
Denotational and Algebraic Semantics for
Cyber-physical Systems

Ran Li1, Huibiao Zhu1, Richard Banach2
1Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China
2 School of Computer Science, University of Manchester,

Oxford Road, Manchester M13 9PL, UK

Abstract—The cyber-physical system (CPS) is a dynamic sys-
tem that contains both continuous and discrete behaviors. It
has a wide range of applications in fields such as healthcare
equipment, intelligent traffic control and environmental monitor-
ing. However, the combination of continuous physical behavior
and discrete control behavior may complicate the design of
systems further. It is of great necessity to give an explicit formal
language and its semantics for CPS. In this paper, we elaborate
the modeling language for CPS based on our previous work.
This language supports shared variables to model the interaction
between the physical and the cyber. Additionally, we give it
denotational semantics and algebraic semantics, especially focus
on the continuous behavior and its composition with the discrete
behavior. Throughout this paper, we also present some examples
to illustrate the feasibility of the language and its semantics
intuitively.

Index Terms—Cyber-physical system (CPS), Unifying Theo-
ries of Programming (UTP), Denotational semantics, Algebraic
semantics

I. INTRODUCTION

The cyber-physical system (CPS) is a multidimensional
complex system that integrates discrete computer control
behavior and continuous physical behavior. By deeply em-
bedding computing and communication into the physical
processes, computer programs can monitor and control the
physical processes. Meanwhile, the physical processes can
also affect computations. CPS has an important and wide
application prospect, and it has been widely applied in many
fields, such as healthcare equipment, intelligent traffic control
and environmental monitoring.

In addition, CPS has been an active research area for
many years and some related works of formal methods have
been carried out. Bu et al. explored online verification of
CPS and modeling-verification-fixing framework of event-
driven IoT system from bounded reachability analysis of linear
hybrid automata [1]. Wang et al. proposed hyper probabilistic
signal temporal logic to verify probabilistic hyperproperties for
CPS [2]. Banach et al. extended Event-B to Hybrid Event-B
that includes continuous behavior and discrete transitions [3].

There are also some specification languages developed for
CPS as well. Inspired by the work in [4], a language to
describe hybrid systems called Hybrid CSP which based on
communication mechanism has been developed by Zhou et
al. in [5], and Liu et al. presented a calculus for it in [6].

Ronkko et al. investigated the use of action systems with
differential actions and extended hybrid action systems for
hybrid systems [7]. He et al. extended the guarded command
language and then presented a hybrid relational modeling
language and its semantics [8].

In our paper, we elaborate the modeling language based
on our previous work [9], and detail the continuous behavior
according to the different situations where various guards
can be triggered. It supports shared variables to model the
interaction between the physical and the cyber. Our paral-
lel mechanism, which is different from the communication
mechanism of [5], [8], is based on shared variables. Besides,
we give the denotational semantics and algebraic semantics of
this language through the Unifying Theories of Programming
(UTP) approach [10]. For the feature of shared variables in
our language, two merge functions are introduced to describe
the denotational semantics. With our algebraic laws, every
program can be transformed into the form of guarded choice
and the parallel programs with discrete and continuous behav-
iors can be sequentialized consequently. We also give some
examples to demonstrate the usage of our language and its
semantics as well.

As described in Hoare and He’s UTP [10], three different
mathematical models are often used to represent a theory of
programming, namely, the operational, the denotational, and
the algebraic approaches [11]–[13]. Each of these representa-
tions has its distinctive advantages for theories of program-
ming. The algebraic semantics is well suited in symbolic cal-
culation of parameters and structures of an optimal design. The
denotational semantics is concerned with the mathematical
objects (i.e., domains) that represent what the programs do.

The rest of the paper is organized as follows. In Sec. II,
we propose the modeling language and introduce five types
of guarded choices. Moreover, a Battery Management System
(BMS) is shown as an example to exhibit the usage of our
language. In Sec. III, we study the denotational semantics of
our language. We first give the semantic model and healthiness
conditions. Then, we investigate the denotational semantics of
the language. In Sec. IV, we explore the algebraic semantics,
including the algebraic laws for the basic statements and
the parallel composition. Sect. V summarizes the paper and
presents some future works.

TABLE I
SYNTAX OF CPS

Process P,Q ::= Db (Discrete Behavior)
| Cb (Continuous Behavior)
| P ;Q (Sequential Composition)
| if b then P else Q (Conditional Construct)
| while b do P (Iteration Construct)
| P ‖ Q (Parallel Composition)

Discrete Behavior Db ::= x := e | @gd
Continuous Behavior Cb ::= R(v, v̇) until g
Guard Condition g ::= gd | gc | gd ∨ gc | gd ∧ gc
Discrete Guard gd ::= true | x = e | x < e | x > e | gd ∨ gd | gd ∧ gd | ¬gd
Continuous Guard gc ::= true | v = e | v < e | v > e | gc ∨ gc | gc ∧ gc | ¬gc

II. SYNTAX

In this section, we give the syntax of the language to
model cyber-physical systems. Then, we introduce five types
of guarded choices defined to support our algebraic expansion
laws. Finally, we show an example of a Battery Management
System to demonstrate the syntax of our language.

A. Syntax of CPS

As shown in Table I, we follow the syntax proposed in our
previous work [9]. Here, x is a discrete variable, e is a discrete
or continuous expression, v is a continuous variable and b is
a boolean condition.

• x := e is a discrete variable assignment. Through this
assignment, the expression e is evaluated and the value
gained is assigned to the variable x. The assignment
is atomic, which is executed at once and other actions
cannot interrupt its execution.

• @gd is a discrete event guard. It is triggered when the
discrete guard condition gd is fulfilled. Otherwise, it
waits. Further, we assume that the shortest moment of
time is one second (i.e., one time unit) in the discrete
models.

• R(v, v̇) until g is the syntax of describing continuous
behavior in our language. R(v, v̇) is a differential relation
defining the dynamics of the continuous variable v. The
evolution of v will follow the differential relation until
the guard condition g is triggered.

For guard condition g, we consider two types of guard
conditions and the mixed guard is permitted. gd represents
guard conditions related only to discrete variables and gc
contains guard conditions determined by continuous variables.

Then, a process can be comprised of the above commands.
Moreover, this language supports various compositions and
constructs.

• P ;Q is sequential composition. The process P is ex-
ecuted first and then Q is executed if P terminates
successfully.

• if b then P else Q is a conditional construct. If b is true,
then the process P is executed. Otherwise, Q is executed.

• while b do P is an iteration construct. The process P is
executed repeatedly until the boolean condition b is no
longer satisfied.

• P ‖ Q is parallel composition. It indicates P executes
in parallel with Q. The parallel mechanism is based on
shared variables.

B. Guarded Choice

We introduce three kinds of guarded components and five
types of guarded choices in order to support the algebraic
parallel expansion laws in Sec. IV.
hP is a guarded component if h is b&@(x := e) , @(gd)

or Cb1, where b is a boolean condition and Cb1 represents
the continuous behavior performs for one second at most.
b&@(x := e) is an assignment guarded component, @(gd) is
an event guarded component and Cb1 is a continuous behavior
guarded component.

Here, we describe Cb1 informally and the formal definition
is presented in Sec. III. If the continuous behavior Cb performs
less than or equal to one second and then terminates, the
behavior of Cb1 is the same as Cb. Otherwise, we split Cb
into several parts, and the behavior of Cb is the sequential
composition of these parts. The introduction of Cb1 is due to
the shortest moment of time in the discrete models.

[]{h1P1, ..., hnPn} is a guarded choice if every element
in {h1P1, ..., hnPn} is a guarded component. An assignment
is instantaneous, whereas a continuous behavior is not. If an
assignment guard component and a continuous behavior guard
component appear in the same set of a guarded choice, Cb1

will never have a chance to be scheduled. Thus, there is no
Assignment & Cb Hybrid Guarded Choice. In our language,
we present five types of guarded choices. The first three are
composed of a set of one type of guard components and the
last two are hybrid guarded choices.
• Assignment Guarded Choice:

[]i∈I{bi&@(xi := ei)Pi}: It is composed of several as-
signment guarded components. If bi is satisfied, @(xi :=
ei) will be executed and then the corresponding program
Pi will be performed. In addition, the boolean conditions
{b1...., bn} of the assignment guard components should
satisfy ∨ibi = true.

Fig. 1. A BMS Example

Fig. 2. Temperature Evolution

• Event Guarded Choice:
[]i∈I{@(gdi)Pi}: It is composed of event guarded com-
ponents and it waits for any one of the guards to be
triggered. If @(gdi) is triggered, the following program
Pi will be executed.

• Cb Guarded Choice:
[]{Cb1P}: It includes continuous behavior guarded com-
ponent. Cb1 will be executed and its subsequent behavior
is described as the program P .

• Assign&Event Hybrid Guarded Choice:
[]i∈I{bi&@(xi := ei)Pi}[][]j∈J{@(gdj)Qj}: It contains
assignment guarded components and event guarded com-
ponents. If bi is satisfied, @(xi := ei) can be selected
to execute and then Pi will be executed. At the same
time, the system is waiting for the event guard @(gdj) to
be triggered. If @(gdj) can be triggered at present, the
following program Qj will be executed.

• Event&Cb Hybrid Guarded Choice:
[]i∈I{@(gdi)Pi}[][]{Cb1Q}: It is comprised of event
guarded components and continuous behavior guarded
component. The event guard @(gdi) is waiting to be
triggered, and if it can be triggered at present, Pi will
be executed. In the meanwhile, the continuous behavior
is performing.

Based our algebraic laws proposed in Sec. IV, we can
transform every program of our language into the guarded
choice form, and the parallel programs with discrete and
continuous behaviors can be sequentialized consequently.

C. Illustrative Example

Example 1. We now give an example of a Battery
Management System (BMS) to illustrate our language. BMS
is an important component of the electric vehicle power
battery system and it takes charge of heat management. For

simplicity, we assume that the battery works properly when
the temperature is between Tsafemin and Tsafemax. When
the temperature is higher than Tsafemax, BMS will cool the
battery. Further, BMS will stop cooling if the temperature is
lower than Tsafemin. TMIN and TMAX are the low and high
temperature limits, we assume the battery is out of action if
the temperature is beyond this range.

Then, we model this simplified example with the above
language. As shown in Fig. 1, Ctrl is a discrete program
defined to monitor the temperature of the battery and cool
the battery through the discrete variables caron and coolon.
Temp contains continuous behaviors of rising temperature
when the car is moving and lowing temperature when the
BMS cools the battery. This physical process can affect the
cyber program through the continuous variable θ.

BMS =df caron := 1; DT := 0; coolon := 0; θm := θ;

Ctrl ‖ Temp;
Ctrl =df while true do

@(caron = 1); ṫ = 1 until t > DT + 1; θm := θ;
if(θm > Tsafemax)then coolon := 1; else coolon := coolon;
if(θm 6 Tsafemin)then coolon := 0; else coolon := coolon;
DT := t;

Temp =df while true do

if(coolon == 0)

then θ̇ = 1 until(θ > TMAX ∨ coolon = 1 ∨ caron = 0);

else θ̇ = −2 until(θ < TMIN ∨ coolon = 0 ∨ caron = 0);

Here, caron = 1 represents the car is moving and coolon =

1 indicates the battery starts to cool down. θm, the measured
temperature, is a discrete variable assigned by a continuous
variable once a second. In our model, we assume TMIN = 0,
TMAX = 100, Tsafemin = 10 and Tsafemax = 40. The initial
temperature is 10 and the temperature evolution is shown in
Fig. 2.

III. DENOTATIONAL SEMANTICS

In this section, we investigate the denotational semantics of
our language based on the UTP approach. We first give the
semantic model and healthiness conditions. On this basis, we
present denotational semantics and the example of BMS is
discussed again in this section.

A. Semantic Model

We take a tuple (time, time′, st, st′, tr, tr′) to represent the
observation of a cyber-physical system program. Here,
• time and time′ represent the start point time and the end

point time of an observation time interval. We use δ to
represent the length of the time interval, i.e., δ(time)df =
(time′ − time).

• st and st′ indicate the state of the program at the start
point and the end point respectively. In our language, we
consider that the program may have three types of state:
term, wait and div.

– term: If st = term, it implies that the previous
program has terminated and the current program can
begin to be executed. If st′ = term, it indicates

that the current program has been terminated and
the following program can be executed.

– wait: If st = wait, it means the current program
cannot be activated because the previous program
has not terminated. If st′ = wait, it represents the
current program is waiting so that the next program
cannot be activated.

– div: If st = div, it shows that the previous program
reaches div state (i.e., divergent state) and never
terminates so that the current can never be executed.
If st′ = div, it means that the current program
diverges and the following program can never be
executed.

• tr and tr′ are the traces at the start point and the end
point respectively.
We use a series of snapshots that record a sequence
of actions to describe the behavior of a program. A
snapshot in our semantic model can be expressed as a
triple (t, σ, µ).

– t: It records the time at which the action occurs.
– σ: We use σ to record the states of data (i.e., discrete

variables) contributed by the program itself or its
environment during the program runtime.

– µ: We introduce it to indicate whether the action is
done by the program itself or by the environment. If
the program itself executes this action, we set µ to
1. Otherwise, µ equals 0 if the action is done due to
the behaviors of the environment.

We use the projection function πi(i = 1, 2, 3) to gain
the ith component of a snapshot. Further, we mark the
last snapshot with the symbol of last(tr). tr2 − tr1
denotes the rest of tr2 after removing the snapshots of
tr1. tr1 ̂ tr2 denotes the concatenation of the trace tr1
and tr2.

π1((t, σ, µ)) =df t, π2((t, σ, µ)) =df σ, π3((t, σ, µ)) =df µ

In addition, the programs need to satisfy some healthiness
conditions and we consider three conditions in our model.
Here, we assume that a program is healthy if it caters for these
healthiness conditions, that is, healthiness conditions can be
considered as properties of programs that need to be satisfied.

H1 : P = P ∧ (tr ≤ tr′) ∧ (time ≤ time′)
H2 : P = Π C st = waitB P

H3 : P =⊥ Cst = div B P

The healthiness condition H1 requires that the trace and
the time of a program can only grow but cannot shorten.
The healthiness condition H2 describes the following two
requirements. If st = wait, it means the current program is
waiting for the termination of the previous program so that
all variables are not changed. If st 6= wait, it implies the
current program can be executed. The healthiness condition
H3 indicates that the behavior of P is totally unpredictable if
its state is div. Here, Π, P C bBQ and ⊥ are defined below.

Π =df (st = st′) ∧ (tr = tr′) ∧ (time = time′)

P C bBQ =df (b ∧ P) ∨ (¬b ∧Q)

⊥=df true

Next, we define H(X) function used to define the de-
notational semantics for our language. The parameter X ,
which is different from the syntax of a program, is the
description of a program containing elements from the tuple
(time, time′, st, st′, tr, tr′) based on the semantic model. The
following definition implies H(X) caters for the healthiness
conditions H1, H2 and H3.

H(X) = df ⊥ Cst = div B

 Π C st = waitB(
X ∧ (tr ≤ tr′)
∧(time ≤ time′)

)
For simplicity of describing the continuous behaviors, we

define R∧H H(X) based on H(X), where R is a differential
relation.

R ∧H H(X) =df H(R ∧X)

B. Semantics of Basic Statements

In this subsection, we give the denotational semantics of
basic statements. In our paper, we present the denotational
semantic of P by the notation of beh(P) to differentiate the
syntax and the semantics of P .

1) x := e:
Since assignment operation is an instantaneous action, it

takes no time and terminates at once without waiting. It assigns
the value of e to the discrete variable x. Here, σ[e/x] is the
same as σ except the value of variable x is now associated
with the value e. When the data state after the assignment
is different from the current state of last(tr), we update the
trace tr′ by adding the assignment result to the end. We require
π3(envtr) ∈ 0∗ and it means that the environment (i.e., other
programs given by parallel composition) can do actions before
the assignment.

beh(x := e) =df H

st′ = term ∧ δ(time) = 0∧ tr′ = tr

Cπ2(last(tr)) = σ[e/x]B

tr′ = tr ênvtr 〈̂(t, σ[e/x], 1)〉

2) @(gd):
@gd is a discrete event guard that can be triggered when

the discrete guard condition gd is fulfilled. We think about the
following two scenarios.
• Scenario 1: Consider the program P below. @(x > 1)

can be triggered due to P ’s own assignment x := 2.

P = x := 0;x = 2; @(x > 1)

• Scenario 2: Consider the parallel program P ‖ Q below.
@(x > 1) in P cannot be triggered by itself and it will
wait for the environment’s actions to trigger this guard,
i.e., @(x > 1) in P can be triggered by Q’s assignment
x := 3.

P = x := 0;x = 1; @(x > 1), Q = x := 3

Based on the above analysis, we can conclude that @gd
can be triggered by itself or by the environment. We give the
denotational semantic as below. Here, ; is a sequence operator
and its denotational semantic is presented in Sec. III-B5.

beh(@gd) =df selftrig(gd) ∨ (await(gd); envtrig(gd))

selftrig(gd) implies that the event guard is triggered by
the program’s own action and its specific definition is shown
below. Since the discrete event guard is instantaneous, it
terminates immediately and takes no time. Besides, @gd
cannnot change the data states of the program and the trace
cannot change consequently. gd(σ) means gd is true in the
data state σ and gd(π2(last(tr))) indicates that gd can be
triggered at the beginning due to its own action.

selftrig(gd) =df H

(
st′ = term ∧ δ(time) = 0∧
tr′ = tr ∧ gd(π2(last(tr)))

)
await(gd); envtrig(gd) represents that the event guard gd

cannot be triggered by itself and it waits for actions from
the environment. We give the definitions of await(gd) and
envtrig(gd) as below.

await(gd) =df H

 st′ 6= div ∧ ¬gd(π2(last(tr)))∧
∀s ∈ (tr′ − tr) · ¬gd(π2(s))∧
π3(tr′ − tr) ∈ 0∗

envtrig(gd) =df H

 st′ = term ∧ δ(time) = 0∧
gd(π2(last(tr)))∧
π3(tr′ − tr) = 0 ∧ len(tr′ − tr) = 1

When the guard cannot be triggered by itself, the program

will wait. await(gd) defines the behaviors of waiting. As it
waits, the environment can do its actions and all these actions
cannot trigger the guard. Here, π3(tr′− tr) ∈ 0∗ means these
newly added snapshots are all contributed by the environment.
envtrig(gd) describes the behaviors that the environment

finally triggers the guard. Similar to selftrig(gd), it takes no
time and terminates immediately. π3(tr′ − tr) = 0 intimates
the action which triggers the guard is done by the environment.
len(tr′− tr) = 1 emphasizes this action is the last one in the
trace.

3) R(v, v̇) until g:
We give the denotational semantics of the continuous be-

havior according to the types of the guard g. We divide g into
four types: gd, gc, gd ∨ gc and gd ∧ gc.
• g ≡ gd: The continuous variable v evolves as the hybrid

relation R(v, v̇) specifies until the guard gd is triggered.
Same as the discrete event guard, gd can be triggered by
itself or the environment.

beh(R(v, v̇) until gd) =df(
R(v, v̇)∧H

(selftrig(gd) ∨ (await(gd); envtrig(gd)))

)
• g ≡ gc: gc includes guard conditions determined by

continuous variables. Similar to R(v, v̇) until gd, v
evolves according to the relation R(v, v̇) until the guard
gc is satisfied.

beh(R(v, v̇) until gc) =df(
R(v, v̇)∧H

(trig(gc) ∨ (await2(gc); trig(gc)))

)
Different from gd, gc can only be triggered by itself since
its value only depends on the hybrid relation R(v, v̇). We
give the definitions of trig(gc) and await2(gc) as below.

trig(gc) =df H(st′ = term ∧ δ(time) = 0 ∧ gc(v(time′)))

await2(gc) =df H(st′ 6= div ∧ ∀τ ∈ [time, time′) · ¬gc(v(τ)))

Here, gc(v(time′)) means that the value of v at the time
time′ makes gc true. ∀τ ∈ [time, time′) · ¬gc(v(τ))
indicates that gc cannot be triggered at any time while it
is waiting for being triggered.

• g ≡ gd∨ gc: It is a hybrid guard which can be triggered
when gd or gc is triggered. The continuous variable v
evolves until the guard gd or gc is satisfied. There are
three kinds of situations where g is triggered.

– selftrig(gd): gd is triggered by itself at the begin-
ning.

– trig(gc): gc is triggered at the beginning.
– (await(gd)∧await2(gc)); (envtrig(gd)∨trig(gc)):

If gd and gc are not triggered at the beginning, it
will wait for being triggered until one of them is
triggered.

beh(R(v, v̇) until (gd ∨ gc)) =df R(v, v̇) ∧H

 selftrig(gd) ∨ trig(gc)∨(
(await(gd) ∧ await2(gc));
(envtrig(gd) ∨ trig(gc))

)

• g ≡ gd∧ gc: It is a hybrid guard which can be triggered
only when both gd and gc are triggered. The variable v
evolves until the guard gd and gc are both satisfied. There
are two kinds of situations where g is triggered.

– selftrig(gd)∧trig(gc): gd and gc are both triggered
at the beginning.

– (await(gd)∨await2(gc)); ((selftrig(gd) ∨ envtrig
(gd)) ∧ trig(gc)): If gd or gc is not triggered at

the beginning, it will wait for being triggered until
both of them are triggered.

beh(R(v, v̇) until (gd ∧ gc)) =df
R(v, v̇)∧H (selftrig(gd) ∧ trig(gc))∨(

(await(gd) ∨ await2(gc));
((selftrig(gd) ∨ envtrig(gd)) ∧ trig(gc))

)

4) Condition Construct:
The denotational semantic of the condition construct is

shown below. Here, SKIP stands for x := x.

beh(if b then P else Q) = beh(SKIP ;P) C bB beh(SKIP ;Q)

5) Sequential Composition:
P ;Q represents executes P and Q sequentially and we first

define the sequence operator ; in our semantic model as below.
• If neither of the two processes contains continuous be-

havior, then

P ;Q = ∃m, s, n·
P [m/time′, s/st′, n/tr′] ∧Q[m/time, s/st, n/tr].

• If one of the two processes contains continuous behavior
(i.e., it contains statements such as R(v, v̇) until g), then
the trace of the sequential composition stays the same
as the discrete process and the value of the continuous
variable v depends on the continuous process.

P ;Q = ∃m, s · P [m/time′, s/st′] ∧Q[m/time, s/st].

• If both of the two processes contain continuous behavior,
then we similarly define the continuous variable v as time
and st. Here, v and v′ stand for the initial value and the
final value of the continuous variable respectively.

P ;Q = ∃m, s, x·
P [m/time′, s/st′, x/v′] ∧Q[m/time, s/st, x/v].

Further, the semantic of sequential composition is given.

beh(P ;Q) = beh(P); beh(Q)

6) Iteration Construct:
We define iteration construct in the same way in con-

ventional programming languages. µHFF (X)represents the
weakest fixed point of the monotonic function F over the set
of healthy formulae.

while b do P =df µHFX • if b then (P ;X) else SKIP

C. Illustrative Example: Continuation 1
Example 2. Let us consider the programs in Example 1

(Page 3) in Sect. II again and explore the traces of these
programs. First, we give the trace of the initialization before
the parallel programs as below.

〈(0, σ0, 1), (0, σ′0, 1), (0, σ′′0 , 1), (0, σ′′′0 , 1)〉

Here, σ0 = {caron 7→ 1}, σ′0 = {caron 7→ 1, DT 7→ 0}, σ′′0 =

{caron 7→ 1, DT 7→ 0, coolon 7→ 0}, σ′′′0 = {caron 7→ 1, DT 7→
0, coolon 7→ 0, θm 7→ 10}.

Then, we cosider the parallel programs Ctrl||Temp. A trace
of Ctrl is presented as follows.

〈(1, σ1, 1), (1, σ′1, 1), (2, σ2, 1), (2, σ′2, 1)...(30, σ30, 1),

(30, σ′30, 1)(30, σ′′30, 1), (31, σ31, 1)(31, σ′31, 1)...〉
Here,
σ1 = {caron 7→ 1, DT 7→ 0, coolon 7→ 0, θm 7→ 11}
σ′1 = {caron 7→ 1, DT 7→ 1, coolon 7→ 0, θm 7→ 11}
σ2 = {caron 7→ 1, DT 7→ 1, coolon 7→ 0, θm 7→ 12}
σ′2 = {caron 7→ 1, DT 7→ 2, coolon 7→ 0, θm 7→ 12}...
σ30 = {caron 7→ 1, DT 7→ 29, coolon 7→ 0, θm 7→ 40}
σ′30 = {caron 7→ 1, DT 7→ 29, coolon 7→ 1, θm 7→ 40}
σ′′30 = {caron 7→ 1, DT 7→ 30, coolon 7→ 1, θm 7→ 40}
σ31 = {caron 7→ 1, DT 7→ 30, coolon 7→ 0, θm 7→ 38}
σ′31 = {caron 7→ 1, DT 7→ 31, coolon 7→ 0, θm 7→ 38}.

Besides, for the continuous program Temp, it is not
necessary to record its trace. Since the trace only records
discrete actions, the continuous program just provides values
of continuous variables and the length of the time interval for
the parallel composition.

D. Semantics of Guarded Choice
As mentioned before, we introduce five types of guarded

choices. We present the denotational semantics for them.
• Assignment Guarded Choice:

The program []i∈I{bi&@(xi := ei)Pi} performs one of
the assignments non-deterministically and then executes
the corresponding process Pi. Here, beh(bi&@(xi :=
ei)) = bi ∧ beh(xi := ei).

beh([]i∈I{bi&@(xi := ei)Pi}) =df∨
i∈I

beh(bi&@(xi := ei);Pi)

• Event Guarded Choice:
The program []i∈I{@(gdi)Pi} waits for one of the guards
to be triggered and then behaves as the following guard
process. Here, gd is a compound guard and gd =
∨i∈I gdi.
beh([]i∈I{@(gdi)Pi}) =df∨
i∈I

{(selftrig(gdi) ∨ (await(gd); trig(gdi))); beh(Pi)}

• Cb Guarded Choice:
The program []{Cb1P} first executes the continuous
behavior defined by Cb1 and then behaves as the rest
program. Here, beh(Cb1) = beh(Cb) ∧ (δ(time) < 1).

beh([]{Cb1P}) = beh(Cb1;P)

• Assign&Event Hybrid Guarded Choice:
HGC1 = []i∈I{bi&@(xi := ei)Pi}[][]j∈J{@(gdj)Qj}
The program HGC1 executes the selected assignment
guard @(xi := ei) and then behaves like the correspond-
ing process Pi. It can also start an event guarded process
@(gdj) if this guard is triggered immediately and then
behaves like Qj .

beh(HGC1) =

 ∨
i∈I beh(bi&@(xi := ei);Pi)∨∨
j∈J{(selftrig(gj); beh(Qj)}

• Event&Cb Hybrid Guarded Choice:
HGC2 = []i∈I{@(gdi)Pi}[][]{Cb1Q}
The hybrid guarded choice is defined in a similar way
where the event guards can only be triggered before Cb1
begins. Therefore, the semantic of the program HGC2
is defined as below.

beh(HGC2) =

(∨
i∈I{selftrig(gi); beh(Pi)}∨
beh(Cb1;Q)

)
E. Parallel Composition

We present the denotational semantic of the parallel com-
position as below.

beh(P ‖ Q) = beh(P) ‖ beh(Q),

where, beh(P) ‖ beh(Q) =

∃st, st′, time, time′, tr, tr′•
st1 = st2 = st ∧ time1 = time2 = time
∧tr1 = tr2 = tr∧
beh(P)[st/st1, st

′/st′1, time/time1,
time′/time′1, tr/tr1, tr

′/tr′1]
∧beh(Q)[st/st2, st

′/st′2, time/time2,
time′/time′2, tr/tr2, tr

′/tr′2]

∧time′ = max{time′1, time′2}
∧mergeState(st′1, st′2) ∧mergeTrace(tr′1, tr′2)

.

It requires that P and Q have the same initial values on
st, time and tr. beh(P) and beh(Q) stand for the denota-
tional semantics of P and Q respectively. The terminal time
of the parallel composition is determined by the maximum
terminal time of the two parallel components. mergeState
and mergeTrace define the terminal state and trace of the
parallel composition.

If the terminal states of the parallel components P and Q
are both term, the final state of P ‖ Q is term. If either

component stays at a wait state, the state of P ‖ Q is wait
as well. P ‖ Q is divergent when either component behaves
chaotically.

mergeState(st′1, st
′
2) = (st′1 = term ∧ st′2 = term→ st′ = term)∧

((st′1 = wait ∧ st′2 6= div) ∨ (st′2 = wait ∧ st′1 6= div)
→ st′ = wait)∧
(st′1 = div ∨ st′2 = div → st′ = div)

The trace of the parallel composition is formulated through

the interleaving of atomic actions performed by its two com-
ponents. As mentioned earlier, a snapshot in the trace is a
triple (t, σ, µ). The first two lines of mergeTrace indicate the
time and the data states recorded in the snapshots of parallel
composition should be the same as that in both components.
The third line implies the action of the parallel composition
is done by the interleaving of the parallel components and the
fourth line requires that every state can only be contributed by
one of the parallel components.

mergeTrace(tr′1, tr
′
2) = (π1(tr′) = π1(tr′1) = π1(tr′2))∧

(π2(tr′) = π2(tr′1) = π2(tr′2))∧
(π3(tr′) = π3(tr′1) + π3(tr′2)) ∧ (2 /∈ π3(tr′))

To get a better understanding of the semantics of parallel

programs, we take the BMS for instance in the next subsection.

F. Illustrative Example: Continuation 2
Example 3. We continue to explore Example 2 (Page 6). As

shown above, we have given a trace of Ctrl individually. Now,
we assume that there exists an radical controller RCtrl and
explore the situation where Ctrl and RCtrl run in parallel.
We first give the process of RCtrl as below.

RCtrl =df while true do @(caron = 1);
if(θm > Tsafemax)then caron := 0; else caron := caron;
if(θm 6 Tsafemin)then caron := 0; else caron := caron;

We use Fig. 3 to indicate the trace behavior of the process

Ctrl (and its environment, i.e., the process RCtrl). For the
process Ctrl, • stands for its own atomic action and ◦
represents its environment’s (i.e., RCtrl’s) atomic action. The
vertical line shows the snapshot sequences in the traces of
Ctrl, whereas the horizontal line denotes the time when these
actions happen. Therefore, we give the traces of Ctrl, RCtrl
and Ctrl||RCtrl.
• Ctrl: All actions are done by itself except for the last

one.

〈(1, σ1, 1), (1, σ′1, 1), (2, σ2, 1), (2, σ′2, 1), ..., (30, σ30, 1),

(30, σ′30, 1)(30, σ′′30, 1), (30, σ′′30, 1), (30, σ′′′30, 0) 〉

• RCtrl: All actions are done by the environment except
for the last one.

〈(1, σ1, 0), (1, σ′1, 0), (2, σ2, 0), (2, σ′2, 0), ..., (30, σ30, 0),

(30, σ′30, 0)(30, σ′′30, 0), (30, σ′′30, 0), (30, σ′′′30, 1) 〉

• Ctrl||RCtrl:
〈(1, σ1, 1), (1, σ′1, 1), (2, σ2, 1), (2, σ′2, 1), ..., (30, σ30, 1),

(30, σ′30, 1)(30, σ′′30, 1), (30, σ′′30, 1)(30, σ′′′30, 1)〉

Here, σ′′′30 = {caron 7→ 0, DT 7→ 30, coolon 7→ 1, θm 7→
40}. Other states of data agree in the states of Example 2.

Fig. 3. Trace Behaviors of Parallel Composition

IV. ALGEBRAIC SEMANTICS

Program properties can be expressed as algebraic laws,
which can be verified using the formalized semantics. In this
section, we look into the algebraic semantics and employ the
example of BMS to show the usage of our algebraic laws.

A. Algebraic Laws for Basic Statements

First, we study the algebraic laws for basic statements as
below. These laws imply that a program in our language can
be transformed into the guarded choice form. Here, ε denotes
an empty program and (R(v, v̇) until g)1 (i.e., Cb1) means
the continuous behavior can perform for one second at most.
• (assign-1) x := e = []{true&@(x := e)ε}
• (guard-1) @(gd) = []{@(gd)ε}
• (cb-1) R(v, v̇) until g

= []{(R(v, v̇) until g)1R(v, v̇) until g}
• (cond-1) if b then P else Q

= []{b&@(x := x)P,¬b&@(x := x)Q}
• (iter-1) while b do P

= []

{
b&@(x := x)(P ; while b do P),
¬b&@(x := x)ε

}
• (seq-1) (P ;Q);R = P ; (Q;R)
• (seq-2) If P = []{g1P1, ..., gnPn}, then

P ;Q = []{g1(P1;Q), ..., gn(Pn;Q)}.
Our denotational semantics in this paper can support the

proofs of these algebraic laws and we take (cond-1) as an
example to show that our semantics definitions are rigorous.

Proof.

beh([]{b&@(x := x)P,¬b&@(x := x)Q})
= beh(b&@(x := x)P) ∨ beh(¬b&@(x := x)Q)

{Def of Guarded Choice}
= (beh(b&@(x := x)); beh(P)) ∨ (beh(¬b&@(x := x)); beh(Q))

{Def of Guarded Choice}
= ((b ∧ beh(x := x)); beh(P)) ∨ ((¬b ∧ beh(x := x)); beh(Q))

{PL}
= (b ∧ (beh(x := x); beh(P))) ∨ (¬b ∧ (beh(x := x); beh(Q)))

{PL}
= (beh(x := x); beh(P)) C bB (beh(x := x); beh(Q))

{Def of SKIP}
= beh(SKIP ;P) C bB beh(SKIP ;Q) {Def of Conditional}
= beh(if b then P else Q)

TABLE II
COMPOSITION OF GUARD CHOICES

Assignment Event Cb Assign&Event Event&Cb
Assignment (par-1-1) (par-1-2) (par-1-3) (par-1-4) (par-1-5)

Event (par-2-2) (par-2-3) (par-2-4) (par-2-5)
Cb (par-3-3) (par-3-4) (par-3-5)

Assign&Event (par-4-4) (par-4-5)
Event&Cb (par-5-5)

B. Algebraic Laws for Parallel Composition

Parallel composition is symmetric and associative.

• (par-1) P ‖ Q = Q ‖ P
• (par-2) (P ‖ Q) ‖ R = P ‖ (Q ‖ R)

Then, we look into algebraic laws of the parallel compo-
sition for guarded choices. As mentioned previously, there
are five types of guarded choices. Thus, there should be 25
expansion laws. As shown in Table II, we only need to list
15 laws because of the symmetry of the parallel composition
(par-1).

As presented in Table III, we only present the algebraic laws
where cb guarded choice is involved due to space constraints.
The rest laws concerning purely discrete behaviors agree in
the parallel composition laws in [14].
• (par-1-3) reflects the parallel composition of assignment

guarded choice and cb guarded choice. Since the assign-
ment is an instantaneous action, it can be scheduled at
once. Further, cb guarded choice is a continuous behavior
that may perform for a while. For the whole parallel
process, if an assignment is scheduled, the subsequent
behavior is the parallel composition of the following
process after this assignment and another parallel part.
In general, the instantaneous assignment is considered to
be executed first when we sequentialize the parallel trace
of assignment and continuous behaviors.

• (par-2-3) exhibits the parallel composition of event
guarded choice and cb guard choice. Similar to (par-1-3),
for the whole process, if an event guard is triggered, the
subsequent behavior is the parallel composition of the
rest process after this event guard and another parallel
part. However, for the instantaneous action event guard,
which is different from the assignment, the guard may
be waiting to be triggered. Then, the continuous behavior
will perform and the subsequent behavior of the whole
process is the parallel composition of the rest process
after this cb guarded choice and another parallel part.

• (par-3-3) demonstrates the condition where both of the
parallel parts are cb guarded choices. The schedule rule
permits that both of the cb guarded choices to perform.
Since the dynamics of a continuous variable can be
defined by one and only one relation in a moment, we
assume that Cb1s and Cb1t have no continuous shared
variables. Cb1s|Cb1t is a conjunction of the two dynamics,
i.e., the two different continuous behaviors can perform

as their corresponding differential relations defined at the
same time.

• (par-3-4) is the parallel composition of cb guarded choice
and assign&event guard choice. Based on (par-1-3) and
(par-2-3), the schedule has two types. If the assignment is
selected, for the whole process, the subsequent behavior
is the parallel composition of the following process after
this assignment and another parallel part. If the event
guard is triggered, the successive behavior is composed
by the rest process after the guard and another parallel
part.

• (par-1-5) describes the parallel composition of assign-
ment guarded choice and event&cb guarded choice. This
case is expressed similarly as (par-3-4).

• (par-2-5) is the parallel composition of event guarded
choice and event&cb guarded choice. As both of the
parallel parts have event guarded choices, there are three
types for the guards to be triggered as listed in the first
three lines of the law. Besides, the schedule rule also
allows the continuous behavior to perform first and the
subsequent behavior is similar to that in (par-2-3).

• (par-3-5) illustrates the parallel composition of cb guard
choices and event&cb guarded choice. Based on (par-2-
3) and (par-3-3), the subsequent behavior is the parallel
composition of the following process after the event
guard choices and another parallel part, or the parallel
composition of the successive processes after the two cb
guard choices.

• (par-4-5) describes the parallel composition of as-
sign&event guard choice and event&cb guarded choice.
There are three types of event guards to be triggered
and the rest is the parallel composition of the following
action after the event guard and another parallel part.
Also, it enables the assignment to be scheduled first and
the parallel composition of the following process after the
assignment and another parallel part forms the subsequent
behavior.

• (par-5-5) is the situation where both of the parallel parts
are event&cb guarded choices. Similar to (par-4-5), there
are three types of event guards to be triggered. Besides,
the schedule rule also permits the continuous behavior to
be selected first if all the guards cannot be triggered at
once.

TABLE III
ALGEBRAIC LAWS FOR PARALLEL COMPOSITION

(par) P Q P ‖ Q
(par-1-3) []i∈I{bi&@(xi := ei)Pi} []{Cb1S} []i∈I{bi&@(xi := ei)(Pi ‖ Q)}

(par-2-3) []i∈I{@(ξi)Pi} []{Cb1S} []i∈I{@(ξi)(Pi ‖ Q)}
[][]{Cb1(P ‖ S)}

(par-3-3) []{Cb1sS} []{Cb1tT} []{Cb1s|Cb1t (S ‖ T)}

(par-3-4) []{Cb1N} []j∈J{bj&@(xj := ej)Sj} []j∈J{bj&@(xj := ej)(P ‖ Sj)}
[][]k∈K{@(ξk)Tk} [][]k∈K{@(ξk)(P ‖ Tk)}

(par-1-5) []i∈I{bi&@(xi := ei)Pi} []j∈J{@(ξj)Sj} []i∈I{bi&@(xi := ei)(Pi ‖ Q)}
[][]{Cb1T} [][]j∈J{@(ξj)(P ‖ Sj)}

(par-2-5) []i∈I{@(ξi)Pi} []j∈J{@(ηj)Sj} []i∈I{@(ξi ∧ ¬η)(Pi ‖ Q)}
[][]{Cb1T} [][]j∈J{@(¬ξ ∧ ηj)(P ‖ Sj)}

[][]i∈I∧j∈J{@(ξi ∧ ηj)(Pi ‖ Sj)}
[][]{Cb1(P ‖ T)}

(par-3-5) []{Cb1nN} []j∈J{@(ξj)Sj} []j∈J{@(ξj)(P ‖ Sj)}
[][]{Cb1tT} [][]{Cb1n|Cb1t (N ‖ T)}

(par-4-5) []i∈I{bi&@(xi := ei)Ri} []k∈K{@(ηk)Tk} []i∈I{bi&@(xi := ei)(Ri ‖ Q)}
[][]j∈J{@(ξj)Sj} [][]{Cb1N} [][]j∈J{@(ξj ∧ ¬η)(Sj ‖ Q)}

[][]k∈K{@(¬ξ ∧ ηk)(P ‖ Tk)}
[][]j∈J∧k∈K{@(ξj ∧ ηk)(Sj ‖ Tk)}

(par-5-5) []i∈I{@(ξi)Ri} []k∈K{@(ηk)Tk} []i∈I{@(ξi ∧ ¬η)(Ri ‖ Q)}
[][]{Cb1sS} [][]{Cb1nN} [][]k∈K{@(¬ξ ∧ ηk)(P ‖ Tk)}

[][]i∈I∧k∈K{@(ξj ∧ ηk)(Ri ‖ Tk)}
[][]{Cb1s|Cb1n(S ‖ N)}

Here, η = ∨i∈Iηi, ξ = ∨i∈Iξi and Cb1|Cb1 is a conjunction of the two dynamics.

C. Illustrative Example: Continuation 3

Example 4. We continue to explore Example 1 (Page 3)
to demonstrate the usage of guarded choices and algebraic
laws. We take the partial parallel processes of Example 1
without loop for examples. The simplified Ctrl0 and Temp0
are shown below.

Ctrl0 =df
@(caron = 1); ṫ = 1 until t > DT + 1; θm := θ;
if(θm > Tsafemax)then coolon := 1; else coolon := coolon;
if(θm 6 Tsafemin)then coolon := 0; else coolon := coolon;
DT := t;

Temp0 =df

if(coolon == 0)

then θ̇ = 1 until (θ > TMAX ∨ coolon = 1 ∨ caron = 0);

else θ̇ = −2 until (θ < TMIN ∨ coolon = 0 ∨ caron = 0);

For brevity, some program statements are simplified to

the following forms. Then, we translate the parallel process
Ctrl0||Temp0 into the guarded choice form with the aid

of algebraic laws given above. We assume that caron =
1, coolon = 0, DT = 0, t = 0, θ = 10 at present.

P1 =df ṫ = 1 until t > DT + 1; ...;DT := t;

P2 =df θm := θ; ...;DT := t;

P3 =df if(θm > Tsafemax)...;DT := t;

P4 =df coolon := coolon; if(θm 6 Tsafemin)...;DT := t;

P5 =df if(θm 6 Tsafemin)...;DT := t;

P6 =df coolon := coolon;DT := t;

P7 =df DT := t;

R1 =df θ̇ = 1 until (θ > TMAX ∨ coolon = 1 ∨ caron = 0);

R2 =df θ̇ = −2 until (θ < TMIN ∨ coolon = 0 ∨ caron = 0);

R′1 =df R1 ∧ t ∈ [1,∞) R′′1 =df R1 ∧ t ∈ [2,∞)

• Ctrl0||Temp0: In this parallel composition, the first
action of the two parallel components is discrete. From
(guard-1) and (cond-1), Ctrl0 and Temp0 are converted
into the guarded choice form respectively. Then, we get
Ctrl0||Temp0 from algebraic law for parallel composi-
tion between discrete behaviors in [14].

Ctrl0 = []{@(caron = 1)P1}

Temp0 = []

{
coolon = 0&@(x := x)R1,
¬(coolon = 0)&@(x := x)R2

}
= []{true&@(x := x)R1}

Ctrl0||Temp0 = []

 @(caron = 1) (P1||Temp0) ,

true&@(x := x) (Ctrl0||R1)

• P1||Temp0 and Ctrl0||R1: In the two parallel composi-

tion, the first action of one parallel component is discrete
and the other one is continuous. From (cb-1), we transfer
P1 and R1. From (par-1-3) and (par-2-3), we get the two
parallel composition below.

P1 = []{CbT 1P2}

P1||Temp0 = []{true&@(x := x) (P1||R1) }

R1 = []{CbR1
1R
′
1}

Ctrl0||R1 = []{@(caron = 1) (P1||R1) }
Here,

CbT 1 =df (ṫ = 1 until t > DT + 1) ∧ δ(t) < 1

CbR1
1 =df R1 ∧ δ(t) < 1

• P1||R1: In this parallel composition, the first action
of the two parallel components is continuous. From
(par-3-3), P1||R1 is transformed. As mentioned before,
CbT 1|CbR1

1 is a conjunction of the two dynamics, i.e.,
the evolution of t and θ follow their own differetial
relation without interference respectively.

P1||R1 = []{CbT 1|CbR1
1 (P2||R′1) }

• The Rest: Similarly, we continue to expand the parallel
composition as below.

P2 = []{true&@(θm := θ)P3}, R′1 = {CbR1
1R
′′
1}

P2||R′1 = []{true&@(θm := θ) (P3||R′1) }
P3 = []{true&@(x := x)P4}

P3||R′1 = []{true&@(x := x) (P4||R′1) }
P4 = []{true&@(coolon := coolon)P5}

P4||R′1 = []{true&@(coolon := coolon) (P5||R′1) }
P5 = []{true&@(x := x)P6}

P5||R′1 = []{true&@(x := x) (P6||R′1) }
P6 = []{true&@(coolon := coolon)P7}

P6||R′1 = []{true&@(coolon := coolon) (P7||R′1) }

Finally, we need to tranform P7||R′1. With (assign-1), we
get the guarded choice form of P7. Since ε denotes an
empty program, ε||R′1 equals to R′1. We gain the last step
of transformation as below.

P7 = []{true&@(DT := t)ε}

P7||R′1 = []{true&@(DT := t)(ε||R′1)}

= []{true&@(DT := t)R′1}

After the above steps, we can finally gain the guard choice
form of Ctrl0||Temp0. It implies that programs of our

language can be converted into a guard choice form. Further, it
indicates that a parallel program can be sequentialized through
our algebraic laws.

V. CONCLUSION AND FUTURE WORK

In this paper, we elaborated a modeling language for cyber-
physical systems based on our previous work [9]. The parallel
mechanism between the physical and the cyber of this lan-
guage is based on shared variables. We also introduced three
types of guarded components and five types of guarded choices
to support the algebraic parallel expansion laws.

Further, we explored the denotational semantics and al-
gebraic semantics of our language based on the UTP ap-
proach [10]. Our main contributions are giving the denota-
tional semantics of the continuous behavior and its compo-
sition with the discrete behavior, and summarizing algebraic
laws for the parallel composition in which continuous behavior
is involved. On this basis, every program of our language can
be transformed into a unified form (i.e., guarded choice form),
and we can realize the sequentialization of parallel programs
with discrete and continuous behaviors. To better understand
the usage of our language and its semantics, we also presented
an example of a battery management system throughout the
paper.

For the future, we plan to study the proof system based on
Hoare Logic [15] for our language. We also plan to dive into
the semantics linking theory [10] of our language.

REFERENCES

[1] Lei Bu, Jiawan Wang, Yuming Wu, Xuandong Li: From Bounded Reach-
ability Analysis of Linear Hybrid Automata to Verification of Industrial
CPS and IoT. SETSS 2019: 10-43

[2] Yu Wang, Mojtaba Zarei, Borzoo Bonakdarpour, Miroslav Pajic: Statis-
tical Verification of Hyperproperties for Cyber-Physical Systems. ACM
Trans. Embed. Comput. Syst. 18(5s): 92:1-92:23 (2019)

[3] Richard Banach, Michael J. Butler, Shengchao Qin, Nitika Verma, Huib-
iao Zhu: Core Hybrid Event-B I: Single Hybrid Event-B machines. Sci.
Comput. Program. 105: 92-123 (2015)

[4] Jifeng He: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) a classical
mind: essays in honour of C.A.R. Hoare, pp. 171–189 (1994)

[5] Chaochen Zhou, Ji Wang, Anders P. Ravn: A Formal Description of
Hybrid Systems. Hybrid Systems 1995: 511-530

[6] Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan, Hengjun Zhao, Chaochen
Zhou, Liang Zou: A Calculus for Hybrid CSP. APLAS 2010: 1-15

[7] Mauno Rönkkö, Anders P. Ravn, Kaisa Sere: Hybrid action systems.
Theor. Comput. Sci. 290(1): 937-973 (2003)

[8] Jifeng He, Qin Li: A Hybrid Relational Modelling Language. Concur-
rency, Security, and Puzzles 2017: 124-143

[9] Banach, R, Zhu, H. Language evolution and healthiness for critical cyber-
physical systems. J Softw Evol Proc. 2021; 33:e2301.

[10] C. A. R. Hoare, He Jifeng: Unifying Theories of Programming. Prentice
Hall International Series in Computer Science, 1998

[11] C. A. R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe,
Jeff W. Sanders, Ib Holm Sørensen, J. Michael Spivey, Bernard Sufrin:
Laws of Programming. Commun. ACM 30(8): 672-686 (1987)

[12] G. Plotkin, A structural approach to operational semantics, Tech. Rep.
19, University of Aahus, 1981 (also published in The Journal of Logic
and Algebraic Programming, vols. 60–61, 2004, pp. 17–139)

[13] J. Stoy, Denotational Semantics: The Scott–Strachey Approach to Pro-
gramming Language, MIT Press, 1977

[14] Huibiao Zhu: Linking the semantics of a multithreaded discrete event
simulation language. London South Bank University, UK, 2005

[15] Apt, K.R., de Boer, F.S., Olderog, E.: Verification of Sequential and
Concurrent Programs. Texts in Computer Science, Springer (2009)

