
ASM and Controller Synthesis

Richard Banach1⋆, Huibiao Zhu2⋆⋆, Wen Su2, and Xiaofeng Wu2

1School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk
2Software Engineering Institute, East China Normal University,

3663 Zhongshan Road North, Shanghai 200062, P.R. China.
{hbzhu,wensu,xfwu}@sei.ecnu.edu.cn

Abstract. While many systems are naturally viewed as the interaction between
a controller subsystem and a controlled, or plant subsystem, they are often most
easily understood and designed monolithically. A practical implementation needs
to separate controller from plant. We study the problem of when a monolithic
ASM system can be split into controller and plant subsystemsalong syntactic
lines derived from variables’ natural affiliations. We giverestrictions that enable
the split to be carried out cleanly, and we give conditions that ensure that the
resulting pair of controller and plant subsystems have the same behaviours as
the original design. We illustrate the theory with a case study concerning eating
with chopsticks. This leads to an extension of controller synthesis for continuous
ASM systems, which are briefly covered. The case study is thenextended into
the continuous sphere.

1 Introduction

Today, when one considers the ubiquity of embedded controllers, which take on the dig-
ital role in the interaction of a digital and an external system, it becomes clear that many
systems are naturally viewed as the interaction between a controller subsystem and a
controlled, or plant subsystem. Such systems are often mosteasily and conveniently
understood and designed monolithically — this allows the bulk of the design activity
to focus on the overall system goals rather than lower level detail. However, a practical
implementation needs to separate the controller from the plant, since it is the controller
which behaves according to a human-created digital design,and the plant behaves ac-
cording to patterns determined by the laws of nature. In thispaper we study the problem
of when a monolithic ASM system design, embodying this dual controller/plant nature,
can be split into separate controller and plant subsystems along generic syntactic lines

⋆ The majority of the work reported in this paper was done whilethe first author was a visiting
researcher at the Software Engineering Institute at East China Normal University. The support
of ECNU is gratefully acknowledged.

⋆⋆ Huibiao Zhu is supported by National Basic Research Programof China (No. 2011CB302904),
National High Technology Research and Development Programof China (No. 2011AA010101
and No. 2012AA011205), National Natural Science Foundation of China (No. 61061130541
and No. 61021004).

derived from the most natural associations of the system variables to one or other sub-
system. This requires that the monolithic design satisfies some simple criteriaab initio.

The rest of the paper is as follows. Section 2 describes the controller synthesis prob-
lem in abstract terms, focusing on the specific way that controller and plant are to be
separated. A sufficient condition for the desired controller/plant separation is formu-
lated and proved. The undecidability of controller synthesis is also briefly discussed by
reduction to the Halting Problem in Section 2.1. In Section 3we consider a computable
subset of the controller synthesis problem and argue that itis adequate for practical
purposes. Section 4 discusses an example based on the idea ofpicking up food with
chopsticks, viewed as a control problem. Section 5 extrapolates the preceding ideas to
the case of continuous ASM, in which smoothly changing (as well as discretely chang-
ing) behaviours are admitted. Section 6 extends the discussion of the chopsticks case
study by taking on board the continuous notions. Section 7 concludes.

2 The Controller Synthesis Problem

We consider a generic ASM system consisting of basic ASM rules using straightforward
single variable locations and a simple element of nondeterminism. Following [2], for
our purposes, such a rule can be written as:

OP(pars) =
if guard(xs, pars) then choose xs′ with rel(xs′, xs, params)

do xs := xs′

(1)

In (1), pars are the input parameters (as needed) andxs are the variables modified by
the rule. The rule’s guard isguard, andrel represents the relationship that is to hold
between the parameters, the before-values of the variablesxs, and their after-values
referred to asxs′, when the rule fires. As usual, in a single step of a run of the system,
all rules which are enabled (i.e. their guards are true) fire simultaneously, provided that
the totality of updates defined thereby is consistent, else the run aborts.

In this paper we are interested in control applications, andwe envisage the design
done in a monolithic way at the outset, addressing system-wide design goals before
plunging into the details of subsystem design. Thus the design may start by being ex-
pressed using system-wide variables. However, by a processof gradual refinement, the
collection of variables will eventually end up such that each variable can be identified as
belonging to either the controller-subsystem-to-be, or the plant-subsystem-to-be. Nev-
ertheless, a legacy of the top-down design process is that many, or even all of the rules
will still involve variables of both kinds.

The controller synthesis problem is the problem of taking such a collection of rules
(call it Sys), and separating it into one set of rules for the controller (call it Con) and
another set for the plant (call itPla), each reading only the variables accessible to it,
and each modifying only its own variables, such that the combination of the rules in
Con andPla generates the same behaviour (i.e. the same set of runs) as the original
rulesetSys.1

1 In [2], the importance of distinguishingcontrolled functions frommonitored ones is stressed,
in a sense solving the controller synthesis problem right atthe outset since the distinction

2

We perform the separation in a systematic manner. We assume that the variables
V ar of Sys can be partitioned intoxsC ⊆ V arC , the variables for which the con-
troller has write access, andxsP ⊆ V arP , the variables for which the plant has write
access, withV arC ∩ V arP = ∅. We assume that for each rule OP(params) ∈ Sys,
the guard can be written in the formguard(xs, pars) ≡ guardC(xsC , xsc

P , parsC) ∧
guardP (xsP , xs

p
C , parsP), wherexsc

P are the plant variables to which the controller
has read access, andxs

p
C are the controller variables to which the plant has read ac-

cess. We also assume that for each rule,rel(xs′, xs, pars) can be written in the form
rel(xs′, xs, pars) ≡ relC(xsC , xsc

P , parsC)∧ relP (xsP , xs
p
C , parsP). We say that a

system isadmissibleiff the above hold.
Under the above assumptions, the desired construction is relatively clear. For each

rule like (1) inSys, we generate two fresh rules:

OPC(pars) =
if guardC(xsC , xsc

P , parsC) then choosexs′C
with relC(xs′C , xsC , xsc

P , parsC) do xsC := xs′C

(2)

OPP (pars) =
if guardP (xsP , xs

p
C , parsP) then choosexs′P

with relP (xs′P , xsP , xs
p
C , parsP) do xsP := xs′P

(3)

Of these, (2) goes intoCon and (3) goes intoPla.
With Con andPla thus constructed, and with initial states correspondinglycon-

structed by restricting the initial states ofSys to the variables inV arC and V arP

respectively (by existentially quantifying outV ar − V arP in Con, andV ar − V arC

in Pla, provided there are no non-trivial joint initial properties), it is evident that when-
ever a rule OP of Sys is enabled, the corresponding rules OPC and OPP of SysC and
SysP will also be enabled (since their guards are just weakeningsof OP’s guard). If we
thus consider the systemSysC+P , which consists of the variables and initial states of
Sys,2 and whose rules are the union of the OPC and OPP rules, then whenever a rule
OP of Sys is enabled, it follows that inSysC+P , OPC and OPP will be enabled and
both will be scheduled simultaneously by the ASM schedulingpolicy, replicating the
update performed by OP in Sys. So the runs ofSys are a subset of the runs ofSysC+P .

On the other hand, they may be aproper subset since the guards of the individual
OPC and OPP rules are weaker than the guard of OP, and so may enable one or other
of OPC and OPP without the other being enabled. This is highly undesirablefrom a
requirements point of view since the overall objective was to achieve the behaviour of
Sys, and not to introduce some spurious additional behaviours.

Definition 1. A system Sys, with V ar = V arC ∪+ V arP which is admissible, has a
resolvable controller synthesis problem iff, after the construction above, the runs of
SysC+P are exactly the runs of Sys.

already separates the controller from the plant. Our perspective is slightly different however,
since it permits this aspect to be ignored for a portion of thedevelopment, and asks under what
conditions the separation can be done later in a systematic way.

2 The initial states are recovered by conjoining initial states ofSysC andSysP .

3

Theorem 1. Suppose a system Sys is admissible. Then Sys has a resolvable controller
synthesis problem if:

For all rules OP, their derived rules OPC and OPP , and reachable states xs •

[Domain(xs) ∧ guardC(xsC , xsc
P , parsC)⇒ guard(xs, pars)] ∧

[Domain(xs) ∧ guardP (xsP , xs
p
C , parsP)⇒ guard(xs, pars)] (4)

where Domain(xs) is the domain theory for the development of Sys.

Proof : To get the result, it is sufficient to show that when (4) holds, every run of
SysC+P is a run ofSys, since we argued above that allSys runs areSysC+P runs
anyway. We proceed by induction on the length of the run. The base case is trivial since
the initial states ofSys and ofSysC+P are identical. Suppose then that we have the
result for allSysC+P runs of lengthn or less. Choose a runrr of lengthn which is
extendable. This means that there is some rule, OPC say, that is enabled in the final state
xs reached byrr (the argument is symmetrical if it is OPP that is enabled). Since OPC

is enabled inxs, guardC holds, whenceguard holds by (4). SinceguardP weakens
guard, guardP holds, whence OPP is enabled. Since both OPC and OPP are enabled,
the update ofSys is emulated bySysC+P in the next step of the run. The same argu-
ment applies for all rules ofSysC+P enabled inxs, so that the nextSysC+P step from
rr exactly mirrors a corresponding step ofSys. Doing the same for all possible ways
of extending all extendable runs of lengthn completes the inductive step. ⊓⊔

2.1 Undecidability of Controller Synthesis

The presence of reachability in (4) makes the undecidability of the controller synthesis
problem relatively unsurprising, so we just briefly sketch areduction of the Halting
Problem. LetTM be an arbitrary Turing Machine. LetTM0

C be an emulation ofTM

by an ASM constructed in a rather obvious way: i.e. there is analphabet of states,
another of tape symbols, a variable for the current state, a data structure for the tape,
and a separate rule for each transition in the transition relation ofTM . Let TM0

P be
another such ASM emulation, isomorphic toTM0

C , but with all alphabets and variables
completely disjoint from those ofTM0

C . Consider the ASMTM0
C+P constructed as

in the previous section. It has twice as many rules asTM has transitions, but they are
enabled pairwise at exactly the same moments, soTM0

C+P just emulates two disjoint
copies ofTM running in lockstep. Consider the ASMTM0

C∧P constructed by fusing
each corresponding pair of rules ofTM0

C+P into a single rule by conjoining the guards,
and combining the updates. It has exactly as many rules asTM has transitions.TM0

C∧P

andTM0
C+P are bisimilar to each other and toTM . Now we modifyTM0

C , and modify
TM0

P , as follows.
SinceTM is arbitrary, it may contain halting before-configs —i.e. pairs (t, s) where

t is a tape symbol ands is a state— from which no transition issues. IfTM has a
halting before-config(t, s), we do the following. Let(tC , sC) be the counterpart of
(t, s) in TM0

C . ToTM0
C we add a rule that implements a self-loop guarded on(tC , sC)

(without moving the tape head), gettingTMC . Let (tP , sP) be the counterpart of(t, s)

4

in TM0
P . To TM0

P we add a rule that implements a self-loop guarded onsP alone
(i.e. ignoring the tape symbol, and without moving the tape head), gettingTMP .

Now consider the two ASM systemsTMC∧P andTMC+P . In TMC∧P (which
plays the role ofSys above), the stronger guard of theTMC rule in effect subsumes
the weaker one of theTMP rule, and the fused rule is only enabled exactly when the
TMC rule is enabled. However inTMC+P (which plays the role ofSysC+P above),
this is not the case. There, theTMP rule exists independently, and if the computation
of TM reaches a machine configuration in which the tape symbol and state are(t, s),
then theTMP rule is also enabled when the tape symbol and state are(t̃, s), for some
t̃ 6= t, giving rise to behaviours not reflected inTMC∧P .

3 Computable Controller Synthesis

Restricting to a safe approximation to reachability, we geta computable version of (4),
which we argue will be adequate for all practical purposes.

Theorem 2. Suppose a system Sys is admissible and XS is a set of states that includes
all reachable states. Then Sys has a resolvable controller synthesis problem if:

For all rules OP, their derived rules OPC and OPP , and all xs ∈ XS •

[Domain(xs) ∧ guardC(xsC , xsc
P , parsC) ⊢ guard(xs, pars)] ∧

[Domain(xs) ∧ guardP (xsP , xs
p
C , parsP) ⊢ guard(xs, pars)] (5)

where Domain(xs) is the domain theory for Sys and ⊢ is provability in a suitable
system.

4 An Example: Eating with Chopsticks

We now look at a simple example of the preceding theory: eating food with chopsticks.
Fig. 1 shows the forces involved in grasping a morsel of food with chopsticks.

4.1 Food and Chopsticks

In a statically stable situation, the chopsticks extert forces on the food, and the food
exerts equal and opposite forces on the chopsticks. The forces exerted by the food are
fffFU on the upper chopstick andfffFL on the lower chopstick. For simplicity we assume
that these forces sum to zero (else the food would accelerate) and colinear.3 Reacting
to fffFU andfffFL, the chopsticks exert their forcesfffHCU andfffHCL, equal and opposite to
fffFU andfffFL. So we have:

fffFU + fffFL = 000 (6)

3 In reality, slight deviations from colinearity are compensated for by forces of friction and
deformation arising from the food, aided where appropriate, by surface tension forces coming
from any sauce that the food might be prepared in.

5

•
•

fHCU

fHL1

fHU1

fHU2

fHU3

fHU4

fHU5

fHCL

fHL2

fHL3

fHL4

fHL5

fFU

fFL

Fig. 1. Forces involved in grasping a piece of food with chopsticks.

fffHCU + fffHCL = 000 (7)

fffFU + fffHCU = 000 (8)

fffFL + fffHCL = 000 (9)

|fffFU| = |fffFL| = |fffHCU| = |fffHCL| ≥ D (10)

The last of these (10), expresses a constraint that the forces mentioned have to be large
enough (D) that they generate additional frictional forces (which can be taken to be
proportional to them), sufficient to counteract gravity (which we have not taken into
account), thereby to stop the food from dislodging from the chopsticks when lifted.

We can write this as an ASM model, with a rule:

GRASPFOOD =
choosefff ′

FU, fff ′

FL, fff ′

HCU, fff ′

HCL
with fff ′

FU + fff ′

FL = fff ′

HCU + fff ′

HCL = fff ′

FU + fff ′

HCU = fff ′

FL + fff ′

HCL = 000 ∧
|fff ′

FU| = |fff
′

FL| = |fff
′

HCU| = |fff
′

HCL| ≥ D
do fffFU := fff ′

FU, fffFL := fff ′

FL, fffHCU := fff ′

HCU, fffHCL := fff ′

HCL,
grasped := TRUE

(11)

There will be another rule DISLODGEFOOD, differing from (11) in the replacement of
‘≥ D’ by ‘ < D’ and of TRUE by FALSE, regarding dislodgement of food as being due
to inadequate force, and disregarding any other maladroitness on the part of the user.
Given the similarity of the two rules, we will not mention DISLODGEFOOD further,
unless it is unavoidable.

We can regard GRASPFOOD (and DISLODGEFOOD) as a simple design for a con-
trol system — the chopsticks are intended to control the foodby grasping it. Thus
we can pursue our earlier strategy by separating the system into plant (food) and con-
troller (chopsticks) subsystems. The GRASPFOOD rule separates into GRASPFOODC

and GRASPFOODP :

GRASPFOODC =
choosefff ′

HCU, fff ′

HCL
with fff ′

HCU + fff ′

HCL = 000 ∧ |fff ′

HCU| = |fff
′

HCL| ≥ D
do fffHCU := fff ′

HCU, fffHCL := fff ′

HCL,
grasped := TRUE

(12)

6

GRASPFOODP =
choosefff ′

FU, fff ′

FL
with fff ′

FU + fff ′

FL = 000
do fffFU := fff ′

FU, fffFL := fff ′

FL

(13)

In (12) and (13) we see that GRASPFOODC only ‘owns’ fffHCU andfffHCL, so only as-
signs to those variables, and GRASPFOODP only ‘owns’ fffFU andfffFL, so only assigns
to them. We also observe that some pieces of GRASPFOOD are not present in either
GRASPFOODC or GRASPFOODP , namely the terms that relate the food forces to the
chopstick forces. This is explained by the observation thatthe relevant equations are
part of the domain theory of statics: action and reaction arealways equal statically, by
Newton’s Law. Additionally, that successful grasping needs adequate force is also part
of the domain, so we can write:

DomainFHC ≡ fffFU + fffHCU = 000 ∧ fffFL + fffHCL = 000 ∧

(grasped = TRUE⇔ |fffHCL| ≥ D) (14)

Now, in the context of (14), it is easy to see that:

DomainFHC ∧ guardGRASPFOODC
⊢ guardGRASPFOOD (15)

DomainFHC ∧ guardGRASPFOODP
⊢ guardGRASPFOOD (16)

4.2 Chopsticks and Hand

The preceding was rather elementary. In particular, it presumed that chopsticks some-
how grasp food by themselves, which is silly. In reality, chopsticks are held in the right
hand, which causes them to exert the forces spoken of previously. We now enrich our
model by considering the hand-chopstick system as a furthercontrol system, and de-
composing it further into a plant subsystem (the chopsticksthemselves) and a controller
subsystem (the hand).

We refer to Fig. 1 again. For a solid object to remain stable in3D space, it needs
to have four non-colinear forces summing to zero acting on it. If gravity is acting (as it
normally is) then it supplies one force, and we derive the well-known fact that an object
needs to be supported from underneath by three or more forcesfor stability.

This applies to the hand-chopstick system, where for simplicity, we can ignore grav-
ity. Given how chopstick are disposed with respect to the hand, it is in fact convenient
to view the hand as exerting five forces per chopstick. Fig. 1 shows the forces involved.

The middle of the lower chopstick is held steady on the ring finger. Typically it is
gently wedged in the angle between the edge of the fingernail and the side of the fleshy
pad of the fingertip, which we model by the forcesfffHL1 andfffHL2 in Fig. 1. These are
predominantly directed in the plane of the diagram, with a small component at right
angles, out of the plane of the diagram, towards the reader. The back end of the lower
chopstick is held on the fleshy part between the thumb and palm, and the forces are
modeled byfffHL4 andfffHL5. Again these are mostly in the plane of the diagram, with a
small component outwards, towards the reader. Opposing allthe outwards components
isfffHL3 (the force drawn with the blob at its tail in Fig. 1), which is exerted by the lower
end of the thumb, predominantly inwards into the diagram.

7

If the chopstick is merely being held steady, then these forces sum to zero. However,
if food is being held, then the user adjusts the individual forces so that they sum tofffHCL:

fffHL1 + fffHL2 + fffHL3 + fffHL4 + fffHL5 = fffHCL (17)

The story for the upper chopstick is similar. The forcesfffHU1 andfffHU2, formed by
the more pronounced wedge between first and second fingers, serves to firmly hold and
direct the middle of the chopstick in order to open and close the chopsticks for grasping
food. ForcesfffHU4 andfffHU5, exerted by the dip between the palm knuckle and first
knuckle of the index finger, support the back of the chopstick. And vertical movement
is restrained byfffHU3, once more indicated with a blob at its tail in Fig. 1, exertedby
the upper part of the thumb. Again, if the chopstick is just being held steady, then these
forces sum to zero. However, if food is being grasped, then they sum tofffHCU:

fffHU1 + fffHU2 + fffHU3 + fffHU4 + fffHU5 = fffHCU (18)

(N.B. In reality, many guides to eating with chopsticks recommend all sorts of alterna-
tive configurations for holding chopsticks (see eg. [3]), but the configuration described
here is the only one that the first author has found to permit both adequate chopstick
maneuvrability and sufficient deployable resultant force,especially when it comes to
bigger pieces of food.)

With these observation, we can decompose the GRASPFOODC function into its
plant and controller subsystems, rules CHOPSTICKP and HANDC .

In those rules, we have singled outfffCU andfffCL as output parameters in the sig-
nature of HANDC for emphasis. They are quantities derived from the underlying hand
forces, which the chopsticks react to by setting their forces appropriately. The equalities
fffHCU = fffCU andfffHCL = fffCL again become part of the domain theory of statics.

CHOPSTICKP =
choosefff ′

HCU, fff ′

HCL
with fff ′

HCU + fff ′

HCL = 000
do fffHCU := fff ′

HCU, fffHCL := fff ′

HCL

(19)

HANDC(out fffCU, fffCL) =
choosefff ′

HU1, fff ′

HU2, fff ′

HU3, fff ′

HU4, fff ′

HU5, fff ′

HL1, fff ′

HL2, fff ′

HL3, fff ′

HL4, fff ′

HL5
with fff ′

HU1 + fff ′

HU2 + fff ′

HU3 + fff ′

HU4 + fff ′

HU5 +
fff ′

HL1 + fff ′

HL2 + fff ′

HL3 + fff ′

HL4 + fff ′

HL5 = 000
|fff ′

HU1 + fff ′

HU2 + fff ′

HU3 + fff ′

HU4 + fff ′

HU5| =
|fff ′

HL1 + fff ′

HL2 + fff ′

HL3 + fff ′

HL4 + fff ′

HL5| ≥ D
do fffHU1 := fff ′

HU1 . . . fffHU5 := fff ′

HU5, fffHL1 := fff ′

HL1 . . . fffHL5 := fff ′

HL5,
fffCU := fff ′

HU1 + fff ′

HU2 + fff ′

HU3 + fff ′

HU4 + fff ′

HU5,
fffCL := fff ′

HL1 + fff ′

HL2 + fff ′

HL3 + fff ′

HL4 + fff ′

HL5,
grasped := TRUE

(20)

5 Continuous Controller Synthesis

The reader may well have noticed that there are some slightlyunnatural aspects of the
account of chopstick use that we gave. The ASM rules in the preceding section were

8

the usual kind of discrete ASM rules. However, grasping via chopsticks is not the usual
kind of discrete event control system. In particular, both the chopsticks and the food
react instantaneously to the force exerted by the other, andnot to the previous value
maintained by the other, as one would expect in a normal discrete event control system.
We handled this via the domain theory, which demanded that the opposed forces exactly
matched, without giving any inkling as to how this might be accomplished.

In a more realistic account, the force applied by the chopsticks to the food moves
smoothly from zero to a value sufficient to ensure grasping, and the food senses this and
smoothly reacts by offering a matching resistive force. Thesudden assignment to equal
and opposite values in the discrete picture is replaced by a pair of differential equations
which state that the derivatives of the chopstick and food forces are equal and opposite
over time, which together with initial conditions stating that both are zero, guarantees
that the forces themselves remain equal and opposite.

Incorporating these insights into the ASM framework requires an extension of ASM
to include continuously varying behaviours as well as discrete changes. In [1] the au-
thors give such an extension which we briefly recapitulate now.

5.1 Continuous ASM

We partition the variables into two subsets: themode variables, whose types are dis-
crete sets, and thepliant variables, whose types include topologically dense sets, and
which are permitted to evolve both continuously and via discrete changes. By restricting
to mode variables alone, we recover the conventional discrete ASM framework.

Time is modelled as an intervalT of the real numbersR, with a finite left endpoint
for the initial state, and with a right endpoint which is finite or infinite, as needed.T par-
titions into a sequence of left-closed right-open intervals,〈[t0 . . . t1), [t1 . . . t2), . . .〉, the
coarsest partition such that all discontinuous changes take place at some boundary point
ti. Mode variables are constant on each of these intervals, while pliant variables evolve
continuously. Otherwise arbitrary continuous evolution is constrained within reasonable
bounds by three main restrictions:

I Zeno: there is a constantδZeno, such that for alli needed,ti+1 − ti ≥ δZeno.

II Limits: for every variablex, for every timet ∈ T , and withδ > 0, the left limit

limδ→0 x(t − δ) written
−−→
x(t) and right limit limδ→0 x(t + δ), written

←−−
x(t) exist,

and for everyt, x(t) =
←−−
x(t).

III Differentiability: The behaviour of every pliant variablex in the interval[ti . . . ti+1)
is given by the solution of a well posed initial value problemD xs = φ(xs, t)
(whereD is the time derivative).

The two kinds of variable (mode and pliant) are reflected in two kinds of transitions:
mode and pliant. Mode transitions, given by rules of the form(21), just record discrete
transitions from before-values to after-values of variables, with the use of the left limit
for before-values and right limit for after-values making the semantics of these transi-
tions instantaneous. Both kinds of variable can be subject to a mode transition, and in
(21), where we decorate the variables with this limit information, we single out inputs
is and outputsos in the signature of OP.

9

OP(in
−→
is, out←−os) =

if guard(−→xs,
−→
is) then choose←−xs,←−os with rel(←−xs,−→xs,

−→
is,←−os)

do xs, os := ←−xs,←−os

(21)

Pliant transitions describe continuous changes for pliantvariables. While a mode tran-
sition captures a single before-/after-value pair, a pliant transition is a family of before-
/after-value pairs parameterized by the relevant time interval [ti . . . ti+1). The before-
value is, in each case, the value atti, while the after-value refers to an arbitrary time in
the interval, so the two values are separated in time. A rule for a pliant transition can
be written as in (22), where the symbol

c
= syntactically distinguishes a pliant transition

from a mode transition.

PLI OP(in is(t ∈ (tL(t) . . . tR(t))), out os(t ∈ (tL(t) . . . tR(t))))
c
=

if IV (xs(tL(t))) and guard(xs(tL(t))) then with rel(xs, is, os, t)
do xs(t), os(t) := solveDE(xs(t), is(t), os(t), t)

(22)

In (22), L(t) = max{i | ti ≤ t} andR(t) = min{i | ti > t} so that we do not have
to statically know the indexi for the interval[ti . . . ti+1), thus making the notation
generic. Furthermore,IV andguard refer to the initial value and any additional guard
restriction that apply for the initial value problem in[ti . . . ti+1). DE is the differential
equation of the initial value problem, whilerel expresses any additional constraints
that must hold beyondDE. Inputsis and outputsos (shown as depending on the whole
interval(tL(t) . . . tR(t))) again appear in the signature. If, as can often happen, we know
the form of the continuous behaviour that we want (in contrast to merely knowing a
differential equation for it), then we can replace thesolveclause with a straightforward
assignment using ado.

A continuous ASM ruleset, consisting of rules as we have described, iswell formed
iff the initial transition is a mode transition, every mode transition enables a pliant
transition (but no mode transition), and every pliant transition (except perhaps for a
final one) enables a mode transition (which, during runtime,preempts it).

Given a conventional discrete ASM system, we can rather trivially turn it into a
continuous ASM system, as follows:

– consider the original discrete ASM rules as mode rules,
– decide on a fixed durationδt,
– determine that each state of the discrete event ASM system will persist forδt,
– add continuous ASM rules setting time derivatives of all ASMstate variables to 0,
– add a time variable, and enable all mode transitions after integral multiples ofδt.

5.2 Continuous Controller Synthesis

We can ask how the process of separating a set of rules into controller and plant rules
goes, when we have pliant as well as mode transitions. In fact, the process is very similar
to what went before. Since mode rules are identical to the rules we considered earlier,
there is nothing new for them. For pliant rules, they also have aguard and arel, and for

10

these we demand the same conditions as previously. But thereis also thesolveclause.
We need to stipulate that it separates cleanly into controller and plant in the same way
thatguard andrel do so that the rule as a whole splits neatly.

The tuple of differential equationsD xs = φ(xs, t) contained in thesolveclause
naturally splits into two:D xsC = φC(xs, t) andD xsP = φP (xs, t). But there is no
a priori guarantee thatφC(xs, t) contains only the variablesxsC , xsc

P , andφP (xs, t)
contains only the variablesxsP , xs

p
C . So this is what we must additionally demand for

admissibility.
It is clear that the embedding of discrete ASMs into continuous ASMs at the end

of the last section is admissible in the extended sense just discussed, provided the orig-
inal discrete ASM system is admissible, so that the properties derived for controller
synthesis in Sections 2 and 3 carry through essentially unchanged.

6 Continuous Grasping

Let us revisit the chopsticks case study in the continuous ASM framework to see how
the latter can lend it a more persuasive air.

As before, we restrict the modeling to that of forces only (albeit now allowing them
to vary continuously). This avoids complications arising from having to consider move-
ment of either the food or the chopsticks, or distortions of the shape of either the food
or chopsticks consequent on them experiencing the forces that we model, and keeps the
model within a relatively limited space.

We concentrate on elaborating the simpler model in Section 4.1. Timet = 0 triggers
the intial mode rule:

START =
if t = 0 then

do mode := grasping, grasped := undef ,
fffFU := 000, fffFL := 000, fffHCU := 000, fffHCL := 000

(23)

Thegrasping mode enables the following pliant rule:

GRASPING
c
=

if mode = grasping then
do fffFU, fffFL, fffHCU, fffHCL :=

solve[DfffFU, DfffFL, DfffHCU, DfffHCL] = [eeez,−eeez,−eeez,eeez]

(24)

This rule causes the forcesfffFU, fffFL, fffHCU, fffHCL to acquire suitable pairwise equal and
opposite rates of change, of magnitude 1, oriented along theunit vector of the z axis.
This causes these forces to change continuously (although in fact non-smoothly4) away
from zero at a uniform rate. The continuous grasping persists until a timetSTOP, when it
is determined whether enough force has been applied to hold the food:

STOPGRASPED = if t = tSTOP ∧ fffHCU ≥ D then
do mode := stop, grasped := TRUE

(25)

4 Since the derivatives of the forces jump discontinuously att = 0, the forces themselves,
though continuous, experience a kink att = 0.

11

STOPDISLODGED = if t = tSTOP ∧ fffHCU < D then
do mode := stop, grasped := FALSE

(26)

The stopped mode just enters a pliant final state:

F-IDLE
c
= if mode = stop then do skip (27)

The above is all consistent with the domain theory (14), although the theory would
have to be augmented by various facts concerning time and theadditional variables
introduced above, in order that the natural continuous counterparts of the statements in
(5) could hold.5

6.1 Decomposing Continuous Grasping

We now look at applying the decomposition strategy discussed earlier to the above
integrated model. We asssume that the chopsticks, as controller, are in charge, and own
variables likemode andgrasped. We decompose the rules above one by one, starting
with START:

STARTC =
if t = 0 then

do mode := grasping, grasped := undef , fffHCU := 0, fffHCL := 0

(28)

STARTP =
if t = 0 then do fffFU := 0, fffFL := 0

(29)

Next, the decomposition of the GRASPINGrule. This yields:

GRASPINGC(out ofofofHCU, ofofofHCL)
c
=

if mode = grasping then
do fffHCU, fffHCL := solve[DfffHCU, DfffHCL] = [− eeez,eeez],

ofofofHCU := fffHCU, ofofofHCL := fffHCL

(30)

GRASPINGP (in ifififHCU, ifififHCL)
c
=

if mode = grasping then do fffFU :=−ifififHCU, fffFL :=−ifififHCL

(31)

The above rules display a slightly more complex manner of decomposition than we have
considered hitherto. Instead of merely partitioning the variables and determining that
subsystem B has read access to some of the variables owned by subsystem A, we have
introduced input and output variables that do this job explicitly. So the chopsticks have
output variablesofofofHCU andofofofHCL, which are just copies of variablesfffHCU andfffHCL,
and the food has input variablesifififHCU andifififHCL, which are used to read the relevant
values in. Thus, the modeling is a now little different in that the food explicitly reacts
to the forces it senses (by generating equal and opposite forces of its own) — we have
substituted equals for equals, but have gone beyond the simple syntactic transformation
described earlier in the paper. It is a natural temptation todo this at the more realistic and

5 The domain theory would also have to be supplemented with a background theory of facts
about calculus, continuous mathematics etc., as needed.

12

practical level of modeling that we have reached. Since the new variables are just copies
of existing ones, only trivial modifications are needed to the earlier formal results.

Next are the STOP rules:

STOPGRASPEDC = if t = tSTOP ∧ fffHCU ≥ D then
do mode := stop, grasped := TRUE

(32)

STOPDISLODGEDC = if t = tSTOP ∧ fffHCU < D then
do mode := stop, grasped := FALSE

(33)

STOPGRASPEDP = if t = tSTOP then do skip (34)

STOPDISLODGEDP = if t = tSTOP then do skip (35)

And lastly the final idle rules:

F-IDLEC
c
= if mode = stop then do skip (36)

F-IDLEP
c
= if mode = stop then do skip (37)

The preceding shows that the controller synthesis procedure that we have described
is as applicable to the continuous extension of ASM as it is tothe discrete version.
We could now go on to apply the same approach to create a continuous version of the
decomposed hand+chopsticks model, but lack of space prevents us from doing this.

7 Conclusion

In this paper we have introduced the controller synthesis problem for ASM systems.
The motivation was that from a goal oriented point of view, itis often more convenient
to focus on overall system objectives at the outset, and to postpone detailed implemen-
tation issues, such as the specific assignment of functionality to controller or to plant,
till later.

We showed briefly that controller synthesis, as we have defined it, is undecidable,
and we gave a safe approximation. We then illustrated the problem with a case study
based on holding food with chopsticks.

We note that the conditions demanded of the controller and ofthe plant in our con-
ditions for safe controller synthesis in (4), each relate the subsystem in question to
the originating system (and only to the originating system). Thus they are completely
symmetrical between the controller and plant and do not depend either on there be-
ing exactly two subsystems in play. Therefore, the result generalizes to a partition of
the originating system into an arbitrary number of subsystems, each built in the same
fashion, with some variables to which it has exclusive writeaccess, and a larger set of
variables to which it has read access.

The preceding remark is well illustrated by the chopstick case study, since after
the initial decomposition into food (plant) and hand plus chopsticks (controller), we
were able to repeat the decomposition of the hand plus chopsticks subsystem yielding a
further separation into chopsticks (plant) and hand (controller), resulting in a three way
partition of the original system.

13

In practice, the successful satisfaction of the conditionsin (4) often demands that
a nontrivial domain theory plays a significant role. In effect, this captures the fact that
control of a system can be achieved by applying certain signals to it, only because natu-
ral laws connect these signals to the behaviour of other system attributes in a predictable
way. Our simple chopstick case study illustrated this admirably.

We then considered continuous ASMs, and briefly discussed how the controller
synthesis problem could be extended to that formalism, illustrating it with a further
elaboration of the chopsticks case study.

Although we have focused on a very simple scenario, the ideasthat we have ex-
plored have an applicability that is much wider than we have mentioned hitherto, espe-
cially in the context of today’s hybrid and cyber-physical systems [6, 4, 5, 7]. In these,
there is nowadays a strong tendency towards distributed solutions to problems decrib-
able in a global manner. So the initial global conception of the problem needs to be
decomposed into a number of subsystems that co-operate to form the global solution.
Not only are many of these problems intrinsically control problems anyway, making
our approach directly applicable, but the abstract versionof the decomposition tech-
nique that we have explored, tailored as it is to the details of ASM rule scheduling, acts
as a surrogate for a much wider gamut of problems and their solutions.

References

1. Banach, R., Zhu, H., Su, W., Wu, X.: Continuous ASM, and a Pacemaker Sensing Fragment
(2011), these proceedings.

2. Börger, E., Stärk, R.: Abstract State Machines. A Method for High Level System Design and
Analysis. Springer (2003)

3. Google search: Eating with chopsticks
4. Platzer, A.: Logical Analysis of Hybrid Systems: ProvingTheorems for Complex Dynamics.

Springer (2010)
5. Sztipanovits, J.: Model Integration and Cyber Physical Systems: A Semantics

Perspective. In: Butler, Schulte (eds.) Proc. FM-11. Springer, LNCS 6664, p.1,
http://sites.lero.ie/download.aspx?f=Sztipanovits-Keynote.pdf (2011), Invited talk,
FM 2011, Limerick, Ireland

6. Tabuada, P.: Verification and Control of Hybrid Systems: ASymbolic Approach. Springer
(2009)

7. Willems, J.: Open Dynamical Systems: Their Aims and theirOrigins. Ruberti Lecture, Rome
(2007),
http://homes.esat.kuleuven.be/̃ jwillems/Lectures/2007/Rubertilecture.pdf

14

