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Abstract. In the effort to develop critical systems, taking account of failure
modes is of vital importance. However, when systems fail (even in a manner
previously determined as acceptable), a lot of the invariants that hold in the case
of nominal behaviour also fail. A technique is proposed that permits the inclusion
of the strong invariants of nominal behaviour alongside the provisions for de-
graded behaviour in an inclusive formal system model. The faulty system model
is derived from the nominal one via fault injection, and the nominal and faulty
system models are related via a formal retrenchment step. Manipulation of the
retrenchment data permits the inclusion of the stronger invariants, which remain
provable when faults are disabled in a generic manner in the faulty model, thus
increasing confidence in the overall system design. The details are developed in
Event-B, and the concept is illustrated using a toy switching example.

1 Introduction

When developing critical systems, it is rarely (in fact never) possible to assume all
components will work perfectly all the time. Provision for the judicious handling of de-
graded operation is a vital concern in the design of all categories of critical system. This
creates a dilemma of the following kind. When all components are working normally
(nominal behaviour), very many specific invariants will hold about the detailed work-
ing of each of the components and about their interworking. The verification of these
in the nominal system can provide a useful measure of confidence in the correctness
of the model of the desired system. But the system cannot be viewed as being always
nominal, so all these detailed invariants cannot be assumed to hold in the real system,
when degraded operation in the presence of failure modes is contemplated. So the pur-
ported invariants are not in fact invariants, and the confidence in the correctness of the
model of the desired system that their verification can provide, is lost. Only fewer, and
inevitably weaker invariants will hold in the full system, these capturing the perforce
weaker requirements that are demanded of the full system when all foreseen failure
modes are taken into account.

In this paper, we present an approach that can straddle these two extremes. Briefly,
a suitable formal model of the nominal system is first developed. Since faults are not
contemplated at this stage,! a suite of incisive invariants is developed accompanying
the model. These tightly police the detailed inner workings of the early nominal model,

! Of course, in reality, the fault portfolio is contemplated from the earliest stages of development,
but we do not include any failure modes in the early stages of formal modelling.



and their verification gives a lot of confidence in the correctness of its design. In the
next stage, faults are introduced into the nominal model via fault injection. Of course,
this destroys the validity of the strong invariants developed earlier. So the modified
model removes those, and contains only invariants sustainable in both nominal and
faulty regimes, i.e. weaker ones capturing the requirements of the full system. This
process is formalised within a retrenchment development step [13, 12, 11]. But, equally
evidently, provided no fault occurs during a run of the system, the earlier stronger in-
variants will hold true. So, in the next stage, the stronger invariants are reinstated, and
the non-occurrence of faults is axiomatised (typically by setting all fault variables per-
manently to false, or by disabling fault occurrence in some other way) — the formality
of the retrenchment step helps to do this in a structured way that is intended to be non-
invasive, as regards the pivotal features of the system model. In this model, modified
from the faulty system model in a stylised manner, despite the presence of all the fault
machinery (except for the actual invocation of faults), the stronger invariants are prov-
able, and their verification gives added confidence in the design, even when the fault
machinery is present. That, in a nutshell, is the proposal of this paper.

The rest of this paper is as follows. Section 2 recalls the small set of Event-B [1] and
its refinement and retrenchment theory to enable us to handle the concepts of this paper
and of our illustrative example. Section 3 introduces a toy switching example in nom-
inal form. Section 4 considers injecting faults into the nominal model, and structures
the process using the retrenchment machinery. Section 5 discuses how the stronger in-
variants of the nominal model can be retained within the failing model using the formal
machinery introduced earlier. Section 6 covers related work. Section 7 concludes.

2 Event-B Essentials, Refinement, Retrenchment

In this section we recall a few essential features of Event-B, omitting a large number of
facts not needed for our exposition. See [1,25,24,2,26, 17, 3] for a fuller exposition.

Event-B is a formalism for defining, refining and reasoning about discrete event sys-
tems. Its relatively uncluttered design makes it useful in many kinds of application. The
syntactic unit that expresses self-contained behaviour is the MACHINE. This declares
the VARIABLES of the machine, and crucially, the INVARIANTS that all runs of the
machine must conform to. Runs are specified implicitly via successions of EVENTS,
each being of the form:

EvName = WHEN grd THEN xs :=es END

In this, grd is a guard, a boolean expression in the variables and constants, the truth
of which enables the event to execute (otherwise the event cannot run), and the THEN
clause defines a set of parallel updates xs := es to the variables, executed atomically.
Of course, there are many additional forms of event syntax in the more definitive [1].
Some of these we will meet below.

For machine M to be correct, the following PO schemas must be provable:

Init(u') = Inv(u’)
Inv(u) A grd g, (u) = JFu’ @ BApred g, (u,u’)
Inv(u) A grd g, (u) A BApred g, (u,u') = Inv(u)



In this, Initialisation is treated as an event so its after-value must establish the machine
invariants Inv; grd g, is the guard of event Ev, and BApred g, is the before-after pred-
icate of event Fv, specifying in a logical form the update to variables that it defines,
with primes referring to after-values. Thus the first PO ensures that In:t establishes the
invariants, the second PO gives event feasibility (i.e. there is some after-state for an
enabled event), and the third PO ensures all event executions maintain the invariants.

Event-B refinement is based on the action refinement model [6,4, 5, 7]. Suppose a
machine MR, with variables v refines machine M with variables u. Suppose the u« and
v state spaces are related by a refinement invariant R(u, v) (also referred to as the joint
invariant). Suppose abstract Ev 4 is refined to concrete Fvc. Then the principal refine-
ment PO schemas are:

Initc(v') = Fu’ @ Init4(u') A R(u/,v")
R(U7 U) A gTdEvc (U) = grdEvA (U)
R(u,v) A grd g, (v) AN BApred g, . (v,v") = Ju’ @ BApredp, , (u,u") A R(u',v")

In this, the first PO establishes refinement of initialisation, the second is guard strength-
ening, and the third establishes the simulation property of any concrete step by some
abstract step. In addition to refinements of abstract events, the concrete machine may
contain new events. These satisfy a PO in which there is no change of the abstract state:

R(u,v) A grd Newpo,, (V) A BApred yeywpmy. (v, V") = R(u,v')

If all of the above are provable for a pair of machines M and MR, then an inductive
proof of simulation of any concrete execution by some abstract execution follows rela-
tively readily.

Retrenchment is a looser variant of the refinement relationship between machines.
If machine MR with variables v is retrenched to machine MRF' with variables w, then
firstly, either machine may contain events unrelated by retrenchment to events in the
other machine. Secondly, for a pair of corresponding events £v 4 and Evc which are
related by retrenchment, the retrenchment relationship is given by (in addition to the
preceding data for refinement), an OUTput clause O, and a CONCedes clause C'g,.

The concrete syntax will be exemplified below in our example, but the PO that ex-
presses the retrenchment relationship between Fv 4 and Ev¢ is:

R(v,w) A grd g, (v, w) A BApred g, . (w,w") = 3v" @ BApredg, , (v,v") A
(R, w") A Ogy(v,v",w,w")) V Cry (0,0, w,w'))

In this, notice that the grd z,,, O, and C'g, clauses have no A/C subscripts; they spec-
ify arbitrary joint properties. So the PO says that either O g, is established, strengthen-
ing the joint invariant R, or the concedes relation C'g,, is established, useful for excep-
tional cases. For this to be useful, it is often the case that R is trivialised to true, with
the grd , and Og, relations expressing any needed non-trivial relationship between
the state spaces, as needed by various retrenchment-related event pairs.

3 A Simple Switching Example

Our case study considers a simplified switching application. We model the switching
in or out of some high consequence apparatus. This might concern high voltage equip-
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Fig. 1. A simplified switching mechanism.

ment, or bulk gas transportation, or heavy duty water management switching machinery,
etc. Indeed, any situation in which the energetics of the physical elements of the system
requires management of large quantities of energy, whereas the switching commands
—computer mediated as is invariably the case these days— are energetically negligible
by comparison, is a potential application. Fig. 1 shows our system. There is a button,
pressed by the operator, to switch the apparatus on (and to switch it off again).

The button command is sent to the computer that controls the functioning of the var-
ious electro-mechanical components of the switching apparatus. The computer does this
via a number of sensor inputs and actuator outputs, most of which we ignore here. Once
the operations of the switching have completed, the computer sends a signal telling the
lamp to light, confirming success to the operator.

The button command is also sent to a triplicated hydraulic actuator to power up the
hydraulics that will cause the movement of the electromechanical components needed
for the actual switching of the apparatus. Successful powerup of the hydraulics is sig-
nalled to the computer from a sensor in each hydraulic actuator. This signal acts as
a safety interlock that helps prevent malfunction of the system (which could result in
costly damage to the equipment). Thus, if the hydraulics fails, the absence of the sensor
signal prevents the computer from issuing further commands, avoiding damage. Like-
wise, if the computer fails, the mere powerup of the hydraulics does not cause anything
to move, and again, damage is avoided. Such mutual confirmation is a common feature
of high criticality systems. To permit discussion of degraded behaviour, we assume the
hydraulic actuators (alone among all the components) are triplicated. This is not very
convincing from a critical systems perspective but helps keep our example small.

Fig. 2 contains a top level model of the system, machine Switch. There are variables
btn and lamp representing the button and lamp. Both are binary. The ButtonDown
event is permitted when everything is off, and puts the button DowN. Likewise, the
ButtonUp event is permitted when everything is on, and puts the button UP. With the
button down, the lamp can come ON whereas if the button is up, the lamp can go OFF.
The guards on ButtonDown and Button Up prevent race conditions when switching on
has not completed before switching off is commanded, etc. This is the operator’s view
of the system.



MACHINE Switch e e
VARIABLES btn, lamp ButtonUp
INVARIANTS WHEN btn = DN A lamp = ON
btn € {UP, DN} THEN btn = UP
lamp € {OFF, ON} END
EVENTS LampOn
INITIALISATION WHEN btn = DN
BEGIN THEN lamp := ON
btn, lamp = UP, OFF END
END LampOff
ButtonDown WHEN btn = UP
WHEN btn = UP A lamp = OFF THEN lamp = OFF
THEN btn = DN END
END END

Fig. 2. Top level (operator’s) model of the power switching system.

Note the invariants of machine Switch. They are just typing invariants. Brief in-
spection of the events convinces that all four combinations of the two values for the two
variables are possible, so there are actually no non-trivial invariants at this level with
the events as we have defined them.

In Figs. 4 and 5, the Switch machine is refined to SwitchR to include the additional
detail described above. Consequently, there are many events to propagate the operator’s
commands into the system. Fig. 3 shows the intended aspects of this by showing the
dependencies among the various variables. Thus, a ButtonDown command to the btn
variable enables corresponding commands to the btnC' (computer) variable, and to the
replicated btnH; (actuator) variables (: € {1,2,3}). The latter enable commands to
hydr;. Both btnC and hydr, are needed to enable the lampsig command, which is in
turn needed to enable the lamp itself. The sequence for Button Up is similar.

We comment on the invariants of SwitchR. When a switching on or switching off
process is in progress, little can be said about the relationships between the values of
variables. A particular value of a given variable in Fig. 3 does not imply anything non-
trivial about the value of any other variable. However, if we have a set of values for
variables across a cut of Fig. 3 consistent with a ButtonDown command, and a set
of values for variables across a later cut of Fig. 3 also consistent with a ButtonDown
command, then we can know that all the variables between the two cuts must also
have values consistent with a ButtonDown command, because a ButtonDown com-
mand must complete fully, before a ButtonUp command can start (this is clear from
the guards on ButtonDown and ButtonUp). This allows us to write down a whole
collection of invariants.

btnC \
/ lampsig ——» lamp

btnH;——— hydr;

btn

Fig. 3. Variable dependencies in the refined model.
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MACHINE SwitchR
REFINES Switch
VARIABLES
btn, btnC, btnH ;, hydr,,
lampsig, lamp
INVARIANTS
btn € {UP, DN}
btnC € {UP, DN}
A;btnH; € {UP,DN}
lampsig € {OFF, ON}
lamp € {OFF, ON}
N;bhydr; € {OFF,ON}

btn = DN A lamp = ON =
btnC = DN A\, binH; = DN A
N;hyrd; = ON A lampsig = ON
btn = DN A lampsig = ON =
btnC = DN A\, binH; = DN A
N;hyrd; = ON
btn = DN A btnC = DN A
N;hyrd; = ON = A\,binH; = DN
btnC = DN A \,btnH; = DN A
lamp = ON =
N;hyrd; = ON A lampsig = ON
btnC = DN A \,btnH; = DN A
lampsig = ON = A\, hyrd; = ON
binC = DN A \,hyrd, = ON A
lamp = ON = lampsig = ON

btn = UP A lamp = OFF =
binC = UP AN\, btnH; = UP A
N, hyrd; = OFF A lampsig = OFF
btn = UP A lampsig = OFF =
binC = UP AN, btnH; = UP A
N;hyrd; = OFF
btn = UP A btnC = UP A
N;hyrd; = OFF = A\ ,binH; = UP
btnC = UP /\/\ibthi = UPA
lamp = OFF =
N, hyrd; = OFF A lampsig = OFF
btnC = UP /\/\ibthi = UPA
lampsig = OFF = \,hyrd, = OFF
binC = UP A \,hyrd, = OFF A
lamp = OFF = lampsig = OFF

EVENTS

INITIALISATION
REFINES INITIALISATION
BEGIN
btn, btinC = UP, UP
|ls btnH ;, hydr, = UP, OFF
lampsig, lamp = OFF, OFF
END
ButtonDown
REFINES ButtonDown
WHEN btn = UP A lamp = OFF
THEN btn := DN
END
ButtonDounC
WHEN btn = DN
THEN binC := DN
END
ButtonDownH ;
WHEN btn = DN
THEN btnH; = DN
END
ButtonUp
REFINES ButtonUp
WHEN btn = DN A lamp = ON
THEN btn = UP
END
ButtonUpC
WHEN btn = UP
THEN binC = UP
END
ButtonUpH
WHEN btn = UP
THEN binH; := UP
END
HydraulicsOn,
WHEN btnH; = DN
THEN hydr; == ON
END
HydraulicsOff
WHEN btnH; = UP
THEN hydr, := OFF
END

Fig. 4. The SwitchR machine, a refinement of Switch to include additional modelling detail.




LampSignalOn LampOn
WHEN btnC = DN A REFINES LampOn
N;hydr, = ON WHEN lampsig = ON
THEN lampsig := ON THEN lamp := ON
END END
LampSignal Off Lamp Off
WHEN btnC = UP A REFINES LampOff
N\;hydr, = OFF WHEN lampsig = OFF
THEN lampsig := OFF THEN lamp := OFF
END END
END

Fig. 5. The SwitchR machine, continued.

In the left box of Fig. 4 typing invariants occur above the first horizontal line. Be-
neath are some invariants based on the above observations. So the first one is based on
a cut through btn and another through lamp (defining the hypothesis of the implica-
tion) and the conclusion claims values for all the other variables, these all being values
consistent with a ButtonDown process. The next invariant moves the second cut to
lampsig. And so on, until the cuts meet in the middle leaving no variable in between
whose value is to be claimed in the conclusion. Note that we have not even exhausted
the possibilities for generating invariants according to the scheme described, since all
our invariants either include (or exclude) values for all three btnH ; variables together.
There will be additional invariants in which some btnH variable(s) is/are hypothesised
and the other(s) is/are concluded, and vice versa. Likewise for the hydr; variables. Be-
tween the second and third horizontal lines are analogous invariants for the Button Up
process, given by inverting all the variable values.

Whether or not a genuine engineering process would choose to assert all these in-
variants is open to discussion. Provided they are true, their proof lends some additional
assurance to, and confidence in, the correctness of the model. But that is not the only
issue. The proofs may come at some cost in labour to establish their truth, so the effort
that must be invested in doing such verification must be weighed against the additional
assurance to be gained, in a cost-benefit analysis.

In any event, overwhelmingly often, the invariants that one chooses to include in a
development are precisely that: i.e. a matter of choice and judgment. The choice might
be influenced by many things, not the least of these being the ease with which one
or other system property is capable of being expressed in the formalism being used
for the system model. In the vast majority of cases, the invariants express only a safe
approximation to the reachable set of the state space, so which safe approximation is
chosen to be represented via the invariants is not an absolute and immutable attribute of
the problem. (Despite the obvious truth of this, it is surprising how often we speak of
the invariants, as though there were no choice in the matter.)

4 Switching under Degraded Operation

We now develop our switching application to include some failure modes. We permit
failures in the actuators, but these are the only components in our development that we
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MACHINE SwitchRF
RETRENCHES SwitchR
VARIABLES
btn, btnC, btnH ;, hydr,,
lampsig, lamp,
ffAct,
INVARIANTS
btn € {UP, DN}
btnC € {UP, DN}
N\, binH; € {UP,DN}
lampsig € {OFF, ON}
lamp € {OFF, ON}
N\, hydr; € {OFF, ON}
N\, [fAct; € BOOL

bin® = bin

btnCH = btnC
lampsig? = lampsig
lamp® = lamp

Vi;éj bthi = bthj
Viy; hydr; = hydr;
EVENTS
INITIALISATION
REFINES INITIALISATION
BEGIN
bin, btnC := UP, UP
||s btnH i, hydr, = UP, OFF
lampsig, lamp = OFF, OFF
|s ffAct, = false
END
InjectFault
WHEN A, - ffAct,
THEN ||; ffAct;, binH;, hydr, |:
=N\, [fAct; A, [fAct; A
/\i [ _‘ﬁACt; =
(btnH = btnH; A
hydr!, = hydr,) |
END
ButtonDown
REFINES ButtonDown
WHEN btn = UP A lamp = OFF
THEN bin := DN
END
ButtonDounC
REFINES ButtonDownC
WHEN btn = DN
THEN btnC := DN
END

ButtonDownH ;

REFINES ButtonDownH ;
WHEN = ffAct, A btn = DN
THEN btnH; = DN
END
ButtonUp
REFINES ButtonUp
WHEN btn = DN A lamp = ON
THEN btn = UP
END
ButtonUpC
REFINES ButtonUpC
WHEN btn = UP
THEN btnC = UP
END
ButtonUpH
REFINES ButtonUpH
WHEN - ffAct, A btn = UP
THEN binH,; = UP
END
HydraulicsOn,
REFINES HydraulicsOn,
WHEN = ffAct, A binH; = DN
THEN hydr, := ON
END
HydraulicsOff
REFINES HydraulicsOff ;
WHEN - ffAct, A btnH; = UP
THEN hydr, = OFF
END
LampSignalOn
RETRENCHES LampSignalOn
WHEN btnC*® = btnC = DN A
N, hydrf = ON A
[A\; ~ffAct, A hydr, = ON v
Viz; (= ffAct; Nhydr; = ON A
- ffAct; ANhydr; = ON) ]
OUT V., [~ ffAct; A = ffAct; A
binH; = btnH, = binHE = btnHI' A
hydrE = hydr, = hydr® = hydr), A
btnH; = binH; = binHE = binH ' A
hydr = hydr; = hydri" = hydr’; ]
CONC false
THEN lampsig := ON
END

Fig. 6. The SwitchRF machine, a retrenchment of SwitchR to include failure modes.




LampSignal Off LampOn
RETRENCHES LampSignal Off REFINES LampOn
WHEN btnC® = btnC = UP A WHEN lampsig = ON
A, hydrf = OFF A THEN lamp = ON
[N, ~ffAct; A hydr, = OFF v END
Viy; (= ffAct; Ahydr; = OFF A LampOff
- ffAct; Ahydr; = OFF) ] REFINES LampOff
OUT V., [~ ffAct; A= ffAct; A WHEN lampsig = OFF
binH; = binH', = binHE = btnHE' A THEN lamp = OFF
hydrE = hydr, = hydr® = hydr}, A END
binH; = binH') = btnHF = btnH ' A END
hydr’t = hydr; = hydr’ = hydr’; ]
CONC false
THEN lampsig := OFF
END

Fig.7. The SwitchRF machine, continued.

permit to fail. Although this is not very convincing in an engineering sense, it helps keep
the development to a size we can accommodate in this paper, thus illustrating the brief
remarks about our general technique made in the Introduction. Although we introduce
and tolerate some faults, we do not go so far as to recover from them, or to model faults
beyond the tolerable regime we define.

Figs. 6 and 7 show the faulty machine SwitchRF'. It retrenches SwitchR since the
difference in behaviour compared with SwitchR is too great to reconcile via refinement.
There are three new boolean variables ffAct, to model the presence of a fault in one of
the actuators.

The invariants of SwitchRF start with the usual typing invariants. The three hori-
zontal lines suggest the two large blocks of ‘two cuts’ invariants that we have removed
from the SwitchR version of the machine. We discuss these a little later.

Next come the joint invariants. In situations where we deal with behaviours as dif-
ferent as nominal vs. faulty, and use retrenchment, it is very important to maintain the
distinction between the two models. The easiest way is to ensure all variable names
are disjoint between the two models. So we have renamed the SwitchR variables by
attaching an “/” superscript, and have kept the SwitchRF variables undecorated. So
btn™ = btn declares that the SwitchR and SwitchRF versions of the button variable
always have the same value, etc. Evidently, since the actuators can fail, the btnH; and
hydr; variables do not figure among the non-trivial joint invariants.

Below the horizontal line come two examples of the kind of weaker invariants that
express the maximum that may be sustainable in the presence of faults. They say that for
at least one two-out-of-three combination of actuator variables, the binH variables will
agree, and the hydr variables will agree. When both kinds of variable are two-valued,
and there are three of each to compare to each other, this cannot help but be true.

Among the events, after initialisation, there is the fault injection event InjectFault,
which features some unfamiliar syntax. It is only enabled when there have been no faults



hitherto (A, = ffAct;), and it specifies its update using Event-B’s ‘arbitrary assignment
satisfying a predicate’ operator | :’. Thus, the after-values (primed) of all the ffAct,,
btnH ;, hydr, variables are assigned to satisfy the clauses that follow. Firstly, exactly
one of the ffAct; variables is set to true via the negated overall and combined with the
exclusive or over the three variables (thus disabling InjectFault in future). Secondly,
whenever a fault variable ffAct, is unset, then the after-values of the corresponding
btnH; and hydr; variables do not change from their before-values. Saying nothing
about the after-values of the btnH; and hydr, variables for the ffAct; variable that is
set, allows them to be assigned arbitrarily within their type.

Turning to the other events, the ButtonDown/Up(C') events are unaffected. More-
over, the ButtonDown/UpH, and HydraulicsOn/Off; events are enabled only when
there is no fault in the corresponding actuator. Since, for these events, the only change
is this strengthening of the enabledness condition, these events refine their SwitchR
versions according to Event-B rules. The LampOn/Off events are also unchanged.

The fact that the actuator events are disabled by faults, and once a fault has arisen,
no further change in the faulty actuator can take place, makes our model a reasonable
depiction of a ‘stuck_at’ type of fault at our level of abstraction.

This leaves the LampSignalOn/Off events. Here we need to relate the SwitchR
behaviours to the SwitchRF behaviours. The guards demand agreement between the
btnC'YV clauses, since the computer does not fail. Beyond this, the SwitchR behaviours
demand all three hydrf variables fix on the same value before enabling the event,
whereas in the SwitchRF behaviours, either there is no fault, and the behaviour is as for
SwitchR, or there is a fault, and fault tolerance requires that two non-failing actuators
agree on a value to enable the event.

All this is recorded in the WHEN clauses.? Thus, the WHEN clauses contain the
conjunctions of the three hydr™ conditions from SwitchR, alongside a disjunction be-
tween, either firstly: the conjunction of the corresponding three fault-free — ffAct Ahydr
conditions from SwitchRF, or secondly: of any two-out-of-three combination of fault-
free SwitchRF conditions. The enabled events then set lampsig appropriately.

The OUT clauses of the two events declare some facts about the state of affairs upon
event completion. It is claimed that the before- and after- values, in both the SwitchR
and SwitchRF machines, of the hydr variables, are all equal, for both the i’th and j’th
non-failing actuators. This is evidently true from the definitions of the events (i.e. it
follows from the assumed WHEN clause and the lampsig update).

The same is claimed for the btnH variables. This is also true for our system, since
we could only arrive at a situation in which the SwitchRF event is enabled, when two
non-failing actuators in the SwitchR and SwitchRF systems have followed the same
trajectory. The proof would depend on the fact that the only way to set the enabling
btnC variables, is via the HydraulicsOn/Off events and these can only execute with
the btnH variables at the right values. Actually establishing this mechanically would
invariably entail the creation of additional invariants to express this fact, which could
then be used in the proof of the OUT properties. (This reinforces what was said about
invariants at the end of Section 3.)

% The generalised kind of guard used in retrenchment is typically referred to as the WITHIN
clause in work on retrenchment.
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There is no non-trivial CONCession clause in these events. The overall updates
are refining, even if ‘non-refining’ behaviour is seen in the events themselves — our
approach was to merely define behaviour for the HydraulicsOn/Off events that could
sidestep the faults that are permitted in the system. Non-trivial concessions clauses
would most likely be needed if we had defined additional behaviour to react to and
recover from detected faults.’

It is relatively self-evident that the retrenchment PO quoted at the end of Section 2
is provable for the HydraulicsOn/Off events, and that it defaults to the refinement PO
for the other, refining events of the SwitchRF machine.

5 Strong Invariants in Degraded Operation

Suppose we now took the SwitchRF machine and removed the InjectFault event. Let
us call the resulting machine SwitchR Fr. In SwitchR Fr, since no fault can arise, the
faulty states catered for in the various events become unreachable. So all the invariants
of the nominal SwitchR machine become true again in SwitchRF1z. So, suppose we
now took the SwitchRFr machine and added to it the blocks of strong invariants be-
tween the horizontal lines of Fig. 4. Let us call the resulting machine SwitchRF7INV .
Then SwitchRF7INYV is a correct machine. Thus, we have shown that by performing
a relatively superficial syntactic transformation on the faulty system model, we have
been able to reintroduce strong invariants that held only in the nominal model. We are
done!

It is important to note that the procedure just outlined affects only the syntactic pe-
riphery of the SwitchRF machine. We took out the InjectFault event, which is isolated
from the other events in the sense that it is always enabled (until it disables itself), and
does not interact with any of the complex functional interdependencies that the internal
parts of a complicated design would display. A lot of work would have gone into the
creation of the faulty model in a realistic engineering problem, and we do not wish to
interfere with that for the sake of some additional assurance, especially if that would
involve the risk of inadvertently introducing some inconsistency with the true model.
Aside from the InjectFault removal, we added invariants, which again does not inter-
fere with the internal structure of the true faulty model. Any useful variation of the
process we are describing needs to be non-invasive in the manner we have suggested.

Still, before we get too elated about this outcome, we underline that we said that
the invariants added to the SwitchRF machine to get the SwitchRF7zINV machine
were true, not that they were provable (at least not necessarily provable relatively eas-
ily). This is related to the invariants being a safe approximation to the reachable set, in
a kind of converse.

Normally, all the events we write in a system model, and all of their capabilities,
represent what we desire our system model to actually be capable of. In the case of
a faulty model like the SwitchRF machine, we purposely added faulty capabilities to
the events because we wished to be able to handle that kind of behaviour in a real

3 We write ‘non-refining’ in quotes because we have carefully defined the joint invariants to be
oblivious to the faulty behaviour.
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Fig. 8. State space, weak and strong invariants, and enabled sets for a faulty event MyFEv.

world implementation. But when we disable fault activation, the parts of events’ be-
haviours relevant to the faulty aspects can never be reached, because the relevant part
of the events’ enabled sets are outside the reachable set of the modified system. Thus,
though events are still defined as being capable of faulty behaviour, that behaviour can
never arise in a run of the model. Thereby the stronger invariants of the nominal model
become true, even in the context of the faulty capability.

Fig. 8 gives a picture of the situation. It shows the total state space, the states de-
scribed by the weak invariants relevant to faulty behaviour, the states described by the
strong invariants relevant to nominal-only behaviour, and the nominal reachable states.
Once faults have been deactivated, only states in the nominal reachable set can arise in
any run of the system. So for a putative potentially faulty event like MyFv, having an
enabled set containing faulty as well as nominal states, only the nominal enabled states
need to be checked to preserve the invariants, and it is the strong invariants that will
hold. That the nominal enabled states can be neatly partitioned from the faulty enabled
states follows from the fact that all variables are discrete valued.

The above discussion relies heavily on observations concerning global reachability.
This always makes event-by-event reasoning, which is the paradigm in formalisms like
Event-B, more difficult. In the context of our toy case study, the remedy is not hard
to find. In SwitchRF;=INV, since the initialisation sets all fault variables to false,
and no event changes any fault variable, the falseness of the fault variables becomes
an invariant, which is immediately provable, and which may therefore be added to the
machine invariants. Since all unruly behaviour by any event involves fault variables that
have the value true in a non-trivial manner, unruly behaviour is immediately ruled out
during the proof of the simulation PO by the assumed invariants in the PO hypothesis.
So only nominal cases need to preserve the invariants, which should follow from the
properties of the nominal behaviour inside the faulty event. The ‘should’ crystalises the
additional assurance in the design that our process is intended to provide.

Still, before we get too elated about the preceding conclusion, we should note that
it relies on the explicit presence of the fault variables inside the details of the events of
the faulty model. The trouble is that the fault variables are really a fiction that abstracts
from more detailed model behaviour at lower levels of description. Although a fault in-
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jection technique will always require some kind of external event, such as InjectFault
to initiate the faulty behaviour, at lower levels of description, the ensuing activity will
normally involve the variables that describe how the system is constructed, using sensor
data values and similar quantities. Moreover, the system will infer some approximation
to the value of the fault variables indirectly, by correlating these sensor and other inter-
nal values, to determine the best guess at the actual system state.

In a situation as just described, it may be a lot harder to infer the effective values
of fault variables, than when fault variable values are available directly. Thus, a proof
that only nominal cases can execute and that they preserve the stronger invariants of
the nominal model becomes much harder to carry through. Inevitably, more compli-
cated cases will require reasoning about larger or smaller fragments of system runs, and
this makes life much more taxing for an approach that strives to divide and conquer
the problem of whole system verification by breaking it down into a per event proof
activity. In such cases, per-event reasoning entails the creation of a host of additional
invariants, which capture the properties of the progress through the required fragment
of a system run in a relatively finegrained way. Discovering the needed additional in-
variants can become very non-trivial. Observations such as these lead us to alternatively
advocate approaches based around k-induction [27, 18] as potentially offering reason-
able possibilities for outflanking maneuvres, if a direct 1-inductive proof of the desired
invariants becomes sufficiently challenging.

With the above caveat on board, we can summarise our approach to the gaining of
additional assurance in the design of faulty system models in the following way.

— Develop the nominal model first. Populate it with as many strong invariants as
desirable or useful.

— Develop the faulty model via a set of functional departures from the nominal model,
and by removal of invariants that only hold in the nominal model. Retrenchment
provides a useful vehicle for this.

— Ensure faults are activated in the faulty model in a way that is easy to disable non-
invasively, e.g by using fault injection.

— Disable the activation of faults and reintroduce the removed strong invariants.

— Reprove the model.

6 Related Work

Overtly formal techniques, based on confirming that invariants attributed to a system
model hold, and fault engineering, based on considering behaviours that violate such
invariants, are like oil and water. Overwhelmingly, formal techniques, even when not
proving that invariants hold, are concerned with issues involving consistency of invari-
ants and behaviour, such as the process of synthesising invariants from behaviour. In
this vein we can mention [14, 20, 19, 23], among many others.

The formal treatment of safety (including fault tolerance) throws up issues similar
to ones treated in this paper. See for example [16, 15]. The connection with the retrench-
ment approach can be seen in [9, 10].

Also close to the approach of this paper is the work on the KAOS requirements
methodology [21, 22]. Although focused on requirements, behind the scenes it is highly

13



formalised, and the kinds of departures from ideal behaviour that are unavoidable when
debating a family of requirements and that are comparable to our failure modes are, in
KAOS, termed obstacles. The parallels between the KAOS approach and what is done
in retrenchment are described in [8].

7 Conclusions

In the preceding sections we summarised Event-B, and in particular, its refinement
and retrenchment POs. Discharging these forms the crux of the Event-B development
method. We then introduced a simple switching example to exemplify the subsequent
discussion. It was intended to be small enough that we could accommodate it within
this paper, yet was complex enough that it admitted the kind of non-trivial invariants
that we wanted to consider.

We started with a controller’s view and refined it to a more detailed internal model,
though still only exhibiting nominal behaviour. We argued for the validity of a large
number of strong invariants in this nominal model. We then introduced faults into the
model via fault injection, using the retrenchment technique. The latter offers some POs
to help control the process of relatively arbitrary system model change. With faults
included, we had to remove the strong invariants, which would fail any attempt to verify
them. This gave us the springboard for discussing the controlled reintroduction of the
strong invariants when faults were deactivated. Provided the deactivation can be done
in a suitably non-invasive manner, the resulting model ought to be correct.

We pointed out that establishing the correctness of the resulting model may be easy
if the model involves fault variables explicitly, but may be more difficult if all behaviour
is exclusively expressed in terms of real system quantities. Thus the tractability of our
proposed technique can vary greatly depending on the level of abstraction at which it
is applied. That said, in all developments it should be possible to identify a level of
abstraction which is high enough so that a system model pitched at that level will prove
tractable as regards the applicability of the technique, and thus, to apply the technique
there. Refinement may then be sufficient to propagate the guarantess obtained to lower
levels of abstraction, if needed.
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