7

A Fibration Semantics for
Extended Term Graph
Rewriting

R. Banach

7.1 INTRODUCTION

In this chapter, we re-examine the problem of providing a categorical semantics for
the core of the general term graph rewriting language DACTL. Partial success in this
area has been obtained by describing graph rewrites as certain kinds of pushout. See
[Ken87, HP88, HKP88, Ken91]. Nevertheless, none of these constructions successfully
describe the whole of the operational models of [BvVEG87] where term graph rewrit-
ing was introduced, or of its generalization in the language DACTL itself [GKSS88,
GHK 88, GKS91, Ken90]. The main stumbling blocks for all of these attempts have
been examples such as the I combinator root:I[a] = a when applied to a circular in-
stance of itself x: I [x]. None of the hitherto proposed categorical formulations of TGR
adequately capture the DACTL version of the rewrite (which is, reasonably enough,
a null action), nor do they give a convincing story of their own (generally speaking
the result of the rewrite is undefined). The aim of this chapter is to describe how
these deficiencies may be overcome by using a different approach to the categorical
semantics of rewriting. Instead of pushouts, we use a Grothendieck opfibration. Now
Grothendieck opfibrations have strong universal properties, too strong to be applica-
ble to all DACTL rewrites. Accordingly, a less universal construction describes the full
operational core of DACTL rewriting. It turns out that the circular I example sits in
between these two extremes.

In outline, the rest of the chapter is as follows. Section 7.2 describes the free rewrit-
ing core of the original DACTL model. Section 7.3 describes the categorical construc-

Term Graph Rewriting: Theory and Practice, eds. M.R.Sleep, M.J.Plasmeijer and M.C. van Eekelen
©1993 John Wiley & Sons Ltd

BANACH

tion and how it yields a Grothendieck opfibration. Surprisingly, it turns out that the
garbage retention feature of DACTL is the key to the success of the construction.
Section 7.4 reconsiders true DACTL rewriting and outlines the universal construction
that describes it, including the circular I example. Section 7.5 concludes.

7.2 DACTL ABSTRACTED

In this section, we define the free rewriting core of DACTL rewriting, i.e. we ignore
all issues pertaining both to markings, and (for simplicity) the pattern calculus. In
addition, our terminology may appear a little unusual to those familiar with DACTL.
Suppose an alphabet of node symbols S = {S,T...} to be given.

DEFINITION 7.2.1 A term graph (or just graph) G, is a triple (N, o,a) where

(1) N is a set of nodes,
(2) oisamap N =S,
(3) aisamap N - N*,

Thus o(x) maps a node to the node symbol that labels it, and a(z) maps each node
to its sequence of successors. We write A(z), the arity of a node, for the domain of
a(x). Note that A(z) is a set of consecutive natural members starting at 1, or empty.
We allow ourselves to write z € G (instead of z € N(G)) etc. Each successor node
determines an arc of the graph, and we will refer to arcs using the notation (py,c), to
indicate that the child c is the k" child of the parent p, i.e. that ¢ = a(z)[k] for some
k € A(p). When we speak of several graphs (or patterns, see below) simultaneously,
as we will do in a moment, we will subscript N, o(z) and a(x) with the name of the
graph in question in order to clarify which map we are refering to. Moreover, to be
quite unambiguous when dealing with disjoint unions, the elements of such a union
will always be tagged with either (1, -) or (2, -) to indicate their origin.

Let there be a symbol Any, not considered to be in S. We will assume the following
invariant holds subsequently:

(ANY) o(z) = Any = A(z) = 0.

A node labeled with Any is called implicit, a node labeled with a member of S is
called explicit.
DEFINITION 7.2.2 A pattern is a term graph containing zero or more implicit nodes.

Thus every graph is a pattern (if we choose to regard it as such) but not vice versa.

DEFINITION 7.2.3 A rule D is a triple (P,r, Red) where

(1) P is a pattern (called the full pattern of the rule).

(2) r is a node of P called the root. If o(r) = F then D is called a rule for F. The
subpattern L of P, consisting of nodes and arcs accessible from (and including) r
is called the left subpattern of (the full pattern P of) the rule D. All implicit nodes
of P must be nodes of L.

FIBRATION SEMANTICS

(3) Red is a set of pairs, (called redirections) of nodes of P. These satisfy the invari-
ants (RED-1), (RED-2) and (RED-38) below:

(RED-1) Red is the graph (in the set theoretic sense) of a partial function on P.
(RED-2) (I',7') € Red =>1' is an explicit node of L.
(RED-3) Let (l1,71),(l2,72) € Red. If Iy # l2 and there is a homomorphism

(see 2.4 below) h : P — Z such that h(l1) = h(l2) then r1 = rs.

The three invariants (RED-1) — (RED-3) assure the existence of rewrites as de-
scribed below. To highlight the left subpattern of a rule, we will often write rules as
(incl : L — P,root, Red).

To define the rewriting model, we must first define the notion of homomorphism of
patterns and graphs. Note that 7.2.4 serves as well for graphs as it does for patterns.

DEFINITION 7.2.4 Let P,Z be patterns. A map h : P — Z is a homomorphism if for
all explicit © € P

o(z) = o(h(z)), A(z) = A(h(z)), and for all k € A(x), h(a(z)[k]) = a(h(z))[k].

In brief, a rewrite of a graph G (G could just as easily be a pattern) according to
arule D = (P,r, Red) proceeds through three stages. Firstly a homomorphism of the
left subpattern L of P into G is located. This is the redex. Then copies of the other
nodes and arcs of P are added to G in order to extend the homomorphism to one from
the whole of P. Finally arcs whose destination is the image of the LHS of a redirection
pair (I,r) € Red, are swung over to arrive instead at the image of the corresponding
RHS. More formally we have the definitions below.

DEFINITION 7.2.5 Let D = (P,r, Red) be a rule. Let G be a graph. Let L be the left
subpattern of P. Let m : L — G be a homomorphism. Then m(L) is a redex in G and
m(r) is the root of the redex. The homomorphism is called a matching of L to G.

DEFINITION 7.2.6 Assume the notation of 7.2.5. Let the graph G' be given by

(1) Ng: = (Ng W Np)/ =~ which is the disjoint union of Ng and Np factored by
the equivalence relation =, where = is the smallest equivalence relation such that
(1,z) = (2,n) whenever m(n) = x.

(2) oo ({(1,2)}) = 0a (=),

oo ({@m)}) = op(n),

oo ({(L2), 2,m1) ... 2, n)}) = o6 ().

Thus G' acquires symbols in such a way as to agree with both G and P; the repre-
sentative in G' of an implicit node of P acquiring a symbol according to its image
under m.

3) ae{(L2)DIK = {(L,ac@)k]). ..} for k € Ala),

ac ({(2,n)})[k] = {(2, ap(n)[k]) ...} for k € A(n),

ag ({(1,2),(2,m) ... (2,ng) }[k] = {(1, ac(z)[k]) .. .}.
Thus G acquires arcs so as to agree with both G and P. The ... on the RHS of
these cases indicate that the equivalence classes concerned need not be singletons.

LEMMA 7.2.7 There is a homomorphism m' : P — G'. Disregarding pedantry, m'
extends m : L — G. We call m' the extended matching.

BANACH

DEFINITION 7.2.8 Assume the notation of 7.2.5 — 7.2.7. Let H be the graph given by
(1) NH = NG’,

(2) omw =o0¢,
(3)

{(2,y)...} if (u,y) € Red for somey € P
ag({(1,z)})[k] = and u € m'~ (e ({(1,2)}[k])
ag({(1,2)})[k] otherwise

{(2,y)...} if (u,y) € Red for somey € P
ang({(2,n)}[k] = and u € m'*(ac ({(2,n)}[k])
ac ({(2,n)})[k] otherwise

OAH({(].,.'L'), (2,”1) s (2>nq)})[k] =

{2,y)...} if (u,y) € Red for somey € P
and v € m'(ag ({(1,x)...}[k])
ac ({(1,2),(2,n1) ... (2,n9)})[k] otherwise

It is easy to show that this construction is consistent, by (RED-1) and (RED-3).

DEFINITION 7.2.9 Let G be a graph, D be a rule, and m a matching of the left sub-
pattern L of (the full pattern of) D to G. The graph H constructed via 7.2.5 — 7.2.8
is the result of the rewrite of G at the redex m(L) according to D.

As an example of rewriting, we treat the circular I rewrite discussed already. In this
rule the left subpattern L = root:I[a:Any] is identical to the full pattern of the rule
P, and the redirections are Red = {(root, a)}. The graph G = x:I[x] contains an
instance of L. Since L = P, there are no nodes to be added at the contractum building
stage so G' = G. To perform the redirections and complete the rewrite we look for the
image of {(root, a)} in G'. This is {(x, x)}. Therefore all nodes targeted at x must
be redirected to x, a null action. So H = G' = G.

One feature of this model stands out, which is that no node is ever destroyed during
rewriting. This means that copious quantities of garbage are generated. The attempts
to describe graph rewriting using pushouts fail on the circular I example, precisely
because they do some partial garbage collection in the arrows of the categories used.
As the next section will show, the garbage retention feature of DACTL turns out to
be an inspired design decision.

7.3 GRAPH REWRITING AS GROTHENDIECK
OPFIBRATION

In this section we will recast some of the preceding constructions into a categorical
form using a Grothendieck opfibration.

FIBRATION SEMANTICS

DEFINITION 7.3.1 Let P be the category whose objects are (abstract) patterns and
whose arrows are rules depicted by pairs of functions (i,7) : L — R satisfying the
invariants (INJ), (RED), (HOM) below. L and R are called the left and right patterns
of the rule (arrow) (i,r) : L — R.

(INJ) i : L — R is a symbol/arity-preserving injection that is invertible on the
implicit subpatterns of L and R, (i.e. “no new variables are introduced in the RHS
of the rule”).

(RED) r: L — R may only disagree with i : L — R on explicit nodes and satisfies

3 a homomorphism h : L — Z such that h(z) = h(y)
= [r(z) =r(y), or r(z) = i(z) and r(y) = i(y)]-

(HOM) (pk,c) an arc of L <= (i(p)k,r(c)) an arc of R.

Identities are just pairs of identities and composition is componentwise. It is trivial
to check that P is a category.

We see that the arrows of P provide a component i that mimics the inclusion of the
left subpattern into the full pattern of a DACTL rule of the previous section, and also
a component r that mimics the redirection pairs of the previous treatment.

A subset of DACTL rules can be easily mapped to P arrows. This subset is char-
acterized by the property (RED-P) below. We call this subset DACTL?.

(RED-P) z,y explicit and 3 a homomorphism h : L — Z such that h(z) = h(y)
= [(z,t) € Red < (y,t) € Red].

There is an easy mapping from DACTL? rules into arrows of P. It is given by the
next construction.

CONSTRUCTION 7.3.2 Let (incl : L = P,root, Red) be a DACTL” rule. Now DACTL
rewriting semantics can just as easily be applied to instances of L in patterns as to
instances in graphs. So let R be the pattern resulting from rewriting the identity in-
stance of L in itself according to the rule. Then the arrow of P corresponding to the
rule is (the abstract version of) (i,7) : L — R with (i,r) given by

i(z) ={(1,2),(2,2)},
r(z) = {(1,9),(2,y)}, where y = x unless (z,y) € Red.

Modulo the pedantry of disjoint unions, we have just applied the redirections Red to
the pattern P.

We now give the P version of graph rewriting which we call the P rewriting con-
struction, to distinguish it from the DACTL rewriting construction of the previous
section.

DEFINITION 7.3.3 Let 6 = (i,r) : L = R be an arrow of P, and let g : L — G be a
rigid homomorphism of L into a graph G, by which we mean a homomorphism such
that (RIG) below holds.

(RIG) z explicit, y implicit => g(z) # g(y).

Let the graph H be given by:

BANACH

(1) Ng = (NgW NR)/ ~ where W is disjoint union and = is the smallest equivalence
relation such that (1,1) =~ (2,n) whenever there is a p € L such that x = g(p) and
n =i(p). Thus Ny is the pushout in Set of R < L % G.
(2) ou({(1,2)}) = 0g(x),
ou({(2,n)}) = or(n),
or({(1,2),(2,m1)...(2,n9)}) = 0c(2).

Before defining o, we pause to define (j,s) :G — H and h: R — H
i@) ={(1,z)...},

[{@,r(p)...} if3p€ L such that z = g(p) and r(p) # i(p)
s(z) = { {1,2)...} otherwise

h(n) ={(2,n)...},

(3) an({(1,2)})[K] = s(ac(z)[k]),
an({(2,n) K] = h(ar(n)[k),
ap({(L,2),(2,n1) ... (2,n9)})[k] = s(aq(2)[K])-

LEMMA 7.3.4 Definition 7.3.3 is consistent. Furthermore

(a) j is a symbol/arity-preserving injection,

(b) h is a rigid homomorphism,

(c) (4,8) is a redirection couple i.e. [(xk,y) an arc of G
< (j(2)k,5(y)) an arc of HJ.

LEMMA 7.3.5 In the notation of 7.3.3, 7.3.4, jog=hoi and sog=hor.
In general, the two rewriting models agree. We have the following result.

THEOREM 7.3.6 Let (incl : L — P,root, Red) be a DACTL? rule and let (i,r) : L —
R be the corresponding P arrow. Let g : L — G be a rigid matching of L to a graph
G. Then the abstract versions of the graphs H built by the two rewriting constructions
are the same.

We return to our primary objective of making a Grothendieck construction in the
world of abstract patterns and graphs, via a universal property of P rewriting which
makes it very reminiscent of a pushout.

THEOREM 7.3.7 Using the notation of 7.3.8 — 7.8.5, let H' be a graph and suppose
(j',8"Y:G— H' and W : R — H' are such that

(1) j' is a symbol/arity-preserving injection,
(2) (4',8') is a redirection couple i.e. [(x,y) an arc of G
= (7' (2)1, 8'(y)) on arc of H],
(8) h' is a homomorphism,
(4) j'og=hoiands' og=hor,
(5) i(a) =r(p) and i(b) =r(q) and g(a) = g(b) = s'(g(p)) = s'(9(q)),
Then there is a unique pair of maps (0,p) : H — H' such that

(a) 6 is a symbol/arity-preserving node map,

FIBRATION SEMANTICS

(b) (8,p) is a redirection couple i.e. [(pi,c) an arc of H
<> (0(p)i, p(c)) an arc of H',
(c) (8,p) extend to a homomorphism on h(R),
(d) j'=00j,s =pos, " =0oh=poh, and p=46 on H — (s(G) Uh(R)).

Theorem 7.3.7 shows the pushout-like nature of the P rewriting construction. The
graph H that it creates is universal up to isomorphism among ways of completing the
squares referred to in Lemma 7.3.5 according to the conditions stated.

Now we are in a position to proceed with the Grothendieck construction.

DEFINITION 7.3.8 For each object P of P, we construct a category G¥. The objects
of G¥ are pairs (G, g). Here G is an abstract graph and g : P — G is a rigid homo-
morphism. The arrows ¢ : (G, g) — (G',g') of G¥ are graph homomorphisms ¢ which
preserve the redez, i.e. g’ = ¢ o g, and also are rigid i.e. g(P) = ¢~ 1(g'(P)). The two
notions of rigidity should cause no confusion.

DEFINITION 7.3.9 Consider an arrow § = (i,r) : L — R in P, and (G,g) an ob-
ject of GL. Let (H,h) be the object of GE such that H is the unique abstract graph
isomorphic to the result of rewriting the instance g : L — G according to rule § us-
ing the P rewriting construction, and h : R — H 1is the obvious homomorphism. Let

Rew’((G,9)) = (H, h).
LEMMA 7.3.10 Rew? :GY — G extends to a functor.

THEOREM 7.3.11 There is a functor Rew : P — Cat such that

Rew(P) = G¥
Rew(d: L - R) = Rew’ : GF — G

The existence of Rew : P — Cat leads immediately to the construction of the
Grothendieck category G(P, Rew). The objects of G(P, Rew) are pairs ((G,g),L)
where L is an object of P and (G, g) is an object of Rew(L). We can write such objects
as (9 : L —» @). The arrows of G(P, Rew) are pairs (¢,0) : (9: L - G) = (h: R — H)
where § = (i,r) : L — R is an arrow of P, and ¢ : Rew’(G) — H is an arrow of
GE. In slightly less combinatorial terms, an arrow (¢,d) of G(P, Rew) can be viewed
as an abstract P rewrite of a redex g : L — G by a rule § = (i,r) : L — R giving
Rew’((G,g)), composed with a homomorphism ¢. Thus it can be given by a pair
(4,8) : G — H where j = ¢0j*, s = ¢pos*, and (j*,s*) : G = Rew’(G) represents the
effect of Rew® on G. Clearly [(zx,y) an arc of G <= (j(x)k, s(y)) an arc of H]. Such
a pair (j, s) is strictly speaking a different thing from (¢, d), but we will overlook this.

Composition of arrows (¢,0) : (9 : L - G) - (h : M — H) and (x,€) :
(h: M — H)— (k: N> K) is defined by

(x:€)0(#,0): (9: L= G) = (k: N = K) = (x o Rew(e)(¢), € 0)

Note that compared to our P rewriting construction, the arrows of G(P, Rew) have
an extra homomorphism “tacked onto the end”. The fact that we can do this is purely
a consequence of the fact that the individual Rew® functors mesh together to form
the overall functor Rew. Readers unhappy about this can merely stick to the special

BANACH

case where all the G categories are discrete. The arrows of G(P, Rew) will be called
rewrites, or G rewrites if we wish particularly to distinguish them from P rewrites and
DACTL rewrites. Of course from a categorical viewpoint, we might justifiably prefer
them to be called corewrites or oprewrites.

Continuing the development, G(P, Rew) is a fibered category. The fibers are the
GE categories and the projection F : G(P, Rew) — P takes objects (g : L — G)
to L, and arrows (¢,d) to d. This is an example of the canonical duality between
split (op)fibrations and the Grothendieck categories built using the Grothendieck con-
struction. Powerful universality properties that extend the universality properties that
hold for pushouts pertain to this situation. We will not stop to describe them. For
a little more discussion of these issues, see the preliminary version of this chapter in
[Ban91], or the full version in [Ban93]. For a reasonably accessible description of the
Grothendieck construction in its abstract form see [BW9Q].

7.4 TRUE DACTL REWRITING

In section 7.3 we developed a categorical formulation for a sublanguage of DACTL.
Readers may legitimately wonder to what extent the full DACTL language shares the
properties of DACTL?. The main problem encountered in applying the constructions
of section 7.3 to the full language can be traced back to DACTL’s capacity for am-
biguous redirections. From the perspective of the Grothendieck construction, DACTL
redirections can be ambiguous for two distinct reasons. The first concerns the priority
mechanism that implicitly determines targets for redirection. Thus if (z,t) € Red,
and z and y both match the same graph node of the redex, but for no u do we have
(y,u) € Red, then the redirection in Red wins over the unstated identity redirection
of y. A similar thing happens for implicit nodes of the pattern when they match the
same graph node as some z such that (z,t) € Red. Again the explicit redirection
wins over the unstated identity redirection. Such phenomena prevent the commuta-
tivity needed for Lemma 7.3.5, and explain why the DACTL?” sublanguage contained
specific conditions to prevent such behavior.

It might be imagined from this that the prospects for describing the whole language
categorically were bleak. However this is not quite the case, and it is precisely the
libertarian tendencies of implicit nodes that come to the rescue. Whenever a node of
the left pattern has the capacity to be redirected in more than one way, we introduce a
fresh implict node in the right pattern of the rule to act as its “mate”. With a little care,
we can exploit the capacity of implicit nodes to “match anything” in order to ensure
that whatever actual redirection takes place, the mate node is able to accommodate
it and to rescue the required commutativity. We thus make the syntactic form of rules
reflect the actual ambiguity that comes from the semantics. For lack of space we just
outline the construction informally.

CONSTRUCTION 7.4.1 Let (incl : LP, root, Red) be a DACTL rule.

[1] Apply construction 7.3.2 and call the resulting pattern R2. Rename each node
(which is an equivalence class built up out of a single node x say of P), as the
corresponding x.

FIBRATION SEMANTICS

[2] For every implicit node z of R2, introduce a mate node. Redirect all images in R2
of arcs of L to x, to the mate. Call the resulting pattern R1.

[3] For every explicit node y of R1 such that y is not redirected in Red but y could
match the same graph node as some x for which (x,t) € Red, introduce a mate
node. Redirect all images in R1 of arcs of L to x, to the mate. Call the resulting
pattern R.

[4] Let (i,r) : L — R be the obvious maps.

A rewriting construction (let us call it the D rewriting construction), similar to
‘P rewriting can be designed that accurately reflects DACTL rewriting. We do not
describe it in detail, but instead state the relevant universal property.

THEOREM 7.4.2 In Theorem 7.3.7, let the rule under consideration be (i,r) : L - R
as manufactured in 7.4.1. Replace the (unstated) reference to P rewriting, by reference
to D rewriting, remove the (unstated) reference to the rigidity of the matching of the
reder g : L — G, and add an extra hypothesis

(6) i(a) =h7‘(p) and for all q € g7'(g(a)),(q) is a mate => s'(9(p)) = s'(g(q)) for
any such q.

Then the theorem holds true in the modified form.

Theorem 7.4.2 describes a local form of universality that holds for D rewriting, but
that does not extend to the global universality generated by a Grothendieck construc-
tion as discussed towards the end of section 7.3. The most important obstacle to the
construction is the fact that there is an asymmetry between the patterns L and R of
the rule constructed in 7.4.1. The pattern R contains mates while L does not. This
blocks the translation of trivial DACTL rules (no contractum, empty redirections) to
identity arrows in the base. Furthermore, even if g : L — G is a rigid redex, there is
no guarantee that the corresponding h : R — H is rigid, again because of the mates.
All things considered, it is remarkable that 7.4.2 holds at all.

One final enigma remains to be resolved before we close this discussion of rewriting,
and that is the status of the circular instance of the I combinator. The most self evident
feature of this example is that the matching g : L — G which defines the rewrite is not
rigid. It seems therefore, that we cannot but resort to the locally universal construction
outlined above to describe it. While this is certainly possible, it is not the only thing
that we can do. The circular I example actually occupies an intermediate position
between the global universality of P rewriting, and the mates and local universality of
D rewriting. The conditions that are imposed to make P rewriting globally universal
are sufficient but not necessary to make it locally universal. The circular I example
satisfies a set of weaker conditions, without having the rigidity property that gives
global universality. These conditions can be summarized in the invariant (W-RIG)
which stands for weak rigidity.

(W-RIG) p explicit, a implicit and g(a) = g(p) = r(p) = i(p) or r(p) = i(a).

The circular I instance of the I combinator rule in P rewriting form clearly satisfies
(W-RIG). It follows that the P rewriting construction is consistent for it, and describes
the locally universal properties of this rewrite. Thus the P version of the rule is given
by (i,r) : L — R with L and R the same pattern described in the introduction; 4
being the identity, and r having r(root) = r(a) =a.

BANACH
7.5 CONCLUSIONS

In the previous sections we have described how the essentials of the rather complex
and perhaps unintuitive DACTL graph rewriting model may be recast as a universal
solution to a particular categorical problem, and a familiar one for category theorists
at that. This is particularly gratifying for the author whose previous experience with
the DACTL model gave rise to the strong gut feeling that despite its somewhat convo-
luted operational description, a robust, elegant and convincing model lay behind the
drudgery of contractum—build+redirect. This is why the adjective unintuitive is used
only hestitatingly in the first sentence of this paragraph. Grothendieck (op)fibrations
lie behind may constructions in mathematics, and are increasingly found in theoreti-
cal computer science these days. Their usefulness in separating “syntax” (contained in
the base category) from “semantics” (in the Grothendieck category above) is perhaps
their most appealing feature; we use both terms in quotes since we refer to situations
more general than those just involving actual syntax and semantics of programming
languages — any situation where we have a collection of “objects” and for each ob-
ject we have to deal with a collection of its “instances” is a good candidate for a
Grothendieck construction.

REFERENCES

[Ban91] R. Banach. DACTL rewriting is categorical. Proc. SemaGraph-91 Vol. II,
Nijmegen Tech. Rep. 91-25, Dept. of Informatics, University of Nijmegen, 1991.

[Ban93] R. Banach. Term graph rewriting and garbage collection using opfibrations.

Theor. Comput. Sci., to appear.

[BVEGT87] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R Kennaway, M.J.
Plasmeijer and M.R. Sleep. Term graph rewriting. Proc. PARLE-87 Vol. 11,
LNCS 259, pp. 141-158, Springer-Verlag, 1987.

[BW90] M. Barr, C. Wells. Category Theory for Computing Science. Prentice-Hall,
1990.

[GKSS88] J.R.W. Glauert, J.R. Kennaway, M.R. Sleep, G.W. Somner. Final Specifica-
tion of DACTL. Internal Report SYS-C88-11, School of Information Systems,
University of East Anglia, Norwich, UK.

[GHK*88] J.R.W. Glauert, K. Hammond, J.R. Kennaway, G.A. Papdopoulos, M.R. Sleep.
DACTL: Some Introductory Papers. School of Information Systems, University
of East Anglia, Norwich, UK.

[GKS91] JR.W. Glauert, J.R. Kennaway, M.R. Sleep. DACTL: An experimental graph
rewriting language. Graph Grammars and their Application to Computer Sci-
ence, LNCS 532, pp. 378-395, Springer-Verlag, 1991.

[HKPS8S] A. Habel, H-J. Kreowski, D. Plump. Jungle evaluation. Proc. Fifth Workshop
on Specification of Abstract Data Types, LNCS 332, pp. 92-112, Springer-Verlag,
1988, also Fund. Inf. 15, pp. 37-60, 1991.

[HP8S] B. Hoffmann, D. Plump. Jungle evalulation for efficient term rewriting. Proc.
International Workshop on Algebraic and Logic Programming, Mathematical
Research 49, Akademie-Verlag, Berlin, 1988.

[Ken87] J.R. Kennaway. On “on graph rewritings”. Theor. Comput. Sci. 52, pp. 37-58.

[Ken90] J.R. Kennaway. Implementing term rewrite languages in DACTL. Theor. Com-
put. Sci. 72, pp. 225-250.

[Ken91] J.R. Kennaway. Graph rewriting in some categories of partial morphisms. Graph

Grammars and their Application to Computer Science, LNCS 532, pp. 490-504,
Springer-Verlag, 1991.

