite time, or indefinitely. The duration
of the run T , breaks up into a succession of left-closed right-open subintervals: T =
[t0 . . . t1), [t1 . . . t2), [t2 . . . t3), Mode events (with their discontinuous updates) take
place at the isolated times corresponding to the common endpoints of these subinter-
vals ti, and in between, the mode variables are constant, and the pliant events stipulate
continuous change in the pliant variables.

We insist that on every subinterval [ti . . . ti+1) the behaviour is governed by a well
posed initial value problem D xs = φ(xs . . .) (where xs is a relevant tuple of pliant
variables). Within this interval, we seek the earliest time ti+1 at which a mode event be-
comes enabled, and this time becomes the preemption point beyond which the solution
to the ODE system is abandoned, and the next solution is sought after the completion
of the mode event.

In this manner, assuming that the INITIALISATION event has achieved a suitable
initial assignment to variables, a system run is well formed, and thus belongs to the
semantics of the machine, provided that at runtime:

• Every enabled mode event is feasible, i.e. has an after-state, and on its comple-
tion enables a pliant event (but does not enable any mode event).1

(1)

• Every enabled pliant event is feasible, i.e. has a time-indexed family of after-
states, and EITHER:

(i) During the run of the pliant event a mode event becomes enabled. It pre-
empts the pliant event, defining its end. ORELSE

(ii) During the run of the pliant event it becomes infeasible: finite termination.
ORELSE

(iii) The pliant event continues indefinitely: nontermination.

(2)

Thus in a well formed run mode events alternate with pliant events. The last event (if
there is one) is a pliant event (whose duration may be finite or infinite). In reality, there
are several semantic issues that we have glossed over in the framework just sketched.
We refer to [5] for a more detailed presentation (and to [6] for the extension to multi-
ple machines). The presentation just given is quite close to the modern formulation of
hybrid systems. See e.g. [15, 13], or [9] for a perspective stretching further back.

1 If a mode event has an input, the semantics assumes that its value only arrives at a time strictly
later than the previous mode event, ensuring part of (1) automatically.

If, from Fig. 1, we erase time, clocks, pliant variables and pliant events, we arrive
at a skeleton (conventional) Event-B machine. This simple erasure process illustrates
(in reverse) the way that Hybrid Event-B has been designed as a clean extension of
the original Event-B framework. The only difference of note is that now —at least
according to the (conventional) way that Event-B is interpreted in the physical world—
(the mode) events (left behind by the erasure) execute lazily, i.e. not at the instant they
become enabled (which is, of course, the moment of execution of the previous event).2

3 The Water Tank Problem

The water tank problem is a familiar testing ground for approaches to control problems
in event based frameworks like the B-Method. The purpose of the water tank controller
is to maintain the water level in the tank between a low and a high level. There is
a mechanism, assumed to act continually, by which water drains from the tank. To
counteract this, there is a filling mechanism, acting faster than the draining mechanism,
that can be activated at the behest of the controller to refill the tank when the water level
has become too low — it is deactivated once the level has become high enough.

4 The Event-B Water Tank Development

EB PliEv
ANY t, f
WHERE

t ≥ clk + ε
f ∈ ctsF(clk, t)
f (clk) = m(clk)
P(f)

THEN
clk,m := t,m ∪ f

END

Fig. 2. The EB pattern for
representing a pliant event.

In [8] there is a development of the water tank in EB.
Since EB has no inbuilt continuous facilities, a consider-
able amount of continuous infrastructure had to be built
behind the scenes using the theory plugin of the Rodin tool
[3, 14]. A fragment of this, the EB pattern for a pliant event
in the style used in [8], is shown in Fig. 2. This treats up-
date to continuous behaviour monolithically (i.e. by adding
the whole piece from clk to t in a single action).

In more detail, there is a clock clk, and the presump-
tion is that the event describes what happens in a time in-
terval following clock value clk. A parameter t is introduced, greater than clk by at
least ε (to prevent Zeno behaviour, though Zeno behaviour would not be detectable, nor
cause any upset, in an Event-B proof). Another parameter f , describes the graph of a
continuousFunction on the interval [clk . . . t] by which the function m, defined hitherto
only on the interval [0 . . . clk], is to be extended. Defining functions set theoretically
by their graphs, the extension of the function m is just the union of its previous value
and f . Of course, clk must also be updated to t, ready for the next increment. For the
function m to be continuous, its preceding final value must match the initial value of the
increment f , as stated in the guard m(clk) = f (clk). Finally, P(f) expresses any further
properties that the increment f is required to satisfy.

2 We observe however, that it is considerably easier to simulate lazy execution semantics us-
ing eager semantics (e.g. via guards that depend on nondeterministically/probabilistically set
auxiliary variables), than to achieve eager behaviour using lazy semantics.

MACHINE EB Tank1

VARIABLES level, now
INVARIANTS

0 ≤ now
level ∈ ctsF(0, now)
ran level ⊆ (L . . .H)
now ∈ dom level

EVENTS
INITIALISATION

BEGIN
now := 0
level := const(0, 0, L)

END
ModeChange

ANY t, l
WHERE

now ≤ t ∧
ε ≤ t − now ∧
l ∈ ctsF(now, t) ∧
level(now) = l(now) ∧
ran l ⊆ (L . . .H)

THEN
now, level := t, level ∪ l

END
END

MACHINE EB Tank2
REFINES EB Tank1
VARIABLES level, now
INVARIANTS

level(now) ∈ (L . . .H)
EVENTS

INITIALISATION
REFINES INITIALISATION
BEGIN

now := 0
level := const(0, 0, L)

END
Fill

REFINES ModeChange
ANY t, l
WHERE

now ≤ t ∧
ε ≤ t − now ∧
l ∈ ctsF(now, t) ∧
level(now) = l(now) ∧
l(t) ⊆ (L . . .H) ∧
l ∈ mono inc

THEN
now, level := t, level ∪ l

END
Empty

REFINES ModeChange
ANY t, l
WHERE

now ≤ t ∧
ε ≤ t − now ∧
l ∈ ctsF(now, t) ∧
level(now) = l(now) ∧
l(t) ⊆ (L . . .H) ∧
l ∈ mono dec

THEN
now, level := t, level ∪ l

END
END

MACHINE EB Tank3
REFINES EB Tank2
VARIABLES level, now

EVENTS
INITIALISATION

REFINES INITIALISATION
BEGIN

now := 0
level := const(0, 0, L)

END
Fill

REFINES Fill
ANY t, l
WHERE

now ≤ t ∧
ε ≤ t − now ∧
l ∈ ctsF(now, t) ∧
level(now) = l(now) ∧
l(t) ⊆ (L . . .H) ∧
der(l) = const(now, t, RU)

THEN
now, level := t, level ∪ l

END
Empty

REFINES Empty
ANY t, l
WHERE

now ≤ t ∧
ε ≤ t − now ∧
l ∈ ctsF(now, t) ∧
level(now) = l(now) ∧
l(t) ⊆ (L . . .H) ∧
der(l) = const(now, t, RD)

THEN
now, level := t, level ∪ l

END
END

Fig. 3. Event-B machines for the water tank.

In Fig. 3 we see the main thread of the EB water tank, essentially as in [8]. Aside
from what is shown, there are two contexts c1 and c2, which introduce various constants
used in the development.

The Fig. 3 development starts with EB Tank1. This introduces the water level vari-
able, as well as the now variable (the analogue of clk in Fig. 2). Initialisation fixes now
at 0 and level to the constant function over the degenerate closed interval [0 . . . 0] with
value L, the lower water level.

There is one event ModeChange, which illustrates how continuous behaviour is
handled in the EB modelling style of [8]. As is clear, this is a simple instantiation of the
pattern of Fig. 2.

From its name, one can infer that ModeChange is intended to model the transitions
between filling and emptying episodes. However, there is nothing in its definition that
forces this — the event merely extends the level function, defined by its graph, by some
non-empty chunk into the future (that obeys the restriction on its range).

MACHINE EB Tank30
REFINES EB Tank2
VARIABLES

level, now, step, slevel,mode
INVARIANTS

step ∈ R
slevel ∈ ctsF(now, step)
mode = UP⇒

slevel ∈ mono inc
mode = DOWN ⇒

slevel ∈ mono dec
level(now) = slevel(now)
slevel(step) = (L . . .H)

EVENTS
INITIALISATION

REFINES INITIALISATION
BEGIN

now := 0
level := const(0, 0, L)
step := 0
slevel := const(0, 0, L)
mode := UP

END
StepUp

ANY l
WHERE

mode = UP ∧
slevel(step) ≤ HT ∧
l ∈ ctsF(step, step+P) ∧
slevel(step) = l(step) ∧
l ∈ mono inc ∧
l(step) ≤ l(step + P) ∧
l(step + P) ≤

l(step) + (RU × P) ∧
l(step + P) ≤ H

THEN
step := step + P
slevel := slevel ∪ l

END
EndFill

REFINES Fill
WHEN

mode = UP ∧
¬ (slevel(step) ≤ HT)

WITH
l = slevel
t = step

THEN
now := step
level := level ∪ slevel
mode := DOWN
slevel := const(step, step,

slevel(step))
END

StepDown
EndEmpty

END

Fig. 4. The EB Tank30 ma-
chine.

EB Tank1 is refined to EB Tank2. The variables are
the same, and another invariant level(now) ∈ (L . . .H) is
introduced to aid proof (of course, it follows mathemati-
cally from the earlier invariants level ∈ ctsF(0, now) and
ran level ⊆ (L . . .H)). The previous event ModeChange,
is refined to two separate events, Fill and Empty. These
events have additional contraints in their guards, l ∈
monotonically increasing functions for Fill, and l ∈
monotonically decreasing functions for Empty. So each
chunk that increments the level function is increasing or
decreasing, but cannot oscillate.

Again, from their names, we might infer that Fill and
Empty are intended to model the full filling and emptying
episodes, which we expect to alternate. But there is no re-
quirement that filling results in a level anywhere near H,
nor analogously for emptying; also there is nothing to pre-
vent successive filling, or successive emptying episodes.

EB Tank2 is refined to EB Tank3. The variables are
the same, and there are no new invariants. The only
change now is that monotonic behaviour is implemented
by an axiomatic form of an ordinary differential equa-
tion. Thus, l ∈ mono inc in Fill is replaced by der(l) =
const(now, t,RU), which says that the derivative of l is a
constant function over the interval [now . . . t], with value
RateUp. This, and the analogously modified Empty, cov-
ers what is shown in Fig. 3.

Aside from the machines in Fig. 3, there is a further
machine, Tank30, in the development discussed in [8].
This is also a refinement of EB Tank2, although a dif-
ferent one. This one models a putative implementation
of EB Tank2 using a time triggered loop. A new vari-
able step is introduced, whose job, like that of now, is
to model increments of time, but on this occasion small
ones, whose duration is determined by a constant P. An-
other new variable slevel models the small increments or
decrements to the water level accrued in each interval of
length P. The events modelling these small increments or
decrements also follow the pattern described earlier. Most
of this machine is shown in Fig. 4 (the parts omitted are
the details of events StepDown and EndEmpty, which are
straightforward analogues of events StepUp and EndFill).

Unlike the models of Fig. 3, there is a variable mode ∈ {UP,DOWN} to enforce fill-
ing or emptying behaviour until the boundary values are approached. And since, when
using fixed time increments of length P, it is not realistic to expect filling and emptying
to reach the limits H or L ‘on the nose’, thresholds HT and LT are introduced (respec-

tively less than and greater than H and L), upon reaching which, the mode changes.
Technically, the ‘intermediate’ filling and emptying events, StepUp and StepDown, are
‘new’ events, refining a notional skip in EB Tank2. The ‘endpoint’ events, EndFill and
EndEmpty, refine Fill and Empty in EB Tank2, determining the needed values of now
and level to achieve refinement.3

Finally, we comment on the methodology used to arrive at these results. The prop-
erties of the reals, and of real functions, were axiomatised using the theory plugin of
the Rodin tool [3, 14]. One aspect of this is that derivatives, expressed using axioms
for der, are axiomatised as belonging to the continuous functions ctsF, for convenience
(see [8]). If we then look at the way that these are used in EB Tank3, we see that the
derivatives specified are always constant functions. But filling episodes have a positive
derivative of the l function, and emptying episodes give l a negative derivative. Joining
two such episodes cannot yield a continuous derivative.

This apparent contradiction is resolved by noticing that each element of ctsF is only
defined with respect to its domain. Thus, a function f1 defined on [t1 . . . t2] may have
one continuous derivative, and a different function f2 defined on [t2 . . . t3] may have a
different continuous derivative. Even if f1 and f2 can be joined at t2, the exclusive use of
closed intervals for domains of continuous behaviour (which happens quite commonly
in formulations of hybrid systems, see e.g. [15, 13, 9]) does not enable us to deduce that
their derivatives can be joined at t2. While consistent, the consequence of this is that the
joined f1 ∪ f2 cannot be regarded as a differentiable function on [t1 . . . t3], and in fact,
an attempt to regard it as such would lead to multiple values of the putative derivative at
t2. While relatively innocuous in the present example, it indicates a number of things.
The first is that what is true can depend delicately on the axioms adopted. The second
is that care needs to be taken in case the unexpected consequences of the axioms lead
one astray. The third is a caution regarding the scalability of such an approach, as the
number of counterintuitive cases proliferates.

5 The Hybrid Event-B Water Tank Development

In Fig. 5 we see a development of the water tank problem in HEB. It consists of three
machines: HEB TankAbs, an abstract formulation, which is refined by HEB TankMon
which includes the pump, and which is in turn refined by HEB TankODE. These are
relatively straightforward analogues of the machines EB Tank1, EB Tank2, EB Tank3
in the last section. The main difference between the two treatments is that in HEB, func-
tions of time are manipulated solely using expressions for their values at any individual
instant, and not en bloc, as graphs over (some portion of) their domain. This aligns the
way that pliant and mode updates can be regarded, and simplifies many less trivial mat-
ters. For ease of comparison, we keep the names of constants in the two treatments the
same, but alter other names to aid distinguishability.

3 The use of thresholds HT and LT rather than the precise limits H and L, correlates with the
absence of guards to check reaching H or L in the corresponding EB Tank1 and EB Tank2
events. However, since the behaviour stipulated is nondeterministic monotonic, adding an extra
constraint to demand that the behaviour exactly reached the required limit in events EndFill
and EndEmpty would be perfectly feasible (mathematically, if perhaps not practically).

MACHINE HEB TankAbs

PLIANT wl

INVARIANTS
wl ∈ [L . . .H]
CONTINUOUS(wl)

EVENTS
INITIALISATION

STATUS ordinary
BEGIN

wl := L
END

WaterInRange
STATUS pliant
COMPLY INVARIANTS
END

END

MACHINE HEB TankMon
REFINES HEB TankAbs
PLIANT wl
VARIABLES pump
INVARIANTS

wl ∈ [L . . .H]
CONTINUOUS(wl)
pump ∈ {ON,OFF}

EVENTS
INITIALISATION

REFINES INITIALISATION
STATUS ordinary
BEGIN

wl, pump := L,ON
END

WaterFill
REFINES WaterInRange
STATUS pliant
WHEN pump = ON
COMPLY MONINC(wl)
END

PumpOff

STATUS ordinary
WHEN

wl = H ∧ pump = ON
THEN pump := OFF
END

WaterEmpty
REFINES WaterInRange
STATUS pliant
WHEN pump = OFF
COMPLY MONDEC(wl)
END

PumpOn

STATUS ordinary
WHEN

wl = L ∧ pump = OFF
THEN pump := ON
END

END

MACHINE HEB TankODE
REFINES HEB TankMon
PLIANT wl
VARIABLES pump
INVARIANTS

wl ∈ [L . . .H]
CONTINUOUS(wl)
pump ∈ {ON,OFF}

EVENTS
INITIALISATION

REFINES INITIALISATION
STATUS ordinary
BEGIN

wl, pump := L,ON
END

WaterFill
REFINES WaterFill
STATUS pliant
WHEN pump = ON
SOLVE D wl = RU
END

PumpOff
REFINES PumpOff
STATUS ordinary
WHEN

wl = H ∧ pump = ON
THEN pump := OFF
END

WaterEmpty
REFINES WaterEmpty
STATUS pliant
WHEN pump = OFF
SOLVE D wl = RD
END

PumpOn
REFINES PumpOn
STATUS ordinary
WHEN

wl = L ∧ pump = OFF
THEN pump := ON
END

END

Fig. 5. Hybrid Event-B machines for the water tank.

HEB TankAbs has only the water level variable wl, which is pliant, taking values
in R. The behaviour of wl is required to be CONTINUOUS (to prevent discontinu-
ous jumps), and the nontrivial invariant wl ∈ [L . . .H] confines the water level to the
real closed interval [L . . .H]. In HEB, invariants are properties that have to hold at all
times, so wl ∈ [L . . .H] is sufficient to express the safety property that wl is required
to never leave [L . . .H]. The only non-INITIALISATION event in HEB TankAbs is the
pliant event WaterInRange. This merely requires the behaviour to COMPLY (with the)
INVARIANTS. So HEB TankAbs specifies the required safety property and does not
concern itself with how that safety property is to be maintained. The ability to do this
properly in a hybrid/cyberphysical setting is an important feature of development in
HEB. So HEB TankAbs mirrors EB Tank1 quite closely.

The next machine HEB TankMon, starts to engage with how the key invariant is
maintained. It introduces the EB-style mode variable pump ∈ {ON,OFF}. The pump
is turned on and off by mode events PumpOn and PumpOff . These are like EB events
aside from their eager behaviour — they execute as soon as their guards become true.

Again illustrating the ability to postpone implementation details, the behaviour of
wl in the presence of the pump is merely specified to be MONotonically DECreasing
when the pump is OFF, and to be MONotonically INCreasing when it is ON: in pliant
events WaterEmpty and WaterFill respectively. Note that the pump variable, introduced
earlier than in EB, prevents successive filling or successive emptying episodes (unless
we had additional mode events to interleave them, to conform with (1) and (2)).

Importantly, HEB TankMon is a formal refinement of HEB TankAbs according to
the detailed definition in [5], as we would wish. Both of WaterEmpty and WaterFill re-
fine the abstract WaterInRange, in that monotonic continuous behaviour is a refinement
of continuous behaviour. The relevant PO expresses this by saying the following. For
all times t during an execution of a concrete event, WaterFill say, that started at some
time tL say, if the value that wl reached at t due to executing WaterFill from its starting
value wl(tL) was wl(t), then the same value can be reached by executing the abstract
event WaterInRange from tL to t.

Mode events PumpOn and PumpOff are ‘new’ events in EB parlance, updating only
the ‘new’ mode variable pump, so there is no change to abstract variable wl when they
execute. However, there is no VARIANT that they decrease when they execute. The
abstract event that they relinquish control to upon completion is the immediately suc-
ceeding pliant event, WaterEmpty for PumpOff or WaterFill for PumpOn. An auxiliary
(pliant) variable could be introduced that was increased by these events and decreased
by the mode events to create a variant, but this would clutter the model. Thus we see that
HEB TankMon mirrors EB Tank2 quite closely, aside from the presence of pump and
its controlling events, which fix the durations of the monotonic episodes to be maximal,
and ensures that switching takes place at the extreme values of the range.

Machine HEB TankODE refines EB TankMon. This time the various events are
refined 1-1, so there are no ‘new’ events to worry about. The monotonic continuous
behaviour of WaterEmpty and WaterFill is further refined to be given by ODEs in
which the derivative of the water level variable wl is RD for WaterEmpty and RU for
WaterFill, as in EB. This appears in the SOLVE clauses of these events. Once more,
HEB TankODE mirrors EB Tank3 quite closely, aside from issues concerning pump,
which we have discussed already.

Supplementing the machines of Fig. 5, machines analogous to the EB Tank30 ma-
chine appear in Fig. 6. Machine HEB TankTTL is a time triggered development of
HEB TankMon, and comparing it with Tank30 is instructive. Note that there are no new
variables, just new behaviour of events. Thus WaterFill is refined to WaterFillNormal
and to WaterFillEnd. The former of these is enabled when the water level is below
the threshold HT . It demands increasing wl behaviour, but restricted to a filling rate
no greater than RU. Occurrences of WaterFillNormal are interleaved by occurrences of
mode event WaterFillObs, which runs at times that are multiples of P, provided the wa-
ter level is not actually H itself. Since WaterFillNormal is increasing wl, WaterFillObs
merely skips. Once above HT , WaterFillEnd runs. This is like WaterFillNormal except
for an additional condition insisting that wl hits H at the end of the interval.4 And once
wl has reached H, PumpOff runs, as previously. While this design is unimpeachable
mathematically, it is, of course, much more questionable from a practical perspective,

4 The constraint is consistent provided the various constants are suitably related, of course.

MACHINE HEB TankTTL
REFINES HEB TankMon
TIME t
PLIANT wl
VARIABLES pump
INVARIANTS

wl ∈ [L . . .H]
CONTINUOUS(wl)
pump ∈ {ON,OFF}

EVENTS
INITIALISATION

REFINES INITIALISATION
STATUS ordinary
BEGIN

wl, pump := L,ON
END

WaterFillNormal
REFINES WaterFill
STATUS pliant
INIT wl ≤ HT
WHEN pump = ON
COMPLY MONINC(wl) ∧

wl(t)− wl(tL) ≤
RU × (t − tL)

END
WaterFillObs

STATUS ordinary
WHEN

pump = ON ∧ wl 6= H ∧
(∃ n • t = n× P)

THEN skip
END

.

.
WaterFillEnd

REFINES WaterFill
STATUS pliant
INIT wl > HT
WHENpump = ON
COMPLY MONINC(wl) ∧

wl(t)− wl(tL) ≤
RU × (t − tL) ∧

wl(tL + P) = H
END

PumpOff
STATUS ordinary
WHEN

wl = H ∧ pump = ON
THEN pump := OFF
END

WaterEmptyNormal
WaterEmptyEnd
WaterEmptyObs
PumpOn

END

MACHINE HEB TankIMP
REFINES HEB TankTTL
TIME t
VARIABLES mwl
INVARIANTS

mwl ∈ [L . . .H]
| mwl− wl | ≤

P× max(RU, RD)
EVENTS

INITIALISATION
REFINES INITIALISATION
STATUS ordinary
BEGIN mwl := L END

.

.
WaterFillNormal

REFINES WaterFillNormal
STATUS pliant
INIT mwl = wl ∧ wl ≤ HT
WHEN pump = ON
COMPLY skip
END

WaterFillObs
REFINES WaterFillObs
STATUS ordinary
WHEN

pump = ON ∧ wl 6= H ∧
(∃ n • t = n× P)

THEN mwl := wl
END

WaterFillEnd
REFINES WaterFillEnd
STATUS pliant
INIT mwl = wl ∧ wl > HT
WHEN pump = ON
COMPLY skip
END

PumpOff
STATUS ordinary
WHEN

wl = H ∧ pump = ON
THEN

pump,mwl := OFF,wl
END

WaterEmptyNormal
WaterEmptyEnd
WaterEmptyObs
PumpOn

END

Fig. 6. The HEB TankTTL and HEB TankIMP machines.

as we pointed out in footnote 3. It does have the virtue though, of providing a straightfor-
ward refinement from HEB TankMon. Machine HEB TankTTL is completed by events
WaterEmptyNormal, WaterEmptyEnd, WaterEmptyObs, PumpOn, which do the same
as the preceding, but for the emptying phase.

Machine HEB TankTTL is data refined to HEB TankIMP on the right of Fig. 6. This
‘implementation’ machine illustrates the refinement of pliant behaviour interleaved
by mode skips, to pliant skips interleaved by mode updates — a major aim of HEB
is to allow such a passage from a high level continuous design to a discrete, digital
implementation. A fresh variable mwl (monitored water level) is introduced, inc/dec-
remented at each of the mode events. Observing wl and updating mwl at each multiple
of P enables the invariant | mwl− wl | ≤ P×max(RU,RD) to be maintained, attesting
to the reasonableness of the digital implementation.

What has been achieved by formulating the development in the HEB way compared to
the EB way? Firstly, there is a certain fluency in referring to continuous behaviour via
expressions that denote instantaneous values rather than having to assemble and disas-
semble graphs of functions (but only in the continuous case). Secondly, there are issues
of potential semantic subtlety. We saw an example in the discussion of the differential

properties of the level function in EB Tank3: it was not formally differentiable globally,
but consisted of differentiable monotonic pieces, leading to the join points having more
than one derivative value, despite these being ‘kink’ points of the function. In HEB
such matters are handled ab inito in the semantics, by the use of closed/open intervals
and the Carathéodory formulation of differential equations and derivatives (which are
only required to be defined almost everywhere). Thirdly, there is also the fluency of
the passage from pliant behaviour interleaved by mode skips to pliant skips interleaved
by mode updates. Discussion of further and more general matters appears in the next
section.

6 Event-B versus Hybrid Event-B

Based on the previous EB and HEB developments, we can draw some comparisons
between the two approaches for modelling and formally refining hybrid systems.

1. First and foremost, EB has a well developed existing tool, whereas for HEB, tool
development is, as yet, an aspiration. Having an existing tool is of inestimable benefit
when you need to get the job done.

2. In an EB development, real time has to be modelled as a normal state variable.
This imposes a responsibility on the model writer to not abuse the capabilities this of-
fers. In truth, time is (in physical parlance) an independent variable — whereas other
state variables correspond (physically) to dependent variables. From a linguistic for-
malism point of view, staying faithful to the physical reality means that time has to be
a read-only variable, and that all other variables have to be functions of time. In an EB
context, it is down to the self-discipline of the model writer to reflect these properties
properly. Clearly it is possible to transgress them and to write unphysical models. In
HEB these realities are hardwired into the syntax and semantics, making it impossible
for the model writer to violate them.

3. An analogue of point 2 concerns the mathematical equipment of EB and HEB.
In EB all mathematical objects beyond those needed for discrete modelling need to be
axiomatised, typically using the theory plugin of the Rodin tool [3, 14]. Although this
framework is agnostic regarding the level of abstraction of the concepts being axioma-
tised, existing work emphasises a bottom up approach (as in the case study above). This
potentially creates a lot of work before the level of abstraction needed for applications
is reached, increasing risk.

The HEB perspective on this is to design the theoretical foundations of the se-
mantics in a way that best suits the needs of applications engineering, giving system
developers a mental model that is clear and easy to grasp, and, importantly, is free from
unexpected surprises (such as the two-valued ‘derivative’ discussed earlier). The aim
would be to internalise the world of continuous mathematics with the same level of
care and consistency as the Rodin tool currently supplies for discrete mathematics and
logic, and to supplement it via extensive imported support from external tools such as
Mathematica [12] for calculational purposes. The facility for user designed rules and
axiom schemes would be retained for specialised purposes, but would not be the default
approach for continuous mathematics.

4. A specific example of the general remarks in the preceding point lies in the con-
trast between the explicit construction of functions as relations, manipulated via their
graphs in Section 4 and their representation as expressions based on values of variables
at a single (arbitrary) element of their time domain in Section 5.

5. Connected with the previous point is the observation that in EB, the discrete and
continuous updates have to be handled by different means. Thus, discrete transitions
are written down using (in effect, pairs of) state expressions, referred to via syntax
such as xs := E(xs), with the accepted conventions surrounding the syntactic machinery
enabling the relevant expressions to be discerned. For continuous transitions though,
because the EB framework offers no alternative syntax for update than that which is
used for discrete transitions, updates to continuous behaviour have to be handled by
updating the relation describing (the function of time that is) the continuous behaviour
as a whole, in one action. Section 4 offers many examples. The discrete analogue of
such an approach would be to update (in one action), for a discrete variable x, a non-
trivial portion of its trace during an execution, i.e. to update say 〈xi−1, xi . . . xi+k〉, as a
whole. (Aside from anything else, this would require the introduction into every model
of an index variable (incremented at each event occurrence), as well as suitable history
variables.)

By contrast, HEB provides special purpose syntactic machinery (via the COMPLY
and SOLVE clauses) to specify continuous update incrementally and microscopically,
rather than macroscopically, which is significant from an expressivity standpoint. As
most physical models specify behaviour in a microscopic way (usually via differen-
tial equations etc.), being able to write these directly in the formal framework aids
the ability to specify in a manner as close to application domain concerns as possible.
Also, since the solutions to these microscopic specifications are macroscopic (describ-
ing properties of the solution over an extended portion of time/space), specifying in
a microscopic way prevents forcing the move from microscopic to macroscopic from
being done offline. In this way, discontinuous transitions and continuous transitions are
handled in a consistent manner, via mode transitions and pliant transitions respectively,
both of which are predominantly expression based ways of specifying updates.

6. Continuing from point 5, when specifying the unavoidable handovers between
continuous and discrete behaviours while using the macroscopic, relation based, way of
specifying continuous behaviour, the endpoints of the periods of continuous behaviour
need to be described within the relations themselves, so that the domain of the relevant
relation can be specified. This is potentially an overhead for the model designer when
the problem is complicated enough, since the handovers take place when prompted
by physical law. In HEB, this job is taken over by a generic preemption mechanism,
which is, in turn, much easier to handle in the expression based way of managing pli-
ant behaviour, since all the details regarding the domain of applicability of the pliant
behaviour do not need to be specified in advance.

7. Another consequence of point 5 concerns invariants. Invariants are normally ex-
pressions written in the state variables, that are expected to be true at all times. Now,
when we only have the usual changes of discrete state, and we have the conventional
interpretation of Event-B in the physical world in which discrete transitions occur at iso-
lated times, then the state does not change in between these discrete transitions. Thus,

once true at some point of an execution (e.g. at initialisation time), if invariants are
reestablished at each discrete transition, then the invariants hold throughout the dura-
tion of the execution. Note that this reasoning takes place largely outside of the formal
EB framework.

When the discrete EB transitions are extended to encompass updates to lumps of
continuous behaviour, the preceding argument no longer holds. Straightforward safety
properties built out of natural problem entities no longer correspond to equivalent ex-
pressions built on state variables, but need to be extracted from the relations containing
pieces of continuous behaviour, potentially making the proof of safety properties more
difficult.

The observation particularly concerns refinement. In relatively benign cases where
refinement amounts to ‘reduction of nondeterminism’, it may be possible relatively
straightforwardly to argue that, say, a continuous monotonic function is continuous, and
thus, that a chunk of continuous monotonic function refines a continuous specification.
But the challenge can get much harder when ‘data refinement’ is involved. Then, the
chunks have to be unpacked and the pointwise expressions compared (in fact reflecting
the HEB process), before anything can be deduced.

By contrast, the HEB approach expresses all instantaneous state update, both mode
and pliant, via expressions in the state variables, which usually correspond to the natural
variables of the problem. This enables the invariants to be be built in the same straight-
forward way as in the purely discrete case. Refinement is rendered no harder than the
discrete case, though the time parameter has to be carried around through the derivation
(which, in the vast majority of cases, imposes no overhead).

While, in principle, any invariant written using the more transparent methods of
HEB could, with effort, be translated into the more convoluted EB kind, as a general
point, we should not underestimate the impact on those aspects of the application that
are emphasised, made by the detailed formalism in which the models and properties of
a given application are written. Thus: (a) properties in model based frameworks tend to
be written as invariants on the state space, and behavioural properties remain implicit in
the enabledness (or not) of events in the after-states of preceding events; (b) properties
in behaviourally based frameworks tend to be written as temporal logic expressions,
and say little or nothing about states or whether behaviours other than ones described
are permissible; (c) the architectural structure of a system leads to an emphasis on the
properties of the individual components, whether state based or behavioural, and prop-
erties of the system as a whole that depend on the correct execution of protocols by
collections of components are downplayed (other than in approaches focused specifi-
cally on protocols), etc. So the difference between the EB and HEB approaches can
lead to subtle bias in the safety properties that are written, and later checked during
verification.

8. Although not a feature of the EB treatment here, a number of treatments of con-
tinuous phenomena using EB, describe continuous, time dependent phenomena via
lambda expressions such as λ τ • E(τ). Extraction of a value is done via application
of such an expression to a parameter. This technique makes even more distant (than
in the EB technique used here) the connection between problem quantities and actual
model variables, since there needs to be even more packing and unpacking of these

lambda expressions to get at the juice inside (than in the present case). From a formal
point of view, a binder like λ typically binds its variable: moreover, the bound vari-
able is formally alpha convertible [7, 11], which can change its name arbitrarily. If this
is the case, the identification of the variable τ in the given expression with a problem
domain quantity like the time, lies completely outside the formal framework — it be-
comes an application level convention. This contrasts with the practice in conventional
descriptions of physical phenomena, of naming physical quantities using free variables,
leading to the possibility of being able to correlate the mention of the same quantity
at different places by simple lexical identity. Of course this practice is reflected in the
design of HEB.

However, we have to be a little careful. In many similar formalisms, such as in the
refinement calculus [4], alpha conversion is an intrinsic part of the machinery, lead-
ing precisely to the phenomenon being discussed. However in the logical language of
EB, the not-free-in property is used instead when introducing binders. This is based on
the idea that provided wise, non-clashing choices of bound variables are made at the
point of introduction, those choices will never need to be overridden in the reasoning
algorithms, precluding the need for formal alpha conversion. In the B-Book [1], the not-
free-in property is explicitly correlated with the quantified variable in the predicate that
specifies the lambda expression (B-Book p. 89, & ff.). In the EB-Book [2], the lambda
variable is a pattern, and although the formalities of its role as bound variable are not
explicitly discussed, similar properties may be inferred (EB-Book p. 331 & ff.). Thus,
in the context of the not-free-in technique, in theory, it might be possible to use the free
problem variables as lambda variables in sufficiently simple situations where this would
cause no untoward clashes, but in practice this is not something that could be expected
to be applicable with any generality.5

A genuine reconciliation of the issues just discussed would run as follows. A richer
language of type names would be introduced. These names would be free identifiers.
Complex (or built-in) types could be given a name, and name equivalence (rather than
structural equivalence) would decide type equality and compatibility. That way, a type
of time could be distinguished from a type of lengths, even though both are based on
R under the bonnet. Alpha conversion would apply to lambda expressions etc. as usual,
but not to the type name expressions that declared their types. We would have reinvented
the free name convention of HEB, removed one level!

It is notable how most of the issues identified in the above list do not concern the details
of the EB and HEB formalisms themselves, but engage with questions that surround
how the formalism connects with the wider requirements and applications environment.
This is another illustration of the observation that the more naturally a formal frame-
work relates to the problem domain, the more useful its contribution to overall system
dependability is likely to be.

5 Strictly speaking, not-free-in means ‘does not occur free —but may occur bound— in’. Thus,
the possibilities for alpha conversion are latent in the B-Method, even if they are downplayed.

7 Conclusions

In the previous sections we reviewed Event-B and its hybrid extension, and then sum-
marised the water tank development in the two formalisms. This provided the back-
ground for a more thorough comparison of the two ways of developing hybrid systems
in Section 6. What this showed was that although many issues that were rather natural
to express in Hybrid Event-B could be handled, with some effort, in Event-B, doing
it that way placed more and more reliance on conventions that lay outside the formal
Event-B framework. Obviously, the aim of having a formal framework is to open the
possibility of having a system whereby properties directly relevant to the application
can be checked mechanically, instead of relying on informal conventions verified by
humans for their enforcement. Thus the pure Event-B approach to hybrid system de-
sign and development will inevitably struggle increasingly, as the scale of the problem
being tackled grows.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press
(1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: An Open
Toolset for Modelling and Reasoning in Event-B. STTT 12, 447–466 (2010)

4. Back, R.J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer
(1998)

5. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core Hybrid Event-B I: Single Hybrid
Event-B Machines. Sci. Comp. Prog. 105, 92–123 (2015)

6. Banach, R., Butler, M., Qin, S., Zhu, H.: Core Hybrid Event-B II: Multiple Cooperating
Hybrid Event-B Machines (2015), submitted.

7. Barendregt, H.: The Lambda Calculus Its Syntax and Semantics. Elsevier (1981)
8. Butler, M., Abrial, J.R., Banach, R.: Modelling and Refining Hybrid Systems in Event-B

and Rodin. In: Petre, Sekerinski (eds.) From Action System to Distributed Systems: The
Refinement Approach. Dedicated to Kaisa Sere. pp. 29–42. CRC Press, Taylor and Francis
(2015)

9. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and Tools for
Hybrid Systems Design. Foundations and Trends in Electronic Design Automation 1, 1–193
(2006)

10. Geisberger, E., Broy (eds.), M.: Living in a Networked World. Integrated Research Agenda
Cyber-Physical Systems (agendaCPS) (2015), http://www.acatech.de/fileadmin/user
upload/Baumstruktur nach Website/Acatech/root/de/Publikationen/Projektberichte/
acaetch STUDIE agendaCPS eng WEB.pdf

11. Hindley, R., Seldin, J.: Introduction to Combinators and λ-Calculus. Cambridge U.P. (1986)
12. Mathematica: http://www.wolfram.com
13. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer (2010)
14. RODIN Tool: http://www.event-b.org/ http://sourceforge.net/projects/rodin-b-sharp/
15. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer

(2009)

