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Abstract. While many systems are naturally viewed as the interactewéen
a controller subsystem and a controlled, or plant subsydtesy are often most
easily understood and designed monolithically. A prattioplementation needs
to separate controller from plant. We study the problem oémv monolithic
ASM system can be split into controller and plant subsystatoeg syntactic
lines derived from variables’ natural affiliations. We giestrictions that enable
the split to be carried out cleanly, and we give conditiorst #imsure that the
resulting pair of controller and plant subsystems have #mesbehaviours as
the original design. We illustrate the theory with a caselgttoncerning eating
with chopsticks. This leads to an extension of controlletigsis for continuous
ASM systems, which are briefly covered. The case study is ¢éxéended into
the continuous sphere.

1 Introduction

Today, when one considers the ubiquity of embedded coatslivhich take on the dig-
ital role in the interaction of a digital and an external syst it becomes clear that many
systems are naturally viewed as the interaction betweemtratler subsystem and a
controlled, or plant subsystem. Such systems are often easdlty and conveniently
understood and designed monolithically — this allows thk lofi the design activity
to focus on the overall system goals rather than lower lestlid However, a practical
implementation needs to separate the controller from thetpsince it is the controller
which behaves according to a human-created digital deaigphthe plant behaves ac-
cording to patterns determined by the laws of nature. Inghger we study the problem
of when a monolithic ASM system design, embodying this doatwller/plant nature,
can be split into separate controller and plant subsystéong generic syntactic lines
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derived from the most natural associations of the systembiass to one or other sub-
system. This requires that the monolithic design satisesessimple criteriab initio.

The rest of the paper is as follows. Section 2 describes thealter synthesis prob-
lem in abstract terms, focusing on the specific way that otletrand plant are to be
separated. A sufficient condition for the desired contréglant separation is formu-
lated and proved. The undecidability of controller synihiésalso briefly discussed by
reduction to the Halting Problem in Section 2.1. In Sectiome3consider a computable
subset of the controller synthesis problem and argue thatdatlequate for practical
purposes. Section 4 discusses an example based on the igekiofy up food with
chopsticks, viewed as a control problem. Section 5 extegpslithe preceding ideas to
the case of continuous ASM, in which smoothly changing (asasediscretely chang-
ing) behaviours are admitted. Section 6 extends the diggus$ the chopsticks case
study by taking on board the continuous notions. Sectiomtlcales.

2 The Controller Synthesis Problem

We consider a generic ASM system consisting of basic ASMsruding straightforward
single variable locations and a simple element of nondétgsm. Following [2], for
our purposes, such a rule can be written as:

Op(pars) = 1)
if guard(xs,pars) then choose zs’ with rel(zs’, zs, params)
do zs = zs’

In (1), pars are the input parameters (as needed)andre the variables modified by
the rule. The rule’s guard iguard, andrel represents the relationship that is to hold
between the parameters, the before-values of the variableand their after-values
referred to as:s’, when the rule fires. As usual, in a single step of a run of tistesy,

all rules which are enabled (i.e. their guards are true) fineibaneously, provided that
the totality of updates defined thereby is consistent, dlseun aborts.

In this paper we are interested in control applications,\wadnvisage the design
done in a monolithic way at the outset, addressing systede-wesign goals before
plunging into the details of subsystem design. Thus thegdasiay start by being ex-
pressed using system-wide variables. However, by a pra¢ggadual refinement, the
collection of variables will eventually end up such thatteeariable can be identified as
belonging to either the controller-subsystem-to-be, erglant-subsystem-to-be. Nev-
ertheless, a legacy of the top-down design process is tha,raaeven all of the rules
will still involve variables of both kinds.

The controller synthesis problem is the problem of takinghsal collection of rules
(call it Sys), and separating it into one set of rules for the controlbatl (it Con) and
another set for the plant (call itla), each reading only the variables accessible to it,
and each modifying only its own variables, such that the doatlon of the rules in
Con and Pla generates the same behaviour (i.e. the same set of runs} asigimal
rulesetSys.!

Y In [2], the importance of distinguishingpntrolled functions frommonitored ones is stressed,
in a sense solving the controller synthesis problem righthatoutset since the distinction



We perform the separation in a systematic manner. We assheé¢he variables
Var of Sys can be partitioned intasc C Varg, the variables for which the con-
troller has write access, andp C Varp, the variables for which the plant has write
access, Wit/ arc N Varp = 0. We assume that for each rulee@arams) € Sys,
the guard can be written in the forgmard(xs, pars) = guardc(zsc, xs%, parsc) A
guardp(zsp,zst, parsp), wherezsS, are the plant variables to which the controller
has read access, and?, are the controller variables to which the plant has read ac-
cess. We also assume that for each rudé(xs’, xs, pars) can be written in the form
rel(zs’, xs, pars) = relc(xsc, xs%, parsc) Arelp(zsp, xst,, parsp). We say that a
system isadmissibleiff the above hold.

Under the above assumptions, the desired constructioteid/edy clear. For each
rule like (1) in Sys, we generate two fresh rules:

Opc(pars) = (2
if guardc(zsc,xs$,parsc) then choosexsy,

with relc(zsy, xsc, vsH, parsc) do xzsc = xsg
OpPp(pars) = 3)
if guardp(zsp,xst., parsp) then choosexs’,

with relp(zsp, xsp, xst, parsp) do zsp = zs)p

Of these, (2) goes int6'on and (3) goes intdla.

With Con and Pla thus constructed, and with initial states correspondicgly-
structed by restricting the initial states Sfs to the variables inVarc and Varp
respectively (by existentially quantifying olitar — Varp in Con, andVar — Vare
in Pla, provided there are no non-trivial joint initial proped)eit is evident that when-
ever a rule @ of Sys is enabled, the corresponding rules/and Cpp of Sysc and
Sysp will also be enabled (since their guards are just weakeroh@s’s guard). If we
thus consider the systeSysc. p, Which consists of the variables and initial states of
Sys,? and whose rules are the union of the®and Qpp rules, then whenever a rule
Op of Sys is enabled, it follows that itbysc p, OPc and Cpp will be enabled and
both will be scheduled simultaneously by the ASM schedufinticy, replicating the
update performed by ©in Sys. So the runs obys are a subset of the runs 8fs¢c 4 p.

On the other hand, they may beyeoper subset since the guards of the individual
Op¢c and Cpp rules are weaker than the guard ob,@nd so may enable one or other
of Op¢c and Cpp without the other being enabled. This is highly undesirdiden a
requirements point of view since the overall objective waachieve the behaviour of
Sys, and not to introduce some spurious additional behaviours.

Definition 1. A system Sys, with Var = Varc W Varp which is admissible, has a
resolvable controller synthesis problem iff, after the construction above, the runs of
Syscyp areexactly theruns of Sys.

already separates the controller from the plant. Our petisjeeis slightly different however,
since it permits this aspect to be ignored for a portion oféaelopment, and asks under what
conditions the separation can be done later in a systematic w

2 The initial states are recovered by conjoining initial esadfSysc andSysp.



Theorem 1. Supposea system Sy s isadmissible. Then Sys hasa resolvable controller
synthesis problemif:

For all rules Op, their derived rules Op- and OPp, and reachable states xs o
[ Domain(zs) A guardc(xzsc, xsp, parsc) = guard(xs,pars) | A

[ Domain(zs) A guardp(zsp, zst, parsp) = guard(zs, pars) ] 4
where Domain(zs) isthe domain theory for the development of Sys.

Proof: To get the result, it is sufficient to show that when (4) hplegery run of
Sysc+p IS a run of Sys, since we argued above that &lys runs areSyscyp runs
anyway. We proceed by induction on the length of the run. Tdeelzase is trivial since
the initial states ofSys and of Syscp are identical. Suppose then that we have the
result for all. Sysc. p runs of lengthn or less. Choose a run- of lengthn which is
extendable. This means that there is some rukg; €ay, that is enabled in the final state
xs reached by (the argument is symmetrical if it isip that is enabled). Since®p:

is enabled ines, guardc holds, whencguard holds by (4). Sincgyuardp weakens
guard, guardp holds, whence ©p is enabled. Since both® and Cpp are enabled,
the update of5ys is emulated bySysc. p in the next step of the run. The same argu-
ment applies for all rules fysc 4 p enabled incs, so that the nex$ysc. p step from

rr exactly mirrors a corresponding step®fs. Doing the same for all possible ways
of extending all extendable runs of lengtttompletes the inductive step. a

2.1 Undecidability of Controller Synthesis

The presence of reachability in (4) makes the undecidglufithe controller synthesis
problem relatively unsurprising, so we just briefly sketcheduction of the Halting
Problem. LetI’M be an arbitrary Turing Machine. L&) be an emulation of' M
by an ASM constructed in a rather obvious way: i.e. there islphabet of states,
another of tape symbols, a variable for the current statata structure for the tape,
and a separate rule for each transition in the transiticatiosl of 7M. Let T MY be
another such ASM emulation, isomorphicfa/2, but with all alphabets and variables
completely disjoint from those df'M/2. Consider the ASMTM8+P constructed as
in the previous section. It has twice as many rule$’'a$ has transitions, but they are
enabled pairwise at exactly the same momentf,MngP just emulates two disjoint
copies of "M running in lockstep. Consider the ASKIM. , » constructed by fusing
each corresponding pair of ruIesBMQUrP into a single rule by conjoining the guards,
and combining the updates. It has exactly as many rul@s\aas transitions' M2, p
andTMg+P are bisimilar to each other andTa\/. Now we modifyT" M2, and modify
T MY, as follows.

SinceT M is arbitrary, it may contain halting before-configs —i.eirpét, s) where
t is a tape symbol and is a state— from which no transition issuesZIf\/ has a
halting before-confidt, s), we do the following. Lef(t¢, s¢) be the counterpart of
(t,s)in TM2. ToT M2 we add a rule that implements a self-loop guarde¢tensc)
(without moving the tape head), gettiig\/¢. Let (tp, sp) be the counterpart df, s)



in TM%. To TMY we add a rule that implements a self-loop guardeds pralone
(i.e. ignoring the tape symbol, and without moving the taped), gettind" M p.

Now consider the two ASM systenBMcoap andT Mc4p. IN TMoap (wWhich
plays the role ofSys above), the stronger guard of tli&l/ rule in effect subsumes
the weaker one of th& Mp rule, and the fused rule is only enabled exactly when the
T Mg¢ rule is enabled. However i M4 p (which plays the role obyscy p above),
this is not the case. There, tH&\/p rule exists independently, and if the computation
of T'M reaches a machine configuration in which the tape symbol el are(t, s),
then theT'Mp rule is also enabled when the tape symbol and statél asg for some
t # t, giving rise to behaviours not reflectediiV ¢ p.

3 Computable Controller Synthesis

Restricting to a safe approximation to reachability, weagebmputable version of (4),
which we argue will be adequate for all practical purposes.

Theorem 2. Supposea system Sys isadmissibleand X S isa set of statesthat includes
all reachable states. Then Sys has a resolvable controller synthesis problemif:

For all rules Op, their derived rules Op- and OPp, and all zs € XS e
[ Domain(xs) A guardc(xsc, ©s%, parsc) F guard(zs, pars) | A
[ Domain(zs) A guardp(zsp, xst., parsp) b guard(xs, pars) | (5)

where Domain(zs) is the domain theory for Sys and F is provability in a suitable
system.

4 An Example: Eating with Chopsticks

We now look at a simple example of the preceding theory: gdtind with chopsticks.
Fig. 1 shows the forces involved in grasping a morsel of fodt whopsticks.

4.1 Food and Chopsticks

In a statically stable situation, the chopsticks extertésron the food, and the food
exerts equal and opposite forces on the chopsticks. Thedaxerted by the food are
fru on the upper chopstick anff. on the lower chopstick. For simplicity we assume
that these forces sum to zero (else the food would acce)eratecolineaf. Reacting

to fru andfg., the chopsticks exert their forcgscy and fucy, equal and opposite to
fru andfr.. So we have:

frutfro=0 (6)

% In reality, slight deviations from colinearity are compatesi for by forces of friction and
deformation arising from the food, aided where appropriayesurface tension forces coming
from any sauce that the food might be prepared in.



Fig. 1. Forces involved in grasping a piece of food with chopsticks.

frcu+ freL =0 (7)
fru+ frcu =0 (8)
frL+ frcL =0 (9)
|frul = |frLl = [frcul = [frel| > D (10)

The last of these (10), expresses a constraint that thesfaneationed have to be large
enough D) that they generate additional frictional forces (whicim ¢ee taken to be
proportional to them), sufficient to counteract gravity {@hwe have not taken into
account), thereby to stop the food from dislodging from thepsticks when lifted.

We can write this as an ASM model, with a rule:

GRASPFOOD = (12)
choose fry, fris flicur flict
with fry+ fre = flicu + ficr = Fru+ flicu = Fre + fict =0 A
|fIFU| = |f‘:L| = |ff-|cu| = |f{—|CL| =D
do fru:=fry fre = Fru Freu = Fhcw fred = el
grasped .= TRUE
There will be another rule BLODGEFOOD, differing from (11) in the replacement of
‘> D' by ‘< D’ and of TRUE by FALSE, regarding dislodgement of food as being due
to inadequate force, and disregarding any other malagrsston the part of the user.
Given the similarity of the two rules, we will not mentionif2 0obGEFoOD further,
unless it is unavoidable.

We can regard 8AsPFoOOD (and DSLODGEFOOD) as a simple design for a con-
trol system — the chopsticks are intended to control the fopdyrasping it. Thus
we can pursue our earlier strategy by separating the systienpiant (food) and con-
troller (chopsticks) subsystems. Thek&sPFOOD rule separates into BASPFOOD¢
and QRASPFOODp:

GRASPFOODc = (12)
/ /
choo_sefHICU, fHCl7 ) )
with fl,cy +/ch|_ =0A |lecu| =[fhcl =2 D
do fucu = fucus Frel = fhcLs
grasped := TRUE



GRASPFOODp = (13)
choose fry, fr

with fey + fr =0

do fru=fry, fro = fr

In (12) and (13) we see thatRAsPFOOD: only ‘owns’ fucy and frcL, So only as-
signs to those variables, ancR&SPFOODp only ‘owns’ fry and fr, so only assigns

to them. We also observe that some pieces BR&FOOD are not present in either
GRASPFOOD¢ or GRASPFOODp, namely the terms that relate the food forces to the
chopstick forces. This is explained by the observation thatrelevant equations are
part of the domain theory of statics: action and reactiorebmays equal statically, by
Newton’s Law. Additionally, that successful grasping readequate force is also part
of the domain, so we can write:

Domainrrc = fru+ fucu =0A frL + fret =0 A
(grasped = TRUE < |fucL| > D) (14)

Now, in the context of (14), it is easy to see that:

Domainppc N guardGRASPFOODC = QUGTdGRASPFOOD (15)

Domainprpc N guardGRASPFOODp F guardGRASPFOOD (16)

4.2 Chopsticks and Hand

The preceding was rather elementary. In particular, ityrexd that chopsticks some-
how grasp food by themselves, which is silly. In reality, pbticks are held in the right
hand, which causes them to exert the forces spoken of prayidlle now enrich our
model by considering the hand-chopstick system as a fucthetrol system, and de-
composing it further into a plant subsystem (the chopsticgmselves) and a controller
subsystem (the hand).

We refer to Fig. 1 again. For a solid object to remain stablgbnspace, it needs
to have four non-colinear forces summing to zero acting df giravity is acting (as it
normally is) then it supplies one force, and we derive thd-kmebwn fact that an object
needs to be supported from underneath by three or more flocssability.

This applies to the hand-chopstick system, where for siritpliwe can ignore grav-
ity. Given how chopstick are disposed with respect to thedhdris in fact convenient
to view the hand as exerting five forces per chopstick. Figndivs the forces involved.

The middle of the lower chopstick is held steady on the ringdmTypically it is
gently wedged in the angle between the edge of the fingenmnéhittee side of the fleshy
pad of the fingertip, which we model by the forchsi 1 and fui2 in Fig. 1. These are
predominantly directed in the plane of the diagram, with alsicomponent at right
angles, out of the plane of the diagram, towards the readherback end of the lower
chopstick is held on the fleshy part between the thumb and,hah the forces are
modeled byfu4 and fuis. Again these are mostly in the plane of the diagram, with a
small component outwards, towards the reader. Oppositlgeatiutwards components
is fuLs (the force drawn with the blob at its tail in Fig. 1), which ieeeted by the lower
end of the thumb, predominantly inwards into the diagram.



If the chopstick is merely being held steady, then thesesfostm to zero. However,
if food is being held, then the user adjusts the individuedés so that they sum fc. :

fHLL + fre + fas + frua + frss = fHel (17)

The story for the upper chopstick is similar. The forgeg: and fu2, formed by
the more pronounced wedge between first and second fingarssde firmly hold and
direct the middle of the chopstick in order to open and clbsechopsticks for grasping
food. Forcesfrus and fuus, exerted by the dip between the palm knuckle and first
knuckle of the index finger, support the back of the chopst#aid vertical movement
is restrained byfus, once more indicated with a blob at its tail in Fig. 1, exerbgd
the upper part of the thumb. Again, if the chopstick is jushgdneld steady, then these
forces sum to zero. However, if food is being grasped, they sum tof pcu:

frur + fruz + frus + frua + frus = frcu (18)

(N.B. In reality, many guides to eating with chopsticks maeoend all sorts of alterna-
tive configurations for holding chopsticks (see eg. [3]}, e configuration described
here is the only one that the first author has found to pernift bdequate chopstick
maneuvrability and sufficient deployable resultant forspecially when it comes to
bigger pieces of food.)

With these observation, we can decompose tla§&Fo00D¢s function into its
plant and controller subsystems, rules@>sTICKp and HAND¢.

In those rules, we have singled ofgy and fc. as output parameters in the sig-
nature of FAND for emphasis. They are quantities derived from the undegliiand
forces, which the chopsticks react to by setting their feaggpropriately. The equalities
frcu = fecuandfucL = fcL again become part of the domain theory of statics.

CHOPSTICKp = (19)
choose flcy, fiict

with fhcy + fhcL =0

do fucu:= fﬁcuv freL = flicl

HAND¢ (out fcu, feL) = (20)

/ I i ! ! / ! ! i !
choose fLy1, fliuzs fus Fhuva Frus fa Frae Fass fae Fas

with  fliys + Fhue + flius + flua + fhus +
fau + fae + fas + faa + fas =0
|ftus + Frve + faus + Fhua + fhusl =
\fta + fae + fhs + fwa + flsl = D
do fuur = flur--- Frus = fhus fre = faig - frs = flss
Feu = frus + Fauz + fhus + frua + Fhuss
feu = Fhu + Fae + Fls + Fh + Fs:
grasped := TRUE

5 Continuous Controller Synthesis

The reader may well have noticed that there are some slightiatural aspects of the
account of chopstick use that we gave. The ASM rules in theguliag section were



the usual kind of discrete ASM rules. However, grasping Wiagasticks is not the usual
kind of discrete event control system. In particular, bdte thopsticks and the food
react instantaneously to the force exerted by the othernahdo the previous value
maintained by the other, as one would expect in a normaletis@vent control system.
We handled this via the domain theory, which demanded teatpiposed forces exactly
matched, without giving any inkling as to how this might be@oplished.

In a more realistic account, the force applied by the chokstio the food moves
smoothly from zero to a value sufficient to ensure graspingd the food senses this and
smoothly reacts by offering a matching resistive force. 3ingden assignment to equal
and opposite values in the discrete picture is replaced ajrapdifferential equations
which state that the derivatives of the chopstick and foadds are equal and opposite
over time, which together with initial conditions statirtgat both are zero, guarantees
that the forces themselves remain equal and opposite.

Incorporating these insights into the ASM framework regsian extension of ASM
to include continuously varying behaviours as well as @itechanges. In [1] the au-
thors give such an extension which we briefly recapitulate no

5.1 Continuous ASM

We partition the variables into two subsets: thede variables whose types are dis-
crete sets, and thaiant variables, whose types include topologically dense sets, and
which are permitted to evolve both continuously and viamitechanges. By restricting
to mode variables alone, we recover the conventional dsé&8M framework.

Time is modelled as an intervdl of the real numberR, with a finite left endpoint
for the initial state, and with a right endpoint which is fen@r infinite, as needed: par-
titions into a sequence of left-closed right-openintesMaly . . . t1), [t1 . . - t2), . . .), the
coarsest partition such that all discontinuous changesgkace at some boundary point
t;. Mode variables are constant on each of these intervalée wli@nt variables evolve
continuously. Otherwise arbitrary continuous evolutoonstrained within reasonable
bounds by three main restrictions:

| Zeno: there is a constabte,, such that for ali needed{; 1 — t; > dzeno-

Il Limits: for every variablez, for every timet € 7, and withd > 0, the left limit
Pl

lims_,o z(t — §) written z(¢) and right limitlims_,o z(t + J), written z(¢) exist,
—
and for everyt, z(t) = z(t).

Il Differentiability: The behaviour of every pliant vafde z in the intervalt; . . . t;1+1)

is given by the solution of a well posed initial value probl@ns = ¢(xs,t)
(whereD is the time derivative).

The two kinds of variable (mode and pliant) are reflected ia kinds of transitions:
mode and pliant. Mode transitions, given by rules of the f@2d), just record discrete
transitions from before-values to after-values of vaeablvith the use of the left limit
for before-values and right limit for after-values makimg tsemantics of these transi-
tions instantaneous. Both kinds of variable can be subjeatrhode transition, and in
(21), where we decorate the variables with this limit infation, we single out inputs
1s and outputss in the signature of ©.



OR(in is,out &5) = (21)

. — . -
if guard(zs,is) then choosexrs,os with rel(rs, s, is,0s)
do zs,0s = s, 0s

Pliant transitions describe continuous changes for pliariables. While a mode tran-
sition captures a single before-/after-value pair, a pliensition is a family of before-
lafter-value pairs parameterized by the relevant timenmatét; . . .¢; ). The before-
value is, in each case, the valug atwhile the after-value refers to an arbitrary time in
the interval, so the two values are separated in time. A i@ fpliant transition can
be written as in (22), where the symbelsyntactically distinguishes a pliant transition
from a mode transition.

PLIOP(in is(t € () - - - tr(r))), OUt 0s(t € (tLr - - - tr(r)))) = (22)
if IV (xs(tye)) and guard(zs(tyy)) thenwith rel(ws,is, os,t)
do zs(t),os(t) = solveDE(xs(t),is(t),os(t),t)

In (22),L(t) = max{i|t; < t} andR(t) = min{i|¢; > ¢} so that we do not have
to statically know the index for the intervallt; ...t +1), thus making the notation
generic. FurthermordV andguard refer to the initial value and any additional guard
restriction that apply for the initial value problem|i3...¢; ). DFE is the differential
equation of the initial value problem, whilel expresses any additional constraints
that must hold beyon® E. Inputsis and output®s (shown as depending on the whole
interval(ty) - . - tr())) @gain appear in the signature. If, as can often happen, o kn
the form of the continuous behaviour that we want (in comttasnerely knowing a
differential equation for it), then we can replace guodveclause with a straightforward
assignment using @o.

A continuous ASM ruleset, consisting of rules as we haveritesd, iswell formed
iff the initial transition is a mode transition, every modartsition enables a pliant
transition (but no mode transition), and every pliant tiéms (except perhaps for a
final one) enables a mode transition (which, during runtipneempts it).

Given a conventional discrete ASM system, we can ratheiattyvturn it into a
continuous ASM system, as follows:

— consider the original discrete ASM rules as mode rules,

— decide on a fixed duratiah,

— determine that each state of the discrete event ASM systémeusist ford,,

— add continuous ASM rules setting time derivatives of all AStdte variables to 0,
— add a time variable, and enable all mode transitions aftegral multiples ob;.

5.2 Continuous Controller Synthesis

We can ask how the process of separating a set of rules intcolenand plant rules
goes, when we have pliant as well as mode transitions. Intfecprocess is very similar
to what went before. Since mode rules are identical to thesrwle considered earlier,
there is nothing new for them. For pliant rules, they alscetewuard and arel, and for

10



these we demand the same conditions as previously. Butithalso thesolveclause.
We need to stipulate that it separates cleanly into coetralhd plant in the same way
thatguard andrel do so that the rule as a whole splits neatly.

The tuple of differential equatior® xs = ¢(xs,t) contained in thesolve clause
naturally splits into twoD zs¢c = ¢c(zs,t) andD xsp = ¢p(xs,t). But there is no
apriori guarantee thapc (xs,t) contains only the variablessc, 5%, and¢p(zs, t)
contains only the variabless p, zs¥.. So this is what we must additionally demand for
admissibility.

It is clear that the embedding of discrete ASMs into contumi&SMs at the end
of the last section is admissible in the extended senseigmissed, provided the orig-
inal discrete ASM system is admissible, so that the propedierived for controller
synthesis in Sections 2 and 3 carry through essentiallyamgéd.

6 Continuous Grasping

Let us revisit the chopsticks case study in the continuoudl A&mework to see how
the latter can lend it a more persuasive air.

As before, we restrict the modeling to that of forces onlpé&iinow allowing them
to vary continuously). This avoids complications arisingnfi having to consider move-
ment of either the food or the chopsticks, or distortionshef shape of either the food
or chopsticks consequent on them experiencing the foregsvilamodel, and keeps the
model within a relatively limited space.

We concentrate on elaborating the simpler model in Sectibrildmet = 0 triggers
the intial mode rule:

START = (23)
if t=0 then

do mode := grasping, grasped :=undef,
Fru =0, fre =0, fucu =0, freL =0

Thegrasping mode enables the following pliant rule:

GRASPING = (24)

if mode = grasping then
do fru, frL, freu, freL =
solve[ D fru, D fri, D frcu, D freL ] = [ €7, —€;, —€;,€; ]

This rule causes the forcg¢sy, frL, fucu, fHcL to acquire suitable pairwise equal and
opposite rates of change, of magnitude 1, oriented alongnitevector of the z axis.
This causes these forces to change continuously (althouglet non-smoothi) away
from zero at a uniform rate. The continuous grasping persistil a timetsyop, When it

is determined whether enough force has been applied to helbod:

STOPGRASPED = if t =tsrop A fHcu = D then (25)
do mode := stop, grasped := TRUE

4 Since the derivatives of the forces jump discontinuously at 0, the forces themselves,
though continuous, experience a kink at 0.

11



STOPDISLODGED = if t = tgrop A fHcou < D then (26)
do mode := stop, grasped := FALSE

The stopped mode just enters a pliant final state:
F-IDLE = if mode = stop then do skip (27)

The above is all consistent with the domain theory (14),calgh the theory would
have to be augmented by various facts concerning time anddtigional variables
introduced above, in order that the natural continuous tparts of the statements in
(5) could hold®

6.1 Decomposing Continuous Grasping

We now look at applying the decomposition strategy disaliss#lier to the above
integrated model. We asssume that the chopsticks, as #entese in charge, and own
variables likemode andgrasped. We decompose the rules above one by one, starting
with START:

START¢ = (28)
if t=0 then

do mode := grasping, grasped :=undef, fucu :=0, fucL =0
STARTp = (29)

if t=0 thendo fry:=0, frL =0

Next, the decomposition of theFaspPINGrule. This yields:

GRASPINGe (0Ut of ey, of HeL) = (30)
if mode = grasping then
do fucu, freL :=solve[ D fucu, D freL | = [ — &, €],
of Heu = fHeu, of Hel := frel

GRASPINGP(in ifHCU;ifHCL) = (31)
if mode = grasping thendo fry := —ifncu, frL := —ifHeL

The above rules display a slightly more complex manner obdgmosition than we have
considered hitherto. Instead of merely partitioning thealdes and determining that
subsystem B has read access to some of the variables ownebdysteem A, we have
introduced input and output variables that do this job eihfi So the chopsticks have
output variable®sfycy andaof ycL, which are just copies of variableggicy and fycy,
and the food has input variablg&cu andifycL, which are used to read the relevant
values in. Thus, the modeling is a now little different inttliae food explicitly reacts
to the forces it senses (by generating equal and oppostedaf its own) — we have
substituted equals for equals, but have gone beyond thdesgyiptactic transformation
described earlier in the paper. Itis a natural temptatiatotthis at the more realistic and

5 The domain theory would also have to be supplemented withckgpaund theory of facts
about calculus, continuous mathematics etc., as needed.
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practical level of modeling that we have reached. Since ¢wevariables are just copies
of existing ones, only trivial modifications are needed ®¢harlier formal results.
Next are the $opPrules:

STOPGRASPED: = if t =tsrop A fHcu = D then (32)
do mode := stop, grasped ‘= TRUE

STOPDISLODGED: = if t = tsrop A frcu < D then (33)
do mode := stop, grasped := FALSE

STOPGRASPEDp = if t = tsrop then do skip (34)

STOPDISLODGEDp = if t = tsrop then do skip (35)

And lastly the final idle rules:

F-IDLEc = if mode = stop then do skip (36)
F-IDLEp = if mode = stop then do skip (37)

The preceding shows that the controller synthesis proestiat we have described
is as applicable to the continuous extension of ASM as it itheodiscrete version.
We could now go on to apply the same approach to create a counnversion of the
decomposed hand+chopsticks model, but lack of space geaweifrom doing this.

7 Conclusion

In this paper we have introduced the controller synthesiblpm for ASM systems.
The motivation was that from a goal oriented point of vievis ibften more convenient
to focus on overall system objectives at the outset, and $tppoe detailed implemen-
tation issues, such as the specific assignment of funciig@lcontroller or to plant,
till later.

We showed briefly that controller synthesis, as we have difinés undecidable,
and we gave a safe approximation. We then illustrated thelgmowith a case study
based on holding food with chopsticks.

We note that the conditions demanded of the controller artideoplant in our con-
ditions for safe controller synthesis in (4), each relae shibsystem in question to
the originating system (and only to the originating systefmus they are completely
symmetrical between the controller and plant and do not mgéther on there be-
ing exactly two subsystems in play. Therefore, the resuliegalizes to a partition of
the originating system into an arbitrary number of subsysteeach built in the same
fashion, with some variables to which it has exclusive waiteess, and a larger set of
variables to which it has read access.

The preceding remark is well illustrated by the chopstickecatudy, since after
the initial decomposition into food (plant) and hand plussticks (controller), we
were able to repeat the decomposition of the hand plus clegpstubsystem yielding a
further separation into chopsticks (plant) and hand (ailetr), resulting in a three way
partition of the original system.
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In practice, the successful satisfaction of the condition@) often demands that
a nontrivial domain theory plays a significant role. In effeéhis captures the fact that
control of a system can be achieved by applying certain 8dadt, only because natu-
ral laws connect these signals to the behaviour of otheesyattributes in a predictable
way. Our simple chopstick case study illustrated this adbiyr

We then considered continuous ASMs, and briefly discuss&dthe controller
synthesis problem could be extended to that formalismstilaing it with a further
elaboration of the chopsticks case study.

Although we have focused on a very simple scenario, the ittegtswe have ex-
plored have an applicability that is much wider than we haeationed hitherto, espe-
cially in the context of today’s hybrid and cyber-physicgdtems [6, 4,5, 7]. In these,
there is nowadays a strong tendency towards distributedisos to problems decrib-
able in a global manner. So the initial global conceptionha problem needs to be
decomposed into a number of subsystems that co-operatentatiie global solution.
Not only are many of these problems intrinsically contraddems anyway, making
our approach directly applicable, but the abstract versiothe decomposition tech-
nique that we have explored, tailored as it is to the det&ifsSM rule scheduling, acts
as a surrogate for a much wider gamut of problems and theitisok.
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