Continuous Behaviour in Event-B: A Sketch

Richard Banactr, Huibiao Zhi#**, Wen Si#, and Xiaofeng Wa

!School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
banach@s. man. ac. uk
2Software Engineering Institute, East China Normal Uniiegrs
3663 Zhongshan Road North, Shanghai 200062, P.R. China.
{hbzhu, wensu, xf w}@ei . ecnu. edu. cn

Abstract. Including provision for continuously varying behaviourvesll as dis-
crete state change is considered for Event-B. An extengiBrment-B is sketched
that accommodates continuous events (called pliant evienketween familiar
discrete events (called mode events).

1 Introduction

In this short paper, we briefly sketch an extension of Evetitd® accommodates gen-
uinely continuous behaviour (as well as discrete state gds)n The motivation for this

is to enable Event-B to engage better with problems exhipiuch behaviour in an

essential way, as is increasingly needed in applicatiorfsilf worked out presenta-

tion, including more extensive discussion of semanticgppobligations for machine

consistency and for refinement, and consideration of finegigand coarsegraining
issues, will appear elsewhere. We assume familiarity witbrieB.

2 Extending Event-B with Continuous Behaviour

To adequately capture behaviour over real time, we mode &iman interval” of the
real number®, with a finite left endpoint to represent the time at whichittigal state

of the model is created, and with a right endpoint which iddioir infinite, depending
on whether the dynamics is finite or infinite. Now, the valuéslbvariables become
functions of7". By convention,7 partitions into a sequence of left-closed right-open
intervals, ([t .. .t1),[t1 ...t2),...), the coarsest partition such that all discontinuous
changes take place at some boundary ppint/e have two kinds of variabléd ode
variables only change discontinuously between elements of a distypte These are

* The majority of the work reported in this paper was done wthigefirst author was a visiting
researcher at the Software Engineering Institute at Easia@ormal University. The support
of ECNU is gratefully acknowledged.

** Huibiao Zhu is supported by National Basic Research Progfadhina (No. 2011CB302904),
National High Technology Research and Development Progf&hina (No. 2011AA010101
and No. 2012AA011205), National Natural Science FoundadioChina (No. 61061130541
and No. 61021004).

just like traditional B variables, and restricting to theseovers traditional Event-B.
Pliant variables have types which include topologically dense sets, and hwhan
evolve both continuously and via discrete changes. In a@mtervallt; .. .t1), the
mode variables will be constant, but the pliant variabldsaliange continuously. How-
ever, continuity alone still allows for a wide range of mattatically pathological be-
haviours, so we make the following restrictions:

| Zeno: there is a constafiten,, such that for all neededti; — tj > dzeno-

II' Limits: for every variablex, and for every timé € 7, the left limitlims_,o X(t — 9)
—

written x(t) and right limitlims_.o X(t + 9), written% (with § > 0) exist, and for
pilis.

everyt, x(t) = x(t). [N. B. At the endpoint(s) o, any missing limit is defined to
equal its counterpart.]

[l Differentiability: The behaviour of every pliant vatige x in the intervallt; . . . ti11)
is given by the solution of a well posed initial value probléixs = ¢(xs,t)
(wherexsis a relevant tuple of pliant variables afidis the time derivative). “Well
posed” means that(xs,t) has Lipschitz constants which are uniformly bounded
over[t...ti41) bounding its variation with respect s, and thatp(xs, t) is mea-
surable irt.

With I-11l in place, the behaviour of every pliant variabkepiecewise smooth, with the
smooth variation being described by a suitable differéetjaation (DE).

As well as two kinds of variable, we have two kinds of event.ddevents are
like traditional Event-B events. They describe discorimsichanges, though they can
involve both mode and pliant variables. Their syntax is e to traditional Event-B
events, except that before-values are to be interpreteefftalinits (at the moment;
that the event occurs), and after-values are to be integbieet the corresponding right
limits. For example, a straightforward generic mode evdatorated with this limit
information, could be written in the usual notation as:

SdEv -
WHEN grd(T, i)
ANY T -
WHERE BApred(T, i, T)
THEN u:= T
END

We also have pliant events. These involve changes to plaighles alone, and they
describe continuous change. While a mode event is a sinfpedh&after-value pair, a
pliant event is a family of before-/after-value pairs, paeterized by points in time
falling within the relevant time intervdt; . . .ti1). For every member of this family,
the before-value is always the valuetatwvhile the after-value is the value gtfor t in
the open intervalt; . . . ti+1). Thus the change from before- to after-value does not take
place instantaneously. Pliant events need new syntax,tithwve give two variants:

PliEv PliEv
STATUS pliant STATUS pliant
WHEN grd(u(th)) WHEN grd(u(th))
WHERE BDApred(u(t), i(t),) ANY u(t)
SOLVE DE(u(t), i(t), 1) WHERE BDApred(u(t), i(t),)
END THEN u := u(t)
END

In the left hand syntax, we specify a differential equatimbé solved. In the right hand
syntax we just specify the continuous behaviour requireettli, for those cases where
this is known (since differentiating the behaviour, onlyhve to solve the resulting DE
for it immediately afterwards is obviously wasteful).

Much of the structure of these two cases is similar, and wedesruss both of the
cases together to begin with, starting from the top. After teader line we have the
‘STATUS pliant’ line. This introduces a new event statug, itiant status, signaling to
any tool processing the syntax that a pliant event is beifigei®

In the remainder of the structure we see the notdti@h = max{i | ti < t}, which
has a counterpaR(t) = min{i | ti > t}. These map any timeto the left and right ends
of the interval containing during a run, and are used to refer generically to the initial
and final time values of the interval during which the contins behavour is specified.

The next line is the ‘WHEN’ line, and contains any requiredt$aabout the initial
values of the relevant state variables when the pliant itiansstarts; it also contains
any additional guard information. Unlike the guard of a medent, it cannot depend
on any input that the pliant event needs, since any such impiugst throughout the
interval (t.y) . . . tr(y)), and so its value at the time instapt, has measure zero; this is
of insufficient weight to influence the start of a pliant event

At this point, the two structures start to diverge. On thg fef the case governed by
a differential equation, we have a ‘WHERE' line, which cdntaa before-during-and-
after predicat@DApred. Since this case is predominantly governed by the difféaent
equation, there is often little or nothing for tiBDApred to specify, so it will often
be very simple, or can be omitted entirely. On the other h#rtiere are additional
constraints that need to hold during the pliant event, ssctaets concerning specific
values of time, deadlines, or anything else, such conssraam be placed here.

The next line is where the action is, since it includes thé&ditial equation in
the ‘'SOLVE’ clause. The differential equation specifies withe values of the state
variables are to be during the interval of interest, but gsleo indirectly. In general,
the DE depends on the current values of the state variabtesrathe inputs which are
received through the course of the interval of interestt €hepletes the description of
the left hand case.

On the right, we pick up at the ‘ANY’ line. This works a lot likbke ANY clause
of a mode event, but it (typically) names a family of aftelues that is time depen-
dent, defined over the open intervié,) . . . tr(y)). The named values are utilised in
the before-during-and-after predica®Apred. Unlike the previous case, where the
BDApred predicate is typically simple or absent, this time, Bi#Apred predicate is the
entity that actually does the hard work of specifying therafalues, so, unlike previ-
ously, it will be nontrivial. The after-values are actuadlysigned in the ‘THEN’ clause
on the next line, just as for normal Event-B. As usual, if tkpressions to be assigned
are known explicitly, then the ANY and WHERE clauses can bétteah and the re-
quired values can be assigned directly. All this is therfast like normal Event-B,
except that everything is parameterised by time. This ceteplthe description of the
other case.

A continuous Event-B machine, with mode and pliant eventdessribed, is said
to bewell formed iff every mode transition enables a pliant transition (batmode

transition) on completion, every non-final pliant trarmitienables a mode transition
during its execution (which then fires, preempting the pliansition), and a final
pliant transition either continues indefinitely (non-témation) or becomes undefined
at some point (finite termination).

A run of such a machine starts with an initial mode transitidnich sets up the
system initial system state, and then, pliant transitidtesraate with mode transitions.
The last transition (if there is one) is a pliant transitism6se duration may be finite or
infinite).

Since time has a different character from other variabfdénie is mentioned ex-
plicitly in a system model, then the name of the time varidtae to be indicated to a
tool such as Rodin. A convenient way of doing this is to hav@IME t' declaration.
The value of time may be linked to the rest of the system maukilel NI TIALISATION
event which may then be given a guard such as ‘WHEN0'.

An alternative approach to time utilises one or mduoeks. The difference between
a time variable and a clock variable is that a clock may ruh daslow with respect
to (real) time, so its derivative must be specified duringmtiievents that use it. It can
also be reset by mode events (specifically during inititibsd. Clock variables can be
declared as ‘CLOCKclK'.

3 Discussion, POs

Above, we sketched the essentials of an extension of EventeAded to cope with
genuinely continuous behaviours, such as are increasimggyged in the hybrid and
cyber-physical applications being developed today. Todéw of these are developed
using a refinement mindset is the main reason for considéwegt-B here.

As with conventional Event-B, the semantics is expressadpvdof obligations,
which we cover briefly now. Events have to be feasible; modéameswia the usual PO,
pliant events via a PO that asserts a solution to the DE in soteeval. Events have to
preserve the invariants; mode events as usual, pliantggentinuously over the course
of the DE solution. Alternation between mode and pliant ¢gvénhandled by POs that
demand the relevant disjunctions of guards under apptepanditions.

Properly defined refinement between machines is crucial vfseo Explicit POs
become much simpler if mode events must be refined by moddstienthe usual
way), and if pliant events must be refined by pliant events (imay that preserves the
passage of time, and maintains the invariants during theseaf the two pliant events).
Relative deadlock freedom may be demanded of the mode eesmutseparately, of the
pliant events.

One issue not present in conventional Event-B, is thativelgtlong lived pliant
events may need to get broken up into short lived ones, incpéat, when modeling
the implementation of continuous behaviour by digital neeatilising a high sampling
frequency. To deal with this we can introduce suitaigs that momentarily interrupt
the long lived pliant event. POs can be designed so that skigs do not alter the
dynamics of the system, while neverthless breaking up ati@mgition into short steps
that can later be refined in the usual way.

