
te lan-
s func-
r the
meta-
lation
hases

kinds of
8) and
e oper-
erali-
90),
as the

son-
result
rcome
use a
rewrite

using a
s, gov-
strong
ll op-

ex-

opera-
e
ration.
. Sec-
tion 3.
DACTL REWRITING IS CATEGORICAL

R. Banach

Computer Science Department, Manchester University,

Manchester, M13 9PL, U.K.

Abstract

The graph-manipulating core of the general term graph rewriting language DACTL,
namely contraction building and redirection, is reexamined from a categorical viewpoint.
The essentials of this rather complex two-phase operational semantics is recast as a
Grothendieck opfibration of a category of graph rewrites over a base of rewrite rules. This
generalises previous attempts to categorise contractum building and redirection as pushouts
and is able to describe more DACTL rewrites than pushout models. The full operational
core model conforms to a more restricted version of this construction and is able to
successfully cope with examples such as the infamous circular I examplea : I[a].

1 INTRODUCTION

The general term graph rewriting language DACTL arose as an attempt to provide an intermedia
guage for graph rewriting based implementations of contemporary programming paradigms such a
tional or logic. It features multiple parallel redirections as the chief updating mechanism fo
computational objects of the model, general term graphs. Parallel redirection provides a powerful
phor for substitution in a graph-oriented environment, so there is an incentive to find a clean formu
for the whole of the semantics. The heart of the problem is the contraction building and redirection p
of a rewrite. Partial success in this area has been obtained by describing graph rewrites as certain
pushout. See Kennaway (1987), Hoffmann and Plump (1988), Habel Kreowski and Plump (198
Kennaway (1991). Nevertheless none of these constructions successfully describe the whole of th
ational models of Barendregt et al. (1987) where term graph rewriting was introduced, or of its gen
sation in the general term graph rewriting language DACTL itself (Glauert et al. (1988a, b, 19
Kennaway (1990)). The main stumbling blocks for all of these attempts have been examples such
I combinatorI[x] ⇒ x when applied to a circular instance of itselfa : I[a]. None of the hitherto proposed
categorical formulations of TGR adequately capture the DACTL version of the rewrite (which is, rea
ably enough, a null action), nor do they give a convincing story of their own (generally speaking the
of the rewrite is undefined). The aim of this paper is to describe how these deficiencies may be ove
by using a different approach to the categorical semantics of rewriting. Instead of pushouts, we
Grothendieck opfibration. Here, the base category has patterns as objects and the arrows are the
rules. Above each object is a category of its instances in graphs. These fibers are glued together
functor from the base, to yield a Grothendieck category whose arrows are rewrites between graph
erned by the appropriate rule. Now Grothendieck opfibrations have strong universal properties, too
to be applicable to all DACTL rewrites. Accordingly, a less universal construction describes the fu
erational core of DACTL rewriting. It turns out that the circular I example sits in between these two
tremes.

In outline, the rest of the paper is as follows. Section 2 describes an abstracted version of DACTL
tional semantics. A significant issue here is what aspects of the language arenotbeing described, so thes
are listed. Section 3 describes the categorical construction and how it yields a Grothendieck opfib
It turns out that the garbage retention feature of DACTL is the key to the success of the construction
tion 4 relates this construction to “real systems” by discussing some of the issues omitted from sec

it, in-
omit-

lusion.

f the
e pat-

ccord-
little

ors.
l

l

to be
agged

,

ractice
stron-
Section 5 reconsiders true DACTL rewriting and outlines the universal construction that describes
cluding the circular I example. Since this paper is an abridged version of Banach (1991), proofs are
ted from section 3, and the discussion in sections 4 and 5 is more superficial. Section 6 is a conc

2 DACTL ABSTRACTED

In this section, we define that part of a DACTL rewrite which we consider to be the rewriting core o
model. The aspects of DACTL that we ignore are those to do with the markings on the graph, and th
tern calculus. Thus for us, rule selection and reduction strategy are outside the remit of rewriting. A
ingly all our graphs and patterns will bear no markings. In addition, our terminology may appear a
unusual to those familiar with DACTL. Suppose an alphabet ofnode symbolsS = {S, T…} to be given.

Definition 2.1 A term graph (or justgraph) G is a triple (N, σ, α) where

(1) N is a set of nodes,

(2) σ is a map with signatureN → S,

(3) α is a map with signatureN → N*.

Thusσ maps a node to the node symbol that labels it, andα maps each node to its sequence of success
We writeA(n), thearity of a node, for the domain ofα(n). Note thatA(n) is a set of consecutive natura
members starting at 1, or empty. We allow ourselves to writex ∈ G instead ofx ∈ N(G) etc. Each succes-
sor node determines an arc of the graph, and we will refer to arcs using the notation (pk, c), to indicate that
the childc is thek’th child of the parentp, ie. thatc = α(p)[k] for somek ∈ A(p). When we speak of severa
graphs (or patterns, see below) simultaneously, as we will do in a moment, we will subscriptN, σ andα
with the name of the graph in question in order to clarify which map we are refering to. Moreover,
quite unambiguous when dealing with disjoint unions, the elements of such a union will always be t
with either〈1, –〉 or 〈2, –〉 to indicate their origin.

Let there be a symbolAny, not normally considered to be inS. We will assume the following invariant
holds subsequently:

(ANY) σ(x) = Any ⇒ A(x) = ∅.

A node labelled withAny is calledimplicit , a node labelled with a member ofS is calledexplicit.

Definition 2.2 A pattern is a term graph containing zero or more implicit nodes.

Thus every graph is a pattern (if we choose to regard it as such) but not vice versa.

Definition 2.3 A ruleD is a triple〈P, r, Red〉 where

(1) P is a pattern (called the full pattern of the rule).

(2) r is an explicit node ofP called the root. Ifσ(r) = F thenD is called arule for F. The subpatternL
of P, consisting of nodes and arcs accessible from (and including)r is called the left subpattern of
(the full patternP of) the ruleD. All implicit nodes ofP must be nodes ofL.

(3) Red is a set of pairs (called redirections) of nodes ofP. These satisfy the invariants (RED-1)
(RED-2) and (RED-3) below:

(RED-1) Red is the graph (in the set theoretic sense) of a partial function onP.

(RED-2) 〈l′, r′〉 ∈ Red ⇒ l′ is an explicit node ofL.

(RED-3) Let〈l1, r1〉, 〈l2, r2〉 ∈ Red. If l1 = l2 and there is aZ such that there is a homomorphism
(see 2.4 below)h : P → Z such thath(l1) = h(l2), thenr1 = r2.

The three invariants (RED-1) – (RED-3) assure the existence of rewrites as described below. In p
the technically rather involved (but nevertheless decidable) (RED-3) may be replaced by the slighty
ger but more readable (RED-3′):

aphs.

s

-
ion
ally

-

te

of
(RED-3′) 〈l1, r1〉, 〈l2, r2〉 ∈ Red andl1 ≠ l2 ⇒ σ(l1) ≠ σ(l2).

To define the rewriting model, we must first define the notion of homomorphism of patterns and gr

Definition 2.4 Let P, Z be patterns. A maph : P → Z is a homomorphism if for all explicitx ∈ P

(1) σ(x) = σ(h(x)),

(2) A(x) = A(h(x)),

(3) for all k ∈ A(x), h(α(x)[k]) = α(h(x))[k].

In addition a homomorphism isstrict if the image of every implicit node is implicit. Note that 2.4 serve
as well for graphs as it does for patterns.

In brief, a rewrite of a graphG (G could just as easily be a pattern) according to a ruleD = 〈P, r, Red〉 pro-
ceeds through three stages. Firstly a homomorphism of the left subpatternL of P into G is located. This
is the redex. Then copies of the other nodes and arcs ofP are added toG in order to extend the homomor
phism to one from the whole ofP. Finally arcs whose destination is the image of the LHS of a redirect
pair 〈l, r〉 ∈ Red, are swung over to arrive instead at the image of the corresponding RHS. More form
we have the definitions below.

Definition 2.5 Let D = 〈P, r, Red〉 be a rule. LetG be a graph. LetL be the left subpattern ofP. Let
m : L → G be a homomorphism. Thenm(L) is a redex inG andm(r) is the root of the redex. The homo
morphism is called amatching of L to G.

Definition 2.6 Assume the notation of 2.5. Let the graphG′ be given by

(1) NG′ = (NG ∪+ NP)/≈ which is the disjoint union ofNG andNP factored by the equivalence relation≈,
where≈ is the smallest equivalence relation such that〈1, x〉 ≈ 〈2, n〉 wheneverm(n) = x.

(2) σG′({ 〈1, x〉}) = σG(x),
σG′({ 〈2, n〉}) = σP(n),
σG′({ 〈1, x〉, 〈2, n1〉 … 〈2, nq〉}) = σG(x).
ThusG′ aquires symbols in such a way as to agree with bothG andP; the representative inG′ of an
implicit node ofP aquiring a symbol according to its image underm.

(3) αG′({ 〈1, x〉})[k] = { 〈1, αG(x)[k]〉…} for k ∈ A(x),
αG′({ 〈2, n〉})[k] = { 〈2, αP(n)[k]〉…} for k ∈ A(n),
αG′({ 〈1, x〉, 〈2, n1〉 … 〈2, nq〉})[k] = { 〈1, αG(x)[k]〉 …}.
ThusG′ aquires arcs so as to agree with bothG andP. The… on the RHS of these cases indica
that the equivalence classes concerned need not be singletons.

Lemma 2.7 There is a homomorphismm′ : P → G′. Disregarding pedantry,m′ extendsm : L → G.

Proof. Definem′(n) = { 〈2, n〉 …}. That m′ has the properties stated follows readily from the properties
m and≈. We callm′ theextended matching.

Definition 2.8 Assume the notation of 2.5 – 2.7. LetH be the graph given by

(1) NH = NG′,

(2) σH = σG′,

(3) αH({ 〈1,x〉})[k] =

αH({ 〈2,n〉})[k] =

{ αG′({ 〈1, x〉})[k] otherwise

{ 〈2, y〉…} if 〈u, y〉 ∈ Red for somey ∈ P andu ∈ m′−1(αG′({ 〈1, x〉})[k])

{ { 〈2,y〉…} otherwise

 αG′({ 〈2,n〉})[k] if 〈u, y〉 ∉ Red for anyy ∈ G andu ∈ g′−1(αG′({ 〈2,n〉})[k]){ αG′({ 〈2, n〉})[k] otherwise

{ 〈2, y〉…} if 〈u, y〉 ∈ Red for somey ∈ P andu ∈ m′−1(αG′({ 〈2, n〉})[k])

-

the
fica-
rec-
. Since
, our
ill not

idable

te
try
n-

rates

means
tinguish
uts fail
of the
be an

in this
αH({ 〈1, x〉, 〈2, n1〉 … 〈2, nq〉})[k] =

This construction is consistent by (RED-1) and (RED-3). (RED-1) ensures that for anyu there is at
most oney such that〈u, y〉 ∈ Red. (RED-3) ensures that if there are several distinct〈2, u〉’s in

m′−1(…) then their corresponding〈2, y〉’s are identical. (RED-3′) ensures the same thing by preclud

ing more than one〈2, u〉 from membership of anym′−1(…).

Definition 2.9 Let G be a graph,D be a rule, andma matching of the left subpatternL of (the full pattern
of) D to G. The graphH constructed via 2.5 – 2.8 is the result of the rewrite ofG at the redexm(L) ac-
cording toD.

Remark. It is worth mentioning here that the model of DACTL rewriting just presented differs from
DACTL of the final specification (Glauert et al. (1988a)) in minor details. In particular the final speci
tion has moved from DACTL’s original position, particularly in the area of what combinations of redi
tions are permissible, as a result of the influence of the categorical semantics of papers already cited
our aim is to present a categorical semantics for as “pure” a form of DACTL rewriting as is possible
model is closer in spirit to slightly earlier versions. The reader unaquainted with these subtleties w
find this an obstacle to understanding the rest of this paper.

The rewriting model just described is a lot easier to understand using pictures rather than the form
construction above. Accordingly we present a couple of examples.

Example 2.10 In fig1.(a) – (e) we illustrate a ruleD and its action on a graphG. The full pattern of the
rule P, is given in fig1.(b). The root of the rule is the noder, whence the left subpattern is the patternL
given in fig 1.(a). There is clearly an injectioni : L → P. The redirections ofD areRed= { 〈r, r′〉, 〈c, c′〉}.
The graphG is given in fig 1.(c) and it contains an instance ofL which is given bym : L → G where the
(set theoretic) graph ofm is {〈r, y〉, 〈c, z〉, 〈a, t〉}. This mclearly satisfies the conditions of 2.4. The rewri
proceeds by creating the graphG′ (contractum building) given in fig 1.(d), where we have avoided pedan
by dropping the〈1, –〉 and〈2, –〉 labels of the disjoint union and have just introduced copies of the noL
nodes and arcs. The extended matching is given bym′ = m ∪ { 〈r′, y′〉, 〈c′, z′〉, 〈p, p′〉, 〈l, l′〉}. The final
stage of rewriting performs the redirections. The images of the redirection pairsRedare located inG′.
These are respectively〈y, y′〉 = m′(〈r, r′〉) and〈z, z′〉 = m′(〈c, c′〉). The arcs ofG′ whose targets arey and
z are redirected so that their targets arey′ andz′ respectively. This gives the graphH of fig 1.(e).

Example 2.11 As a further example we treat the circular I rewrite discussed already. Fig 2.(a) illust
the rule. In this rule the left subpatternL is identical to the full pattern of the ruleP, and the redirections
areRed= { 〈r, a〉}. The graphG of fig 2.(b) contains an instance ofL by m = { 〈r, x〉, 〈a, x〉}. SinceL = P,
there are no nodes to be added at the contraction building stage soG = G′. To perform the redirections and
complete the rewrite we look for the image of〈r, a〉 in G′. This is〈x, x〉. Therefore all nodes targeted atx
must be redirected tox, a null action. SoH = G′ = G.

One feature of this model stands out, which is that no node is ever destroyed during rewriting. This
that copious quantities of garbage are generated, even though we have not considered how to dis
the live part from the garbage in any graph. The attempts to describe graph rewriting using pusho
on the circular I example, precisely because they do some partial garbage collection in the arrows
categories used. As the next section will show, the garbage retention feature of DACTL turns out to
inspired design decision.

We will return to reconsider garbage briefly in section 4, although the limited space available to us
paper will not really enable us to do the topic justice.

{ αG′({ 〈1, x〉, 〈2, n1〉 … 〈2, nq〉})[k] otherwise

{ 〈2, y〉…} if 〈u, y〉 ∈ Red for somey ∈ P andu ∈ m′−1(αG′({ 〈1, x〉…})[k])

Fig. 1.(c) G

r : Inc[]

c : Count[]

a : Any

r : Inc[]

c : Count[]

a : Any

Fig. 1.(a) L Fig. 1.(b) P

p : Plus[]

l : 1

c′ : Count′[]

r′ : Inc′[]

y : Inc[]

z : Count[]

t : 3

x : Root[]

Fig. 1.(d) G′

y : Inc[]

z : Count[]

t : 3

p′ : Plus[]

l′ : 1

z′ : Count′[]

y′ : Inc′[]x : Root[]

y : Inc[]

z : Count[]

t : 3

p′ : Plus[]

l′ : 1

z′ : Count′[]

y′ : Inc′[]

x : Root[]

Fig. 1.(e) H

Fig. 2.(a) L = P Fig. 2.(b) G = G′ = H

r : I[]

a : Any

x : I[]

ct pat-
here we
since
ns,

les de-

sly we

e

iden-

rty

-
et
3 GRAPH REWRITING AS GROTHENDIECK OPFIBRATION

To avoid excessive technical doudgery, we will state significant categorical results in terms of abstra
terns and graphs, which are representatives of the isomorphism classes of patterns and graphs. W
need to give an explicit construction, we will tend to use “normal” or “concrete” patterns and graphs,
life will be easier with an explicit model of disjoint union. We will be a bit more cavalier in illustratio
modelling disjoint union by adding nodes to one of the summands.

Definition 3.1 Let P be the category whose objects are abstract patterns and whose arrows are ru
picted by pairs of functions (i, r) : L → R satisfying the invariants (INJ), (RED), (HOM) below.L andR
are called the left and right patterns of the rule (arrow) (i, r) : L → R.

(INJ) (a) x ≠ y ⇒ i(x) ≠ i(y),
(b) x implicit ⇒ i(x) implicit,
(c) y implicit ⇒ ∃ implicit x such thaty = i(x),
(d) σ(i(x)) = σ(x),
(e) A(i(x)) = A(x).

(RED) (a) r(x) ≠ i(x) ⇒ x explicit,
(b) x implicit ⇒ r(x) = i(x),
(c) x, y explicit and∃ a homomorphismh : L → Z such thath(x) = h(y) ⇒ [r(x) = r(y),

or r(x) = i(x) andr(y) = i(y)].

(HOM) (pk, c) an arc ofL ⇔ (i(p)k, r(c)) an arc ofR.

As usual, this looks a lot more complicated than it is. (INJ) just states thati : L → R is a symbol/arity-
preserving injection that is invertible on the implicit subpatterns ofL andR (ie. “no new variables are in-
troduced in the RHS of the rule”). (RED) states that the redirection functionr : L → R may only redirect
explicit nodes and has to behave unambiguously with respect to homomorphic images. As previou
can replace (RED).(b) with the stronger but more transparent

(RED) (b′) x, y explicit andσ(x) = σ(y) ⇒ [r(x) = r(y), or r(x) = i(x) andr(y) = i(y)].

For an objectP, the identity inP is (idP, idP) : P → P and composition of the arrows (i1, r1) : P1 → P2, (i2,

r2) : P2 → P3 is given by (i2 i1, r2 r1) : P1 → P3. It is trivial on the basis of known properties ofSet, to
check that all the stated invariants are preserved by this composition.

We see that the arrows ofP provide a componenti that mimics the inclusion of the left subpattern into th
full pattern of a DACTL rule of the previous section, and also a componentr that mimics the redirection
pairs of the previous treatment. Note the careful distinction in nomenclature. While it is possible to
tify the left subpattern of a DACTL rule with the left (abstract) pattern of an arrow ofP, the same cannot
be done with the full pattern of a DACTL rule and the corresponding right pattern of an arrow.

A subset of DACTL rules can be easily mapped toP arrows. This subset is characterised by the prope

(RED-P) below. We call this subset DACTLP.

(RED-P) x, y explicit and ∃ a homomorphismh : L → Z such thath(x) = h(y) ⇒
[〈x, t〉 ∈ Red ⇔ 〈y, t〉 ∈ Red].

There is an easy mapping from DACTLP rules into arrows ofP. It is given by the next construction.

Construction 3.2 Let 〈incl : L → P, root, Red〉 be a DACTLP rule. We have remarked that DACTL re
writing semantics can just as easily be applied to instances ofL in patterns as to instances in graphs. L
Rbe the pattern resulting from rewriting the identity instance ofL in itself according to the rule. Then the
arrow ofP corresponding to the rule is (the abstract version of) (i, r) : L → R with (i, r) given by

i(x) = {〈1, x〉, 〈2, x〉},
r(x) = {〈1, y〉, 〈2, y〉}, wherey = x unless〈x, y〉 ∈ Red.

Modulo the pedantry of disjoint unions, we have just applied the redirectionsRedto the patternP. Fig 3

shows theP version of the rule of example 2.10 (which is obviously a DACTLP rule). The mapi is just {r
→ r0, c → c0, a → a0}, and r is given by {r → r′, c → c′, a → a0}.

We now give theP version of graph rewriting which we call theP rewriting construction, to distinguish it
from the DACTL rewriting construction of the previous section.

Definition 3.3 Let δ = (i, r) : L → R be an arrow ofP, and letg : L → G be a rigid homomorphism ofL
into a graphG, by which we mean a homomorphism such that (RIG) below holds.

(RIG) x explicit,y implicit ⇒ g(x) ≠ g(y).

Let the graphH be given by:

(1) NH = (NG ∪+ NR)/≈ where∪+ is disjoint union and≈ is the smallest equivalence relation such that〈1,

x〉 ≈ 〈2, n〉 whenever there is ap ∈ L such thatx = g(p) andn = i(p). ThusNH is the pushout inSet

of R ←i L →g
G.

(2) σH({ 〈1, x〉}) = σG(x),
σH({ 〈2, n〉}) = σR(n),
σH({ 〈1, x〉, 〈2, n1〉 … 〈2, nq〉}) = σG(x).

Before definingαH, we pause to define (j, s) : G → H andh : R → H

j(x) = {〈1, x〉…},

r : Inc[]

c : Count[]

a : Any

r0 : Inc[]

c0 : Count[]

a0 : Any

Fig. 3.(a) L Fig. 3.(b) R

p : Plus[]

l : 1

c′ : Count′[]

r′ : Inc′[]

d. We

men-
joint
s(x) =

h(n) = {〈2, n〉…},

(3) αH({ 〈1, x〉})[k] = s(αG(x)[k]),
αH({ 〈2, n〉})[k] = h(αR(n)[k]),
αH({ 〈1, x〉, 〈2, n1〉 … 〈2, nq〉})[k] = s(αG(x)[k]).

Lemma 3.4 Definition 3.3 is consistent. Furthermore

(a) j is a symbol/arity-preserving injection,

(b) h is a rigid homomorphism,

(c) (j, s) is a redirection couple i.e. [(xk, y) an arc ofG ⇔ (j(x)k, s(y)) an arc ofH].

Lemma 3.5 In the notation of 3.3, 3.4,j g = h i ands g = h r, i.e. the squares of fig. 4 commute.

We do not need to look far for an example of this construction. Example 2.10 furnishes what we nee
have aP style rule for this rewrite in fig 3. Figs. 1.(c),(e) provide the graphsG andH. The maps
(i, r) : L → R have been given, andg : L → G is just the mapm of example 2.10. The mapj : G → H is
the obvious injection, and the maps : G → H hasy → y′, z → z′ and otherwise coincides withj. The
homomorphismh : R → H is {r0 → y, c0 → z, a0 → t, r′ → y′, c′ → z′, p → p′, l → l′}.

In general, the two rewriting models agree. We have the following result.

Theorem 3.6 Let 〈incl : L → P, root, Red〉 be a DACTLP rule and let (i, r) : L → Rbe the corresponding
P arrow. Letg : L → G be a rigid matching ofL to a graphG. Then the abstract versions of the graphsH
built by the two rewriting constructions are the same.

Let us compare the two rewriting constructions for a moment from the perspective of potential imple
tations. In practice one would never implement either of the constructions by forming explicit dis
unions etc. Instead one might implement the DACTL construction by the steps (D1) – (D3).

(D1) Identify the redexm : L → G of rule〈incl : L → P, root, Red〉 in graphG.

(D2) Add copies of nodes and arcs ofP – L to G in order to make graphG′.

(D3) Redirect arcs ofG′ according to the specifications inRed to make graphH.

TheP construction on a suitable redex might proceed as follows.

{ { 〈1, x〉…} otherwise

{ 〈2, r(p)〉…} if ∃ p ∈ L such thatx = g(p) andr(p) ≠ i(p)

Fig. 4

G

L R

H

hg

i

j
G

L R

H

hg

r

s

e in-

ost

is

as no

i-

an the

tterns

to the

he

rks
(P1) Identify the rigid redexg : L → G of rule (i, r) : L → R in graphG.

(P2) Add copies of nodes ofR – i(L) to G to make graphG1. Determine the maps (j, s) : G → G1.

(P3) Redirect arcs ofG1 making graphG2 so that [(pk, c) an arc ofG1 ⇔ (j(p)k, s(c)) an arc of G2].

(P4) Add copies of arcs ofR – i(L) to G2 to makeH.

The differences are obvious. The DACTL construction is operationally much simpler. In addition, th
termediate objectG′ that it creates is a bona-fide graph as per 2.2. TheP construction is more complex
and its intermediate objectsG1 andG2 aren’t really graphs since they have “missing arcs”. This is m

acutely felt if we work in a world where symbols have fixed arities. In theP construction we are forced to
“interleave (D3) into (D2)” since the patternR comes with its arcs “already redirected”. Incidentally th

last point shows us that there is no inverse transformation fromP rewriting back to DACTLP rewriting,
since in the latter a node which is redirected but is not itself the target of a redirection, definately h
parents, while inP rewriting, such a node can acquire parents during step (P4).

In view of the above, why bother withP rewriting at all? The answer comes with the simplicity of spec
fying P rewriting compared to DACTL rewriting. The universal properties ofP rewriting make it much
easier to reason about than DACTL rewriting, and the specification in 3.3 is considerably simpler th
combined force of 2.7 - 2.9. The payoff for using it is thus for the theoretitian.

We return to our primary objective of making a Grothendieck construction in the world of abstract pa
and graphs, via a universal property ofP rewriting which makes it very reminiscent of a pushout.

Theorem 3.7 Using the notation of 3.3 – 3.5, letH′ be a graph and suppose (j′, s′) : G → H′ and
h′ : R → H′ are such that

(1) j′ is a symbol/arity preserving injection,

(2) (j′, s′) is a redirection couple i.e. [(xk, y) an arc ofG ⇔ (j′(x)k, s′(y)) an arc ofH′],

(3) h′ is a homomorphism,

(4) j′ g = h′ i ands′ g = h′ r,

(5) i(a) = r(p) andi(b) = r(q) andg(a) = g(b) ⇒ s′(g(p)) = s′(g(q)),

Then there is a unique pair of maps (θ, ρ) : H → H′ such that

(a) θ is a symbol/arity preserving node map,

(b) (θ, ρ) is a redirection couple i.e. [(pl, c) an arc ofH ⇔ (θ(p)l, ρ(c)) an arc ofH′],

(c) θ, ρ extend to a homomorphism onh(R),

(d) j′ = θ j,
s′ = ρ s,
h′ = θ h = ρ h,
ρ = θ onH – (s(G) ∪ h(R)).

I.e. fig. 5 commutes.

Theorem 3.7 shows the pushout-like nature of theP rewriting construction. The graphH that it creates is
universal (up to isomorphism of course) among ways of completing the square in fig 5 according
conditions stated.

Now we are in a position to proceed with the Grothendieck construction.

Definition 3.8 For each objectP of P, we construct a categoryGP. The objects ofGP are pairs〈G, g〉.
HereG is an abstract graph andg : P → G is a rigid homomorphism. (N.B. We could instead consider t

categoryPP of pairs〈K, g〉 where this timeK is an abstract pattern, along the lines of similar rema

above.) The arrowsφ : 〈G, g〉 → 〈G′, g′〉 of GP (or of PP) are graph (or pattern) homorphismsφ which

preserve the redex, i.e.g′ = φ g, and also are rigid i.e.g(P) = φ-1(g′(P)). The two notions of rigidity should
cause no confusion.

nce
Definition 3.9 Consider an arrowδ = (i, r) : L → R in P, and〈G, g〉 an object ofGL. Let 〈H, h〉 be the

object ofGR such thatH is the unique abstract graph isomorphic to the result of rewriting the insta
g : L → G according to ruleδ using theP rewriting construction, andh : R→ H is the obvious homomor-

phism. LetRewδ(〈G, g〉) = 〈H, h〉.

Lemma 3.10 Rewδ : GL → GR extends to a functor. In other words fig. 6 commutes.

G H

H′

L M
(i, r)

(j, s)

(j′, s′)

g h
h′

Fig. 5

(θ, ρ)

G′ H′

G H

L R
(i, r)

(j, s)

(j′, s′)

φ ψ

g

g′

h

h′

Fig. 6

ory

t

f
rely a

be dis-
Theorem 3.11 There is a functorRew : P → Cat such that

Rew(P) = GP

Rew(δ : L → R) = Rewδ : GL → GR

The existence ofRew: P → Cat leads immediately to the construction of the Grothendieck categ
G(P, Rew). The objects ofG(P, Rew) are pairs〈〈G, g〉, L〉 whereL is an object ofP and〈G, g〉 is an object
of Rew(L). We can write such objects as〈g : L → G〉. The arrows ofG(P, Rew) are pairs

〈φ, δ〉 : 〈g : L → G〉 → 〈h : R → H〉 whereδ = (i, r) : L → R is an arrow ofP, andφ : Rewδ(G) → H is an

arrow ofGR. In slightly less combinatorial terms, an arrow〈φ, δ〉 of G(P, Rew) can be viewed as an abstrac

P rewrite of a redexg : L → G by a ruleδ = (i, r) : L → R giving Rewδ(〈G, g〉), composed with a homo-
morphismφ. Thus it can be given by a pair (j , s) : G → H where j = φ j *, s = φ s*, and

(j*, s*) : G → Rewδ(G) represents the effect ofRewδ onG. Clearly [(xk, y) an arc ofG ⇔ (j(x)k, s(y)) an
arc ofH]. Such a pair (j, s) is strictly speaking a different thing from〈φ, δ〉, but we will overlook this.

Composition of arrows〈φ, δ〉 : 〈g : L → G〉 → 〈h : M → H〉 and〈χ, ε〉 : 〈h : M → H〉 → 〈k : N → K〉 is de-
fined by

〈χ, ε〉 〈φ, δ〉 : 〈g : L → G〉 → 〈k : N → K〉 = 〈χ Rew(ε)(φ), ε δ〉

This situation is illustrated in fig. 7. Note that compared to ourP rewriting construction, the arrows o
G(P, Rew) have an extra homomorphism “tacked onto the end”. The fact that we can do this is pu

consequence of the fact that the individualRewδ functors mesh together to form the overall functorRew,
and thus that the square in fig. 7 commutes. The significance of these extra homomorphisms will
cussed in section 4 when we talk about real systems. The arrows ofG(P, Rew) will be called rewrites, or
G rewrites if we wish particularly to distinguish them fromP rewrites, or DACTL rewrites. Of course from
a categorical viewpoint, we might justifiably prefer them to be called corewrites or oprewrites.

Fig. 7

L M N

G Rewδ(G) Rewδ(Rewε(G))

H Rewε(H)

K

δ = (i, r) ε = (j, s)

φ

χ
Rew(ε)

Rew(δ)

se of

a

ile nev-
ules be-
em, live
jection
we
x and

stems
curtail

away
s use-
effi-

ral

pped
n 2).

his sug-
models.
graph
is no

via the
Continuing the development,G(P, Rew) is a fibered category. The fibers are theGL categories and the pro-
jectionF : G(P, Rew) → P takes objects〈g : L → G〉 to L and arrows〈φ, δ〉 to δ. F is a split opfibration
with splitting

κ(δ, 〈g : L → G〉) = 〈idRew(δ)(〈G, g〉), δ〉 : 〈g : L → G〉 → 〈Rewδ(g) : δ(L) → Rewδ(G)〉

= 〈g : L → G〉 → 〈h : R → H〉

whereδ = (i, r) : L → RandRewδ(〈G, g〉) = 〈H, h〉. Thus the components of our originalP rewriting con-
struction turn out to be precisely the components of the splittingκ of the opfibrationF.

Split opfibrations have universal properties by virtue of being opcleavages. In the particular ca
G(P, Rew), this comes down to the following. Letδ = (i, r) : L → M be an arrow ofP and〈g : L → G〉 be
an object ofG(P, Rew). The arrow〈idRew(δ)(〈G, g〉), δ〉 = κ(δ, 〈g : L → G〉) of G(P, Rew) has the property

that if 〈χ, γ〉 : 〈g : L → G〉 → 〈k : N → K〉 is an arrow ofG(P, Rew) such thatF(〈k : N → K〉) = N, then for
any arrow ε = (j , s) : M → N of P such thatF(〈χ , γ〉) = ε δ , there is a unique arrow
〈θ, τ〉 : κ(δ, 〈g : L → G〉)(〈g : L → G〉) → 〈k : N → K〉 such that〈θ, τ〉 κ(δ, 〈g : L → G〉) = 〈χ, γ〉 and
F(〈χ, γ〉) = ε. The degenerate case of this whenε = idM is just the abstract version of theorem 3.7. For
fuller description of the Grothendieck construction in its abstract form see Barr and Wells (1990).

Note the pleasing way that the Grothendieck construction has separated syntax and semantics wh
ertheless keeping a very close connection between them. The syntactic objects, patterns, and r
tween patterns, live in the base category. The semantic objects, graphs and the rewrites between th
in the Grothendieck category above. The fact that we use two distinct categories related by the pro
functorF and split opfibrationκ, rather than a single category, gives us just the technical elbow room
need to treat similar objects slightly differently as the situation demands. This segregation of synta

semantics was the main reason why we chose to work withGP fibers rather thanPP fibers.

4 REAL SYSTEM ISSUES

The construction of the previous section belonged in the world of “all conceivable rewrites”. Real sy
make use of only a small number of possibilities. In this section we discuss briefly the issues that
the choice.

The first thing we note is that arrows ofG(P, Rew) are pairs〈φ, δ〉. While theδ part is manifestly uncon-
troversial, the presence of a non-trivialφ may be more questionable. First of all we note thatφ is an arrow

of GP, so by changing the permitted arrows there we can modify the arrows ofG(P, Rew). Making the

fibersGP into discrete categories effectively gets rid of non-trivialφ’s. However non-trivialφ’s are useful
for certain purposes. In Hoffmann and Plump (1988), Habel, Kreowski and Plump (1988), and Kenn
(1987), the desirablity of identifying identical subgraphs of the execution graph is expounded. This i
ful for non-linear rewrite rules, or for maximal sharing of identical subgraphs to improve execution

ciency. By restricting the arrows ofGP to be (maximal) onto rigid homomorphisms we see that our gene
construction achieves at least some of these effects for free. Of course we don’t getall desirable homo-
morphisms this way because of the requirements of rigidity.

We now consider one aspect of the DACTL rewriting construction of section 2 that was quietly dro
in section 3. By definition all DACTL rules have rooted left subpatterns (in the terminology of sectio
Reflecting on this point opens up a whole tangle of related issues.

The left subpatterns have roots, but the full patterns themselves needn’t do so (see example 2.4). T
gests that the roots are connected with garbage collection, and its absence in the present rewriting
However roots are also found in terms and term rewriting, an important application area for term
rewriting, and there they play the role of distinguished node in the object being rewritten since there
separate notion of garbage or its collection in term rewriting. In reality both aspects are connected

at the

n sup-
ness or
d live as

ty, since
le of in-
g term
age to
d in this

nts, nor
served
writes
-
ta are

s

odes
raphs
des in

n of
rtesian

lid re-
egory
ly that

s that
of pat-
points

rules of
that use

odel
graph
e notion
notion of accessibility, since accessibility plays a role both in garbage collection and in the fact th
whole of a term is accessible from its root.

It turns out that the most elegant way of handling these issues is to formulate the concept ofnotion of gar-
bage. A notion of garbage (perhaps better called a notion of liveness) is a proof system, which whe
plied with a graph and perhaps some base case information, can be used to decide the live
garbageness of any node in the graph. For example, given a graph and a set of its nodes deeme
base cases, and the inference rule “fromx live andy a child ofx deducey live”, we can deduce which nodes
are live and which are garbage. So we have a notion of garbage; one related to roots and accessibili
the base case nodes play the role of “roots as distinguished nodes”, and accessibility is the sole ru
ference. Different notions of garbage are appropriate under different circumstances. When modelin
rewriting, one is interested in roots and accessibility, whereas when one uses the full DACTL langu
model eg. communicating processes, a more complex notion using the graph markings, suppresse
paper, is more suitable.

Garbage has to fit well with rewriting. Thus the garbage in a graph should be

(1) preserved unchanged and possibly added to by the rewriting mechanism,

(2) not be manipulated non-trivially by the rewriting mechanism.

In the context of Grothendieck rewriting, (2) means that garbage nodes should not aquire new pare
be involved in redirection as either left or right hand side. Formally expressed, (1) and (2) are pre
by composition of composable pairs of rewrites that satisfy them and lead to a subcategory of valid re
of the Grothendieck categoryG(P, Rew). More specifically, letG(P, Rew){ Θ} be the Grothendieck catego
ry constructed as in section 3, but embellishing the objects in the fibers with whatever additional da
necessary for the notion of garbageΘ to work properly. ThenG(P, Rew)Θ has the same objects a

G(P, Rew){ Θ} but only those arrows which are valid rewrites.

One cannot expect thatG(P, Rew)Θ is opfibered overP in the way thatG(P, Rew) is. The reason is that
even given a fixed notion of garbage, it is not implicit in a graph rewrite rule, which of the redex n
matched to its left pattern are going to be garbaged by the rewrite. Different redexes in different g
give different answers. There is thus no way to project the distinction between live and garbage no
the objects ofG(P, Rew) down to the objects in the base. In addition, for an arbitrarily chosen notio
garbage, for a given object in the category of rewrites and arrow in the base, the required split opca
arrow needn’t exist.

With a judiciously chosen notion of garbage, the Grothendieck construction yields a category of va
writes suitable for describing the class of graph rewrites used for modeling term rewriting; i.e. a cat
in which the objects are graphs equipped with a matching of a pattern, and whose live part is precise
part of the graph accessible from a unique root node.

Categories such asG(P, Rew)Θ are rich in data. Here is a typical arrow.

〈φ, (i, r) : L → R〉 : 〈g : L → 〈G, Gar(G)〉〉 → 〈h : R → 〈H, Gar(H)〉〉

The objects are pattern instances into “graphs with garbage”, and the arrow data is a homomorphismφ and
an arrow (i, r) : L → Rof P. One can rearrange and forget various parts of this data to build categorie
describe rewriting at various levels of abstraction. For instance one can identify graphs regardless
tern instances, or identify objects up to isomorphism of their live subgraphs. Some minor technical
need to be taken care of in order to make these constructions functorial.

Given such identifications one can then locate subcategories that describe rewriting using only the
a given system, or subcategories that use only a given system and starting graph, or subcategories
only a given system, starting graph and fixed reduction strategy.

It is interesting to compare the present treatment of rewriting with term rewriting. One can certainly m
term rewriting in a “with garbage” Grothendieck construction using subterm copying rather than sub
sharing as the matching and instantiation mechanism for variables. One can then take up a suitabl

e

ism
ssible
g too.
pends

issues,

legiti-

ack to
ction,
anism

ey

uting

ur.

were
nodes
ore than
little
tever
tivity of
antics.

ce

t uni-

er-
of garbage and construct the analogue ofG(P, Rew)Θ. Now it turns out for topological reasons, that on

can construct a split opfibration withG(P, Rew)Θ as Grothendieck category, and then construct a morph
of opfibrations that takes this to conventional term rewriting, which in turn can easily seen to be expre
as an opfibration. Thus we end up with a “garbage free” Grothendieck construction for term rewritin
A similar strategy is much less convincing for graph rewriting and its potential success or failure de
on a number of technical questions. For a much more complete account of these and other related
see the previously advertised full version of this paper.

5 TRUE DACTL REWRITING

In section 3 we developed a categorical formulation for a sublanguage of DACTL. Readers may

mately wonder to what extent the full DACTL language shares the properties of DACTLP. The main prob-
lem encountered in applying the constructions of section 3 to the full language can be traced b
DACTL’s capacity for ambiguous redirections. From the perspective of the Grothendieck constru
DACTL redirections can be ambiguous for two distinct reasons. The first concerns the priority mech
that implicily determines targets for redirection. Thus if〈x, t〉 ∈ Red, andx andy both match the same
graph node of the redex, but for nou do we have〈y, u〉 ∈ Red, then the redirection inRedwins over the
unstated identity redirection ofy. A similar thing happens for implicit nodes of the pattern when th
match the same graph node as somex such that〈x, t〉 ∈ Red. Again the explicit redirection wins over the
unstated identity redirection. Such phenomena prevent the right hand square in fig. 4 from comm

properly and is why the DACTLP sublanguage contained specific conditions to prevent such behavio

It might be imagined from this that the prospects for describing the whole language categorically
bleak. However this is not quite the case, and it is precisely the libertarian tendencies of implicit
that come to the rescue. Whenever a node of the left pattern has the capacity to be redirected in m
one way, we introduce a fresh implict node in the right pattern of the rule to act as its “mate”. With a
care, we can exploit the capacity of implicit nodes to “match anything” in order to ensure that wha
actual redirection takes place, the mate node is able to accomodate it and to rescue the commuta
fig. 4. We thus make the syntactic form of rules reflect the actual ambiguity that comes from the sem
For lack of space we outline the construction informally and back it up with an example or two.

Construction 5.1 Let 〈incl : L → P, root, Red〉 be a DACTL rule.

[1] Apply construction 3.2 and call the resulting patternR2. Rename each node (which is an equivalen
class built up out of a single nodex say ofP), as the correspondingx.

[2] For every implicit nodex of R2, introduce a mate node. Redirect all images inR2 of arcs ofL to x,
to the mate. Call the resulting patternR1.

[3] For every explicit nodey of R1 such thaty is not redirected inRedbuty could match the same graph
node as somex for which 〈x, t〉 ∈ Red, introduce a mate node. Redirect all images inR1 of arcs ofL
to x, to the mate. Call the resulting patternR.

[4] Let (i, r) : L → R be the obvious maps.

A rewriting construction (let’s call it the D rewriting construction), similar toP rewriting can be designed
that accurately reflects DACTL rewriting. We do not describe it in detail, but instead state the relevan
versal property.

Theorem 5.2 In theorem 3.7, let the rule under consideration be (i, r) : L → R as manufactured in 5.1.
Replace the (unstated) reference toP rewriting, by reference to D rewriting, remove the (unstated) ref
ence to the rigidity of the matching of the redexg : L → G, and add an extra hypothesis

(6) i(a) = r(p) and for allq ∈ g-1(g(a)), r(q) is a mate⇒ s′(g(p)) = s′(g(q)) for any suchq.

Then the theorem holds true in the modified form.

F[]

A[] B[] B[]

a b c

F[]

A[] B[] B[]

a b c

S[]

T[]

F[]

A[] B[] B[]

a′ b′ c′

S[]

T[]
d

a b c

Fig. 8.(a) L

Fig. 8.(b) P

Fig. 8.(c) R

F[]

A[] B[]

X Y

R[]

F[]

A[] B[]

X Y

R[]

F[]

A[] B[]

X Y

R[]

S[]

T[]

S[]

T[]

Fig. 8.(d) G

Fig. 8.(e) G′

Fig. 8.(f) H

nd to
section

the pat-

Fur-

sup-
d sup-
e
r give

s

o

t hand

eeds

status
atch-

o the
t the
en the
hat
ni-
y that
ds for

f this

he

intuitive
blem,
Theorem 5.2 describes a local form of universality that holds for D rewriting, but that does not exte
the global universality generated by a Grothendieck construction as discussed towards the end of
3. The most important obstacle to the construction is the fact that there is an asymmetry between
ternsL andRof the rule constructed in 5.1. The patternRcontains mates whileL doesn’t. This blocks the
translation of trivial DACTL rules (no contractum, empty redirections) to identity arrows in the base.
thermore, even ifg : L → G is a rigid redex, there is no guarantee that the correspondingh : R→ H is rigid,
again because of the mates. All things considered, it’s remarkable that 5.2 holds at all.

Let us look at an example of D rewriting. Fig. 8 provides what we need. To avoid clutter, we have
pressed node names for all explicit nodes (which we refer to by the symbol that labels them), an
pressed theAny symbol for implicit nodes. Fig. 8.(a) gives a patternL, which is a rooted subpattern of th
patternP of fig. 8.(b). The faint arcs in fig. 8.(b) represent the redirections, so figs. 8.(a),(b) togethe
a DACTL rule.

Fig. 8.(c) gives the corresponding D rewriting right patternR. Note how a number of new implicit node
have been introduced intoR. These are the mates. Each of the original implicit nodesa, b, c has aquired
a mate; they are the nodesa′, b′, c′ respectively. The images of the arcs ofL which were targeted ata, b,
c have been redirected toa′, b′, c′ respectively. However the images of the arcs which get redirected ta,
b, c during the application of the original DACTL rule to its own full pattern remain targeted ata, b, c as
before. In reality this only affects the nodea. The right handB node also aquires a mated, because al-
though it is not manifestly redirected itself, it could potentially match the same graph node as the lef
B node, whichis manifestly redirected. Thus the images of the two arcs ofL targeted at the right handB
node get redirected tod. The rule (i, r) : L → R is therefore given by the injectioni which sends each node
of L to its copy inR regardless of the presence or otherwise of mates, and the functionr which can be read
off from fig. 8.(c) given the invariant (HOM) — with the sole exception ofr(F) which is of courseS.

Figs. 8.(d) – (f) depict the rewriting of a graphG using the rule. There is obviously an instance ofL in G,
an instance that causes the twoB nodes to match the same graph node. The DACTL construction proc
by constructing first the graphG′, and then performing the redirections to yield graphH. The D rewriting
construction achieves the same effect without the intervening middle step, by characterisingH as the uni-
versal completion of the diagram of fig. 5 up to isomorphism, under the conditions of theorem 5.2.

One final enigma remains to be resolved before we close this discussion of rewriting, and that is the
of the circular instance of the I combinator. The most selfevident feature of this example is that the m
ing g : L → G which defines the rewrite is not rigid. It seems therefore that we cannot but resort t
locally universal construction outlined above to describe it. While this is certainly possible, it is no
only thing that we can do. The circular I example actually occupies an intermediate position betwe
global universality ofP rewriting, and the mates and local universality of D rewriting. The conditions t
are imposed to makeP rewriting globally universal are sufficient but not necessary to make it locally u
versal. The circular I example satisfies a set of weaker conditions, without having the rigidity propert
gives global universality. These conditions can be summarised in the invariant (W-RIG) which stan
weak rigidity.

(W-RIG) p explicit,a implicit andg(a) = g(p) ⇒ r(p) = i(p) or r(p) = i(a).

The circular I instance of the I combinator rule inP rewriting form clearly satisfies (W-RIG). It follows
that theP rewriting construction is consistent for it, and describes the locally universal properties o
rewrite. Thus theP version of the rule is given by (i, r) : L → R with L being the pattern in fig. 2.(a),R
being the same pattern;i : L → R being the identity, andr : L → R havingr(r) = r(a) = a (pardon the no-
tation). Similarly, fig2.(b) gives graphsG, H for this rewrite. The other maps in the construction are t
only possible ones.

6 CONCLUSIONS

In the previous sections we have described how the essentials of the rather complex and perhaps un
DACTL graph rewriting model may be recast as a universal solution to a particular categorical pro

revi-
ewhat
of con-
ence
are in-
x” from
o situa-
— any

ion of

M.R.
C.

8-11,

Some
t An-

Lan-
Ro-

f
ce
and a familiar one for category theorists at that. This is particularly gratifying for the author whose p
ous experience with the DACTL model gave rise to the strong intuitive feeling that despite its som
convoluted operational description, a robust, elegant and convincing model lay behind the drudgery
tractum-build+redirect. This is why the adjective unintuitive is used only hestitatingly in the first sent
of this paragraph. Grothendieck (op)fibrations lie behind may constructions in mathematics, and
creasingly found in theoretical computer science these days. Their usefulness in separating “synta
“semantics” is perhaps their most appealing feature; we use both terms in quotes since we refer t
tions more general than those just involving actual syntax and semantics of programming languages
situation where we have a collection of “objects” and for each object we have to deal with a collect
its “instances” is a good candidate for a Grothendieck construction.

References

Banach R. (1991), Term Graph Rewriting and Garbage Collection à la Grothendieck.Submitted to TCS.

Barendregt H.P., van Eekelen M.C.J.D., Glauert J.R.W., Kennaway J.R., Plasmeijer M.J., Sleep
(1987), Term Graph Rewriting,in Proc. PARLE-87, de Bakker J.W., Nijman A.J., Treleaven P.
eds., Springer, Lecture Notes in Computer Science259 141-158.

Barr M., Wells C. (1990), Category Theory for Computing Science. Prentice-Hall.

Glauert J.R.W., Kennaway J.R., Sleep M.R. (1988a), Final Specification of DACTL. Report SYS-C8
School of Information Systems, University of East Anglia, Norwich, U.K.

Glauert J.R.W., Hammond K., Kennaway J.R., Papadopoulos G.A., Sleep M.R. (1988b), DACTL:
Introductory Papers. Report SYS-C88-08, School of Information Systems, University of Eas
glia, Norwich, U.K.

Glauert J.R.W., Kennaway J.R., Sleep M.R. (1991), DACTL: An Experimental Graph Rewriting
guage.,in Graph Grammars and their Application to Computer Science, Ehrig H., Kreowski H.
zenberg G.eds., Lecture Notes in Computer Science532 378 - 395

Habel A., Kreowski H., Plump D. (1988), Jungle Evaluation,in Proc. Fifth Workshop on Specification o
Abstract Data Types, Sannella D., Tarlecki A.eds., Springer, Lecture Notes in Computer Scien
332.

Hoffmann B., Plump D. (1988), Jungle Evalulation for Efficient Term Rewriting,in Proc. International
Workshop on Algebraic and Logic Programming, Mathematical Research49, Akademie-Verlag,
Berlin.

Kennaway J.R. (1987), On “On Graph Rewritings”. Theor. Comput. Sci.52 37-58.

Kennaway J.R. (1990), Implementing Term Rewrite Languages in DACTL. Theor. Comput. Sci.72225-
250.

Kennaway J.R. (1991), Graph Rewriting in Some Categories of Partial Morphisms,in Graph Grammars
and their Application to Computer Science, Ehrig H., Kreowski H. Rozenberg G.eds., Lecture Notes
in Computer Science532 490 - 504

	DACTL REWRITING IS CATEGORICAL
	R. Banach
	Computer Science Department, Manchester University,
	Manchester, M13 9PL, U.K.

	Abstract
	The graph-manipulating core of the general term graph rewriting language DACTL, namely contractio...
	1 INTRODUCTION
	2 DACTL ABSTRACTED
	3 GRAPH REWRITING AS GROTHENDIECK OPFIBRATION
	4 REAL SYSTEM ISSUES
	5 TRUE DACTL REWRITING
	6 CONCLUSIONS
	References

