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1 Introduction

This paper gives a very terse (for lack of space) account of typed double pushout
(DPO) graph transformation as discussed in [6], using abstract diagram techniques
which lend a satisfying degree of abstraction to the theory (unlike concrete diagrams
as used in traditional approaches). See eg. [7, 8, 9] for the untyped version of graph
transformation. We show that graph grammars, graph transition systems, and graph
derivation systems are opfibrations over abstract type change, and that transition and
derivation systems are generated by left adjoints to the evident forgetful functors. For
a less breakneck presentation see the full version [1]. Section 2 sketches abstract di-
agram theory, the foundation of the paper. Section 3 presents the main technical con-
structions for the sequel. Section 4 points out how the preceding applies to DPO
graph transformation. Sections 5, 6 and 7 formalise respectively graph grammars,
transition systems, and derivation systems. Section 8 concludes. To save space many
standard concepts are used as needed without introduction; also there are no proofs.

2 Concrete and Abstract Diagrams

Letu be a directed grapK, be a category, ang: 4 — UC be a graph morphism from
u to the underlying graph df. Thenyis a concrete diagram of shapén C. Letp
be the path category of Then the standard free construction extepds — UC to
afunctory: p - C. If in addition, for all pairs of objectsy, m, in p, for all paths
(e, --. , &) frommgto my in g, if the internal compositiony(g) © ... © y(e)) in C
always yields the same arrdin y(mg) — y(my), then the diagram is a commuting
concrete diagram of shape Henceforth we will only consider commuting dia-
grams. A morphism of concrete diagrams is just a natural transformatipn. .

An abstract diagranh) is a subcategory of the functor categopy(] such that for
any two objectsy andd in D, there is at least one arraw. y - &in D, and all theC

arrows that make up such arare isomorphisms. An abstract diagr&hs maximal
iff (yis an object oD andn:y - &is a morphism such that all tfg arrows that
make upn are isomorphisms (nis a morphism iD ).

A morphismc : Dy - D; of abstract diagrams is a functor frdoy to D;. A mor-
phismc: Dy — D, is mediated by a famil of arrows ofC iff there is a function
X : (Vert(w) x Obj(Dg)) — Arr(C), with range=, mapping pairsrfy, y) to arrows of
C such that: (1) for any fixegof Dy, thex(m, y) form a concrete diagram morphism
y - c(y); (2) for any fixedn : y - & of Dy, the collection of the(mg, y) andx(m,

8) forms a morphism from:y - dtoc(n:y - d) : c(y) —» ¢(d), naturally.

The seKind = {id, std, iso} will label shape vertices according to the kind of isomor-
phisms permitted above them between objects of an abstract diagram.DTbius
kinded shap@ conforms to its kind iff for each vertexg in p: (1) kind(mg) =id =

for eachn:y - &in D, the component af atmy is idy(my); (2) kind(mg) =std = for



eachn:y - din D, the component of atmy is a standard isomorphism (see Cor-
radini et al. (1994a,b)); (arkind(my) = iso does not restrict the isomorphismrag).
Kindedness interacts with maximality in the obvious way. Sensitivity to kinds ena-
bles a detailed correspondence between our theory and other approaches to be set up,
but because of lack of space, these aspects will be neglected here, and all kinds will
beiso in this paper.

A concrete interface-diagram category is a category whose objects and arrows are
concrete diagrams of suitable shapes, such that the objects arise as (source and target)
subdiagrams of the arrow diagrams, and all the expected laws of a category hold w.r.t.
some specific notion of composition of arrows (which mightin fact be given in terms
of some quite complicated manipulations of the constituent arrow diagrams). The
idea is a variant of internal category theory, with a pushout-like construction called
pasting (in which two commuting diagrams are glued together along a well defined
interface — provided the result is still a commuting diagram) playing the role of pull-
backs in the latter. For lack of space we suppress the formal definition, outlining an
example. Thus the shapg — ¢ is a possible shape for arrow diagrams, wsith
suitable shape for object diagrams, the source and target injectieristofey — ¢

being obvious, these in turn inducing the requisite object subdiagrams of the arrow
diagrams. Equally obvious is the composition manipulation for these arrow dia-
grams: it is just normal arrow composition. Note that our tiny example is canonical
in the sense that “anything” that satisfies the laws of a category must be capable of
being projected down toandeg — ;.

The same idea carries over to abstract diagrams. An abstract interface-diagram cat-
egory simply uses abstract diagrams instead of concrete ones, where the abstract no-
tion of pasting becomes the collection of pastings of all possible concrete pastings of
the constituent concrete diagrams. All the categories we will utilise below for for-
malising graph transformation phenomena are abstract interface-diagram categories.

One way of getting (say a concrete) interface-diagram category is to consider a dia-
gram morphismrm : y — 8. If we consider the arrows gfando and the arrows ofi

to be of equal status, we can regardy - d as a bigger diagram whose shape is two
copies of the shape gf(or &) linked by fresh edges, one fresh edge for each arrow of
the natural transformation. These arrow diagrams support object subdiagrams
which are the originay ando; the law of composition is relatively clear. This con-
struction gives the interface-diagram category generated from the shgmiofiny
example above was an instance of it, generated from the object shape same

idea carries over to mediated morphisms of abstract diagrams, except that the arrow
abstract diagrams generated, must be taken as the maximal abstract diagrams con-
taining the mediating family of concrete arrows between the collections of concrete
diagrams in question, a technically unproblematic closure operation. These tech-
niques smoothly port constructions at the concrete diagram level to the abstract dia-
gram level, a phenomenon we exploit fully in this work.

3 Spans and the Opfibration[P ] : [Gr 1Gr-Sp] — [Gr-Sp]

We fix the shape digraph for spans toshe— ¢ - <, which we calln. An abstract
span is an abstract diagram of the for [- [B] — [C], i.e. an abstract diagram of
shapen in the category of graphs and graph morphi€mswith all kindsiso.

The category3p] is the interface-diagram category generated frphy the trick just
mentioned, i.e.3p] is the category of abstract span morphisms. A morphisrbif [



is ([A] < [B] - [C]) -[a,b,c]-> ([A] < [B] - [C]) where -,b,c]-> is a notation for
three concrete graph morphisms representing the abstract span morphism.

The category Gr-Sp] is the interface-diagram category whose arrows are abstract
spans, i.e. an arrow isA] — [B] - [C]) : [A] - [C]. Composition is given by the
relatively obvious pullback construction that také$ |- [B] — [C] and [C] ~ [D]

- [E] and forms the arrow ff] — [M] - [E]) : [A] - [E], whereM is some concrete
graph which is the pullback & — C ~ D.

The two methods of composition involving spans can be brought together in one ab-
stract double interface-diagram categdgrGr-Sp]. Its double cells are effectively

the morphisms of3p]. Vertical compositiori), is the composition of3p]. Horizon-

tal compositior(j, is essentially the composition db[-Sp] (acting at the two levels

of a [Sp] morphism).

The structure described is already powerful enough to formalise DPO rewriting when
one specialises tbp] morphisms wherein the two squares are pushouts. However
we go further to include types and type change. A typed graph over a (type) graph
TGis simply an object of the comma categoBf(TG), i.e.G - TG. Various works

[6, 10, 11] address, with various techniques, the issue of relating graphs typed over
different graphs. We exploit abstract diagrams and an opfibrational framework to
gain the greatest generality.

The category®r. Gr-Sp] is a horizontal subcategory dDF-Gr-Sp], such that two ex-
tra properties hold for every arrow X[ — [Y] - [Z]) -[a,b,c]-> ([A] < [B] - [C]):
(X1 - [AD) - ([4 - [C]) namely that: (1) the left squat€YBAof each concrete
diagram in the arrow is a pullback; (2) the right arrdn Z of the source abstract
span of each concrete diagram in the arrow is an isomorphism. We wKe<{([ Y]
= [Z]) -[a,b,c]> ([A] ~ [B] - [C])) to signify that both properties hold.

Theorem 3.1 The projectionP] : [GriGr-Sp] - [Gr-Sp] that takes

(X - (1= [2]) -{ab,c]-> (Al - [B] - [C]): ([X] - [A]) - ([2] - [C])

to ([A] — [B] - [C]) : [A] - [C]is a split opfibration, where all arrows dB[: Gr-
Sp] are opcartesian and belong to the splitting.

It turns out that when we have an opfibration, diagrams in the fibres of the subject
category acquire morphisms mediated by families of opcartesian arrows, i.e. there is
a covariant functor from the base to diagram morphisms. This allows us to introduce
a triple category that will play a key role in the rest of the paper. The triple category
adds a perpendicular dimension (i.e. the change of basésvi§[]]) to the double
category D-Gr-Spl.

The triple category[D-Gr-Sp. Gr-Sp] has as triple cells abstract diagrams of the
shape in Fig. 1 (middle upper part suppressed). These may be combined using ver-
tical, horizontal and perpendicular compositiaf L}, L}, respectively. Vertical com-
position is typed D-Gr-Sp] vertical composition; horizontal composition is typed
[D-Gr-Sp] horizontal composition; perpendicular composition is derived fr&in [

Gr-Sp] horizontal composition by applying it to all the vertices ofl2-(5r-Sp] dou-

ble cell. The key result is the following.

Theorem 3.2 The projectionPp.g.gp] : [D-Gr-Sp.Gr-Sp] - [Gr-Sp] that takes

(Xl ~ [Yol ~ [Za]) -[XoYozal-> ([X0] ~ [Yo] - [Z])) — [A]) -[ABG=>
(X2l < [Yal - [Z2]) -[2y22al-> ((X2] < [Y2] - [227]) ~ [C])
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Fig. 1

to ([A] < [B] - [C]) : [A] - [C]is a split opfibration, where all triple cells obJ-
Gr-Sp. Gr-Sp] are opcartesian and belong to the splitting.

4 Abstract Graph Rewriting

The preceding material has been very abstract, but provides the right framework for
describing DPO graph transformation in an abstract manner. For this we need to re-
call that the normal presentation of the DPO approach requires that the span forming
a production rule consists of monic arrows, and that the two squares forming the ap-
plication of a rule to a redex are both pushouts. Luckily this combination of proper-
ties of a two-square diagram is preserved by the action of opcartesian arrows of
[Gr.Gr-Sp] by a relatively standard series of lemmas, which quickly leads to the
identification of a triple subcategory oB-Gr-Sp. Gr-Sp] which we call [D-Gr-

MSp. Gr-Sp], in which the spansX,] — [Y,)] = [z)] of Fig. 1 are monic, and

a further triple subcategory ofJ-Gr-MSp. Gr-Sp] called [D-Gr-MSp-DpPo. Gr-

Sp], such that the horizontal-vertical squares illustrated are pushouts. This latter
forms the precise technical vehicle for the formalisations of the rest of this paper.

5 The Category of Typed Graph Grammars

We consider abstract graph@][typed over an abstract type grapi], or putting it
another way, abstract graph morphisrt@ [ [TG]. Changing the type is done by
means of an arbitrary abstract span egGj] — [TGy] - [TGy]) : [TGy] - [TGy].

The preceding sections show us how the various entities involved in graph transfor-
mation, transform under such a change of typing at the abstract level. The category
of abstract typed graph gramma&dGra] is as follows.

Obijects: (TG, [G], P, M) where:

[T@] is an abstract type graph,

[G] is an abstract start graph typed ovEB],
i.e. an abstract graph morphis@|[- [TG],

P is a set of production names,

1. P - HArr([D-Gr-MSp. Gr-Sp)) is a map fronP to
horizontal arrows of[D-Gr-MSp. Gr-Sp],
i.e. abstract typed monic spans, typed oVé]|



Arrows: TGyl < [TGy] - [TGy], 1) : .
([TGgl, [Gyl, Py o) ~ ([TGy], [Gyl, P2, 1))
which is shorthand for a collection of arrows.
Firstly: an arrow of Gr-Spl,
(TG ~ [TG] - [TG) : [TGy] ~ [TG,
Secondly: an arrow ofjr: Gr-Sp],
(([Go] + [Ga = [G2l) -[90.91.92]> ([TGol  [TGy] ~ [TG))):
([Gdl - [TGyl) — ([GJ —~ [TG,)),
which projects unde[] to the first arrow,
Thirdly: an arrow ofSet, f : Py - P, i.e. a map,
Fourthly: for allp O Py a horizontal-perpendicular double cell of
[D-Gr-MSp. Gr-Sp,
([Mo(P)] = [TGyl) -[TGTGTG= ([T(f(P))] - [TGy)
which projects underP[D_Gr_sp] to the first arrow.

Composition: TG « [TGy] - [TGyl, 9) © ([TGq] « [TGq] - [TGy, f) =
([TGy] « [TGy] - [TGy], g © f) where TG,] arises from
the composition of(Gr-Sp].

Identities: (TG] ~ [TG] - [TG], idp) : ([TG], [G], P, ™) - ([TG], [G], P, ),
where the arrows ifT[G] «~ [TG] — [TQ] are all isomorphisms.

Theorem 5.1 The projectionPg,cral - [GraGra] — [Gr-Sp] such that

[PGracral ([TG], [G], P, M) = [TG] and

[Peracral((TGol  [TGy] - [TGJl, ) = ([TGg]  [TG4] - [TGy))
is an opfibration, in which the arrowsTl(Gg] ~ [TGy] - [TGy], f) : ([TGgl, [Gql, Po.
) - ([TGy], [G,l, P,, ) such thaf is an iso irSet are opcartesian.

Note that this opfibration is not split due to the absence of any canonical isomor-
phisms inSet. A choice of standard isomorphisms $8t would yield a splitting.

6 The Category of Transition Systems

Graph transition systems are enriched graph grammars which include all the result
spans of direct derivation steps by their productions and such that the set of produc-
tion names supports a partial actibby HvDCel([D-Gr-MSp-ppo. Gr-Sp]), the
(horizontal-vertical) double cells oB-Gr-MSp-bpPo. Gr-Sp]. For notational com-
pactness, we will write these double cells in future using a notation dike-fds],
refering to their alternative interpretation as abstract span morphisms, this in turn le-
gitimising the use of dom and cod in the next definition.

An abstract typed graph transition system is a quintupf€[[G], P, i, /) where
([TG], [G], P, ™) is an abstract typed graph grammar, &and® x HVDCel([D-Gr-
MSp-DPO: Gr-Sp)) +- P satisfies: (1) If dom@y,dy,d3]) = [11(p)] then p/[d;,d,,d5]
is defined andii(p/[dy,d,,d3])] = cod([d;,d5,d3]); (2) p/[id[n(p)]] =p; (3) (p}[dl,dz,
dg))/[d'1,d'5,d'5] = p/[d'1.d,0"5.0,d'3.03].

The category GraTS] of abstract graph transition systems has as objects abstract
graph transition systems, and as morphismi&g] —~ [TG] - [TGy], f) : ([TGq),
[Gal. Po. o, /o) ~ (ITGl, [Gal, P2, T, /), where (TGl « [TGy] - [TGyl, f)is a
morphism of the underlying abstract graph grammar, and such that fopgacR,
and eachdgy,dg2.do3l with po/[dg1,dp2dos] defined, we have adp;,d5,,dp4] With
[f(Po)/[d21,02,d,3]] defined andf{py/[doz,doz.dodl)] = [f(Po)/[do1,d02,023ll-



Obviously there is a forgetful functok)] : [GraTS] - [GraGra] which just ignores
/. We now give the construction that will provide a left adjoint functoltip [

Let GG = ([TQG], [G], P, ) be an abstract graph grammar. Then the abstract graph
transition system@TS] = ([TG], [G], PP, 1ot /) is given by: (1)PP={(p, [ty,tr.t3]) |

p O P, and fy,ty,t3] is a horizontal-vertical double cell oBJ-Gr-MSp-Dpo. Gr-Sp]

with dom(fty tp.t3]) = [M()]}; (2) [T0(p, [ty,ta.ta)] = cod([ty tta]); (3) if [ru((p,
[t1.to,t3]))] = dom([dq,dp,d3]) then (o, [ty,t.t3])/[d1,dy,d5] is defined, equalsp,
[dl.tl,dz.tz,dg.ta]), and thus '[lT[((p, [tl,tz,tg])f[dl,dz,dg])] = COd([dl.tl, d2.t2,d3.t3]).
Theorem 6.1 The forgetful functorJ 1: [GraTS] - [GraGra] has a left adjoint
[TS]:[GraGra] - [GraTS ] where the functor TS ](GG) = GTS s given above

for objects, and is given for arrows by:

[TSI(TGy « [TGy] - [TGy], f) : GGy » GGy) is the unique morphism
(TGYl « [TGy] - [TGy], gp) : GTSy - GTS, in [GraTS] such that
for all pin P, gp((p. [id{rpy])) = (F(P). [id[t(pyy])

Theorem 6.2 The obvious projectiorHg,,7g] : [GraTS] — [Gr-Sp] is an opfibra-
tion, where all arrows {[[Gy] « [TGy] - [TGy], f) : ([TGgl, [Gol, Po» T /o) —
([TGyl, [G,l, Py, m, /5) such thaf is an iso irSet are opcartesian.

7 The Category of Derivation Systems

Derivation systems are transition systems enriched with an opefatibhorizontal
composition on production names, inherited from the corresponding propefy of [
Gr-MSp. Gr-Sp].

An abstract graph derivation system is a sextupl€][ [G], P, 1t, /, ;) where (G|,

[G], P, 1, /) is an abstract graph transition system, andP x P +- P satisfies: (1) if
1(p) = [A] — [B] - [C]landm(q) =[C] - [D] - [E]thenp,q is defined andt(p, q)

=[A] < [M] - [E], whereM is a pullback oB -~ C ~ D; (2) if i(p) = [A] « [B]

- [C] thenP contains g5y with T(pja) = [A] ~ [A] - [A], an identity name such
thatpLA]; p =p, and also a similar identity nanpecy with mi(p;;) = [C] ~ [C] - [C]
andp,picj = p; (3) ; is associative; (4) if bothpﬂ o)/ ([s1,5,3] Gty tot3]) and @/

[:7,% ); (@/[ty.txt3]) are defined thenp(, o)/([s1,5.5] Chltr. b ta]) = (p/[s1.5,.53));

(@t to.t3)).-

The category GraDS] of abstract graph derivation systems has as objects abstract
graph derivation systems, and as morphisii$g] — [TGq] - [TGy), ) : ([TGq),

[Gal. Po: o, /o, 30) = (TG, [Gal, P, T, /2, 5 ), where (TGyl — [TGy] - [TGy,

f) is a morphism between the underlying abstract transition systems, such that for
each identity nampy,; in Py, f(p[A]) is an identity name, and for eagh, ) pair de-

fined for, o, we havef(]p;oq) =1(p), 5f(q).

There is a forgetful functof] : [GraDS] - [GraTS] which just ignores. We now
give the construction that will provide a left adjoint functor\fg. [

Let [GTS] = ([TG], [G], P, 1, /) be an abstract graph transition system. Then the ab-
stract graph transition syster6DS] = ([TG], [G], PP, i, /pp ; pp) iS given by first-

ly, constructingPPP, o, /pppand; pppas the smallest sets satisfying the following
properties: (1)) is in PPPfor pin P, androm((p)) = 1(p); and whenevep/[d;,dy,ds]

is defined, p)/pppldy,da,ds] = (p/[dy,d,,da]), (@nd Tow((p)/ ppe{dy,da,d3l) = cod(
[d1,da,d3])); (2) (Ppa)) @nd ;) are inPPPfor eachpin P with Ti(p) = [A] ~ [B] -

[C. andm((prap) = [A] - 1A  [A] andmm((piey) = [€] ~ [C] ~ [C] both



identity abstract spans, amuri((pya)), ppe(P)) = TrT(p) = T0T((D), ppA(P[c))); and
whenever f] = dom([d]), (pia))/pprld.d.d] = (pcod§d))’ (an.dm'm((pcod(d))s = cod([
d,d,d])), and similarly for ©;c); (3) (p, 0) is in PPPfor p, q in PPPsuch thatuuip)
= [A] < [B] - [C] andrum(p) = [C] - [D] — [E]; (P, &) = P; pprd androi(p, @)
is given via the local pullback afirrt(p) androu(q); and whenevep/ppds;,5,,53],
o/ppHtytotal and [51,5,, 53l Chlty o ta] are defined, i, Q) ppplsy,s2831 Chlty b tal is
defined andu((p, )/ ppal 1,553 Chit.to.ta]) = cod([sy,sp,S3l Chita to.tal). And then
secondly, lettingPP, T, /pp and ; pp be given by takindPPR, 1ot /ppp and; ppp
modulo the composition lawp([d;,dy,d3])/pppd'1,d'5,d'3] = p/pppd'1.d;,d'5.05,
d'5.d3] and identity |a.Wp/pijdT[(p) =p, and the associative law ((pppB), pppC) =
(A, ppp(B; pppC)) and identity lawsg); ppe(P) = () = (); pPR(PCY)-

Note that our constructions are based on propertie®eB[-MSp. Gr-Sp], so the
interchange laws of¢raDS] in the span-transition lemma of [6], derive directly
from those of the subcategofp{Gr-MSp-ppPo: Gr-Sp].

Theorem 7.1 The forgetful functor V] : [GraDS] - [GraTS] has a left adjoint
[DS]: [GraTS] - [GraDS] where [DS](GTS) = GDS is given above for objects,
with the unique extension for arrows.

Theorem 7.2 The obvious projectiorHgaps] : [GraDS] - [Gr-Sp] is an opfibra-

tion, where all arrows {[Gy] « [TGy] - [TG,], f) : ([TGql, [Gql, Po, T, /o 50) —
([TGy, [Gyl, Py, T, /5, ;) such that is an iso irSet are opcartesian.

8 Conclusions

The preceding sections presented the “in the large” version of the theory of graph
grammars and the associated phenomena of transition systems and derivation sys-
tems. The vehicle for this was the abstract diagram in its most abstract incarnation,
in which all isomorphisms of graphs and diagrams were permitted. However, there
are parts of graph transformation theory which use a finer notion of equivalence than
this, in particular [4, 6] which deal with event structure semantics, and where equiv-
alence up to only standard isomorphisms plays a key role. Here we wish to point out
that this kind of theory is perfectly accessible using our techniques.

In Section 2 we indicated that the kinds of vertices of shape graphs could be assigned
arbitrarily, before we restricted attention exclusively to the kindtheory. To de-
scribe the alternative variants needed, it is essentially enough to restrict judiciously
chosen vertices to kingdd. This enables the identification of corresponding concrete
graphs at those vertices in the manner required. Specifically, the vertices of the
graphsXg, Xg', Zo, Zg, X, Xo', Zp, Z57, A, C of Fig. 1 must be of kindtd. The reg-

uisite theory can be built up by straightforward analogues of Sections 3-7. However
the lack of full generality of isomorphisms has three specific consequences compared
with the theory set out above.

Firstly, various operations in the theory become nondetereministic, due to the loss of
ability to relate concrete diagrams which differ only by nontrivial automorphims and

which would otherwise be in the same abstract diagram. Secondly, those opfibrations
which we presented as split above, lose the split property. Essentially this is a man-
ifestation of the same phenomenon, the lack of a canonical choice of opcartesian ar-
row at a critical point of the theory. Thirdly, certain left adjoints in the theory become

weak left adjoints, again as a result of an absence of canonical choice, this time of



universal arrow. Provided one is prepared to accept these relatively harmless modi-
fications, the remainder of the theory goes through uneventfully.

Proceeding further, one can forget the internal structure of abstract diagrams, i.e. the
morphisms between the concrete diagrams that make up an abstract diagram, to get
a version of the theory in terms of equivalence classes of concrete diagrams. From
there itis a short step to refashion the results in terms of concrete diagrams in the cat-
egory of abstract graphs and abstract morphisms, bringing the theory into line with
preceding accounts.

The one message that emerges clearly from this work is that in examining questions
of abstractness where the subject matter is categorical, functor categories provide the
most convincing approach, and treatments involving equivalence classes can be
smoothly recovered from them post hoc.
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