
with
nue to
1979,

tion is
ple-
areas

on-
graph
glued
rite,
ractum;
.

ques-
ebraic
rewrit-
ight
The Contractum in Algebraic Graph Rewriting

R. Banach1

Computer Science Department, Manchester University,

Manchester, M13 9PL, U.K.

Abstract

Algebraic graph rewriting, which works by first removing the part of the graph to
be regarded as garbage, and then gluing in the new part of the graph, is contrasted
with term graph rewriting, which works by first gluing in the new part of the graph
(the contractum) and performing redirections, and then removing garbage. It is
shown that in the algebraic framework these two strategies can be reconciled. This
is done by finding a natural analogue of the contractum in the algebraic framework,
which requires the reformulation of the customary “double pushout” construction.
The new and old algebraic constructions coexist within a pushout cube. In this, the
usual “outward” form of the double pushout appears as the two rear squares, and
the alternative “inward” formulation as the two front squares. The two
formulations are entirely equivalent in the world of algebraic graph rewriting. An
application illustrating the efficacy of the new approach to the preservation of
acyclicity in graph rewriting is given.

1 Introduction

Algebraic graph rewriting has a relatively long history and forms a mature body of knowledge
applications in many areas of computer science. Both the applications and the theory conti
expand in many directions. From the large literature on the subject we might mention Ehrig (
1986), and Ehrig et al. (1990). See also T.C.S. (1993).

Term graph rewriting arose rather more recently, (Barendregt et al. (1987)), and its applica
typically rather more focussed, principally at intermediate and lower level descriptions of im
mentations of functional languages and similar systems; though the amount of work in related
is expanding. See eg. Banach (1994), and Sleep et al. (1993).

Algebraic graph rewriting works by the well known “double pushout” construction. In this c
struction, the first step of a rewrite, once a redex has been located, is to remove the part of the
that is to be garbaged by the rewrite, leaving a suitable hole. Then the new part of the graph is
into the hole, yielding the result. In term graph rewriting by contrast, the first step of a rew
once the redex has been located, is to glue into the graph some new structure, called the cont
then to change the shape of the graph by redirecting arcs. Finally, the garbage is removed

Thus one goes about things in the opposite order in the two models of rewriting; and so one
tion of interest, is whether there is any relationship between the two approaches. Now the alg
approach has been used to address some of the problems of direct interest to the term graph
ing community, (Habel et al. (1988), Hoffman and Plump (1988), Plump (1993)), so one m
speculate that the two approaches are not so far apart.

1. Email: rbanach@cs.man.ac.uk

e used
ouble
riting

f con-

push-
high-
tion in
s that
of the
, while
of acy-
nt to

ry of
et func-
ruction
ig et al.
an be
ty in the
hs to
as re-

air of

tion
ule
The aim of this paper is to show that the strategy of the term graph rewriting approach can b
to reformulate the algebraic approach into a construction entirely equivalent to the original d
pushout construction, but having much of the superficial appearance of the term graph rew
construction. In particular, the new construction allows a precise notion of contractum and o
tractum building to be formulated within the algebraic graph rewriting world.

The rest of this paper is as follows. Section 2 reviews the details of the conventional double
out construction for a suitable class of graphs. Section 3 describes term graph rewriting and
lights the contrast between it and the algebraic approach. Section 4 gives the new construc
the algebraic world, shows that it is entirely equivalent to the original construction, and argue
it displays the features required for it to be regarded as incorporating a convincing analogue
term graph contractum concept. Section 5 presents a simple example of the new approach
section 6 presents an application of the approach by proving a theorem on the preservation
clicity in the rewriting of directed graphs, which would have been somewhat more inconvenie
establish in the conventional approach. Section 7 concludes.

2 Algebraic Graph Rewriting

Algebraic graph rewriting originated as a way of manipulating the objects in a specific catego
graphs; one whose objects have coloured nodes and coloured edges, with source and targ
tions mapping each edge to its source and target. However the underlying algebraic const
is very general and can be adapted to many other categories of graph-like systems (see Ehr
(1991a,b, 1993)). Since the main point that this paper makes is algebraic in nature, it too c
adapted to many such categories. However, rather than seek the greatest possible generali
presentation, by heavy use of universal algebra, we will pick a fairly simple category of grap
work with, and the reader will be quickly able to construct the appropriate generalisations
quired.

Let DG be the category of directed graphs and graph morphisms. An objectG of DG is a pair
〈NG, AG〉 whereNG is a set of nodes andAG ⊆ NG × NG is a set of arcs built fromNG, i.e. a set of
ordered pairs ofNG. An arrowg : G → H of DG is a mapg : NG → NH such that

(x, y) is an arc ofG ⇒ (g(x), g(y)) is an arc ofH.

Like many categories of graph-like systems,DG has all pushouts. Thus iff : K → X andg : K → Y
are two arrows, their pushout is the graphP = 〈NP, AP〉 given by:

NP = NX ∪+ NY / ≈ where ∪+ is disjoint union, and≈ is the smallest equivalence
relation such thatx ≈ y if there is ak ∈ NK such thatx = f(k) andy = g(k).

AP = {([x]P, [y]P) | ∃ u ∈ [x]P, v ∈ [y]P such that [(u, v) ∈ AX or (u, v) ∈ AY} where
we have not distinguished betweenu ∈ NX and the tagged version ofu ∈ NP.

And the arrowsf* : Y → P andg* : X → P are obvious.

Algebraic graph rewriting is given by the double pushout construction. Rules are given by a p
arrows inDG

L l← K →r R

with l : K → L injective. (For categories of graph-like systems, there is normally a natural no
of injectivity that is used; in our case it is ordinary set-theoretic injectivity). A redex for a r

low

f
ioned

exist
ing

en-

sense

struc-
phs,

some

ending
L ← K → R is an arrowg : L → G, and the rewrite proceeds by constructing the diagram be
where both squares are pushouts.

The construction is a two stage process.

Intuitively, the first stage of the construction removes theg image ofL from G, except for theg l
image ofK, which provdes the interface for the second stage. In the second stage, a copy oR is
glued into the “hole” left behind by the first stage; the edge of the hole being the aforement
g l(K).

The first stage attempts to construct the objectD and the arrowsd : K → D, l* : D → G, such that
the left square is a pushout.D is known as the pushout complement and is not guaranteed to
even if (as is the case here)DG has all pushouts. It is standard lore in algebraic graph rewrit
theory that a unique smallest pushout complement exists if

(INJ-O) l : K → L is injective.

(IDENT-O) {x, y} ⊆ NL and g(x) = g(y) ⇒ [x = y, or {x, y} ⊆ l(NK)].

(DANGL-O) (x, y) ∈ AG – g(AL), and {x, y} ∩ g(NL) ≠ ∅ ⇒ {x, y} ∩ g(NL) ⊆ g(l(NK)).

(INJ-O), which we have assumed already, ensures that a pushout complement with uniqued(K) ex-
ists if one exists at all. (IDENT-O) ensures that the pushout ofl andd is in factG, by ensuring that
the pushout is never forced to try to map distinct nodes ofL into the same node ofG, other than as
instructed byd — something the pushout definition above can never accomplish. (DANGL-O)
sures thatD is actually an object ofDG, so that when theg image of (L – l(K)) is removed fromG,
no arc is left dangling without a source or target node. These remarks make a little more
when we see the explicit construction ofD.

ND = NG – g(NL – l(NK)),

AD = AG – g(AL – l(AK)),

The arrowd : K → D is given by

d : K → D : x → g(l(x))

with the obvious extension to arcs. Arrowl* : D → G is just the inclusion onNG – g(NL – l(NK)),
again with the obvious extension to arcs.

3 Term Graph Rewriting

Just as most applications of algebraic graph rewriting use categories of objects with a richer
ture thanDG, so too with term graph rewriting, where normally, the category is that of term gra
i.e. graphs consisting of nodes and arcs, where the nodes are labelled by the symbols from
alphabet, and the out-arcs of each node are labelled by consecutive positive integers [1… n], each
node having an arity as in term rewriting. Other markings may adorn the nodes and arcs dep
on the application.

K RL

G D H

l r

r*l*

hdg

le
ting.

t

n

e.

root,

atic in

shout
out is
We will however continue to work withDG, which contains (almost) enough structure to enab
us to achieve our algebraic objectives for term graph rewriting, albeit in a more austere set

In fact we will work with the categoryDG(∗), whose objects and arrows are those ofDG, except
that each non-empty objectG, optionally has a distinguished node, the root ofG, rootG. In factDG
occurs as a full subcategory ofDG(∗). Each objectG of DG occurs both “as is” inDG(∗), and also
in a collection of objects with roots, once for each choice of root fromNG. We can write such ob-
jects as (G, rootG) when we want to highlight the root, writing (G, ε) if we want to emphasise tha
G does not have a root.

An arrowg : G → H in DG(∗) is like an arrow inDG except that ifG has a root rootG, thenH must
have one, rootH, and we must have

g(rootG) = rootH.

Under these circumstances, readers can check thatDG (∗) has all pushouts off : K → X and
g : K → Y unless ifX andY both have roots, rootX and rootY, and rootX, rootY do not both occur in
the same equivalence class in the usual formula for the set-theoretic pushout off : NK → NX and
g : NK → NY. This is more than adequate for our needs in the rewriting construction.

A rule Q is now given by a pair〈incl : L → P, Red〉. The first component is the inclusion of a
objectL of DG(∗) into another objectP. NeitherL norP may have a root.Redis a set of pairs〈x, y〉
of nodes, such thatx ∈ NL andy ∈ NP.

A redex for a ruleQ = 〈incl : L → P, Red〉 is an arrowg : L → (G, rootG) whereG must have a root,
rootG, except that we must have

(LIVE) Each nodeg(x), (and arc (g(x), g(y))) occurring in the image of a redex
g : L → (G, rootG) is accessible from rootG.

When we say thatx is accessible fromr, we mean of course that there is a directed path fromr to
x in the graph.

Rewriting is a three stage process. Intuitively, the first stage of a rewrite glues a copy ofP into G
alongL. This is just an honest pushout ofg andincl which always exists by our remarks abov
The second phase, redirection, takes all in-arcs of nodesg(x) where〈x, y〉 ∈ Red, and redirects them
so that they become in-arcs ofg′(y) (whereg′ is the extension ofg provided by the pushout of the
first stage). Having done this, the third phase removes everything not accessible from the
completing the rewrite.

In more detail, stage one constructs the following pushout, whose existence is unproblem
DG(∗), since of the three graphs involved inincl andg, only G has a root. ObviouslyG′ has a root,
such thatincl′(rootG) = rootG′.

P – L, which generally contains dangling arcs, is called the contractum of the rule, and the pu
construction just mentioned, is called contractum building, as up to isomorphism, the push
just the process of gluing a copy of the contractum intoG. This paper is mainly concerned with
finding an analogue of this process in the algebraic world.

L P

G G′

incl

incl′

g′g

ers of

ph
of

node
l
des,

ewrit-

of

in al-
mple-
by a

ow be
latter

form
ssen-
The second stage requires a further condition to hold. Let

Red′ = {〈g′(x), g′(y)〉 | 〈x, y〉 ∈ Red}

The condition is thatRed′ is the (set-theoretic) graph of a function.

(FUNC) 〈x′, y′〉 ∈ Red′ and〈x′, z′〉 ∈ Red′ ⇒ y′ = z′

Assuming (FUNC) holds, it makes unambiguous sense to redirect all in-arcs of LHS memb
Red′, and make them point to the corresponding RHS nodes. This gives a graphG′′.

NG′′ = NG′,

AG′′ = (AG′ – AL
Red′) ∪ AR

Red′,

rootG′′ = If 〈rootG′, y〉 ∈ Red′ for somey ∈ NG′ theny else rootG′

where

AL
Red′ = {(t, g′(x)) ∈ AG′ | for someg′(y), there is a〈g′(x), g′(y)〉 ∈ Red′},

AR
Red′ = {(t, g′(y)) | there is a (t, g′(x)) ∈ AL

Red′ and〈g′(x), g′(y)〉 ∈ Red′}.

Note that where an arc (t, g′(x)) in G′ is redirected to (t, g′(y)) and there was already a (t, g′(y)) arc
in G′, the two become one arc inG′′. (This is at variance with the usual situation in term gra
rewriting.) Note also that, unlike in algebraic graph rewriting, where the only nodes and arcsG
manipulated by the rewrite are in the redex, there is no (DANGL)-like condition to prevent the
t in an arc (t, g′(x)) which is to be redirected, from being outsideg′(L). This is because the remova
of arcs and introduction of new ones implicit in redirection, do not involve any removal of no
the only origin of any threat of dangling arcs.

Thus far, rewriting can only increase the size of a graph. To enable graphs to shrink, i.e. for r
ing to be able to garbage collect, the third stage defines the graphH by

NH = {x ∈ NG′′ | x is accessible from rootG′′},

AH = {(x, y) ∈ AG′′ | {x, y} ⊆ NH},

rootH = rootG′′.

Thus the third, or garbage collection stage, discards anything not accessible from the rootG′′.
H is the result of the rewrite. Note thatH is such that any redexh : M → H for the first stage of the
next rewrite automatically satisfies (LIVE).

It is worth noting at this point that whereas garbage collection is a purely local phenomenon
gebraic graph rewriting — the garbage is collected during the construction of the pushout co
ment, in term graph rewriting garbage collection is a global phenomenon — being defined
condition over the whole ofG′′.

4 The Algebraic Contractum and the Pushout Cube

The basic differences between algebraic graph rewriting and term graph rewriting should n
clear. The former collects garbage first, and then replaces it with the new stuff, while the
glues in the new stuff first, and only after redirection does the garbage get collected.

To bring the two styles of rewriting closer together, we recast algebraic graph rewriting into a
where the basic sequence of steps conforms more closely to that in term graph rewriting. E
tially we point out how contractum building can be done in the algebraic style.

s

f the

cess,
aic

and
The

,
erge

form

ge in

he

ent

r con-
rm of
ward
To do so we employ a simple trick. LetL l← K →r Rbe an algebraic rule. It consists of two arrow
of DG with common domainK. Therefore we can form the pushout

In brief, we show that we can reformulate conventional algebraic graph rewriting using rules o
form L l← K →r R, into a new construction, using rules of the formL l→p P r←p R, and that this new
form embodies a credible version of contractum building as the first stage of the rewriting pro
allowing a closer comparison with term graph rewriting. We will call the original form of algebr
rules and the rewriting construction that goes with them, the outward form, and the new form
construction, the inward form. Both are named after the direction of the horizontal arrows.
whole thing turns on the construction of the following pushout cube.

In this cube, the colimit ofl : K → L, r : K → Randd : K → D, in which all squares are pushouts
we see the conventional construction in the two rear faces, while the new construction will em
as the two front faces. In each case we start withG, construct an intermediate graph (eitherD or
C) and then finally constructH.

Since we work from left to right through the cube in both cases, the first stage of the inward
will be an honest pushout of the redexg : L → G, and of the LHS branch of the inward rule
lp : L → P. This is the algebraic equivalent of contractum building, comparable to the first sta
term graph rewriting. As in section 3, we can callP – lp(P) which in general will contain dangling
arcs, the contractum of the rule; and the graphC constructed by the pushout, is the analogue of t
graphG′ in term graph rewriting.

After this “contractum building” the inward form of the algebraic rule forms a pushout complem
of c : P → C andrp : R → P, to give the result of the rewriteH. The conditions for this to work,
are similar to those needed in constructingD in the outward form of the rule.

Now we turn to the technical details of the new construction. BecauseDG has small colimits, up
to isomorphism, the pushout cube given above really does commute as required. A particula
sequence of this is that the choice of unique smallest pushout complement in the outward fo
rewriting corresponds to a similar choice of unique smallest pushout complement in the in
form. The main facts about inward and outward rewriting are the following.

K

RL

P

rl

rplp

K

L P

R

D

C

H

G

r

l

lp rp

r*

rp*

lp*

l*

h

g c

d

n out-
equiv-

d re-
ous

se
he ex-
. The

o

quare
uf-

-

Theorem 4.1 Inward and outward rewriting are dual in the following sense. Letg : L → G be an
arrow ofDG, serving as redex. Then statement (I) below which ensures the existence of a
ward rewrite, and statement (II) below which ensures the existence of an inward rewrite, are
alent.

(I) There is an outward rulel : K → L, r : K → R satisfying

(INJ-O) l : K → L is injective.

(IDENT-O) {x, y} ⊆ NL andg(x) = g(y) ⇒ [x = y, or {x, y} ⊆ l(NK)].

(DANGL-O) (x, y) ∈ AG – g(AL), and {x, y} ∩ g(NL) ≠ ∅ ⇒ {x, y} ∩ g(NL) ⊆ g(l(NK)).

(II) There is an inward rulelp : L → P, rp : R → P satisfying

(SURJ-I) P = 〈NP, AP〉 = 〈lp(NL) ∪ rp(NR), lp(AL) ∪ rp(AR)〉.

(INJ-I) rp : R → P is injective;lp : L → P is injective onL – lp–1(rp(R)).

(IDENT-I) { x, y} ⊆ NL andg(x) = g(y) ⇒ [x = y, or {lp(x), lp(y)} ⊆ rp(NR)].

(DANGL-I) (x, y) ∈ AG – g(AL), and {x, y} ∩ g(NL) ≠ ∅ ⇒
{ x, y} ∩ g(NL) ⊆ g(lp–1(rp(NR))).

Proof sketch. The theorem claims that statement (II) is sufficient to guarantee that an inwar
write of g : L → G exists. SinceDG has all pushouts, we merely need to check that the analog
conditions for the pushout complement ofrp : R → P andc : P → C hold. These are:

(INJ-I)C rp : R → P is injective.

(IDENT-I)C { x, y} ⊆ NP andc(x) = c(y) ⇒ [x = y, or {x, y} ⊆ rp(NR)].

(DANGL-I)C (x, y) ∈ AC – c(AP), and {x, y} ∩ c(NP) ≠ ∅ ⇒ { x, y} ∩ c(AP) ⊆ c(rp(NR)).

Clearly (INJ-I)⇒ (INJ-I)C. For (IDENT-I) ⇒ (IDENT-I)C we pull a collection of elements inG
which witnessc(x) = c(y) up alongg and use (IDENT-I) to get the result. That (DANGL-I)⇒
(DANGL-I)C, is a relatively straightforward diagram chase.

Thus the pushout complement ofrp : R→ Pandc : P→ Cexists under the conditions stated. The
conditions turn out to be necessary as well as sufficient, so we have a set of conditions for t
istence of inward rewrites, expressed soley in terms of the redex and the arrows in the rule
remainder of the argument is as follows.

(I) ⇒ (II). Suppose we have the hypotheses of (I). Form the pushout ofl : K → L, r : K → Rgiving
lp : L → P, rp : R → P. Then (SURJ-I) is immediate, and (INJ-I) follows from (INJ-O). Als
(IDENT-O) ⇒ (IDENT-I) and (DANGL-O)⇒ (DANGL-I) by easy diagram chases.

(II) ⇒ (I). Suppose we have the hypotheses of (II). We need to construct the top pushout s
“in reverse”. It follows from work of Ehrig and Kreowski (1979) that (SURJ-I) and (INJ-I) are s
ficient for this to be done in an essentially unique way so we getl : K → L, r : K → R from
lp : NL → NP, rp : NR → NP and (INJ-O) follows from (INJ-I). Now to get (II)⇒ (I) it is sufficient
to show (IDENT-I)C ⇒ (IDENT-O) and (DANGL-I)C ⇒ (DANGL-O). These are again easy di
agram chases.

For full details of the proof see Banach (1996). We immediately find:

Theorem 4.2 Let g : L → G be a redex. LetrO be an outward rule satisfying 4.1.(I) andrI be an
inward rule satisfying 4.1.(II), and such thatrO andrI form a pushout inDG. ThenH can be de-
rived fromG usingrO iff H can be derived fromG usingrI.

e rule

eds to
ll
e arc

m by
rop-
5 An Example

We present a short example of the preceding considerations. Below is an outward ruleL l← K →r R
of DG, with numbered nodes carrying the morphism information.

Forming the pushout of these two arrows, we arrive at the corresponding inward form of th

When we apply this to the following graphG we get the sequence

In this two step sequence (the completion of the pushoutG ← D → H in conventional outward re-
writing, as the reader can check), we first bolt in the contractum, and then remove what ne
be removed in terms of the image of the LHS graphL. Note that the inward form embodies a sma
optimisation compared with the outward form, namely that the outward form first removes th
(1, 2) in the construction ofD, and then replaces it when the pushout withR is performed; this does
not happen in the inward form. Of course one can prevent this inefficiency in the outward for
including the the arc (1, 2) inK, but this essentially says that outward rules ought to have the p
erty of being a pullback image, as well as what we already demand of them.

•

•

•

••

•

•
•

•

•
•

•

L K R
l r

•

1

2

1

2

1

2

•
•

•

•
•

•
••

•

•

••

•

•
•

•

•
•

•

•

L P R
lp rp

1

2

1

2

1

2

•

•

•
•

•
•

•
••

•

•

•

•

••

•

•

•

•

•
•

•
•

•

•

•

G C H
lp* rp*

1

2

1

2

1

2

ap-
hes are
ately

urce
nted in
olves.
le rule
cy-

re cum-
is less
nd one
ed for
a num-
e in-
dition

h
r-

e graph
uence,

jects
ys. In
6 An Application: Acyclic Rewriting

In this section we give a brief presentation of a topic where we claim that the inward rewriting
proach has some advantages over the conventional outward form. Since the two approac
entirely equivalent by theorems 4.1 and 4.2, there is of course nothing here that cannot ultim
be done in the outward style.

Acyclicity is an important safety property of computing systems. Deadlock avoidance in reso
allocation systems is the classic example, but many other safety properties can be represe
terms of the acyclicity of some directed structure that models the state of the system as it ev
We give here a simple theorem that guarantees that rewriting of an acyclic graph via a suitab
preserves acyclicity. We stick to the categoryDG whose objects possess an obvious notion of a
clicity, and to the notation of the pushout cube.

Theorem 6.1 Let Γ = lp : L → P ← R : rp be an inward rule withlp (as well asrp) injective, and
let g : L → G be a redex withg injective, in an acyclic graphG. Let K* ⊆ P be the subgraph given
by K* = lp(L) ∩ rp(R), and letΓ have the property:

(Π) P is acyclic; and for every directed pathπ in P between nodesa andb of K*, there is a path
θ in P between the same nodesa andb, but lying entirely withinlp(L).

Let H be the result of rewritingG via the ruleΓ. ThenH is acyclic.

Proof. Let H arise via the arrowslp* : G → C ← H : rp* of the pushout cube. We claim thatC is
acyclic; which is sufficient sinceH arises via the inverse homomorphismC ← H : rp* and inverse
homomorphisms preserve acyclicity.

To substantiate the claim, suppose there was a cycleΩ = [x,…, x] in C. The cycle cannot lie entirely
in lp*(G) sincelp is injective, and neither can it lie entirely inc(P) sinceg is injective, by properties
of pushouts. Therefore it must lie inlp*(G) ∪ c(P), and split into [α1,…, β1], [β1,…, α2], …, with
[αi,…, βi] ⊆ (c(P) – (lp*(G) – c(K*))), and [βi,…, αi+1] ⊆ (lp*(G) – (c(P) – c(K*))), (and cycli-
cally), and with the {αi, βi} ⊆ c(K*) = lp*(G) ∩ c(P). Sincec is injective, each [αi,…, βi] is thec
image of a unique pathπi = [ai,…, bi] ⊆ P with { ai, bi} ⊆ K*, whence property (Π) supplies us
with a corresponding pathθi ⊆ lp(L) also fromai to bi. Replacing each [αi,…, βi] by c(θi) ⊆ lp*(G)
in the cycleΩ, gives us a cycle entirely inlp*(G), a contradiction.

One can see that to achieve the same thing in the outward approach would be somewhat mo
bersome. The inverse homomorphism of the pushout complement of the outward approach
useful than that of the inward approach since one adds material to the graph subsequently, a
has to check that the new material does not inadvertently close a cycle. All the pieces requir
the argument are present in the outward approach to be sure, but they lie scattered about in
ber of different graphs so that building the contradiction is little less easy. Furthermore, in th
ward approach, it is a lot more convenient to check whether a particular rule satisfies the con
(Π) by inspecting a diagram of the intermediate graphP; one can check whether any pathπ be-
tween nodes (a, b) of K* and straying outside oflp(L), has an alternative route betweena andb
entirely withinlp(L), at a glance.

An easy induction now gives:

Theorem 6.2 Let G0 be an acyclic initial graph, and letR be an inward rule system in which eac
rule consists of a pair of injective arrows satisfying condition (Π) above. Then every graph gene
ated fromG0 by rewriting injective redexes using rules fromR is acyclic.

Theorem 6.1 applies to the example described in the previous section as is easily seen. Th
G is acyclic, the rule employed and the redex satisfy the relevant conditions, and as a conseq
the graphH is acyclic too.

As with all safety properties, by working harder and inventing more subtle invariants of the ob
of interest, one can generalise and strengthen the above results in a number of different wa

How-

term

orm,
hould
erm

es

re-

by giv-

ut the
ose ob-
tion of

Com-

etical

Sleep
.,

evel
ns
ience

High

for

ent
ecture
addition, one can adapt the arguments to suit graph rewriting in other categories of graphs.
ever to do so would take us far outside the scope of this paper.

7 Conclusions

In the previous sections, we have reviewed double pushout algebraic graph rewriting and
graph rewriting, both from a conveniently uncluttered perspective, that of the categoryDG. By an
algebraic trick, we were able to reformulate the former construction from its original outward f
into a new inward form, that bore comparison with term graph rewriting. Nevertheless, one s
not try to push the analogy too far. Algebraic graph rewriting is “equational” in a way that t
graph rewriting is not. Specifically, if in an algebraic rewrite, nodex is to be merged with nodey,
and nodey is to be merged with nodez, then a pushout will ensure that in-arcs to all three nod
end up at the same node of the result. However, in term graph rewriting, if〈x, y〉 and〈y, z〉 are two
redirections, then the in-arcs ofx end up aty, and the in-arcs ofy andzend up atz. To emulate the
algebraic behaviour we would need〈x, z〉 and〈y, z〉. Thus there are phenomena in term graph
writing that do not correspond to algebraic graph rewriting.

Finally, we showed off the potential advantages that the new approach has in certain areas,
ing a simple theorem on the preservation of acyclicity. The category of graphs usedDG, is too
austere for the given result to be of immediate and great value in real world applications, b
argument used in the proof is one that stands generalisation to more complex categories wh
jects and arrows are much more suitable for representing real applications. Further elabora
these ideas will appear in other papers.

References

Banach R. (1996); Locating the Contractum in the Double Pushout Approach, Theoretical
puter Science156, to appear.

Banach, R. (1994); Term Graph Rewriting and Garbage Collection Using Opfibrations, Theor
Computer Science131, 29-94.

Barendregt H.P., van Eekelen M.C.J.D., Glauert J.R.W., Kennaway J.R., Plasmeijer M.J.,
M.R. (1987); Term Graph Rewriting,in: Proc. PARLE-87, de Bakker J.W., Nijman A.J., eds
Lecture Notes in Computer Science259 141-158, Springer, Berlin.

Ehrig H. (1979); Introduction to the Algebraic Theory of Graph Grammars (A survey),in: Lecture
notes in Computer Science73, 1-69, Springer, Berlin.

Ehrig H. (1986); A Tutorial Introduction to the Algebraic Approach of Graph Grammars,in: Third
International Workshop on Graph Grammars, Lecture Notes in Computer Science291, 3-14,
Springer, Berlin.

Ehrig H., Habel A., Kreowski H-J., Parisi-Presice F. (1991a); From Graph Grammars to High L
Replacement Systems,in: Fourth Int. Workshop on Graph Grammars and their Applicatio
to Computer Science, Ehrig, Kreowski, Rozenberg (eds.), Lecture Notes in Compter Sc
532, 269-291, Springer, Berlin.

Ehrig H., Habel A., Kreowski H-J., Parisi-Presice F. (1991b); Parallelism and Concurrency in
Level Replacement Systems, Mathematical Structures in Computer Science1, 361-404.

Ehrig H., Kreowski H-J. (1979); Pushout Properties: An Analysis of Gluing Constructions
Graphs, Mathematische Nachrichten91, 135-149.

Ehrig H., Kreowski H-J., Taentzer G. (1993); Canonical Derivations for High-Level Replacem
Systems, in: Graph Transformations in Computer Science, Schneider, Ehrig (eds.), L
Notes in Computer Science776, 152-169, Springer, Berlin.

r Sci-

eory

ing by
Habel A., Kreowski H., Plump D. (1988); Jungle Evaluation,in: Proc. Fifth Workshop on Specifi-
cation of Abstract Data Types, Sannella D., Tarlecki A., eds., Lecture Notes in Compute
ence332, Springer, Berlin.

Hoffman B., Plump D. (1988); Jungle Evaluation for Efficient Term Rewriting,in: Proc. Interna-
tional Workshop on Algebraic and Logic Programming, Mathematical Research49, Akade-
mie-Verlag, Berlin.

Plump D. (1993); Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence,in: Term
Graph Rewriting: Theory and Practice, Sleep et al. (eds.), John Wiley.

Sleep M.R., Plasmeijer M.J., van Eekelen M.C.J.D. (eds.) (1993); Term Graph Rewriting: Th
and Practice, John Wiley.

T.C.S. (1993); Special Issue of Selected Papers of the International Workshop on Comput
Graph Transformation, Bordeaux, France, 1991. Theoretical Computer Science,109,
Nos. 1-2.

	The Contractum in Algebraic Graph Rewriting
	R. Banach
	Computer Science Department, Manchester University,
	Manchester, M13 9PL, U.K.

	Abstract
	Algebraic graph rewriting, which works by first removing the part of the graph to be regarded as ...
	1 Introduction
	2 Algebraic Graph Rewriting
	3 Term Graph Rewriting
	4 The Algebraic Contractum and the Pushout Cube
	5 An Example
	6 An Application: Acyclic Rewriting
	7 Conclusions
	References

