
Continuous Behaviour in Event-B: A Sketch

Richard Banach1⋆, Huibiao Zhu2⋆⋆, Wen Su2, and Xiaofeng Wu2

1School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk
2Software Engineering Institute, East China Normal University,

3663 Zhongshan Road North, Shanghai 200062, P.R. China.
{hbzhu,wensu,xfwu}@sei.ecnu.edu.cn

Abstract. Including provision for continuously varying behaviour aswell as dis-
crete state change is considered for Event-B. An extension of Event-B is sketched
that accommodates continuous events (called pliant events) in between familiar
discrete events (called mode events).

1 Introduction

In this short paper, we briefly sketch an extension of Event-Bthat accommodates gen-
uinely continuous behaviour (as well as discrete state changes). The motivation for this
is to enable Event-B to engage better with problems exhibiting such behaviour in an
essential way, as is increasingly needed in applications. Afully worked out presenta-
tion, including more extensive discussion of semantics, proof obligations for machine
consistency and for refinement, and consideration of finegraining and coarsegraining
issues, will appear elsewhere. We assume familiarity with Event-B.

2 Extending Event-B with Continuous Behaviour

To adequately capture behaviour over real time, we model time as an intervalT of the
real numbersR, with a finite left endpoint to represent the time at which theinitial state
of the model is created, and with a right endpoint which is finite or infinite, depending
on whether the dynamics is finite or infinite. Now, the values of all variables become
functions ofT . By convention,T partitions into a sequence of left-closed right-open
intervals,〈[t0 . . . t1), [t1 . . . t2), . . .〉, the coarsest partition such that all discontinuous
changes take place at some boundary pointti. We have two kinds of variable.Mode
variables only change discontinuously between elements of a discretetype. These are

⋆ The majority of the work reported in this paper was done whilethe first author was a visiting
researcher at the Software Engineering Institute at East China Normal University. The support
of ECNU is gratefully acknowledged.

⋆⋆ Huibiao Zhu is supported by National Basic Research Programof China (No. 2011CB302904),
National High Technology Research and Development Programof China (No. 2011AA010101
and No. 2012AA011205), National Natural Science Foundation of China (No. 61061130541
and No. 61021004).



just like traditional B variables, and restricting to theserecovers traditional Event-B.
Pliant variables have types which include topologically dense sets, and which can
evolve both continuously and via discrete changes. In a typical interval[ti . . . ti+1), the
mode variables will be constant, but the pliant variables will change continuously. How-
ever, continuity alone still allows for a wide range of mathematically pathological be-
haviours, so we make the following restrictions:

I Zeno: there is a constantδZeno, such that for alli needed,ti+1 − ti ≥ δZeno.

II Limits: for every variablex, and for every timet ∈ T , the left limit limδ→0 x(t− δ)

written
−→
x(t) and right limitlimδ→0 x(t + δ), written

←−
x(t) (with δ > 0) exist, and for

everyt, x(t) =
←−
x(t). [N. B. At the endpoint(s) ofT , any missing limit is defined to

equal its counterpart.]

III Differentiability: The behaviour of every pliant variablex in the interval[ti . . . ti+1)
is given by the solution of a well posed initial value problemD xs = φ(xs, t)
(wherexs is a relevant tuple of pliant variables andD is the time derivative). “Well
posed” means thatφ(xs, t) has Lipschitz constants which are uniformly bounded
over [ti . . . ti+1) bounding its variation with respect toxs, and thatφ(xs, t) is mea-
surable int.

With I-III in place, the behaviour of every pliant variable is piecewise smooth, with the
smooth variation being described by a suitable differential equation (DE).

As well as two kinds of variable, we have two kinds of event. Mode events are
like traditional Event-B events. They describe discontinuous changes, though they can
involve both mode and pliant variables. Their syntax is identical to traditional Event-B
events, except that before-values are to be interpreted as left limits (at the momentti
that the event occurs), and after-values are to be interpreted as the corresponding right
limits. For example, a straightforward generic mode event,decorated with this limit
information, could be written in the usual notation as:

StdEv
WHEN grd(−→u ,

−→

i )
ANY ←−u
WHERE BApred(−→u ,

−→

i ,←−u )
THEN u :=←−u
END

We also have pliant events. These involve changes to pliant variables alone, and they
describe continuous change. While a mode event is a single before-/after-value pair, a
pliant event is a family of before-/after-value pairs, parameterized by points in time
falling within the relevant time interval[ti . . . ti+1). For every member of this family,
the before-value is always the value atti, while the after-value is the value att, for t in
the open interval(ti . . . ti+1). Thus the change from before- to after-value does not take
place instantaneously. Pliant events need new syntax, for which we give two variants:

PliEv
STATUS pliant
WHEN grd(u(tL(t)))
WHERE BDApred(u(t), i(t), t)
SOLVE DE(u(t), i(t), t)
END

PliEv
STATUS pliant
WHEN grd(u(tL(t)))
ANY u(t)
WHERE BDApred(u(t), i(t), t)
THEN u := u(t)
END

2



In the left hand syntax, we specify a differential equation to be solved. In the right hand
syntax we just specify the continuous behaviour required directly, for those cases where
this is known (since differentiating the behaviour, only tohave to solve the resulting DE
for it immediately afterwards is obviously wasteful).

Much of the structure of these two cases is similar, and we candiscuss both of the
cases together to begin with, starting from the top. After the header line we have the
‘STATUS pliant’ line. This introduces a new event status, the pliant status, signaling to
any tool processing the syntax that a pliant event is being defined.

In the remainder of the structure we see the notationL(t) = max{i | ti ≤ t}, which
has a counterpartR(t) = min{i | ti > t}. These map any timet to the left and right ends
of the interval containingt during a run, and are used to refer generically to the initial
and final time values of the interval during which the continuous behavour is specified.

The next line is the ‘WHEN’ line, and contains any required facts about the initial
values of the relevant state variables when the pliant transition starts; it also contains
any additional guard information. Unlike the guard of a modeevent, it cannot depend
on any input that the pliant event needs, since any such inputwill last throughout the
interval(tL(t) . . . tR(t)), and so its value at the time instanttL(t) has measure zero; this is
of insufficient weight to influence the start of a pliant event.

At this point, the two structures start to diverge. On the left, for the case governed by
a differential equation, we have a ‘WHERE’ line, which contains a before-during-and-
after predicateBDApred. Since this case is predominantly governed by the differential
equation, there is often little or nothing for theBDApred to specify, so it will often
be very simple, or can be omitted entirely. On the other hand,if there are additional
constraints that need to hold during the pliant event, such as facts concerning specific
values of time, deadlines, or anything else, such constraints can be placed here.

The next line is where the action is, since it includes the differential equation in
the ‘SOLVE’ clause. The differential equation specifies what the values of the state
variables are to be during the interval of interest, but it does so indirectly. In general,
the DE depends on the current values of the state variables and on the inputs which are
received through the course of the interval of interest. That completes the description of
the left hand case.

On the right, we pick up at the ‘ANY’ line. This works a lot likethe ANY clause
of a mode event, but it (typically) names a family of after-values that is time depen-
dent, defined over the open interval(tL(t) . . . tR(t)). The named values are utilised in
the before-during-and-after predicateBDApred. Unlike the previous case, where the
BDApred predicate is typically simple or absent, this time, theBDApred predicate is the
entity that actually does the hard work of specifying the after-values, so, unlike previ-
ously, it will be nontrivial. The after-values are actuallyassigned in the ‘THEN’ clause
on the next line, just as for normal Event-B. As usual, if the expressions to be assigned
are known explicitly, then the ANY and WHERE clauses can be omitted, and the re-
quired values can be assigned directly. All this is therefore just like normal Event-B,
except that everything is parameterised by time. This completes the description of the
other case.

A continuous Event-B machine, with mode and pliant events asdescribed, is said
to bewell formed iff every mode transition enables a pliant transition (but no mode

3



transition) on completion, every non-final pliant transition enables a mode transition
during its execution (which then fires, preempting the pliant transition), and a final
pliant transition either continues indefinitely (non-termination) or becomes undefined
at some point (finite termination).

A run of such a machine starts with an initial mode transitionwhich sets up the
system initial system state, and then, pliant transitions alternate with mode transitions.
The last transition (if there is one) is a pliant transition (whose duration may be finite or
infinite).

Since time has a different character from other variables, if time is mentioned ex-
plicitly in a system model, then the name of the time variablehas to be indicated to a
tool such as Rodin. A convenient way of doing this is to have a ‘TIME t’ declaration.
The value of time may be linked to the rest of the system model in theINITIALISATION
event which may then be given a guard such as ‘WHENt = 0’.

An alternative approach to time utilises one or moreclocks. The difference between
a time variable and a clock variable is that a clock may run fast or slow with respect
to (real) time, so its derivative must be specified during pliant events that use it. It can
also be reset by mode events (specifically during initialisation). Clock variables can be
declared as ‘CLOCKclk’.

3 Discussion, POs

Above, we sketched the essentials of an extension of Event-Bintended to cope with
genuinely continuous behaviours, such as are increasinglyneeded in the hybrid and
cyber-physical applications being developed today. That so few of these are developed
using a refinement mindset is the main reason for consideringEvent-B here.

As with conventional Event-B, the semantics is expressed via proof obligations,
which we cover briefly now. Events have to be feasible; mode events via the usual PO,
pliant events via a PO that asserts a solution to the DE in someinterval. Events have to
preserve the invariants; mode events as usual, pliant events continuously over the course
of the DE solution. Alternation between mode and pliant events is handled by POs that
demand the relevant disjunctions of guards under appropriate conditions.

Properly defined refinement between machines is crucial of course. Explicit POs
become much simpler if mode events must be refined by mode events (in the usual
way), and if pliant events must be refined by pliant events (ina way that preserves the
passage of time, and maintains the invariants during the course of the two pliant events).
Relative deadlock freedom may be demanded of the mode events, and separately, of the
pliant events.

One issue not present in conventional Event-B, is that relatively long lived pliant
events may need to get broken up into short lived ones, in particular, when modeling
the implementation of continuous behaviour by digital means utilising a high sampling
frequency. To deal with this we can introduce suitableskips that momentarily interrupt
the long lived pliant event. POs can be designed so that suchskips do not alter the
dynamics of the system, while neverthless breaking up a longtransition into short steps
that can later be refined in the usual way.

4


