DACTL REWRITING IS CATEGORICAL

R. Banach

Computer Science Department, Manchester University,
Manchester, M13 9PL, U.K.

Abstract

The graph-manipulating core of the general term graph rewriting language DACTL,
namely contraction building and redirection, is reexamined from a categorical viewpoint.
The essentials of this rather complex two-phase operational semantics is recast as a
Grothendieck opfibration of a category of graph rewrites over a base of rewrite rules. This
generalises previous attempts to categorise contractum building and redirection as pushouts
and is able to describe more DACTL rewrites than pushout models. The full operational
core model conforms to a more restricted version of this construction and is able to
successfully cope with examples such as the infamous circular | examipla].

1 INTRODUCTION

The general term graph rewriting language DACTL arose as an attempt to provide an intermediate la
guage for graph rewriting based implementations of contemporary programming paradigms such as fur
tional or logic. It features multiple parallel redirections as the chief updating mechanism for the
computational objects of the model, general term graphs. Parallel redirection provides a powerful met:
phor for substitution in a graph-oriented environment, so there is an incentive to find a clean formulatiol
for the whole of the semantics. The heart of the problem is the contraction building and redirection phast
of a rewrite. Partial success in this area has been obtained by describing graph rewrites as certain kinds
pushout. See Kennaway (1987), Hoffmann and Plump (1988), Habel Kreowski and Plump (1988) an
Kennaway (1991). Nevertheless none of these constructions successfully describe the whole of the op
ational models of Barendregt et al. (1987) where term graph rewriting was introduced, or of its generali
sation in the general term graph rewriting language DACTL itself (Glauert et al. (1988a, b, 1990),
Kennaway (1990)). The main stumbling blocks for all of these attempts have been examples such as t
| combinator[x] 0 x when applied to a circular instance of itself I[a]. None of the hitherto proposed
categorical formulations of TGR adequately capture the DACTL version of the rewrite (which is, reason
ably enough, a null action), nor do they give a convincing story of their own (generally speaking the resul
of the rewrite is undefined). The aim of this paper is to describe how these deficiencies may be overcon
by using a different approach to the categorical semantics of rewriting. Instead of pushouts, we use
Grothendieck opfibration. Here, the base category has patterns as objects and the arrows are the rew
rules. Above each object is a category of its instances in graphs. These fibers are glued together usin
functor from the base, to yield a Grothendieck category whose arrows are rewrites between graphs, gc
erned by the appropriate rule. Now Grothendieck opfibrations have strong universal properties, too strot
to be applicable to all DACTL rewrites. Accordingly, a less universal construction describes the full op-
erational core of DACTL rewriting. It turns out that the circular | example sits in between these two ex-
tremes.

In outline, the rest of the paper is as follows. Section 2 describes an abstracted version of DACTL oper
tional semantics. A significant issue here is what aspects of the languayst beeng described, so these

are listed. Section 3 describes the categorical construction and how it yields a Grothendieck opfibratio
It turns out that the garbage retention feature of DACTL is the key to the success of the construction. Se
tion 4 relates this construction to “real systems” by discussing some of the issues omitted from section

Section 5 reconsiders true DACTL rewriting and outlines the universal construction that describes it, in
cluding the circular | example. Since this paper is an abridged version of Banach (1991), proofs are omi
ted from section 3, and the discussion in sections 4 and 5 is more superficial. Section 6 is a conclusio

2 DACTL ABSTRACTED

In this section, we define that part of a DACTL rewrite which we consider to be the rewriting core of the
model. The aspects of DACTL that we ignore are those to do with the markings on the graph, and the pz
tern calculus. Thus for us, rule selection and reduction strategy are outside the remit of rewriting. Accorc
ingly all our graphs and patterns will bear no markings. In addition, our terminology may appear a little
unusual to those familiar with DACTL. Suppose an alphabetoafe symbolsS = {S T...} to be given.

Definition 2.1 A term graph (or justgraph) G is a triple \, o, a) where
(1) Nis a set of nodes,

(2) ois amap with signatufd - S,

(3) ais a map with signatufd — N*.

Thuso maps a node to the node symbol that labels it,@ntaps each node to its sequence of successors.
We write A(n), thearity of a node, for the domain af(n). Note thatA(n) is a set of consecutive natural
members starting at 1, or empty. We allow ourselves to wriiieG instead o [] N(G) etc. Each succes-
sor node determines an arc of the graph, and we will refer to arcs using the ngbgtigntp indicate that

the childcis thek'th child of the parenp, ie. thatc = a(p)[K] for somek [1 A(p). When we speak of several
graphs (or patterns, see below) simultaneously, as we will do in a moment, we will sub§aiphda

with the name of the graph in question in order to clarify which map we are refering to. Moreover, to be
quite unambiguous when dealing with disjoint unions, the elements of such a union will always be tagge
with either[1, 4Jor [2, %o indicate their origin.

Let there be a symbd\ny, not normally considered to be B. We will assume the following invariant
holds subsequently:

(ANY) o(x)=Any O AX =0.

A node labelled witlAny is calledimplicit, a node labelled with a member®fs calledexplicit.
Definition 2.2 A pattern is a term graph containing zero or more implicit nodes.

Thus every graph is a pattern (if we choose to regard it as such) but not vice versa.
Definition 2.3 A ruleD is a triple[P, r, Red where

(1) Pis a pattern (called the full pattern of the rule).

(2) risan explicit node oP called the root. Ifo(r) = F thenD is called arule for F. The subpatterh
of P, consisting of nodes and arcs accessible from (and includirgygalled the left subpattern of
(the full patterrP of) the ruleD. All implicit nodes ofP must be nodes &f.

(3) Redis a set of pairs (called redirections) of nodesRof These satisfy the invariants (RED-1),
(RED-2) and (RED-3) below:

(RED-1) Redis the graph (in the set theoretic sense) of a partial functiéh on
(RED-2) [, r0JRed O I'is an explicit node df.

(RED-3) Letly, ryQ,, rol0 Red If I =15 and there is & such that there is a homomorphism
(see 2.4 belowh : P — Z such thah(l;) = h(l,), thenr; =r,.

The three invariants (RED-1) — (RED-3) assure the existence of rewrites as described below. In practi
the technically rather involved (but nevertheless decidable) (RED-3) may be replaced by the slighty strol
ger but more readable (RED)3

(RED-S) |:[|1, r1D |:[|2, r2[||:| Redandll £ |2 O 0('1) £ 0('2).
To define the rewriting model, we must first define the notion of homomorphism of patterns and graphs

Definition 2.4 LetP, Z be patterns. A map: P - Zis a homomorphism if for all explick [l P
(1) o) =a(h(x)),

(2) AKX = Alh(x)),

(3) forallk O A(X), h(a(X)[K]) = a(h(x))[K].

In addition a homomorphism &rict if the image of every implicit node is implicit. Note that 2.4 serves
as well for graphs as it does for patterns.

In brief, a rewrite of a grapks (G could just as easily be a pattern) according to a Dute[P, r, Red pro-
ceeds through three stages. Firstly a homomorphism of the left subpatéminto G is located. This

is the redex. Then copies of the other nodes and arBsaoé added t& in order to extend the homomor-
phism to one from the whole &t Finally arcs whose destination is the image of the LHS of a redirection
pair [, r[1J Red are swung over to arrive instead at the image of the corresponding RHS. More formally
we have the definitions below.

Definition 2.5 LetD = [, r, Redlbe a rule. LelG be a graph. LeL be the left subpattern ¢¥. Let
m: L — G be ahomomorphism. Then(L) is a redex inG andm(r) is the root of the redex. The homo-
morphism is called enatching of L to G.

Definition 2.6 Assume the notation of 2.5. Let the gr&ptbe given by

(1) Ng =(Ng & Np)/=which is the disjoint union oNg andNp factored by the equivalence relatisn
where= is the smallest equivalence relation such that(= [2, nOwhenevem(n) = x.

(2) o, x) = og(X),
ag({2,n) = op(n),
oc({ @, x02,n0.. 12, ny[) = 0g(X).
ThusG' aquires symbols in such a way as to agree with li#ndP; the representative i@’ of an
implicit node ofP aquiring a symbol according to its image unaer
(3) ac({ @, xRk = {0, agX)[K]L..} for k O AX),
ag ({2, nB)[K] = {2, ap(n)[K]..} for k O A(n),
a2, x02, 0. 2,n@)[K = {1, ag([KC...}.
ThusG' aquires arcs so as to agree with b&landP. The... on the RHS of these cases indicate
that the equivalence classes concerned need not be singletons.
Lemma 2.7 There is a homomorphism : P - G'. Disregarding pedantrgy extendsn:L - G.

Proof. Definem'(n) ={[2,nll...}. Thatm has the properties stated follows readily from the properties of
mand=. We callm’ theextended matching ©

Definition 2.8 Assume the notation of 2.5 — 2.7. Eebe the graph given by
(1) Ny =Ng,

(2) oy=o0g,

{2,yl..} if [, yiIJ Redfor somey [J P andu [J m"l(aGr({ [, X[K])

(3) an(i Xl = { ag (L, XK otherwise

an{2,n)[K =

{2,yl..} if f, (I Redfor somey O P andu [m'"l(aG.({ 2, N[K])
oz({2, nB)[K] otherwise

ap({ @, X0 2, m0.. 2,ng0)[K] =
{[2,y0..} if [, yiI1 Redfor somey [0 P andu [m’"l(O(Gr({ [, x(1.. D[K])
ag({d,x02,mO.. 2,nJ)[K otherwise

This construction is consistent by (RED-1) and (RED-3). (RED-1) ensures that fartheye is at
most oney such thafll, Y11 Red (RED-3) ensures that if there are several disiai’s in

m ~1(...) then their correspondin@, yCs are identical. (RED-3 ensures the same thing by preclud-
ing more than on&, ulifrom membership of anyl'"l(...).

Definition 2.9 Let G be a graphD be a rule, andna matching of the left subpattekrof (the full pattern
of) D to G. The graphH constructed via 2.5 — 2.8 is the result of the rewrité&sodit the redexm(L) ac-
cording taD.

Remark. It is worth mentioning here that the model of DACTL rewriting just presented differs from the

DACTL of the final specification (Glauert et al. (1988a)) in minor details. In particular the final specifica-

tion has moved from DACTL’s original position, particularly in the area of what combinations of redirec-

tions are permissible, as a result of the influence of the categorical semantics of papers already cited. Sit
our aim is to present a categorical semantics for as “pure” a form of DACTL rewriting as is possible, oul
model is closer in spirit to slightly earlier versions. The reader unaquainted with these subtleties will no
find this an obstacle to understanding the rest of this paper.

The rewriting model just described is a lot easier to understand using pictures rather than the formidak
construction above. Accordingly we present a couple of examples.

Example 2.10 Infigl.(a) — (e) we illustrate a rul® and its action on a grapB3. The full pattern of the
rule P, is given in figl.(b). The root of the rule is the nodevhence the left subpattern is the pattern
givenin fig 1.(a). There is clearly an injectionL — P. The redirections ob areRed={[f r'[J[¢, c'[}.

The graphG is given in fig 1.(c) and it contains an instancelofvhich is given bym: L — G where the
(set theoretic) graph ahis {[d yLl[¢, z[)[&, t0. This mclearly satisfies the conditions of 2.4. The rewrite
proceeds by creating the gra@h(contractum building) given in fig 1.(d), where we have avoided pedantry
by dropping thel, {Jland[2, {labels of the disjoint union and have just introduced copies of thelLnon-
nodes and arcs. The extended matching is givemby m 0O {f, y'0J (@', z'Tl [p, p'CI O} I'T. The final
stage of rewriting performs the redirections. The images of the redirectionRadfare located irG'.
These are respectively, y'(= m'([f r'D} and(2, z'(= m'([¢, c'). The arcs ofc' whose targets argand

z are redirected so that their targetsyarandz' respectively. This gives the graphof fig 1.(e).

Example 2.11 As a further example we treat the circular | rewrite discussed already. Fig 2.(a) illustrates
the rule. In this rule the left subpattekns identical to the full pattern of the rule and the redirections
areRed= {1 alj. The graphG of fig 2.(b) contains an instance bfoy m= {[f x[][&, x[J. SinceL =P,

there are no nodes to be added at the contraction building st&ge &. To perform the redirections and
complete the rewrite we look for the imagelgfalin G'. This is[X, X[J Therefore all nodes targetedxat
must be redirected tq a null action. Sé1=G' =G.

One feature of this model stands out, which is that no node is ever destroyed during rewriting. This meat
that copious quantities of garbage are generated, even though we have not considered how to distingL
the live part from the garbage in any graph. The attempts to describe graph rewriting using pushouts f
on the circular | example, precisely because they do some partial garbage collection in the arrows of tt
categories used. As the next section will show, the garbage retention feature of DACTL turns out to be &
inspired design decision.

We will return to reconsider garbage briefly in section 4, although the limited space available to us in thi
paper will not really enable us to do the topic justice.

r:inc'[;]
r:incl ;] r:inc[;] c':Count[,]
c: Count[\] c: Count[\] p:Plus[,]

a: Any a: Any

Fig. 1.(a) L Fig. 1.(b) P

x : Root| inc /]

x : Root[,] /
y:inc[;] y: In7 :7
z: Count[\] z : Count| '75[

t:3

Fig. 1.(c) G Fig. 1.(d) G’

X :Root[]

- Inc'[
e \ /

: Count'[
z : Count[]\ 7“15[]\
t:3 I":1
Fig. 1.(e) H
raeaf 1
x:I]
a: Any

Fig.2.(a) L=P Fig. 2.(b) G=G' =H

3 GRAPH REWRITING AS GROTHENDIECK OPFIBRATION

To avoid excessive technical doudgery, we will state significant categorical results in terms of abstract pe
terns and graphs, which are representatives of the isomorphism classes of patterns and graphs. Where
need to give an explicit construction, we will tend to use “normal” or “concrete” patterns and graphs, since
life will be easier with an explicit model of disjoint union. We will be a bit more cavalier in illustrations,
modelling disjoint union by adding nodes to one of the summands.

Definition 3.1 Let P be the category whose objects are abstract patterns and whose arrows are rules ¢
picted by pairs of functiong(r) : L — R satisfying the invariants (INJ), (RED), (HOM) below. andR
are called the left and right patterns of the rule (arrow) (L - R.

(INJ) (@) xzy O i(X)#i(y),
(b) ximplicit O i(x) implicit,
(c) yimplicit O Oimplicit x such thay =i(x),
(d) a(i(x) =o0o(x),
(€) Ali(X) =AX).
(RED) (&) r(x)#i(x) O xexplicit,
(b) ximplicit O r(x) =i(x),
(c) x, yexplicit andlla homomorphismh: L — Z such thah(x) =h(y) O [r(x) =r(y),
orr(x) =i(x) andr(y) =i(y)].
(HOM) (P, ©) anarcolL = (i(p) r(c)) an arc oR.

As usual, this looks a lot more complicated than it is. (INJ) just states that— R is a symbol/arity-
preserving injection that is invertible on the implicit subpatternk ahdR (ie. “no new variables are in-
troduced in the RHS of the rule”). (RED) states that the redirection functidn— R may only redirect
explicit nodes and has to behave unambiguously with respect to homomorphic images. As previously v
can replace (RED).(b) with the stronger but more transparent

(RED) (b) x, yexplicit ando(x) =a(y) O [r(X) =r(y), orr(x) =i(x) andr(y) =i(y)].

For an objecP, the identity inP is (idp, idp) : P - P and composition of the arrowi(r;) : P; - Py, (is,
ry) : P, - Pgis given by {yoiq, roory) : Py — P3. Itis trivial on the basis of known properties 84, to
check that all the stated invariants are preserved by this composition.

We see that the arrows Bfprovide a componeritthat mimics the inclusion of the left subpattern into the
full pattern of a DACTL rule of the previous section, and also a compon#rat mimics the redirection
pairs of the previous treatment. Note the careful distinction in nomenclature. While it is possible to iden

tify the left subpattern of a DACTL rule with the left (abstract) pattern of an arrol®; ttie same cannot
be done with the full pattern of a DACTL rule and the corresponding right pattern of an arrow.

A subset of DACTL rules can be easily mappedPtarrows. This subset is characterised by the property
(RED-P) below. We call this subset DACTL

(RED-P) X, yexplicit andda homomorphisrh : L — Z such thah(x) =h(y) O
[Xt Red = [y, t1J Red].

There is an easy mapping from DACTtules into arrows of. It is given by the next construction.

Construction 3.2 Letlihcl : L - P, root, Redbe a DACTL® rule. We have remarked that DACTL re-
writing semantics can just as easily be applied to instancksropatterns as to instances in graphs. Let
R be the pattern resulting from rewriting the identity instanck of itself according to the rule. Then the

arrow ofP corresponding to the rule is (the abstract versioniaf) (L — Rwith (i, r) given by

1(x) = {0, x4 2, x3,
r(x) = {1, y0 2, yl, wherey = x unlessx, y[1] Red

ro : Inc[

~L

r:incl ;] ¢’ : Count'[
c: Count]] Co : Count] \ y \
a: Any ag : Any
Fig. 3.(a) L Fig. 3.(b) R

Modulo the pedantry of disjoint unions, we have just applied the redirecRexiso the patterrP. Fig 3

shows theP version of the rule of example 2.10 (which is obviously a DA@TUIe). The map is just {r
- 19, C - Cg @ — ag}, andrisgivenby f - r',c - c',a - ag}.

We now give theP version of graph rewriting which we call therewriting construction, to distinguish it
from the DACTL rewriting construction of the previous section.

Definition 3.3 Letd=(i,r):L — Rbe an arrow oP, and letg: L — G be a rigid homomorphism df
into a graplG, by which we mean a homomorphism such that (RIG) below holds.

(RIG) xexplicit,y implicit T g(x) Z g(y).
Let the grapiH be given by:

(1) Np=(Ng® Ng)/=wherel# is disjoint union ane: is the smallest equivalence relation such that
xC= 2, nOwhenever there is p 0 L such tha = g(p) andn = i(p). ThusNy is the pushout irbet

of R4 L2 G
(2) on({@,x3) = 0a(x),
on({ 2, n) = or(n),
oy({(1, X0 2, n0... 2, ng) = o(x).
Before definingny, we pause to defing) : G - Handh:R - H

j) = {@,x0..},

s() = {2,r(p)..} if OpOL such thak = g(p) andr(p) # i(p)
{d,x0..} otherwise

h(n) = {2, nCl..},

3 au L, xPIK = LacMIK),
ap({ 2, N)[K] = h(ag(IK),
ap({ L, XD 2, .. 2, ngDIK = S(ag(IK):

Lemma 3.4 Definition 3.3 is consistent. Furthermore

(&)] is a symbol/arity-preserving injection,

(b) his arigid homomorphism,

(c) (,9) is aredirection couple i.e.xfy) an arc olG < (j(X)x S(y)) an arc oH].

Lemma 3.5 In the notation of 3.3, 3.§og = hoi andsog= hor, i.e. the squares of fig. 4 commute.

We do not need to look far for an example of this construction. Example 2.10 furnishes what we need. W
have &P style rule for this rewrite in fig 3. Figs. 1.(c),(e) provide the grdplamdH. The maps

@i,r): L - Rhave been given, amgl: L - Gis just the mapn of example 2.10. The mgp G - His

the obvious injection, and the map G — H hasy - y', z —» z' and otherwise coincides wifh The
homomorphisnh: R - His{rg - y,¢cog - z,89 - t,I' -y, ¢’ - Z',p - p',| - I'}.

In general, the two rewriting models agree. We have the following result.
Theorem 3.6 Letlhcl:L - P, root, Redbe a DACTL rule and let (,r): L - Rbe the corresponding

P arrow. Letg: L - Gbe arigid matching of to a graphG. Then the abstract versions of the graphs
built by the two rewriting constructions are the same.

Let us compare the two rewriting constructions for a moment from the perspective of potential implemen
tations. In practice one would never implement either of the constructions by forming explicit disjoint
unions etc. Instead one might implement the DACTL construction by the steps (D1) — (D3).

(D1) Identify the redexn: L - G of rulelincl : L - P, root, Redln graphG.
(D2) Add copies of nodes and arcsRof Lto G in order to make grap@'.
(D3) Redirect arcs d&' according to the specificationsRedto make graph.

TheP construction on a suitable redex might proceed as follows.

G > H G > H
A A A A
g h g h
i r
L > R L » R

Fig. 4

(P1) Identify the rigid redeg : L - G ofrule {,r) :L — Rin graphG.
(P2) Add copies of nodes & — (L) to G to make graple,. Determine the mapsg) : G - G;.

(P3) Redirect arcs @b, making graplG, so that [, ¢) an arc 0flG; < (j(p)k, S(c)) an arc of G].
(P4) Add copies of arcs & — (L) to G, to makeH.

The differences are obvious. The DACTL construction is operationally much simpler. In addition, the in-
termediate objed®’ that it creates is a bona-fide graph as per 2.2. Rlgenstruction is more complex
and its intermediate objec@; andG, aren't really graphs since they have “missing arcs”. This is most

acutely felt if we work in a world where symbols have fixed arities. InRleonstruction we are forced to
“interleave (D3) into (D2)” since the patteRicomes with its arcs “already redirected”. Incidentally this

last point shows us that there is no inverse transformation RPaewriting back to DACTF rewriting,
since in the latter a node which is redirected but is not itself the target of a redirection, definately has n
parents, while i® rewriting, such a node can acquire parents during step (P4).

In view of the above, why bother witR rewriting at all? The answer comes with the simplicity of speci-
fying P rewriting compared to DACTL rewriting. The universal propertiePawriting make it much
easier to reason about than DACTL rewriting, and the specification in 3.3 is considerably simpler than th
combined force of 2.7 - 2.9. The payoff for using it is thus for the theoretitian.

We return to our primary objective of making a Grothendieck construction in the world of abstract pattern:
and graphs, via a universal propertyPafewriting which makes it very reminiscent of a pushout.

Theorem 3.7 Using the notation of 3.3 — 3.5, Iéf' be a graph and supposg,) : G - H' and
h': R - H' are such that

(1) j'is a symbol/arity preserving injection,

(2) (',) is aredirection couple i.e. X y) an arc oG = (j'(X),, S(y)) an arc oH'],
(3) h'is a homomorphism,

(4) jeg=hoiandsog=hor,

(5) i(a) = r(p) andi(b) =r(q) andg(a) = g(b) O S(9(p)) =S (9(A)),

Then there is a unique pair of mapsg) : H — H' such that

(@) 8 is asymbol/arity preserving node map,

(b) (8, p) is a redirection couple i.e.fp(c) an arcoH < (8(p);, p(c)) an arc oH'],
(c) 6, p extend to a homomorphism b(R),

(d) j' =8qj,
S = pos,
h' =0ch = poh,

p=0o0onH- (S(G) U h(R)).
l.e. fig. 5 commutes.

Theorem 3.7 shows the pushout-like nature offhewriting construction. The gragt that it creates is
universal (up to isomorphism of course) among ways of completing the square in fig 5 according to th
conditions stated.

Now we are in a position to proceed with the Grothendieck construction.

Definition 3.8 For each objecP of P, we construct a categofy”. The objects of5” are pairsG, gl
HereG is an abstract graph agd P — Gis a rigid homomorphism. (N.B. We could instead consider the

categoryPP of pairs K, gbwhere this timeK is an abstract pattern, along the lines of similar remarks

above.) The arrows: [G, gl- [G, g'Cof GP (or of PP) are graph (or pattern) homorphismsvhich

preserve the redex, i.g.= gog, and also are rigid i.g(P) = ¢1(g'(P)). The two notions of rigidity should
cause no confusion.

(i,1)

Fig. 5

Definition 3.9 Consider an arro® = (i, r) : L - Rin P, and[G, gCan object ofG". Let (H, hbe the

object of GR such thatH is the unique abstract graph isomorphic to the result of rewriting the instance
g:L - Gaccording to ruléd using theP rewriting construction, ant: R - H is the obvious homomor-

phism. LetReV\?([(B, gl = [H, hlJ]

Lemma 3.10 Rew’ : G- —. GRextends to a functor. In other words fig. 6 commutes.

', s
G 0.9 > H'
}
0 ¢ |
g ' h'
G : > H
Q.9
s h
L > R
()

Fig. 6

Theorem 3.11 There is a functdRew: P — Cat such that
RewP) =GP
Rewd:L - R) =RewW : G- -, GR

The existence oRew: P - Cat leads immediately to the construction of the Grothendieck category
G(P, Rew. The objects of5(P, Rew are pairdliG, gL LOwhereL is an object of and[G, glis an object

of Rew(L). We can write such objects d§ : L -~ GO The arrows ofG(P, Rew) are pairs

[, 0 [g:L -~ GO- h:R - HOwhered = (i, r) : L —» Ris an arrow ofP, andg: ReV\f’(G) -~ Hisan
arrow ofGR. In slightly less combinatorial terms, an arrégy 3Cof G(P, Rew) can be viewed as an abstract

P rewrite of aredexy: L - Gbyaruled=(i,r):L - Rgiving Rev@([@, g0, composed with a homo-
morphism@. Thus it can be given by a paijj,(s) : G - H wherej = @oj*, s = @os*, and

(4%, s): G > Rev@(G) represents the effect &ev? onG. Clearly [k., y) anarcofG < (j(X), S(y)) an

arc ofH]. Such a pairj(9) is strictly speaking a different thing froim, &[] but we will overlook this.

Composition of arrowsp, 8L [d: L - GO- h: M - HOandk, ek h: M - HO- [K: N - KOs de-
fined by

X, €00, 80 @ : L — GO &: N - KO= XoRewe)(y), 080

This situation is illustrated in fig. 7. Note that compared to Buewriting construction, the arrows of
G(P, Rew have an extra homomorphism “tacked onto the end”. The fact that we can do this is purely ¢
consequence of the fact that the individ@av? functors mesh together to form the overall fundRew

and thus that the square in fig. 7 commutes. The significance of these extra homomorphisms will be di
cussed in section 4 when we talk about real systems. The arrdapRew will be called rewrites, or

G rewrites if we wish particularly to distinguish them frdfrewrites, or DACTL rewrites. Of course from

a categorical viewpoint, we might justifiably prefer them to be called corewrites or oprewrites.

K
Rewe)
X
Rewd)
H » Rewi(H)
®

G » ReW(G) > RewW’(Revi(G))

d=(@,r) £€=(,9
L > M > N

Fig. 7

Continuing the developmer®(P, Rew) is a fibered category. The fibers are lecategories and the pro-

jectionF : G(P, Rew - P takes objectsg : L — Gl[to L and arrowsd, d(1to d. F is a split opfibration
with splitting

K, [§: L - GO = [Hrews)(s, gy O [@: L - GO- Rew(g) : §(L) - RevP(G)OI

whered=(i,r): L - RandRev@(EB, g = H, hl] Thus the components of our origirfakewriting con-
struction turn out to be precisely the components of the splktofghe opfibratiorf.

Split opfibrations have universal properties by virtue of being opcleavages. In the particular case c
G(P, Rew), this comes down to the following. Lé&t=(i,r):L — M be an arrow oP and[g: L - Glbe

an object ofG(P, Rew. The arrowlidgeys)s, gy OCF K(3, [@ : L — GO of G(P, Rew) has the property
thatif Y, yI [¢: L —» GO- [k: N — KOs an arrow ofG(P, Rew such thaf((k: N - KD =N, then for

any arrowe = (j, s) : M - N of P such thatF((¥, y0) = €00, there is a unique arrow

@, 1k ¢:L - GO([g: L - GO - k: N - KOsuch that®, tlek(d, [¢: L - GO = [}, yHand

F(&, yD = €. The degenerate case of this wheenidy, is just the abstract version of theorem 3.7. For a
fuller description of the Grothendieck construction in its abstract form see Barr and Wells (1990).

Note the pleasing way that the Grothendieck construction has separated syntax and semantics while n
ertheless keeping a very close connection between them. The syntactic objects, patterns, and rules
tween patterns, live in the base category. The semantic objects, graphs and the rewrites between them,
in the Grothendieck category above. The fact that we use two distinct categories related by the projectic
functor F and split opfibratiork, rather than a single category, gives us just the technical elbow room we
need to treat similar objects slightly differently as the situation demands. This segregation of syntax ar

semantics was the main reason why we chose to workGHiftbers rather thaR" fibers.

4 REAL SYSTEM ISSUES

The construction of the previous section belonged in the world of “all conceivable rewrites”. Real system
make use of only a small number of possibilities. In this section we discuss briefly the issues that curta
the choice.

The first thing we note is that arrows G{P, Rew are pairsd, L] While thed part is manifestly uncon-
troversial, the presence of a non-triviginay be more questionable. First of all we note thatan arrow

of G, so by changing the permitted arrows there we can modify the arrof@§RRew. Making the

fibersGP into discrete categories effectively gets rid of non-trig. However non-trivialp's are useful

for certain purposes. In Hoffmann and Plump (1988), Habel, Kreowski and Plump (1988), and Kennawa
(1987), the desirablity of identifying identical subgraphs of the execution graph is expounded. This is use
ful for non-linear rewrite rules, or for maximal sharing of identical subgraphs to improve execution effi-

ciency. By restricting the arrows &" to be (maximal) onto rigid homomorphisms we see that our general
construction achieves at least some of these effects for free. Of course we dailtdgsirable homo-
morphisms this way because of the requirements of rigidity.

We now consider one aspect of the DACTL rewriting construction of section 2 that was quietly droppec
in section 3. By definition all DACTL rules have rooted left subpatterns (in the terminology of section 2).
Reflecting on this point opens up a whole tangle of related issues.

The left subpatterns have roots, but the full patterns themselves needn’t do so (see example 2.4). This s
gests that the roots are connected with garbage collection, and its absence in the present rewriting mod
However roots are also found in terms and term rewriting, an important application area for term grap
rewriting, and there they play the role of distinguished node in the object being rewritten since there is n
separate notion of garbage or its collection in term rewriting. In reality both aspects are connected via tt

notion of accessibility, since accessibility plays a role both in garbage collection and in the fact that thi
whole of a term is accessible from its root.

It turns out that the most elegant way of handling these issues is to formulate the conuatpirobf gar-

bage A notion of garbage (perhaps better called a notion of liveness) is a proof system, which when sug
plied with a graph and perhaps some base case information, can be used to decide the liveness
garbageness of any node in the graph. For example, given a graph and a set of its nodes deemed live
base cases, and the inference rule “froliwe andy a child ofx deducey live”, we can deduce which nodes

are live and which are garbage. So we have a notion of garbage; one related to roots and accessibility, sii
the base case nodes play the role of “roots as distinguished nodes”, and accessibility is the sole rule of
ference. Different notions of garbage are appropriate under different circumstances. When modeling tet
rewriting, one is interested in roots and accessibility, whereas when one uses the full DACTL language |
model eg. communicating processes, a more complex notion using the graph markings, suppressed in 1
paper, is more suitable.

Garbage has to fit well with rewriting. Thus the garbage in a graph should be
(1) preserved unchanged and possibly added to by the rewriting mechanism,
(2) not be manipulated non-trivially by the rewriting mechanism.

In the context of Grothendieck rewriting, (2) means that garbage nodes should not aquire new parents, r
be involved in redirection as either left or right hand side. Formally expressed, (1) and (2) are preserve
by composition of composable pairs of rewrites that satisfy them and lead to a subcategory of valid rewrite
of the Grothendieck categofy(P, Rew. More specifically, leG(P, Rew; gy be the Grothendieck catego-
ry constructed as in section 3, but embellishing the objects in the fibers with whatever additional data al
necessary for the notion of garba@eto work properly. Ther(3(P, Rewg has the same objects as

G(P, Rew;g but only those arrows which are valid rewrites.

One cannot expect th&(P, Rewg is opfibered oveP in the way thatG(P, Rew) is. The reason is that
even given a fixed notion of garbage, it is not implicit in a graph rewrite rule, which of the redex nodes
matched to its left pattern are going to be garbaged by the rewrite. Different redexes in different grapt
give different answers. There is thus no way to project the distinction between live and garbage nodes
the objects of5(P, Rew down to the objects in the base. In addition, for an arbitrarily chosen notion of
garbage, for a given object in the category of rewrites and arrow in the base, the required split opcartesi
arrow needn’t exist.

With a judiciously chosen notion of garbage, the Grothendieck construction yields a category of valid re
writes suitable for describing the class of graph rewrites used for modeling term rewriting; i.e. a categor
in which the objects are graphs equipped with a matching of a pattern, and whose live part is precisely th
part of the graph accessible from a unique root node.

Categories such &P, Rewg are rich in data. Here is a typical arrow.
@ (,r):L->RI@:L - [G,Gar(G)M- h: R - M, Gar(H)IJ

The objects are pattern instances into “graphs with garbage”, and the arrow data is a homomggstdsm
anarrow (,r) : L -~ Rof P. One can rearrange and forget various parts of this data to build categories tha
describe rewriting at various levels of abstraction. For instance one can identify graphs regardless of p:
tern instances, or identify objects up to isomorphism of their live subgraphs. Some minor technical point
need to be taken care of in order to make these constructions functorial.

Given such identifications one can then locate subcategories that describe rewriting using only the rules
a given system, or subcategories that use only a given system and starting graph, or subcategories that
only a given system, starting graph and fixed reduction strategy.

Itis interesting to compare the present treatment of rewriting with term rewriting. One can certainly mode
term rewriting in a “with garbage” Grothendieck construction using subterm copying rather than subgrap
sharing as the matching and instantiation mechanism for variables. One can then take up a suitable not

of garbage and construct the analogu&@®, Rewg. Now it turns out for topological reasons, that one
can construct a split opfibration wifh(P, Rewg as Grothendieck category, and then construct a morphism

of opfibrations that takes this to conventional term rewriting, which in turn can easily seen to be expressibl
as an opfibration. Thus we end up with a “garbage free” Grothendieck construction for term rewriting too
A similar strategy is much less convincing for graph rewriting and its potential success or failure depend
on a number of technical questions. For a much more complete account of these and other related isst
see the previously advertised full version of this paper.

5 TRUE DACTL REWRITING

In section 3 we developed a categorical formulation for a sublanguage of DACTL. Readers may legiti

mately wonder to what extent the full DACTL language shares the properties of DACHe main prob-

lem encountered in applying the constructions of section 3 to the full language can be traced back"
DACTL's capacity for ambiguous redirections. From the perspective of the Grothendieck construction
DACTL redirections can be ambiguous for two distinct reasons. The first concerns the priority mechanisr
that implicily determines targets for redirection. Thu&Xf] Red andx andy both match the same
graph node of the redex, but for mado we havdy, ull] Red then the redirection iRedwins over the
unstated identity redirection gf A similar thing happens for implicit nodes of the pattern when they
match the same graph node as soseach thatX, 1] Red Again the explicit redirection wins over the
unstated identity redirection. Such phenomena prevent the right hand square in fig. 4 from commutin

properly and is why the DACTPLsubIanguage contained specific conditions to prevent such behaviour.

It might be imagined from this that the prospects for describing the whole language categorically wer
bleak. However this is not quite the case, and it is precisely the libertarian tendencies of implicit node
that come to the rescue. Whenever a node of the left pattern has the capacity to be redirected in more t
one way, we introduce a fresh implict node in the right pattern of the rule to act as its “mate”. With a little
care, we can exploit the capacity of implicit nodes to “match anything” in order to ensure that whateve
actual redirection takes place, the mate node is able to accomodate it and to rescue the commutativity
fig. 4. We thus make the syntactic form of rules reflect the actual ambiguity that comes from the semantic
For lack of space we outline the construction informally and back it up with an example or two.

Construction 5.1 Letlincl : L - P, root, Red@be a DACTL rule.

[1] Apply construction 3.2 and call the resulting patt&h Rename each node (which is an equivalence
class built up out of a single nogsay ofP), as the corresponding

[2] For every implicit nodex of R2, introduce a mate node. Redirect all imageR2of arcs ofL to X,
to the mate. Call the resulting patt&h

[3] For every explicit nodg of R1 such thay is not redirected ifrRedbuty could match the same graph
node as somefor which [X, ttT] Red introduce a mate node. Redirect all imageR1nof arcs ofL
to x, to the mate. Call the resulting patt&n

[4] Let(i,r):L - Rbe the obvious maps.

A rewriting construction (let’s call it the D rewriting construction), similafReewriting can be designed
that accurately reflects DACTL rewriting. We do not describe it in detail, but instead state the relevant uni
versal property.

Theorem 5.2 In theorem 3.7, let the rule under considerationibe)(: L - R as manufactured in 5.1.
Replace the (unstated) referenceteewriting, by reference to D rewriting, remove the (unstated) refer-
ence to the rigidity of the matching of the redexd. — G, and add an extra hypothesis

(6) i(a) =r(p) and for allq 0 g}(g(a)), r(q) is a mate]l s(g(p)) = s(g(q)) for any sucty
Then the theorem holds true in the modified form.

F[]

Fig. 8.(a) L

F[]

Fig. 8.(b) P a b c

F[
(B[
a a'

S[\]

T]
d
></
b b c ¢

Fig. 8.(c) R

Theorem 5.2 describes a local form of universality that holds for D rewriting, but that does not extend t
the global universality generated by a Grothendieck construction as discussed towards the end of sect
3. The most important obstacle to the construction is the fact that there is an asymmetry between the p
ternsL andR of the rule constructed in 5.1. The patt&iontains mates while doesn’t. This blocks the
translation of trivial DACTL rules (no contractum, empty redirections) to identity arrows in the base. Fur-
thermore, even ifj: L — Gis arigid redex, there is no guarantee that the correspoidiRy— H is rigid,

again because of the mates. All things considered, it's remarkable that 5.2 holds at all.

Let us look at an example of D rewriting. Fig. 8 provides what we need. To avoid clutter, we have sup
pressed node names for all explicit nodes (which we refer to by the symbol that labels them), and suj
pressed thé&ny symbol for implicit nodes. Fig. 8.(a) gives a pattérrwhich is a rooted subpattern of the
patternP of fig. 8.(b). The faint arcs in fig. 8.(b) represent the redirections, so figs. 8.(a),(b) together give
a DACTL rule.

Fig. 8.(c) gives the corresponding D rewriting right pattBrnNote how a number of new implicit nodes
have been introduced inf®. These are the mates. Each of the original implicit nads ¢ has aquired

a mate; they are the noda$s b’, ¢’ respectively. The images of the arcd.ofvhich were targeted at, b,

c have been redirected &, b’, ¢’ respectively. However the images of the arcs which get redireciad to
b, ¢ during the application of the original DACTL rule to its own full pattern remain targetedatc as
before. In reality this only affects the node The right handB node also aquires a made because al-
though it is not manifestly redirected itself, it could potentially match the same graph node as the left han
B node, whichs manifestly redirected. Thus the images of the two ardstafrgeted at the right haril
node get redirected th Therule(,r): L — Ristherefore given by the injectiarwhich sends each node
of L to its copy inRregardless of the presence or otherwise of mates, and the funetioich can be read
off from fig. 8.(c) given the invariant (HOM) — with the sole exception(bj which is of coursé.

Figs. 8.(d) — (f) depict the rewriting of a graghusing the rule. There is obviously an instancé ah G,

an instance that causes the tB/aodes to match the same graph node. The DACTL construction proceeds
by constructing first the grap®’, and then performing the redirections to yield gr&pbhThe D rewriting
construction achieves the same effect without the intervening middle step, by characté@sitige uni-
versal completion of the diagram of fig. 5 up to isomorphism, under the conditions of theorem 5.2.

One final enigma remains to be resolved before we close this discussion of rewriting, and that is the stat
of the circular instance of the | combinator. The most selfevident feature of this example is that the matct
ingg: L —» G which defines the rewrite is not rigid. It seems therefore that we cannot but resort to the
locally universal construction outlined above to describe it. While this is certainly possible, it is not the
only thing that we can do. The circular | example actually occupies an intermediate position between th
global universality oP rewriting, and the mates and local universality of D rewriting. The conditions that
are imposed to make rewriting globally universal are sufficient but not necessary to make it locally uni-
versal. The circular | example satisfies a set of weaker conditions, without having the rigidity property tha
gives global universality. These conditions can be summarised in the invariant (W-RIG) which stands fc
weak rigidity.

(W-RIG) pexplicit,aimplicit andg(a) = g(p) O r(p) =i(p) orr(p) =i(a).

The circular I instance of the | combinator ruleRrewriting form clearly satisfies (W-RIG). It follows

that theP rewriting construction is consistent for it, and describes the locally universal properties of this
rewrite. Thus thd® version of the rule is given by, (r) : L — Rwith L being the pattern in fig. 2.(aR

being the same pattern; L — R being the identity, and: L — Rhavingr(r) =r(a) = a (pardon the no-
tation). Similarly, fig2.(b) gives graplts, H for this rewrite. The other maps in the construction are the
only possible ones.

6 CONCLUSIONS

In the previous sections we have described how the essentials of the rather complex and perhaps unintui
DACTL graph rewriting model may be recast as a universal solution to a particular categorical problem

and a familiar one for category theorists at that. This is particularly gratifying for the author whose previ-
ous experience with the DACTL model gave rise to the strong intuitive feeling that despite its somewhe
convoluted operational description, a robust, elegant and convincing model lay behind the drudgery of co
tractum-build+redirect. This is why the adjective unintuitive is used only hestitatingly in the first sentence
of this paragraph. Grothendieck (op)fibrations lie behind may constructions in mathematics, and are i
creasingly found in theoretical computer science these days. Their usefulness in separating “syntax” fro
“semantics” is perhaps their most appealing feature; we use both terms in quotes since we refer to sitt
tions more general than those just involving actual syntax and semantics of programming languages — a
situation where we have a collection of “objects” and for each object we have to deal with a collection o
its “instances” is a good candidate for a Grothendieck construction.

References

Banach R. (1991), Term Graph Rewriting and Garbage Collection a la Grothen@abknitted to TCS

Barendregt H.P., van Eekelen M.C.J.D., Glauert J.R.W., Kennaway J.R., Plasmeijer M.J., Sleep M.}
(1987), Term Graph Rewritingn Proc. PARLE-87, de Bakker J.W., Nijman A.J., Treleaven P.C.
eds, Springer, Lecture Notes in Computer Scie2s8141-158.

Barr M., Wells C. (1990), Category Theory for Computing Science. Prentice-Hall.

Glauert J.R.W., Kennaway J.R., Sleep M.R. (1988a), Final Specification of DACTL. Report SYS-C88-11
School of Information Systems, University of East Anglia, Norwich, U.K.

Glauert J.R.W., Hammond K., Kennaway J.R., Papadopoulos G.A., Sleep M.R. (1988b), DACTL: Som
Introductory Papers. Report SYS-C88-08, School of Information Systems, University of East An-
glia, Norwich, U.K.

Glauert J.R.W., Kennaway J.R., Sleep M.R. (1991), DACTL: An Experimental Graph Rewriting Lan-
guage.,in Graph Grammars and their Application to Computer Science, Ehrig H., Kreowski H. Ro-
zenberg Geds, Lecture Notes in Computer Scierg®? 378 - 395

Habel A., Kreowski H., Plump D. (1988), Jungle EvaluationProc. Fifth Workshop on Specification of
Abstract Data Types, Sannella D., Tarleckiekls, Springer, Lecture Notes in Computer Science
332

Hoffmann B., Plump D. (1988), Jungle Evalulation for Efficient Term Rewriting?roc. International
Workshop on Algebraic and Logic Programming, Mathematical ResetdcAkademie-Verlag,
Berlin.

Kennaway J.R. (1987), On “On Graph Rewritings”. Theor. Comput53&7-58.

Kennaway J.R. (1990), Implementing Term Rewrite Languages in DACTL. Theor. Comput22@a5-
250.

Kennaway J.R. (1991), Graph Rewriting in Some Categories of Partial Morphisi@saph Grammars
and their Application to Computer Science, Ehrig H., Kreowski H. Rozenbeegl§ Lecture Notes
in Computer Sciencg32490 - 504

	DACTL REWRITING IS CATEGORICAL
	R. Banach
	Computer Science Department, Manchester University,
	Manchester, M13 9PL, U.K.

	Abstract
	The graph-manipulating core of the general term graph rewriting language DACTL, namely contractio...
	1 INTRODUCTION
	2 DACTL ABSTRACTED
	3 GRAPH REWRITING AS GROTHENDIECK OPFIBRATION
	4 REAL SYSTEM ISSUES
	5 TRUE DACTL REWRITING
	6 CONCLUSIONS
	References

