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1 Introduction
This paper gives a very terse (for lack of space) account of typed double pus
(DPO) graph transformation as discussed in [6], using abstract diagram techn
which lend a satisfying degree of abstraction to the theory (unlike concrete diag
as used in traditional approaches). See eg. [7, 8, 9] for the untyped version of g
transformation. We show that graph grammars, graph transition systems, and
derivation systems are opfibrations over abstract type change, and that transitio
derivation systems are generated by left adjoints to the evident forgetful functors.
a less breakneck presentation see the full version [1]. Section 2 sketches abstr
agram theory, the foundation of the paper. Section 3 presents the main technica
structions for the sequel. Section 4 points out how the preceding applies to D
graph transformation. Sections 5, 6 and 7 formalise respectively graph gramm
transition systems, and derivation systems. Section 8 concludes. To save space
standard concepts are used as needed without introduction; also there are no pr

2 Concrete and Abstract Diagrams
Let µ be a directed graph,C be a category, andγ : µ → UC be a graph morphism from
µ to the underlying graph ofC. Thenγ is a concrete diagram of shapeµ in C. Let µ
be the path category ofµ. Then the standard free construction extendsγ : µ → UC to
a functorγ : µ → C. If in addition, for all pairs of objectsm0, m1 in µ, for all paths
(e1, … , ek) from m0 to m1 in µ, if the internal composition (γ(ek) … γ(e1)) in C
always yields the same arrowf : γ(m0) → γ(m1), then the diagram is a commuting
concrete diagram of shapeµ. Henceforth we will only consider commuting dia
grams. A morphism of concrete diagrams is just a natural transformationn : γ → δ.

An abstract diagramD is a subcategory of the functor category [µ,C] such that for
any two objectsγ andδ in D, there is at least one arrown : γ → δ in D, and all theC
arrows that make up such ann are isomorphisms. An abstract diagramD is maximal
iff ( γ is an object ofD andn : γ → δ is a morphism such that all theC arrows that
make upn are isomorphisms) ⇒ ( n is a morphism inD ).

A morphismc : D0 → D1 of abstract diagrams is a functor fromD0 to D1. A mor-
phismc : D0 → D1 is mediated by a familyΞ of arrows ofC iff there is a function
χ : (Vert(µ) × Obj(D0)) → Arr(C), with rangeΞ, mapping pairs (m0, γ) to arrows of
C such that: (1) for any fixedγ of D0, theχ(m0, γ) form a concrete diagram morphism
γ → c(γ); (2) for any fixedn : γ → δ of D0, the collection of theχ(m0, γ) andχ(m0,
δ) forms a morphism fromn : γ → δ to c(n : γ → δ) : c(γ) → c(δ), naturally.

The setKind = { id, std, iso} will label shape vertices according to the kind of isomo
phisms permitted above them between objects of an abstract diagram. ThusD of
kinded shapeµ conforms to its kind iff for each vertexm0 in µ: (1) kind(m0) = id ⇔
for eachn : γ → δ in D, the component ofn atm0 is idγ(m0); (2) kind(m0) = std ⇔ for
1
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eachn : γ → δ in D, the component ofn at m0 is a standard isomorphism (see Co
radini et al. (1994a,b)); (andkind(m0) = iso does not restrict the isomorphism atm0).
Kindedness interacts with maximality in the obvious way. Sensitivity to kinds e
bles a detailed correspondence between our theory and other approaches to be
but because of lack of space, these aspects will be neglected here, and all kind
be iso in this paper.

A concrete interface-diagram category is a category whose objects and arrow
concrete diagrams of suitable shapes, such that the objects arise as (source and
subdiagrams of the arrow diagrams, and all the expected laws of a category hold
some specific notion of composition of arrows (which might in fact be given in ter
of some quite complicated manipulations of the constituent arrow diagrams).
idea is a variant of internal category theory, with a pushout-like construction ca
pasting (in which two commuting diagrams are glued together along a well defi
interface — provided the result is still a commuting diagram) playing the role of p
backs in the latter. For lack of space we suppress the formal definition, outlinin
example. Thus the shape•0 → •1 is a possible shape for arrow diagrams, with• a
suitable shape for object diagrams, the source and target injections of• into •0 → •1
being obvious, these in turn inducing the requisite object subdiagrams of the a
diagrams. Equally obvious is the composition manipulation for these arrow
grams: it is just normal arrow composition. Note that our tiny example is canon
in the sense that “anything” that satisfies the laws of a category must be capab
being projected down to• and•0 → •1.

The same idea carries over to abstract diagrams. An abstract interface-diagram
egory simply uses abstract diagrams instead of concrete ones, where the abstra
tion of pasting becomes the collection of pastings of all possible concrete pastin
the constituent concrete diagrams. All the categories we will utilise below for f
malising graph transformation phenomena are abstract interface-diagram catego

One way of getting (say a concrete) interface-diagram category is to consider a
gram morphismn : γ → δ. If we consider the arrows ofγ andδ and the arrows ofn
to be of equal status, we can regardn : γ → δ as a bigger diagram whose shape is tw
copies of the shape ofγ (or δ) linked by fresh edges, one fresh edge for each arrow
the natural transformationn. These arrow diagrams support object subdiagra
which are the originalγ andδ; the law of composition is relatively clear. This con
struction gives the interface-diagram category generated from the shape ofγ; our tiny
example above was an instance of it, generated from the object shape•. The same
idea carries over to mediated morphisms of abstract diagrams, except that the
abstract diagrams generated, must be taken as the maximal abstract diagram
taining the mediating family of concrete arrows between the collections of conc
diagrams in question, a technically unproblematic closure operation. These
niques smoothly port constructions at the concrete diagram level to the abstrac
gram level, a phenomenon we exploit fully in this work.

3 Spans and the Opfibration[P ] : [Gr ↓Gr-Sp] → [Gr-Sp]
We fix the shape digraph for spans to be•1 ← ♦ → •2 which we callη. An abstract
span is an abstract diagram of the form [A] ← [B] → [C], i.e. an abstract diagram of
shapeη in the category of graphs and graph morphismsGr, with all kindsiso.

The category [Sp] is the interface-diagram category generated fromη by the trick just
mentioned, i.e. [Sp] is the category of abstract span morphisms. A morphism of [Sp]
2
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is ([A] ← [B] → [C]) -[a,b,c]-› ([A′] ← [B′] → [C′]) where -[a,b,c]-› is a notation for
three concrete graph morphisms representing the abstract span morphism.

The category [Gr-Sp] is the interface-diagram category whose arrows are abstr
spans, i.e. an arrow is ([A] ← [B] → [C]) : [A] → [C]. Composition is given by the
relatively obvious pullback construction that takes [A] ← [B] → [C] and [C] ← [D]
→ [E] and forms the arrow ([A] ← [M] → [E]) : [A] → [E], whereM is some concrete
graph which is the pullback ofB → C ← D.

The two methods of composition involving spans can be brought together in one
stract double interface-diagram category [D-Gr-Sp]. Its double cells are effectively
the morphisms of [Sp]. Vertical composition∗v is the composition of [Sp]. Horizon-
tal composition∗h is essentially the composition of [Gr-Sp] (acting at the two levels
of a [Sp] morphism).

The structure described is already powerful enough to formalise DPO rewriting w
one specialises to [Sp] morphisms wherein the two squares are pushouts. Howe
we go further to include types and type change. A typed graph over a (type) g
TG is simply an object of the comma category (Gr↓TG), i.e.G → TG. Various works
[6, 10, 11] address, with various techniques, the issue of relating graphs typed
different graphs. We exploit abstract diagrams and an opfibrational framewor
gain the greatest generality.

The category [Gr↓Gr-Sp] is a horizontal subcategory of [D-Gr-Sp], such that two ex-
tra properties hold for every arrow (([X] ← [Y] → [Z]) -[a,b,c]-› ([A] ← [B] → [C])) :
([X] → [A]) → ([Z] → [C]) namely that: (1) the left squareXYBAof each concrete
diagram in the arrow is a pullback; (2) the right arrowY → Z of the source abstract
span of each concrete diagram in the arrow is an isomorphism. We write (([X] ← [Y]
== [Z]) -[a,b,c]-› ([A] ← [B] → [C])) to signify that both properties hold.

Theorem 3.1 The projection [P ] : [Gr↓Gr-Sp] → [Gr-Sp] that takes

(([X] ← [Y] == [Z]) -[a,b,c]-› ([A] ← [B] → [C])) : ([X] → [A]) → ([Z] → [C])

to ([A] ← [B] → [C]) : [A] → [C] is a split opfibration, where all arrows of [Gr↓Gr-
Sp] are opcartesian and belong to the splitting.

It turns out that when we have an opfibration, diagrams in the fibres of the sub
category acquire morphisms mediated by families of opcartesian arrows, i.e. the
a covariant functor from the base to diagram morphisms. This allows us to introd
a triple category that will play a key role in the rest of the paper. The triple categ
adds a perpendicular dimension (i.e. the change of base via [Gr-Sp]) to the double
category [D-Gr-Sp].

The triple category [D-Gr-Sp↓Gr-Sp] has as triple cells abstract diagrams of th
shape in Fig. 1 (middle upper part suppressed). These may be combined usin
tical, horizontal and perpendicular composition,∗v, ∗h, ∗p respectively. Vertical com-
position is typed [D-Gr-Sp] vertical composition; horizontal composition is type
[D-Gr-Sp] horizontal composition; perpendicular composition is derived from [Gr↓
Gr-Sp] horizontal composition by applying it to all the vertices of a [D-Gr-Sp] dou-
ble cell.  The key result is the following.

Theorem 3.2 The projection [PD-Gr-Sp] : [D-Gr-Sp↓Gr-Sp] → [Gr-Sp] that takes

((([X0] ← [Y0] → [Z0]) -[x0,y0,z0]-› ([X0˜] ← [Y0˜] → [Z0˜])) → [A]) -[ABC]=›
  ((([X2] ← [Y2] → [Z2]) -[x2,y2,z2]-› ([X2˜] ← [Y2˜] → [Z2˜])) → [C])
3
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to ([A] ← [B] → [C]) : [A] → [C] is a split opfibration, where all triple cells of [D-
Gr-Sp↓Gr-Sp] are opcartesian and belong to the splitting.

4 Abstract Graph Rewriting
The preceding material has been very abstract, but provides the right framewor
describing DPO graph transformation in an abstract manner. For this we need
call that the normal presentation of the DPO approach requires that the span for
a production rule consists of monic arrows, and that the two squares forming th
plication of a rule to a redex are both pushouts. Luckily this combination of prop
ties of a two-square diagram is preserved by the action of opcartesian arrow
[Gr↓Gr-Sp] by a relatively standard series of lemmas, which quickly leads to
identification of a triple subcategory of [D-Gr-Sp↓Gr-Sp] which we call [D-Gr-
MSp↓Gr-Sp], in which the spans [Xi

(˜)] ← [Yi
(˜)] → [Zi

(˜)] of Fig. 1 are monic, and
a further triple subcategory of [D-Gr-MSp↓Gr-Sp] called [D-Gr-MSp-DPO↓Gr-
Sp], such that the horizontal-vertical squares illustrated are pushouts. This l
forms the precise technical vehicle for the formalisations of the rest of this pap

5 The Category of Typed Graph Grammars
We consider abstract graphs [G] typed over an abstract type graph [TG], or putting it
another way, abstract graph morphisms [G] → [TG]. Changing the type is done by
means of an arbitrary abstract span eg. ([TG0] ← [TG1] → [TG2]) : [TG0] → [TG2].
The preceding sections show us how the various entities involved in graph tran
mation, transform under such a change of typing at the abstract level. The cate
of abstract typed graph grammars [GraGra] is as follows.

Objects: ([TG], [G], P, π)  where:
[TG] is an abstract type graph,
[G] is an abstract start graph typed over [TG],

i.e. an abstract graph morphism [G] → [TG],
P is a set of production names,
π : P → HArr([D-Gr-MSp↓Gr-Sp]) is a map fromP to

horizontal arrows of [D-Gr-MSp↓Gr-Sp],
i.e. abstract typed monic spans, typed over [TG].

Fig. 1

[X0]

[A] [B] [C]

[Y0]
[Z0]

[X0˜]
[Y0˜]

[Z0˜]

[X2]
[Y2]

[Z2]

[X2˜]
[Y2˜]

[Z2˜]
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Arrows: ([TG0] ← [TG1] → [TG2], f) :
([TG0], [G0], P0, π0) → ([TG2], [G2], P2, π2)

which is shorthand for a collection of arrows.
Firstly: an arrow of [Gr-Sp],

([TG0] ← [TG1] → [TG2]) : [TG0] → [TG2],
Secondly: an arrow of [Gr↓Gr-Sp],

(([G0] ← [G2] == [G2]) -[g0,g1,g2]-› ([TG0] ← [TG1] → [TG2])) :
([G0] → [TG0]) → ([G2] → [TG2]),

which projects under [P ] to the first arrow,
Thirdly: an arrow ofSet, f : P0 → P2 i.e. a map,
Fourthly: for allp ∈ P0 a horizontal-perpendicular double cell of

[D-Gr-MSp↓Gr-Sp],
([π0(p)] → [TG0]) -[TG0TG1TG2]=› ([π2(f(p))] → [TG2])

which projects under [PD-Gr-Sp] to the first arrow.

Composition: ([TG2] ← [TG3] → [TG4], g) ([TG0] ← [TG1] → [TG2], f) =
([TG0] ← [TG2′] → [TG4], g f) where [TG2′] arises from
the composition of [Gr-Sp].

Identities: ([TG] ← [TG] → [TG], idP) : ([TG], [G], P, π) → ([TG], [G], P, π),
where the arrows in [TG] ← [TG] → [TG] are all isomorphisms.

Theorem 5.1 The projection [PGraGra] : [GraGra] → [Gr-Sp] such that

[PGraGra](([TG], [G], P, π)) = [TG]  and
[PGraGra](([TG0] ← [TG1] → [TG2], f)) = ([TG0] ← [TG1] → [TG2])

is an opfibration, in which the arrows ([TG0] ← [TG1] → [TG2], f) : ([TG0], [G0], P0,
π0) → ([TG2], [G2], P2, π2) such thatf is an iso inSet are opcartesian.

Note that this opfibration is not split due to the absence of any canonical isom
phisms inSet.  A choice of standard isomorphisms forSet would yield a splitting.

6 The Category of Transition Systems
Graph transition systems are enriched graph grammars which include all the r
spans of direct derivation steps by their productions and such that the set of pro
tion names supports a partial action/ by HVDCell([D-Gr-MSp-DPO↓Gr-Sp]), the
(horizontal-vertical) double cells of [D-Gr-MSp-DPO↓Gr-Sp]. For notational com-
pactness, we will write these double cells in future using a notation like [d1,d2,d3],
refering to their alternative interpretation as abstract span morphisms, this in tur
gitimising the use of dom and cod in the next definition.

An abstract typed graph transition system is a quintuple ([TG], [G], P, π, /) where
([TG], [G], P, π) is an abstract typed graph grammar, and/ : P × HVDCell([D-Gr-
MSp-DPO↓Gr-Sp]) +→ P satisfies: (1) If dom([d1,d2,d3]) = [π(p)] thenp/[d1,d2,d3]
is defined and [π(p/[d1,d2,d3])] = cod([d1,d2,d3]); (2) p/[id[π(p)]] = p; (3) (p/[d1,d2,
d3])/[d′1,d′2,d′3] = p/[d′1.d1,d′2.d2,d′3.d3].

The category [GraTS] of abstract graph transition systems has as objects abst
graph transition systems, and as morphisms ([TG0] ← [TG1] → [TG2], f) : ([TG0],
[G0], P0, π0, /0) → ([TG2], [G2], P2, π2, /2), where ([TG0] ← [TG1] → [TG2], f) is a
morphism of the underlying abstract graph grammar, and such that for eachp0 in P0
and each [d01,d02,d03] with p0/[d01,d02,d03] defined, we have a [d21,d22,d23] with
[f(p0)/[d21,d22,d23]] defined and [f(p0/[d01,d02,d03])] = [ f(p0)/[d21,d22,d23]].
5
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Obviously there is a forgetful functor [U] : [GraTS] → [GraGra] which just ignores
/.  We now give the construction that will provide a left adjoint functor to [U].

Let GG = ([TG], [G], P, π) be an abstract graph grammar. Then the abstract gr
transition system [GTS] = ([TG], [G], PP, ππ, /) is given by: (1)PP= {(p, [t1,t2,t3]) |
p ∈ P, and [t1,t2,t3] is a horizontal-vertical double cell of [D-Gr-MSp-DPO↓Gr-Sp]
with dom([t1,t2,t3]) = [π(p)]}; (2) [ ππ((p, [t1,t2,t3]))] = cod([t1,t2,t3]); (3) if [ ππ((p,
[t1,t2,t3]))] = dom([d1,d2,d3]) then (p, [t1,t2,t3])/[d1,d2,d3] is defined, equals (p,
[d1.t1,d2.t2,d3.t3]), and thus [ππ((p, [t1,t2,t3])/[d1,d2,d3])] = cod([d1.t1, d2.t2,d3.t3]).

Theorem 6.1 The forgetful functor [U ] : [GraTS ] → [GraGra] has a left adjoint
[TS ] : [GraGra] → [GraTS ] where the functor [TS ](GG) = GTS is given above
for objects, and is given for arrows by:

[TS](([TG0] ← [TG1] → [TG2], f) : GG0 → GG2) is the unique morphism
([TG0] ← [TG1] → [TG2], gP) : GTS0 → GTS2 in [GraTS] such that
for all p in P0, gP((p, [id[π(p)]])) = (f(p), [id[π(f(p))]])

Theorem 6.2 The obvious projection [PGraTS] : [GraTS] → [Gr-Sp] is an opfibra-
tion, where all arrows ([TG0] ← [TG1] → [TG2], f) : ([TG0], [G0], P0, π0, /0) →
([TG2], [G2], P2, π2, /2) such thatf is an iso inSet are opcartesian.

7 The Category of Derivation Systems
Derivation systems are transition systems enriched with an operation; of horizontal
composition on production names, inherited from the corresponding property ofD-
Gr-MSp↓Gr-Sp].

An abstract graph derivation system is a sextuple ([TG], [G], P, π, /, ;) where ([TG],
[G], P, π, /) is an abstract graph transition system, and; : P × P +→ P satisfies: (1) if
π(p) = [A] ← [B] → [C] andπ(q) = [C] ← [D] → [E] thenp;q is defined andπ(p;q)
= [A] ← [M] → [E], whereM is a pullback ofB → C ← D; (2) if π(p) = [A] ← [B]
→ [C] thenP contains ap[A] with π(p[A]) = [A] ← [A] → [A], an identity name such
thatp[A];p = p, and also a similar identity namep[C] with π(p[C]) = [C] ← [C] → [C]
andp;p[C] = p; (3) ; is associative; (4) if both (p;q)/([s1,s2,s3]∗h[t1,t2,t3]) and (p/
[s1,s2,s3]);(q/[t1,t2,t3]) are defined then (p;q)/([s1,s2,s3]∗h[t1,t2,t3]) = (p/[s1,s2,s3]);
(q/[t1,t2,t3]).
The category [GraDS] of abstract graph derivation systems has as objects abst
graph derivation systems, and as morphisms ([TG0] ← [TG1] → [TG2], f) : ([TG0],
[G0], P0, π0, /0, ;0) → ([TG2], [G2], P2, π2, /2, ;2), where ([TG0] ← [TG1] → [TG2],
f) is a morphism between the underlying abstract transition systems, such tha
each identity namep[A] in P0, f(p[A]) is an identity name, and for each (p, q) pair de-
fined for;0, we havef(p;0q) = f(p);2f(q).

There is a forgetful functor [V] : [GraDS] → [GraTS] which just ignores;. We now
give the construction that will provide a left adjoint functor to [V].

Let [GTS] = ([TG], [G], P, π, /) be an abstract graph transition system. Then the
stract graph transition system [GDS] = ([TG], [G], PP, ππ, /PP, ;PP) is given by first-
ly, constructingPPP, πππ, /PPPand;PPPas the smallest sets satisfying the followin
properties: (1) (p) is inPPPfor p in P, andπππ((p)) = π(p); and wheneverp/[d1,d2,d3]
is defined, (p)/PPP[d1,d2,d3] = (p/[d1,d2,d3]), (and πππ((p)/PPP[d1,d2,d3]) = cod(
[d1,d2,d3])); (2) (p[A]) and (p[C]) are inPPPfor eachp in P with π(p) = [A] ← [B] →
[C], andπππ((p[A])) = [A] ← [A] → [A] and πππ((p[C])) = [C] ← [C] → [C] both
6
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identity abstract spans, andπππ((p[A]);PPP(p)) = πππ((p)) = πππ((p);PPP(p[C])); and
whenever [A] = dom([d]), (p[A])/PPP[d,d,d] = (pcod(d)), (andπππ((pcod(d))) = cod([
d,d,d])), and similarly for (p[C]); (3) (p, q) is in PPPfor p, q in PPPsuch thatπππ(p)
= [A] ← [B] → [C] andπππ(p) = [C] ← [D] → [E]; (p, q) = p;PPPq, andπππ((p, q))
is given via the local pullback ofπππ(p) andπππ(q); and wheneverp/PPP[s1,s2,s3],
q/PPP[t1,t2,t3] and [s1,s2,s3]∗h[t1,t2,t3] are defined, (p, q)/PPP[s1,s2,s3]∗h[t1,t2,t3] is
defined andπππ((p, q)/PPP[s1,s2,s3]∗h[t1,t2,t3]) = cod([s1,s2,s3]∗h[t1,t2,t3]). And then
secondly, lettingPP, ππ, /PP and;PP be given by takingPPP, πππ, /PPP and;PPP
modulo the composition law (p/[d1,d2,d3])/PPP[d′1,d′2,d′3] = p/PPP[d′1.d1,d′2.d2,
d′3.d3] and identity lawp/PPPidπ(p) = p, and the associative law ((A;PPPB);PPPC) =
(A;PPP(B;PPPC)) and identity laws (p[A]);PPP(p) = (p) = (p);PPP(p[C]).

Note that our constructions are based on properties of [D-Gr-MSp↓Gr-Sp], so the
interchange laws of [GraDS] in the span-transition lemma of [6], derive directly
from those of the subcategory [D-Gr-MSp-DPO↓Gr-Sp].

Theorem 7.1 The forgetful functor [V] : [GraDS] → [GraTS] has a left adjoint
[DS] : [GraTS] → [GraDS] where [DS](GTS) = GDS is given above for objects,
with the unique extension for arrows.

Theorem 7.2 The obvious projection [PGraDS] : [GraDS] → [Gr-Sp] is an opfibra-
tion, where all arrows ([TG0] ← [TG1] → [TG2], f) : ([TG0], [G0], P0, π0, /0, ;0) →
([TG2], [G2], P2, π2, /2, ;2) such thatf is an iso inSet are opcartesian.

8 Conclusions

The preceding sections presented the “in the large” version of the theory of g
grammars and the associated phenomena of transition systems and derivatio
tems. The vehicle for this was the abstract diagram in its most abstract incarna
in which all isomorphisms of graphs and diagrams were permitted. However, t
are parts of graph transformation theory which use a finer notion of equivalence
this, in particular [4, 6] which deal with event structure semantics, and where eq
alence up to only standard isomorphisms plays a key role. Here we wish to poin
that this kind of theory is perfectly accessible using our techniques.

In Section 2 we indicated that the kinds of vertices of shape graphs could be ass
arbitrarily, before we restricted attention exclusively to the kindiso theory. To de-
scribe the alternative variants needed, it is essentially enough to restrict judicio
chosen vertices to kindstd. This enables the identification of corresponding concre
graphs at those vertices in the manner required. Specifically, the vertices o
graphsX0, X0˜, Z0, Z0˜, X2, X2˜, Z2, Z2˜, A, C of Fig. 1 must be of kindstd. The req-
uisite theory can be built up by straightforward analogues of Sections 3-7. How
the lack of full generality of isomorphisms has three specific consequences comp
with the theory set out above.

Firstly, various operations in the theory become nondetereministic, due to the lo
ability to relate concrete diagrams which differ only by nontrivial automorphims a
which would otherwise be in the same abstract diagram. Secondly, those opfibra
which we presented as split above, lose the split property. Essentially this is a m
ifestation of the same phenomenon, the lack of a canonical choice of opcartesia
row at a critical point of the theory. Thirdly, certain left adjoints in the theory beco
weak left adjoints, again as a result of an absence of canonical choice, this tim
7
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universal arrow. Provided one is prepared to accept these relatively harmless m
fications, the remainder of the theory goes through uneventfully.

Proceeding further, one can forget the internal structure of abstract diagrams, i.
morphisms between the concrete diagrams that make up an abstract diagram,
a version of the theory in terms of equivalence classes of concrete diagrams.
there it is a short step to refashion the results in terms of concrete diagrams in th
egory of abstract graphs and abstract morphisms, bringing the theory into line
preceding accounts.

The one message that emerges clearly from this work is that in examining ques
of abstractness where the subject matter is categorical, functor categories provid
most convincing approach, and treatments involving equivalence classes ca
smoothly recovered from them post hoc.
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