The Contractum in Algebraic Graph Rewriting

R. Banach'

Computer Science Department, Manchester University,
Manchester, M13 9PL, U.K.

Abstract

Algebraic graph rewriting, which works by first removing the part of the graph to
be regarded as garbage, and then gluing in the new part of the graph, is contrasted
with term graph rewriting, which works by first gluing in the new part of the graph
(the contractum) and performing redirections, and then removing garbage. It is
shown that in the algebraic framework these two strategies can be reconciled. This
is done by finding a natural analogue of the contractum in the algebraic framework,
which requires the reformulation of the customary “double pushout” construction.
The new and old algebraic constructions coexist within a pushout cube. In this, the
usual “outward” form of the double pushout appears as the two rear squares, and
the alternative “inward” formulation as the two front squares. The two
formulations are entirely equivalent in the world of algebraic graph rewriting. An
application illustrating the efficacy of the new approach to the preservation of
acyclicity in graph rewriting is given.

1 Introduction

Algebraic graph rewriting has a relatively long history and forms a mature body of knowledge with
applications in many areas of computer science. Both the applications and the theory continue to
expand in many directions. From the large literature on the subject we might mention Ehrig (1979,
1986), and Ehrig et al. (1990). See also T.C.S. (1993).

Term graph rewriting arose rather more recently, (Barendregt et al. (1987)), and its application is
typically rather more focussed, principally at intermediate and lower level descriptions of imple-
mentations of functional languages and similar systems; though the amount of work in related areas
is expanding. See eg. Banach (1994), and Sleep et al. (1993).

Algebraic graph rewriting works by the well known “double pushout” construction. In this con-
struction, the first step of a rewrite, once aredex has been located, is to remove the part of the graph
thatis to be garbaged by the rewrite, leaving a suitable hole. Then the new part of the graph is glued
into the hole, yielding the result. In term graph rewriting by contrast, the first step of a rewrite,
once the redex has been located, is to glue into the graph some new structure, called the contractum;
then to change the shape of the graph by redirecting arcs. Finally, the garbage is removed.

Thus one goes about things in the opposite order in the two models of rewriting; and so one ques-
tion of interest, is whether there is any relationship between the two approaches. Now the algebraic
approach has been used to address some of the problems of direct interest to the term graph rewrit-
ing community, (Habel et al. (1988), Hoffman and Plump (1988), Plump (1993)), so one might
speculate that the two approaches are not so far apart.

1. Email: rbanach@cs.man.ac.uk

The aim of this paper is to show that the strategy of the term graph rewriting approach can be used
to reformulate the algebraic approach into a construction entirely equivalent to the original double
pushout construction, but having much of the superficial appearance of the term graph rewriting
construction. In particular, the new construction allows a precise notion of contractum and of con-
tractum building to be formulated within the algebraic graph rewriting world.

The rest of this paper is as follows. Section 2 reviews the details of the conventional double push-
out construction for a suitable class of graphs. Section 3 describes term graph rewriting and high-
lights the contrast between it and the algebraic approach. Section 4 gives the new construction in
the algebraic world, shows that it is entirely equivalent to the original construction, and argues that
it displays the features required for it to be regarded as incorporating a convincing analogue of the
term graph contractum concept. Section 5 presents a simple example of the new approach, while
section 6 presents an application of the approach by proving a theorem on the preservation of acy-
clicity in the rewriting of directed graphs, which would have been somewhat more inconvenient to
establish in the conventional approach. Section 7 concludes.

2 Algebraic Graph Rewriting

Algebraic graph rewriting originated as a way of manipulating the objects in a specific category of
graphs; one whose objects have coloured nodes and coloured edges, with source and target func-
tions mapping each edge to its source and target. However the underlying algebraic construction
is very general and can be adapted to many other categories of graph-like systems (see Ehrig et al.
(1991a,b, 1993)). Since the main point that this paper makes is algebraic in nature, it too can be
adapted to many such categories. However, rather than seek the greatest possible generality in the
presentation, by heavy use of universal algebra, we will pick a fairly simple category of graphs to
work with, and the reader will be quickly able to construct the appropriate generalisations as re-
quired.

Let DG be the category of directed graphs and graph morphisms. An dBjettDG is a pair
[Ng, ActwhereNg is a set of nodes amtl; [Ng % Ng is a set of arcs built frorg, i.e. a set of
ordered pairs ofig. An arrowg: G — H of DG is a mag : Ng — Ny such that

(x,y) isan arc o O (g(x), g(y)) is an arc oH.

Like many categories of graph-like systerbX; has all pushouts. Thusfif K -~ Xandg:K - Y
are two arrows, their pushout is the gréph INp, Apligiven by:

Np =Ny I Ny/= where # is disjoint union, ane is the smallest equivalence
relation such that=y if there is & [Nk such thak =f(k) andy = g(k).

Ap = {([Xp [Ylp) | Cul [X]p v O [y]p such that [, v) O Ax or (u, v) O Ay} where
we have not distinguished betweaenl Ny and the tagged version of] Np

And the arrows$* : Y -~ P andg*: X - P are obvious.

Algebraic graph rewriting is given by the double pushout construction. Rules are given by a pair of
arrows inDG

LLIKZIR

with | : K - L injective. (For categories of graph-like systems, there is normally a natural notion
of injectivity that is used; in our case it is ordinary set-theoretic injectivity). A redex for a rule

L -« K- Risanarrong: L - G, and the rewrite proceeds by constructing the diagram below
where both squares are pushouts.

| r

L K R
g d h
G - D - H
| r

The construction is a two stage process.

Intuitively, the first stage of the construction removesdhmage ofL from G, except for thegol

image ofK, which provdes the interface for the second stage. In the second stage, a ¢bigy of
glued into the “hole” left behind by the first stage; the edge of the hole being the aforementioned
go|(K).

The first stage attempts to construct the objgeind the arrowsl : K - D, I* : D - G, such that

the left square is a pushouR is known as the pushout complement and is not guaranteed to exist
even if (as is the case her®)G has all pushouts. It is standard lore in algebraic graph rewriting
theory that a unique smallest pushout complement exists if

(INJ-O) | : K - Lis injective.
(IDENT-O) {x, vy} ON_andg(x) =g(y) O [x=Y, or {X, y} O 1(Nk) 1.

(DANGL-O) (x,y) UAc—9(A)), and &y} n g(Np) # 0 O {x,y} n g(N.) O g(I(Nk))-

(INJ-O), which we have assumed already, ensures that a pushout complement withddik)aie

ists if one exists at all. (IDENT-O) ensures that the pushoutofld is in factG, by ensuring that

the pushout is never forced to try to map distinct noddsiato the same node @, other than as
instructed byd — something the pushout definition above can never accomplish. (DANGL-O) en-
sures thab is actually an object dDG, so that when thg image of L —1(K)) is removed fronG,

no arc is left dangling without a source or target node. These remarks make a little more sense
when we see the explicit constructionDof

Np = Ng —9(N_ —I(Nk)),

Ap = Ac —9(AL —1(AK)),
The arromd : K — D is given by

d:K - D:xo- g(l(x)

with the obvious extension to arcs. Arrdtv: D — Gis just the inclusion oftNg — (N, —1(Nk)),
again with the obvious extension to arcs.

3 Term Graph Rewriting

Just as most applications of algebraic graph rewriting use categories of objects with a richer struc-
ture tharDG, so too with term graph rewriting, where normally, the category is that of term graphs,
i.e. graphs consisting of nodes and arcs, where the nodes are labelled by the symbols from some
alphabet, and the out-arcs of each node are labelled by consecutive positive integark gach

node having an arity as in term rewriting. Other markings may adorn the nodes and arcs depending
on the application.

We will however continue to work witldG, which contains (almost) enough structure to enable
us to achieve our algebraic objectives for term graph rewriting, albeit in a more austere setting.

In fact we will work with the categorDG(D whose objects and arrows are thoséX, except
that each non-empty objeGt optlonally has a distinguished node, the rooBofoots. In factDG
occurs as a full subcategory BIG®. Each objec6 of DG occurs both “as is” iDG @, and also
in a collection of objects with roots, once for each choice of root fiyn We can erte such ob-
jects as G, roofg) when we want to highlight the root, writin@s(€) if we want to emphasise that
G does not have a root.

Anarrowg:G - Hin DGO is like an arrow inDG except that ifG has a root rog§, thenH must
have one, ro@f, and we must have

g(rootg) = roog.

Under these circumstances, readers can checkQRdP has all pushouts of : K - X and
g: K = Yunless ifX andY both have roots, rogtand roo{, and rooy, root, do not both occur in
the same equivalence class in the usual formula for the set-theoretic pustoiNof- Ny and
g: Nk - Ny This is more than adequate for our needs in the rewriting construction.

Arule Qis now given by a paifincl : L — P, Redl The first component is the inclusion of an
objectL of DGO into another objed®. NeitherL norP may have a rootRedis a set of pairsX, y[
of nodes, such thatld N, andy U Np.

AredexforaruleQ="[nhcl:L - P,Redisanarrong: L - (G, rootg) whereG must have a root,
roofg, except that we must have

(LIVE) Each nodey(x), (and arcd(x), g(y))) occurring in the image of a redex
g:L - (G, rook;) is accessible from rogt

When we say that is accessible from, we mean of course that there is a directed path frdm
X in the graph.

Rewriting is a three stage process. Intuitively, the first stage of a rewrite glues a cBpytofG
alongL. This is just an honest pushout @&andincl which always exists by our remarks above.
The second phase, redirection, takes all in-arcs of ng@@svherelX, y[11 Red and redirects them

so that they become in-arcs gify) (whered' is the extension of provided by the pushout of the

first stage). Having done this, the third phase removes everything not accessible from the root,
completing the rewrite.

In more detail, stage one constructs the following pushout, whose existence is unproblematic in
DGO, since of the three graphs involvedint! andg, only G has a root. Obviousl$' has a root,
such thatncl'(rootg) = rooty.

incl

GI

incl’

P —L, which generally contains dangling arcs, is called the contractum of the rule, and the pushout
construction just mentioned, is called contractum building, as up to isomorphism, the pushout is
just the process of gluing a copy of the contractum BtoThis paper is mainly concerned with
finding an analogue of this process in the algebraic world.

The second stage requires a further condition to hold. Let

Red = {{¢'(x), g'(y)1 %, y(II Red
The condition is thaRed is the (set-theoretic) graph of a function.
(FUNC) X,y RedandX,Z[IlRed O y =Z

Assuming (FUNC) holds, it makes unambiguous sense to redirect all in-arcs of LHS members of
Red, and make them point to the corresponding RHS nodes. This gives &{raph

NGH = NGI,
Ac' = (As —Ared) 0 ARed:
rootg: = If oolg, ytIJ Red for somey [Ng' theny else roag

where
Alreq = {(t g (X)) O Ag | for someg (y), there is dg (x), g'(y) (T Red},

ARed = {(t, g'()) | there is at(g'(X)) O A"geq andg'(x), g'(y) [Red}.

Note that where an art, @' (x)) in G' is redirected tot(g'(y)) and there was already 8 §'(y)) arc

in G', the two become one arc @". (This is at variance with the usual situation in term graph
rewriting.) Note also that, unlike in algebraic graph rewriting, where the only nodes and &scs of
manipulated by the rewrite are in the redex, there is no (DANGL)-like condition to prevent the node
tinanarc{, g'(x)) which is to be redirected, from being outsiglfl.). This is because the removal

of arcs and introduction of new ones implicit in redirection, do not involve any removal of nodes,
the only origin of any threat of dangling arcs.

Thus far, rewriting can only increase the size of a graph. To enable graphs to shrink, i.e. for rewrit-
ing to be able to garbage collect, the third stage defines theldrdaph

Ny = {x O Ng" | x is accessible from rogt},

An ={(%y) OAc [{x y} 0Ny},
rooty = rooty.

Thus the third, or garbage collection stage, discards anything not accessible from the®btot of
H is the result of the rewrite. Note thiitis such that any reddx: M - H for the first stage of the
next rewrite automatically satisfies (LIVE).

It is worth noting at this point that whereas garbage collection is a purely local phenomenon in al-
gebraic graph rewriting — the garbage is collected during the construction of the pushout comple-
ment, in term graph rewriting garbage collection is a global phenomenon — being defined by a
condition over the whole @".

4 The Algebraic Contractum and the Pushout Cube

The basic differences between algebraic graph rewriting and term graph rewriting should now be
clear. The former collects garbage first, and then replaces it with the new stuff, while the latter
glues in the new stuff first, and only after redirection does the garbage get collected.

To bring the two styles of rewriting closer together, we recast algebraic graph rewriting into a form
where the basic sequence of steps conforms more closely to that in term graph rewriting. Essen-
tially we point out how contractum building can be done in the algebraic style.

To do so we employ a simple trick. Lkt LK £ Rbean algebraic rule. It consists of two arrows
of DG with common domaiilk. Therefore we can form the pushout

In brief, we show that we can reformulate conventional algebraic graph rewriting using rules of the
formL L K % R into a new construction, using rules of the fdrmP P P R, and that this new

form embodies a credible version of contractum building as the first stage of the rewriting process,
allowing a closer comparison with term graph rewriting. We will call the original form of algebraic
rules and the rewriting construction that goes with them, the outward form, and the new form and
construction, the inward form. Both are named after the direction of the horizontal arrows. The
whole thing turns on the construction of the following pushout cube.

r*

I D H
rp*

In this cube, the colimitof: K - L,r: K - Randd: K - D, in which all squares are pushouts,

we see the conventional construction in the two rear faces, while the new construction will emerge
as the two front faces. In each case we start Witltonstruct an intermediate graph (eitteor

C) and then finally construét.

Since we work from left to right through the cube in both cases, the first stage of the inward form
will be an honest pushout of the redgx L - G, and of the LHS branch of the inward rule

Ip: L - P. Thisisthe algebraic equivalent of contractum building, comparable to the first stage in
term graph rewriting. As in section 3, we can daHIp(P) which in general will contain dangling
arcs, the contractum of the rule; and the gr@ptonstructed by the pushout, is the analogue of the
graphG' in term graph rewriting.

After this “contractum building” the inward form of the algebraic rule forms a pushout complement
ofc:P - Candrp: R - P, to give the result of the rewritd. The conditions for this to work,
are similar to those needed in constructin the outward form of the rule.

Now we turn to the technical details of the new construction. BecBéas small colimits, up

to isomorphism, the pushout cube given above really does commute as required. A particular con-
sequence of this is that the choice of unique smallest pushout complement in the outward form of
rewriting corresponds to a similar choice of unique smallest pushout complement in the inward
form. The main facts about inward and outward rewriting are the following.

Theorem 4.1 Inward and outward rewriting are dual in the following sense. det — G be an

arrow of DG, serving as redex. Then statement (1) below which ensures the existence of an out-
ward rewrite, and statement (I1) below which ensures the existence of an inward rewrite, are equiv-
alent.

(I) Thereis an outward rule K - L, r : K - Rsatisfying

(INJ-O) | : K - Lis injective.

(IDENT-O) {x y} ON_andg(®) =g(y) O [x=Yy, or{x,y} D I(Ny)].

(DANGL-0) (x,y) 0Ag—g(A), and & v} n g(N) # 0 O {x, v} n g(N.) 0 g(I(N))-
(I Thereisaninwardrullp : L - P, rp : R - P satisfying

(SURJ-) P =MNp ApCE Op(Ny) O rp(NR), Ip(A) O rp(AR)TI

(INJ-1) rp: R - Pis injective;lp : L — P is injective onL —Ip~X(rp(R)).

(IDENT-) {x y} ON_andg(x) =g(y) O [x=Yy, or {lp(x), In(y)} T rp(Ng)].

(DANGL-) (x,y) 0 Ag—g(A), and &y} n g(N) # 0 O
{x, v} n g(ND) O g(p Xrp(NR))).

Proof sketch The theorem claims that statement (lI) is sufficient to guarantee that an inward re-
write of g: L — Gexists. SincdG has all pushouts, we merely need to check that the analogous
conditions for the pushout complementpf R - P andc: P - Chold. These are:

(INJ-1)© rp: R - Pis injective.
(IDENT—I)C {x,y} ONpandc(x) =c(y) O [x=Yy, or {x, ¥y} U rp(Ng) 1.

(DANGL-I)C (X, y) OAc—c(Ap), and {x,y} n c(Np) O O {X, ¥} n c(Ap) O c(rp(NR)).

Clearly (INJ-)O (INJ-1)C. For (IDENT-1)O (IDENT-1)© we pull a collection of elements i@
which witnessc(x) = ¢(y) up alongg and use (IDENT-I) to get the result. That (DANGL{)
(DANGL-I)C, is a relatively straightforward diagram chase.

Thus the pushout complementrpf: R - Pandc: P - Cexists under the conditions stated. These
conditions turn out to be necessary as well as sufficient, so we have a set of conditions for the ex-
istence of inward rewrites, expressed soley in terms of the redex and the arrows in the rule. The
remainder of the argument is as follows.

() O (). Suppose we have the hypotheses of (). Form the pushdutofs L,r: K - Rgiving
Ip:L - P, rp: R - P. Then (SURJ-I) is immediate, and (INJ-1) follows from (INJ-O). Also
(IDENT-O) O (IDENT-I) and (DANGL-O)C] (DANGL-I) by easy diagram chases.

(I O (). Suppose we have the hypotheses of (II). We need to construct the top pushout square
“inreverse”. It follows from work of Ehrig and Kreowski (1979) that (SURJ-I) and (INJ-I) are suf-
ficient for this to be done in an essentially unique way so welgél - L, r : K - Rfrom

Ip:N_ - Np rp:Nr - Npand (INJ-O) follows from (INJ-1). Now to get (IIJ (1) itis sufficient

to show (IDENT-I}» OO (IDENT-O) and (DANGL-I)C [0 (DANGL-O). These are again easy di-
agram chaseso

For full details of the proof see Banach (1996). We immediately find:

Theorem 4.2 Letg: L — G be aredex. Let® be an outward rule satisfying 4.1.(1) anlcoe an
inward rule satisfying 4.1.(1l), and such th& andr' form a pushout ifDG. ThenH can be de-
rived fromG usingrO iff H can be derived fror® usingr'.

5 An Example

We present a short example of the preceding considerations. Below is an outwardrule 5 R
of DG, with numbered nodes carrying the morphism information.

1 1 1
e

2 []

L K R

Forming the pushout of these two arrows, we arrive at the corresponding inward form of the rule

1 1 1
&7/ &~
2 2
L P R
Ip rp

When we apply this to the following graf@hwe get the sequence

G C H
Ip* rp*

In this two step sequence (the completion of the pustout D - Hin conventional outward re-
writing, as the reader can check), we first bolt in the contractum, and then remove what needs to
be removed in terms of the image of the LHS graptNote that the inward form embodies a small
optimisation compared with the outward form, namely that the outward form first removes the arc
(1, 2) in the construction dd, and then replaces it when the pushout vitils performed; this does

not happen in the inward form. Of course one can prevent this inefficiency in the outward form by
including the the arc (1, 2) iK, but this essentially says that outward rules ought to have the prop-
erty of being a pullback image, as well as what we already demand of them.

6 An Application: Acyclic Rewriting

In this section we give a brief presentation of a topic where we claim that the inward rewriting ap-
proach has some advantages over the conventional outward form. Since the two approaches are
entirely equivalent by theorems 4.1 and 4.2, there is of course nothing here that cannot ultimately
be done in the outward style.

Acyclicity is an important safety property of computing systems. Deadlock avoidance in resource
allocation systems is the classic example, but many other safety properties can be represented in
terms of the acyclicity of some directed structure that models the state of the system as it evolves.
We give here a simple theorem that guarantees that rewriting of an acyclic graph via a suitable rule
preserves acyclicity. We stick to the categbX{s whose objects possess an obvious notion of acy-
clicity, and to the notation of the pushout cube.

Theorem 6.1 Letl =lp:L - P « R :rp be an inward rule witlp (as well agp) injective, and
letg: L —» G be aredex withyg injective, in an acyclic grap. LetK* [P be the subgraph given
by K* = Ip(L) n rp(R), and let” have the property:

(M) Pisacyclic; and for every directed pattin P between nodea andb of K*, there is a path
0 in P between the same nodeandb, but lying entirely withinp(L).

Let H be the result of rewritinG via the ruld”. ThenH is acyclic.

Proof. LetH arise via the arrowp* : G -~ C ~ H : rp* of the pushout cube. We claim th@tis
acyclic; which is sufficient sinckl arises via the inverse homomorphi§€in- H : rp* and inverse
homomorphisms preserve acyclicity.

To substantiate the claim, suppose there was a €Y¢lgx,...,] in C. The cycle cannot lie entirely
in Ip*(G) sincelp is injective, and neither can it lie entirely o(P) sinceg s injective, by properties
of pushouts. Therefore it must lie ip*(G) [c(P), and splitinto fx4,..., B4], [B1,..., O2], ..., with
[t;,.... B] O (c(P) — (IP*(G) — c(K*))), and [B;,...., 1] O (IP*(G) — (c(P) — c(K*))), (and cycli-
cally), and with the §;, Bj} U c(K*) = Ip*(G) n c(P). Sincecis injective, eachd;,..., Bj] is thec
image of a unique patf = [g;,..., bj] O P with {&, b} [K*, whence property[{) supplies us
with a corresponding pa®) [Ip(L) also froma; to b;. Replacing eacld,..., 3;] by c(6;) O Ip*(G)
in the cycleQ, gives us a cycle entirely Ip*(G), a contradiction ©

One can see that to achieve the same thing in the outward approach would be somewhat more cum-
bersome. The inverse homomorphism of the pushout complement of the outward approach is less
useful than that of the inward approach since one adds material to the graph subsequently, and one
has to check that the new material does not inadvertently close a cycle. All the pieces required for
the argument are present in the outward approach to be sure, but they lie scattered about in a num-
ber of different graphs so that building the contradiction is little less easy. Furthermore, in the in-
ward approach, it is a lot more convenient to check whether a particular rule satisfies the condition
(M) by inspecting a diagram of the intermediate gréptone can check whether any pattbe-

tween nodesg, b) of K* and straying outside dp(L), has an alternative route betwegandb

entirely withinlp(L), at a glance.

An easy induction now gives:

Theorem 6.2 Let Gy be an acyclic initial graph, and I&be an inward rule system in which each
rule consists of a pair of injective arrows satisfying conditibin §bove. Then every graph gener-
ated fromGg by rewriting injective redexes using rules frétis acyclic.

Theorem 6.1 applies to the example described in the previous section as is easily seen. The graph
Gis acyclic, the rule employed and the redex satisfy the relevant conditions, and as a consequence,
the grapH is acyclic too.

As with all safety properties, by working harder and inventing more subtle invariants of the objects
of interest, one can generalise and strengthen the above results in a number of different ways. In

addition, one can adapt the arguments to suit graph rewriting in other categories of graphs. How-
ever to do so would take us far outside the scope of this paper.

7 Conclusions

In the previous sections, we have reviewed double pushout algebraic graph rewriting and term
graph rewriting, both from a conveniently uncluttered perspective, that of the cale§orBy an
algebraic trick, we were able to reformulate the former construction from its original outward form,
into a new inward form, that bore comparison with term graph rewriting. Nevertheless, one should
not try to push the analogy too far. Algebraic graph rewriting is “equational” in a way that term
graph rewriting is not. Specifically, if in an algebraic rewrite, nade to be merged with nodg

and nodey is to be merged with node then a pushout will ensure that in-arcs to all three nodes
end up at the same node of the result. However, in term graph rewritingyifand(y, zCare two
redirections, then the in-arcs wend up at, and the in-arcs of andzend up ak. To emulate the
algebraic behaviour we would ne&q z[Jandly, z[] Thus there are phenomena in term graph re-
writing that do not correspond to algebraic graph rewriting.

Finally, we showed off the potential advantages that the new approach has in certain areas, by giv-
ing a simple theorem on the preservation of acyclicity. The category of graphd{seis too

austere for the given result to be of immediate and great value in real world applications, but the
argument used in the proof is one that stands generalisation to more complex categories whose ob-
jects and arrows are much more suitable for representing real applications. Further elaboration of
these ideas will appear in other papers.

References

Banach R. (1996); Locating the Contractum in the Double Pushout Approach, Theoretical Com-
puter Sciencé&56, to appear.

Banach, R. (1994); Term Graph Rewriting and Garbage Collection Using Opfibrations, Theoretical
Computer Scienc#31, 29-94.

Barendregt H.P., van Eekelen M.C.J.D., Glauert J.R.W., Kennaway J.R., Plasmeijer M.J., Sleep
M.R. (1987); Term Graph Rewritingp: Proc. PARLE-87, de Bakker J.W., Nijman A.J., eds.,
Lecture Notes in Computer Scier®9141-158, Springer, Berlin.

Ehrig H. (1979); Introduction to the Algebraic Theory of Graph Grammars (A surirey)ecture
notes in Computer Scien@8, 1-69, Springer, Berlin.

Ehrig H. (1986); A Tutorial Introduction to the Algebraic Approach of Graph Gramniar$hird
International Workshop on Graph Grammars, Lecture Notes in Computer S@igh&: 14,
Springer, Berlin.

Ehrig H., Habel A., Kreowski H-J., Parisi-Presice F. (1991a); From Graph Grammars to High Level
Replacement Systemis; Fourth Int. Workshop on Graph Grammars and their Applications
to Computer Science, Ehrig, Kreowski, Rozenberg (eds.), Lecture Notes in Compter Science
532 269-291, Springer, Berlin.

Ehrig H., Habel A., Kreowski H-J., Parisi-Presice F. (1991b); Parallelism and Concurrency in High
Level Replacement Systems, Mathematical Structures in Computer Sti&tde404.

Ehrig H., Kreowski H-J. (1979); Pushout Properties: An Analysis of Gluing Constructions for
Graphs, Mathematische Nachrich@&h 135-149.

Ehrig H., Kreowski H-J., Taentzer G. (1993); Canonical Derivations for High-Level Replacement
Systems, in: Graph Transformations in Computer Science, Schneider, Ehrig (eds.), Lecture
Notes in Computer Scien@&6, 152-169, Springer, Berlin.

Habel A., Kreowski H., Plump D. (1988); Jungle Evaluation,Proc. Fifth Workshop on Specifi-
cation of Abstract Data Types, Sannella D., Tarlecki A., eds., Lecture Notes in Computer Sci-
ence332 Springer, Berlin.

Hoffman B., Plump D. (1988); Jungle Evaluation for Efficient Term RewritingProc. Interna-
tional Workshop on Algebraic and Logic Programming, Mathematical Resd&rekkade-
mie-Verlag, Berlin.

Plump D. (1993); Hypergraph Rewriting: Critical Pairs and Undecidability of ConfluémcEgrm
Graph Rewriting: Theory and Practice, Sleep et al. (eds.), John Wiley.

Sleep M.R., Plasmeijer M.J., van Eekelen M.C.J.D. (eds.) (1993); Term Graph Rewriting: Theory
and Practice, John Wiley.

T.C.S. (1993); Special Issue of Selected Papers of the International Workshop on Computing by
Graph Transformation, Bordeaux, France, 1991. Theoretical Computer SciEie,
Nos. 1-2.

	The Contractum in Algebraic Graph Rewriting
	R. Banach
	Computer Science Department, Manchester University,
	Manchester, M13 9PL, U.K.

	Abstract
	Algebraic graph rewriting, which works by first removing the part of the graph to be regarded as ...
	1 Introduction
	2 Algebraic Graph Rewriting
	3 Term Graph Rewriting
	4 The Algebraic Contractum and the Pushout Cube
	5 An Example
	6 An Application: Acyclic Rewriting
	7 Conclusions
	References

