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Refinement of formal system models towards implementation has been a mainstay of system development
since the inception of formal and Correct by Construction approaches to system development. However, pure
refinement approaches do not always deal fluently with all desirable system requirements. This prompted
the development of alternatives and generalisations, such as retrenchment. The crucial concept of simula-
tion is key to judging the quality of the conformance between abstract and more concrete system models.
Reformulations of these theoretical approaches are reprised, and are embedded in a graded framework. The
added flexibility this offers is intended to deal more effectively with the needs of applications in which the
relationship between different levels of abstraction is not straightforward, and in which behaviour can oscillate
between conforming quite closely to an idealised abstraction, and deviating quite far from it. The framework
developed is confronted with an intentionally demanding case study: a model active control system for the
protection of buildings during earthquakes. This offers many challenges: it is hybrid/cyber-physical; it has
to respond to rather unpredictable inputs; it has to straddle the gap between continuous behaviour and
discretized/quantized/numerical implementation.
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1 INTRODUCTION
Refinement of formal system models towards implementation has been a mainstay of system
development since the inception of formal and Correct by Construction approaches to system
development. However, pure refinement approaches have not always been able to deal fluently with
all the system requirements that may be desired in some particular application. This observation
prompted the development of alternatives and generalisations, such as retrenchment.

Retrenchment [14, 15, 21, 66], was originally introduced in [19] (in the context of the B-Method
[2, 3]) to capture system development steps that do not fit comfortably within standard refinement
pathways. Subsequently it developed a substantial literature showing the convenience and utility
of the technique. Among the more notable highlights of this, was the work done on the Mondex
Purse [73], an electronic wallet application designed to enable exchange of value electronically —
nowadays a familiar and widespread capability but quite novel at the time of its introduction.
In the Mondex Purse, retrenchment was applied in many ways to capture how a more realistic

model of the implementation could be related to the idealised formal models in [73]. Thus, in [20],
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9876:2 R. Banach

the sequence numbers of Mondex transactions had a finite (though very large) upper limit, whereas
in [73] they were unbounded natural numbers. In [16] the size of the Mondex exception log was
finite (and decidedly small), whereas in [73] it was unbounded — this required an approach different
from the previous case. In [17] the non-injectivity of the Mondex CLEAR codes was treated. The
CLEAR codes embody permission from a central archive to a Mondex purse to clear its exception
log without loss to any part of the system. In [73], the CLEAR code is injectively matched to the
log contents whereas in reality, it is a hash, opening the possibility of a hash collision and thence of
loss to some user — but crucially, not the creation of new value, the key security property. Finally,
in [18], retrenchment was used to resolve an incongruity in the BalanceEnquiry operation of the
Mondex protocol, arising from different atomicity/granularity properties of different abstraction
levels of the models involved. (In fact the incongruity was acute enough that the BalanceEnquiry
was not included in the published models.) Mondex itself was the focus of a major Verification
Grand Challenge [52, 53, 79, 80]. A more recent overview of embeddings of the retrenchment idea
into various formal development frameworks appears in [10].
Retrenchment, as originally presented, works very well when the deviation between idealised

and realistic models concerns a system failure, departing from a hitherto established refinement
situation fromwhich recovery is not contemplated — or when its additional flexibility can be used to
hide temporary departures from refinement that clash with the detailed requirements of a particular
refinement framework. The Mondex case studies were primarily of this type. Retrenchment works
less well in cases where the departures from refinement are significant — but where they are
nevertheless recovered from in various ways to reestablish a refining state of affairs between
idealised and realistic models. In such situations, while the departures from refinement can be well
described by retrenchment, the recovery situation is less well covered.
Typical examples of systems of the latter kind are found among hybrid and cyber-physical

systems [28, 38]. To see the relevance of this, imagine a cyber-physical system in which an idealised
model captures continuous behaviour using conventional ODE systems, but a more realistic and
concrete model works using numerical algorithms to give algorithmic implementations of solutions
to the ODE systems. In this situation, the inevitable deviations between the idealised ODEs and their
numerical (and thus inevitably approximate) implementations, mean that when changes of system
behaviour are prompted by continuous variables crossing threshold values, such threshold crossings
can take place at different points in the two models —leading to widely differing behaviours from
a refinement viewpoint— even if the overall behaviour in the two systems converges later, for
example as a consequence of system stability considerations.
This paper aims to reappraise the original retrenchment ideas in order to furnish a formalism

that can cope with such situations a lot more fluently. In addition to that, there is another issue
that arises that is novel when compared with conventional stepwise refinement frameworks. In
the conventional case, in a stepwise refinement development step, the abstract system model is
typically regarded as being ‘prior’, in the sense that the requirements, properties and invariants it
captures should be maintained in a suitable manner further down the development hierarchy —
and in the concrete model of the development step in particular: some mild technical conditions
are usually enough to guarantee that. The conflation of ‘prior’ with ‘abstract’ and the consequent
conflation of ‘non-prior’ with ‘concrete’ correlates with the direction of the implication in typical
refinement or retrenchment correctness proof obligations: for each non-prior behaviour there must
be a prior one that it concretises.
In the hybrid and cyber-physical systems case, the prior model would naturally be the one

containing physical law and the intended continuous design — since that is what corresponds
to the unavoidable natural world. But we have just seen that concrete numerical models cannot
maintain continuous physical law with precision in general. The alternative then, would be to view
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the concrete numerical model as prior, because it captures implementation issues connected with
discretisation that are unavoidable — it being necessary that the abstract model not make demands
that cannot be fulfilled by the concrete model. The latter requirement suggests conflating ‘prior’
with ‘concrete’. This would make the continuous, physical model a refinement or retrenchment of
the numerical one.

Neither approach seems ideal —there is a palpable tension between the two views— and in this
setting, we can find that notions based on simulation, offering a more even handed balance between
abstract and concrete, are better suited than the more traditional and more directed notions of
refinement and retrenchment, with their insistence that one model conforms completely to the
exigencies of the other. In a sense, this refocuses the relationship between the two models in a
more angelic direction, in contrast to the more directed demonic notions. The work in this paper
elaborates this perspective in a technically more detailed direction.

The remainder of the paper is as follows. Section 2 presents our system concepts. The approach
in this portion of the paper is primarily semantic, i.e. it is based on transition system concepts. Thus,
specific languages and syntactic frameworks are not considered yet. Our formulation of refinement
for these systems follows in Section 3. Section 4 addresses retrenchment, significantly reformulated
compared with earlier work. Section 5 says what needs to be done to accommodate continuously
varying state change in these frameworks, given that hybrid and cyber-physical systems are so
important, both for the main case study of this paper, and in general. Section 6 covers the many
notions of simulation that the preceding ideas admit.
Section 7 presents some straightforward results on departure from and return to conformance

with desired invariants, in cases where absolute adherence to them cannot be guaranteed. These
are based on quite strong assumptions. Section 8 tackles the same issue, but this time basing
the approach on metric assumptions about the systems in question, and on suitable contracting
properties. Section 9 discusses the implications of ensuring the preceding results extend also to
continuous behaviours, building on the approach of Section 5.

Then Section 10 presents the graded integration of the preceding ideas, contributing an overall
focus to the paper: the graded development system.

Section 11 introduces the essentials of Hybrid Event-B [12, 13], the formalism within which the
main motivating case study in the paper is expressed. Section 12 then introduces the case study
itself. This concerns an active control system for earthquake protection, first discussed in [11]. As
well as involving discrete and continuous behaviours in an essential way, the ‘exceptional’ parts of
the system’s behaviour are highly important from the system development viewpoint, and thus
merit being treated as ‘first class citizens’ in the development process, via the theory developed
earlier. Although the investigation of the earthquake protection system is expressed using the
syntax of Hybrid Event-B, the semantics of refinement and retrenchment that is utilised, is the
semantics developed earlier in this paper. We make suitable comments as needed. Sections 11 and
12 can be read directly after this Introduction, as they do not depend on the intervening material.

While Section 12 contents itself with describing the models of the earthquake protection system
development, Section 13 considers how they are related to one another from the more formal
vantage points developed earlier. This is a large section, divided into many subsections, which
explores the relationships between the models from a wide variety of possible perspectives. With
this in hand, Section 14 considers how the whole of the preceding can be viewed as an example of
a graded development system. Section 15 broadens the discussion and considers some related work.
Section 16 concludes. It encompasses discussion of how the ideas developed here can be applied in
a wider context, and what the impact of such ideas would be for tool support.
The level of detail needed to make the concepts developed in this paper convincing, make the

paper rather long. Readers may wish to skip over the proofs on a first reading.
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Assumption 1.1. We work in a set theoretic and relational framework, in which relations are
manipulated using logical operations on the predicates that define their bodies. We are not pedantic
about distinguishing a set or relation from the predicate that defines it. To avoid a proliferation of
pathological cases, we assume henceforth, that any set or relation mentioned in the hypotheses of a
construction or theorem is nonempty, so that, for example, a mentioned putative choice of some element
from it can actually be made.

2 BASIC SYSTEMS
In this section we give our basic definitions and notations for the theoretical framework we
will subsequently build. We will deal with transition systems. A typical system will be Sys𝑋 ,
where the label 𝑋 distinguishes the system from other transition systems in the discourse. Sys𝑋
has a set of operation names Ops𝑋 , with typical element 𝑂𝑝𝑋 . An operation 𝑂𝑝𝑋 works on the
state space U𝑋 with typical element 𝑢𝑋 . 𝑂𝑝𝑋 will also have an input space I𝑂𝑝𝑋 with typical
element 𝑖𝑋 , and an output space O𝑂𝑝𝑋 with typical element 𝑜𝑋 .1 An individual step, or transition
of 𝑂𝑝𝑋 is typically written as 𝑢𝑋 -(𝑖𝑋 ,𝑂𝑝𝑋 , 𝑜𝑋 )->>>𝑢 ′𝑋 , where 𝑢

′
𝑋
is the after-state. Their totality

constitutes the step, or transition relation 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) of 𝑂𝑝𝑋 . When we aggregate the
transition relations of all the operations 𝑂𝑝𝑋 of Sys𝑋 , we obtain the complete transition relation
for the Sys𝑋 system, 𝑠𝑡𝑝𝑋 =

⋃
𝑂𝑝𝑋 ∈Ops𝑋 𝑠𝑡𝑝𝑂𝑝𝑋 , where the union is necessarily disjoint since

the relevant 𝑂𝑝𝑋 name is part of every execution step. An initial state of Sys𝑋 is assumed to be
defined by a predicate 𝐼𝑛𝑖𝑡𝑋 (𝑢𝑋 ) — inputs and/or outputs are only needed once a transition occurs.
Summarising, and suppressing the label 𝑋 , a system Sys can be seen as a tuple with signature2
(Ops,U, 𝐼𝑛𝑖𝑡,⊎𝑂𝑝∈OpsI𝑂𝑝 ,

⊎
𝑂𝑝∈OpsO𝑂𝑝 , 𝑠𝑡𝑝 :

⊎
𝑂𝑝∈Ops ({𝑂𝑝} × U × I𝑂𝑝 × U ×O𝑂𝑝 )).

Accompanying every system Sys𝑋 , we will assume that there can be a state invariant, 𝐼𝑛𝑣𝑋 . This
mechanism can be used to provide a safe, useful subsystem of Sys𝑋 . For this to work, it is sufficient
that the initial state(s) satisfy 𝐼𝑛𝑣𝑋 :

𝐼𝑛𝑖𝑡𝑋 (𝑢𝑋 ) ⇒ 𝐼𝑛𝑣𝑋 (𝑢𝑋 ) (1)

and that the 𝑠𝑡𝑝𝑋 relation preserves satisfaction of 𝐼𝑛𝑣𝑋 :

𝐼𝑛𝑣𝑋 (𝑢𝑋 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ⇒ 𝐼𝑛𝑣𝑋 (𝑢 ′𝑋 ) (2)

The subset of transitions 𝑢𝑋 -(𝑖𝑋 ,𝑂𝑝𝑋 , 𝑜𝑋 )->>>𝑢 ′𝑋 whose states 𝑢𝑋 and 𝑢 ′
𝑋
satisfy 𝐼𝑛𝑣𝑋 (𝑢𝑋 ) and

𝐼𝑛𝑣𝑋 (𝑢 ′𝑋 ) define the invariant subsystem SysInv𝑋 , consisting of invariant transitions Inv𝑠𝑡𝑝𝑋 , and
its states InvU𝑋 (defined by the predicate 𝐼𝑛𝑣𝑋 ), and its I/O values InvI𝑂𝑝𝑋 and InvO𝑂𝑝𝑋 for the
various 𝑂𝑝𝑋 . Invariants of this kind are very convenient for expressing safety properties of the
system dynamics.
A useful variation of the notion of invariant is the idea of a contingent invariant. For a system

Sys𝑋 , a contingent invariant 𝐶𝐼𝑛𝑣𝑋 with respect to a safe set of inputs CInvI𝑂𝑝𝑋 ⊆ I𝑂𝑝𝑋 satisfies:

𝐼𝑛𝑖𝑡𝑋 (𝑢𝑋 ) ⇒ 𝐶𝐼𝑛𝑣𝑋 (𝑢𝑋 ) (3)
𝐶𝐼𝑛𝑣𝑋 (𝑢𝑋 ) ∧ 𝑖𝑋 ∈ CInvI𝑂𝑝𝑋 ∧ 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ⇒ 𝐶𝐼𝑛𝑣𝑋 (𝑢 ′𝑋 ) (4)

Thus, while an invariant holds regardless of system behaviour (i.e. our formalism does not permit
the idea of ceasing to conform to an invariant), a contingent invariant may fail if the system is
driven beyond ‘reasonable bounds’ by receiving extraordinary inputs.

1We allow the input and output spaces to depend on the operation name, but we normally suppress this dependence in the
notation. Moreover, if inputs and/or outputs are not needed, we can simply elide mentioning them in the text and formulas
below.
2⊎ denotes disjoint union.
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The subset of transitions 𝑢𝑋 -(𝑖𝑋 ,𝑂𝑝𝑋 , 𝑜𝑋 )->>>𝑢 ′𝑋 whose inputs satisfy 𝑖𝑋 ∈ CInvI𝑂𝑝𝑋 and whose
states 𝑢𝑋 and 𝑢 ′

𝑋
satisfy𝐶𝐼𝑛𝑣𝑋 (𝑢𝑋 ) and𝐶𝐼𝑛𝑣𝑋 (𝑢 ′𝑋 ) define the contingent invariant subsystem (with

respect to CInvI𝑂𝑝𝑋 ) SysCInv𝑋 , consisting of invariant transitions CInv𝑠𝑡𝑝𝑋 , and its states CInvU𝑋
(defined by the predicate 𝐶𝐼𝑛𝑣𝑋 ), and its I/O values CInvI𝑂𝑝𝑋 and CInvO𝑂𝑝𝑋 for the various 𝑂𝑝𝑋 .
Contingent invariants are useful for expressing safety properties of the system dynamics that are
expected to hold except in exceptional circumstances.
None of the systems discussed so far is compelled to be reachable in its entirety. Thus, if we

restrict the transition relation for Sys𝑋 , 𝑠𝑡𝑝𝑋 , to just those transitions 𝑢𝑋 -(𝑖𝑋 ,𝑂𝑝𝑋 , 𝑜𝑋 )->>>𝑢 ′𝑋 whose
states 𝑢𝑋 (and 𝑢 ′

𝑋
) are accessible via a finite number of steps from an initial state, we get ReachSys𝑋 ,

the subsystem consisting of reachable transitions Reach𝑠𝑡𝑝𝑋 , and its states ReachU𝑋 , together
with its I/O values ReachI𝑂𝑝𝑋 and ReachO𝑂𝑝𝑋 for the various 𝑂𝑝𝑋 . The same consideration may
be applied to SysInv𝑋 and to SysCInv𝑋 , yielding their reachable subsystems ReachSysInv𝑋 and
ReachSysCInv𝑋 .

Given our machinery so far, we can thus contemplate six systems: Sys𝑋 , as originally introduced,
and its reachable subsystem ReachSys𝑋 ; SysInv𝑋 , an invariant subsystem with respect to 𝐼𝑛𝑣𝑋 ,
and its reachable subsystem ReachSysInv𝑋 ; SysCInv𝑋 , a contingent invariant subsystem whose
state predicate 𝐶𝐼𝑛𝑣𝑋 may exceptionally be violated if inputs do not satisfy 𝑖𝑋 ∈ CInvI𝑂𝑝𝑋 , and its
reachable subsystem ReachSysCInv𝑋 .

Evidently, all are subsystems of Sys𝑋 (if only trivially for Sys𝑋 itself). By a simple induction based
on (1) and (2), ReachSys𝑋 = ReachSysInv𝑋 , and by a similar induction, ReachSys𝑋 is a subsystem
of SysInv𝑋 (and is trivially a subsystem of itself). Given some 𝐶𝐼𝑛𝑣𝑋 , neither of SysCInv𝑋 or
ReachSys𝑋 need be a subsystem of the other in general, but ReachSysCInv𝑋 is always a subsystem
of ReachSys𝑋 , and if 𝐶𝐼𝑛𝑣𝑋 ⇒ 𝐼𝑛𝑣𝑋 then SysCInv𝑋 is a subsystem of SysInv𝑋 .

A system other than Sys𝑋 will have a similar structure, being distinguished by a different label,
say 𝑌 , thus: Sys𝑌 , with all the other elements labelled analogously. In Section 10, the labels will
form a partial order, but for now, we introduce the relationships between a pair of systems that we
regard as being in the scope of the current discourse. We describe these in terms of the original Sys𝑋
notion, but the same ideas can be applied to the various subsystems just introduced, as needed.

3 REFINEMENT
Refinement is a way of developing a desired system in stages, with the stages being constrained by
some formal stipulations. These allow some claimed properties of the process to be verified, and
experience has shown that this is beneficial to the accuracy of the development methodology. The
original concept is old (see e.g., [33, 34, 71, 81]), and many variations on the same basic idea exist
in the literature. Most of this section is an adaptation of known ideas to the systems framework of
Section 2.

Suppose 𝑋 is the label of system Sys𝑋 and 𝑌 is the label of system Sys𝑌 , and suppose that these
are successive stages in a refinement development. To say that Sys𝑋 is refined by (we also say
refined to) Sys𝑌 —written Sys𝑋 ⩾ Sys𝑌 in this paper— signifies the following collection of facts.
Firstly, there exists a gluing relation between the state spaces 𝐺 : U𝑋 ↔ U𝑌 .3 No technical

restriction is placed on its content a priori in the approach of this paper. The gluing relation
expresses what the design of the refinement strategy considers important enough to be worthy of
formal control between the abstract model Sys𝑋 ’s state space and the concrete model Sys𝑌 ’s state
space, and it is important to remember that this is a human decision. None of the formal machinery
described here (or indeed, in any formal approach) can absolve humans from the responsibility of
deciding what the developed system is supposed to do and how that is to be achieved. It can only

3The gluing relation is also referred to as a refinement relation, or a retrieve relation in other work on refinement.
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help them to do the requisite development better. And the same observation applies to all the other
data items relevant to the formal discourse in this paper.

Secondly, given 𝐺 , an initialisation proof obligation (PO) holds:

𝐼𝑛𝑖𝑡𝑌 (𝑢𝑌 ) ⇒ (∃𝑢𝑋 • 𝐼𝑛𝑖𝑡𝑋 (𝑢𝑋 ) ∧𝐺 (𝑢𝑋 , 𝑢𝑌 )) (5)

Thirdly, there is a relation between the operation sets of Sys𝑋 and Sys𝑌 , written ⩾Ops𝑋,𝑌
, though

we suppress the subscript if the context makes it clear. Three things hold for ⩾Ops𝑋,𝑌
. The first of

them is that ⩾Ops𝑋,𝑌
is onto (i.e, is surjective): ⩾Ops𝑋,𝑌

: Ops𝑋 ↔→ Ops𝑌 .4 The second of them is
that for every case of 𝑂𝑝𝑋 ⩾ 𝑂𝑝𝑌 there are input and output relations, 𝐼𝑛𝑂𝑝𝑋,𝑌

: I𝑂𝑝𝑋 ↔→ I𝑂𝑝𝑌 and
𝑂𝑢𝑡𝑂𝑝𝑋,𝑌

: O𝑂𝑝𝑋 ↔O𝑂𝑝𝑌 , with the input relation onto, as indicated.5 The third of them is that for
every case of 𝑂𝑝𝑋 ⩾ 𝑂𝑝𝑌 , the (forward simulation) refinement correctness PO holds:

𝐺 (𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐼𝑛𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ⇒

(∃𝑢 ′𝑋 , 𝑜𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧𝐺 (𝑢 ′𝑋 , 𝑢 ′𝑌 ) ∧𝑂𝑢𝑡𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 )) (6)

The various relations introduced to instrument the refinement, namely𝐺 ,⩾Ops𝑋,𝑌
, and the relations

𝐼𝑛𝑂𝑝𝑋,𝑌
and 𝑂𝑢𝑡𝑂𝑝𝑋,𝑌

together with all their properties, are referred to as the refinement data,
and are written [𝐺/𝐼𝑛/𝑂𝑢𝑡] for short, although this suppresses any operation dependence in the
input and output relations. Below, referring to refinement data [𝐺/𝐼𝑛/𝑂𝑢𝑡], but without explicitly
claiming that a refinement holds, means that the data in question has all the properties stated, but
does not presume that the POs (5) and (6) are true.

If we have a refinement Sys𝑋 ⩾ Sys𝑌 , and we wish to emphasise the data relevant to it, we can
write Sys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] Sys𝑌 .

When we have refinement data [𝐺/𝐼𝑛/𝑂𝑢𝑡], and all the items mentioned in (6) are true, i.e. when
we have 𝑂𝑝𝑋 ⩾ 𝑂𝑝𝑌 and:

𝐺 (𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐼𝑛𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ∧

𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧𝐺 (𝑢 ′𝑋 , 𝑢 ′𝑌 ) ∧𝑂𝑢𝑡𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) (7)

then we say that the steps 𝑢𝑋 -(𝑖𝑋 ,𝑂𝑝𝑋 , 𝑜𝑋 )->>>𝑢 ′𝑋 and 𝑢𝑌 -(𝑖𝑌 ,𝑂𝑝𝑌 , 𝑜𝑌 )->>>𝑢 ′𝑌 are in simulation. How-
ever, when two steps are in simulation in this manner, it does not imply that a refinement
Sys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] Sys𝑌 holds, unless we say so. Straightforwardly, we have (see e.g., [1, 59, 70]):

Theorem 3.1 (Trace Inclusion). Let [ 𝑢𝑌,0 -(𝑖𝑌,0,𝑂𝑝𝑌,0, 𝑜𝑌,1)->>>𝑢𝑌,1 -(𝑖𝑌,1,𝑂𝑝𝑌,1, 𝑜𝑌,2)->>>𝑢𝑌,2 . . . ]
be an arbitrary execution of Sys𝑌 starting from initial state 𝑢𝑌,0, and let Sys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] Sys𝑌 . Then
there is a corresponding execution of Sys𝑋 , [𝑢𝑋,0 -(𝑖𝑋,0,𝑂𝑝𝑋,0, 𝑜𝑋,1)->>>𝑢𝑋,1 -(𝑖𝑋,1,𝑂𝑝𝑋,1, 𝑜𝑋,2)->>>𝑢𝑋,2 . . . ],
starting from an initial state 𝑢𝑋,0 guaranteed to exist by (5), in which each pair of corresponding steps
𝑢𝑋,𝑘 -(𝑖𝑋,𝑘 ,𝑂𝑝𝑋,𝑘 , 𝑜𝑋,𝑘+1)->>>𝑢𝑋,𝑘+1 and 𝑢𝑌,𝑘 -(𝑖𝑌,𝑘 ,𝑂𝑝𝑌,𝑘 , 𝑜𝑌,𝑘+1)->>>𝑢𝑌,𝑘+1 are in simulation.

Proof. This an easy induction, using (5) for initialisation and (6) for the inductive step. The
assumptions that⩾Ops𝑋,𝑌

is ontoOps𝑌 , and that 𝐼𝑛𝑂𝑝𝑋,𝑌
is onto I𝑂𝑝𝑌 , guarantee that the hypothesis

of (6) can always be satisfied for the next Sys𝑌 step. □

The idea of trace inclusion/simulation recurs frequently in the sequel, though it is often based
on concepts that go beyond simple step by step induction.
To exclude inconvenient side cases, we will henceforth assume that all systems (e.g. Sys𝑋 ) are

non-isolated, i.e. their state space (e.g. U𝑋 ) contains no state that is not either the before-state or
the after-state of some transition.
4We use notations (such as ↔ for relations and↔→ for surjective relations) that are familiar from the Z notation [51].
5Since ⩾Ops𝑋,𝑌

need not be injective, we should, strictly speaking, write 𝐼𝑛𝑂𝑝𝑋 ,𝑂𝑝𝑌 and𝑂𝑢𝑡𝑂𝑝𝑋 ,𝑂𝑝𝑌 , but we do not do
so unless really needed, to avoid verbosity.
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Regarding the various restricted systems considered in Section 2, there is the following. If
Sys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] Sys𝑌 and we also have:

𝐼𝑛𝑣𝑌 (𝑢𝑌 ) ∧𝐺 (𝑢𝑋 , 𝑢𝑌 ) ⇒ 𝐼𝑛𝑣𝑋 (𝑢𝑋 ) (8)

for invariants 𝐼𝑛𝑣𝑋 on Sys𝑋 and 𝐼𝑛𝑣𝑌 on Sys𝑌 , then also SysInv𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] SysInv𝑌 , and the
image of SysInv𝑌 through [𝐺/𝐼𝑛/𝑂𝑢𝑡] is a subsystem of SysInv𝑋 .
Likewise, if Sys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] Sys𝑌 , and there are contingent invariants 𝐶𝐼𝑛𝑣𝑋 and 𝐶𝐼𝑛𝑣𝑌 with

respect to safe input sets CInvI𝑂𝑝𝑋 and CInvI𝑂𝑝𝑌 , and we also have:

𝐶𝐼𝑛𝑣𝑌 (𝑢𝑌 ) ∧𝐺 (𝑢𝑋 , 𝑢𝑌 ) ⇒ 𝐶𝐼𝑛𝑣𝑋 (𝑢𝑋 ) (9)
𝑖𝑌 ∈ CInvI𝑂𝑝𝑌 ∧ 𝐼𝑛𝑂𝑝𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 ) ⇒ 𝑖𝑋 ∈ CInvI𝑂𝑝𝑋 (10)

then also SysCInv𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] SysCInv𝑌 , and the image of SysCInv𝑌 through [𝐺/𝐼𝑛/𝑂𝑢𝑡] is a
subsystem of SysCInv𝑋 .
The inductive proof of the trace inclusion theorem immediately implies that for each of these

⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ]-related pairs, a trace inclusion theorem holds, and their reachable subsystems are
also ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ]-related, i.e. ReachSys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] ReachSys𝑌 and ReachSysInv𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ]
ReachSysInv𝑌 and ReachSysCInv𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] ReachSysCInv𝑌 , and subsystem inclusion through
[𝐺/𝐼𝑛/𝑂𝑢𝑡] also holds (as do further subsystem inclusions generated by composing any of the
present ones with inclusions that hold within Sys𝑋 itself).
For SysInv𝑋 and SysInv𝑌 , if Sys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] Sys𝑌 , but (8) does not hold, we can find a

stronger invariant on Sys𝑌 , 𝐼𝑛𝑣𝐺𝑌 , that restricts 𝐼𝑛𝑣𝑌 to the part of Sys𝑌 relevant to the refinement
⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] , and which is given by:

𝐼𝑛𝑣𝐺𝑌 (𝑢𝑌 ) ≡ 𝐼𝑛𝑣𝑌 (𝑢𝑌 ) ∧ (∃𝑢𝑋 •𝐺 (𝑢𝑋 , 𝑢𝑌 )) (11)

With (11), the refinement correctness PO (6) guarantees that if (𝐼𝑛𝑣𝑌 ∧ (∃𝑢𝑋 •𝐺)) holds in the
before-state of a Sys𝑌 transition, then the same holds in the after-state. This yields system SysInv𝐺𝑌 ,
for which Sys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] SysInv𝐺𝑌 , and subsystem inclusion through [𝐺/𝐼𝑛/𝑂𝑢𝑡], both hold.

The same argument can be replayed with the even stronger 𝐼𝑛𝑣𝐺𝑋𝑌 , given by:

𝐼𝑛𝑣𝐺𝑋𝑌 (𝑢𝑌 ) ≡ 𝐼𝑛𝑣𝑌 (𝑢𝑌 ) ∧ (∃𝑢𝑋 •𝐺 (𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐼𝑛𝑣𝑋 (𝑢𝑋 )) (12)

This yields system SysInv𝐺𝑋𝑌 , for which SysInv𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] SysInv𝐺𝑋𝑌 , and subsystem inclusion
through [𝐺/𝐼𝑛/𝑂𝑢𝑡], both hold.

The same approach may be applied to systems equipped with contingent invariants, if it happens
that (9) and/or (10) fail to hold. In each such case, we may strengthen𝐶𝐼𝑛𝑣𝑌 by conjoining (∃𝑢𝑋 •𝐺)
(or (∃𝑢𝑋 •𝐺∧𝐶𝐼𝑛𝑣𝑋 )) to it, and/or strengthenmembership ofCInvI𝑂𝑝𝑌 by conjoining (∃ 𝑖𝑋 •𝐼𝑛𝑂𝑝𝑋,𝑌

)
(or (∃ 𝑖𝑋 • 𝐼𝑛𝑂𝑝𝑋,𝑌

∧ 𝑖𝑋 ∈ 𝑖𝑋 ∈ CInvI𝑂𝑝𝑋 )) to it. We do not write down all the details.
A further variation on these ideas is the notion of 𝐼𝑛𝑖𝑡-constrained refinement. This has an

additional gluing relation 𝐺𝐼𝑛𝑖𝑡 (the 𝐼𝑛𝑖𝑡-constraint) which must satisfy:

𝐺𝐼𝑛𝑖𝑡 (𝑢𝑋 , 𝑢𝑌 ) ⇒ 𝐺 (𝑢𝑋 , 𝑢𝑌 ) (13)

and for which the initialisation proof obligation is modified to:

𝐼𝑛𝑖𝑡𝑌 (𝑢𝑌 ) ⇒ (∃𝑢𝑋 • 𝐼𝑛𝑖𝑡𝑋 (𝑢𝑋 ) ∧𝐺𝐼𝑛𝑖𝑡 (𝑢𝑋 , 𝑢𝑌 )) (14)

while all else remains the same. Clearly, all we said just above about different variants of the basic
refinement idea applies equally well to 𝐼𝑛𝑖𝑡-constrained versions of them (and, of course, each
𝐼𝑛𝑖𝑡-constrained variant implies its non-𝐼𝑛𝑖𝑡-constrained variant).

The kind of variations that we have introduced on the basic refinement idea prove useful later in
the paper in our discussion of the case study. Furthermore, the common case in which gluing and
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other relations are functional from concrete to abstract, and are total and onto, makes most of the
distinctions just discussed melt away.

3.1 Generalisations
Our notion of refinement is fairly generic, in permitting an arbitrary correspondence between
operation names that are related by the correctness relationship in the two systems — often a 1-1,
or otherwise restricted discipline is insisted on in refinement notions. Also, many syntactically
based notions of systems facilitate the definition of their transitions by incorporating guard or
precondition clauses, and facilitate the definition of the (syntactically described) refinement cor-
rectness relationship by additional applicability criteria for operations that are to be related by
correctness. In our case, systems are defined semantically, so the domain of the 𝑠𝑡𝑝𝑂𝑝𝑋 relation
does not need separate definition.

Moreover, despite possible superficial appearances to the contrary, the above framework will also
suffice for the kind of continuous transitions that are needed for hybrid and cyber-physical systems.
Key to this is the proviso that time is considered as a parameter of the dynamics and not as a
normal assignable program variable. Assuming this to be so, a transition like 𝑢𝑋 -(𝑖𝑋 ,𝑂𝑝𝑋 , 𝑜𝑋 )->>>𝑢 ′𝑋
(which in a purely discrete transition system would take place at some index 𝑘 of an execution,
e.g. 𝑢𝑋,𝑘 -(𝑖𝑋,𝑘 ,𝑂𝑝𝑋,𝑘 , 𝑜𝑋,𝑘+1)->>>𝑢𝑋,𝑘+1), instead becomes a family of before/after pairs indexed by a
left-closed right-open interval of time 𝑡 ∈ [tL . . . tR), with the before-state fixed at tL and the after-
state ranging over the open interval 𝑡 ∈ (tL . . . tR) thus: 𝑢𝑋 (tL) -(𝑖 [tL ...𝑡 ],𝑂𝑝𝑋,𝑘 , 𝑜 [tL ...𝑡 ])->>>𝑢𝑋 (𝑡). In
this, for each value of 𝑡 ∈ (tL . . . tR), the input 𝑖 and output 𝑜 are functions of time defined over the
interval [tL . . . 𝑡). Continuous behaviour, and its relationship to the present framework is discussed
in more detail in Section 5.
A further generalisation of the framework described is to allow the individual transitions of

Sys𝑋 and/or Sys𝑌 that appear in (6) to be replaced by sequences of transitions of length >1. In
the purely discrete case this generates so-called (𝑚,𝑛) correctness diagrams (as used in the ASM
formalism’s refinement notion [26, 27]). In this generalisation, to establish correctness, the (𝑚,𝑛)
diagrams need to abut along an execution in the same way that the 1-1 simulation squares (7) abut
in the trace refinement discussed above. In the time parameterised hybrid/cyber-physical case, the
same approach works the most easily if we insist that the Sys𝑋 and Sys𝑌 transition sequences in a
PO like (6) start and end with transitions of the same kind,6 even if this is not strictly necessary.
The (𝑚,𝑛) diagram concept will be discussed at greater length in Section 6.2, and will be needed in
the case study.

3.2 Composition
In the development of complex systems by refinement, breaking up the development into more than
one refinement step is very helpful.7 This makes the composition of refinement steps of interest.
Vertical composition of refinement steps arises when we have three systems, Sys𝑋, Sys𝑌, Sys𝑍, and
Sys𝑋 ⩾ Sys𝑌 and Sys𝑌 ⩾ Sys𝑍 . Then we get a generic refinement Sys𝑋 ⩾ Sys𝑍 , given by data:

⩾Ops𝑋,𝑍
≡ ⩾Ops𝑋,𝑌

o
9 ⩾Ops𝑌,𝑍

(15)
𝐺𝑋,𝑍 ≡ 𝐺𝑋,𝑌 o

9 𝐺𝑌,𝑍 (16)
𝐼𝑛𝑂𝑝𝑋,𝑍

≡ 𝐼𝑛𝑂𝑝𝑋,𝑌
o
9 𝐼𝑛𝑂𝑝𝑌,𝑍

(17)
𝑂𝑢𝑡𝑂𝑝𝑋,𝑍

≡ 𝑂𝑢𝑡𝑂𝑝𝑋,𝑌
o
9 𝑂𝑢𝑡𝑂𝑝𝑌,𝑍

(18)

6“The same kind” refers to the Sys𝑋 and Sys𝑌 transition sequences both starting with a discrete transition, or both starting
with a time parameterised transition — similarly for the transitions at the ends of the two sequences.
7This view has been particularly promoted in the B-Method family of methodologies [2, 3].
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In the above o
9 is the conventional sequential composition of relations, which is obviously tran-

sitive. And since refinement data is just a triple of relations, transitivity of refinement follows.
The onto assumptions in Sys𝑋 ⩾ Sys𝑌 and Sys𝑌 ⩾ Sys𝑍 compose smoothly, and this enables
trace inclusion and all other properties mentioned above to follow readily by induction using the
composition/decomposition of the component relations defined in (15)-(18). In [14, 15, 21] a wide
variety of other composition mechanisms are discussed in detail for retrenchment, covered in the
next section. These readily reduce to analogous results for the refinement notion given here. Since
they are not of great importance in the rest of the paper, we do not discuss them further.

4 RETRENCHMENT
As noted earlier, retrenchment [14, 15, 21, 66] was introduced to tackle development stages that
did not naturally and comfortably fit into known formal refinement approaches. Observing how
successful refinement had been in capturing many developments in a rigorous way, the aspiration
was to develop a framework which ‘had a similar shape’ (i.e. a framework of formal PO schemas
that are instantiated from a specific pair of system models and relations between them) but allowed
greater flexibility in what these contained, and what was claimed. The aim of this was to allow the
refinement and retrenchment ideas to coexist harmoniously when this was possible.
Being a weaker relationship between systems than refinement, naturally the guarantees that

refinement can offer (e.g. preserving certain properties proved at a higher level of abstraction to
lower levels) are forfeit, but at least it gives the capability to express some relationship between the
systems rather than none at all. Our ambition in this paper is to push out the boundaries of the
approach further than hitherto, while simultaneously simplifying and streamlining the notion in
the light of experience.

Given the framework for systems given in the previous section, retrenchment is easy to describe.
Thus, let Sys𝑋 and Sys𝑌 be two systems as above. We will assume that Sys𝑋 is provided with an
invariant 𝐼𝑛𝑣𝑋 , for which the POs (1) and (2) hold; analogously for Sys𝑌 . These invariants play
little part in the theory developed below, but it is convenient to assume that they are present
for discussing the comparison with refinement. We say that Sys𝑋 is retrenched by Sys𝑌 , written
Sys𝑋 ≽ Sys𝑌 , provided we have the following.

Firstly, there is a gluing relation between the state spaces𝐺 : U𝑋↔U𝑌 . Note though, that𝐺 plays
a rather different role here than in the context of refinement. We stipulate that the initialisation PO
(5) holds.

Secondly, we insist that there is a relation between the operation sets of Sys𝑋 and Sys𝑌 , written
≽Ops𝑋,𝑌

, again suppressing the subscript if it is convenient, for which two things hold. The first is
that, for every case of 𝑂𝑝𝑋 ≽ 𝑂𝑝𝑌 there is a within relation𝑊𝑂𝑝𝑋,𝑌

: U𝑋 × I𝑂𝑝𝑋 ↔ U𝑌 × I𝑂𝑝𝑌 and
a delivers relation 𝐷𝑂𝑝𝑋,𝑌

: U𝑋 × I𝑂𝑝𝑋 × U𝑋 × O𝑂𝑝𝑋 ↔ U𝑌 × I𝑂𝑝𝑌 × U𝑌 × O𝑂𝑝𝑌 .8 The second is
that, whenever 𝑂𝑝𝑋 ≽ 𝑂𝑝𝑌 , the retrenchment correctness PO holds:

𝑊𝑂𝑝𝑋,𝑌
(𝑢𝑋 , 𝑖𝑋 , 𝑢𝑌 , 𝑖𝑌 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ⇒

(∃𝑢 ′𝑋 , 𝑜𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧ 𝐷𝑂𝑝𝑋,𝑌
(𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 , 𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 )) (19)

As for refinement, the relations introduced to instrument the retrenchment, namely 𝐺 , ≽Ops𝑋,𝑌
,

and the relations 𝑊𝑂𝑝𝑋,𝑌
and 𝐷𝑂𝑝𝑋,𝑌

together with all their properties, are referred to as the
retrenchment data, and are written [𝐺/𝑊 /𝐷] for short. Below, we refer to retrenchment data
[𝐺/𝑊 /𝐷], without claiming that the POs (5) and (19) are true, as needed.

8Since ≽Ops𝑋,𝑌
need not be injective, we should, strictly speaking, write𝑊𝑂𝑝𝑋 ,𝑂𝑝𝑌 and 𝐷𝑂𝑝𝑋 ,𝑂𝑝𝑌 , but we do not do so

to avoid verbosity.
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If we have a retrenchment Sys𝑋 ≽ Sys𝑌 , and we wish to emphasise the data relevant to it, we
can write Sys𝑋 ≽[𝐺/𝑊 /𝐷 ] Sys𝑌 .
When we have retrenchment data [𝐺/𝑊 /𝐷], and all the items mentioned in (19) are true,

i.e. when we have 𝑂𝑝𝑋 ≽ 𝑂𝑝𝑌 and:

𝑊𝑂𝑝𝑋,𝑌
(𝑢𝑋 , 𝑖𝑋 , 𝑢𝑌 , 𝑖𝑌 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ∧

𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧ 𝐷𝑂𝑝𝑋,𝑌
(𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 , 𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) (20)

then we say that the steps 𝑢𝑋 -(𝑖𝑋 ,𝑂𝑝𝑋 , 𝑜𝑋 )->>>𝑢 ′𝑋 and 𝑢𝑌 -(𝑖𝑌 ,𝑂𝑝𝑌 , 𝑜𝑌 )->>>𝑢 ′𝑌 are in simulation. How-
ever, when two steps are in simulation in this manner, it does not imply that a retrenchment
Sys𝑋 ≽[𝐺/𝑊 /𝐷 ] Sys𝑌 holds, unless we say so.

If Sys𝑋 ≽[𝐺/𝑊 /𝐷 ] Sys𝑌 and we are given 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) (and 𝑢𝑋 ), and can then find other
data items to make (20) true, then we say that 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) is simulable (from 𝑢𝑋 ).
The evident structural similarity between our formulations of refinement and retrenchment

indicates a couple of things. For one, if we have a refinement Sys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] Sys𝑌 and we set

𝑊𝑂𝑝𝑋,𝑌
(𝑢𝑋 , 𝑖𝑋 , 𝑢𝑌 , 𝑖𝑌 ) ≡ 𝐺 (𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐼𝑛𝑂𝑝𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 ) (21)

and

𝐷𝑂𝑝𝑋,𝑌
(𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 , 𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ≡

𝐺 (𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐼𝑛𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ∧𝐺 (𝑢 ′𝑋 , 𝑢 ′𝑌 ) ∧𝑂𝑢𝑡𝑂𝑝𝑋,𝑌

(𝑜𝑋 , 𝑜𝑌 ) (22)

then refinement immediately becomes a special case of retrenchment. For another, the various gen-
eralisations of the basic refinement notion discussed at the end of Section 3 carry over immediately
to the retrenchment sphere.
In the case of refinement, the assumption that the refinement correctness PO (6) holds for

Sys𝑋 and Sys𝑌 strengthens the facts that the reachable sets of the two systems each satisfy their
respective invariants 𝐼𝑛𝑣𝑋 and 𝐼𝑛𝑣𝑌 , and is connected with the fact that 𝐼𝑛𝑣𝐺𝑌 may be properly
stronger than 𝐼𝑛𝑣𝑌 . In the general case of retrenchment, there is no relationship between𝑊 and
𝐷 on the one hand, and 𝐺 on the other. So although the reachable sets of the two systems each
satisfy their respective invariants, no trace inclusion conclusion can be drawn on the basis of the
retrenchment PO itself, and hence no relationship between the reachable sets can be deduced.
For a retrenchment Sys𝑋 ≽[𝐺/𝑊 /𝐷 ] Sys𝑌 , if we have that the ≽Ops𝑋,𝑌

relation is onto, ≽Ops𝑋,𝑌
:

Ops𝑋 ↔→ Ops𝑌 , and that for each case of 𝑂𝑝𝑋 ≽ 𝑂𝑝𝑌 , the within relation is onto, 𝑊𝑂𝑝𝑋,𝑌
:

U𝑋 × I𝑂𝑝𝑋 ↔→U𝑌 × I𝑂𝑝𝑌 , then we say that the retrenchment is onto. The same applies if we merely
have retrenchment data [𝐺/𝑊 /𝐷], whereupon the we speak of onto retrenchment data. Refinements
and onto retrenchments are the basis of a similar range of generic simulation results investigated
in Section 8.

Note that the onto property alone does not lead to a trace inclusion theorem based on an inductive
argument, since the truth of 𝐷 for one pair of steps does not guarantee the truth of𝑊 for the next
pair. Trace inclusion thus demands stronger properties of the𝑊 or 𝐷 relations than are available
generically. This does not mean that trace inclusion is not a desirable goal, but it does mean that to
the extent that it might be true in any particular application of retrenchment, it would have to be
pursued by more bespoke means, rather than by simply applying a generic inductive strategy. (A
desirable situation might be where the incorporation of a small amount of bespoke reasoning can
fix a relationship between models, the remainder of which can be handled using refinement.)

4.1 Composition of Retrenchments
The simpler retrenchment structure that we have defined here makes the vertical composition of
our retrenchments directly analogous to (15), (17), (18), with the replacements𝑊 /𝐼𝑛 and 𝐷/𝑂𝑢𝑡 ,
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and taking the different signatures into account. Noting that the absence of the onto assumptions
does not affect the well-definedness of the relational compositions in (15), (17), (18), confirms that
this composition law works. We can observe that this yields a slightly simpler composition story
for retrenchments than appears in [14, 15].

The same ideas yield a method for composing retrenchments with refinements (and vice versa).
We simply interpret each refinement in such a composition as a retrenchment in the way indi-
cated above, and then compose the resulting retrenchments as just described, the result being a
retrenchment in every case.
When we have two systems 𝑋 and 𝑌 and more than one retrenchment can be shown between

them, e.g. Sys𝑋 ≽ Sys𝑌 with data [𝐺/𝑊1/𝐷1] and [𝐺/𝑊2/𝐷2] respectively, these retrenchments
can be composed in various ways. Thus, retrenchment data [𝐺/𝑊1/𝐷1] and [𝐺/𝑊2/𝐷2] may be
combined to give [𝐺/𝑊1∨𝑊2/𝐷1∨𝐷2], or, more incisively, [𝐺/𝑊1∨𝑊2/(𝑊1 ⇒ 𝐷1) ∧ (𝑊2 ⇒ 𝐷2)]
(or even [𝐺/𝑊1∨𝑊2/(𝑊1∧𝐷1) ∨ (𝑊2∧𝐷2)] if we have sufficiently strong completeness properties
concerning the models involved). Possibilities based on conjunction exist too, of course. The
corresponding retrenchments can be shown to follow by generic arguments, and evidently also
apply to refinements. Thoughts like these give rise to many possibilities for adapting the theory
developed in this paper more closely to particular applications.

4.2 Earlier Retrenchment Notions
For clarity, it is worth noting that the notion of retrenchment presented above differs in detail
from the one in [14, 15, 21, 66] and elsewhere. The key difference is that in the earlier work, the
retrenchment correctness PO (19) appears as:

𝐺 ∧ 𝑃𝑂𝑝𝑋,𝑌
∧ 𝑠𝑡𝑝𝑂𝑝𝑌 ⇒ ((𝐺 ′ ∧𝑂𝑂𝑝𝑋,𝑌

) ∨𝐶𝑂𝑝𝑋,𝑌
) (23)

In (23), 𝐺 is a gluing relation as in Section 3; also 𝑃 has the signature of𝑊 here, and 𝑂 and 𝐶 both
have the signature of 𝐷 here.

The explanation for the simpler present structure comes from past experience. It was often found
in practice that 𝐺 was not needed in applications of the retrenchment notion, so became defaulted
to true. (In the present formulation, although𝐺 is present, it plays a lesser role, being mainly useful
for gauging the closeness to, and/or deviation from, refinement.)

Additionally, the top level propositional structure of the conclusion of (23) is less critical in the
present formulation, and will prove to be so in our motivating case study, so we suppress it here (the
required propositional structure can always be re-imposed in the internal shape of 𝐷 if necessary).

5 TAKING CONTINUOUS BEHAVIOUR INTO ACCOUNT
All of the above (and a good deal of what is to come below) has been expressed in the notations
usually used for discussing conventional discrete transition systems. Apparently, this would make
no allowance for the requirements of hybrid and cyber-physical systems, for which, continuous
state change is an unavoidable ingredient. However, this is not so. There is a systematic way of
reinterpreting any formula that is needed for the discrete systems case, into a formula appropriate
for the corresponding continuous behaviour case.
This comes about because in the physical or engineering theory literature, real world time is

treated as a parameter, and not as a dynamical variable of the system. This enables us to talk about
values of time, about intervals of time, and about values of variables at different times, but not
about updates of time, as such. The latter are thus implemented by your favourite deity (rather
than by the system in question), and are dealt with (implicitly in the usual physical or engineering
theory literature) by quantifying formulas involving time-varying variables over ranges of the time
parameter. Consequently, the reinterpretation needed amounts to manipulation of parameters.
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We argue as follows. When a purely discrete system is interpreted in the real world, each
state encountered during an execution persists for some interval of time, to be duly succeeded
by the next state in the execution. If we interpret time as a semi-infinite portion of the reals
[𝑡0 . . .∞) ⊆ R, then these intervals can be modelled as a succession of left-closed, right-open
subintervals, [𝑡0 . . .∞) ≡ [𝑡0 . . . 𝑡1) ∪ [𝑡1 . . . 𝑡2) ∪ . . .. Evidently, such subintervals can conveniently
abut without gaps or overlaps.
The succession of values of a discrete state variable now become piecewise constant functions

of time, constant over these subintervals. The join points of these intervals, e.g. 𝑡1 at the join of
[𝑡0 . . . 𝑡1) and [𝑡1 . . . 𝑡2), allow for the discontinuous changes required by the discrete transition
parts of a system model. For such a transition, taking place at 𝑡1, the before-value of a variable 𝑥
say, would correspond to the limiting value at 𝑡1 from smaller values in the subinterval [𝑡0 . . . 𝑡1)
(of the relevant function of time), and the after-value 𝑥 ′ would correspond to the initial value in the
subinterval [𝑡1 . . . 𝑡2) (being also the limiting value from bigger values in [𝑡1 . . . 𝑡2)) (of the same
function of time).

The same approach allows portions of continuously varying behaviour in a system to be modelled
as continuously changing functions whose domains are also such left-closed, right-open subintervals
of the time parameter.9 Altogether, this fixes the semantic framework in which both discrete and
continuously varying behaviour can be interpreted in a unified manner.
We now consider the translation of the formulas of the preceding sections into the world we

have just constructed. First of all, the discrete formulas remain unchanged, though interpreted as
just described regarding before-values and after-values, when required for the discrete transitions
taking place at the join points of successive left-closed, right-open subintervals. The same applies
to formulas concerning initial states, though there is no predecessor subinterval then.
For formula analogues needed for the continuously varying behaviours in the interior of a

subinterval [tL . . . tR), (using tL and tR as generic notations for the endpoints), we first assume that
the original discrete formula in questionΦ, has the propositional structureΦ ≡ HYP ⇒ CONC at top
level. A formula of this shape will be required to hold throughout [tL . . . tR). The basic inspiration
underpinning the translation is the idea that a before-value in Φ is tied to the corresponding value
at tL, and the corresponding after-value in Φ maps to the family of values in the open interval
(tL . . . tR). However, if no corresponding after-value occurs in Φ, then the before-value maps to
the family of values in the open interval (tL . . . tR) too.10

Now, Φ will contain a number of logical atoms, combined using logical connectives. Some atoms
are used just as hypotheses inHYP , e.g. inputs andwithin relations. Since such atoms depend only on
before-values in the discrete case, there are no after-values present in Φ (and indeed the hypotheses
HYP must hold throughout the interval). Therefore our recipe stipulates that the variables in these
atoms become functions of time, thus: 𝐼𝑛𝑂𝑝𝑋,𝑌

(𝑖𝑋 (𝑡), 𝑖𝑌 (𝑡)) and𝑊𝑂𝑝𝑋,𝑌
(𝑢𝑋 (𝑡), 𝑖𝑋 (𝑡), 𝑢𝑌 (𝑡), 𝑖𝑌 (𝑡)).

Other atoms are used just as conclusions in CONC, e.g. outputs. Their variables therefore become
functions of time, thus: 𝑂𝑢𝑡𝑂𝑝𝑋,𝑌

(𝑜𝑋 (𝑡), 𝑜𝑌 (𝑡)), and 𝑂𝑢𝑡𝑂𝑝𝑋,𝑌
must hold throughout the interval.

Invariants (and similar relations restricted to only relating states to one another) are normally
assumed in HYP and reestablished in CONC. So, according to our recipe, the occurrence in HYP
should correspond to the value at tL, and the occurrence in CONC will correspond to the family of
values in the open interval (tL . . . tR).

The 𝑠𝑡𝑝 relations contain before- and after- state values, and inputs and outputs, so all the preced-
ing apply. An instance such as 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) becomes 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 (tL), 𝑖𝑋 (𝑡), 𝑢𝑋 (𝑡), 𝑜𝑋 (𝑡)),

9Since the functions of time are no longer piecewise constant, it is the responsibility of the semantics of any formalism
using the concepts of this paper to ensure that the required limits actually exist.
10The value at tL must agree with the limit value from the right.
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where 𝑡 ranges over the relevant interval. Delivers relations are similar to 𝑠𝑡𝑝 , potentially containing
all the preceding items. An instance such as 𝐷𝑂𝑝𝑋,𝑌

(𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 , 𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) therefore becomes
𝐷𝑂𝑝𝑋,𝑌

(𝑢𝑋 (tL), 𝑖𝑋 (𝑡), 𝑢𝑋 (𝑡), 𝑜𝑋 (𝑡), 𝑢𝑌 (tL), 𝑖𝑌 (𝑡), 𝑢𝑌 (𝑡), 𝑜𝑌 (𝑡)).11
Proceeding beyond individual atoms, which are translated in a syntactically driven manner,

the various occurrences of time in the atoms in a formula like Φ ≡ HYP ⇒ CONC must be
properly correlated. This is accomplished by a single, outer level quantification over the requisite
time interval (since physical time proceeds at the same rate shared by all physical systems and
quantities (in classical physics)). Thus, the formal discrete to continuous transformation schema
can be expressed as:

Ψ1 (𝑥) . . .Ψ2 (𝑥, 𝑥 ′) ▷
(
∀𝑡 ∈ (tL . . . tR) • Ψ1 (𝑥 (𝑡)) . . .Ψ2 (𝑥 (tL), 𝑥 (𝑡))

)
(24)

In (24), Ψ1 (𝑥) and Ψ2 (𝑥, 𝑥 ′) are individual atoms occurring in Φ, the ellipsis indicating other parts
of Φ. It is important to note that (24) remains unchanged whether we know in advance or not (on
whatever basis), what the values of tL and tR are in any given case. Such knowledge affects how
we infer conclusions from (24), but not the form of (24) itself. Thus, if we know tL and tR, we can
substitute them directly, and deduce some consequences. But very often, in an actual execution of
the system, there are many occurrences of the continuous behaviour specified by the same syntactic
fragment, so the values of tL and tR for any individual occurrence depend on the rest of the system
and are thus global properties. So deducing analogous consequences becomes a different challenge.

We give some examples of earlier system properties translated so that they apply to continuously
changing behaviour. First, we show how the maintenance of invariants PO (2) fares under our
scheme. This translates to:(

∀𝑡 ∈ (tL . . . tR) • 𝐼𝑛𝑣𝑋 (𝑢𝑋 (tL)) ∧ 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 (tL), 𝑖𝑋 (𝑡), 𝑢𝑋 (𝑡), 𝑜𝑋 (𝑡)) ⇒ 𝐼𝑛𝑣𝑋 (𝑢𝑋 (𝑡))
)

(25)

Second, we treat the refinement correctness PO (6). This translates to:(
∀𝑡 ∈ (tL . . . tR) •
𝐺 (𝑢𝑋 (tL), 𝑢𝑌 (tL)) ∧ 𝐼𝑛𝑂𝑝𝑋,𝑌

(𝑖𝑋 (𝑡), 𝑖𝑌 (𝑡)) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 (tL), 𝑖𝑌 (𝑡), 𝑢𝑌 (𝑡), 𝑜𝑌 (𝑡)) ⇒
(∃𝑢𝑋 (𝑡), 𝑜𝑋 (𝑡) • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 (tL), 𝑖𝑋 (𝑡), 𝑢𝑋 (𝑡), 𝑜𝑋 (𝑡)) ∧

𝐺 (𝑢𝑋 (𝑡), 𝑢𝑌 (𝑡)) ∧𝑂𝑢𝑡𝑂𝑝𝑋,𝑌
(𝑜𝑋 (𝑡), 𝑜𝑌 (𝑡)))

)
(26)

Likewise the retrenchment correctness PO (19) —bearing in mind footnote 11— becomes:(
∀𝑡 ∈ (tL . . . tR) •
𝑊𝑂𝑝𝑋,𝑌

(𝑢𝑋 (𝑡), 𝑖𝑋 (𝑡), 𝑢𝑌 (𝑡), 𝑖𝑌 (𝑡)) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 (tL), 𝑖𝑌 (𝑡), 𝑢𝑌 (𝑡), 𝑜𝑌 (𝑡)) ⇒
(∃𝑢𝑋 (𝑡), 𝑜𝑋 (𝑡) • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 (tL), 𝑖𝑋 (𝑡), 𝑢𝑋 (𝑡), 𝑜𝑋 (𝑡)) ∧

𝐷𝑂𝑝𝑋,𝑌
(𝑢𝑋 (tL), 𝑖𝑋 (𝑡), 𝑢𝑋 (𝑡), 𝑜𝑋 (𝑡), 𝑢𝑌 (tL), 𝑖𝑌 (𝑡), 𝑢𝑌 (𝑡), 𝑜𝑌 (𝑡))

)
(27)

11The policy just described has consequences to be aware of. Whereas for a discrete transition, typical before- and after-
state values 𝑢 and 𝑢′ refer to different limits, for a continuously varying transition, a value 𝑢 (tL) refers to the initial value
of 𝑢 in [tL . . . tR) , i.e. the limit from the right at tL. It is the responsibility of the semantics of any formalism using the
concepts of this paper to ensure that this approach is globally consistent. This is particularly incisive in the case of the within
relation𝑊 , which, in the discrete case, contains both before-state values and inputs. In the continuous case, the inputs have
duration (as do the state values of course), but state values are typically to be determined by the dynamics, and not merely
assumed in the hypotheses. It is the responsibility of the semantics of any formalism using the concepts of this paper to
have a clear policy on this point. An obvious policy is to restrict𝑊 to state values at tL only, allowing the inputs to have
their duration. An obvious alternative is to regard any assumption in𝑊 about state values during a continuous transition
to be interpreted as a constraint on the dynamics, ensuring that inconsistent specifications of dynamics are suitably handled.
This issue can become yet more complicated when nontrivial (𝑚,𝑛) diagrams, discussed in Section 6, are allowed.
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From the above, the modification of properties with a shape different from Φ ≡ HYP ⇒ CONC, such
as simulation properties, e.g. (7) or (20), follows easily. With the above understood, we continue
our convention of using discrete systems notations, as convenient, below.

6 SIMULATION NOTIONS FOR RETRENCHMENTS AND THEIR DATA
We noted when discussing the notion of simulation for refinement (7), the truth of the simulation
notion for two steps 𝑢𝑋 -(𝑖𝑋 ,𝑂𝑝𝑋 , 𝑜𝑋 )->>>𝑢 ′𝑋 and 𝑢𝑌 -(𝑖𝑌 ,𝑂𝑝𝑌 , 𝑜𝑌 )->>>𝑢 ′𝑌 requires only the presence of
refinement data, and does not imply that there is an actual refinement Sys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] Sys𝑌 from
Sys𝑋 to Sys𝑌 . The latter is a strengthening of the assumptions needed for the former. In this section,
we explore a number of notions related to simulation in the retrenchment context. We will set
these out assuming just retrenchment data. They will be equally applicable when there is an actual
retrenchment, just as for refinement. Moreover, all such notions have 𝐼𝑛𝑖𝑡-constrained versions, if
we strengthen the requirement demanded of the initial states of Sys𝑋 and Sys𝑌 . Various of these
notions prove useful below.

6.1 Simulation Notions for Individual Pairs of Steps
Suppose that we have retrenchment data [𝐺/𝑊 /𝐷] from Sys𝑋 to Sys𝑌 , and that a pair of steps of
the two systems is in simulation, i.e. that (20) holds. If, in addition to (20), we have 𝐺 (𝑢𝑋 , 𝑢𝑌 ) but
not 𝐺 (𝑢 ′

𝑋
, 𝑢 ′
𝑌
), we say that the pair of steps is conceding. If, in addition to (20), we have 𝐺 (𝑢 ′

𝑋
, 𝑢 ′
𝑌
)

but not𝐺 (𝑢𝑋 , 𝑢𝑌 ), we say that the pair of steps is restoring. If, in addition to (20), we have𝐺 (𝑢𝑋 , 𝑢𝑌 )
and also 𝐺 (𝑢 ′

𝑋
, 𝑢 ′
𝑌
), we say that the pair of steps is refining. Evidently, the conceding and restoring

step pairs capture the transitions between the ideal refining behaviour between the two systems on
the one hand, and the less desirable but often unavoidable non-refining behaviour between them
on the other.
Suppose that we have retrenchment data [𝐺/𝑊 /𝐷] from Sys𝑋 to Sys𝑌 . We say that Sys𝑌 is

refining simulable by Sys𝑋 if a trace inclusion property between Sys𝑋 and Sys𝑌 , mediated by
the data𝑊 /𝐷 (instead of by data 𝐺/𝐼𝑛/𝑂𝑢𝑡 as in the refinement case) holds, and additionally,
each corresponding pair of steps is refining. This means that (20) holds for each corresponding
pair of abstract and concrete steps, and consecutive concrete steps (joined by a common state)
are simulated by consecutive abstract steps (also joined by a common state), and for each pair of
corresponding abstract and concrete states, 𝑢𝑋,𝑘 and 𝑢𝑌,𝑘 , 𝐺 (𝑢𝑋,𝑘 , 𝑢𝑌,𝑘 ) holds. It is evident that if
Sys𝑌 is refining simulable by Sys𝑋 , then we can construct a bona fide refinement trace simulation
from ReachSys𝑋 to ReachSys𝑌 by constructing relations 𝐼𝑛𝑂𝑝𝑋,𝑌

and𝑂𝑢𝑡𝑂𝑝𝑋,𝑌
to work alongside𝐺

as follows:

𝐼𝑛𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≡ (∃𝑢𝑋 ∈ U𝑋 , 𝑢𝑌 ∈ U𝑌 •𝑊𝑂𝑝𝑋,𝑌

(𝑢𝑋 , 𝑖𝑋 , 𝑢𝑌 , 𝑖𝑌 )) (28)

and

𝑂𝑢𝑡𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ≡ (∃𝑢𝑋 ∈ U𝑋 , 𝑖𝑋 ∈ In𝑂𝑝𝑋 , 𝑢

′
𝑋 ∈ U𝑋 , 𝑢𝑌 ∈ U𝑌 , 𝑖𝑌 ∈ In𝑂𝑝𝑌 , 𝑢

′
𝑌 ∈ U𝑌 •

𝐷𝑂𝑝𝑋,𝑌
(𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 , 𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 )) (29)

Note that we are not claiming thereby that the refinement correctness PO (6) holds; rather that
the refinement simulation property (7) holds for each pair of abstract and concrete steps, and
consecutive concrete steps are simulated by consecutive abstract steps (both joined by common
states).
We say that Sys𝑌 is strongly comprehensively simulable by Sys𝑋 if a trace inclusion property

between Sys𝑋 and Sys𝑌 , mediated by the data𝑊 /𝐷 holds (but the stronger refining conditions
involving𝐺 (𝑢𝑋,𝑘 , 𝑢𝑌,𝑘 ) etc., are not asserted). We say that Sys𝑌 is partially simulable overM by Sys𝑋 ,
where M is a set of executions of Sys𝑌 , when for each execution in M, at least some subsequence
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Fig. 1. An (𝑚,𝑛) diagram with𝑚 abstract steps and
𝑛 concrete ones. The vertical relationships between 𝑥
and 𝑦, and between 𝑥 ′ and 𝑦′ are unlabelled, as in this
paper, different properties are appropriate according
to context.

or subsequences of it is/are simulable. Since, any time any execution of Sys𝑌 contains even a single
step which is in simulation with some step of Sys𝑋 , the definition of partial simulability is satisfied,
we see that partial simulability, by itself, is a vastly weaker property than the preceding two notions.
We can make it more precise by saying ‘partially simulable over M, where Φ’. In this, Φ quantifies
the extent to which executions in M are simulable or not in some appropriate manner.
If Sys𝑌 is partially simulable over M by Sys𝑋 , and furthermore, for each execution in M, any

two consecutive maximal simulable subsequences (separated by one or more non-simulable steps
of Sys𝑌 ) e.g.

[ . . . 𝑢𝑌,𝑗 -(𝑖𝑌,𝑗 ,𝑂𝑝𝑌,𝑗 , 𝑜𝑌,𝑗+1)->>>𝑢𝑌,𝑗+1 -(𝑖𝑌,𝑗+1,𝑂𝑝𝑌,𝑗+1, 𝑜𝑌,𝑗+2)->>>𝑢𝑌,𝑗+2 . . .
. . . 𝑢𝑌,𝑘 -(𝑖𝑌,𝑘 ,𝑂𝑝𝑌,𝑘 , 𝑜𝑌,𝑘+1)->>>𝑢𝑌,𝑘+1 -(𝑖𝑌,𝑘+1,𝑂𝑝𝑌,𝑘+1, 𝑜𝑌,𝑘+2)->>>𝑢𝑌,𝑘+2 . . . ]

(where 𝑂𝑝𝑌,𝑗 and 𝑂𝑝𝑌,𝑘+1 are simulable (by 𝑢𝑋,𝑗 -(𝑖𝑋,𝑗 ,𝑂𝑝𝑋,𝑗 , 𝑜𝑋,𝑗+1)->>>𝑢𝑋,𝑗+1
and 𝑢

𝑋,�̃�+1 -(𝑖𝑋,�̃�+1,𝑂𝑝𝑋,�̃�+1, 𝑜𝑋,�̃�+2)->>>𝑢𝑋,�̃�+2 respectively, for example), but
𝑂𝑝𝑌,𝑗+1 all the way up to 𝑂𝑝𝑌,𝑘 (inclusive) are not),

it is nevertheless the case that, from the last simulating state in𝑋 of the first subsequence, e.g.𝑢𝑋,𝑗+1,
to the first simulating state in 𝑋 of the second subsequence, e.g. 𝑢

𝑋,�̃�+1, there is a sequence of steps
of Sys𝑋 (not necessarily of zero length even if 𝑢𝑋,𝑗+1 = 𝑢𝑋,�̃�+1), then we say that Sys𝑌 is weakly
simulable over M by Sys𝑋 . We call the sequence of steps of Sys𝑋 in question a bridging sequence. If
it happens thatM is all the executions of Sys𝑌 , then we say that Sys𝑌 is weakly comprehensively
simulable by Sys𝑋 . If, in the preceding, we insist on refinement simulability for the pairs of steps
that are required to be in simulation, we get the notions of weak refinement simulability overM and
weak comprehensive refinement simulability.

In the above, the partially simulable case is appropriate when the concrete system is capable of
exhibiting behaviour that is, by design, not considered at all at the abstract level. Then, when the
concrete system enters such behaviour, the possibility of simulation ceases.
The weakly simulable case is appropriate when the concrete system is capable of behaviour

that is not allowed for in the abstract system, but where such behaviour could nevertheless be
compensated for by the abstract system engaging in unrelated behaviour that would bring the two
systems back to a simulable relationship eventually.

6.2 (𝒎, 𝒏) Diagrams, and Liberalised Refinement and Retrenchment
The idea of bridging sequences, and the possibility of averting one’s gaze from the interior of a
bridging sequence (and of the (non-simulable) sequence it bridges over) raises the possibility of
viewing refinement, retrenchment and simulation at a coarser level of granularity. Such possibilities
were used with profit in the ASM approach [27], and were distilled into the notion of (𝑚,𝑛) diagram.
At its basis, an (𝑚,𝑛) diagram is just a pair of execution fragments, one abstract and one concrete.
Fig. 1 gives an example, with𝑚 abstract steps and 𝑛 concrete ones.

ACM Transactions on Software Engineering and Methodology, Vol. 999, No. 4, Article 9876. Publication date: March 2099.



9876:16 R. Banach

In ASM, concerned as it is, exclusively with refinement between discrete systems, the gluing
relation is required to hold between 𝑥 and 𝑦 and between 𝑥 ′ and 𝑦 ′ (and is not expected to hold
between any of the interior states of the two fragments).

In this paper, we use the same name, but apply it to a more flexible range of concepts. Moreover,
Fig. 1 is deliberately imprecise about whether the transitions are just discrete changes of state, or if
smooth state evolution is included. In the former case, the blobs can represent the states and the
arrows the discrete transitions, while in the latter case, the arrows can represent the smooth state
evolution and the blobs can represent the join points where discrete state change can occur.
Thus, focusing on discrete systems, in the weakly simulable case, consider the non-simulable

concrete fragment

[ 𝑢𝑌,𝑗+1 -(𝑖𝑌,𝑗+1,𝑂𝑝𝑌,𝑗+1, 𝑜𝑌,𝑗+2)->>>𝑢𝑌,𝑗+2 . . . 𝑢𝑌,𝑘 -(𝑖𝑌,𝑘 ,𝑂𝑝𝑌,𝑘 , 𝑜𝑌,𝑘+1)->>>𝑢𝑌,𝑘+1 ] (30)

and the corresponding abstract fragment

[ 𝑢𝑋,𝑗+1 -(𝑖𝑋,𝑗+1,𝑂𝑝𝑋,𝑗+1, 𝑜𝑋,𝑗+2)->>>𝑢𝑋,𝑗+2 . . . 𝑢𝑋,�̃� -(𝑖𝑋,�̃� ,𝑂𝑝𝑋,�̃� , 𝑜𝑋,�̃�+1)->>>𝑢𝑋,�̃�+1 ] (31)

(where no relationship between either 𝑗 and 𝑗 or 𝑘 and �̃� is implied). We call this a weak (𝑚,𝑛)
diagram. A weak (𝑚,𝑛) diagram can be preceded by a simulating pair of steps and can be followed
by a simulating pair of steps. (And because we are contemplating retrenchment data, this implies
that in the former case 𝐷 holds, while in the latter case𝑊 holds.)

If, in a weak (𝑚,𝑛) diagram, 𝐺 (𝑢𝑋,𝑗+1, 𝑢𝑌,𝑗+1) and 𝐺 (𝑢
𝑋,�̃�+1, 𝑢𝑌,𝑘+1) both hold, then we call it an

(𝑚,𝑛) diagram. And if, in an (𝑚,𝑛) diagram, no abstract state occurring in the abstract fragment
is related by 𝐺 to any concrete state occurring in the concrete fragment (aside from those at the
extreme ends of the two fragments, as required by the definition), then we have a strong (𝑚,𝑛)
diagram.
If, in any of the cases of: a weak (𝑚,𝑛) diagram, an (𝑚,𝑛) diagram, or a strong (𝑚,𝑛) diagram,

it is true that 𝑘 − 𝑗 = 𝐿 = �̃� − 𝑗 , then we call the diagram 𝐿-aligned, and, instantiating the meta
variables𝑚,𝑛 in the terminology, it becomes a (weak, _, strong) (𝐿, 𝐿)-diagram.

The various shades of (𝑚,𝑛) diagram we have been discussing encourage us to liberalise the
single-step-to-single-step notions of refinement and retrenchment that we originally introduced, to
include analogous fragment-to-fragment notions. Given what we have said already, these are easy
to define. Thus, relations ⩾Ops𝑋,𝑌

: Ops𝑋 ↔→Ops𝑌 and ≽Ops𝑋,𝑌
: Ops𝑋 ↔Ops𝑌 change signature

to ⩾Ops𝑋,𝑌
: Ops∗

𝑋
↔ Ops∗

𝑌
and ≽Ops𝑋,𝑌

: Ops∗
𝑋
↔ Ops∗

𝑌
, where there must be sufficiently many

operation sequences in the domains and ranges of these relations to give the level of coverage
needed. The constituents of the refinement and retrenchment correctness POs (6) and (19), and of
associated notions, now adapt smoothly to refer to execution fragments rather than single steps. In
the refinement case, note that neither ⩾Ops𝑋,𝑌

nor input relations, are onto. The loss of onto-ness
must be compensated by additional, system dependent reasoning, to ensure adequate coverage of all
concrete execution sequences (the simulation of which, we regard as the touchstone of refinement).
With this in place, we can generalise each of the many notions of simulation introduced above
(weak/strong/comprehensive/refinement/etc.), to the corresponding notion via (𝑚,𝑛) diagrams
(of the relevant kind), rather than via corresponding individual steps. We see examples of all this
below.

7 BASIC CONCEDING/RESTORING
We know that for a retrenchment Sys𝑋 ≽[𝐺/𝑊 /𝐷 ] Sys𝑌 , general trace inclusion does not auto-
matically hold. However the notion of (𝑚,𝑛) diagrams of various strengths gives hope that if for
Sys𝑋 ≽[𝐺/𝑊 /𝐷 ] Sys𝑌 a sufficiently copious supply of such diagrams exists, then we can derive a
weakened kind of trace inclusion nevertheless.
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Definition 7.1 (Restoring Set). Let Sys𝑋 ≽[𝐺/𝑊 /𝐷 ] Sys𝑌 . Let UI𝑅𝑌 ⊆ U𝑌 × (⊎𝑂𝑝𝑌
I𝑂𝑝𝑌 ) be

a set of before-states and inputs of Sys𝑌 such that for any 𝑢𝑌 -(𝑖𝑌 ,𝑂𝑝𝑌 , 𝑜𝑌 )->>>𝑢 ′𝑌 where (𝑢𝑌 , 𝑖𝑌 ) ∈
UI𝑅
𝑌
and any 𝑢𝑋 ∈ U𝑋 , there is an execution fragment of Sys𝑋 from 𝑢𝑋 to a state �̃�𝑋 such that

𝑢𝑌 -(𝑖𝑌 ,𝑂𝑝𝑌 , 𝑜𝑌 )->>>𝑢 ′𝑌 is simulable from �̃�𝑋 . Then we say that UI𝑅
𝑌
is a restoring set for Sys𝑌 .

Note that although a restoring set exhibits quite a strong property in being able to recover
simulability from any abstract state, no relationship between the manner of such recovery, and any
particular concrete behaviour is promised, so there is no connection with any refinement property
via this route.

Theorem 7.2 (Weakly Simulation with Restoring Set). Let Sys𝑋 ≽[𝐺/𝑊 /𝐷 ] Sys𝑌 . Let UI𝑅𝑌
be a restoring set for Sys𝑌 . Let M be the set of executions 𝒀𝒀 of Sys𝑌 such that: for any proper prefix
𝒀𝒀 𝑝𝑟𝑝𝑟 of 𝒀𝒀 , if 𝒀𝒀 𝑝𝑟𝑝𝑟 is weakly simulable, but the next step of 𝒀𝒀 after 𝒀𝒀 𝑝𝑟𝑝𝑟 is not simulable
from the last abstract state of a weak simulation of 𝒀𝒀 𝑝𝑟𝑝𝑟 , then 𝒀𝒀 visits a state in UI𝑅

𝑌
in the suffix

that follows 𝒀𝒀 𝑝𝑟𝑝𝑟 . Then Sys𝑌 is weakly simulable overM by Sys𝑋 .

Proof. Suppose that 𝑢𝑌,0 is an initial state of Sys𝑌 and let 𝒀𝒀 ∈ M be an arbitrary element ofM,
e.g.:

𝒀𝒀 ≡ [ 𝑢𝑌,0 -(𝑖𝑌,0,𝑂𝑝𝑌,0, 𝑜𝑌,1)->>>𝑢𝑌,1 -(𝑖𝑌,1,𝑂𝑝𝑌,1, 𝑜𝑌,2)->>>𝑢𝑌,2 . . . ] (32)

We build a weak simulation 𝑿𝑿 of 𝒀𝒀 by Sys𝑋 . Then, since 𝒀𝒀 was arbitrary, weak simulation
overM of Sys𝑌 by Sys𝑋 follows.
By the initialisation PO (5), there is an initial state of Sys𝑋 , 𝑢𝑋,0, such that 𝐺 (𝑢𝑋,0, 𝑢𝑌,0) holds.

This is the base case of an induction.
For the inductive step, suppose we have weakly simulated the 𝒀𝒀 up to 𝑢𝑌,𝑘 , by having built a

Sys𝑋 execution up to a state 𝑢
𝑋,�̃�

. There are now three cases.
In the first case, there are no further steps of 𝒀𝒀 and we are done.
In the second case, there is a next 𝒀𝒀 step, 𝑢𝑌,𝑘 -(𝑖𝑌,𝑘 ,𝑂𝑝𝑌,𝑘 , 𝑜𝑌,𝑘+1)->>>𝑢𝑌,𝑘+1, and we have that, for

some 𝑂𝑝
𝑋,�̃�

≽ 𝑂𝑝𝑌,𝑘 and 𝑖𝑋,�̃� ∈ I𝑂𝑝
𝑋,�̃�

,𝑊𝑂𝑝𝑋,𝑌
(𝑢
𝑋,�̃�
, 𝑖
𝑋,�̃�
, 𝑢𝑌,𝑘 , 𝑖𝑌,𝑘 ) holds. In this case the retrench-

ment correctness PO (19) states that there is a next abstract step 𝑢
𝑋,�̃�

-(𝑖
𝑋,�̃�
,𝑂𝑝

𝑋,�̃�
, 𝑜
𝑋,�̃�+1)->>>𝑢𝑋,�̃�+1,

such that the abstract and concrete steps are in simulation, which completes the inductive step for
this case.

In the third case, there is a next 𝒀𝒀 step, 𝑢𝑌,𝑘 -(𝑖𝑌,𝑘 ,𝑂𝑝𝑌,𝑘 , 𝑜𝑌,𝑘+1)->>>𝑢𝑌,𝑘+1, but it is not simulable
from 𝑢

𝑋,�̃�
. In this case we know that there is a state 𝑢𝑌,𝑡 to the future of 𝑢𝑌,𝑘 in 𝒀𝒀 , that is in UI𝑅

𝑌
.

Then, by the properties of UI𝑅
𝑌
, we can continue the construction of 𝑿𝑿 from 𝑢

𝑋,�̃�
by zero or more

steps, arriving at a state𝑢𝑋,𝑠 , such that if there is a step𝑢𝑌,𝑡 -(𝑖𝑌,𝑡 ,𝑂𝑝𝑌,𝑡 , 𝑜𝑌,𝑡+1)->>>𝑢𝑌,𝑡+1 of 𝒀𝒀 starting
at𝑢𝑌,𝑡 , then there is a state𝑢𝑋,𝑡 , reachable from𝑢𝑋,𝑠 , and a step𝑢𝑋,𝑡 -(𝑖𝑋,𝑡 ,𝑂𝑝𝑋,𝑡 , 𝑜𝑋,𝑡+1)->>>𝑢𝑋,𝑡+1 from
𝑢𝑋,𝑡 which is in simulation with 𝑢𝑌,𝑡 -(𝑖𝑌,𝑡 ,𝑂𝑝𝑌,𝑡 , 𝑜𝑌,𝑡+1)->>>𝑢𝑌,𝑡+1. We build the weak (𝑚,𝑛)-diagram
from (𝑢

𝑋,�̃�
, 𝑢𝑌,𝑘 ) to the pair (𝑢𝑋,𝑠 , 𝑢𝑌,𝑡 ), which completes the inductive step. We are done. □

We regard Theorem 7.2 as a minimal ‘recovery from occasional disturbances’ theorem. Provided
the behaviour of the concrete system is mostly benign, its behaviour remains faithful to the relevant
abstraction, by means of the simulation property. However, from time to time, the concrete system
may engage in behaviour not allowed for by the abstract system, and then the rather strong
assumptions made about UI𝑅

𝑌
provide the guarantee we need to return to simulation.

Theorem 7.2 works by setting upUI𝑅
𝑌
as the guarantor of the property that arbitrary abstract states

can find a way back to simulation. We can imagine many variations on this basic idea by setting
up the inevitability of return to simulability in different ways. However, the more complex the
construction, the more delicate the justification would need to be that the desired inevitability really
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does follow. Essentially, this amounts to an interplay between angelic aspects of the construction
(embodied in the definition ofM in Theorem 7.2) and demonic aspects (embodied in the universally
quantified elements of Theorem 7.2).
One relatively obvious application of this framework is when the concrete system is prone

to cope with occasional erroneous or exceptional situations —which are are not modelled at the
abstract level— after the handling of which it returns to a known state in order to continue normal
processing. The abstract system can be augmented with a generic everywhere enabled 𝑅𝑒𝑠𝑒𝑡
operation, which does not follow the details of the concrete recovery, but sends the abstract system
from the last simulating state into a known abstract state (e.g. an initial state) that can be made to
correspond with the concrete one, restoring simulability. If the added 𝑅𝑒𝑠𝑒𝑡 operation is atomic,
then it is invariant preserving, since both the last simulating state and the known abstract state will
satisfy the abstract invariant. However, if the 𝑅𝑒𝑠𝑒𝑡 operation has a duration, more care is needed
regarding invariant preservation. Evidently, the full generality of the construction in Theorem 7.2
is not needed in this simple scenario.

8 METRIC CONCEDING/RESTORING
We recall that a metric on a set 𝑋 is a distance function 𝑑 : 𝑋 × 𝑋 → R+ ∪ {∞}, which satisfies
the usual laws of identity 𝑑 (𝑎, 𝑎) = 0, symmetry 𝑑 (𝑎, 𝑏) = 𝑑 (𝑏, 𝑎), and the triangle inequality
𝑑 (𝑎, 𝑏) + 𝑑 (𝑏, 𝑐) ≥ 𝑑 (𝑎, 𝑐).12 A metric space with origin 𝑂 ∈ 𝑋 , endows each element 𝑎 ∈ 𝑋 with a
magnitude ` (𝑎) = 𝑑 (𝑂, 𝑎). Normed linear spaces are obvious with-origin examples.

Definition 8.1 (Metric on 𝑅-Mediated Union). For 𝑖 ∈ {1, 2} let 𝑋𝑖 carry metric 𝑑𝑖 in the sense
just stated, and let 𝑅 : 𝑋1↔𝑋2 be a relation. We extend 𝑑𝑖 on 𝑋𝑖 to a metric 𝑑1,2 on the (disjoint) union
𝑋1 ⊎ 𝑋2 thus:

𝑑1,2 (𝑢𝑖 , 𝑢𝑖 ) = 𝑑𝑖 (𝑢𝑖 , 𝑢𝑖 ) if {𝑢𝑖 , 𝑢𝑖 } ⊆ 𝑋𝑖

𝑑1,2 (𝑢1, 𝑢2) =


min
�̃�1,�̃�2

{ 1
2 (𝑑

1 (𝑢1, �̃�1) + 𝑑2 (𝑢2, �̃�2)) |
𝑢1 ∈ dom(𝑅) ∧ 𝑅(�̃�1, 𝑢2) ∧ 𝑢2 ∈ ran(𝑅) ∧ 𝑅(𝑢1, �̃�2) }

∞ otherwise

(33)

We call 𝑑1,2 the 𝑅-mediated (disjoint) union of 𝑑1 and 𝑑2 on 𝑋1 ⊎ 𝑋2. If each 𝑋𝑖 has origin 𝑂𝑖 each
element of 𝑋1 ⊎ 𝑋2 inherits a magnitude from its underlying component.

We henceforth assume that the state and I/O spaces we deal with are all metric spaces of the
kind described, and when they are assumed to have an origin we will always say so explicitly. We
apply the construction of Definition 8.1 to relations arising from refinements and retrenchments
(and their data), but without writing all the edge cases and side conditions explicitly.

8.1 Metrics, Simulations, Refinements, Onto Retrenchments
For an arbitrary system Sys𝑋 , let the metrics on U𝑋 be 𝑑𝑋 , on I𝑂𝑝𝑋 be 𝑑𝐼𝑂𝑝𝑋 , and onO𝑂𝑝𝑋 be 𝑑𝑂𝑂𝑝𝑋 .
Assume similar notations for other systems.

Definition 8.2 (Standard Metric for System, Refinement, Retrenchment). Adopting the
notational conventions established, and given Sys𝑋 , Sys𝑌 and a gluing relation𝐺 , we define 𝑑𝐺

𝑋,𝑌
thus:

𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) = min
�̃�𝑋 ,�̃�𝑌

{ 1
2 (𝑑

𝑋 (𝑢𝑋 , �̃�𝑋 ) + 𝑑𝑌 (𝑢𝑌 , �̃�𝑌 )) | 𝐺 (�̃�𝑋 , 𝑢𝑌 ) ∧𝐺 (𝑢𝑋 , �̃�𝑌 ) } (34)

12We include∞ as a valid distance between entities that are incompatible in various ways. We also omit the unicity law
𝑑 (𝑎,𝑏) = 0 ⇒ 𝑎 = 𝑏, so we are dealing, strictly speaking, with pseudometric spaces. We omit to write ‘pseudo’ below.
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If we now have a refinement Sys𝑋 ⩾[𝐺/𝐼𝑛/𝑂𝑢𝑡 ] Sys𝑌 , we additionally define, for 𝑂𝑝𝑋 ⩾ 𝑂𝑝𝑌 :

𝑑
𝐼𝑛𝑂𝑝

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) =

min
𝑖𝑋 ,𝑖𝑌

{ 1
2 (𝑑

𝐼𝑂𝑝𝑋 (𝑖𝑋 , 𝑖𝑋 ) + 𝑑𝐼𝑂𝑝𝑌 (𝑖𝑌 , 𝑖𝑌 )) | 𝐼𝑛𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ∧ 𝐼𝑛𝑂𝑝𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 ) } (35)

𝑑
𝑂𝑢𝑡𝑂𝑝

𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) =

min
𝑜𝑋 ,𝑜𝑌

{ 1
2 (𝑑

𝑂𝑂𝑝𝑋 (𝑜𝑋 , 𝑜𝑋 ) + 𝑑𝑂𝑂𝑝𝑌 (𝑜𝑌 , 𝑜𝑌 )) | 𝑂𝑢𝑡𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ∧𝑂𝑢𝑡𝑂𝑝𝑋,𝑌

(𝑜𝑋 , 𝑜𝑌 ) }
(36)

If, instead, we have a retrenchment Sys𝑋 ≽[𝐺/𝑊 /𝐷 ] Sys𝑌 , we analogously define, for 𝑂𝑝𝑋 ≽ 𝑂𝑝𝑌 :

𝑑
𝑊𝑂𝑝

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) =

min
𝑢𝑋 ,𝑢𝑌 ,𝑖𝑋 ,𝑖𝑌

{ 1
2 (𝑑

𝐼𝑂𝑝𝑋 (𝑖𝑋 , 𝑖𝑋 ) + 𝑑𝐼𝑂𝑝𝑌 (𝑖𝑌 , 𝑖𝑌 )) |

𝑊𝑂𝑝𝑋,𝑌
(𝑢𝑋 , 𝑖𝑋 , 𝑢𝑌 , 𝑖𝑌 ) ∧𝑊𝑂𝑝𝑋,𝑌

(𝑢𝑋 , 𝑖𝑋 , 𝑢𝑌 , 𝑖𝑌 ) } (37)

𝑑
𝐷𝑂𝑝

𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) =

min
𝑢𝑋 ,𝑢𝑌 ,𝑖𝑋 ,𝑖𝑌 ,

𝑢′
𝑋
,𝑢′

𝑌
,𝑜𝑋 ,𝑜𝑌

{ 1
2 (𝑑

𝑂𝑂𝑝𝑋 (𝑜𝑋 , 𝑜𝑋 ) + 𝑑𝑂𝑂𝑝𝑌 (𝑜𝑌 , 𝑜𝑌 )) |

𝐷𝑂𝑝𝑋,𝑌
(𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 , 𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ∧ 𝐷𝑂𝑝𝑋,𝑌

(𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 , 𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) } (38)

The above are also well defined when we merely have refinement or retrenchment data [𝐺/𝐼𝑛/𝑂𝑢𝑡] or
[𝐺/𝑊 /𝐷]. We call (34)-(38) the standard metrics of the refinement or retrenchment data.

Definition 8.3 (Standard Associated Metric Refinement, Retrenchment Relations). Let
Sys𝑋 and Sys𝑌 be given. LetOps𝑋 ⩾ Ops𝑌 with [𝐺/𝐼𝑛/𝑂𝑢𝑡] constitute refinement data for Sys𝑋 and
Sys𝑌 . Suppose that the state and I/O spaces are metric, and assume the standard metrics of Definition
8.2. Let:

𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ≡ 𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≤ Δ𝐺 (39)

𝐼𝑛
Δ𝐼

𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≡ 𝑑

𝐼𝑛𝑂𝑝

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≤ Δ𝐼 (40)

𝑂𝑢𝑡
Δ𝑂

𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ≡ 𝑑

𝑂𝑢𝑡𝑂𝑝

𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ≤ Δ𝑂 (41)

where Δ𝐺 , Δ𝐼 and Δ𝑂 are constants. We call these the standard associated metric refinement relations
for the given refinement data (and given constants). Now, if we assume additionally that all the metric
spaces have an origin, we can redefine:

𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ≡ [ 𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) + 𝛼𝑋 ` (𝑢𝑋 ) + 𝛼𝑌 ` (𝑢𝑌 ) ≤ Δ𝐺 (42)

𝐼𝑛
Δ𝐼

𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≡ [ 𝑑

𝐼𝑛𝑂𝑝

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) + 𝛼𝑋 ` (𝑖𝑋 ) + 𝛼𝑌 ` (𝑖𝑌 ) ≤ Δ𝐼 (43)

𝑂𝑢𝑡
Δ𝑂

𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ≡ [ 𝑑

𝑂𝑢𝑡𝑂𝑝

𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) + 𝛼𝑋 ` (𝑜𝑋 ) + 𝛼𝑌 ` (𝑜𝑌 ) ≤ Δ𝑂 (44)

In (42)-(44) the constants [, 𝛼𝑋 , 𝛼𝑌 , are not intended to be global. We have merely suppressed the
additional indexing to make them specific to the (pair of) metric spaces in question. Similarly henceforth.

Alternatively, if Ops𝑋 ≽ Ops𝑌 with [𝐺/𝑊 /𝐷] are retrenchment data for Sys𝑋 and Sys𝑌 , we define
the standard associated metric retrenchment relations for the given retrenchment data (and given
constants) as:
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𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ≡ 𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≤ Δ𝐺 (45)

𝐼𝑛
Δ𝐼

𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≡ 𝑑

𝑊𝑂𝑝

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≤ Δ𝐼 (46)

𝑂𝑢𝑡
Δ𝑂

𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ≡ 𝑑

𝐷𝑂𝑝

𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ≤ Δ𝑂 (47)

Now, if we assume additionally that all the metric spaces have an origin, we can redefine (with the
same proviso as above regarding the constants):

𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ≡ [ 𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) + 𝛼𝑋 ` (𝑢𝑋 ) + 𝛼𝑌 ` (𝑢𝑌 ) ≤ Δ𝐺 (48)

𝐼𝑛
Δ𝐼

𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≡ [ 𝑑

𝑊𝑂𝑝

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) + 𝛼𝑋 ` (𝑖𝑋 ) + 𝛼𝑌 ` (𝑖𝑌 ) ≤ Δ𝐼 (49)

𝑂𝑢𝑡
Δ𝑂

𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ≡ [ 𝑑

𝐷𝑂𝑝

𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) + 𝛼𝑋 ` (𝑜𝑋 ) + 𝛼𝑌 ` (𝑜𝑌 ) ≤ Δ𝑂 (50)

Notation 8.4. The data defined in (39)-(41), (42)-(44), (45)-(47), (48)-(50), all have the same sig-
nature, and in much of the sequel we will rely solely on such data. We will write Sys𝑋 ⋑ Sys𝑌
(with similar notation for the other elements of the relationship between Sys𝑋 and Sys𝑌 ) to indicate
Sys𝑋 ⩾ Sys𝑌 and/or Sys𝑋 ≽ Sys𝑌 , when the distinction is not important, and we will say that Sys𝑋
ref/ret Sys𝑌 . Similarly, we will write [𝐺Δ𝐺 /𝐼𝑛Δ𝐼 ⋑𝑂𝑢𝑡Δ𝑂 ] to refer to the standard metric data derived
from some instance of ref/ret data according to Definition 8.2, and will refer to it as the standard metric
ref/ret data (arising from the ref/ret data that is to be understood from the discourse).

If the metric spaces involved have origins, then we redefine the distance functions using ([, 𝛼𝑋 , 𝛼𝑌 )
triples, as above. Thus a reference to a typical 𝑑𝐻𝑂𝑝

𝑋,𝑌
(ℎ𝑋 , ℎ𝑌 ) distance value becomes a reference to:

[ 𝑑
𝐻𝑂𝑝

𝑋,𝑌
(ℎ𝑋 , ℎ𝑌 ) + 𝛼𝑋 ` (ℎ𝑋 ) + 𝛼𝑌 ` (ℎ𝑌 ) (51)

where the 𝑑𝐻𝑂𝑝

𝑋,𝑌
in (51) is a reference to the original distance function.

In the context of all these variations, we will write 𝑑⋑
𝑋,𝑌

to denote 𝑑𝐼𝑛𝑂𝑝

𝑋,𝑌
if ⋑ is ⩾, and to denote

𝑑
𝑊𝑂𝑝

𝑋,𝑌
if ⋑ is ≽.

Definition 8.5 (𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 Relation). Let [𝐺Δ𝐺 /𝐼𝑛Δ𝐼 ⋑𝑂𝑢𝑡Δ𝑂 ] be the standard metric ref/ret
data for Sys𝑋 and Sys𝑌 . Define 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 as follows.
If ⋑ is ⩾ then, aggregating over all the operation pairs 𝑂𝑝𝑋 ⩾ 𝑂𝑝𝑌 :

𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≡
/\/\/\𝑂𝑝𝑋⩾𝑂𝑝𝑌

(
𝐼𝑛𝑂𝑝𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 ) ⇒
( (∃𝑢 ′𝑋 ∈ U𝑋 , 𝑜𝑋 ∈ O𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 )) ⇔
(∃𝑢 ′𝑌 ∈ U𝑌 , 𝑜𝑌 ∈ O𝑌 • 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 )) )

)
(52)

If ⋑ is ≽ then, aggregating over all the operation pairs 𝑂𝑝𝑋 ≽ 𝑂𝑝𝑌 :

𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≡
/\/\/\𝑂𝑝𝑋≽𝑂𝑝𝑌

(
𝑊𝑂𝑝𝑋,𝑌

(𝑢𝑋 , 𝑖𝑋 , 𝑢𝑌 , 𝑖𝑌 ) ⇒
( (∃𝑢 ′𝑋 ∈ U𝑋 , 𝑜𝑋 ∈ O𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 )) ⇔
(∃𝑢 ′𝑌 ∈ U𝑌 , 𝑜𝑌 ∈ O𝑌 • 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 )) )

)
(53)

Theorem 8.6 (Trace Inclusion with Standard Metric Data). Let [𝐺Δ𝐺 /𝐼𝑛Δ𝐼 ⋑𝑂𝑢𝑡Δ𝑂 ] be
standard metric ref/ret data constructed from either refinement data or onto retrenchment data for
Sys𝑋 and Sys𝑌 . Suppose that:

𝐼𝑛𝑖𝑡𝑋 (𝑢𝑋 ) ∧ 𝐼𝑛𝑖𝑡𝑌 (𝑢𝑌 ) ⇒ 𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) (54)
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and, let each operation pair 𝑂𝑝𝑋 ⋑ 𝑂𝑝𝑌 satisfy:

𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐼𝑛Δ𝐼

𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ⇒

(∃ �̃� ′𝑋 ∈ U𝑋 , 𝑜𝑋 ∈ O𝑂𝑝𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , �̃� ′𝑋 , 𝑜𝑋 ) ∧
𝐺

Δ𝐺

𝑋,𝑌
(�̃� ′𝑋 , 𝑢 ′𝑌 ) ∧𝑂𝑢𝑡

Δ𝑂

𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ∧ 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 (�̃� ′𝑋 , 𝑢 ′𝑌 )) (55)

Then there is a trace inclusion property from Sys𝑌 traces to Sys𝑋 traces that is mediated by the data
[𝐺Δ𝐺 /𝐼𝑛Δ𝐼 ⋑𝑂𝑢𝑡Δ𝑂 ].
Furthermore, if all the metric spaces are now assumed to have an origin, then, with suitable reinter-

pretation of the symbols, the result continues to hold.

Proof. To show the trace inclusion, let [ 𝑢𝑌,0 -(𝑖𝑌,0,𝑂𝑝𝑌,0, 𝑜𝑌,1)->>>𝑢𝑌,1 -(𝑖𝑌,1,𝑂𝑝𝑌,1, 𝑜𝑌,2)->>>𝑢𝑌,2 . . . ]
be an execution of Sys𝑌 . We construct a simulating execution of Sys𝑋 . Let 𝑢𝑋,0 be an initial state of
Sys𝑋 . Using (54), we deduce that 𝐺Δ𝐺

𝑋,𝑌
and 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 both hold for 𝑢𝑋,0 and 𝑢𝑌,0. If there are no

further steps of the concrete execution, we are done.
Now suppose we have constructed the simulation up to 𝑢𝑌,𝑘 and 𝑢𝑋,𝑘 , for which𝐺Δ𝐺

𝑋,𝑌
(𝑢𝑋,𝑘 , 𝑢𝑌,𝑘 )

and 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 (𝑢𝑋,𝑘 , 𝑢𝑌,𝑘 ) both hold. If there are no further steps of the concrete execution, we are
done.

Otherwise, there is a next concrete step 𝑢𝑌,𝑘 -(𝑖𝑌,𝑘 ,𝑂𝑝𝑌,𝑘 , 𝑜𝑌,𝑘+1)->>>𝑢𝑌,𝑘+1. Since ⋑ is either refine-
ment or onto retrenchment, relationsOps𝑋 ⋑ Ops𝑌 and 𝐼𝑛𝑂𝑝𝑘,𝑋,𝑌

/𝑊𝑂𝑝𝑘,𝑋,𝑌
are both onto. Therefore

an 𝑂𝑝𝑋 and then an 𝑖𝑋 can be found to instantiate the hypotheses needed for (52)/(53). Therefore,
since we have the next concrete step 𝑢𝑌,𝑘 -(𝑖𝑌,𝑘 ,𝑂𝑝𝑌,𝑘 , 𝑜𝑌,𝑘+1)->>>𝑢𝑌,𝑘+1, we deduce the existence
of a next abstract step 𝑢𝑋,𝑘 -(𝑖𝑋,𝑘 ,𝑂𝑝𝑋,𝑘 , 𝑜𝑋,𝑘+1)->>>𝑢𝑋,𝑘+1. For these two steps, (55) enables us to
deduce the existence of �̃�𝑋,𝑘+1 and 𝑜𝑋,𝑘+1 (distinct from 𝑢𝑋,𝑘+1 and 𝑜𝑋,𝑘+1 if need be), for which
𝐺Δ𝐺 (�̃�𝑋,𝑘+1, 𝑢𝑌,𝑘+1),𝑂𝑢𝑡Δ𝑂

𝑂𝑝𝑋,𝑌
(𝑜𝑋,𝑘+1, 𝑜𝑌,𝑘+1) and 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 (�̃�𝑋,𝑘+1, 𝑢𝑌,𝑘+1) all hold, which gives the

inductive step for the trace inclusion property required.
Moreover, if all the metric spaces are further assumed to have an origin, then, with suitable

reinterpretation of the symbols, the result continues to hold, because the proof just given is
insensitive to the internal details of the definition of 𝐺Δ𝐺

𝑋,𝑌
, 𝐼𝑛Δ𝐼

𝑂𝑝𝑋,𝑌
, 𝑂𝑢𝑡Δ𝑂

𝑂𝑝𝑋,𝑌
. □

The above result allows us to introduce some inaccuracy into the behaviour of a system, provided
this does not spread over time. There are a couple of further things worth noting.
A simple one is that we make little use of the outputs. These are assumed to be emitted to the

environment, and play no further part in the proceedings. The point of view of this paper is that
outputs are write-only, and thus no future property of the model under consideration can depend
on them, so they need not concern us unduly. Of course, in a wider context, outputs are typically
sensed by some other system and thus their properties are of interest. But in that case, they are part
of the state of a combined system including both the original model and the other system, and in
such an eventuality, they may be included in the state-centric reasoning of that combined system,
and thereby fall under the scope of our work. The issue thus reduces to a matter of nomenclature.
We maintain the same point of view in the rest of the paper.

Another is that we do not assert either a refinement Sys𝑋 ⩾ Sys𝑌 or an onto retrenchment
Sys𝑋 ≽ Sys𝑌 . For either to hold, it would have to be the case that for every𝐺Δ𝐺

𝑋,𝑌
-related pair (𝑢𝑋 , 𝑢𝑌 ),

enabledness at 𝑢𝑌 would have to imply enabledness at 𝑢𝑋 . But in many typical applications, the
metric spaces in which to naturally embed an application model are topologically complete, and
when one or both of the systems in question is/are discretized, transitions will not issue from all
states satisfying a simple metric bound, even if there are many states satisfying the bound from
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which they do do so. So we have to be more circumspect if we want our outcome to indicate the
character of more general results to follow.

Yet another is that the theorem covers both the case that there is ‘only a little’ nondeterminism in
the step relations of Sys𝑋 and Sys𝑌 (to allow, e.g., for some inaccuracy arising from discretization,
and allowing the identification of �̃� ′

𝑋
and 𝑜𝑋 with 𝑢 ′

𝑋
and 𝑜𝑋 respectively), and also the case that

there is ‘more than a little’ nondeterminism in these step relations (where �̃� ′
𝑋
and 𝑜𝑋 distinct from

𝑢 ′
𝑋
and 𝑜𝑋 would be required).

Definition 8.7 (Metric Neighbourhood). Let Sys𝑋 , equipped with metrics as in Definition 8.2,
be given. Let Sys𝑌 be an isomorphic copy of Sys𝑋 and let us write i : Sys𝑋 → Sys𝑌 for all elements of
the bijection between Sys𝑋 and Sys𝑌 , including state and I/O spaces, operations sets and names, etc.
Let constants Δ𝐺 , Δ𝐼 and Δ𝑂 be given. For each 𝑢𝑋 ∈ RchU𝑋 , let 𝑛ℎ(i(𝑢𝑋 )) ⊆ U𝑌 be a set of states
satisfying:

i(𝑢𝑋 ) ∈ 𝑛ℎ(i(𝑢𝑋 )) (56)

𝑢𝑌 ∈ 𝑛ℎ(i(𝑢𝑋 )) ⇒ 𝑑𝑌 (𝑢𝑌 , i(𝑢𝑋 )) < Δ𝐺 (57)

where 𝑑𝑋 is the distance function on U𝑋 and 𝑑𝑌 is the distance function on U𝑌 inherited from 𝑑𝑋

via i. Make analogous definitions of 𝑛ℎ(i(𝑖𝑋 )) ⊆ I𝑌 using 𝑑𝐼𝑂𝑝 and Δ𝐼 for 𝑖𝑋 ∈ 𝐼𝑛𝑂𝑝𝑋 , and of
𝑛ℎ(i(𝑜𝑋 )) ⊆ O𝑌 using 𝑑𝑂𝑂𝑝 and Δ𝑂 for 𝑜𝑋 ∈ 𝑂𝑢𝑡𝑂𝑝𝑋 . Let the initial states of Sys𝑌 be the all states in
𝑛ℎ(i(𝑢𝑋 )) where 𝑢𝑋 is an initial state of Sys𝑋 . Enhance the transition relation of Sys𝑌 by including
all steps 𝑠𝑡𝑝𝑂𝑝𝑌 satisfying:

𝑂𝑝𝑌 = i(𝑂𝑝𝑋 ) ∧ 𝑢𝑌 ∈ 𝑛ℎ(i(𝑢𝑋 )) ∧ 𝑖𝑌 ∈ 𝑛ℎ(i(𝑜𝑋 )) ∧ 𝑢 ′𝑌 ∈ 𝑛ℎ(i(𝑢 ′𝑋 )) ∧ 𝑜𝑌 ∈ 𝑛ℎ(i(𝑜𝑋 )) ⇒
(𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ⇔ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 )) (58)

It is now easy to show:

Theorem 8.8 (Trace Inclusion with Metric Neighbourhood). Let Sys𝑋 and Sys𝑌 be as in
Definition 8.7. With the standard metric refinement relations for the data relating Sys𝑋 and Sys𝑌 , the
conditions of Theorem 8.6 are satisfied, and so there is a trace inclusion property from Sys𝑌 traces to
Sys𝑋 traces that is mediated by the given data.

Theorem 8.8 expresses a very abstract kind of discretization process, in which the ideal system
behaviour of Sys𝑋 can be approximated by transitions between the states in the neighbourhoods
𝑛ℎ(i(𝑢𝑋 )) in Sys𝑌 of reachable states 𝑢𝑋 of the ideal behaviour. In this result, all details of the
discretization process have been abstracted away.

Equally easy is:

Theorem 8.9 (Refinement with Metric Neighbourhood Refinement Data). Let Sys𝑋 and
Sys𝑌 be as in Definition 8.7. Let:

𝐺◦
𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≡ 𝑢𝑌 ∈ 𝑛ℎ(i(𝑢𝑋 )) (59)

𝐼𝑛◦𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≡ 𝑖𝑌 ∈ 𝑛ℎ(i(𝑖𝑋 )) (60)

𝑂𝑢𝑡◦𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ≡ 𝑜𝑌 ∈ 𝑛ℎ(i(𝑜𝑋 )) (61)

Then there is a refinement from Sys𝑋 to Sys𝑌 mediated by refinement data [𝐺◦/𝐼𝑛◦/𝑂𝑢𝑡◦].

Theorem 8.9 follows because the data [𝐺◦/𝐼𝑛◦/𝑂𝑢𝑡◦] are restricted to exactly the sources and
targets of transitions in the two systems. This allows the requirements of the quantifications in the
refinement correctness PO (6) to be satisfied. Thus (c.f. above), whenever the hypotheses of the
refinement correctness PO are true, a suitable abstract step can always be found.
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8.2 Contractions, Simulations, Refinements, Onto Retrenchments
Let 𝑋 be a metric space and let 𝑇 : 𝑋 ↔ 𝑋 be a relation on 𝑋 . Then 𝑇 is contracting iff for all
{𝑥,𝑦, 𝑥 ′, 𝑦 ′} ⊆ 𝑇 , where 𝑇 (𝑥, 𝑥 ′) and 𝑇 (𝑦,𝑦 ′) both hold, there is a ^ < 1 such that 𝑑 (𝑥 ′, 𝑦 ′) ≤
^ 𝑑 (𝑥,𝑦). If we can interchange the existential and universal quantification in the preceding, we
say that 𝑇 is uniformly contracting. If 𝑋 is metrically complete,13 then the well known fixpoint
theorem says that there is a unique fixpoint FP ∈ 𝑋 to which iterated application of a uniformly
contracting and total𝑇 to any 𝑥 ∈ 𝑋 tends. We apply these ideas to refinements and retrenchments
and (their data) in which operations are mostly well behaved, but which at times may behave in
an undesirable manner. In such abnormal episodes, the contracting property helps return system
behaviour to the desired norms if they have been breached.
Often, rather than having contraction maps that are directly usable in the sense we need, we

have relations in the individual systems of a refinement or retrenchment (or data) which need to be
combined. The next definition addresses this.

Definition 8.10 (𝑅-Adapted Union of Contracting Transition Relations). Assume the
conventions of Definition 8.1 concerning 𝑋𝑖 , 𝑑𝑖 , 𝑅, 𝑑1,2. Let 𝑇 𝑖 be contracting on 𝑋𝑖 in the sense just
given. We extend 𝑇 𝑖 on 𝑋𝑖 to a relation 𝑇 1 ⊕ 𝑇 2 on the (disjoint) union 𝑋1 ⊎ 𝑋2 thus:

𝑇 1 ⊕ 𝑇 2 (𝑢𝑖 , 𝑢 ′𝑖 ) ≡ 𝑇 𝑖 (𝑢𝑖 , 𝑢 ′𝑖 ) provided {𝑢𝑖 , 𝑢 ′𝑖 } ⊆ 𝑋𝑖 (62)

and we refer to 𝑇 1 ⊕ 𝑇 2 as the (disjoint) union of 𝑇 1 and 𝑇 2. Suppose there is a ^ < 1 such that:

𝑇 1 (𝑢1, 𝑢 ′1) ∧𝑇 2 (𝑢2, 𝑢 ′2) ∧ 𝑅(�̃�1, 𝑢2) ⇒ ∃�̃� ′1 • 𝑅(�̃� ′1, 𝑢 ′2) ∧ 𝑑1 (𝑢 ′1, �̃� ′1) ≤ ^ 𝑑1 (𝑢1, �̃�1) (63)

𝑇 1 (𝑢1, 𝑢 ′1) ∧𝑇 2 (𝑢2, 𝑢 ′2) ∧ 𝑅(𝑢1, �̃�2) ⇒ ∃�̃� ′2 • 𝑅(𝑢 ′1, �̃� ′2) ∧ 𝑑1 (𝑢 ′2, �̃� ′2) ≤ ^ 𝑑2 (𝑢2, �̃�2) (64)

We call a 𝑇 1 ⊕ 𝑇 2 satisfying (63)-(64) an 𝑅-adapted union of 𝑇 1 and 𝑇 2.

Proposition 8.11 (𝑅-Adapted Union of Contracting Transition Relations is Contract-
ing). Let𝑇 1⊕𝑇 2 be an 𝑅-adapted union of𝑇 1 and𝑇 2 as in Definition 8.10. Then𝑇 1⊕𝑇 2 is a contraction
with respect to the metric 𝑑1,2.

Proof. For 𝑖 ∈ {1, 2}, for the case that {𝑢𝑖 , 𝑢𝑖 , 𝑢 ′𝑖 , 𝑢 ′𝑖 } ⊆ 𝑋𝑖 , with 𝑇 𝑖 (𝑢𝑖 , 𝑢 ′𝑖 ) and 𝑇 𝑖 (𝑢𝑖 , 𝑢 ′𝑖 ) both
holding, then 𝑑1,2 (𝑢 ′𝑖 , 𝑢 ′𝑖 ) = 𝑑𝑖 (𝑢 ′𝑖 , 𝑢 ′𝑖 ) ≤ ^ 𝑑𝑖 (𝑢𝑖 , 𝑢𝑖 ) = 𝑑1,2 (𝑢𝑖 , 𝑢𝑖 ) for some ^ < 1. This is sufficient
for that case.

For the case that {𝑢1, 𝑢 ′1} ⊆ 𝑋1, {𝑢2, 𝑢 ′2} ⊆ 𝑋2, 𝑑1,2 (𝑢1, 𝑢2) < ∞, and 𝑇 1 (𝑢1, 𝑢 ′1), 𝑇 2 (𝑢2, 𝑢 ′2):

𝑑1,2 (𝑢 ′1, 𝑢 ′2) = min
�̃�′1,�̃�

′
2

{ 1
2 (𝑑

1 (𝑢 ′1, �̃� ′1) + 𝑑2 (𝑢 ′2, �̃� ′2)) | 𝑅(�̃� ′1, 𝑢 ′2) ∧ 𝑅(𝑢 ′1, �̃� ′2) }

< ^ min
�̃�1,�̃�2

{ 1
2 (𝑑

1 (𝑢1, �̃�1) + 𝑑2 (𝑢2, �̃�2)) | 𝑅(�̃�1, 𝑢2) ∧ 𝑅(𝑢1, �̃�2) }

for some ^ < 1, because of (63)-(64)

= 𝑑1,2 (𝑢1, 𝑢2) (65)

This is sufficient to complete the proof. □

The conditions (63)-(64), though sufficient, are quite demanding. For example, for uniformly
contracting 𝑇 𝑖 , if the fixpoints FP𝑖 ∈ 𝑋𝑖 do not satisfy 𝑅(FP1, FP2), then (63)-(64) are bound to fail
somewhere.

13We intend completeness in the sense that all Cauchy sequences in 𝑋 reach a limit in 𝑋 .
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Theorem 8.12 (Trace Inclusion with Contracting Metric Data). Let ^ < (1 + Δ𝐼/Δ𝐺 )−1 be
a constant. Assume the hypotheses of Theorem 8.6, but, for each operation pair 𝑂𝑝𝑋 ⋑ 𝑂𝑝𝑌 replacing
(55) by:

𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐼𝑛Δ𝐼

𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ⇒

(∃ �̃� ′𝑋 ∈ U𝑋 , 𝑜𝑋 ∈ O𝑂𝑝𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , �̃� ′𝑋 , 𝑜𝑋 ) ∧
𝑑𝐺𝑋,𝑌 (�̃�

′
𝑋 , 𝑢

′
𝑌 ) ≤ ^ (𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) + 𝑑

⋑
𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 )) ∧

𝑂𝑢𝑡
Δ𝑂

𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ∧ 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 (�̃� ′𝑋 , 𝑢 ′𝑌 )) (66)

Then there is a trace inclusion property from Sys𝑌 traces to Sys𝑋 traces that is mediated by the data
[𝐺Δ𝐺 /𝐼𝑛Δ𝐼 ⋑𝑂𝑢𝑡Δ𝑂 ]. The result holds if all the metric spaces involved do not have origins, or if they
do, provided the relevant distance and relation symbols are interpreted correctly.

Proof. The only part of the proof of Theorem 8.6 that needs attention involves a detail of the
inductive step. For the concrete and abstract transitions identified, 𝑢𝑌,𝑘 -(𝑖𝑌,𝑘 ,𝑂𝑝𝑌,𝑘 , 𝑜𝑌,𝑘+1)->>>𝑢𝑌,𝑘+1
and𝑢𝑋,𝑘 -(𝑖𝑋,𝑘 ,𝑂𝑝𝑋,𝑘 , 𝑜𝑋,𝑘+1)->>>𝑢𝑋,𝑘+1, assuming (66) enables us to infer that, since^ < (1+Δ𝐼/Δ𝐺 )−1,
assuming 𝐺Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) implies that 𝐺Δ𝐺

𝑋,𝑌
(�̃�𝑋 , 𝑢 ′𝑌 ) will hold. The remainder of the proof is the

same. □

Theorem 8.12 allows for the fact that the presence of an input will affect the execution of any
transition, potentially increasing the ‘effective distance’ between concrete and abstract before-
states/inputs. The assumed ^ < (1+Δ𝐼/Δ𝐺 )−1 allows for this to the extent that the effective distance
is assumed to be 𝑑𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) + 𝑑⋑𝑋,𝑌 (𝑖𝑋 , 𝑖𝑌 ) which is bounded by Δ𝐺 + Δ𝐼 . The result is modular

among the no-origin/with-origin options.
It is now not hard to imagine that with increasingly complex assumptions about the metrics, I/O

and state behaviour, one could deduce increasingly complex results of a similar kind.
In the same vein, for the constructions based on metric neighbourhoods we find:

Theorem 8.13 (Trace Inclusion with Contracting Metric Neighbourhood). Incorporating
the modifications of Theorem 8.12 into the assumptions of Theorem 8.8 (Trace Inclusion with Metric
Neighbourhood), the theorem continues to hold, namely that with the standard metric refinement
relations for the data relating Sys𝑋 and Sys𝑌 , there is a trace inclusion property from Sys𝑌 traces to
Sys𝑋 traces that is mediated by the given data.

Theorem 8.14 (Refinement with Contracting Metric Neighbourhood Refinement Data).
Incorporating the modifications of Theorem 8.12 into the assumptions of Theorem 8.9 (Refinement
with Metric Neighbourhood Refinement Data), the theorem continues to hold, namely that there is a
refinement from Sys𝑋 to Sys𝑌 mediated by refinement data [𝐺◦/𝐼𝑛◦/𝑂𝑢𝑡◦].

8.3 Contractions, Simulations, Retrenchments
The approach of the previous section worked because we assumed absolute bounds on distances
in the state and I/O spaces. In some situations this is justifiable, in others not. We now consider
situations in which there are some regions in which the assumption is valid as well as other regions
in which it is not.

Definition 8.15 (Diverging/Converging Framework). Let [𝐺Δ𝐺 /𝐼𝑛Δ𝐼 ⋑𝑂𝑢𝑡Δ𝑂 ] be standard
metric ref/ret data constructed from either refinement data or onto retrenchment data for Sys𝑋 and
Sys𝑌 .
Let R+¬1 ≡ R+ − {1} be the non-negative reals without 1.
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Let K ⊆ R+¬1 be a finite set of positive constants. For 𝑘 ∈ K, let 𝐵𝑘 ∈ R+ be a positive constant, and
let UI𝑘

𝑋𝑌
⊆ (U𝑋 × U𝑌 ) ×

⊎
𝑂𝑝𝑋⩾𝑂𝑝𝑌 (I𝑂𝑝𝑋 × I𝑂𝑝𝑌 ) be a set of tuples of states and inputs of Sys𝑋 and

Sys𝑌 such that:

(𝑢𝑋 , 𝑢𝑌 , 𝑖𝑋 , 𝑖𝑌 ) ∈ UI𝑘𝑋𝑌 ⇒
𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ⇒
𝑑⋑
𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵𝑘 ∧
(∃ �̃� ′𝑋 ∈ U𝑋 , 𝑜𝑋 ∈ O𝑂𝑝𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , �̃� ′𝑋 , 𝑜𝑋 ) ∧
𝑑𝐺𝑋,𝑌 (�̃�

′
𝑋 , 𝑢

′
𝑌 ) ≤ 𝑘 (𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) + 𝑑

⋑
𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 )) ∧
𝐸𝑞𝐸𝑛𝑋,𝑌 (�̃� ′𝑋 , 𝑢 ′𝑌 )) (67)

where

𝐸𝑞𝐸𝑛𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≡ \/\/\/𝑘∈K 𝐸𝑞𝐸𝑛𝑘𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) (68)

and where

𝐸𝑞𝐸𝑛𝑘𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≡
[ (∃ 𝑖𝑋 ∈ I𝑋 , 𝑢 ′𝑋 ∈ U𝑋 , 𝑜𝑋 ∈ O𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 )) ⇔
(∃ 𝑖𝑌 ∈ I𝑌 , 𝑢 ′𝑌 ∈ U𝑌 , 𝑜𝑌 ∈ O𝑌 • 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 )) ] ∧

[ 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ⇒ (𝑢𝑋 , 𝑢𝑌 , 𝑖𝑋 , 𝑖𝑌 ) ∈ UI𝑘𝑋𝑌 ] (69)

Let:

𝑠𝑡𝑝𝑘𝑌 ≡ { 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) | (∃𝑢𝑋 • 𝐸𝑞𝐸𝑛𝑘𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 )) ∧

𝑘 < 𝑘 ⇒ ¬(∃𝑢𝑋 • 𝐸𝑞𝐸𝑛𝑘𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 )) } (70)

Suppose also that:

𝐼𝑛𝑖𝑡𝑋 (𝑢𝑋 ) ∧ 𝐼𝑛𝑖𝑡𝑌 (𝑢𝑌 ) ⇒ 𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐸𝑞𝐸𝑛𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) (71)

where 𝐺Δ𝐺

𝑋,𝑌
is given by (39) with Δ𝐺 a constant. This collection of properties is called a diverg-

ing/converging framework for Sys𝑋 and Sys𝑌 , where the 𝑠𝑡𝑝𝑘
𝑌
components with 1 < 𝑘 ∈ K characterise

the diverging aspect, and the 𝑠𝑡𝑝𝑘
𝑌
components with 1 > 𝑘 ∈ K characterise the converging aspect.

Note that (67) and (68) are mutually recursive, necessitating the calculation of fixpoints in the
general case. We remark on this issue again in the context of our main example.

Theorem 8.16 (Trace Inclusions with Diverging/Converging Framework). Suppose given
a diverging/converging framework for Sys𝑋 and Sys𝑌 , assuming the notations of Definition 8.15,
and where K = {^, 𝐾}, with 0 < ^ < 1 < 𝐾 . Let M be a set of executions of Sys𝑌 that satisfy the
(𝑀,𝑛)-bounded excursion property (where 𝑀 and 𝑛 are both constants), namely that, for every
execution 𝒀𝒀 in M:

(i) All steps are in 𝑠𝑡𝑝^
𝑌
∪ 𝑠𝑡𝑝𝐾

𝑌
.

(ii) Every 𝑠𝑡𝑝𝐾
𝑌
step of 𝒀𝒀 is a member of a subsequence of at most𝑀 consecutive such steps.

(iii) Every 𝑠𝑡𝑝^
𝑌
step of 𝒀𝒀 is a member of a subsequence of at least 𝑛 consecutive such steps.

Let 𝐼𝑛𝐵
𝑂𝑝𝑋,𝑌

and 𝑂𝑢𝑡𝐵
𝑂𝑝𝑋,𝑌

be given by (72)-(74), and let 𝐺𝐵
𝑋,𝑌

be given by (84), all below. Then:
(a) If each trace inM starts with at least one 𝑠𝑡𝑝𝐾

𝑌
step, and𝑀 and 𝑛 are related by (85) below, then

there is an 𝐼𝑛𝑖𝑡-constrained trace inclusion from the traces in M to traces of Sys𝑋 , mediated by
data [𝐺𝐵/𝐼𝑛𝐵/𝑂𝑢𝑡𝐵] and 𝐼𝑛𝑖𝑡-constraint 𝐺Δ𝐺

𝑋,𝑌
.
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(b) If each trace in M starts with at least one 𝑠𝑡𝑝^
𝑌
step, and 𝑀 and 𝑛 are related by (86) be-

low, then there is a trace inclusion from the traces in M to traces of Sys𝑋 , mediated by data
[𝐺Δ𝐺 /𝐼𝑛𝐵/𝑂𝑢𝑡𝐵].

The result holds if all the metric spaces involved do not have origins, or if they do, provided the relevant
distance and relation symbols are interpreted correctly.

Proof. Let 𝒀𝒀 be an execution of Sys𝑌 . We first construct 𝑿𝑿 , a generic execution of Sys𝑋 that
partly satisfies the conditions for simulating 𝒀𝒀 , and then address the missing conditions under
various scenarios, in particular, estimating the variation in 𝑑𝐺

𝑋,𝑌
.

Thus, let𝑢𝑋,0 and𝑢𝑌,0 be initial states. By (71), 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 holds for them. If they are both disabled,
we are done with constructing𝑿𝑿 and the partial simulation. Otherwise, both are enabled and there
are steps issuing from both 𝑢𝑋,0 and 𝑢𝑌,0. The one issuing from 𝑢𝑌,0 is the next step of 𝒀𝒀 . From
(68) and (69) we know that we can choose the next 𝑿𝑿 step so that (𝑢𝑋,0, 𝑢𝑌,0, 𝑖𝑋,0, 𝑖𝑌,0) ∈ UI 𝑘

𝑋𝑌

for the relevant 𝑘 . Now (67) ensures 𝐸𝑞𝐸𝑛𝑋,𝑌 for the after-states of these steps, and that gives us
the inductive step for progressing the construction of 𝑿𝑿 . The general inductive step follows the
preceding argument, but simply starts from the latest pair of after-states constructed.

To be able to establish the claims we need the relevant ref/ret data. Let 𝑢𝑌 -(𝑖𝑌 ,𝑂𝑝𝑌 , 𝑜𝑌 )->>>𝑢 ′𝑌 and
𝑢𝑋 -(𝑖𝑋 ,𝑂𝑝𝑋 , 𝑜𝑋 )->>>𝑢 ′𝑋 be a pair of corresponding steps of 𝒀𝒀 and 𝑿𝑿 . If the former is in 𝑠𝑡𝑝𝐾

𝑌
, we

define 𝐼𝑛𝐵
𝑋,𝑌

for the operations 𝑂𝑝𝑋 ⋑ 𝑂𝑝𝑌 via:

𝐼𝑛𝐵𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≡ 𝑑⋑

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵𝐾 (72)

and, for any 𝑂𝑝𝑋 ⋑ 𝑂𝑝𝑌 not already covered by (72), we define 𝐼𝑛𝐵
𝑋,𝑌

via:

𝐼𝑛𝐵𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≡ 𝑑⋑

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵^ (73)

In both cases, following the policy stated earlier, we can define 𝑂𝑢𝑡𝐵
𝑋,𝑌

via:

𝑂𝑢𝑡𝐵𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≡ true (74)

It remains for 𝑑𝐺
𝑋,𝑌

to be estimated. Consider a starting value 𝑑0 of 𝑑𝐺𝑋,𝑌 , and that 𝑠𝑡𝑝𝐾
𝑌
steps are

then executed. After one step, 𝑑𝐺
𝑋,𝑌

is bounded by 𝐾 (𝑑0 + 𝐵𝐾 ). After two steps, 𝑑𝐺
𝑋,𝑌

is bounded by
𝐾 (𝐾 (𝑑0 + 𝐵𝐾 ) + 𝐵𝐾 ), and after𝑀 steps, since 𝐾 > 1, we have:

𝑑𝐺𝑋,𝑌 ≤ 𝐵M (𝑑0, 𝑀) = 𝑑0 𝐾𝑀 + 𝐵𝐾 (𝐾𝑀 + 𝐾𝑀−1 + . . . + 𝐾) ≤ 𝐾𝑀 (𝑑0 +𝑀𝐵𝐾 ) (75)
Thus:

𝐵M (𝑑0, 𝑀) ≤ 𝐾𝑀 (𝑑0 +𝑀𝐵𝐾 ) (76)

Likewise if, starting from 𝑑0, 𝑠𝑡𝑝^𝑌 steps are executed, since ^ < 1, after 𝑛 steps, we have:

𝑑𝐺𝑋,𝑌 ≤ 𝐵n (𝑑0, 𝑛) = 𝑑0 ^
𝑛 + 𝐵^ (^ + ^2 + . . . + ^𝑛)

= 𝑑0 ^𝑛 + 𝐵^ (1 − ^𝑛)/(1/^ − 1)−1

≤ 𝑑0 ^
𝑛 + 𝐵^^ (1 − ^)−1 (77)

so that:
𝐵n (𝑑0, 𝑛) ≤ 𝑑0 ^𝑛 + 𝐵^^ (1 − ^)−1 (78)

Note that if 𝐵n (𝑑0, 𝑛) is required to be smaller than 𝑑0, then we must have:
𝑑0 − 𝐵^^ (1 − ^)−1 > 𝑑0 ^𝑛 > 0 (79)

and if the value of𝑛 needed to achieve 𝐵n (𝑑0, 𝑛) < 𝑑0 is required to be reasonable, then the difference
in (79) should be substantial.
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Combining the preceding, if, starting from 𝑑0, 𝑀 𝑠𝑡𝑝𝐾
𝑌
steps are followed by 𝑛 𝑠𝑡𝑝^

𝑌
steps, the

final value of 𝑑𝐺
𝑋,𝑌

is bounded by:

𝐵M,n (𝑑0, 𝑀, 𝑛) ≤ 𝐾𝑀 (𝑑0 +𝑀𝐵𝐾 )^𝑛 + 𝐵^^ (1 − ^)−1 (80)

Note that (80) implies that 𝐵^^ (1−^)−1 is a useful minimal assumption for the bound for 𝐵M,n (_, _, 𝑛).
Thus, to guarantee to reduce 𝐵M,n (𝑑0, 𝑀, 𝑛) to a given value 𝑑1 > 𝐵^^ (1 − ^)−1 (based on our
assumptions and estimates), we must have 𝐾𝑀 (𝑑0 +𝑀𝐵𝐾 )^𝑛 +𝐵^^ (1−^)−1 < 𝑑1. This implies that
we need a number of 𝑠𝑡𝑝^

𝑌
steps 𝑛 given by:

𝑛 ≥ log^

[
𝑑1 − 𝐵^^ (1 − ^)−1
𝐾𝑀 (𝑑0 +𝑀𝐵𝐾 )

]
(81)

which is suitably well defined only if the numerator in (81) is positive.
Conversely, if, starting from 𝑑0, 𝑛 𝑠𝑡𝑝^𝑌 steps are followed by𝑀 𝑠𝑡𝑝𝐾

𝑌
steps, the final value of 𝑑𝐺

𝑋,𝑌

is bounded by:

𝐵n,M (𝑑0, 𝑛, 𝑀) ≤ 𝐾𝑀 (𝑑0 ^𝑛 + 𝐵^^ (1 − ^)−1 +𝑀𝐵𝐾 ) (82)

Note that (82) implies that 𝑑0 ^𝑛 + 𝐵^^ (1 − ^)−1 + 𝐵𝐾 is a useful minimal assumption for the bound
for 𝐵n,M (_, _, 𝑀) when at least one 𝑠𝑡𝑝𝐾

𝑌
step is contemplated. Thus, to guarantee that 𝐵n,M (𝑑0, 𝑛, 𝑀)

does not exceed a given value 𝑑1 > 𝑑0 ^
𝑛 + 𝐵^^ (1 − ^)−1 + 𝐵𝐾 (based on our assumptions and

estimates), we must have 𝐾𝑀 (𝑑0 ^𝑛 + 𝐵^^ (1 − ^)−1 + 𝑀𝐵𝐾 ) < 𝑑1. This implies that we need a
number of 𝑠𝑡𝑝𝐾

𝑌
steps𝑀 which is no more than what is permitted by:

1 ≤ 𝑀 ≤ log𝐾 [𝑑1/(𝑑0 + 𝐵^^ (1 − ^)−1 +𝑀𝐵𝐾 )] (83)

This is well defined only if the argument of the logarithm in (83) is big enough — if 𝑀 is to be
significant, then 𝑑1 needs to be large.

Define:

𝐺𝐵𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≡ 𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≤ 𝐾𝑀 (Δ𝐺 +𝑀𝐵𝐾 ) (84)

We now consider a number of scenarios.
In a first scenario, suppose that 𝒀𝒀 begins with 𝑠𝑡𝑝𝐾

𝑌
steps and that inputs and outputs are

constrained as stated above. Then the maximum value of 𝑑𝐺
𝑋,𝑌

(𝑢𝑋 , 𝑢𝑌 ) that can be achieved arises
when the initial value is at its greatest, namely Δ𝐺 , and there are also at most the maximum number
of 𝑠𝑡𝑝𝐾

𝑌
steps, namely𝑀 of them. By (76), this is bounded by 𝐵M (Δ𝐺 , 𝑀) = 𝐾𝑀 (Δ𝐺 +𝑀𝐵𝐾 ), which

is 𝐺𝐵
𝑋,𝑌

. If the number, 𝑛, of 𝑠𝑡𝑝^
𝑌
steps that follows, satisfies:

𝑛 > log^

[
Δ𝐺 − 𝐵^^ (1 − ^)−1
𝐾𝑀 (Δ𝐺 +𝑀𝐵𝐾 )

]
(85)

then 𝑑𝐺
𝑋,𝑌

is reduced to at most its initial value, Δ𝐺 . This is the worst case for a round of 𝑠𝑡𝑝𝐾
𝑌

steps followed by 𝑠𝑡𝑝^
𝑌
steps. Subsequent rounds can do no worse, and thus the requirements

of an 𝐼𝑛𝑖𝑡-constrained trace inclusion from the traces in M to traces of Sys𝑋 , mediated by data
[𝐺𝐵/𝐼𝑛𝐵/𝑂𝑢𝑡𝐵] and 𝐼𝑛𝑖𝑡-constraint 𝐺Δ𝐺

𝑋,𝑌
are established. This substantiates the claim in (a).

In a second scenario, suppose that 𝒀𝒀 begins with 𝑠𝑡𝑝^
𝑌
steps and that inputs and outputs are

constrained as stated above. Then the maximum value of 𝑑𝐺
𝑋,𝑌

(𝑢𝑋 , 𝑢𝑌 ) that can be achieved arises
when the initial value is at its greatest, namely Δ𝐺 , and when there are at least the minimum number
of 𝑠𝑡𝑝^

𝑌
steps, namely 𝑛 of them. By (77), this is bounded by 𝐵n (Δ𝐺 , 𝑛) = Δ𝐺 ^

𝑛 + 𝐵^^ (1 − ^)−1. If
the number,𝑀 , of 𝑠𝑡𝑝𝐾

𝑌
steps that follows, satisfies:

1 ≤ 𝑀 ≤ log𝐾 [Δ𝐺/(Δ𝐺 + 𝐵^^ (1 − ^)−1 +𝑀𝐵𝐾 )] (86)
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then 𝑑𝐺
𝑋,𝑌

increases to at most its initial value, Δ𝐺 . This is the worst case for a round of 𝑠𝑡𝑝^
𝑌
steps

followed by 𝑠𝑡𝑝𝐾
𝑌
steps. Subsequent rounds can do no worse, and thus the requirements of a trace

inclusion from the traces inM to traces of Sys𝑋 , mediated by data [𝐺Δ𝐺 /𝐼𝑛𝐵/𝑂𝑢𝑡𝐵] are established.
This substantiates the claim in (b).

As before, the indifference to the internal details of distance functions used above, means the
result is equally valid for no-origin and with-origin versions. We are done. □

Definition 8.17 (Unbounded Diverging/Converging Framework). An unbounded diverg-
ing/converging framework for Sys𝑋 and Sys𝑌 is defined as in Definition 8.15, but with the removal of the
conjunct (𝑑⋑

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵𝑘 ) from (67), with the resulting term denotedUI ◦𝑘

𝑋𝑌
. All terms derived directly

or indirectly from UI ◦𝑘
𝑋𝑌

also acquire a ◦ superscript thus: 𝐸𝑞𝐸𝑛𝑋,𝑌 → 𝐸𝑞𝐸𝑛◦
𝑋,𝑌

, 𝐸𝑞𝐸𝑛𝑘
𝑋,𝑌

→ 𝐸𝑞𝐸𝑛◦𝑘
𝑋,𝑌

,
𝑠𝑡𝑝𝑘

𝑌
→ 𝑠𝑡𝑝◦𝑘

𝑌
, etc.

Theorem 8.18 (Simulation, Refinement, Retrenchment with (Unbounded) Diverging/
Converging Framework). Let K = {^, 𝐾}, with 0 < ^ < 1 < 𝐾 . Let Sys𝑋 and Sys𝑌 be given, and
let the following hold: Ops𝑋 = {𝑂𝑝^𝑋 ,𝑂𝑝𝐾𝑋 } and Ops𝑌 = {𝑂𝑝^𝑌 ,𝑂𝑝𝐾𝑌 }. Assume the following
retrenchment data: ≽Ops𝑋,𝑌

= {𝑂𝑝^𝑋 ≽ 𝑂𝑝^𝑌 ,𝑂𝑝𝐾𝑋 ≽ 𝑂𝑝𝐾𝑌 }, and for 𝑘 ∈ K let:

𝑊 𝑘
𝑂𝑝𝑘𝑋,𝑌

≡ true (87)

𝐷𝑘
𝑂𝑝𝑘𝑋,𝑌

≡ 𝑑𝐺𝑋,𝑌 (𝑢
′
𝑋 , 𝑢

′
𝑌 ) ≤ 𝑘 (𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) + 𝑑

𝑊𝑂𝑝

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 )) (88)

Suppose given an unbounded diverging/converging framework for Sys𝑋 and Sys𝑌 , assuming the
notations of Definitions 8.15 and 8.17. Assume (71) (i.e.𝐺Δ𝐺

𝑋,𝑌
∧ 𝐸𝑞𝐸𝑛𝑋,𝑌 for paired initial states). Then:

(a) Sys𝑌 is strongly comprehensively simulable by Sys𝑋 , mediated by data [𝐺Δ𝐺 /𝑊 𝑘
𝑂𝑝𝑘

/𝐷𝑘
𝑂𝑝𝑘

].
(b) If the conjunct (𝑑𝐼𝑛𝑂𝑝

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵𝑘 ) is reinstated in the definition of UI ◦𝑘

𝑋𝑌
(so that the di-

verging/converging framework is no longer unbounded), and the properties of 𝑀,𝑛 and 𝐺𝐵

are assumed as in Theorem 8.16, then Sys𝑌 is 𝐼𝑛𝑖𝑡-constrained refinement simulable by Sys𝑋 ,
mediated by data [𝐺𝐵/𝑊 𝑘

𝑂𝑝𝑘
/𝐷𝑘

𝑂𝑝𝑘
] and 𝐼𝑛𝑖𝑡-constraint 𝐺Δ𝐺 .

(c) Taking all possible Sys𝑋 simulations 𝑿𝑿 of all possible Sys𝑌 traces 𝒀𝒀 into account (as con-
structed for parts (a) and (b)), if [𝐺𝐵/𝑊 𝑘

𝑂𝑝𝑘
/𝐷𝑘

𝑂𝑝𝑘
] are restricted to just those values that occur

within these simulations, then there is a retrenchment from Sys𝑋 to Sys𝑌 with these restricted
data.

The result holds if all the metric spaces involved do not have origins, or if they do, provided the relevant
distance and relation symbols are interpreted correctly.

Proof. Since we have a(n unbounded) diverging/converging framework for Sys𝑋 and Sys𝑌 , we
can rerun the initial part of the proof of Theorem 8.16, to construct a simulating trace 𝑿𝑿 for each
Sys𝑌 trace 𝒀𝒀 , since the conjunct (𝑑⋑

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵𝑘 ), present in the definition of UI𝑘

𝑋𝑌
but absent

in the definition of UI ◦𝑘
𝑋𝑌

, is not needed for that. The stated claims now follow by interpreting this
fact in the following manner.

For (a), we observe that for each corresponding pair of steps in simulating 𝑿𝑿 and 𝒀𝒀 ,𝑊 𝑘
𝑂𝑝𝑘𝑋,𝑌

and 𝐷𝑘
𝑂𝑝𝑘𝑋,𝑌

are in fact true, and that is all we need.
For (b), we observe that with the reinstated facts, the argument about the maximum value of

𝑑𝐺
𝑋,𝑌

detailed in the proof of Theorem 8.16 can be rerun, and this is enough to establish the claim.
For (c), we merely note that whenever we are required, by the retrenchment correctness PO,

to prove some consequence on the basis of some hypotheses, that consequence has already been
established by the simulation from which the truth of the hypotheses has itself been established
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during the restriction process. The independence of the argument from the details of the distance
functions implies equal validity of no-origin and with-origin versions of the result. We are done. □

8.4 Allowing for Limited Precision and Noise
The preceding results worked to ‘unlimited precision’ in that no limit was placed on the precision
of the contractions that govern how the two systems converge in the ^ < 1 case, which is a little
unrealistic. We now place some boundaries on this behaviour by introducing a threshold below
which further contraction is not asserted. This approach not only caters for the limited precision
inherent in all real systems, but also yields a means to make some allowance for the equipment
and environmental noise that invariably affects all real systems to a greater or lesser extent.

Definition 8.19 (Threshold Diverging/ Converging Framework). Let [𝐺Δ𝐺 /𝐼𝑛Δ𝐼 ⋑𝑂𝑢𝑡Δ𝑂 ]
be standard metric ref/ret data constructed from either refinement data or onto retrenchment data for
Sys𝑋 and Sys𝑌 .
Let 𝐷𝑇 , 𝐵𝑇 be positive constants. Let UI𝑇

𝑋𝑌
⊆ (U𝑋 × U𝑌 ) ×

⊎
𝑂𝑝𝑋⩾𝑂𝑝𝑌 (I𝑂𝑝𝑋 × I𝑂𝑝𝑌 ) be a set of

tuples of states and inputs of Sys𝑋 and Sys𝑌 such that:

(𝑢𝑋 , 𝑢𝑌 , 𝑖𝑋 , 𝑖𝑌 ) ∈ UI𝑇𝑋𝑌 ⇒
𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ⇒
𝑑⋑
𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵𝑇 ∧ 𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≤ 𝐷𝑇 ∧
(∃ �̃� ′𝑋 ∈ U𝑋 , 𝑜𝑋 ∈ O𝑂𝑝𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , �̃� ′𝑋 , 𝑜𝑋 ) ∧
𝑑𝐺𝑋,𝑌 (�̃�

′
𝑋 , 𝑢

′
𝑌 ) ≤ 𝐷𝑇 ∧

𝐸𝑞𝐸𝑛𝑇𝑋,𝑌 (�̃�
′
𝑋 , 𝑢

′
𝑌 )) (89)

where 𝐸𝑞𝐸𝑛𝑇
𝑋,𝑌

is defined in (92) below. Let:

𝐸𝑞𝐸𝑛𝜏𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≡
[ (∃ 𝑖𝑋 ∈ I𝑋 , 𝑢 ′𝑋 ∈ U𝑋 , 𝑜𝑋 ∈ O𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 )) ⇔
(∃ 𝑖𝑌 ∈ I𝑌 , 𝑢 ′𝑌 ∈ U𝑌 , 𝑜𝑌 ∈ O𝑌 • 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 )) ] ∧

[ 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ⇒ (𝑢𝑋 , 𝑢𝑌 , 𝑖𝑋 , 𝑖𝑌 ) ∈ UI𝑇𝑋𝑌 ] (90)

Let:

𝑠𝑡𝑝𝑇𝑌 ≡ { 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) | (∃𝑢𝑋 • 𝐸𝑞𝐸𝑛𝜏𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 )) } (91)

Now, referring to Definition 8.15, let K ⊆ R+¬1 be a finite set of positive constants, and for 𝑘 ∈ K, let
𝐵𝑘 ∈ R+ be a positive constant, and:

• let UI𝑇𝑘
𝑋𝑌

be as UI𝑘
𝑋𝑌

is in Definition 8.15 but replacing 𝐸𝑞𝐸𝑛𝑋,𝑌 by 𝐸𝑞𝐸𝑛𝑇
𝑋,𝑌

in (67),
• let 𝐸𝑞𝐸𝑛𝑇𝑘

𝑋,𝑌
be as 𝐸𝑞𝐸𝑛𝑘

𝑋,𝑌
is in Definition 8.15 but replacing UI𝑘

𝑋𝑌
by UI𝑇𝑘

𝑋𝑌
in (69),

• let 𝑠𝑡𝑝𝑇𝑘
𝑌

≡ 𝑠𝑡𝑝𝑘
𝑌
− 𝑠𝑡𝑝𝑇

𝑌
, where 𝑠𝑡𝑝𝑘

𝑌
is given by (70).

Let:

𝐸𝑞𝐸𝑛𝑇𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ≡ 𝐸𝑞𝐸𝑛𝜏𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) ∨ \/\/\/𝑘∈K 𝐸𝑞𝐸𝑛𝑘𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) (92)

Suppose also that:

𝐼𝑛𝑖𝑡𝑋 (𝑢𝑋 ) ∧ 𝐼𝑛𝑖𝑡𝑌 (𝑢𝑌 ) ⇒ 𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐸𝑞𝐸𝑛𝑇𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) (93)

This collection of properties is called a threshold diverging/converging framework for Sys𝑋 and Sys𝑌 ,
where the 𝑠𝑡𝑝𝑇

𝑌
components characterise the threshold aspect, the 𝑠𝑡𝑝𝑘

𝑌
components with 1 < 𝑘 ∈ K
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characterise the diverging aspect, and the 𝑠𝑡𝑝𝑘
𝑌
components with 1 > 𝑘 ∈ K characterise the converging

aspect.

Theorem 8.20 (Trace Inclusion with Threshold Diverging/Converging Framework).
Suppose given a threshold diverging/converging framework for Sys𝑋 and Sys𝑌 , assuming the notations
of Definitions 8.15 and 8.19, where K = {^, 𝐾}, with 0 < ^ < 1 < 𝐾 , and where 𝐷𝑇 = 𝐵n (Δ𝐺 , 𝑛). Let
M be a set of executions of Sys𝑌 that satisfy the threshold (𝑀,𝑛)-bounded excursion property (where
𝑀 and 𝑛 are both constants), namely that, for every execution 𝒀𝒀 in M:

(i) All steps are in 𝑠𝑡𝑝𝑇
𝑌
∪ 𝑠𝑡𝑝^

𝑌
∪ 𝑠𝑡𝑝𝐾

𝑌
.

(ii) Every 𝑠𝑡𝑝𝐾
𝑌
step of 𝒀𝒀 is a member of a subsequence of at most𝑀 consecutive such steps.

(iii) Every 𝑠𝑡𝑝^
𝑌
step of 𝒀𝒀 is a member of a subsequence of at least 𝑛 consecutive such steps, unless the

subsequence is preceded or followed by at least one 𝑠𝑡𝑝𝑇
𝑌
step (in which case no length restriction

applies).

Let 𝐼𝑛𝐵
𝑂𝑝𝑋,𝑌

and 𝑂𝑢𝑡𝐵
𝑂𝑝𝑋,𝑌

be given by (72)-(74), and let 𝐺𝐵
𝑋,𝑌

be given by (84). Then:

(a) If each trace in M starts with at least one 𝑠𝑡𝑝𝐾
𝑌
step, and𝑀 and 𝑛 are related by (85), then there

is an 𝐼𝑛𝑖𝑡-constrained trace inclusion from the traces in M to traces of Sys𝑋 , mediated by data
[𝐺𝐵/𝐼𝑛𝐵/𝑂𝑢𝑡𝐵] and 𝐼𝑛𝑖𝑡-constraint 𝐺Δ𝐺

𝑋,𝑌
.

(b) If each trace in M starts with at least one 𝑠𝑡𝑝𝑇
𝑌
step or 𝑠𝑡𝑝^

𝑌
step, and 𝑀 and 𝑛 are related by

(86), then there is a trace inclusion from the traces in M to traces of Sys𝑋 , mediated by data
[𝐺Δ𝐺 /𝐼𝑛𝐵/𝑂𝑢𝑡𝐵].

The result holds if all the metric spaces involved do not have origins, or if they do, provided the relevant
distance and relation symbols are interpreted correctly.

Proof. We reuse the proof of Theorem 8.16 to the greatest extent, arguing as follows. That proof
can be interpreted as establishing the invariant that 𝑑𝐺

𝑋,𝑌
never exceeded a value MAX, and that

at the beginning of any sequence of 𝑠𝑡𝑝𝐾
𝑌
steps, it never exceeded a value MIN. The values MAX

and MIN were different in the two cases (a) and (b) — in particular, the MIN value in case (b) was
smaller than the MIN value in case (a).
In Theorem 8.16 the reduction in 𝑑𝐺

𝑋,𝑌
needed to ensure that subsequent 𝑠𝑡𝑝𝐾

𝑌
steps respected

the MAX bound was achieved by sequences of 𝑠𝑡𝑝^
𝑌
steps, which needed to be long enough to do

the job. In the present situation, this is still the case, and for sequences of 𝑠𝑡𝑝^
𝑌
steps delimited by

𝑠𝑡𝑝𝐾
𝑌
steps, before and after, the same argument applies.

But if a sequence of 𝑠𝑡𝑝^
𝑌
steps is followed by a 𝑠𝑡𝑝𝑇

𝑌
step, the 𝑠𝑡𝑝𝑇

𝑌
step asserts that 𝑑𝐺

𝑋,𝑌
≤ 𝐷𝑇 =

𝐵n (Δ𝐺 , 𝑛), which is less than the lower of the two MIN values of Theorem 8.16, and this holds
regardless of the length of the sequence of 𝑠𝑡𝑝^

𝑌
steps, so the length restriction is not needed.

Likewise, if a sequence of 𝑠𝑡𝑝^
𝑌
steps is preceded by a 𝑠𝑡𝑝𝑇

𝑌
step, the 𝑠𝑡𝑝𝑇

𝑌
step asserts that

𝑑𝐺
𝑋,𝑌

≤ 𝐷𝑇 = 𝐵n (Δ𝐺 , 𝑛), which is already small enough to ensure that the invariant is maintained,
and subsequent 𝑠𝑡𝑝^

𝑌
steps can only diminish this value, so again, no length restriction is needed.

The usual modularity in distance functions implies equal validity of no-origin and with-origin
versions. □

Definition 8.21 (UnboundedThresholdDiverging/Converging Framework). An unbounded
threshold diverging/converging framework for Sys𝑋 and Sys𝑌 is defined as in Definition 8.19, but with
the removal of the conjunct (𝑑⋑

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵𝑘 ) from (the analogue of) (67), with the resulting term

denoted UI ◦𝑇𝑘
𝑋𝑌

. All terms derived directly or indirectly from UI ◦𝑇𝑘
𝑋𝑌

also acquire a ◦ superscript thus:
𝐸𝑞𝐸𝑛𝑇

𝑋,𝑌
→ 𝐸𝑞𝐸𝑛◦𝑇

𝑋,𝑌
, 𝐸𝑞𝐸𝑛𝑇𝑘

𝑋,𝑌
→ 𝐸𝑞𝐸𝑛◦𝑇𝑘

𝑋,𝑌
, 𝑠𝑡𝑝𝑇𝑘

𝑌
→ 𝑠𝑡𝑝◦𝑇𝑘

𝑌
, etc.
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Note that this definition does not remove the conjunct (𝑑⋑
𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵𝑇 ) from (89), constraining
the behaviours of the 𝑠𝑡𝑝𝜏

𝑌
steps in the same way as in Definition 8.19.

Theorem 8.22 (Simulation, Refinement, Retrenchment with (Unbounded) Threshold
Diverging/Converging Framework). Let K = {^, 𝐾}, with 0 < ^ < 1 < 𝐾 . Let Sys𝑋 and Sys𝑌 be
given, and let the following hold: Ops𝑋 = {𝑂𝑝𝜏𝑋 ,𝑂𝑝^𝑋 ,𝑂𝑝𝐾𝑋 } and Ops𝑌 = {𝑂𝑝𝜏𝑌 ,𝑂𝑝^𝑌 ,𝑂𝑝𝐾𝑌 }.
Assume the following retrenchment data:≽Ops𝑋,𝑌

= {𝑂𝑝𝜏𝑋 ≽ 𝑂𝑝𝜏𝑌 ,𝑂𝑝^𝑋 ≽ 𝑂𝑝^𝑌 ,𝑂𝑝𝐾𝑋 ≽ 𝑂𝑝𝐾𝑌 }.
let:

𝑊 𝜏
𝑂𝑝𝜏𝑋,𝑌

≡ true (94)

𝐷𝜏𝑂𝑝𝜏𝑋,𝑌
≡ 𝑑𝐺𝑋,𝑌 (𝑢

′
𝑋 , 𝑢

′
𝑌 ) ≤ 𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) (95)

and for 𝑘 ∈ K, let𝑊 𝑘
𝑂𝑝𝑘𝑋,𝑌

and 𝐷𝑘
𝑂𝑝𝑘𝑋,𝑌

be as in Definition 8.17.
Suppose given an unbounded threshold diverging/converging framework for Sys𝑋 and Sys𝑌 , assum-

ing the notations of Definitions 8.15 and 8.17. Assume (71) for the initial states. Then:

(a) Sys𝑌 is strongly comprehensively simulable by Sys𝑋 , mediated by data [𝐺Δ𝐺 /{𝑊 𝜏
𝑂𝑝𝜏

,𝑊 𝑘
𝑂𝑝𝑘

}/
{𝐷𝜏

𝑂𝑝𝜏
, 𝐷𝑘

𝑂𝑝𝑘
}].

(b) If the conjunct (𝑑⋑
𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵𝑘 ) is reinstated in the definition of UI ◦𝑇𝑘
𝑋𝑌

(so that the threshold
diverging/converging framework is no longer unbounded), and the properties of 𝑀,𝑛 and 𝐺𝐵

are assumed as in Theorem 8.20, then Sys𝑌 is 𝐼𝑛𝑖𝑡-constrained refinement simulable by Sys𝑋 ,
mediated by data [𝐺𝐵/{𝑊 𝜏

𝑂𝑝𝜏
,𝑊 𝑘

𝑂𝑝𝑘
}/{𝐷𝜏

𝑂𝑝𝜏
, 𝐷𝑘

𝑂𝑝𝑘
}] and 𝐼𝑛𝑖𝑡-constraint 𝐺Δ𝐺 .

(c) Taking all possible Sys𝑋 simulations 𝑿𝑿 of all possible Sys𝑌 traces 𝒀𝒀 into account (as con-
structed for parts (a) and (b)), if [𝐺𝐵/{𝑊 𝜏

𝑂𝑝𝜏
,𝑊 𝑘

𝑂𝑝𝑘
}/{𝐷𝜏

𝑂𝑝𝜏
, 𝐷𝑘

𝑂𝑝𝑘
}] are restricted to just those

values that occur within these simulations, then there is a retrenchment from Sys𝑋 to Sys𝑌 with
these restricted data.

The result holds if all the metric spaces involved do not have origins, or if they do, provided the relevant
distance and relation symbols are interpreted correctly.

Proof. This is almost identical to the proof of Theorem 8.18. Claim (a) follows identically. Claim
(b) follows by the same modification that we used in Theorem 8.20 regarding growth of 𝑑𝐺

𝑋,𝑌
. Claim

(c) follows identically. The usual no-/with-origin arguments apply. □

Theorems 8.16 and 8.20 (focused on trace inclusions for diverging/converging frameworks,
without and with thresholds respectively) take a semantics directed approach in that operation
names were not to the fore in the argument. For instance, the same operation (name) could be
associated with transitions belonging to both 𝑠𝑡𝑝𝐾

𝑌
and 𝑠𝑡𝑝^

𝑌
. Theorems 8.18 and 8.22 however (as

for the previous cases but with unboundedness), showed the opposite approach, where different
operation names labelled conceptually distinct behaviours at the semantic level ab initio. Results
such as these can serve as templates for a wide range of variants adapted to fit specific applications
needs, based on considerations such as the following two, for example.

For a first, a wider variety of syntactic distinctions between categories of diverging and converging
behaviours, each characterised by its own 𝑘 constant, could easily be catered for, at the cost of a
more complicated analysis. This has already been anticipated in the generality visible in Definitions
8.15, 8.17, 8.19, 8.21, which set up the machinery for the stated theorems.

For a second, different assumptions could be made about how inputs impact the changes of state
for each category. In the results above, we assumed that inputs affected changes of state via a linear
functional form, i.e. 𝑑𝐺

𝑋,𝑌
(𝑢 ′
𝑋
, 𝑢 ′
𝑌
) ≤ 𝑘 (𝑑𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) + 𝑑⋑𝑋,𝑌 (𝑖𝑋 , 𝑖𝑌 )), but this need not be the only
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useful form that could be considered. Again, there would be an impact on the complexity of the
associated analysis.

9 CONTINUOUS BEHAVIOUR IN CONCEDING/RESTORING THEOREMS
The focus in the last few sections has been on before-after properties, treated in the traditional
discrete transition style. As in Section 5, our aim in this paper is to cater for continuous behaviour
via smooth adaptations of the discrete techniques. We thus reconsider the preceding results in this
light.

The first point of call is Section 7. The results there were based purely on accessibility considera-
tions; i.e. the existence of an after-state to which there is a transition (or a sequence of transitions)
from some before-state playing a particular role in the discourse so far. The analogue of this for
the case of continuous transitions is the existence of a continuous trajectory from the before-state
to the (final) after-state (of the individual continuous transition or sequence of them). But this
is already implicit in the hypothesis of there being one or more continuous transition(s) at all.
Therefore, there is nothing more to be done for this situation, and we derive the following.

Proposition 9.1. The results of Section 7 remain true if the systems involved include continuous
transitions.

Section 8 introduces metric arguments into the discourse. This raises the issue of how any
change in metric properties of a quantity 𝑣 that is acceptable regarding its before-state value ‘𝑣 and
after-state value 𝑣’ in a discrete transition, should be interpreted over the interior of a continuous
transition that has those before- and after-states at its ends tL and tR, i.e. if 𝑣 (tL) = ‘𝑣 and 𝑣 (tR) = 𝑣’.
Given that the general aim of metric properties is to ensure that the magnitude of particular
quantities does not become excessive, some natural interpretations suggest themselves:

Policies 9.2.

(1) We demand that in the interior of a continuous transition the requisite magnitude is bounded by
the larger of the two values at its ends:

tL ≤ 𝑡 ≤ tR ⇒ |𝑣 (𝑡) | ≤ max{|𝑣 (tL) |, |𝑣 (tR) |} (96)

(2) We demand that in the interior of a continuous transition the requisite magnitude is bounded by
the linear interpolation of the values at its ends:

0 ≤ _ ≤ 1 ⇒ |𝑣 (_tL + (1 − _)tR) | ≤ _ |𝑣 (tL) | + (1 − _) |𝑣 (tR) | (97)

(3) We demand that in the interior of a continuous transition the requisite magnitude is bounded by
a monotonic function 𝜙 that is itself bounded between the smaller MIN and larger MAX of the
values at its ends:

0 ≤ _ ≤ 1 ⇒ 𝜙 monotonic ∧ 𝜙 (_) ∈ [MIN . . .MAX] ∧ |𝑣 (_tL + (1 − _)tR) | ≤ 𝜙 (_) (98)

Evidently, Policy 9.2.(1) is the most lax, while Policy 9.2.(3) permits the definition of more
finegrained continuous behaviour. Policy 9.2.(2) is a common particular case of Policy 9.2.(3).

Proposition 9.3. If, in the interior of all pliant transitions, the metric of any quantity of interest in
the discussions and results of Section 8 is a convex function of time, then it adheres to all of the Policies
in Policies 9.2 (with suitable 𝜙 in the case of the third).

Proof. Convexity is exactly the property in (97), and compliance with (97) implies compliance
with (96). □
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Of course, Proposition 9.3 merely delegates the proof of compliance with the stated properties,
to proving convexity. Convexity considerations lie at the heart of many discussions of stability
in control systems, a subject with a vast literature. We will assume in the rest of this paper that
the pliant behaviour we need to deal with does in fact conform to the properties we need, as just
described.

10 GRADED REFINEMENTS AND RETRENCHMENTS
We now extend the formal structures between a pairs of systems developed above to larger aggre-
gations of system models.

10.1 Graded Development Systems
A graded development system (GDS) is built out of the ingredients described in the preceding
sections. First, there is a strictly partially ordered finite set of system labels X = {𝑋,𝑌, 𝑍, . . .}. We
use ≽ for the partial order, e.g. 𝑋 ≽ 𝑌 . For each label 𝑋 there is a system Sys𝑋 , and for each case
of 𝑋 ≽ 𝑍 (which we will call a link) there is: either a retrenchment relationship Sys𝑋 ≽ Sys𝑍
from Sys𝑋 to Sys𝑍 , witnessed by relevant pairs of operations Ops𝑋 ≽Ops𝑋,𝑍

Ops𝑍 , themselves
witnessed by data 𝐺𝑋,𝑍 ,𝑊𝑂𝑝𝑋,𝑍

, 𝐷𝑂𝑝𝑋,𝑍
in each case; or there is merely a suite of retrenchment

data, as just described. We use the same terminology when the pairs of operations are replaced by
(𝑚,𝑛) diagrams instead.
Because X is finite, there will be a unique covering subrelation ≽• of ≽ consisting of links 𝑋 ≽ 𝑍

such that there is no 𝑌 such that 𝑋 ≽+ 𝑌 ≽+ 𝑍 . We call the links of ≽• basic links.
We know that the composition of retrenchment data𝑊𝑂𝑝𝑋,𝑌

, 𝐷𝑂𝑝𝑋,𝑌
, discussed in Section 4.1,

is associative (because it is just based on composition of relations). This enables paths in X e.g.
𝑋 ≽+ 𝑍 ≡ 𝑋 ≽ 𝑌 ≽ 𝑍 (which are constructed by transitive closure of ≽•) to be mapped to
retrenchment data relating the systems at the paths’ ends by the composition of the data belonging
to the basic links involved, e.g.:

Sys𝑋 ≽[𝐺𝑋,𝑍 /𝑊𝑋,𝑍 /𝐷𝑋,𝑍 ] Sys𝑍 ≡ Sys𝑋 ≽[𝐺𝑋,𝑌
o
9𝐺𝑌,𝑍 /𝑊𝑋,𝑌

o
9𝑊𝑌,𝑍 /𝐷𝑋,𝑌

o
9𝐷𝑌,𝑍 ] Sys𝑍 (99)

If, for all basic links 𝑋 ≽• 𝑍 we have unique retrenchment data Sys𝑋 ≽•[𝐺𝑋,𝑍 ,𝑊𝑂𝑝𝑋,𝑍
,𝐷𝑂𝑝𝑋,𝑍

]Sys𝑍 ,
and all other retrenchment data between the systems labelled by X arise by composition of the
basic link data for these (in all possible ways), then we say the GDS is a simple GDS (SGDS). Thus
for a SGDS, there is a total function from non-empty paths in X to retrenchment data between
the systems at the paths’ ends, which, for paths consisting of more than one basic link, arise by
composition. We extend this to include the case 𝑋 = 𝑍 by insisting that the relevant retrenchment
is the identity (given by identity relations for 𝐺 ,𝑊 and 𝐷), thus extending to reflexive transitive
closure, and the maximally non-strict extension of ≽. The same applies if the retrenchment data
witness actual retrenchments between the systems concerned.

Looking at all that from a categorical perspective, the projection that maps each system Sys𝑋 of
an SGDS to its label 𝑋 , and maps each retrenchment (data) Sys𝑋 ≽ Sys𝑌 to the link 𝑋 ≽ 𝑌 is a(n
op)fibration, split in fact [23, 25, 54].

In general, if there is more than one path from 𝑋 to 𝑍 in X, the retrenchment data belonging to
those paths may be combined using the techniques discussed in Section 4.1 (although if arbitrary
combinations of this kind are included in the collection of retrenchments associated with X, the
fibration properties just mentioned will be impaired).
Let 𝛾 = 𝑋 ≽ 𝑌 ≽ . . . ≽ 𝑍 be a directed path from 𝑋 to 𝑍 in X. We write 𝛾 = 𝑍 ≼ . . . ≼ 𝑌 ≼ 𝑋

for the dual path, i.e. the same thing regarded as a path from 𝑍 to 𝑋 instead. Given such a path
𝛾 = 𝑋 ≽ 𝑌 ≽ . . . ≽ 𝑍 , we can write [𝐺𝛾 ,𝑊𝛾 , 𝐷𝛾 ] for the retrenchment data derived by composing
the data of the constituent links.

ACM Transactions on Software Engineering and Methodology, Vol. 999, No. 4, Article 9876. Publication date: March 2099.



9876:34 R. Banach

Now let 𝛾 = 𝑋 ≽ 𝑌1 ≼ 𝑌2 ≽ 𝑌3 . . . ≽ 𝑍 be a not-unidirectional path (NUD path) from 𝑋 to
𝑍 in X, i.e., not all links point in the same direction. We can extend the previous definition of
[𝐺𝛾 ,𝑊𝛾 , 𝐷𝛾 ] for the retrenchment data for such a path, by using, in the composition of the data
belonging to the links, the transposes of the relations for the data belonging to ‘wrongly oriented’
links. Clearly, for NUD paths, there is no conceptual difference between a path and its dual.

With the above understood, given 𝛾 , we define 𝑉𝛾 and 𝑉𝛾 by:

𝑉𝛾 ⊆ U𝑍 ≡ { 𝑧 ∈ U𝑍 | ¬(∃ 𝑥 •𝐺𝛾 (𝑥, 𝑧)) } (100)
𝑉𝛾 ⊆ U𝑋 ≡ { 𝑥 ∈ U𝑋 | ¬(∃ 𝑧 •𝐺𝛾 (𝑥, 𝑧)) } (101)

Similarly, we define 𝑉 𝐼𝑛𝑣𝛾 and 𝑉 𝐼𝑛𝑣𝛾 by:

𝑉 𝐼𝑛𝑣𝛾 ⊆ U𝑍 ≡ { 𝑧 ∈ U𝑍 | 𝐼𝑛𝑣𝑍 (𝑧) ∧ ¬(∃ 𝑥 • 𝐼𝑛𝑣𝑋 (𝑥) ∧𝐺𝛾 (𝑥, 𝑧)) } (102)
𝑉 𝐼𝑛𝑣𝛾 ⊆ U𝑋 ≡ { 𝑥 ∈ U𝑋 | 𝐼𝑛𝑣𝑋 (𝑥) ∧ ¬(∃ 𝑧 •𝐺𝛾 (𝑥, 𝑧) ∧ 𝐼𝑛𝑣𝑍 (𝑧)) } (103)

Referring back to Section 2, we can make analogous definitions 𝑉𝐶𝐼𝑛𝑣𝛾 ,𝑉𝐶𝐼𝑛𝑣𝛾 by replacing
occurrences of 𝐼𝑛𝑣 in (102)-(103) with corresponding instances of the contingent invariant con-
cept 𝐶𝐼𝑛𝑣 . Likewise, we can strengthen all these concepts by insisting on reachability, or reach-
ability alongside invariance or contingent invariance, thereby getting 𝑉𝑅𝑒𝑎𝑐ℎ𝛾 ,𝑉𝑅𝑒𝑎𝑐ℎ𝛾 and
𝑉𝑅𝑒𝑎𝑐ℎ𝐼𝑛𝑣𝛾 ,𝑉𝑅𝑒𝑎𝑐ℎ𝐼𝑛𝑣𝛾 and𝑉𝑅𝑒𝑎𝑐ℎ𝐶𝐼𝑛𝑣𝛾 ,𝑉𝑅𝑒𝑎𝑐ℎ𝐶𝐼𝑛𝑣𝛾 . There will also be a vast array of mixed
quantities, demanding different properties at the two ends (and perhaps at intermediate points) of
𝛾 , which we do not list.

Since, between two models of interest to the same application, 𝐺𝛾 is likely to be simple and to
just reflect some obvious structural relationship between the state spaces, 𝑉𝛾 ,𝑉𝛾 are unlikely to be
informative. However, the situation changes for the other quantities defined.

If 𝑋 ≽+ 𝑍 , then, speaking intuitively, we regard Sys𝑋 as ‘abstract’ and Sys𝑍 as ‘concrete’. Then,
from a system engineering point of view, states in𝑉 𝐼𝑛𝑣𝛾 are ‘concrete’ states, potentially reachable
in an implementation level model, that do not have an ‘abstract’ counterpart. This can happen
if an abstract model is too idealised compared with the detailed concrete model, for reasons of
simplicity or perspicuity at the abstract level. In such situations, ≽ indicates the direction towards
the introduction of non-ideal, implementation level detail, and the non-emptiness of 𝑉 𝐼𝑛𝑣𝛾 is not,
of itself, problematic.

Conversely, states in 𝑉 𝐼𝑛𝑣𝛾 are abstract states that do not have a counterpart in a more concrete,
more implementable model. Since progress towards implementation using refinement is often
accompanied by a narrowing of possibilities (e.g. the often quoted ‘reduction of nondeterminism’
slogan), this, in itself, is not problematic. An exception arises when the abstract states (and their
associated system behaviour) are abstract representations of essential system requirements.14
In that case, non-emptiness of 𝑉 𝐼𝑛𝑣𝛾 could indicate non-fulfillment of these requirements as
implementation is approached, and such a state of affairs would need to be properly evaluated
within the development process. Thus, if the abstract representations of the system requirements
are, in essence, accurate, then their non-fulfillment needs to be reconciled with a more accurate
requirements model. On the other hand, if the abstract representations of the requirements are
merely over-idealised, then the situation is similar to the unproblematic case described earlier.
The situation becomes more challenging to interpret when we deal with NUD paths. For NUD

paths where the links are predominantly in one direction, the abstract to concrete interpretation
vis a vis requirements can be maintained, provided the oppositely oriented links are associated
with transposes of the original relations. But for NUD paths which offer a much more balanced

14Event-B [3] advocates the stepwise incorporation of requirements via successive refinements. The ASM technique [26, 27]
also speaks of refinement toward the ‘ground model’ which incorporates all the requirements.

ACM Transactions on Software Engineering and Methodology, Vol. 999, No. 4, Article 9876. Publication date: March 2099.



Graded Refinement, Retrenchment and Simulation 9876:35

mix of forward and backward links, such a view is harder to sustain. We take the view that such
situations are best dealt with on a case by case basis.

10.2 Graded Development Systems with Approximations
Thus far, X is an arbitrary (finite partially ordered) set. Now we choose to specialise X somewhat.
Let A = {𝐴, 𝐵, . . .} be a finite set (strictly partially ordered by ≽) of (names for) abstraction levels.
Let ordr map A to the naturals, ordr : A → N. We stipulate that X is of the form:

X = A ∪ {(𝐴,𝑘) | 𝐴 ∈ A ∧ 0 < 𝑘 ≤ ordr(𝐴)} (104)

The strict partial order ≽ on such an X is now defined with the help of the usual lexicographical
ordering:

𝐴 ≽ 𝐵 if ordr(𝐴) = ordr(𝐵) = 0 (and 𝐴 ≽ 𝐵 in A) (105)
𝐴 ≽ (𝐵, 𝑛) if 𝐴 ≽ 𝐵 in A ∧ ordr(𝐴) = 0 (106)
(𝐴,𝑛) ≽ 𝐵 if 𝐴 ≽ 𝐵 in A ∧ ordr(𝐵) = 0 (107)
𝐴 ≽ (𝐴,𝑛) if 0 < 𝑛 (108)

(𝐴,𝑛) ≽ (𝐵,𝑚) if 𝐴 ≽ 𝐵 ∨ (𝐴 = 𝐵 ∧ 0 < 𝑛 < 𝑚) (109)

The idea behind this is that the elements of A can index major levels of modelling or design
abstraction, while the integer part of a label (𝐴,𝑛) is available to indicate the order of approximation
in Sys(𝐴,𝑛), on the assumption that Sys(𝐴,𝑛) represents an 𝑛’th order approximation to an ideal
level 𝐴 model which is converged to ever more closely as 𝑛 increases, assuming in turn, that
the ideal model itself does not allow convenient closed form expression (or even if it does, when
computations with the closed form would need to resort to numerical approximation).15

Allowing the order of approximation for a given level 𝐴 to be limited by ordr(𝐴), and allowing
the partial order on X to be a subset of the full lexicographical ordering on all (𝐴,𝑘) pairs permits
us to focus on what we regard as the important relationships in the development structure.

In a figurative sense, we can view a position higher in the partial order on X as labelling a system
model that is ‘more ideal’ than one in a position lower down. As observed before, ‘ideal’ can both
indicate a better expression of the system requirements, and also a less realistic expression of them.

Our definition also embodies, in (108), the view that any approximation lives lower down in the
≽ order than a mathematically more ideal model that it approximates (given perhaps, implicitly as
a solution to an ODE system, or using infinite series, etc.). This also extends to the view, in (109),
that a higher order approximation, lives lower down in the ≽ order than a lower order one — this
being because a higher order approximation entails greater low level complexity and is thus closer
to implementation.
By contrast, the alternative view, that a higher order approximation is going to be metrically

closer to the ideal model it approximates, so should be higher in the ≽ order, is also justifiable — in
the end, it is a matter of choice. Such a state of affairs would be captured by changing the inequality
in the right hand side of (109) to 0 < 𝑚 < 𝑛. In this paper we stick to the former view.

In considering systems up to approximation, relations that are themselves approximate are often
used. In mathematics it is conventional to write, for example,𝐴 ∗ 𝐵+o(𝑡2), where ∗ is some suitable
relation. In this paper we will typically write this in infix form as:

𝐴 ∗o(𝑡2) 𝐵 (110)

to maintain conformance with other relational notations.
15The idea of allowing approximations, (and specifically to 𝑛’th order and similarly) to appear in formal development
schemes, has been considered before, although the approaches seen in the literature differ from ours. See e.g. [24].
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MACHINE 𝐻𝑦𝐸𝑣𝐵𝑀𝑐ℎ
TIME 𝑡
CLOCK 𝑐𝑙𝑘
PLIANT 𝑥,𝑦
VARIABLES 𝑢
INVARIANTS
𝑥,𝑦,𝑢 ∈ R,R,N

EVENTS
𝐼𝑁 𝐼𝑇 𝐼𝐴𝐿𝐼𝑆𝐴𝑇 𝐼𝑂𝑁

STATUS ordinary
WHEN
𝑡 = 0

THEN
𝑐𝑙𝑘 := 1
𝑥,𝑦,𝑢 := 𝑥0, 𝑦0, 𝑢0

END
. . . . . .

. . . . . .

𝑀𝑜𝐸𝑣

STATUS ordinary
ANY 𝑖?, 𝑙, 𝑜!
WHERE 𝑔𝑟𝑑 (𝑥,𝑦,𝑢, 𝑖?, 𝑙, 𝑡, 𝑐𝑙𝑘)
THEN
𝑥,𝑦,𝑢, 𝑐𝑙𝑘, 𝑜! : | 𝐵𝐴𝑝𝑟𝑒𝑑 (𝑥,𝑦,𝑢,
𝑖?, 𝑙, 𝑜!, 𝑡, 𝑐𝑙𝑘, 𝑥 ′, 𝑦′, 𝑢 ′, 𝑐𝑙𝑘 ′)

END
𝑃𝑙𝑖𝐸𝑣

STATUS pliant
INIT 𝑖𝑣 (𝑥,𝑦, 𝑡, 𝑐𝑙𝑘)
WHERE 𝑔𝑟𝑑 (𝑢)
ANY 𝑖?, 𝑙, 𝑜!
COMPLY
𝐵𝐷𝐴𝑝𝑟𝑒𝑑 (𝑥,𝑦,𝑢, 𝑖?, 𝑙, 𝑜!, 𝑡, 𝑐𝑙𝑘)

SOLVE
D𝑥 = 𝜙 (𝑥,𝑦,𝑢, 𝑖?, 𝑙, 𝑜!, 𝑡, 𝑐𝑙𝑘)
𝑦, 𝑜! := 𝐸 (𝑥,𝑢, 𝑖?, 𝑙, 𝑡, 𝑐𝑙𝑘)

END
END

Fig. 2. A schematic Hybrid Event-B machine.

11 HYBRID EVENT-B OVERVIEW
In this section we embark on the presentation of our motivating case study. This is developed in
the Hybrid Event-B (HEB) formalism [12, 13], so we start by giving an overview of this. Note that
HEB is a syntactic formalism, in contrast to the semantic approach of the previous sections. We
make suitable comments where necessary.

In Fig. 2 we see a skeletal HEB machine, 𝐻𝑦𝐸𝑣𝐵𝑀𝑐ℎ. It starts with declarations of time and of a
clock. In HEB time is a first class citizen in that all variables are functions of time, whether explicitly
or implicitly. However time is special, being read-only and never being assigned, since time cannot
be controlled by any human-designed engineering process. Clocks allow a bit more flexibility, since
they are assumed to increase their value at the same rate that time does (i.e. one unit per unit of
time), but they may be set during mode events (see below).

Variables are of two kinds. There are mode variables (like 𝑢, declared in the usual manner) which
take their values in discrete sets and change their values via discontinuous assignment in mode
events. There are also pliant variables (such as 𝑥,𝑦), declared in the PLIANT clause, which take
their values in topologically dense sets (normally R) and which are allowed to change continuously;
these changes are specified via pliant events (see below). ‘Pliant’ is the shorter word used in HEB
to refer to continuous concepts.

Next are the invariants. These resemble invariants in discrete Event-B [3], in that the types of the
variables are asserted to be the (static) sets from which the variables’ values at any given moment
of time are drawn. More complex invariants are similarly predicates involving any or all of the
variables that are required to hold at all moments of time during a run.

The events start with 𝐼𝑁 𝐼𝑇 𝐼𝐴𝐿𝐼𝑆𝐴𝑇 𝐼𝑂𝑁 , which has a guard that synchronises time with the
start of any run (the WHEN clause), while all other variables are assigned their initial values in the
usual way (in the THEN clause that complements the WHEN clause). As hinted above, in HEB,
there are two kinds of event: mode events and pliant events.
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Mode events are direct analogues of events in discrete Event-B. They can assign all machine
variables (except time itself). In the schematic MoEv of Fig. 2, we see three parameters 𝑖?, 𝑙, 𝑜!, (an
input, a local parameter, and an output respectively), and a guard 𝑔𝑟𝑑 which can depend on all
the machine variables, and defines mode event enabledness. We also see the generic after-value
assignment specified by the before-after predicate 𝐵𝐴𝑝𝑟𝑒𝑑 , which can specify how the after-values
of all variables (except time, inputs and locals) are to be determined. The usual abbreviations using
assignment notation such as := are available.

Pliant events are exclusive to HEB. They specify the continuous evolution of the pliant variables
over an interval of time.16 The schematic pliant event 𝑃𝑙𝑖𝐸𝑣 of Fig. 2 shows the structure. There are
two guards: there is 𝑖𝑣 , for specifying enabling conditions on the pliant variables, clocks, and time;
and there is𝑔𝑟𝑑 , for specifying enabling conditions on the mode variables. Their conjunction defines
pliant event enabledness. The separation between the two guards is motivated by considerations
connected with refinement (discussed in detail in [12]).
The body of a pliant event contains three parameters 𝑖?, 𝑙, 𝑜!, (once more an input, a local

parameter, and an output respectively) which are functions of time, defined over the duration
of the pliant event. The behaviour of the event is defined by the COMPLY and SOLVE clauses.
The SOLVE clause specifies behaviour fairly directly using two specification mechanisms: direct
assignments and ordinary differential equations (ODEs). For example, the behaviour of pliant
variable 𝑦 and output variable 𝑜! is given by a direct assignment to the (time dependent) value of
the (vector valued) expression 𝐸, in 𝑦, 𝑜! := 𝐸 (. . .). By contrast, the behaviour of pliant variable 𝑥 is
given by the solution to the first order ODE D𝑥 = 𝜙 (. . .), where D indicates differentiation with
respect to time. (In fact the semantics of the 𝑦, 𝑜! := 𝐸 case can be given (modulo some technicalities
concerning discontinuities) in terms of the ODED𝑦,D𝑜! = D𝐸, so that 𝑥 , 𝑦 and 𝑜! satisfy the same
regularity properties.) The COMPLY clause can be used to express any additional constraints that are
required to hold during the pliant event via its before-during-and-after predicate BDApred. Typically,
constraints on the permitted range of values for the pliant variables, and similar restrictions, can
be placed here.
The COMPLY clause has another purpose. When specifying at an abstract level, we do not

necessarily want to be concerned with all the details of the dynamics — it is often sufficient to
require some global constraints to hold which express the needed safety properties of the machine’s
plaint events. (Often these are refined to more deterministic behaviour at lower levels of abstraction.)
The COMPLY clauses of the relevant pliant events can house such constraints directly, leaving it to
lower level refinements to add the necessary details of the dynamics.
If, from Fig. 2, we erase time, clocks, pliant variables and pliant events, we arrive at a skeleton

(conventional) Event-B machine. This simple erasure process illustrates (in reverse) the way that
HEB has been designed as a clean extension of the original Event-B framework [3]. The only
difference of note is that, now —at least according to the (conventional) way that Event-B is
interpreted in the physical world— (the mode) events (left behind by the erasure) execute lazily,
i.e. not at the instant they become enabled (which is, of course, the moment of execution of the
previous mode event).
Briefly, the semantics of a HEB machine consists of a set of system traces, each of which is a

collection of functions of time, expressing the value of each machine variable over the duration
of a system run. A run starts at some initial moment of time 𝑡0, and lasts either for a finite time,
or indefinitely. The duration of the run, T , an interval of the reals, breaks up into a succession of
left-closed right-open subintervals: T = [𝑡0 . . . 𝑡1), [𝑡1 . . . 𝑡2), [𝑡2 . . . 𝑡3), . . ., exactly as described in
Section 5.

16In HEB terminology, a ‘pliant event’ syntactically specifies a ‘continuous transition’ as used earlier in the paper.
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Mode events take place at the isolated times corresponding to the common endpoints of these
subintervals 𝑡𝑖 . In between, the mode variables are constant, and the pliant events stipulate contin-
uous change in the pliant variables. We insist that on every subinterval [𝑡𝑖 . . . 𝑡𝑖+1) the behaviour
is governed by a well posed initial value problem [76]. Time 𝑡𝑖+1 is defined as the earliest time at
which a mode event becomes enabled, at which point the continuous behaviour is preempted, the
mode event executes, and a further pliant event is executed after its completion. A system run is
well formed, and thus belongs to the semantics of the machine, provided that at runtime:
(1) Every enabled mode event is feasible, i.e. has an after-state, and on its completion enables a

pliant event (but does not enable any mode event).17
(2) Every enabled pliant event is feasible, i.e. has a time-indexed family of after-states, and

EITHER:
(a) During the run of the pliant event a mode event becomes enabled. It preempts the pliant

event, defining its end. ORELSE
(b) During the run of the pliant event it becomes infeasible: finite termination. ORELSE
(c) The pliant event continues indefinitely: nontermination.

Thus, in a well formed run, mode events alternate with pliant events.
Of course, there are many semantic details of the linguistic framework just described that are

glossed over by the above description. These are covered with precision in [12, 13]. Nevertheless,
we highlight the following points.

Clearly, the ‘raw’ state space of a HEB machine is the Cartesian product of the types of its
variables. For this reason, the invariants, and the events’ guards play a much more prominent role
is shaping the accessible state subspace to the needs of the intended application than when we are
at liberty to postulate it semantically.

Moreover, for a given machine, all the properties that we have been insisting hold in the account
above, get translated to proof obligations (POs). These are theorem schemas that have been instanti-
ated using elements extracted from the machine definition, and that must be shown to be true if
the system model is to be regarded as correct.
Among the most prominent of the POs are ones that directly reflect the invariant preservation

properties discussed in Section 2 (and their counterparts for pliant events discussed in Section 5);
also the POs that ensure well formedness, discussed just above.

One class of POs not derived from the earlier discussion concerns feasibility, i.e. the existence of
things that are needed, but that are specified purely syntactically. For example we can mention
existence of initial states: specifically, if initial states are specified using a predicate expression 𝐼𝑛𝑖𝑡 ,
is this predicate expression actually satisfied by any state value? We can also mention existence of
after-states (or of after-state families for the pliant case) of events that are specified syntactically;
also, existence of suitable abstract states or transitions in refinement or retrenchment properties.

The latter point raises the issue of refinement and retrenchment of HEB machines. We will have
a lot more to say about these in the context of our case study, so we postpone further discussion to
Section 13.

12 ACTIVE CONTROL FOR EARTHQUAKE PROTECTION
An active control system for earthquake protection of a building is, like almost all control systems,
steeped in considerations arising from conventional applied mathematics. In [11] the authors
explore a formal development of such a system using a formal approach based on HEB. This
enabled the many application level calculations needed, to be related directly to formal elements.

17If a mode event has an input, the semantics assumes that its value only arrives at a time strictly later than the previous
mode event, ensuring part of 1 and 2 automatically.
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𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_0.01 −−−−−→ 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_1.01 −−−−−→ 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_2.5 −−−−−→ 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_3

Fig. 3. An earthquake damage prevention active control system development hierarchy.

In this section we present the essentials of this development by describing a series of HEB models,
shown in Fig. 3.18 In the next section we pick up on the relationships between these models, and
the subtleties related to these relationships, and thereby we derive a version of Fig. 3 in which the
arrows are more informative.
In brief, a simple, single degree of freedom model of an active control system for a building, is

based on the following second order ODE:

𝑚D2 𝑥 + 𝑐D𝑥 + 𝑘 𝑥 = 𝑝 −𝑚𝑒? (111)

In (111),𝑚 is the mass of the building and 𝑥 is the displacement of a fiducial point in the building
fromwhere it should normally be (in an inertial frame of reference). In the active control mechanism,
𝑐 is the coefficient of the viscous damper, and 𝑘 is the spring constant of the mechanism. The force
applied by the control mechanism is 𝑝 , and 𝑒? is the acceleration of the earth during an earthquake.
This forms the focus of the development.

In Fig. 4 we see 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_0.01, the top level HEB machine of the development. It does very
little. Aside from the INITIALISATION , the only event, the pliant MONITOR, merely demands that
provided that the environment’s input 𝑒? does not exceed the bound 𝐸𝐵 in magnitude, then the
INVARIANTS are maintained, the only non-trivial one of which states that the building displacement
𝑥 stays within the safe margin 𝑋𝐵 in magnitude. This constitutes a paradigmatic example of an
abstract model merely expressing a system requirement, without concerning itself with the means
by which the requirement is to be met.
Fig. 5 contains the code for 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_1.01, a first concretisation of 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_0.01. The

behaviour of the MONITOR event is a constraining of its previous incarnation. As well as the input
𝑒?, there are now two locally chosen parameters, 𝑝𝑝 and 𝑒 . The former, via the assignment 𝑝 := 𝑝𝑝 ,
allows values that match 𝑒? only imprecisely, to be fed to the ODE system in the SOLVE clause,
while the latter permits the stipulation that 𝑒? differs from a constant value (which may be chosen
conveniently) by not too much during a MONITOR transition. The SOLVE clause itself decomposes

18See [11] for a more detailed discussion than appears here.

MACHINE 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_0.01
PLIANT 𝑥
INVARIANTS
𝑥 ∈ R
|𝑥 | ≤ 𝑋𝐵

EVENTS
INITIALISATION
STATUS ordinary
BEGIN
𝑥 := 0

END
. . . . . .

. . . . . .

MONITOR
STATUS pliant
ANY 𝑒?
WHERE
𝑒? ∈ R ∧ |𝑒?| ≤ 𝐸𝐵

COMPLY INVARIANTS
END

END

Fig. 4. A highly abstract model of the earthquake damage prevention active control system: 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_0.
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MACHINE 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_1.01
CLOCK 𝑐𝑙𝑘_𝑝𝑙𝑠
PLIANT 𝑥,𝑦, 𝑝
INVARIANTS
𝑥,𝑦, 𝑝 ∈ R,R,R
|𝑥 | ≤ 𝑋𝐵

EVENTS
INITIALISATION
STATUS ordinary
BEGIN
𝑐𝑙𝑘_𝑝𝑙𝑠 := 0
𝑥,𝑦, 𝑝 := 0, 0, 0

END
MoSkip
STATUS ordinary
WHEN
𝑐𝑙𝑘_𝑝𝑙𝑠 = 𝑇𝑃

THEN
𝑐𝑙𝑘_𝑝𝑙𝑠 := 0

END
. . . . . .

. . . . . .

MONITOR
STATUS pliant
ANY 𝑝𝑝, 𝑒, 𝑒?
WHERE
𝑝𝑝 ∈ R ∧ |𝑝𝑝 | ≤ 𝑃𝑃𝐵 ∧
𝑒 ∈ R ∧ CONST(𝑒) ∧
𝑒? ∈ R ∧ |𝑒?| ≤ 𝐸𝐵 ∧ |𝑒 − 𝑒?| ≤ 𝑒𝐵

COMPLY
{{{e𝐴𝐴𝐴(𝑡−tL) [𝑥 (tL), 𝑦 (tL)]T+

(e𝐴𝐴𝐴𝑠 ∗[tL ...𝑡 ] [0, 1
𝑚
𝑝𝑝 − 𝑒?]T)}}}...𝑥

≤ 𝑋𝐵
SOLVE
𝑝 := 𝑝𝑝
D𝑥 = 𝑦

D𝑦 = − 𝑐
𝑚
𝑦 − 𝑘

𝑚
𝑥 + 1

𝑚
𝑝 − 𝑒?

END
END

Fig. 5. A more concrete model of the system: 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_1.

the second order ODE (111) into two first order ODEs, one for the displacement 𝑥 and one for the
velocity 𝑦.

The imprecision between 𝑝𝑝 and 𝑒? is certainly needed, since it is infeasible to require that 𝑝
be chosen to exactly match𝑚𝑒? in real time. The latter would enable the identically zero solution
to (111), enabling the building to stand perfectly still in even the most violent earthquake. Some
bound like 𝑒 is also needed since the any engineered system has finite capability, and cannot be
expected to perform outside its limits.
The COMPLY clause takes advantage of the fact that the solution to linear constant coef-

ficient inhomogeneous ODE systems such as (111) is routine. See [4, 29, 72, 76] as well as a
host of other sources. The first term is the homogeneous solution, primed by the initial values:
e𝐴𝐴𝐴(𝑡−tL) [𝑥 (tL), 𝑦 (tL)]T, where𝐴𝐴𝐴 is the companion matrix of the homogeneous part of the ODE
system in the SOLVE clause, and tL refers, generically, to the start time of any runtime transition
specified by the pliant event. The second term is the convolution ∗ over the interval [tL . . . 𝑡]
between the homogeneous solution e𝐴𝐴𝐴(𝑠) (with bound convolution variable renamed to 𝑠) and
the inhomogeneous part [0, 1

𝑚
𝑝𝑝 − 𝑒?]T. If the projection of all this to the 𝑥 variable (written ...𝑥)

achieves the desired bound, then the ODE system in the SOLVE clause establishes the desired
invariant. The permitted imprecision between 𝑝𝑝 and 𝑒? makes this a practical proposition.

Owing to the introduction of the clock 𝑐𝑙𝑘_𝑝𝑙𝑠 , the mode event𝑀𝑜𝑆𝑘𝑖𝑝 interrupts MONITOR at
intervals of 𝑇𝑃 , after which MONITOR restarts. This permits the reassignment of the constant 𝑒 in
MONITOR at each restart. If the interval𝑇𝑃 is short enough, it permits the choice of 𝑝𝑝 during each
MONITOR transition to achieve the desired outcome.

In Figs. 6-7 there are two further stages of the development. The text in the figures that is purely
black constitutes machine 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5. Adding the parts in red (of the form 𝐾−1

... ⌊𝐾... . . .⌉)
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gives machine 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3. Machine 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 adds discrete time data sampling (to the
machine model 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2 discussed in [11]), while 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3 adds sensor and actuator
quantisation, via the 𝐾−1

... ⌊𝐾... . . .⌉ additions, which stipulate scaling, rounding, and unscaling.
Looking more closely at the details of 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5, compared with its predecessor, 𝑥 and 𝑦

have become 𝑥𝑥 and 𝑦𝑦 for easy discrimination later. The needed invariant becomes |𝑥𝑥 | ≤ 𝑋𝐵 .
The pliant behaviour ofMONITOR is interrupted every𝑇𝑃 time units by the PulseXX mode events.

These have the capability of applying an impulse to the building if the ground motion is such that
damage to the building is threatened.
PulseNo (which takes no action) is executed if the ground motion is below a safe threshold

𝑋𝑡ℎ . PulseMaybe is executed if the ground motion is above the 𝑋𝑡ℎ threshold, but a more detailed
calculation shows that action is, in fact, not needed during the current sampling interval. The
detailed calculation is given by

�� 𝑥19 (1−𝜔2𝑇 2
𝑃
/2
)
+ 𝑦19𝑇𝑃

(
1− Z 𝜔 𝑇𝑃

)
− 𝑒19𝑇 2

𝑃
/2

�� ≤ 𝑋𝐵 , in which
Z = 𝑐/2

√
𝑘𝑚 and 𝜔 =

√
𝑘/𝑚. These constants are derived from a standardisation of the LHS of the

ODE (111) into the form D2 𝑥 + 2Z𝜔D𝑥 + 𝜔2 𝑥 . See [11, 30] for further details.
PulseYesY and PulseYesE cover the cases when the inequality just quoted is reversed — in the

former case the contribution from the 𝑦𝑦 variable to the excess is greater, so a pulse is delivered that
reverses its effect, in the latter case the contribution from ground motion to the excess is greater,
so its effect is counteracted by reversing that.

MACHINE 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5/3
CLOCK 𝑐𝑙𝑘_𝑝𝑙𝑠
VARIABLES
𝑥18, 𝑥19, 𝑦19, 𝑒19

PLIANT 𝑥𝑥,𝑦𝑦
INVARIANTS
𝑥18, 𝑥19, 𝑦19, 𝑒19 ∈ R,R,R,R
𝑥𝑥,𝑦𝑦 ∈ R,R
|𝑥𝑥 | ≤ 𝑋𝐵

EVENTS
INITIALISATION
STATUS ordinary
BEGIN
𝑐𝑙𝑘_𝑝𝑙𝑠 := 0
𝑥19, 𝑦19, 𝑒19 := 0, 0, 0
𝑥𝑥,𝑦𝑦 := 0, 0

END
MONITOR
STATUS pliant
ANY 𝑒, 𝑒?
WHERE
𝑒 ∈ R ∧ CONST(𝑒) ∧
𝑒? ∈ R ∧ |𝑒?| ≤ 𝐸𝐵 ∧ |𝑒 − 𝑒?| ≤ 𝑒𝐵

SOLVE
D𝑥𝑥 = 𝑦𝑦

D𝑦𝑦 = − 𝑐
𝑚 𝑦𝑦 − 𝑘

𝑚 𝑥𝑥 − 𝑒?
END

. . . . . .

. . . . . .

Sample_18
WHEN
𝑐𝑙𝑘_𝑝𝑙𝑠 = 18

20𝑇𝑃
THEN
𝑥18 := 𝐾−1

𝑥𝑠 ⌊𝐾𝑥𝑠 𝑥𝑥⌉
END

Sample_19
ANY 𝑒?
WHERE
𝑐𝑙𝑘_𝑝𝑙𝑠 = 19

20𝑇𝑃 ∧
𝑒? ∈ R ∧ |𝑒?| ≤ 𝐸𝐵

THEN
𝑥19 := 𝐾−1

𝑥𝑠 ⌊𝐾𝑥𝑠 𝑥𝑥⌉
𝑦19 := (𝐾−1

𝑥𝑠 ⌊𝐾𝑥𝑠 𝑥𝑥⌉ − 𝑥18) 20𝑇𝑃
𝑒19 := 𝐾−1

𝑒𝑠 ⌊𝐾𝑒𝑠 𝑒?⌉
END

PulseNo
STATUS ordinary
WHEN
𝑐𝑙𝑘_𝑝𝑙𝑠 = 𝑇𝑃 ∧ |𝑥19| < 𝑋𝑡ℎ

THEN
𝑐𝑙𝑘_𝑝𝑙𝑠 := 0

END
. . . . . .

Fig. 6. The active control system, versions 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3, first part.

ACM Transactions on Software Engineering and Methodology, Vol. 999, No. 4, Article 9876. Publication date: March 2099.



9876:42 R. Banach

. . . . . .

PulseMaybe
STATUS ordinary
WHEN
𝑐𝑙𝑘_𝑝𝑙𝑠 = 𝑇𝑃 ∧ |𝑥19| ≥ 𝑋𝑡ℎ ∧��� 𝑥19 (1 − 𝜔2𝑇 2

𝑃
/2
)
+ 𝑦19𝑇𝑃

(
1 − Z 𝜔 𝑇𝑃

)
− 𝑒19𝑇 2

𝑃
/2

��� ≤ 𝑋𝐵
THEN
𝑐𝑙𝑘_𝑝𝑙𝑠 := 0

END
PulseYesY
STATUS ordinary
ANY Δ𝑥,𝑤
WHERE
𝑐𝑙𝑘_𝑝𝑙𝑠 = 𝑇𝑃 ∧ |𝑥19| ≥ 𝑋𝑡ℎ ∧��� 𝑥19 (1 − 𝜔2𝑇 2

𝑃
/2
)
+ 𝑦19𝑇𝑃

(
1 − Z 𝜔 𝑇𝑃

)
− 𝑒19𝑇 2

𝑃
/2

��� − 𝑋𝐵 = 𝑤 ∧
𝑤 > 0∧
Δ𝑥 = 𝑤 + (𝑋𝐵 − |𝑥19|) ∧[
(sign(𝑦19) = sign(−𝑒19) ∧ |𝑦19𝑇𝑃 (1 − Z 𝜔 𝑇𝑃 ) | ≥ Δ𝑥/2) ∨
(sign(𝑦19) ≠ sign(−𝑒19) ∧ |𝑦19𝑇𝑃 (1 − Z 𝜔 𝑇𝑃 ) | ≥ Δ𝑥)

]
THEN
𝑐𝑙𝑘_𝑝𝑙𝑠 := 0
𝑦𝑦 := 𝐾−1

𝑦𝑠 ⌊𝐾𝑦𝑠 (−𝑦19)⌉
END

PulseYesE
STATUS ordinary
ANY Δ𝑥,𝑤
WHERE
𝑐𝑙𝑘_𝑝𝑙𝑠 = 𝑇𝑃 ∧ |𝑥 | ≥ 𝑋𝑡ℎ ∧��� 𝑥19 (1 − 𝜔2𝑇 2

𝑃
/2
)
+ 𝑦19𝑇𝑃

(
1 − Z 𝜔 𝑇𝑃

)
− 𝑒19𝑇 2

𝑃
/2

��� − 𝑋𝐵 = 𝑤 ∧
𝑤 > 0∧
Δ𝑥 = 𝑤 + (𝑋𝐵 − |𝑥19|) ∧[
(sign(𝑦19) = sign(−𝑒19) ∧ | − 𝑒19𝑇 2

𝑃
/2| ≥ Δ𝑥/2) ∨

(sign(𝑦19) ≠ sign(−𝑒19) ∧ | − 𝑒19𝑇 2
𝑃
/2| ≥ Δ𝑥)

]
THEN
𝑐𝑙𝑘_𝑝𝑙𝑠 := 0
𝑦𝑦 := 𝐾−1

𝑦𝑠 ⌊𝐾𝑦𝑠 (𝑒19𝑇𝑃/2 (1 − Z 𝜔 𝑇𝑃 ))⌉
END

END

Fig. 7. The active control system, versions 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3, second part.

Of course, all these mode events need values for 𝑥𝑥 and 𝑦𝑦, and these are supplied by the
Sample_18 and Sample_19 events, which sample the 𝑥𝑥 variable at 18

20𝑇𝑃 and 19
20𝑇𝑃 , and use the two

𝑥𝑥 values to estimate the velocity 𝑦𝑦. The earth movement is also sampled, yielding altogether
the values in variables 𝑥18, 𝑥19, 𝑦19, 𝑒19. These remarks make it clear that the functioning of
machine 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 is discretised in time, albeit that its discrete actions are determined by
the continuous behaviour.
Adding the 𝐾−1

... ⌊𝐾... . . .⌉ parts gives machine 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3. The 𝐾 values being constants,
these parts implement scaling, rounding and unscaling, and play the role of surrogates for signal
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quantisation, whereby sensor and actuator values are determined digitally and thus take one of a
finite number of values, depending on the device in question.
A detailed discussion of the various constants and values appearing in Figs. 6-7 can be found

in [11]. For us, the salient point is that the introduction of the surrogate quantisation around
the otherwise smooth evolution of the 𝑥𝑥 and 𝑦𝑦 variables is guaranteed to provoke the kind of
threshold crossing problems noted in the Introductionwhenmoving frommachine𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5
to machine 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3. It is also clear that the discretisation present in both machines would
introduce similar problems if compared with a machine in which the values needed for the pulse
calculations were extracted instantaneously at the boundaries of 𝑇𝑃 intervals (as in machine
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2 of [11]). Since the calculations for that would be more complicated, we avoid
considering them in this paper — the effects introduced by the 𝐾 values are sufficient for us, and
the differences in the models being compared are easy to focus on in machines 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5
and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3.

We close this presentation of the machines by noting that, strictly speaking, none of them appears
in [11]. Machines 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_0.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_1.01 differ from the corresponding machines
of [11] in minor technical detail (connected with the fact that we are not using the syntactically
based HEB definition of refinement here, but the semantically based one of this paper). Also, in
[11], the account jumps from 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2, which is a single machine encapsulating the system
behaviour in mathematically idealised terms, to 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_4, which is a multi-machine system
capturing the distributed nature of the real system, and incorporating the quantisation effects.

13 RELATING THE VARIOUS EARTHQUAKE PROTECTION MODELS
In Section 12 the four models of Fig. 3 were discussed in isolation. We now address this omission,
using the refinement and retrenchment notions developed earlier in this paper, and commenting
on minor detailed difference from the corresponding HEB and ASM notions where this is helpful.
We use subscripts 0, 1, 2, 3 to distinguish quantities that occur in more than one of the models, as
needed.

13.1 𝑨𝒄𝒕𝑪𝒐𝒏𝒕𝑴𝒄𝒉_0.01 and 𝑨𝒄𝒕𝑪𝒐𝒏𝒕𝑴𝒄𝒉_1.01
To start with, we claim that𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 is a retrenchment of𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01. This is fairly
clear when we observe that the trajectories for 𝑥 permitted by 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 are a subset
of those permitted by 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01. The trajectories in 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 are specified in a
more constrained way than those in 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01, and in addition, there is no constraint in
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01 that is not also required by 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01. It all works provided we relate
the two models using mainly identities and projections, and provided the many constants playing
a part in the two machines are suitably chosen (so that the sets of trajectories in the two cases are
nonempty). We assume this to be the case.

Thus we adopt the following retrenchment data. Regarding the events, we have≽ ≡ {MONITOR0
≽ MONITOR1}. The gluing relation between state spaces, 𝐺0,1 : U0 ↔ U1, is given by the converse
of the projection of (𝑥,𝑦, 𝑝, 𝑐𝑙𝑘_𝑝𝑙𝑠) tuples to 𝑥 values alone. The within relation𝑊MONITOR0,1 :
U0 × IMONITOR0 ↔U1 × IMONITOR1 is the converse of the projection of (𝑥,𝑦, 𝑝, 𝑐𝑙𝑘_𝑝𝑙𝑠, 𝑝𝑝, 𝑒, 𝑒?) tuples
to (𝑥, 𝑒?) tuples. The delivers relation 𝐷MONITOR0,1 : U0 × IMONITOR0 ↔ U1 × IMONITOR1 is the same as
𝑊MONITOR0,1 as there are no outputs (and we do not single out initial state values).

To substantiate the claim that the given retrenchment data support an actual retrenchment, we
much check the various conditions for a retrenchment. Firstly, the initialisation (5). This is trivial
since 𝐼𝑛𝑖𝑡0 and 𝐼𝑛𝑖𝑡1 are identical on the common variable 𝑥 , and 𝐺0,1 is an identity on 𝑥 . Next, the
correctness PO for MONITOR0 and MONITOR1. This demands that if (𝑊MONITOR0,1 ∧MONITOR1)
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holds over a given time interval, then (MONITOR0 ∧ 𝐷MONITOR0,1 ) does too, over the same interval.
But since we can choose MONITOR0 = MONITOR1, and 𝐷 =𝑊 , this is trivial again.
The fact of all concrete transitions projecting to abstract ones typifies exemplary behaviour

for a refinement. Why then the claim that we only have a retrenchment? The culprit is ≽ on
events, which is not onto the mode event MoSkip. This event preempts MONITOR1, although it
does nothing other than reset the clock 𝑐𝑙𝑘_𝑝𝑙𝑠 to schedule the next preemption,𝑇𝑃 time units later.
After MoSkip has executed, MONITOR1 resumes.

Since the formal discrete to continuous translation schema (24) in general, and its retrench-
ment correctness PO incarnation (27) in particular, each assume that time progresses in both
machines at the same rate, we observe that (27) does not actually connect the two machines unless
both MONITOR transitions last for exactly 𝑇𝑃 time units. We can cater for cases other than this by
constructing an (𝑚, 2𝑛−1) diagram, where𝑚 = 1 (since the𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01machine, after initial-
isation executes exactly one MONITOR0 transition), and 𝑛 is the duration of the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01
execution as a multiple of𝑇𝑃 , allowing for 𝑛− 1 skips — or, pushing the formalism a bit, 𝑛 = ∞ if the
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 execution doesn’t terminate. In this way, the formalism developed earlier in this
paper captures the simulation of an arbitrary 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 execution by 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01,
albeit that the details are rather trivial.

As a coda to this discussion, we observe that the HEB notion of refinement (slightly different from
Section 3, see [12, 13]) does permit 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 to be a refinement of 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01. The
MoSkip events of𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 at the source of the problem are viewed as refinements of ‘virtual
skips’ in𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01; i.e. of mode events that do not change the state of𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01, so
can be seen as having taken place or as not having taken place, as convenient. This is a generalisation
of the Event-B [3] notion of refinement, which can thus be seen as permitting a certain kind of
(𝑚,𝑛) diagram that embodies this virtual skip idea.

13.2 𝑨𝒄𝒕𝑪𝒐𝒏𝒕𝑴𝒄𝒉_1.01 and 𝑨𝒄𝒕𝑪𝒐𝒏𝒕𝑴𝒄𝒉_2.5 — First Version
Unlike a normal input device, which, being an engineered object, has a precisely defined set of
input values that it can deliver to a digital system, an earthquake is a natural phenomenon, and so
any attempt to quantify its behaviour is subject to uncertainty. Despite this, the results of Section
13.1 are mathematically exact. The reason for this is that the earthquake input 𝑒? enters the models
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 in ‘exactly the same way’, and thereby cancels out in
considering the relationship between them. However, the earthquake input enters the models
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 in different ways and these no longer cancel automatically.
In particular, in 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01, 𝑒? is the natural physical phenomenon, and so assumptions
about it are always contingent to some degree; whereas in 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5, the core of the model
uses 𝑒19, which is a sampled value derived indirectly from 𝑒?. An unavoidable degree of uncertainty
thus remains when discussing the relationship between 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5,
which we must bear in mind below.

In 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01, after initialisation, pliant event MONITOR1 and mode event MoSkip1 inter-
leave indefinitely. In 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5, after initialisation, pliant event MONITOR2 is interrupted
by the sampling mode events Sample_182 and Sample_192, after each of which it resumes, being
interrupted again by one of the mode events PulseNo2, PulseMaybe2, PulseYesY 2, PulseYesE2. After
this, the cycle repeats.
We note that 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 has a 𝑝 variable, using which, the MONITOR1 event attempts

to compensate for the earthquake signal 𝑒?; whereas 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 has no such variable, so it
attempts to compensate for the earthquake by jolting the building velocity 𝑦𝑦 as needed. There
are also no counterparts of the Sample_182 and Sample_192 events in 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01. All of
this precludes creating a relationship between 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 based on
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refinements and retrenchments between individual events. Instead, the appropriate thing to do is to
consider the cycles of behaviour in the two machines in their entirety, and to create a relationship
between 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 on that basis. This entails using the notions of
(𝑚,𝑛) diagram discussed at the end of Section 6. In this section we will therefore consider:

MONITOR1 o
9 MoSkip1
⊛

MONITOR2 o
9 Sample_182 o

9 MONITOR2 o
9 Sample_192 o

9 MONITOR2 o
9 Last2 (112)

where Last2 is one of {PulseNo2, PulseMaybe2, PulseYesY 2, PulseYesE2}, and ⊛ is one of {⩾,≽}. We
economise on the verbosity of (112) by abbreviating it toMONskip1⊛MON [last]2 for the purposes
of referring to the formal relationship between 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5.
We note that Sample_182 and Sample_192 merely act as oracles for the 𝑥18, 𝑥19 and 𝑒19 val-

ues used by the Last2 events, so they do not have any impact on the subsequent MONITOR2
behaviour. Also MoSkip1 has no impact on the MONITOR1 behaviour. Accordingly, the essence of
the relationship we need to consider can be expressed as MONITOR1 ⊛ MONITOR2 o

9 Last2.
To address this, consider one iteration of the cycle, which we assume starts at time tL and finishes

at time tR, where tR − tL = 𝑇𝑃 . Suppose given (concrete, 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5) starting values 𝑥𝑥 (tL)
and 𝑦𝑦 (tL), and ending values 𝑥𝑥 (tR) and 𝑦𝑦 (tR), where (in particular) 𝑦𝑦 (tR) is the after-value
produced by Last2 in those cases where Last2 has a nontrivial effect. We then seek a(n abstract,
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01) function 𝑝 (𝑡) for 𝑡 ∈ [tL . . . tR), such that the initial value problem expressed
by the SOLVE clause ofMONITOR1, with initial values 𝑥 (tL) = 𝑥𝑥 (tL) and𝑦 (tL) = 𝑦𝑦 (tL), delivers
final values 𝑥 (tR) = 𝑥𝑥 (tR) and 𝑦 (tR) = 𝑦𝑦 (tR) at the end of the [tL . . . tR) interval. This is a
typical optimal control problem, discussed extensively in the literature [22, 31, 39, 57, 67, 68], albeit
we have refrained from stating any specific optimality criterion yet.

The easiest cases are when Last2 is one of PulseNo2, PulseMaybe2. For these cases, there is no
contribution from the control system duringMONITOR2, and none during PulseNo2 or PulseMaybe2.
So setting 𝑝 (𝑡) to 0 for 𝑡 ∈ [tL . . . tR) during MONITOR1 leads to identical behaviour in the two
models, which could be captured in a refinement expressed using projection relations, as in Section
13.1. Unfortunately, when we include the nontrivial cases PulseYesY 2 and PulseYesE2, the identity of
behaviour for the state variables breaks down, and this makes it impossible to assert the preservation
of a sensible gluing relation (especially one expressed using projection relations) throughout the
[tL . . . tR) interval, as would be required for a refinement.
The remaining cases, PulseYesY 2 and PulseYesE2, constitute nontrivial instances of the optimal

control problem. The absence of any optimality criterion thus far is connected with the fact that the
primary focus of this paper is on structural relationships in system development paths more than
on some specific engineering criteria. We take advantage of this now, to absolve ourselves from the
need to plunge into the intricacies of Hamilton-Jacobi theory and the Pontryagin Principle.
For a given [tL . . . tR) interval, an 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 execution gives us values 𝑥𝑥 (tL), 𝑦𝑦 (tL),

𝑥𝑥 (tR), 𝑦𝑦 (tR). If we stipulate that these should correspond to the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 values 𝑥 (tL),
𝑦 (tL), 𝑥 (tR), 𝑦 (tR), we can construct the Hermite interpolating polynomial [65] that interpolates
the given values and their derivatives at the two endpoints of the interval. This gives a behaviour
for the 𝑥 and 𝑦 variables in MONskip1 that matches the 𝑥𝑥 and 𝑦𝑦 variables in MON [last]2 at the
endpoints of the interval — but in particular without the impulsive jolt provided by PulseYesY 2 or
PulseYesE2.

Let 𝑥H (𝑡) be the Hermite interpolant; its explicit form as a cubic in 𝑡 is [65]:
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𝑥H (𝑡) ≡ 𝑥 (tL)
1

(tL − tR)3
(𝑡 − tR)2 [(tL − tR) + 2(tL − 𝑡)] +

𝑦 (tL)
1

(tL − tR)2
(𝑡 − tL) (𝑡 − tR)2 +

𝑥 (tR)
1

(tR − tL)3
(𝑡 − tL)2 [(tR − tL) + 2(tR − 𝑡)] +

𝑦 (tR)
1

(tR − tL)2
(𝑡 − tL)2 (𝑡 − tR) (113)

It is evident by inspection that (113) satisfies the claimed properties. From 𝑥H (𝑡) we can derive the
needed control function 𝑝H (𝑡), as is clear from (111):

𝑝H (𝑡) = [𝑚D2 + 𝑐D + 𝑘 +𝑚𝑒?] 𝑥H (𝑡) (114)

If we further notice that, being a cubic, 𝑥 (𝑡) satisfies D4 𝑥 (𝑡) = 0, then we can add the optimality
criterion:

Minimise:
∫

tR

tL

[D4 𝑥 (𝑡)]2𝑑𝑡 (115)

to our ad hoc construction, whereby it becomes the solution to an optimal control problem of a
normal kind, since it achieves the minimum possible value of (115).
From 𝑝H we can get the 𝑝𝑝 mentioned in MONITOR1 of Fig. 5. Now, assuming the the bound

𝑃𝑃𝐵 is adequate, so that all the assumptions made in MONITOR1 can be satisfied, we can construct
a formal relationship MONskip1 ⊛MON [last]2 as follows. Below, 𝑥19’, 𝑦19’ and 𝑒19’ denote the
after-values of 𝑥19, 𝑦19 and 𝑒19 upon their update at time 19𝑇𝑃/20 during a 𝑇𝑃 interval.19

•⊛ is ≽ (116)
We have already confirmed that a refinement under reasonable conditions is not
possible.

•𝐺1,2 (𝑥,𝑦, 𝑝 ;𝑥18, 𝑥19, 𝑦19, 𝑒19, 𝑥𝑥,𝑦𝑦) ≡ 𝑥 = 𝑥𝑥 ∧ 𝑦 = 𝑦𝑦 (117)
𝐺1,2, is an abutment of two projections, thus a regular relation [8, 9]. Recall that 𝐺1,2
only needs to hold at initialisation.

MONskip1 ≽ MON [PulseNo]2

•𝑊MONskip1≽MON [PulseNo]2 (. . .) ≡ 𝑥 (tL) = 𝑥𝑥 (tL) ∧ 𝑦 (tL) = 𝑦𝑦 (tL) ∧ |𝑥19’| < 𝑋𝑡ℎ < 𝑋𝐵 ∧

“e/𝑒?-Eq” (118)
• 𝐷MONskip1≽MON [PulseNo]2 (. . .) ≡ 𝑥 (tR) = 𝑥𝑥 (tR) ∧ 𝑦 (tR) = 𝑦𝑦 (tR) ∧ |𝑥𝑥 (tR) | ≤ 𝑋𝐵 ∧

“N𝑜-Xtra” (119)

“e/𝑒?-Eq” denotes | 𝑒?1 (𝑡) | ≤ 𝐸𝐵 ∧ | 𝑒?2 (𝑡) | ≤ 𝐸𝐵 ∧ 𝑒1 = 𝑒2 ∧ 𝑒?1 (𝑡) = 𝑒?2 (𝑡).20 In
“N𝑜-Xtra” can be placed additional assertions regarding the final (and perhaps other)
values of 𝑥𝑥 and 𝑦𝑦 that strengthen the bound |𝑥𝑥 (tR) | ≤ 𝑋𝐵 .

19Occurrences of variable values at the extremes of the sampling period, tL and tR are to be interpreted as the relevant
limiting values where necessary.
20Unlike HEB, whose refinement semantics automatically assumes that identically named abstract/concrete variables are
equal, the formalism of Sections 3 and 4 does not do so explicitly. Hence the presence of “e/𝑒?-Eq”.

ACM Transactions on Software Engineering and Methodology, Vol. 999, No. 4, Article 9876. Publication date: March 2099.



Graded Refinement, Retrenchment and Simulation 9876:47

MONskip1 ≽ MON [PulseMaybe]2
•𝑊MONskip1≽MON [PulseMaybe]2 (. . .) ≡ 𝑥 (tL) = 𝑥𝑥 (tL) ∧ 𝑦 (tL) = 𝑦𝑦 (tL) ∧

𝑋𝑡ℎ ≤ |𝑥19’| ≤ 𝑋𝐵 ∧ “e/𝑒?-Eq” ∧ “P-Dsc’-2” ≤ 𝑋𝐵 (120)
• 𝐷MONskip1≽MON [PulseMaybe]2 (. . .) ≡ 𝑥 (tR) = 𝑥𝑥 (tR) ∧ 𝑦 (tR) = 𝑦𝑦 (tR) ∧ |𝑥𝑥 (tR) | ≤ 𝑋𝐵 ∧

“M𝑎𝑦𝑏𝑒-Xtra” (121)

“e/𝑒?-Eq” is as in (118). “P-Dsc’-2” denotes the expression
�� 𝑥19’ (1 − 𝜔2𝑇 2

𝑃
/2
)
+

𝑦19’𝑇𝑃
(
1 − Z 𝜔 𝑇𝑃

)
− 𝑒19’𝑇 2

𝑃
/2

�� . Its value compared with 𝑋𝐵 discriminates cases
where a pulse is generated or not in𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5. In “M𝑎𝑦𝑏𝑒-Xtra” can be placed
additional assertions regarding the final (and perhaps other) values of 𝑥𝑥 and 𝑦𝑦 that
strengthen the bound |𝑥𝑥 (tR) | ≤ 𝑋𝐵 .

MONskip1 ≽ MON [PulseYesY ]2
•𝑊MONskip1≽MON [PulseYesY ]2 (. . .) ≡ 𝑥 (tL) = 𝑥𝑥 (tL) ∧ 𝑦 (tL) = 𝑦𝑦 (tL) ∧

𝑋𝑡ℎ ≤ |𝑥19’| ≤ 𝑋𝐵 ∧ “e/𝑒?-Eq” ∧ “P-Dsc’-2” > 𝑋𝐵 ∧ “𝑌.gtr.𝐸” (122)
• 𝐷MONskip1≽MON [PulseYesY ]2 (. . .) ≡ 𝑥 (tR) = 𝑥𝑥 (tR) ∧ 𝑦 (tR) = 𝑦𝑦 (tR) ∧ |𝑥𝑥 (tR) | ≤ 𝑋𝐵 ∧

“Y𝑒𝑠𝑌 -Xtra” (123)

“e/𝑒?-Eq” is as in (118). “P-Dsc’-2” is as in (120). “𝑌.gtr.𝐸” indicates the additional
conditions in the guard of PulseYesY in Fig. 7 that assert that the 𝑦𝑦 contribution is
greater than the 𝑒19 contribution in potentially breaching the 𝑋𝐵 bound if action is
not taken. In “Y𝑒𝑠𝑌 -Xtra” can be placed additional assertions regarding the final
(and perhaps other) values of 𝑥𝑥 and 𝑦𝑦 that strengthen the bound |𝑥𝑥 (tR) | ≤ 𝑋𝐵 .

MONskip1 ≽ MON [PulseYesE]2
•𝑊MONskip1≽MON [PulseYesE]2 (. . .) ≡ 𝑥 (tL) = 𝑥𝑥 (tL) ∧ 𝑦 (tL) = 𝑦𝑦 (tL) ∧

𝑋𝑡ℎ ≤ |𝑥19’| ≤ 𝑋𝐵 ∧ “e/𝑒?-Eq” ∧ “P-Dsc’-2” > 𝑋𝐵 ∧ “𝐸.gtr.𝑌” (124)
• 𝐷MONskip1≽MON [PulseYesE]2 (. . .) ≡ 𝑥 (tR) = 𝑥𝑥 (tR) ∧ 𝑦 (tR) = 𝑦𝑦 (tR) ∧ |𝑥𝑥 (tR) | ≤ 𝑋𝐵 ∧

“Y𝑒𝑠𝐸-Xtra” (125)

“e/𝑒?-Eq” is as in (118). “P-Dsc’-2” is as in (120). “𝐸.gtr.𝑌” indicates the additional
conditions in the guard of PulseYesE in Fig. 7 that assert that the 𝑒19 contribution is
greater than the 𝑦𝑦 contribution in potentially breaching the 𝑋𝐵 bound if action is not
taken. In “Y𝑒𝑠𝐸-Xtra” can be placed additional assertions regarding the final (and
perhaps other) values of 𝑥𝑥 and 𝑦𝑦 that strengthen the bound |𝑥𝑥 (tR) | ≤ 𝑋𝐵 .

In the preceding, note that although “e/𝑒?-Eq” is explicitly defined, and “𝑌.gtr.𝐸” and “𝐸.gtr.𝑌”
are just names of complicated expressions in Fig. 7, the various “__-Xtra” clauses indicate further
facts that do not appear anywhere, but that could be obtained by combining the more detailed
technical discussion in [11] with the optimal control perspective discussed above. This possibility
arises because the techniques involved in deriving such properties are highly generic and extendable,
and present a lot of opportunities for deriving additional facts.

The construction given above gives an (𝑚,𝑛) diagram, in the sense of Section 6. If we assert that
at no moment in the interior of a 𝑇𝑃 interval is 𝐺1,2 established, we have a strong (𝑚,𝑛) diagram.21
We conclude therefore, that in the terminology of Section 6, 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 is refining simulable
by 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01, using the constructed (𝑚,𝑛) diagrams instead of individual steps.
21We can expect this to be the case except, perhaps, for a set of configurations of measure zero in the parameter space.
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As a coda to this discussion, we observe that the reestablishing of 𝐺1,2 at the end of each 𝑇𝑃
interval (and disregarding everything else) enables the MONskip1 ⊛MON [last]2 (𝑚,𝑛) diagrams
we have constructed to be viewed, not only as the (𝑚,𝑛) diagrams that were discussed in Section 6,
but as as the (𝑚,𝑛) diagrams of a bona fide ASM refinement [27]. Moreover, the fact that we can
simulate any 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 execution (whose duration is an integral number of 𝑇𝑃 intervals)
using a series of such diagrams, means that in the terminology of Section 6, the construction of this
section makes 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 strongly comprehensively simulable via this collection of (𝑚,𝑛)
diagrams.
As a further coda to the discussion, we point out that although the simulation via the (𝑚,𝑛)

diagrams just discussed works perfectly well, it disregards the nontrivial invariants in the two
models, which require that |𝑥𝑥 (𝑡) | ≤ 𝑋𝐵 and |𝑥 (𝑡) | ≤ 𝑋𝐵 hold at all times. We should pay some
attention to these.
For 𝑥𝑥 , the arguments in [11] that justify the details of the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 machine (e.g. the

complicated tests that select between the various [last] cases), are aimed precisely at ensuring that
|𝑥𝑥 | ≤ 𝑋𝐵 holds at all times, so this invariant needs no further discussion.
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Fig. 8. The Hermite interpolant basis functions, nor-
malised to the unit interval. From [77].

For 𝑥 , we can make use of the preceding in
the following way. The analysis in [11], based
on the constants and bounds appearing in the
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 machine, is aimed at ensur-
ing that for any𝑇𝑃 interval, even if the velocity
increases at the fastest rate permitted by those
constants and bounds, 𝑥𝑥 (tL) and 𝑦𝑦 (tL) re-
main small enough that |𝑥𝑥 | ≤ 𝑋𝐵 cannot be
breached within that interval. (The jolt to 𝑦𝑦 (if
any) that is applied at tR is aimed at ensuring
the same for the next 𝑇𝑃 interval, given that no
help will be given by the control system till the
end of the next interval.) So, we can assume that
neither |𝑥𝑥 (tL) | nor |𝑥𝑥 (tR) | exceed 𝑋𝐵 , and
thus −𝐵𝑋 ≤ MIN ≡ min{𝑥𝑥 (tL), 𝑥𝑥 (tR)} ≤
max{𝑥𝑥 (tL), 𝑥𝑥 (tR)} ≡ MAX ≤ 𝐵𝑋 .

Now, we know that 𝑥 (tL) = 𝑥𝑥 (tL) and 𝑥 (tR) = 𝑥𝑥 (tR) by construction, and that the trajectory
of 𝑥 from tL to tR is a linear combination of Hermite basis functions, illustrated in Fig. 8, with ℎ00,
ℎ10, ℎ01, ℎ11 corresponding to the 𝑥 (tL), 𝑦 (tL), 𝑥 (tR), 𝑦 (tR) terms in (113) respectively.

For 𝑡 ∈ [tL . . . tR], it can be seen that ℎ00(𝑡) +ℎ01(𝑡) = 1, so that the first and third terms of (113)
form a convex sum of 𝑥 (tL) and 𝑥 (tR), which therefore remains within the range [MIN . . .MAX].
For the second and fourth terms of (113), the worst case is when 𝑦 (tL) is maximal towards

a 𝐵𝑋 boundary and 𝑦 (tR) is maximal away from the same 𝐵𝑋 boundary. In such a case, the
maximal absolute value of velocity 𝑦max can be deduced from [11], and the two terms amount to a
displacement:

d𝑖𝑠𝑝max = 𝑦max (𝑡 − tL) (tR − 𝑡)/𝑇𝑃 (126)

which reaches its maximum value half way between tL and tR. The threshold value 𝑋𝑡ℎ can
therefore be reduced to accommodate any potential overshoot that arises for this reason. Whether
it is desirable to do so, is however, debatable. The behaviour in (113) satisfies an existential criterion;
so there is no reason why a different existential witness could not do better. Given the critique of
this section that appears in the next version, we do not pursue the details further.
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13.3 𝑨𝒄𝒕𝑪𝒐𝒏𝒕𝑴𝒄𝒉_1.01 and 𝑨𝒄𝒕𝑪𝒐𝒏𝒕𝑴𝒄𝒉_2.5 — Second Version
In the preceding section we found that, within the limits prescribed by the various parameters and
constants, for every 𝑥18, 𝑥19 pair, we could derive a behaviour of the earthquake and of 𝑝/𝑝𝑝 that
conformed exactly to the implications that follow from the 𝑥18, 𝑥19 values. This is a consequence
of the orientation of the implication in relationships like the refinement correctness PO (6) and
the retrenchment correctness PO (19). But from a real world perspective, this is a strange thing to
do — earthquakes hardly ask permission from a sampled system model regarding what their their
behaviour should be over the next𝑇𝑃 interval, the more so considering that the sampled model will
give answers that are always approximations to any related continuous behaviour that they are
derived from.22 Even less is it the case that an earthquake would feel obliged to follow exactly the
behaviour 𝑥H discussed above.

A better question is thus whether: for any earthquake behaviour 𝑒? (within the assumed limits),
and for appropriate 𝑝/𝑝𝑝 control which ensures, in 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01, that the whole system stays
within safe limits in a given 𝑇𝑃 interval (taking into account all the constraints that are assumed to
hold), there is a 𝑥18, 𝑥19 pair (based on the same 𝑒? but without any 𝑝/𝑝𝑝 intervention), such that
the impulse based control of 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 produces system behaviour that agrees in a suitable
way with the system behaviour in 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01. This inverts the implication in relationships
like (6) and (19). In this section we will therefore consider:

MONITOR2 o
9 Sample_182 o

9 MONITOR2 o
9 Sample_192 o

9 MONITOR2 o
9 Last2

⊛

MONITOR1 o
9 MoSkip1 (127)

or, more briefly, MON [last]2 ⊛MONskip1, inverting (112).
The derivation in Section 7 of [11], addresses essentially this question, but with the view that

going from 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1 to 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2 is a ‘refinement’ — without taking care to confirm
whether the technical details investigated there align with the implications of a formal refinement
relationship of any particular kind, as we discuss here. We summarise the argument of Section 7 of
[11]; see loc. cit. for full details.

The active control problem of𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 is a linear ODE systemwith constant coefficients,
so has a solution in closed form [4, 29, 72, 76], which we can succinctly write as:

[𝑥 (𝑡), 𝑦 (𝑡)]T = e𝐴𝐴𝐴(𝑡−tL) [𝑥 (tL), 𝑦 (tL)]T + (e𝐴𝐴𝐴𝑠 ∗𝑠∈[tL ...𝑡 ] [0, 𝑝𝑝 (𝑠)/𝑚 − 𝑒?(𝑠)]T) (128)

and which appears, abbreviated, in Fig. 5. When the details of the companion matrix𝐴𝐴𝐴 are disen-
tangled, (128) yields a Duhamel integral with specified initial values for the dynamics. See [30, 78].
Given the assumed bounds on earthquake behaviour, the COMPLY clause of MONITOR in Fig. 5
guarantees that the solution [𝑥 (𝑡), 𝑦 (𝑡)]T in any 𝑇𝑃 interval satisfies the invariant |𝑥 (𝑡) | ≤ 𝑋𝐵 .

As discussed in [11], the appropriate damping factor of the system has value about Z ≲ 0.1, and
the frequency of the active control system is chosen to be about 20 times the natural frequency of
the earthquake signal, so that 𝜔𝑡 ≤ 𝜔𝑇𝑃 ≲ 0.05. This leads to some simplification. Specifically, the
natural and damped frequencies of the system differ only negligibly, and both are called 𝜔 below.
The Duhamel integral then becomes:

22Note that a different argument could be raised if the key driver in the system behaviour was not an external influence like
an earthquake, but a human-determined control. Then, asking whether for every discrete control there was a corresponding
continuous control, would potentially make more sense.
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𝑥 (𝑡 − tL) =

e−Z 𝜔 (𝑡−tL) [𝑥 (tL) cos(𝜔 (𝑡 − tL)) + 𝜔−1 (𝑦 (tL) + Z 𝜔 𝑥 (tL)) sin(𝜔 (𝑡 − tL))
]

+ 1
𝜔

∫ (𝑡−tL)

0
𝑎𝑋 (𝑠) e−Z 𝜔 ( (𝑡−tL)−𝑠) sin(𝜔 ((𝑡 − tL) − 𝑠)) 𝑑𝑠 (129)

𝑦 (𝑡 − tL) = D𝑥 (𝑡 − tL) =

e−Z 𝜔 (𝑡−tL) [𝑦 (tL) cos(𝜔 (𝑡 − tL)) − (Z 𝑦 (tL) + 𝜔 𝑥 (tL)) sin(𝜔 (𝑡 − tL))
]

+
∫ (𝑡−tL)

0
𝑎𝑋 (𝑠) e−Z 𝜔 ( (𝑡−tL)−𝑠) (cos(𝜔 ((𝑡 − tL) − 𝑠)) − Z sin(𝜔 ((𝑡 − tL) − 𝑠))

)
𝑑𝑠 (130)

where 𝑎𝑋 (𝑠) is the externally imposed acceleration 𝑎𝑋 (𝑠) = (𝑝𝑝 (𝑠)/𝑚 − 𝑒?(𝑠)).
To properly relate any specific instance of an 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 behaviour to the corresponding

𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 behaviour that depends on the correct 𝑥18, 𝑥19 and 𝑒19 values, we would have to
do the following. For all admissible 𝑒? behaviours and 𝑝𝑝 controls that ensured that the |𝑥 (𝑡) | ≤ 𝑋𝐵
invariant was always respected, we would have to extract an 𝑒19 value from the 𝑒? function at time
19𝑇𝑃/20, and would have to extract 𝑥18 and 𝑥19 values at times 18𝑇𝑃/20 and 19𝑇𝑃/20 respectively
from a solution of (129) depending on the same 𝑒? but with 𝑝𝑝 set to zero throughout. This is a tall
order, given the fact that the quantifications on 𝑒? and 𝑝𝑝 are given so indirectly. Instead, we can
proceed as we did in [11].
Since 𝑇𝑃 is one twentieth of a natural period of the sinusoids in (129)-(130), those sinusoids

have the same sign throughout the range of integration. This allows further simplification and
estimation of the integrals, through the substitution of various terms by their maximal values, and
evaluation to a closed form.
Retaining only leading terms of the sinusoids in the result, leads to the formulation used in

the creation of the model in Fig. 6. In matrix form, for an interval of duration 𝜏 ≤ 𝑇𝑃 starting
from initial values at tL, for a constant externally imposed acceleration 𝑎𝑋 , and assuming that the
earthquake is parameterised by constants 𝑒 and 𝑒?, with constant compensating force 𝑝𝑝 , so that
𝑎𝑋 = 𝑝𝑝/𝑚 − (𝑒 ± 𝑒𝐵), with the sign of 𝑒𝐵 chosen to maximise the end of period displacement, the
closed form is:[

𝑥𝑥 (𝜏 + tL)
𝑦𝑦 (𝜏 + tL)

]
=

[ (
1 − 𝜔2 𝜏2/2

)
𝜏
(
1 − Z 𝜔 𝜏

)
−𝜔2 𝜏

(
1 − 2 Z 𝜔 𝜏

) ] [𝑥𝑥 (tL)
𝑦𝑦 (tL)

]
−
[

𝑎𝑋 𝜏
2/2

𝑎𝑋 𝜏
(
1 − Z 𝜔 𝜏

) ] (131)

As mentioned in the previous section, when based on the most pessimistic values for 𝑒 ± 𝑒𝐵 ,
and on 𝑝𝑝 (𝑡) = 0, (131) allows the calculation of a threshold value 𝑋𝑡ℎ around which machine
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 can determine whether the 𝑝𝑝 (𝑡) = 0 policy of machine 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 will
cause the |𝑥𝑥 (𝑡) | ≤ 𝑋𝐵 invariant to be respected in the next 𝑇𝑃 interval or not. This delegates
the determination of the correct 𝑒19, 𝑥18 and 𝑥19 values, and more importantly, the subsequent
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 behaviour that is defined using those values, to the scheduling of events in
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 ‘at runtime’.

Thus the mechanisms through which machines 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 assure
their invariants are very different. This makes the eliciting of the details of a formal relationship such
as MON [last]2 ⊛MONskip1 more challenging. Regarding this, we make the following comments.
Unlike in the first version of the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 relationship, we are

not in a position to ‘compel’ one of the systems to behave like the other one, so we cannot ask that
𝑥 and 𝑥𝑥 , and 𝑦 and 𝑦𝑦 are the same at the two ends of a 𝑇𝑃 interval. Therefore, defining𝐺 to be as
in the first version, will not lead to a provable strongly comprehensively simulable relationship.
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Therefore, the best we can reasonably do is to define𝐺 to be the conjunction of the |𝑥/𝑥𝑥 | ≤ 𝑋𝐵
conditions in the twomodels. Beyond that, we observe that the various conditions that figured in the
MONskip1⊛MON [last]2 relationship earlier did not depend on the orientation of the implication in
(19). This permits us to reuse their structure in the present case, provided we remove any equalities
between state variables, which are inappropriate here — we must ensure that such conditions are
also not present in the various “X𝑋 -Xtra” clauses introduced earlier, which we denote using a
bullet decoration. Also, 𝑥19’, 𝑦19’, 𝑒19’, “e/𝑒?-Eq” and “P-Dsc’-2” are as before. In this manner
we derive a formal MON [last]2 ⊛MONskip1 relationship as follows.

•⊛ is ≽ (132)
•𝐺2,1 (𝑥,𝑦, 𝑝 ;𝑥18, 𝑥19, 𝑦19, 𝑒19, 𝑥𝑥,𝑦𝑦) ≡ |𝑥 | ≤ 𝑋𝐵 ∧ |𝑥𝑥 | ≤ 𝑋𝐵 (133)

MON [PulseNo]2 ≽ MONskip1

•𝑊MON [PulseNo]2≽MONskip1 (. . .) ≡ |𝑥𝑥 (tL) | ≤ 𝑋𝐵 ∧ |𝑥 (tL) | ≤ 𝑋𝐵 ∧ “e/𝑒?-Eq” ∧
|𝑥19’| < 𝑋𝑡ℎ < 𝑋𝐵 (134)

• 𝐷MON [PulseNo]2≽MONskip1 (. . .) ≡ |𝑥 (tR) | ≤ 𝑋𝐵 ∧ |𝑥𝑥 (tR) | ≤ 𝑋𝐵 ∧ “N𝑜-Xtra•”
MON [PulseMaybe]2 ≽ MONskip1

•𝑊MON [PulseMaybe]2≽MONskip1 (. . .) ≡ |𝑥𝑥 (tL) | ≤ 𝑋𝐵 ∧ |𝑥 (tL) | ≤ 𝑋𝐵 ∧ “e/𝑒?-Eq” ∧
𝑋𝑡ℎ < |𝑥19’| ≤ 𝑋𝐵 ∧ “P-Dsc’-2” ≤ 𝑋𝐵 (135)

• 𝐷MON [PulseMaybe]2≽MONskip1 (. . .) ≡ |𝑥 (tR) | ≤ 𝑋𝐵 ∧ |𝑥𝑥 (tR) | ≤ 𝑋𝐵 ∧ “M𝑎𝑦𝑏𝑒-Xtra•” (136)

MON [PulseYesY ]2 ≽ MONskip1

•𝑊MON [PulseYesY ]2≽MONskip1 (. . .) ≡ |𝑥𝑥 (tL) | ≤ 𝑋𝐵 ∧ |𝑥 (tL) | ≤ 𝑋𝐵 ∧ “e/𝑒?-Eq” ∧
𝑋𝑡ℎ < |𝑥19’| ≤ 𝑋𝐵 ∧ “P-Dsc’-2” > 𝑋𝐵 ∧ “𝑌.gtr.𝐸” (137)

• 𝐷MON [PulseYesY ]2≽MONskip1 (. . .) ≡ |𝑥 (tR) | ≤ 𝑋𝐵 ∧ |𝑥𝑥 (tR) | ≤ 𝑋𝐵 ∧ “Y𝑒𝑠𝑌 -Xtra•” (138)

MON [PulseYesE]2 ≽ MONskip1

•𝑊MON [PulseYesE]2≽MONskip1 (. . .) ≡ |𝑥𝑥 (tL) | ≤ 𝑋𝐵 ∧ |𝑥 (tL) | ≤ 𝑋𝐵 ∧ “e/𝑒?-Eq” ∧
𝑋𝑡ℎ < |𝑥19’| ≤ 𝑋𝐵 ∧ “P-Dsc’-2” > 𝑋𝐵 ∧ “𝐸.gtr.𝑌” (139)

• 𝐷MON [PulseYesE]2≽MONskip1 (. . .) ≡ |𝑥 (tR) | ≤ 𝑋𝐵 ∧ |𝑥𝑥 (tR) | ≤ 𝑋𝐵 ∧ “Y𝑒𝑠𝐸-Xtra•” (140)

As in the previous version, given the different𝐺 , which does not demand the truth of something we
cannot prove, the construction above gives an (𝑚,𝑛) diagram, in the sense of Section 6. As before,
we can therefore conclude that 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 is refining simulable by 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5, using
the constructed (𝑚,𝑛) diagrams.

We observe, finally, that the refining simulability just presented is actually 𝐼𝑛𝑖𝑡-constrained, with
𝐺1,2 from the previous version as the 𝐼𝑛𝑖𝑡-constraint. This holds at initialisation since the states
of both 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 are initialised at zero. Had the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5
initialisation been allowed to deviate too far from zero, it is not guaranteed that the dynamics (with
zero 𝑝𝑝) would remain safe, since the safety during any𝑇𝑃 interval relies on measures taken during
the previous 𝑇𝑃 interval.
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13.4 𝑨𝒄𝒕𝑪𝒐𝒏𝒕𝑴𝒄𝒉_1.01 and 𝑨𝒄𝒕𝑪𝒐𝒏𝒕𝑴𝒄𝒉_2.5 — Third Version
In this third version of the relationship between 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5, we focus
on the simulation properties explored in Sections 7 and 8. These all rely on a common infrastructure,
which we address first.

13.4.1 Common Infrastructure. Firstly, the relevant parts of the state spaces of machines
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 are both subsets of R × R, connected by an identity iso-
morphism. Similarly for other variables. This means that the natural distances between variable
values, as needed for Section 8.1, can be computed by referring to their values in R, without regard
for whether they are abstract or concrete variables.

Furthermore, many of the results in Section 8.1 assume specific values forΔ𝐺 ,Δ𝐼 ,Δ𝑂 , andwhereas
different values of Δ𝐺 are justifiable in different circumstances, the fact that both𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01
and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 consume the same 𝑒? suggests that it is sufficient to always have Δ𝐼 = 0 in
the no-origin versions of the Section 8 metric results. Moreover, the absence of outputs in our
models allows us to elide all occurrences of output relations and of any Δ𝑂 they may rely on when
instantiating generic results.
We argued in the previous versions, that the analysis in [11] identified a region of (𝑥𝑥 (tL),

𝑦𝑦 (tL)) values, within which, provided at least one 𝑇𝑃 interval has previously elapsed (to apply
impulsive control if it is required), an 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 trajectory was guaranteed to safely remain,
and that the same region would therefore also do for 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01. We also know from the
previous versions, that the dynamics in both models is confined to the region |𝑥/𝑥𝑥 | ≤ 𝑋𝐵 , with
each such |𝑥/𝑥𝑥 | defining a range of |𝑦/𝑦𝑦 | values that ensures no escape from |𝑥/𝑥𝑥 | ≤ 𝑋𝐵 . Let
us call the safe region thus defined Saf [𝑋𝐵], in both models. The fact that Saf [𝑋𝐵] is not the same
as the |𝑥/𝑥𝑥 | ≤ 𝑋𝐵 invariant region, highlights the fact that the reachable subspace in either model
is a proper subset of that invariant.

Secondly, the simulation results of Sections 7 and 8 are asymmetric between abstract and concrete
systems, sowemust decide how this maps to𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5. In the present,
third version, we use the perspective of the second version, with𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 as abstract model.
An alternative could be patterned in a similar way to the first version.

Thirdly, a further element needed in various places is the contracting nature of the underlying
dynamics. Let us rewrite (131) in terms of dimensionally compatible quantities, 𝑥𝑥 ≡ 𝑥𝑥 and
𝑦𝑦 ≡ 𝑦𝑦/𝜔 .23 Then, the matrix in (131) becomes the dimensionless:

A =

[ (
1 − 𝜔2 𝜏2/2

)
𝜔 𝜏

(
1 − Z 𝜔 𝜏

)
−𝜔 𝜏

(
1 − 2 Z 𝜔 𝜏

) ]
(141)

With the help of Mathematica [60], or otherwise, it is easy to find that the eigenvalues of A are:

_±A = 1 − Z 𝜔 𝜏 − 𝜔2 𝜏2/4 ± i𝜔 𝜏
√
1 − Z 𝜔 𝜏/2 − 𝜔2 𝜏2/16 − Z 2 (142)

From this, for small Z , 𝜔, 𝜏, it is relatively clear that:

|_±A |
2 = 1 − 2 Z 𝜔 𝜏 + 𝜔2 𝜏2/2 + O(𝜔3 𝜏3) (143)

so that, given the numerical values quoted earlier:

|_±A | = 1 − Z 𝜔 𝜏 + O(𝜔2 𝜏2) < 1 (144)

Thus, both eigenvalues have the same magnitude and so shrink their eigenvectors towards the
origin by the same amount, which shows that A is contracting (with the state space origin as
fixpoint). And since A specifies the leading order contribution of the homogeneous part of the
23𝑥𝑥 and 𝑦𝑦 are the standard dimensionally compatible quantities used in earthquake engineering.
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continuous behaviour in (129)-(130) too, we conclude that the homogeneous part of the dynamics
of (129)-(130), which we refer to as A, is also contracting (with the same fixpoint).
We claim that the disjoint union of A ⊕ A is 𝑅-adapted, and thus contracting, where 𝑅 is the

natural identity on R × R as state space for variable pairs (𝑥,𝑦) and (𝑥𝑥,𝑦𝑦) respectively. For this
we must establish the 𝑅-adapted criteria (63)-(64) for the stated 𝑅.

But noting that 𝑅 is an identity, A and A are both deterministic, and A − A (when acting on
the same vector space) consists of terms which we regard as negligible, this is relatively easy
since A =o(𝜔𝜏) A. Thus, suppose given a 𝑇𝑃 interval, and (𝑥 (tL), 𝑦 (tL)) and (𝑥𝑥 (tL), 𝑦𝑦 (tL)).
If (𝑥𝑥 (tL), 𝑦𝑦 (tL)) is 𝑅-related to (𝑥 (tL), 𝑦 (tL)) in the (𝑥,𝑦) state space, and (𝑥 (tL), 𝑦 (tL)) is
𝑅-related to (𝑥𝑥 (tL), 𝑦𝑦 (tL)) in the (𝑥𝑥,𝑦𝑦) state space, and we apply A for a duration 𝑇𝑃 to
(𝑥 (tL), 𝑦 (tL)) and (𝑥 (tL), 𝑦 (tL)), and we apply A for a for a duration 𝑇𝑃 to (𝑥𝑥 (tL), 𝑦𝑦 (tL)) and
(𝑥𝑥 (tL), 𝑦𝑦 (tL)), the shrinkage of the distance between the former pair is matched by the shrinkage
of the distance between the latter pair up to negligible terms, and this leads to the metric properties
required. The contracting nature of A ⊕ A opens the door to the simulation results of Section 8.

Fourthly, since in this version, we want to connect our metric approach to the results we know
from the application domain, which, in particular, focus exclusively on the magnitude of the 𝑥
component of the state space, it is convenient to use the metric on the R × R state spaces given by:

𝑑𝑋 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ≡ |𝑥1 − 𝑥2 | (145)

(so we definitely need the latitude of the ‘pseudo-’ spoken of in footnote 12).

13.4.2 Theorem 8.6. We start with Theorem 8.6, in the no-origin version. This relies on a
number of conditions, the first of which is:

𝐼𝑛𝑖𝑡𝑋 (𝑢𝑋 ) ∧ 𝐼𝑛𝑖𝑡𝑌 (𝑢𝑌 ) ⇒ 𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) (146)

Since both abstract and concrete models start with the state at (0, 0), Δ𝐺 = 0 could help satisfy
(146). But that would be a bad choice.24 Instead, since we know, independently, that |𝑥/𝑥𝑥 | < 𝑋𝐵
always holds, choosing:

Δ𝐺 ≡ 2𝑋𝐵 (147)

will make𝐺Δ𝐺 true for all cases of safe dynamics. In addition, since for all cases of the (𝑚,𝑛) diagrams
we considered earlier, both abstract and concrete execution fragments start with MONITOR pliant
events, i.e. ODEs which have a solution from any initial point, the 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 condition in (146) is
trivially satisfied.

The other condition of interest is:

𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐼𝑛Δ𝐼

𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ⇒

(∃ �̃� ′𝑋 ∈ U𝑋 , 𝑜𝑋 ∈ O𝑂𝑝𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , �̃� ′𝑋 , 𝑜𝑋 ) ∧
𝐺

Δ𝐺

𝑋,𝑌
(�̃� ′𝑋 , 𝑢 ′𝑌 ) ∧𝑂𝑢𝑡

Δ𝑂

𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ∧ 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 (�̃� ′𝑋 , 𝑢 ′𝑌 )) (148)

for each (𝑚,𝑛) diagram 𝑠𝑡𝑝𝑂𝑝𝑋 ≡ MON [last]2 ⊛MONskip1 ≡ 𝑠𝑡𝑝𝑂𝑝𝑌 . Here, at the end of a partial
simulation, we know that 𝐺Δ𝐺

𝑋,𝑌
holds, that 𝐼𝑛Δ𝐼

𝑂𝑝𝑋,𝑌
holds, and from 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 , that either both

execution fragments or neither will extend beyond (𝑢𝑋 , 𝑢𝑌 ).
If it is neither, we are done. Otherwise, since we are following the second version here, the

behaviour of the abstract system is entirely determined by that of the concrete system, and the
dynamics of both systems is deterministic (once a choice of 𝑝𝑝 has been made for the concrete
24If we were following the first version rather than the second, Δ𝐺 = 0 would be a good choice provided we cared only
about the states at the beginning and end of an (𝑚,𝑛) diagram.
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system (for a given 𝑒? in a given 𝑇𝑃 interval)). This enables us to identify �̃� ′
𝑋
, 𝑜𝑋 with 𝑢 ′

𝑋
, 𝑜𝑋 in

(148).25 For 𝑢 ′
𝑋
, 𝑢 ′
𝑌
, we know that𝐺Δ𝐺

𝑋,𝑌
is true. Also, we said already that𝑂𝑢𝑡𝑂𝑝𝑋,𝑌

is irrelevant, and
that 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 is trivially satisfied. So we can use Theorem 8.6 to infer a trace inclusion between
the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 (abstract) and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 (concrete) systems, based on the𝑊 /𝐷 data
considered for the second version.

If we now go to the with-origin version of the theorem, where we obviously identify the origins
with the origins of suitable Cartesian products of R for the various state and input spaces, the
possibilities are parameterised by the triples ([, 𝛼𝑋 , 𝛼𝑌 ) for the various metric spaces. Regarding
the state space, knowing already that |𝑥 | < 𝑋𝐵 and |𝑥𝑥 | < 𝑋𝐵 both hold, implies that any positive
linear combination based on those and on the earlier Δ𝐺 = 2𝑋𝐵 will yield a 𝐺Δ𝐺

𝑋,𝑌
that enables (148)

to be proved for all cases of safe dynamics, provided 𝐼𝑛Δ𝐼

𝑂𝑝𝑋,𝑌
is also a positive linear combination.

So we can apply Theorem 8.6 to infer a trace inclusion as before. We do not pursue the details
further.

13.4.3 Theorem 8.12. Next is Theorem 8.12, starting again with the no-origin case. This is the
same as Theorem 8.6 aside from the replacement of (148) by (149). Even then, the only difference
arises in the third line:

𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ∧ 𝐼𝑛Δ𝐼

𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , 𝑢 ′𝑋 , 𝑜𝑋 ) ∧ 𝑠𝑡𝑝𝑂𝑝𝑌 (𝑢𝑌 , 𝑖𝑌 , 𝑢 ′𝑌 , 𝑜𝑌 ) ⇒

(∃ �̃� ′𝑋 ∈ U𝑋 , 𝑜𝑋 ∈ O𝑂𝑝𝑋 • 𝑠𝑡𝑝𝑂𝑝𝑋 (𝑢𝑋 , 𝑖𝑋 , �̃� ′𝑋 , 𝑜𝑋 ) ∧
𝑑𝐺𝑋,𝑌 (�̃�

′
𝑋 , 𝑢

′
𝑌 ) ≤ ^ (𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) + 𝑑

⋑
𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 )) ∧

𝑂𝑢𝑡
Δ𝑂

𝑂𝑝𝑋,𝑌
(𝑜𝑋 , 𝑜𝑌 ) ∧ 𝐸𝑞𝐸𝑛𝑏𝑙𝑋,𝑌 (�̃� ′𝑋 , 𝑢 ′𝑌 )) (149)

In (149), ^ < (1 + Δ𝐼/Δ𝐺 )−1. So our assertion that Δ𝐼 = 0, leads to ^ < 1.
The initial value of 𝑑𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) is 0 because both systems start at (0, 0), so we conclude, by

induction, that 𝑑𝐺
𝑋,𝑌

(𝑢𝑋 , 𝑢𝑌 ) must be 0 at each 𝑇𝑃 interval boundary, since that is the only way to
satisfy 𝑑𝐺

𝑋,𝑌
(�̃� ′
𝑋
, 𝑢 ′
𝑌
) ≤ ^ (𝑑𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) + 0) for every interval. So this instance of Theorem 8.12 is

applicable only to the execution where the state remains constantly at (0, 0) without any non-zero
𝑒? input.26 We conclude that the no-origin instance of Theorem 8.12 is of limited interest for our
case study.
If we now go to the with-origin case, the situation changes, since the revised definitions of

distance functions permit them to focus on absolute magnitudes instead of differences between
abstract and concrete values. If we take advantage of the flexibility afforded by the ([, 𝛼𝑋 , 𝛼𝑌 )
parameters to redefine:

𝐺
Δ𝐺

𝑋,𝑌
(𝑢𝑋 , 𝑢𝑌 ) ≡ 1

2 (` (𝑢𝑋 ) + ` (𝑢𝑌 )) ≤ Δ𝐺 = 𝑋𝐵 (150)

𝐼𝑛
Δ𝐼

𝑂𝑝𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≡ 1

2 (` (𝑖𝑋 ) + ` (𝑖𝑌 )) ≤ Δ𝐼 = 𝐸𝐵 (151)

we can deduce that Theorem 8.12 is applicable to our case if the dynamics of (129), (130), (131)
satisfies the redefined constraints of the third line of (149). Working to leading order, expressed via

25If we were following the first version rather than the second, then the flexibility offered by the existential quantification in
(148) would have been vital in allowing a choice of𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 dynamics that exactly matched the𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01
dynamics.
26We ignore the bizzare possibility that the earthquake is precisely such that 𝑑𝐺

𝑋,𝑌
(𝑢𝑋 ,𝑢𝑌 ) is not identically zero, yet,

returns to zero at each𝑇𝑃 interval boundary.
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(131), and considering a full 𝑇𝑃 interval, this is the case if:(
1 − 𝜔2 𝜏2

2

)
𝑥𝑥 (tL) +

���� 𝑎𝑋 𝜏22

���� ≤ ^ (𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) + 𝑑
⋑
𝑋,𝑌

(𝑖𝑋 , 𝑖𝑌 )) (152)

where we have used the triangle inequality to ensure the inhomogeneous term of (131) contributes
positively, and where 𝜏 = 𝑇𝑃 , 𝑥𝑥 (tL) = Δ𝐺 = 𝑋𝐵 , Δ𝐼 = 𝐸𝐵 , ^ = (1 + Δ𝐼/Δ𝐺 )−1, 𝑑𝐺𝑋,𝑌 (𝑢𝑋 , 𝑢𝑌 ) =

Δ𝐺 = 𝑋𝐵 , 𝑑⋑𝑋,𝑌 (𝑖𝑋 , 𝑖𝑌 ) = Δ𝐼 = 𝐸𝐵 , and where we have taken limiting values at all strict inequalities,
justified by the desire to derive the extremal values permitted by (152). Evidently, the key factor in
satisfying (152) is whether the additive inhomogeneous contribution on the left, can be dominated
by the multiplicatively reduced inhomogeneous contribution on the right. Making the substitutions
indicated leads to:

| 𝑎𝑋 | ≤ 𝜔2𝑋𝐵 or
��� 𝑝𝑝
𝑚

− 𝑒?
��� ≤ 𝑋𝐵

400𝑇 2
𝑃

(153)

The large denominator in (153) places severe bounds on the magnitude of the earthquake that
can be accommodated by the with-origins framework of Theorem 8.12 when applied to the
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 model in which there is no 𝑝𝑝 compensation in the interior of a 𝑇𝑃 interval.
We also observe that taking 𝑋𝐵 as maximal before-value of 𝑥𝑥 (tL) and respecting the constraint
just derived results in a smaller before-value for 𝑥𝑥 (tL) in the next interval, and so on. Starting
with the known initial state of (0.0) would constrain the possibilities even further. In that sense,
the with-origin version of Theorem 8.12 is not actually very useful, although it is more applicable
than the no-origin version.
Asking that the invariants are maintained in the interior of a 𝑇𝑃 interval, and not just at the

interval boundaries, Policies 9.2 provide a way forward. We note that in the interior of a𝑇𝑃 interval,
Policy 9.2.(1) will work, since the contracting nature of the dynamics implies that an already
acceptable initial value of a bound will not be exceeded. Policy 9.2.(2) will not work, since the
dynamics is concave rather than convex. Policy 9.2.(3) will work though, since the concave nature
of the dynamics can be described by a monotonically decreasing quadratic function of time, as is
clear from (152), generating a candidate for the required 𝜙 .

13.4.4 Theorem 8.16. When we progress to Theorem 8.16, the greater flexibility of the di-
verging/converging framework gives a little more scope for capturing the anticipated behaviour
of the earthquake system in the real world. Definition 8.15 can be seen as combining a number
of cases as in Theorem 8.12, but with different values of the ^ parameter (called 𝑘 now) in the
diverging/converging criterion (67), together with suitable conditions to enable straightforward
case analysis. Theorem 8.16 then instantiates this for two 𝑘 values 0 < ^ < 1 < 𝐾 , and presents
two results, (a) and (b), each with a no-origin case and a with-origin case. The argument for the
no-origin cases for both (a) and (b) is identical to that in Theorem 8.12, as the argument does not
depend on the value of 𝑘 .

For the with-origin cases, result (a) assumes each execution starts with 𝑘 = 𝐾 steps. For us, this
means the earthquake protection system starts exactly at the commencement of an earthquake,
which is rather far fetched. So we will disregard result (a). (We note though that it speaks of
an 𝐼𝑛𝑖𝑡-constrained trace inclusion, to cope with the diverging 𝑑𝐺

𝑋,𝑌
at the beginning of every

considered execution.)
Result (b) assumes each execution starts with 𝑘 = ^ steps, i.e. no ongoing earthquake at initiali-

sation, which is much more plausible. If we choose (150) and (151) again for the with-origin case,
we modify the relentless decrease in 𝑑𝐺

𝑋,𝑌
of Theorem 8.12 by allowing for intermittent periods of

increase via limited duration episodes of 𝑘 = 𝐾 steps. However, since these would be assumed to
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correspond to earthquakes, this version of events is also not entirely convincing from an application
perspective.

We note that Theorem 8.16 gives us the freedom to separately choose input bounds for different
𝑘 cases via the 𝑑⋑

𝑋,𝑌
(𝑖𝑋 , 𝑖𝑌 ) ≤ 𝐵𝑘 clause of (67), so we do not have to commit to (151). This flexibility

is reflected in the 𝐵𝐾 and 𝐵^ parameters of the trace inclusion data of result (b) of the theorem.
Once this is understood, we can derive consequences analogous to (153) for this, slightly more
complicated scenario.

13.4.5 Theorem 8.20. With Theorem 8.20, we have results that are more realistic with respect
to the requirements of the earthquake protection application than earlier ones. The presence of a
threshold value, below which the contracting nature of the protection system’s dynamics is not
insisted on, corresponds to the normal state of affairs in the long periods between earthquake
episodes, when only minor environmental vibrations are detected.
Threshold effects aside, Theorem 8.20 follows the pattern of Theorem 8.16. There are, again,

two results, (a) and (b), each with a no-origin case and a with-origin case. The no-origin cases are
handled as before, as the arguments used are equally applicable.
For the with-origin cases, result (a) assumes each execution starts with 𝑘 = 𝐾 steps, and yields

an 𝐼𝑛𝑖𝑡-constrained trace inclusion. Result (b) more realistically assumes a more peaceful start for
each considered execution, and yields a trace inclusion parameterised by choices of input bounds
𝐵𝐾 , 𝐵^ , duration parameters𝑀 , 𝑛, threshold bounds 𝐵𝑇 , 𝐷𝑇 , and state bound Δ𝐺 . As before, we can
then derive consequences analogous to (153) for this, yet more complicated scenario, by combining
the techniques that led to Theorem 8.20 and to (153).

13.4.6 Theorem 7.2. The discussion of last few sections, and specifically that in Section 13.4.5,
allows us to recast our account of the relationship between𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5
in the framework of Theorem 7.2. For the sets of executions considered in Theorems 8.16 and 8.20,
we asserted that an excursion to larger amplitude 𝑥/𝑥𝑥 values during an earthquake (diverging
episode) was always followed by a restoration of smaller amplitude 𝑥/𝑥𝑥 values (converging
episode). Focusing on Theorem 8.20, we further envisaged long periods of below threshold values,
before the next earthquake.

If we define a gluing relation between machines 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 by:

𝐺𝑇 ((𝑥,𝑦), (𝑥𝑥,𝑦𝑦)) ≡ | 𝑥 | + | 𝑥𝑥 | ≤ 𝐷𝑇 (154)

where𝐷𝑇 is a (small) threshold value27 adequate to accommodate the sum of the 𝑥/𝑥𝑥 displacements
during the quiescent periods between earthquakes, then with suitable 𝑊 /𝐷 , the simulations
captured by Theorem 8.20 can be described also as weak simulations according to Theorem 7.2. The
earthquake episodes in such simulations are captured by bridging sequences (in the terminology of
Section 6). We observe that the success of such a reinterpretation depends entirely on choosing
different retrenchment data to describe the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 relationship.

13.4.7 Retrospective. We close our account of the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5
relationship with a couple of final observations. Firstly, we did not try to cast the relationship in
terms of all of the theorems in Section 8. Partly this was for economy, and partly it was because
some of them, e.g. the ones dealing with unbounded behaviours, were less relevant to a system
predicated on maintaining the |𝑥/𝑥𝑥 | ≤ 𝑋𝐵 bound (and since all engineered systems have to assume
limited ranges of parameters).

27The threshold 𝐷𝑇 relevant to background noise, should not be confused with the threshold 𝑋𝑡ℎ in Fig. 7 relevant to
judging whether or not to invoke active control, which is a much bigger value.
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Secondly, we could avoid restricting to a set of executions M in those results that did so, by
introducing suitable history variables into the models and by incorporating suitable conditions
into the guards of events. However this is a rather artificial approach.

Thirdly, we deliberately avoided discussing one particular feature of the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 and
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 relationship. This is that the extrapolation of the sampled values 𝑥18, 𝑥19, 𝑒19, to
values at 𝑇𝑃 in the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 model need not (indeed, generally will not) agree precisely
with the exact values of 𝑥 , 𝑦, 𝑒? values available in the 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01 model. This could cause
a divergence of behaviours when 𝑥 and 𝑥𝑥 are near 𝑋𝑡ℎ as one value could be below 𝑋𝑡ℎ and the
other above. Our focus on 𝐺 relationships based on absolute magnitudes allowed us to evade the
issue. We postpone discussion of such effects to the next section.

13.5 𝑨𝒄𝒕𝑪𝒐𝒏𝒕𝑴𝒄𝒉_2.5 and 𝑨𝒄𝒕𝑪𝒐𝒏𝒕𝑴𝒄𝒉_3
While the previous derivation stepmodelled discretisation in time, this section explores quantization
of sensor and actuator values. This is introduced by the red 𝐾−1

... ⌊𝐾... . . .⌉ insertions in Fig. 7, which
morph 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 into 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3. Since both models use the same variable names, we
revert to subscripts 2 and 3 to distinguish them.
One immediate consequence of quantization is that it becomes impossible to maintain exact

equalities of state variables between the two models, e.g. 𝑥𝑥2 = 𝑥𝑥3, because a quantized answer to
a calculation on quantized inputs will not be the same as the unquantized answer to the calculation
on unquantized inputs, except by chance — we mentioned such effects already. However, they are
easier to address in this section because the events of 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3 are just quantized versions
of the events of 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5, i.e. the simulations needed consist of (1, 1) diagrams. Thus the
analogue of the earlier (𝑚,𝑛) diagrams, e.g. (127), becomes:

MONITOR2 o
9 Sample_182 o

9 MONITOR2 o
9 Sample_192 o

9 MONITOR2 o
9 Last2

⊛

MONITOR3 o
9 Sample_183 o

9 MONITOR3 o
9 Sample_193 o

9 MONITOR3 o
9 Last3 (155)

which can now be broken up into:

MONITOR2 ⊛ MONITOR3 (156)
Sample_182 ⊛ Sample_183 (157)
Sample_192 ⊛ Sample_193 (158)
Last2 ⊛ Last3 (159)

where (159) covers possibilities constructed from {PulseNo, PulseMaybe, PulseYesY , PulseYesE}.
With this insight we construct a retrenchment from 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 to 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3, with

data as follows:

• ≽ ≡ { MONITOR2 ≽ MONITOR3, Sample_182 ≽ Sample_183, Sample_192 ≽ Sample_193,
PulseNo2 ≽ PulseNo3, PulseMaybe2 ≽ PulseMaybe3,

PulseYesY 2 ≽ PulseYesY 3, PulseYesE2 ≽ PulseYesE3 } ∪
{ PulseMaybe2 ≽ PulseNo3, PulseNo2 ≽ PulseMaybe3,

PulseNo2 ≽ PulseYesY 3, PulseYesY 2 ≽ PulseNo3,

PulseNo2 ≽ PulseYesE3, PulseYesE2 ≽ PulseNo3,

PulseMaybe2 ≽ PulseYesY 3, PulseYesY 2 ≽ PulseMaybe3,

PulseMaybe2 ≽ PulseYesE3, PulseYesE2 ≽ PulseMaybe3,

PulseYesY 2 ≽ PulseYesE3, PulseYesE2 ≽ PulseYesY 3 } (160)
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The second term in (160) encompasses two sorts of case. The first sort is generated by all the cases
where a case distinction in the two models is decided on the value of an inequality, which could,
because of a small quantisation discrepancy between the models, be flipped into different actions.
The second sort is when a historic occurrence of the former sort has led to a divergence between
the models. In such cases no combination of simultaneous occurrences of different Last actions in
the two models can be excluded.

For the gluing relation, we have the obvious identity:

•𝐺2,3 (𝑥𝑥2, 𝑦𝑦2, 𝑥182, 𝑥192, 𝑦192, 𝑒192, 𝑥𝑥3, 𝑦𝑦3, 𝑥183, 𝑥193, 𝑦193, 𝑒193) ≡
𝑥𝑥2 = 𝑥𝑥3 ∧ 𝑦𝑦2 = 𝑦𝑦3 ∧ 𝑥182 = 𝑥183 ∧ 𝑥192 = 𝑥193 ∧ 𝑦192 = 𝑦193 ∧ 𝑒192 = 𝑒193 (161)

Before discussing the events, we make the following observations.
—— For simplicity, we assume that 𝐾𝑥𝑠 = 𝐾𝑒𝑠 , and that the maximum rounding error caused by

any 𝐾−1
... ⌊𝐾... . . .⌉ insertion is 𝛿 ∈ R.

—— “e/𝑒?-Eq” is as in (118), with adjusted subscripts.
—— “P-Dsc-2” is as “P-Dsc’-2” in (120), but without the heavy apostrophe decorating the 𝑥19,

𝑦19, 𝑒19 variables. These indicated the after-values in the interior of the (𝑚,𝑛) diagrams
of Sections 13.2 and 13.3. But those values are the before-values of the various Last events
needed here. “P-Dsc-3” denotes the same thing but where the model subscript is 3 rather
than 2, referring to 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3.

—— In formulating the data for the event retrenchments below, we focus on some key facts, and
in the comments, we hint at the main idea in the proof where needed. Evidently additional
facts could easily be included in the retrenchment data, if desired. This particularly applies
to the more detailed criteria needed to separate the YesY cases from the YesE cases (indicated
by “𝑌.gtr.𝐸” and “𝐸.gtr.𝑌” in Sections 13.2 Section 13.3), which we have omitted, leading
to some duplication among the retrenchment data. The same could be said regarding finer
grained distinctions arising from the different possibilities mentioned immediately after (160),
which would, however, require the subdivision of the events of the two machines, leading to
additional syntactic complication.

The event retrenchment data are now:

MONITOR2 ≽ MONITOR3

•𝑊MONITOR2≽MONITOR3 (. . .) ≡ |𝑥𝑥2 (tL) | ≤ 𝑋𝐵 ∧ |𝑥𝑥3 (tL) | ≤ 𝑋𝐵 ∧ “e/𝑒?-Eq” ∧
tR − tL ≤ 18𝑇𝑃/20 ∧�� 𝑥192 (tL) (1 − 𝜔2𝑇 2

𝑃 /2
)
+ 𝑦192 (tL)𝑇𝑃

(
1 − Z 𝜔 𝑇𝑃

)
− 𝑒192 (tL)𝑇 2

𝑃 /2
�� ≤ 𝑋𝐵 ∧�� 𝑥193 (tL) (1 − 𝜔2𝑇 2

𝑃 /2
)
+ 𝑦193 (tL)𝑇𝑃

(
1 − Z 𝜔 𝑇𝑃

)
− 𝑒193 (tL)𝑇 2

𝑃 /2
�� ≤ 𝑋𝐵 (162)

• 𝐷MONITOR2≽MONITOR3 (. . .) ≡
(
∀𝜏 ∈ (tL . . . tR) •�� 𝑥192 (𝜏) (1 − 𝜔2𝑇 2

𝑃 /2
)
+ 𝑦192 (𝜏)𝑇𝑃

(
1 − Z 𝜔 𝑇𝑃

)
− 𝑒192 (𝜏)𝑇 2

𝑃 /2
�� ≤ 𝑋𝐵 ∧�� 𝑥193 (𝜏) (1 − 𝜔2𝑇 2

𝑃 /2
)
+ 𝑦193 (𝜏)𝑇𝑃

(
1 − Z 𝜔 𝑇𝑃

)
− 𝑒193 (𝜏)𝑇 2

𝑃 /2
�� ≤ 𝑋𝐵 )

∧
( ∀𝜏 ∈ (tL . . . tR) • |𝑒19(𝜏) | ≤ 𝐸𝑡ℎ ⇒ |𝑥𝑥2 (𝜏) − 𝑥𝑥3 (𝜏) | < |𝑥𝑥2 (tL) − 𝑥𝑥3 (tL) | ) (163)

In a 1-1 retrenchment context, the longest continuous event duration is from the
beginning of a𝑇𝑃 interval up to the Sample_18 events. The last two assertions in (162)
hold because it is the responsibility of the preceding 𝑇𝑃 interval to apply a jolt to
the 𝑦𝑦2/3 variables (if necessary) in order not only that those assertions do hold at
tL, but that the corresponding inequalities hold throughout the current 𝑇𝑃 interval
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too, as asserted in (163). The last assertion in (163) states that provided the external
earthquake disturbance is smaller than a small threshold 𝐸𝑡ℎ , then the dynamics will
be contracting, as discussed earlier.

Sample_182 ≽ Sample_183
•𝑊Sample_182≽Sample_183 (. . .) ≡ | 𝑥𝑥2 | ≤ 𝑋𝐵 ∧ | 𝑥𝑥3 | ≤ 𝑋𝐵 ∧ “e/𝑒?-Eq” (164)
• 𝐷Sample_182≽Sample_183 (. . .) ≡ “x𝑥2/3-Eq” ∧ “y𝑦2/3-Eq” ∧�� | 𝑥18′2 − 𝑥18′3 | − | 𝑥182 − 𝑥183 |

�� ≤ 𝛿 (165)

“x𝑥2/3-Eq” denotes 𝑥𝑥 ′2 = 𝑥𝑥2∧𝑥𝑥 ′3 = 𝑥𝑥3 ; “y𝑦2/3-Eq” denotes 𝑦𝑦 ′2 = 𝑦2∧𝑦𝑦 ′3 = 𝑦𝑦3.

Sample_192 ≽ Sample_193
•𝑊Sample_192≽Sample_193 (. . .) ≡ | 𝑥𝑥2 | ≤ 𝑋𝐵 ∧ | 𝑥𝑥3 | ≤ 𝑋𝐵 ∧ “e/𝑒?-Eq” (166)
• 𝐷Sample_192≽Sample_193 (. . .) ≡ “x𝑥2/3-Eq” ∧ “y𝑦2/3-Eq” ∧�� | 𝑥19′2 − 𝑥19′3 | − | 𝑥192 − 𝑥193 |

�� ≤ 𝛿 ∧�� |𝑦19′2 − 𝑦19′3 | − |𝑦192 − 𝑦193 |
�� ≤ 40𝛿/𝑇𝑃 ∧�� | 𝑒19′2 − 𝑒19′3 | − | 𝑒192 − 𝑒193 |
�� ≤ 𝛿 (167)

Variable 𝑦19′3 could be vulnerable to two rounding errors, rescaled by 20/𝑇𝑃 .
PulseNo2 ≽ PulseNo3

•𝑊PulseNo2≽PulseNo3 (. . .) ≡ | 𝑥𝑥2 | ≤ 𝑋𝑡ℎ < 𝑋𝐵 ∧ | 𝑥𝑥3 | ≤ 𝑋𝑡ℎ < 𝑋𝐵 (168)
• 𝐷PulseNo2≽PulseNo3 (. . .) ≡ “x𝑥2/3-Eq” ∧ “y𝑦2/3-Eq” (169)

PulseMaybe2 ≽ PulseMaybe3

•𝑊PulseMaybe2≽PulseMaybe3 (. . .) ≡ 𝑋𝑡ℎ ≤ | 𝑥𝑥2 | ≤ 𝑋𝐵 ∧ 𝑋𝑡ℎ ≤ | 𝑥𝑥3 | ≤ 𝑋𝐵 ∧

“P-Dsc-2” ≤ 𝑋𝐵 ∧ “P-Dsc-3” ≤ 𝑋𝐵 (170)
• 𝐷PulseMaybe2≽PulseMaybe3 (. . .) ≡ “x𝑥2/3-Eq” ∧ “y𝑦2/3-Eq” (171)

PulseYesY 2 ≽ PulseYesY 3 and PulseYesE2 ≽ PulseYesE3

•𝑊PulseYesY/E2≽PulseYesY/E3 (. . .) ≡ 𝑋𝑡ℎ ≤ | 𝑥𝑥2 | ≤ 𝑋𝐵 ∧ 𝑋𝑡ℎ ≤ | 𝑥𝑥3 | ≤ 𝑋𝐵 ∧

“P-Dsc-2” ≥ 𝑋𝐵 ∧ “P-Dsc-3” ≥ 𝑋𝐵 (172)

• 𝐷PulseYesY/E2≽PulseYesY/E3 (. . .) ≡ “x𝑥2/3-Eq” ∧ |𝑦𝑦 ′2 − 𝑦𝑦 ′3 | ≤ 1
2 |𝑦𝑦2 − 𝑦𝑦3 | + 𝛿 (173)

Variables 𝑦𝑦2 and 𝑦𝑦3 are both reduced in magnitude by at least half. The𝑊 and 𝐷
relations for the YesY and YesE cases are identical.

PulseNo2 ≽ PulseMaybe3

•𝑊PulseNo2≽PulseMaybe3 (. . .) ≡ | 𝑥𝑥2 | ≤ 𝑋𝑡ℎ < 𝑋𝐵 ∧ 𝑋𝑡ℎ ≤ | 𝑥𝑥3 | ≤ 𝑋𝐵 ∧

“P-Dsc-3” ≤ 𝑋𝐵 (174)
• 𝐷PulseNo2≽PulseMaybe3 (. . .) ≡ “x𝑥2/3-Eq” ∧ “y𝑦2/3-Eq” (175)

PulseMaybe2 ≽ PulseNo3

•𝑊PulseMaybe2≽PulseNo3 (. . .) ≡ 𝑋𝑡ℎ ≤ | 𝑥𝑥2 | ≤ 𝑋𝐵 ∧ | 𝑥𝑥3 | ≤ 𝑋𝑡ℎ < 𝑋𝐵 ∧

“P-Dsc-2” ≤ 𝑋𝐵 (176)
• 𝐷PulseMaybe2≽PulseNo3 (. . .) ≡ “x𝑥2/3-Eq” ∧ “y𝑦2/3-Eq” (177)
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PulseNo2 ≽ PulseYesY 3 and PulseNo2 ≽ PulseYesE3

•𝑊PulseNo2≽PulseYesY/E3 (. . .) ≡ | 𝑥𝑥2 | ≤ 𝑋𝑡ℎ < 𝑋𝐵 ∧ 𝑋𝑡ℎ ≤ | 𝑥𝑥3 | ≤ 𝑋𝐵 ∧

“P-Dsc-3” ≥ 𝑋𝐵 (178)

• 𝐷PulseNo2≽PulseYesY/E3 (. . .) ≡ “x𝑥2/3-Eq” ∧ 𝑦𝑦 ′2 = 𝑦𝑦2 ∧ |𝑦𝑦 ′3 | ≤ 1
2 |𝑦𝑦3 | + 𝛿 (179)

PulseYesY 2 ≽ PulseNo3 and PulseYesE2 ≽ PulseNo3

•𝑊PulseYesY/E2≽PulseNo3 (. . .) ≡ 𝑋𝑡ℎ ≤ | 𝑥𝑥2 | ≤ 𝑋𝐵 ∧ | 𝑥𝑥3 | ≤ 𝑋𝑡ℎ < 𝑋𝐵 ∧

“P-Dsc-2” ≥ 𝑋𝐵 (180)

• 𝐷PulseYesY/E2≽PulseNo3 (. . .) ≡ “x𝑥2/3-Eq” ∧ |𝑦𝑦 ′2 | ≤ 1
2 |𝑦𝑦2 | ∧ 𝑦𝑦

′
3 = 𝑦𝑦3 (181)

PulseMaybe2 ≽ PulseYesY 3 and PulseMaybe2 ≽ PulseYesE3

•𝑊PulseMaybe2≽PulseYesY/E3 (. . .) ≡ 𝑋𝑡ℎ ≤ | 𝑥𝑥2 | ≤ 𝑋𝐵 ∧ 𝑋𝑡ℎ ≤ | 𝑥𝑥3 | ≤ 𝑋𝐵 ∧

“P-Dsc-2” ≤ 𝑋𝐵 ∧ “P-Dsc-3” ≥ 𝑋𝐵 (182)

• 𝐷PulseMaybe2≽PulseYesY/E3 (. . .) ≡ “x𝑥2/3-Eq” ∧ 𝑦𝑦 ′2 = 𝑦𝑦2 ∧ |𝑦𝑦 ′3 | ≤ 1
2 |𝑦𝑦3 | + 𝛿 (183)

PulseYesY 2 ≽ PulseMaybe3 and PulseYesE2 ≽ PulseMaybe3

•𝑊PulseYesY/E2≽PulseMaybe3 (. . .) ≡ 𝑋𝑡ℎ ≤ | 𝑥𝑥2 | ≤ 𝑋𝐵 ∧ 𝑋𝑡ℎ ≤ | 𝑥𝑥3 | ≤ 𝑋𝐵 ∧

“P-Dsc-2” ≥ 𝑋𝐵 ∧ “P-Dsc-3” ≤ 𝑋𝐵 (184)

• 𝐷PulseYesY/E2≽PulseMaybe3 (. . .) ≡ “x𝑥2/3-Eq” ∧ |𝑦𝑦 ′2 | ≤ 1
2 |𝑦𝑦2 | ∧ 𝑦𝑦

′
3 = 𝑦𝑦3 (185)

PulseYesY 2 ≽ PulseYesE3 and PulseYesE2 ≽ PulseYesY 3

•𝑊PulseYesY/E2≽PulseYesE/Y 3 (. . .) ≡ 𝑋𝑡ℎ ≤ | 𝑥𝑥2 | ≤ 𝑋𝐵 ∧ 𝑋𝑡ℎ ≤ | 𝑥𝑥3 | ≤ 𝑋𝐵 ∧

“P-Dsc-2” ≥ 𝑋𝐵 ∧ “P-Dsc-3” ≥ 𝑋𝐵 (186)

• 𝐷PulseYesY/E2≽PulseYesE/Y 3 (. . .) ≡ “x𝑥2/3-Eq” ∧ |𝑦𝑦 ′2 + 𝑦𝑦 ′3 | ≤ 1
2 |𝑦𝑦2 + 𝑦𝑦3 | + 𝛿 (187)

The above technical details have been kept reasonably simple for the sake of brevity. However,
the remark concerning the last line of (163) indicates that a finer case analysis, with more detailed
conclusions in the𝐷 relations would not be impossible. We refrain from exploring such elaborations.

13.6 Coda
The preceding sections covered a rich portfolio of relationships between the various models we
introduced in Section 12. Fig. 9 summarises the situation. This variety vividly illustrates that the
individual steps in a formal development must be chosen by humans. This contrasts with the picture
often seen in more conventional refinement developments, which are often presented as if there
were little room for credible alternative approaches, a picture reinforced when the application is
relatively simple.
The variety spoken of is the more keenly felt in the hybrid world, where so many techniques,

particularly ones implementing approximations of various kinds, can be pursued in various combi-
nations, and to as high an order as one chooses, forcing one to be selective. The hybrid case also
underlines the fact that (even in conventional, discrete cases) human beings have to decide:

• what goes into the models of a development,
• which relationships between the models are formalised,
• to what extent those formal relationships are mechanised,
• how much reliance is placed on the outcome of such efforts,
• how much residual risk resides in matters not explored by these means.
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ActConMch_0.01
≽[𝐺0.01,1.01/𝑊0.01,1.01/𝐷0.01,1.01 ] › ActConMch_1.01 ‹

≽[𝐺1.01,2.5/𝑊1.01,2.5/𝐷1.01,2.5 ]≽[𝐺2.5,1.01/𝑊2.5,1.01/𝐷2.5,1.01 ]

ActConMch_3 ‹
≽[𝐺2.5,3/𝑊2.5,3/𝐷2.5,3 ] ActConMch_2.5 ‹

Fig. 9. The earthquake damage prevention active control system development hierarchy discussed in Sec-
tion 13, including the relevant formal development steps. Between 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_1 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑀𝑐ℎ_2.5, the
downward arrow depicts the [𝐺1,2.5/𝑊1,2.5/𝐷1,2.5] retrenchment (first version), the upward arrow depicts
the [𝐺2.5,1/𝑊2.5,1/𝐷2.5,1], retrenchment (second version), and the middle line refers to the simulations of the
third version.

14 EARTHQUAKE PROTECTION AS GRADED DEVELOPMENT SYSTEM
Having explored a number of options in the previous section, we can now put them together
to assemble, in a number of different ways, a GDS as discussed in Section 10. While Fig. 9 sum-
marised the relationships we explored in Section 13, Fig. 10 shows the partial orders that can be
constructed from these, using the simplified labels. Thus, in Fig. 10.(a) we see the straightforward
development consisting of successive retrenchments from 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01 to 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01,
then to 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5, and then to 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3, making use of the first version of the
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 to𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3 relationship. The formal relationship between𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_0.01
and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3 that this leads to can be described by several appropriate (𝑚,𝑛) diagrams, cov-
ering the range of options indicated by Last. The shapes would all be the same simple adaptation
of (112), namely:

MONITOR0
⊛

MONITOR3 o
9 Sample_183 o

9 MONITOR3 o
9 Sample_193 o

9 MONITOR3 o
9 Last3 (188)

In each case, this arises from (112), firstly: by extending above, by composing with a (1, 2) diagram
that deals with theMONITOR0 ⊛MONITOR1 o

9MoSkip1 development step; and secondly: by extend-
ing below with a (5, 5) diagram built by abutting the five (1, 1) diagrams that bridge between the
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3 versions of the events in the bottom line of (188).

Regarding𝐺0,3 and the various𝑊0,3 and 𝐷0,3 relations that arise, in each case they are created by
routine relational composition: we write down the conjunction of the relevant relations from the
component retrenchments elaborated earlier, taking care that the variable names are consistent
across all needed component relations, and we then existentially quantify all the internal variables.
We omit the details.

Fig. 10.(b) showswhat happenswhenwe consider the second and third versions of the relationship
between𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 and𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3 — the orientation of the middle link is switched, and
the relations belonging to it are composed in transposed manner (with the relations belonging to
links above and below). Since, for those relations, the main difference is between 𝐺1,2 (an inverse
projection), and 𝐺2,1 (a universal relation on |𝑥/𝑥𝑥 | ≤ 𝑋𝐵 and inverse projection on the rest), and
since aside from the caveats discussed in Section 13.3 just before (13.3), the other relations are the
same as those used for Fig. 10.(a), it follows that the (𝑚,𝑛) diagrams that are derived are also very
similar to those for Fig. 10.(a).
Fig. 10.(a)-(b) reflect what is derived in Section 10 and shown in Fig. 9. Fig. 10.(c) shows what

would happen if we pursued the possibility of developing the approximate models to higher order,
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Fig. 10. Diagrammatic of development strategies for the earthquake protection system. (a) A development
using the first version of the middle step. (b) A development using the second version of the middle step
(also appropriate for the third version). (c) A hypothetical development icorporating higher order versions of
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3.

indicated by the [1], [2], [3] superscripts. There would be arrows 2[1] → 2[2] and 2[2] → 2[3], which
we have not shown. Likewise arrows 3[1] → 3[2] and 3[2] → 3[3]. If elaborated in full detail, the data
for such arrows would typically feature approximate relationships, which we have indicated earlier
using notations like ∗o( (𝜔𝜏)𝑘 ) .
Regarding the various 𝑉 sets discussed in Section 10.1, we can comment briefly on 𝑉 and on

𝑉 𝐼𝑛𝑣 . Let 𝛾 [0,1,2,3] denote the path in Fig. 10.(a), and let 𝛾 [0,1,2,3] denote the path in Fig. 10.(b). In fact,
for 𝛾 ∈ {𝛾 [0,1,2,3], 𝛾 [0,1,2,3]},𝑉𝛾 = 𝑉 𝐼𝑛𝑣𝛾 . This is because the |𝑥𝑥 | ≤ 𝑋𝐵 invariant has been built into𝐺1,2
and 𝐺2,1, and the identities and projections of the other basic links propagate this to the 0 and 3
ends of 𝛾 [0,1,2,3] and 𝛾 [0,1,2,3], regardless of whether the invariants are checked at the ends of the paths.
One possibility we have not followed above, but which is suggested by the later results we

explored, particularly the ones which singled out the benign no-current-earthquake behaviours,
is to craft the development starting with purely benign behaviour, and to then introduce suitable
retrenchments to incorporate the effects of the large displacements caused by earthquakes (and the
system’s consequent countermoves). Although we do not explore this possibility in technical detail,
Fig. 11 illustrates how such a development path might go. In Fig. 11.(a) we see a depiction of an initial
development, without earthquakes, patterned after Fig. 10.(a). Then in Fig. 11.(b) we see a series of
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Fig. 11. A hypothetical development of the earthquake pro-
tection system based on introducing earthquakes late. (a) Ini-
tial, earthquake-free development. (b) The development follow-
ing the addition of retrenchments to cater for earthquakes in
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01, 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 and 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3.
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retrenchments that introduce earthquake handling into 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_1.01, 𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_2.5 and
𝐴𝑐𝑡𝐶𝑜𝑛𝑡𝑀𝑐ℎ_3, shown by the [E] superscript.

15 DISCUSSION
In this section we broaden the context of the discussion beyond the technical details of the previous
sections, and we also examine related work.

15.1 Wider Contextual Considerations
Our focus in the previous sections was on bridging the impasse between the world in which
desired system requirements were most eloquently articulated, and the world in which they were
implemented, using techniques derived from model based formal refinement, and concentrated on
the case of hybrid and cyber-physical systems, in which these issues are particularly vexing.

One way of tackling such vexing issues is to sidestep them, by drawing a sharp boundary between
those aspects conveniently dealt with using model based techniques, and the rest. Thus, in the case
of hybrid and cyber-physical systems, the structural concerns in such systems are typically clean
and discrete, and lend themselves well to logically based formal refinement approaches, while the
continuous elements are relegated to one or more parts of the system into which formal techniques
do not intrude. Running counter to this is the argument that, in fact, the continuous elements are
normally given via ODE systems, and an ODE is a specification mechanism par excellence, in that it
is a precise but implicit definition of expected behaviour, the explicit consequences of which are
delegated to an ODE solution mechanism (assuming one is available). Viewed thus, when formal
techniques wash their hands of the continuous elements, it is a kind of abrogation of responsibility.

Of course the nub of the problem is that (in the overwhelming proportion of cases) ODE systems
are implementable only approximately. If we stick to the ideal world of mathematics, it is easy
to argue that a solution to an ODE (which definitively exists under suitable assumptions, albeit
non-executably) is a refinement of the behaviour specified by the ODE. As soon as we insist on
executability though, the approximations involved in numerical algorithms break the clean criteria
of typical refinement theories. However, rather than abandoning the challenge, we ought to take
this as a spur to developing theories more applicable to the situation in question. It is our contention
that the framework developed in this paper is a step in this direction, and some specific points
relevant to our particular approach are worth elaborating.

A first point is that although the idea of exerting control via a series of ‘delta functions’, acting
impulsively, arises naturally enough in engineering contexts, the counterpart within model based
formal refinement is rather unnatural, and has to be handled with care. Delta functions can be
integrated to yield step functions. The discontinuities that these exhibit can be handled well enough
via instantaneous state update, but care has to be exercised in keeping the dimensions of different
state variables consistent with physical theory.
A second point concerns the fact that in conventional engineering, approximate calculations

that neglect higher order phenomena are often used for obtaining acceptable results quickly and
efficiently, putting aside the fact that approximations are frequently the only route to any answer at
all, given the limited reach of analytical techniques. Reconciling this fact with the precision that is
characteristic of refinement based approaches requires ingenuity, and is often supported by using
additional properties such as contraction and other convergence phenomena.

A third point extends the previous one, namely, that even in situationswhere analytical techniques
can deliver precise answers in principle, implementation using conventional devices will invariably
rely on discretisations and quantisations of various kinds, each of which brings with it a degree of
imprecision and the kind of threshold crossing discrepancies we dealt with above. And whereas the
previous issue can be tackled by formulating more ingenious notions of correspondence between
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system models, addressing the latter requires a judicious balance between delving into detail and
exploiting more global properties that can cover all the sources of low level imprecision that may
arise.

15.2 Related Work
The hybrid and cyber-physical systems field has been under investigation for several decades by
now, early works being e.g. [6, 46, 47]. This is also witnessed by the longevity of the Hybrid Systems:
Computation and Control series of international conferences [50], these days absorbed into [36].
Many of the earlier approaches, and especially the tools that support the relevant methodologies
are surveyed in [28]. The wide applicability of the techniques explored can be seen in [38]. By now,
a number of texts have appeared, with [5, 56] being quite heavily biased towards discrete systems
techniques. A theoretically based overview of earlier work is to be found in [75]. More recent work
is surveyed in [37, 69].

In [63] we can find an extensive review of exact solutions for ODEs, while [44, 45] explore what
is needed when no exact solutions are possible, this being the majority of the time.
The fact that it is often not possible to solve a hybrid/cyber-physical system exactly is not the

insuperable obstacle it might seem to be. Often it is sufficient to know that a system will stay in
a safe region of the state space indefinitely, as we often did above, without knowing the precise
dynamics. When it is sufficient for the system to stay in a target region of the state space, various
kinds of ‘helper functions’ may be employed to gain assurance, and these can be related to our use
of metric and contractive concepts.

Variant functions are familiar from the classical discrete programming world [7, 35, 49]. To help
control the behaviour of recursions and unbounded iterations, a variant function (of the state) is
required to be decreased by each iteration’s state change. When the variant function takes values
in a well founded set, this gives a guarantee of termination.

Lyapunov functions are well known from continuous control theory [43, 48, 72]. To help establish
stability, the flow defined by the dynamics is required to decrease the Lyapunov function (of the
state), this being easier to ascertain than to argue about the flow itself. The Lyapunov function has
an easily identified minimum, which coincides with a stable fixed point of the dynamics.

Barrier functions have become a familiar technique for establishing safety in the hybrid systems
world [32, 55, 64]. They are required to have one sign (positive say) in the unsafe region, and to
have the other sign (negative) in the set of initial states. Provided the barrier function is decreased
by the flow defined by the continuous dynamics and is also decreased by each discrete state change,
the unsafe region can never be reached.

The common feature of all of these techniques, and of our use of metric ideas, is the demand that
the relevant quantity is decreased at each step of the dynamics to guarantee the desired property
of interest. This idea, and the fact that it can handle situations in which exact solutions are not
available is prominent in [75], as well as in [40–42]. This aspect will not vanish from reasoning
about complex systems in the forseeable future.
Regarding the proof based approach of this paper, we have already discussed Hybrid Event-B

[12, 13], of which the formalism of this paper is a variation. Other approaches targeted at proof
include Hybrid CSP together with the tools that support it [46, 58, 82]. Another is the dynamic
logic approach of Platzer along with the KeYmaera tool [61, 62, 74].

16 CONCLUSIONS
In this rather substantial paper, we have taken on the challenge of reappraising the original
retrenchment notion in the light of the experience gained since its introduction, in order to improve
its ability to confront difficult requirements scenarios within a formal framework compatible with
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refinement. We saw that the looser connection between the data of a retrenchment and the trace
inclusion property, gave rise to a wealth of possibilities for describing the relationship between
models in a formal development pathway, especially regarding simulation. We saw that regarding
recovery to a notion of simulability, metric ideas (allied in the previous section to variants and
Lyapunov functions, etc.) were indispensable.

With this ground prepared, we embarked on a lengthy examination of the earthquake protection
system development of [11]. This case study contains many requirements issues that are, prima
facie, awkward to deal with within conventional refinement frameworks, as pointed out already in
[11]. The original development in [11] was subjected to scrutiny from the many different vantage
points developed here. Thus, the effort expended on the case study in this paper, occupying almost
half of it, is well merited in the author’s opinion. Generally, it was found that the theoretical notions
in the earlier part of the paper were well able to handle what was needed for the case study.

The wider aim of the detailed scrutiny of the difficult requirements issues we encountered above
is to make available to the wider system and software engineering an approach to handling such
issues that offers some particular desirable characteristics. Firstly, it is intended to be more widely
applicable than the well established refinement approach (since refinement, by itself, often cannot
handle these issues ‘as they come’). Secondly, it is intended to offer more flexibility, while retaining
a useful degree of rigour, than refinement might (since refinement, even when applicable, can
demand a rigidity of approach that may not be possible to accommodate in a realistic engineering
environment). Thirdly, it is intended to be compatible with refinement, as was illustrated well in
the case study, so that it is not necessary to deprive oneself of the benefits of refinement and of the
stronger guarantees that it offers when that can be achieved. Fourthly, a major aim in formulating
retrenchment was to retain the ‘challenge/response’ nature of the typical refinement approach.
The approach of positing system properties (in the invariants) as a challenge, to be followed by the
response of discharging system generated POs that guaranteed them, has been a major benefit of
refinement approaches. So it was a deliberate design decision to craft the retrenchment notion to
share similar characteristics, albeit that the properties in question were generated by the user to a
greater extent than was the case with refinement.
A final, important, consequence of all this is that the deliberate similarity in approach to what

has gone before with refinement, is intended to make tool support for retrenchment an easy
adaptation and extension of tools for refinement, the easier to get the benefits of both, especially
when departures from refinement are relatively limited in the development of a given application.
It is to be hoped that the results of this paper will spur the wider adoption of the approach and the
creation of tools along the lines suggested.
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