
ASM, Controller Synthesis, and Complete Refinement

Richard Banacha,1, Huibiao Zhub,2, Wen Suc, Xiaofeng Wub

aSchool of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.

bShanghai Key Laboratory of Trustworthy Computing, East China Normal University,
3663 Zhongshan Road North, Shanghai 200062, P.R. China.

cSchool of Computer Engineering and Science, Shanghai University,
Shanghai, P.R. China.

Abstract

While many systems are naturally viewed as the interaction between a controller subsystem and a con-
trolled, or plant subsystem, they are often most easily initially understood and designed monolithically,
simply as a collection of variables that represent various aspects of the system, which interact in the most
self-evident way. A practical implementation needs to separate controller from plant though. We study
the problem of when a monolithic ASM system can be split into controller and plant subsystems along
syntactic lines derived from variables’ natural affiliations. We give restrictions that enable the split to
be carried out cleanly, and we give conditions that ensure that the resulting pair of controller and plant
subsystems have the same behaviours as the original design.We relate this phenomenon to the concept of
completerefinement in ASM. Making this strategy work effectively, usually requires a nontrivial domain
theory, into which a number of properties which are neither the sole possession of the controller subsys-
tem nor of the plant subsystem must be placed. We argue that these properties are latent in the original
monolithic model. We illustrate the theory with a case studyconcerning eating with chopsticks. This
leads to an extension of controller synthesis for continuous ASM systems, which are briefly covered.
The chopsticks case study is then extended into the continuous sphere.

1. Introduction

Today, when one considers the ubiquity of embedded controllers, which take on the digital role in the
interaction of a digital and an external system, it becomes clear that many systems are naturally viewed
as the interaction between a controller subsystem and a controlled, or plant subsystem. Regarding the
high level design of such systems, the fact that the ultimatedesign needs to be split into controller and
plant subsystems is evident from the outset. However, it is often easier in the earlier stages of design
to ignore that fact, and to focus exclusively on the overall system goals. This means postponing for the
time being the issue of how the solution arrived at is to be organised into the two subsystems. Such a
monolithicapproach means that there is simply less to worry about in theearlier stages of design, when
there is the most uncertainty concerning the most critical aspects of the problem. This allows the bulk of
this early design activity to focus on the overall goals rather than lower level technical detail.

Email addresses:banach@cs.man.ac.uk (Richard Banach),hbzhu@sei.ecnu.edu.cn (Huibiao Zhu),
wsu@shu.edu.cn (Wen Su),xfwu@sei.ecnu.edu.cn (Xiaofeng Wu)

1A large portion of the work reported in this paper was done while the first author was a visiting researcher at the Shanghai
Key Laboratory of Trustworthy Computing at East China Normal University. The support of ECNU is gratefully acknowledged.

2Huibiao Zhu is supported by National High Technology Research and Development Program of China (No.
2012AA011205), National Natural Science Foundation of China (No. 61361136002 and No. 61321064), Shanghai Knowledge
Service Platform Project (No. ZF1213) and Shanghai MinhangTalent Project.

Preprint submitted to Science of Computer Programming May 9, 2014

However, a practical implementation needs to separate the controller from the plant, since it is the
controller which behaves according to a human-created digital design, and the plant behaves according to
patterns determined by the laws of nature. In this paper we study the problem of when a monolithic ASM
system design, embodying this dual controller/plant nature, can be split into separate controller and plant
subsystems. This is to be done along generic syntactic linesderived from the most natural associations of
the system variables to one or other (controller or plant) subsystem. The approach generalises a specific
case study in which this task arose and where it was tackled rather informally [2]. We find that the success
of the generic approach to such a goal requires that the monolithic design satisfies some simple criteria
ab initio. As well as studying the problem from an abstract viewpoint,we present some examples.

In more detail, the rest of the paper is as follows. Section 2 describes the controller synthesis problem
in abstract terms, focusing on the specific way that controller and plant are to be separated. A sufficient
condition for the success of the desired controller/plant separation is formulated and proved. The unde-
cidability of controller synthesis is also discussed in Section 2.1 by reduction to the Halting Problem. In
Section 3 we consider a straightforward computable approximation to the controller synthesis problem,
and argue that it is adequate for practical purposes. Section 4 discusses the role of the domain theory in
the formulation of the controller synthesis problem — in many cases, the rules governing the behaviour
of the system overall, can be viewed as belonging neither entirely to the controller subsystem nor entirely
to the plant subsystem. Section 5 relates the preceding material to the ASM concept ofcomplete refine-
ment. When the controller synthesis problem is resolved successfully, each version of the overall system
description refines the other. Section 6 introduces an example based on the idea of picking up food
with chopsticks, viewed as a control problem. Section 7 extrapolates the preceding ideas to the case of
continuous ASM, in which smoothly changing (as well as discretely changing) behaviours are admitted.
Section 8 extends the discussion of the chopsticks case study by taking on board the continuous notions.
In section 9, we loosen the tight synchronisation between controller and plant, evident in the account so
far, to create a slightly more liberal framework for the continuous case. Section 10 concludes.

2. The Controller Synthesis Problem

We consider a generic ASM system consisting of basic ASM rules using straightforward single vari-
able locations and a simple element of nondeterminism. Following [6], for our purposes, such a rule can
be written as:

OP(pars) =
if guard(xs,pars) then choosexs′ with rel(xs′,xs,pars) do xs := xs′

(1)

In (1), pars are the input parameters (as needed) andxs are the variables modified by the rule. The
rule’s guard isguard, and rel represents the relationship that is to hold between the parameters, the
before-values of the variablesxs, and their after-values referred to asxs′, when the rule fires. As usual,
in a single step of a run of the system, all rules which are enabled (i.e. whose guards are true) fire
simultaneously, provided that the totality of updates defined thereby is consistent, else the run aborts.

In this paper we are interested in control applications, andwe envisage the design done in a mono-
lithic way at the outset, addressing system-wide design goals before plunging into the details of subsys-
tem design. Thus the design may start by being expressed using system-wide variables. However, by a
process of gradual refinement, the collection of variables will eventually end up such that each variable
can be identified as belonging to either the controller-subsystem-to-be, or the plant-subsystem-to-be. De-
spite this prospective partition of the variables though, atypical legacy of the top-down design process
will be that many, or even all, of the rules of the sytem description will still involve variables of both
kinds.

2

The controller synthesis problem is the problem of taking such a collection of rules (call itSys), and
separating it into one set of rules for the controller (call it Con) and another set for the plant (call itPla),
such that each subsystem of rules reads only the variables accessible to it, and each modifies only the
variables that it owns. Moreover, this is to be done in such a way that the combination of the rules inCon
andPla generates the same behaviour (i.e. the same set of runs) as the original rulesetSys.

Note that in [6], the importance of distinguishingcontrolledfunctions frommonitoredones is firmly
stressed, in one sense solving the controller synthesis problem right at the outset, since the distinction
already separates the controller from the plant. Our perspective is different however, since it permits this
aspect to be postponed for an initial portion of the development. In this sense, the activity ofderiving
which are the controlled and which are the monitored functions is brought under the umbrella of the
formal development processin our approach, since it permits some formal scrutiny of a stage of the
development that otherwise would be done entirely informally. Our goal in the present work is to ask
therefore under what conditions the separation can be done at a suitable moment in a systematic way.

We perform the separation in a systematic manner. We assume that the variablesVar of Syscan
be partitioned into the variables for which the controller has write access, writtenxsC ⊆ VarC, and
the variables for which the plant has write access, writtenxsP ⊆ VarP; with VarC ∩VarP = ∅. We
assume that for each rule OP(pars) ∈ Sys, the guard can be written in the formguard(xs,pars) ≡
guardC(xsC,xsc

P,parsC) ∧ guardP(xsP,xsp
C,parsP), wherexsc

P are the plant variables to which the con-
troller has read access, andxsp

C are the controller variables to which the plant has read access. We also as-
sume that for each rule, the update relationrel(xs′,xs,pars) can be written in the formrel(xs′,xs,pars) ≡
relC(xs′C,xsC,xsc

P,parsC) ∧ relP(xs′P,xsP,xsp
C,parsP). We say that a system isadmissible(with respect

to the given method of splitting) iff the above hold. (We alsocall a system admissible when the method
of splitting has not been explicitly described, but is hypothesised to exist — whereupon, if there is more
than one such splitting, it is assumed that one particular one is borne in mind and is to remain fixed for
the duration of the relevant discourse.3)

We view the ease with which an admissible splitting can be achieved for a given system as a vin-
dication of the appropriate and successful completion of the earlier stages of the development. In this
regard, and especially since the standard approach advocated in [6] is predicated on resolving these mat-
tersa priori, we expect that arriving at an admissible splitting should be no more problematic than the
invention of the initial system model would be in the conventional approach.

Under the above assumptions, the desired construction is relatively clear. For each rule like (1) in
Sys, we generate two fresh rules:

OPC(pars) =
if guardC(xsC,xsc

P,parsC) then choosexs′C with relC(xs′C,xsC,xsc
P,parsC)

do xsC := xs′C

(2)

OPP(pars) =
if guardP(xsP,xsp

C,parsP) then choosexs′P with relP(xs′P,xsP,xsp
C,parsP)

do xsP := xs′P

(3)

Of these, (2), called theC-portion, goes into the controller subsystemCon, and (3), called theP-portion,
goes into the plant subsystemPla. We complete the construction ofConandPla by defining their initial
states. These are constructed by restricting the initial states ofSysto the variables inVarC andVarP
respectively.

3In these circumstances, it does not matterwhichsuch splitting is intended, for, without further information, only remarks
which are generically applicable toall such splittings can be made.

3

(Technically, theCon, andPla initial states are generated by existentially quantifyingout the vari-
ablesVar−VarC of theSysinitial states inCon, and existentially quantifying out the variablesVar−VarP
of theSysinitial states inPla — provided there are no non-trivial joint initial properties. If there are non-
trivial joint initial properties, in other words if the set of initial states ofSysis not just the Cartesian
product of the initial states of theConvariables and the initial states of thePla variables, then the con-
struction cannot be carried through.)

Let us now consider the systemSysC+P, which consists of the variables and initial states ofSys, and
whose rules are the union of the OPC rules fromConand the OPP rules fromPla. It is rather obvious
that whenever a rule OP of Sysis enabled, inSysC+P, the corresponding rules OPC and OPP from SysC
andSysP will also be enabled, since their guards are just weakeningsof OP’s guard. Consequently the
runs ofSysare a subset of the runs ofSysC+P

(Returning to the issue of initial states, technically, theinitial states ofSysC+P are recovered by
conjoining initial state declarations ofSysC andSysP. This raises the intriguing possibility that more
states could be declared initial by doing this than are declared originally inSys, since the existential
quantifications in the initial declarations inSysC andSysP may include more states than are defined in the
initial declaration ofSysitself. We confirm that the ‘no non-trivial joint initial properties’ stipulation, as
defined above, prevents this, enabling the identification ofthe initial states ofSysC+P with those ofSys.)

Regarding runs though, the runs ofSysmay be apropersubset of the runs ofSysC+P since the guards
of the individual OPC and OPP rules are weaker than the guard of OP, and so, in certain states, may enable
one or other of OPC and OPP without the counterpart rule being enabled. This is highly undesirable from
a requirements point of view of course, since the overall objective was to achieve the behaviour ofSys,
and not to introduce some spurious additional behaviours.

Definition 2.1. A system Sys, with Var= VarC ∪+ VarP which is admissible, has a resolvable controller
synthesis problem iff, after the construction above, thereis a bijectionκ between the runs of Sys and the
runs of SysC+P, such that for each step of a run of Sys matched byκ to a run of SysC+P, the rules used in
the SysC+P step are exactly the C-portions and P-portions of the rules used in the corresponding step of
the Sys run.

Next, we give a sufficient condition for resolvability of thecontroller synthesis problem. It features
the domain theory for the development of the systemSys. The domain theory is intended as a repository
for facts about the variables in the two subsystems that are needed to establish the equivalence of the
original and partitioned systems. We elaborate the role of the domain theory much more extensively in
Section 4.

Theorem 2.2. Suppose a system Sys is admissible. Then Sys has a resolvablecontroller synthesis prob-
lem if:

For all rules OP, their derived rulesOPC and OPP, and reachable states xs•

[Domain(xs) ∧ guardC(xsC,xsc
P,parsC)⇒ guard(xs,pars)] ∧

[Domain(xs) ∧ guardP(xsP,xsp
C,parsP)⇒ guard(xs,pars)] (4)

where Domain(xs) is the domain theory for the development of Sys.

Proof: To get the result, it is sufficient to show that when (4) holds, every run ofSysC+P amounts to a
run of Sys, since we argued above that allSysruns areSysC+P runs already (under an obvious injection
of runsκ, that mapsSysruns toSysC+P runs by mapping eachSysstep to theSysC+P step consisting of
its C-portions andP-portions).

We proceed by induction on the length of the run. The base caseis trivial since the initial states ofSys
and ofSysC+P are stipulated to be identical. Suppose then that we have theresult for allSysC+P runs of

4

lengthn or less. Choose a runπ of lengthn, reaching statexs, which is extendable. This means that there
is some set of rules with a consistent update set in statexs, that is enabled inxs. Let OPC, a C-portion
rule, be one such rule (the argument is symmetrical forP-portion rules). Since OPC is enabled inxs, its
guardguardC holds, whenceguard holds by (4). SinceguardP weakensguard, guardP holds, whence
the correspondingP-portion, OPP, is enabled. Since both OPC and OPP are enabled for every such rule,
the update ofSysis emulated bySysC+P in the next step of the run. Doing the same for all possible ways
of extending all extendable runs of lengthn completes the inductive step. This allows us to conclude that
all runs ofSysC+P correspond to runs ofSysin a way that extendsκ to a bijection of the required kind.2

2.1. Undecidability of Controller Synthesis

The presence of the reachability criterion in (4) makes the following result relatively unsurprising.

Theorem 2.3. The resolvability of the controller synthesis problem is undecidable.

Proof: We outline a reduction of the Halting Problem to the controller synthesis problem. LetTM be an
arbitrary Turing Machine. LetTM0

C be an emulation ofTM by an ASM constructed in a rather obvious
way: i.e. there is an alphabet of states, another of tape symbols, a variable for the current state, a data
structure for the tape, and a separate rule for each transition in the transition relation ofTM. Let TM0

P be
another such ASM emulation, isomorphic toTM0

C, but with all alphabets and variable names completely
disjoint from those ofTM0

C. Therefore the following exist: a bijection between the (disjoint) alphabets of
states ofTM0

C andTM0
P; a bijection between the (disjoint) alphabets of tape symbols of TM0

C andTM0
P;

a bijection between values of the current state variables ofTM0
C andTM0

P; a bijection between the tape
data structures ofTM0

C andTM0
P; and a bijection between the sets of rules for theTM0

C andTM0
P versions

of the transitions ofTM that work with respect to the preceding collection of bijections.
Now consider the ASMTM0

C+P constructed as in the previous section. It has twice as many rules as
TM has transitions, but due to the bijections mentioned, they are enabled pairwise at exactly the same
moments, soTM0

C+P just emulates two disjoint copies ofTM running in lockstep.
By contrast, consider the ASMTM0

C∧P constructed as follows. We fuse each pair of rules ofTM0
C+P

that correspond via the bijections, into a single rule, by conjoining the two guards, and combining the
updates. The Turing MachineTM0

C∧P has exactly as many rules asTM has transitions since the doubling

in TM0
C+P has been removed. It is clear thatTM0

C∧P andTM0
C+P are strongly bisimilar to each other,

and toTM, by a simple inductive argument over the length of runs of these ASMs and ofTM. Now we
modify TM0

C, and modifyTM0
P, as follows.

SinceTM is arbitrary, it may contain halting before-configs —i.e. pairs (t,s) wheret is a tape symbol
ands is a state— from which no transition issues. IfTM has a halting before-config(t,s), we do the
following. Let (tC,sC) be the counterpart of(t,s) in TM0

C. To TM0
C we add a rule that implements a

self-loop guarded on(tC,sC) (without moving the tape head). Call the result of this modificationTMC.
Let (tP,sP) be the counterpart of(t,s) in TM0

P. ToTM0
P we add a rule that implements a self-loop guarded

on sP alone (i.e. ignoring the tape symbol, and without moving thetape head), calling this modification
TMP.

Now consider the two ASM systemsTMC∧P andTMC+P, created fromTMC andTMP by manipu-
lations analogous to the ones that producedTM0

C+P andTM0
C∧P from TM0

C andTM0
P. In TMC∧P (which

plays the role ofSysabove), the stronger guard of theTMC rule, in effect subsumes the weaker one of the
TMP rule, and the fused rule is only enabled exactly when theTMC rule is enabled. However inTMC+P

(which plays the role ofSysC+P above), this is not the case. There, theTMP rule exists independently,
and if the computation ofTM reaches a machine configuration in which the state iss, then theTMP rule
is enabled when the tape symbol and state are(t̃,s), for any t̃ 6= t (as well as when the tape symbol ist),
giving rise to observable behaviours not reflected inTMC∧P.

5

Since (the rules defining) the behaviour at the halting before-config(t,s) are the only thing we have
changed, we can say that if a before-config(t̃,s) (for any t̃) is neverreached during the computation of
TM, thenTMC∧P andTMC+P both reflect the behaviour ofTM, and thus stay in lockstep, and that there-
fore TMC∧P has a resolvable controller synthesis problem when it is resolved intoTMC andTMP and
these are subsequently recombined intoTMC+P. On the other hand, if a before-config(t̃,s) (for somẽt)
is reached during the computation ofTM, then the behaviour ofTMC∧P andTMC+P after the first occur-
rence of such a before-config differ, and thereforeTMC∧P does not have a resolvable controller synthesis
problem when it is resolved intoTMC andTMP and these are subsequently recombined intoTMC+P.
By the undecidability of the Halting Problem, we cannot in general determine algorithmically whether
a given halting before-config(t̃,s) is ever reached, so we cannot in turn algorithmically determine in
general whether the controller synthesis problem is resolvable or not.2

3. Computable Controller Synthesis

Restricting to a safe approximation to reachability, we geta computable version of (4), which we
argue will be adequate for all practical purposes.

Theorem 3.1. Suppose a system Sys is admissible and XS is a set of states that includes all reachable
states. Then Sys has a resolvable controller synthesis problem if:

For all rules OP, their derived rulesOPC and OPP, and all xs∈ XS•

[Domain(xs) ∧ guardC(xsC,xsc
P,parsC) ⊢ guard(xs,pars)] ∧

[Domain(xs) ∧ guardP(xsP,xsp
C,parsP) ⊢ guard(xs,pars)] (5)

where Domain(xs) is the domain theory for Sys and⊢ is provability in a suitable system.

4. The Role of the Domain Theory

In equations (4) and (5) we saw the presence of a domain theoryDomain(xs) underpinning the
derivability of the whole-system guard from the partial guards of the controller and plant subrules OPC

and OPP of a given whole-system rule OP. In this section we comment on this further.
In any formal development/verification system there will bea collection of definitions, of constants,

static mathematical objects etc., that create a context forthe remainder of the development. In ASM,
these entities will be captured by static rather than dynamic functions. Often, when discussing the for-
mal development/verification environment informally, onewill not always mention this static context
explicitly whenever it might be needed, but it will nevertheless still need to be present (for example
among the hypotheses of a verification condition), otherwise needed properties of the identifiers occur-
ring in a particular system model would be unavailable. Whatwe mean by a domain theory in this paper,
is an extension of this basic idea of a collection of axioms that support the remainder of the development.

Turning to the design process, one of the most natural consequences of early-phase monolithic design
is that all sorts of issues can get entangled from the beginning. This in itself is no bad thing, as we have
already said above, since it allows early-phase efforts to focus on the crucial application level issues
rather than on technicalities of structure, but it does makethe subsequent disentanglement rather more
challenging than it otherwise might be.

When we contemplate disentangling an integrated design into controller and plant, certain aspects
will naturally fall into the controller subsystem and others will naturally fall into the plant subsystem.
Thus, when we partition the variables during our process of controller synthesis, each variable goes into
either theConor thePla subsystem. However, there will typically be remaining parts of the monolithic
design where it is not immediately obvious how to handle the allocation to one or other subsystem. Thus

6

there will be properties of the overall design that mix the variables of the two subsystems. Frequently,
such aspects concern what might be referred to as elements ofphysical law that couple the behaviour of
controller and plant variables. After all, it is physical law of this kind that we rely on when we envisage
being able to adequately control the plant using the controller in the first place, given that they are, as we
describe, two separate (though coupled) systems. Such elements of the monolithic design, expressing
the unavoidable interdependence between the variables of the two subsystems, are the prime candidates
for inclusion in the domain theory.

A more crude, though rather effective way of putting it, is that once the variables have been parti-
tioned, and the rules and static properties of the original monolithic design that exclusively concern the
variables of one or other subsystem have been allocated to that subsystem, everything else goes into the
domain theory.

To illustrate with an example, suppose we have a system containing a massive body, whose motion
we want to influence by the application of a force. The thing that determines the force to be applied
to the body is Newton’s Second Law of Motion, namely that acceleration is proportional to the force
applied. In an integrated design, the Second Law would just be one of the equations that contributed to
the specification of the solution, and would be treated the same way as all the other equations contributing
to the design. However, in a design separated into controller and plant subsystems, one would have to
decide how to express the Second Law and where to put it.

We face two issues. One issue is that the Second Law is not something that applies exclusively to
the design being undertaken, but is much more generic. In that sense it does not ‘belong’ to the variables
to which it is applied, but is a much more widely applicable phenomenon of nature. The other issue is
whether the massive body and force both reside in one of the two subsystems into which we split our
monolithic design, or not, with, in the latter case, the force in the controller typically, and the body in the
plant. We address these in turn.

Regarding the first issue, the great general applicability of Newton’s Second Law suggests a highly
generic formulation. Newton’s Second Law conventionally readsF = mẍ. This contains the free identi-
fiersF, mandx — as well as globally understood constants for equality, application of the differentiation
operation with respect to time, and (implicitly) multiplication. Taking it for granted that the globally un-
derstood constants are part of the fabric of the formalism, the identifiersF, m andx cannot, though, be
taken as free in the normal formal sense. They stand for ‘typical’ names of force, mass and position in
‘typical’ informal descriptions of physical processes. Therefore, formally, they must be understood as
bound variables to be substituted with the actual variablespertaining to a given problem. Using fairly
conventional lambda notation, Newton’s Second Law can become: NSL=̂ λΦ.λµ.λξ.(Φ = µD.D.ξ),
whereD is a formal symbol for differentiation with respect to time.The ideal place for such a generic
expression of Newton’s Second Law would be in a shared domaintheory, from where it could be applied
by any subsystem that needed it.

To utilise theNSLform of the Second Law in a specific application, we would apply NSLto the actual
system variables which were subject to the Second Law. If these wereF,m,a respectively, we would
instantiate the bound variables ofNSL thus: NSL.F.m.a. This (or an equivalent formal mechanism)
would appropriately express: (a) the generality of Newton’s Second Law, (b) its application to a specific
example, and the relationship between these ideas.

Although the preceding gives an account of an ‘ideal’ methodof formally incorporating generally
applicable laws in a specific application, a couple of factors militate against following this process to the
letter. Firstly, there is the loss of clarity deriving from the use of multiple identifiers for essentially the
same thing, and the mechanisms of binding of free variables and instantiation of bound variables that
manage this — a development using this technique is bound to be more obscure than one which avoids
its use. Secondly, if mechanical reasoning (in any form) is to be used to support the development, then
having to manage the abstraction/application mechanisms explicitly will normally dramatically impact

7

the power of any such reasoning system in a negative way, to the detriment of the overall development.
It is thus recommended that a less ‘purist’ approach is used in practice in most cases, which brings

us to our second issue. Continuing with Newton’s Second Law,such a less purist approach would embed
an occurrence of the Second Law directly into the subsystem containing the variable being controlled by
it, where the law would be written directly using the variables involved, e.g.F = mDDx. In effect, the
previous application ofF,m,a to NSLwould be done informally.

If all the variables involved belonged to one or other subsystem, then there would be nothing more
to say. However, typically, the plant will contain the controlled variablex, but the controller will contain
the controlling forceF. In that case the plant subsystem will contain the rule expressingF = mDDx
and it must be the case that the force variable can be read by the plant subsystem. In this case, the role
of the domain theory would be reduced somewhat, since it would not need to contain the genericNSL
statement.

Still, in situations as just described, there is often a user/requirements-led motivation for each sub-
system to name the variables that it uses according to its ownconventions. If that were the case, then an
additional role for the domain theory would be to contain theequalities that connect differently named
instances of the same overall system variable in the two subsystems to each other. (Such a state of affairs
would also reduce the need for each subsystem to read variables of the other subsystem directly, as in (4)
or (5), although the needed access would now be via the domaintheory.)

Summarising, we have identified a range of roles for the domain theory in the context of controller
synthesis, beyond merely holding the static context of the application. They range from answering the
question:Where do you put the (generic, or inter-subsystem) physics?, to holding cross-cutting prop-
erties that interrelate variables of the two subsystems, toholding the gluing relationships that connect
differently named versions of the same entity in subsystemsadhering to their own internal naming con-
ventions. Moreover, the points that we have discussed are widely applicable beyond ASM to model
based approaches in general, since we have said practicallynothing that was ASM-specific.

Nevertheless, there is one further point thatis ASM-specific, to which we now turn. Consider a
rule OP of the undecomposed system whose guard might be writtenguard≡ guardC ∧ guardP, where
guardC andguardP are the guards of the decomposed rules OPC and OPP. In the undecomposed case,
ASM scheduling policy demands that only when bothguardC andguardP are true, does the rule OP fire
(since both together are equivalent toguard). In the decomposed case, therefore, to gain the equivalent
behaviour, i.e. that the firing of either of OPC or OPP implies also the simultaneous firing of the other, we
would need that each ofguardC andguardP implies the other, too. Now, it might be that the simultaneous
truth ofguardC andguardP could follow from the truth of one of them alone, but it is highly unlikely that
real designers would create a high level system design containing such a level of redundancy. Therefore,
in general, each ofguardC andguardP would, alone, be too weak to enable us to deduceguard (and
thus the enabledness of OP) when only one of them held. Consequently, in order to able beto derive
guardwhen only one ofguardC or guardP is available, we would be forced, in general, to rely on some
additional information.

It becomes an additional duty of the domain theory that we have been discussing, to supply the addi-
tional information needed. Normally, this additional information will be a consequence of the properties
of the earlier monolithic design anyway, since our controller synthesis strategy amounts, in the end, to
a kind of syntactic rearrangement, and thus should not introduce new semantic properties. However,
the conjunction of theguardC andguardP guards in the monolithic rule, may conveniently obscure the
underlying physical reason why neither part of the rule can fire without the other, and in the separation
of the two subsystems, these reasons may need to be brought out more clearly in the properties contained
in the domain theory. So, as well as its job of expressing the static context of the application, and its
potential to act as repository for facts at the interface of controller and plant, the facts that the domain
theory contains should be designed in such a way that the domain theory can succeed in bridging the gap

8

• •

• •

••

• • ••

. . .

.

m steps

n steps

x x′

y′y

RX,Y(x, y) RX,Y(x′, y′)

Figure 1: An ASM(m,n) diagram, showing howm abstract steps, going from statex to statex′ simulaten concrete steps,
going fromy to y′. The simulation is embodied in the equivalenceRX,Y, which holds for the before-states of the series of steps
RX,Y(x,y), and is re-established for the after-states of the seriesRX,Y(x′,y′).

between either ofguardC or guardP alone, and their conjunction, in the way indicated in (4) and(5).
Like any formal derivation challenge, bridging the indicated gap can itself be relatively easy, or

potentially difficult. In the worst case, it may require a detailed reachability argument, established by an
induction over run length. However, the contents of the domain theory should be construed, at least in
part, with the aim of helping to make this goal tractable. We have observed earlier that, in principle, the
domain theory should not contain anything that is not a consequence of the original monolithic system.
But this does not prevent it from explicitly mentioning lessobvious consequences of these foundations
as derived theorems, so that they may be more conveniently used to ease the proof of (4) and (5).

5. ASM Complete Refinement

In this section we explore the connection between the resolvability of the controller synthesis problem
and the ASM concept of complete refinement. First we briefly review the necessary technical machinery.

In general, to prove that a concrete ASM systemY is a refinement of an abstract ASM systemX, we
verify so-called(m,n) diagrams, in whichm abstract steps simulaten concrete ones in an appropriate
way. The situation is illustrated in Fig. 1. It will be sufficient for us to focus on the refinement proof
obligations (POs) which are the embodiment of this policy.

In Fig. 1 the equivalence,4 RX,Y, between abstract and concrete states, holds at the beginning and
end of the(m,n) pair. This permits us to ‘glue together’ such(m,n) diagrams to create relationships
between abstract and concrete runs in whichRX,Y is periodically re-established. For our purposes, it will
be sufficient to restrict to the(1,1) case.

The first PO is the initialization PO:

∀ y•YInit(y)⇒ (∃ x•XInit(x) ∧ RX,Y(x,y)) (6)

which demands that for every concrete initial statey there is anR-related abstract initial statex.
The second PO is correctness. The PO is concerned with the verification of (m,n) diagrams. In the

general case, we would have to have some way of deciding which(m,n) diagrams are sufficient for the
application in question, a problem that would often requirean application-specific solution. However in
the simpler(1,1) case the solution is much more generic, amounting to straightforward(1,1) simulation
of all concrete steps, expressed by the following correctness PO:

∀ x,y,y′ •RX,Y(x,y) ∧ YOP(y,y′)⇒ (∃ x′ •XOP(x,x′) ∧RX,Y(x′,y′)) (7)

4For the purposes of this paper, it is sufficient that the equivalence is understood to be a bijection.

9

In (7), it is demanded that whenever there is a concrete step YOP(y,y′) carried out by a concrete operation
YOP (where, by an operation, we mean a maximal enabled set of rules — provided its updates are
consistent), andRX,Y(x,y) holds in the before-state, then an abstract step XOP(x,x′) can be found to
re-establish the equivalenceRX,Y(x′,y′).

The ASM refinement policy also demands that non-terminationbe preserved from concrete to ab-
stract runs. (The examples in this paper will not need this though.)

Assuming that (6) holds, and that we can prove (7) foreachconcrete step YOP(y,y′), then the
concrete model is acorrect (1,1) refinement of the abstract model. A correct refinement ensures that
all functional properties of the concrete system, as seen through the equivalenceR, are suitably reflected
as properties of the abstract system. This is because of the direction of the implication in (7).

If we have a correct(1,1) refinement, and in addition, the abstract system is also a correct refinement
of the concrete system using the converse of the same equivalenceR, then we have acomplete refine-
ment (of the abstract system by the concrete system). A complete refinement corresponds, in our model
based world, to what is termed a strong bisimulation (through the state equivalence and input and output
relations and their converses) in more abstract terminology. In a complete refinement, we can reverse the
direction of the argument about preservation of properties, and state that the functional properties of the
abstract system are preserved by the concrete system.

We return now to the controller synthesis problem, and show that resolvable controller synthesis
coincides with a special case of complete refinement.

Theorem 5.1. Let Sys be a system of ASM rules, and suppose that Sys is decomposed, according to a
suitable partition of the variables, into two systems of rules Con and Pla, as described above. Let SysC+P

be the recombined system. Then Sys has a resolvable controller synthesis problem with respect to the
decomposition given, iff SysC+P is a complete refinement of Sys with respect to:

(i) the equivalence on states defined by the identity restricted to reachable states, and,

(ii) the set of(1,1) diagrams given by:

(a) relating each single Sys ruleOP to the simultaneous execution of its C-portionOPC and its
P-portionOPP, and,

(b) generating all the(1,1) diagrams(XOP,YOP) derivable therefrom by the simultaneous
scheduling (when simultaneously enabled), of maximal setsof Sys rules and their corre-
sponding C- and P- portions — i.e. ifXOP is a transition ofOP1 . . .OPn, this being a max-
imal set of simultaneously enabled Sys rules in some state ofSys, then the corresponding
YOP is the corresponding transition ofOPC,1,OPP,1 . . .OPC,n,OPP,n.

In (i) of Theorem 5.1 we restrict the equivalence to reachable states in order that the weaker guards of the
SysC+P rules do not enable them to fire at inopportune places in the state space that do not correspond to
reachable states ofSys.

Proof: SupposeSyshas a resolvable controller synthesis problem with respectto the given decomposition
into ConandPla. We must show thatSysC+P is a complete refinement ofSyswith respect to the identity
equivalence on reachable states and the set of(1,1) diagrams given by refining a singleSysrule to the
simultaneous execution of itsC-portion andP-portion (and operations generated thereby).

To do this we must firstly show that all instances of the initialization PO (6), hold as given, and that
they also hold when the roles of abstract (Sys) and concrete (SysC+P) systems are reversed. However,
since the sets of initial states ofSysandSysC+P are identical by construction, and the equivalenceR is an
identity, this is essentially trivial.

10

Secondly, we must show that all instances of the correctnessPO (7), hold as given for abstractSys
and concreteSysC+P systems, and that they also hold with the roles of abstract and concrete reversed.
Let y be a concrete (i.e.SysC+P) state, reachable from some initial state via some runπ. Let x be another
name fory (allowing us to conveniently regardx as an abstract (i.e.Sys) state, also reachable from the
same initial state via the counterpart ofπ matched by theκ of Definition 2.1). Sincex = y, we have
R(x,y) whereR is equality on reachable states. SupposeSysC+P makes a step COPC+P(y,y′). Then,
sinceSyshas a resolvable controller synthesis problem, COPC+P(y,y′) consists of pairs ofC-portions
andP-portions ofSysrules, each pair derived by decomposing a singleSysrule. Therefore, the set of
correspondingSysrules can also make an abstract step AOP(x,x′), where AOP consists of theSysrules
mentioned, andx′ = y′ (so thatR(x′,y′)). This establishes (7), showing that the AOP step simulates the
COPC+P step. SinceR is an identity, and the steps ofSysC+P (whereSyshas a resolvable controller
synthesis problem) are always performed by sets of theC-portions andP-portions ofSysrules, it is easy
to invert this argument to show that for every such AOP step, the corresponding COPC+P step simulates
it too. In this manner, aggregating over all reachable states and all steps issuing from them, gives us the
complete refinement required.

For the converse, suppose thatSysC+P is a complete refinement ofSyswith respect to the identity
equivalence on reachable states, and the set of(1,1) diagrams given by refining a singleSysrule to the
pair of itsC-portion andP-portion (and the set of operations that this generates). Wemust show thatSys
has a resolvable controller synthesis problem with respectto the given decomposition intoConandPla.

We proceed by induction on the length of runs. The base case istrivial since the initial states ofSys
and ofSysC+P are stipulated to be identical. SoSysandSysC+P have the same set of runs of length zero.

For the inductive step, we assume that the set of runs ofSysof lengthn or less, is in bijective corre-
spondence with the set of runs ofSysC+P of lengthn or less, via a bijectionκn, in which corresponding
steps ofκn-related runs are performed by a set of rules in theSyscase, and exactly the set ofC-portions
andP-portions of the same set of rules in theSysC+P case. To go ton+ 1, consider one such runπ of
lengthn of Syswhich is extendable. If aSysstep extendsπ, it is easy to see that, since we have acomplete
refinement, theSysstep can be simulated by aSysC+P step that splits each rule in theSysstep into its
C-portion and itsP-portion. Equally, since we have a refinement, and this covers all steps ofSysC+P by
definition, all steps ofSysC+P are performed by sets of pairs ofC-portions andP-portions ofSysrules
(because of the way that the(1,1) diagrams of the refinement are defined), and therefore we easily see
that anySysC+P step that extends theκn image of aSysrun π, will be simulated in the obvious way by a
Sysstep that recombines all theC-portions andP-portions of theSysC+P step. This extendsκn to this pair
of extended runs. Doing the same for all possible extensionsof all lengthn runs completes the inductive
step. Ultimately we arrive at the required bijection between all runs ofSysand those ofSysC+P. 2

6. An Example: Eating with Chopsticks

We now look at a simple example of the preceding theory: eating food with chopsticks. To keep
things simple, we do a statics based treatment of the problem, neglecting many aspects that would make
it more realistic. For example, we neglect the role of gravity which obviously plays a part in genuine
situations. Likewise, we ignore the role of the moments of the forces that we do consider round the
fulcrum point of application on the chopsticks, viewing theproblem as if all the forces were applied at a
single point in order to simplify the calculations (the moments must balance of course). In this simplified
framework, Fig. 2 shows the forces involved in grasping a morsel of food with chopsticks.

6.1. Food and Chopsticks

In a statically stable situation, the chopsticks extert forces on the food, and the food exerts equal and
opposite forces on the chopsticks. The forces exerted by thefood arefff FU on the upper chopstick and

11

•
•

fHCU

fHL1

fHU1

fHU2

fHU3

fHU4

fHU5

fHCL

fHL2

fHL3

fHL4

fHL5

fFU

fFL

Figure 2: Forces involved in grasping a piece of food with chopsticks.

fff FL on the lower chopstick. For simplicity we assume that these forces sum to zero (else the food would
accelerate) and are also colinear.5 Reacting tofff FU andfff FL, the chopsticks exert their forcesfff HCU and
fff HCL, equal and opposite tofff FU andfff FL. So we have:

fff FU + fff FL = 000 (8)

fff HCU + fff HCL = 000 (9)

fff FU + fff HCU = 000 (10)

fff FL + fff HCL = 000 (11)

| fff FU |= | fff FL |= | fff HCU |= | fff HCL |≥ D (12)

The last of these (12), expresses a constraint that the forces that we have mentioned in this problem
have to be large enough (D) that they generate additional frictional forces (which can be taken to be
proportional to the forces mentioned), which are sufficientto counteract gravity (which we have not
taken into account), and which thereby stop the food from dislodging from the chopsticks when lifted.

We can write this as an ASM model, with a rule:

GRASPFOOD =
choosefff ′FU, fff ′FL, fff ′HCU, fff ′HCL

with fff ′FU + fff ′FL = fff ′HCU + fff ′HCL = fff ′FU + fff ′HCU = fff ′FL + fff ′HCL = 000 ∧
| fff ′FU |= | fff

′
FL |= | fff

′
HCU |= | fff

′
HCL |≥ D

do fff FU := fff ′FU, fff FL := fff ′FL, fff HCU := fff ′HCU, fff HCL := fff ′HCL,
grasped:= TRUE

(13)

There will be another rule DISLODGEFOOD, differing from (13) in the replacement of ‘≥ D’ by ‘ < D’
and of TRUE by FALSE, which models the dislodgement of food as being due to the application of
inadequate force, and disregarding any other maladroitness on the part of the user. Given the similarity
of the two rules, we will not mention DISLODGEFOOD further, unless it is unavoidable, in order to avoid
clutter.

We can regard GRASPFOOD (and DISLODGEFOOD) as a simple design for a control system — the
chopsticks are intended to control the food by grasping it. Thus we can pursue our earlier strategy by

5In reality, slight deviations from colinearity are compensated for by forces of friction and deformation arising from the
food, aided where appropriate, by surface tension forces coming from any sauce that the food might be prepared in (as wellas
many other similar considerations which we neglect).

12

separating the system into plant (food) and controller (chopsticks) subsystems. The GRASPFOOD rule
separates into GRASPFOODC and GRASPFOODP:

GRASPFOODC =
choosefff ′HCU, fff ′HCL

with fff ′HCU + fff ′HCL = 000∧| fff ′HCU |= | fff
′
HCL |≥ D

do fff HCU := fff ′HCU, fff HCL := fff ′HCL,
grasped:= TRUE

(14)

GRASPFOODP =
choosefff ′FU, fff ′FL

with fff ′FU + fff ′FL = 000
do fff FU := fff ′FU, fff FL := fff ′FL

(15)

In (14) and (15) we see that GRASPFOODC only ‘owns’ fff HCU andfff HCL, so only assigns to those variables,
and GRASPFOODP only ‘owns’ fff FU andfff FL, so only assigns to them. We also observe that some pieces
of GRASPFOOD are not present in either GRASPFOODC or GRASPFOODP, namely the terms that relate
the food forces to the chopstick forces. This is explained bythe observation that the relevant equations
are part of the domain theory of statics: action and reactionarealwaysequal statically, by Newton’s
Third Law. (This is an example of our comments in Section 4, with the domain theory playing the role
of ‘somewhere to put the physics’.) Additionally, the statement that successful grasping needs adequate
force is also part of the domain theory, so we can write the domain as:

DomainFHC ≡ fff FU + fff HCU = 000∧ fff FL + fff HCL = 000∧ (grasped= TRUE ⇔ | fff HCL |≥ D) (16)

Now, in the context of (16), it is easy to see that:

DomainFHC ∧ guardGRASPFOODC ⊢ guardGRASPFOOD (17)

DomainFHC ∧ guardGRASPFOODP ⊢ guardGRASPFOOD (18)

6.2. Chopsticks and Hand

The preceding was rather elementary. In particular, it presumed that chopsticks somehow grasp food
by themselves, which is silly. In reality, chopsticks are held in the right hand, which causes them to
exert the forces spoken of previously. We can now enrich our model by considering the hand-chopstick
system as a further control system, and decomposing it further into a plant subsystem (the chopsticks
themselves) and a controller subsystem (the hand).

We refer to Fig. 2 again. For a solid object to remain stable in3D space, it needs to have four non-
colinear forces summing to zero acting on it. If gravity is acting (as it normally is) then it supplies one
force, and we derive the well-known fact that an object needsto be supported from underneath by three
or more forces for stability.

This applies to the hand-chopstick system, where for simplicity, we are ignoring gravity. Given how
chopstick are disposed with respect to the hand, it is in factconvenient to view the hand as exerting five
forces per chopstick. Fig. 2 shows the forces involved.

The middle of the lower chopstick is held steady on the ring finger. Typically it is gently wedged
in the angle between the edge of the fingernail and the side of the fleshy pad of the fingertip, which
we model by the forcesfff HL1 andfff HL2 in Fig. 2. These are predominantly directed in the plane of the
diagram, with a small component at right angles, out of the plane of the diagram, towards the reader. The
back end of the lower chopstick is held on the fleshy part between the thumb and palm, and the forces are
modeled byfff HL4 andfff HL5. Again these are mostly in the plane of the diagram, with a small component
outwards, towards the reader. Opposing all the outwards components isfff HL3 (the force drawn with the

13

blob at its tail in Fig. 2), which is exerted by the lower end ofthe thumb, predominantly inwards into the
diagram.6

If the chopstick is merely being held steady, then these forces sum to zero. However, if food is being
held, then the user adjusts the individual forces so that they sum tofff HCL:

fff HL1 + fff HL2 + fff HL3 + fff HL4 + fff HL5 = fff HCL (19)

The story for the upper chopstick is similar. The forcesfff HU1 and fff HU2, formed by the more pro-
nounced wedge between first and second fingers, serves to firmly hold and direct the middle of the
chopstick in order to open and close the chopsticks for grasping food. Forcesfff HU4 andfff HU5, exerted by
the dip between the palm knuckle and first knuckle of the indexfinger, support the back of the chopstick.
And vertical movement is restrained byfff HU3, once more indicated with a blob at its tail in Fig. 2, exerted
by the upper part of the thumb. Again, if the chopstick is justbeing held steady, then these forces sum to
zero. However, if food is being grasped, then they sum tofff HCU:

fff HU1 + fff HU2 + fff HU3 + fff HU4 + fff HU5 = fff HCU (20)

With these observations, we can decompose the GRASPFOODC function into its plant and controller
subsystems, rules CHOPSTICKP and HANDC.

In those rules, we have singled outfff CU andfff CL as output parameters in the signature of HANDC for
emphasis. They are quantities derived from the underlying hand forces, which the chopsticks react to by
setting their forces appropriately. The equalitiesfff HCU = fff CU andfff HCL = fff CL again become part of the
domain theory of statics.

CHOPSTICKP =
choosefff ′HCU, fff ′HCL

with fff ′HCU + fff ′HCL = 000
do fff HCU := fff ′HCU, fff HCL := fff ′HCL

(21)

HANDC(out fff CU, fff CL) =
choosefff ′HU1, fff ′HU2, fff ′HU3, fff ′HU4, fff ′HU5, fff ′HL1, fff ′HL2, fff ′HL3, fff ′HL4, fff ′HL5

with fff ′HU1 + fff ′HU2 + fff ′HU3 + fff ′HU4 + fff ′HU5+
fff ′HL1 + fff ′HL2 + fff ′HL3 + fff ′HL4 + fff ′HL5 = 000
| fff ′HU1 + fff ′HU2 + fff ′HU3 + fff ′HU4 + fff ′HU5 |=
| fff ′HL1 + fff ′HL2 + fff ′HL3 + fff ′HL4 + fff ′HL5 |≥ D

do fff HU1 := fff ′HU1, fff HU2 := fff ′HU2, fff HU3 := fff ′HU3, fff HU4 := fff ′HU4, fff HU5 := fff ′HU5,
fff HL1 := fff ′HL1 fff HL2 := fff ′HL2, fff HL3 := fff ′HL3, fff HL4 := fff ′HL4, fff HL5 := fff ′HL5,
fff CU := fff ′HU1 + fff ′HU2 + fff ′HU3 + fff ′HU4 + fff ′HU5,
fff CL := fff ′HL1 + fff ′HL2 + fff ′HL3 + fff ′HL4 + fff ′HL5,
grasped:= TRUE

(22)

The above completes our brief treatment of chopstick use viastatics.

6N.B. In reality, many guides to eating with chopsticks recommend all sorts of alternative configurations for holding chop-
sticks — the reader may get a good idea of the various possibilities from a simple Google search on the topic of eating with
chopsticks. The configuration described here is the only onethat the first author has found that permits both adequate chopstick
maneuvreability and sufficient deployable resultant force, especially when it comes to bigger pieces of food. A lot depends on
the precise development of the musculature in the forearm ofan individual, and how it is able to compel the fingers to exert
forces in specific directions. Starting young helps a lot.

14

7. Continuous Controller Synthesis

The reader may well have noticed that there are some slightlyunnatural aspects of the account of
chopstick use that we gave. The ASM rules in the preceding section were the usual kind of discrete
ASM rules. However, grasping via chopsticks is not the usualkind of discrete event control system.
In particular, in line with the behaviour of all physical systems, both the chopsticks and the food react
instantaneously to the force exerted by the other, and not tosome previous value maintained by the other,
the latter being what one would expect in a normal discrete event control system. We handled this via
the domain theory, which demanded that the opposed forces exactly matched, without giving any inkling
as to how this might be accomplished.

In a more realistic account, the force applied by the chopsticks to the food moves smoothly from zero
to a value sufficient to ensure grasping, and the food senses this and smoothly reacts by offering a match-
ing resistive force. The sudden assignment to equal and opposite values in the discrete picture is replaced
by a pair of differential equations which state that the derivatives of the chopstick and food forces are
equal and opposite over time, which together with initial conditions stating that both are zero, guarantees
that the forces themselves remain equal and opposite. Obviously this is again an oversimplification of
reality, but it is sufficient to illustrate the next chapter of our controller synthesis story.

Incorporating these insights into the ASM framework requires an extension of ASM to include con-
tinuously varying behaviours as well as discrete changes. In [3], a work subsequently expanded and
elaborated in [5] and [4], the authors give such an extensionwhich we briefly recapitulate now.

7.1. Continuous ASM

We partition the variables into two subsets: themode variables, whose types are discrete sets, and
the pliant variables, whose types include topologically dense sets, and which are permitted to evolve
both continuously and via discrete changes. By restrictingto mode variables alone, we recover the
conventional discrete ASM framework.

Time is modelled as an intervalT of the real numbersR, with a finite left endpoint for the initial
state, and with a right endpoint which is finite or infinite, asneeded.T partitions into a sequence of
left-closed right-open intervals,〈[t0 . . . t1), [t1 . . . t2), . . .〉, the coarsest partition such that all discontinuous
changes take place at some boundary pointti . (The actual time pointsti are determined by the runtime
behaviour of the system during some run, as becomes clear from the account below.) Mode variables
are constant on each of these intervals, while pliant variables evolve continuously. Otherwise arbitrary
continuous evolution is constrained within reasonable bounds by three main restrictions:

I Zeno: there is a constantδZeno, such that for alli needed,ti+1− ti ≥ δZeno.

II Limits: for every variablex, for every timet ∈ T , and withδ > 0, the left limit limδ→0 x(t− δ)

written
−→
x(t) and right limit limδ→0 x(t+ δ), written

←−
x(t) exist, and for everyt, x(t) =

←−
x(t).

III Differentiability: The behaviour of every pliant variable x in the interval[ti . . . ti+1) is given by the
solution of a well posed initial value problemDxs= φ(xs, t) (wherexs is an appropriate vector of
pliant variables, andD is the time derivative).

Regarding these three conditions, we make the following additional comments. Re. I, the presence
or absence of Zeno behaviour is most often a property of the global reachability relation of a system
permitting the kind of hybrid behaviour we are admitting, often depending sensitively on the relative
values of various constants in the system model. So I is more of a desirable goal andaide memoirethan
a condition that could be imposed as a static restriction. ReII, the admittance of different left and right
limits is just what is needed to accommodate discontinuous changes that take place instantaneously. The

15

space of functions defined by II is well studied in stochasticanalysis, where it goes by the name of càdlàg.
Re III, as well as differential equationsper se, we admit direct assignments of continuous behaviour, and
even implicit assignment to any function obeying a stated set of restrictions, providedthese are capable
of being defined by a well posed initial value problem. In practice, this means restriction to absolutely
continuous functions; they have the property of being solutions to well posed initial value problems in
the sense of Carathéodory, see [10].

The two kinds of variable (mode and pliant) are reflected in two kinds of transitions: mode and
pliant. Mode transitions, given by rules of the form (23) below, just record discrete transitions from
before-values to after-values of variables, with the use ofthe left limit for before-values and right limit
for after-values giving an instantaneous interpretation to the semantics of these transitions. Both kinds
of variable can be subject to a mode transition, and in (23), which is a typical ASM rule syntax for an
instantaneous transition, in which the variables have beendecorated with the relevant limit information,7

we single out inputsis and outputsos in the signature of OP.

OP(in
−→
is ,out←−os) =

if guard(−→xs,
−→
is) then choose←−xs,←−os with rel(←−xs,−→xs,

−→
is ,←−os)

do xs,os := ←−xs,←−os

(23)

Pliant transitions describe continuous changes for pliantvariables. While a mode transition captures
a single before-/after-value pair, a pliant transition is afamily of before-/after-value pairs parameterized
by the relevant time interval[ti . . . ti+1). The before-value is, in each case, the value atti , while the
after-value refers to an arbitrary time in the interval, so the two values are temporally separated. A rule
for a pliant transition can be written as in (24), where the symbol

c
= syntactically distinguishes a pliant

transition from a mode transition.

PLI OP(in is(t ∈ (tL(t) . . . tR(t))),out os(t ∈ (tL(t) . . . tR(t))))
c
=

if IV(xs(tL(t))) and guard(xs(tL(t))) then with rel(xs, is,os, t)
do xs(t),os(t) := solveDE(xs(t), is(t),os(t), t)

(24)

In (24), L(t) = max{i | ti ≤ t} and R(t) = min{i | ti > t} so that we do not have to statically know the index
i for the interval[ti . . . ti+1), thus making the notation generic. Furthermore,IV andguard refer to the
initial value and any additional guard restriction that apply for the initial value problem in[ti . . . ti+1).8

The solvekeyword announces that what follows is a differential equation DE that defines the needed
behaviour of the initial value problem, whilerel expresses any additional constraints that must hold
beyondDE. Inputs is and outputsos (shown as depending on the whole interval(tL(t) . . . tR(t))) again
appear in the signature. If, as can often happen, we know the form of the continuous behaviour that we
want (in contrast to merely knowing a differential equationthat specifies it), then we can replace the
solveclause with a straightforward assignment using ado, bearing in mind that what is being expressed
is a time-indexed family of individual assignments.

We say that a continuous ASM ruleset iswell formed iff the initial state is regarded as being estab-
lished by the (after-state of atrue-guarded) initial mode transition,9 and:

• Every enabled mode transition is feasible, i.e. has an after-state, and on its completion
enables a pliant transition (but does not enable any mode transition).

(25)

7So the overarrows are just semantic decoration, and not partof the syntax.
8In a pliant transition, it is often convenient to separate guard restrictions applying to mode variables, which are bound to

remain true during the whole of the ensuing pliant transition, from initial value constraints on pliant variables, which are prone
to failure immediately that the continuous evolution commences. We can put the former inguardand the latter inIV .

9Formulating the initial state this way simplifies the description of the formal operational semantics in [5] a little.

16

• Every enabled pliant transition is feasible, i.e. has a time-indexed family of after-states, and
EITHER:

(i) During the run of the pliant transition a mode transitionbecomes enabled. It preempts
the pliant transition, defining its end. ORELSE

(ii) During the run of the pliant transition it becomes infeasible: finite termination.
ORELSE

(iii) The pliant transition continues indefinitely: nontermination.

(26)

Although it is rather selfevident that the preceding informal account of the continuous extension of
ASM misses out much of the fine detail of a complete operational semantics, in the kind of relatively
simple continuous behaviours that are usually of interest in applications like ours, intuition is a powerful
guide to the required behaviour, and the full details may be safely relegated to a more precise treatment,
as can be found in [5]. Accordingly, in this paper, we contentourselves with the sketch just given.

7.2. Continuous ASM as an Extension of Conventional ASM

Given the above outline of continuous ASM, we can regard it asa conservative extension of tradi-
tional, discrete ASM, by embedding a generic conventional discrete ASM system into continuous ASM
in the following manner:

• We consider all of the original discrete ASM rules as mode rules.

• We decide on a fixed durationδt > 0 for all the pliant transitions.

• We determine that each state of the discrete event ASM systemwill persist forδt.

• We add continuous ASM rules for all needed pliant transitions (perhaps only one), that in effect
just skip in a continuous manner (by setting the time derivatives of all ASM state variables to 0
where needed).

• We add a time variablet say, and enable all mode transitions after the elapse of any integral multiple
of δt (by adding an expression like “t/δt ∈ N” to each mode rule guard).

We see that the above merely expresses a specific instance of that which is normally assumed without
comment in discrete transition systems. Thus (firstly), in aconventional discrete transition system, transi-
tions are normally understood to take place instantaneously. Also (secondly), as soon as such a transition
has taken place, the state variables already have the valuesthat will enable the next transition (since they
do not change in between transitions). However (thirdly), this next transition does not take place straight
away (which would imply that it happened at the same instant as the preceding transition, and hence, by
induction, that the entire run of the discrete transition system took place at a single moment of time), but
is normally assumed to take place some time later.

7.3. Continuous ASM Refinement

In the context of the preceding account, a natural question arises regarding the impact on ASM re-
finement. In fact, given the clean way our continuous extension of ASM extends the discrete framework,
and the extreme flexibility of the notion of discrete ASM refinement, very little has to change. It is
possible to set up a notion of continuous ASM refinement by allowing, in a generic(m,n) diagram, the
abstract and concrete operation sequences XOP(x,x′) and YOP(y,y′) to consist of arbitrary sequences of
interleaved mode and pliant transitions, rather than them being sequences of exclusively mode transitions
as in the discrete case. The POs (6) and (7) remain unchanged.

In this case, XOP defines a function from time to state values, lasting from thebeginning of the first
operation of XOP to the end of the last operation of XOP, taking suitable limits if these are needed to

17

obtain precise values. Similarly for YOP. These initial and final value pairs are the ones appearing inthe
equivalencesR(x,y) andR(x′,y′) in the POs. And with these technical details understood, theprinciple
of abutting occurrences of(m,n) diagrams to form a simulation between runs remains unchanged.

It is worth pointing out that the above remarks, in not demanding more than the original POs of
the discrete version, donot stipulate any particular restriction on the relative passage of time in the
abstract and concrete models, nor on any other aspect not explicitly mentioned. We can interpret the
great flexibility of the original ASM refinement notion as encouraging the greatest possible flexibility
in the continuous extension, accompanied of course, by the responsibility of justifying any particular
decision taken in any particular application, against the requirements.

7.4. Continuous Controller Synthesis

We can ask how the process of separating a set of rules into controller and plant rules works, when
we have pliant as well as mode transitions. In fact, the process is very similar to what went before. Since
mode rules are identical to the rules we considered earlier,there is nothing new for them. For pliant
rules, they also have aguardand arel, and for these we demand the same conditions as previously. But
there is also thesolveclause. We need to stipulate that it separates cleanly into controller and plant in
the same way thatguardandrel do so that the rule as a whole splits neatly.

The tuple of differential equationsDxs= φ(xs, t) contained in thesolveclause of aSysrule naturally
splits into two:DxsC = φC(xs, t) andDxsP = φP(xs, t). But there is noa priori guarantee thatφC(xs, t)
contains only the variablesxsC,xsc

P, andφP(xs, t) contains only the variablesxsP,xsp
C. So for admissi-

bility, we must additionally demand the following:φC(xs, t) contains occurrences of only the variables
xsC,xsc

P, andφP(xs, t) contains occurrences of only the variablesxsP,xsp
C.

With these provisos, the pliant counterparts of (1) and (2)-(3) become, respectively, (24) and:

PLI OPC(in isC(t ∈ (tL(t) . . . tR(t))),out osC(t ∈ (tL(t) . . . tR(t))))
c
=

if IVC(xsC(tL(t)),xsc
P(tL(t))) and guardC(xsC(tL(t)),xsc

P(tL(t)))
then with relC(xsC,xsc

P, isC,osC, t)
do xsC(t),osC(t) := solveDEC(xsC(t),xsc

P(t), isC(t),osC(t), t)

(27)

PLI OPP(in isP(t ∈ (tL(t) . . . tR(t))),out osP(t ∈ (tL(t) . . . tR(t))))
c
=

if IVP(xsP(tL(t)),xsp
C(tL(t))) and guardP(xsP(tL(t)),xsp

C(tL(t)))

then with relP(xsP,xsp
C, isP,osP, t)

do xsP(t),osP(t) := solveDEP(xsP(t),xsp
C(t), isP(t),osP(t), t)

(28)

It is now clear that the embedding of discrete ASMs into continuous ASMs outlined at the end of the last
section is admissible in the extended sense just discussed,provided the original discrete ASM system
is admissible, so that the properties derived for controller synthesis in Sections 2 and 3 carry through
essentially unchanged.

We can also say that the remarks about domain theories made inSection 4 remain true in the con-
tinuous context, particularly when we recognise that differential equations couple instantaneous rates
of change of variables at some timet, to values of variables atthe sametime t, in a manner analogous
to the situation we have already seen in the statics treatment of chopstick use in Section 6. And if we
further observe that(1,1) refinement for an abstract/concrete pair of pliant transitions in the continuous
case can be regarded as a time-parameterised family of discrete(1,1) refinement relations, relating ab-
stract/concrete before-values attL(t) to abstract/concrete after-values att (for all t ∈ (tL(t) . . . tR(t))), then
the results on complete refinement in Section 5 carry throughin the appropriate manner as well.

18

8. Continuous Grasping

We now revisit the chopsticks case study from Section 6 in thecontinuous ASM framework, to see
how the latter can lend it a more persuasive air.

As before, to keep things relatively simple, we restrict themodeling to that of forces only (albeit now
allowing them to vary continuously), neglecting other issues as in Section 6. This avoids complications
arising from having to consider movement of either the food or the chopsticks, or distortions of the shape
of either the food or chopsticks consequent on them experiencing the forces that we model, and keeps
the model that we present within a relatively limited space.

We concentrate on elaborating the simpler model in Section 6.1. Timet = 0 triggers the initial mode
rule:

START =
if t = 0 then

do mode:= grasping, grasped:= undef,
fff FU := 000, fff FL := 000, fff HCU := 000, fff HCL := 000

(29)

Thegraspingmode enables the following pliant rule:

GRASPING
c
=

if mode= grasping then
do fff FU, fff FL, fff HCU, fff HCL :=

solve[Dfff FU,Dfff FL,Dfff HCU,Dfff HCL] = [eeez,−eeez,−eeez,eeez]

(30)

This rule causes the forcesfff FU, fff FL, fff HCU, fff HCL to acquire suitable pairwise equal and opposite rates
of change, of magnitude 1, oriented along the unit vector of the z axis. This causes these forces to
change continuously (although in fact non-smoothly10) away from zero at a uniform rate. The continuous
grasping persists until a timetSTOP, when it is determined whether enough force has been appliedto hold
the food:

STOPGRASPED =
if t = tSTOP ∧ fff HCU ≥ D then

do mode:= stop, grasped:= TRUE

(31)

STOPDISLODGED =
if t = tSTOP ∧ fff HCU < D then

do mode:= stop, grasped:= FALSE

(32)

The stopped mode just enters a pliant final state:

F-IDLE
c
= if mode= stop then do skip (33)

The above is all consistent with the domain theory (16), although the variables in the theory would have
to be interpreted as functions of time, and the theory itselfwould have to be augmented by various
facts concerning time and the additional variables introduced above, in order that the natural continuous
counterparts of the statements in (5) could hold.11

10Since the derivatives of the forces jump discontinuously att = 0, the forces themselves, though continuous, experience a
kink at t = 0.

11The domain theory would also have to be supplemented with a background theory of facts about calculus, continuous
mathematics etc., as needed.

19

8.1. Decomposing Continuous Grasping

We now look at applying the decomposition strategy discussed earlier to the above integrated model.
We assume that the chopsticks, as controller, are in charge,and own variables likemodeandgrasped.
We decompose the rules above one by one, starting with START:

STARTC =
if t = 0 then

do mode:= grasping, grasped:= undef,
fff HCU := 000, fff HCL := 000

(34)

STARTP =
if t = 0 then

do fff FU := 000, fff FL := 000

(35)

Next, the decomposition of the GRASPING rule. This yields:

GRASPINGC(out ofofofHCU, ofofofHCL)
c
=

if mode= grasping then
do fff HCU, fff HCL := solve[Dfff HCU,Dfff HCL] = [−eeez, eeez],

ofofofHCU := fff HCU, ofofofHCL := fff HCL

(36)

GRASPINGP(in ififif HCU, ififif HCL)
c
=

if mode= grasping then
do fff FU := −ififif HCU, fff FL := −ififif HCL

(37)

The above rules display a slightly more complex manner of decomposition than we have considered
hitherto. Instead of merely partitioning the variables anddetermining that subsystem B has read access
to some of the variables owned by subsystem A, we have introduced input and output variables that do
this job explicitly. So the chopsticks have output variables ofofofHCU andofofofHCL, which are just copies of
variablesfff HCU andfff HCL, and the food has input variablesififif HCU andififif HCL, which are used to read the
relevant values in. Thus, the modeling is a now little different in that the food explicitly reacts to the
forces it senses, by generating equal and opposite forces ofits own, instead of generating these forces
directly as a result of solving separate differential equations for these forces, as in (30). Technically, we
have substituted equals for equals, but have gone beyond thesimple syntactic transformation described
earlier in the paper. It is a natural temptation to do this at the more realistic and practical level of modeling
that we have reached. Since the new variables are just copiesof existing ones, only trivial modifications
are needed to the earlier formal results, and it would merelyadd clutter to complicate the earlier theory
by including them.

Next are the STOP rules:

STOPGRASPEDC = if t = tSTOP ∧ fff HCU≥ D then
do mode:= stop, grasped:= TRUE

(38)

STOPDISLODGEDC = if t = tSTOP ∧ fff HCU < D then
do mode:= stop, grasped:= FALSE

(39)

STOPGRASPEDP = if t = tSTOP then do skip (40)

STOPDISLODGEDP = if t = tSTOP then do skip (41)

20

And lastly the final idle rules:

F-IDLEC
c
= if mode= stop then do skip (42)

F-IDLEP
c
= if mode= stop then do skip (43)

The preceding shows that the controller synthesis procedure that we have described is as applicable
to the continuous extension of ASM as it is to the discrete version. We could now go on to apply the same
approach to create a continuous version of the decomposed hand+chopsticks model, but although there
is no technical impediment to doing so, it would introduce a lot of complexity into the model description,
without bringing any genuinely new insight to the table. Forthis reason, we do not pursue it in detail.

9. Unsynchronised Continuous Controller Synthesis

In this section we explore a phenomenon connected with controller synthesis that is exclusive to the
continuous case. The situation arises as follows. Suppose that we have a physical processθ that is to be
controlled using some input signalu, using a first order DE:

Dθ = u (44)

For our purposes, it will not matter exactly whatθ or u might actually be. More important is the fact
that, in line with the overwhelming majority of control applications today, we regardu as being set by a
digital process, which instructs actuators to hold particular values onθ’s input signal until re-instructed
to hold new ones by a fresh digital command. Sou is in fact a piecewise constant signal, and at the
level of abstraction of interest to us, we consider the updates tou to be performed by mode events. In a
unified modeling framework, assuming a single period of behaviour lasting (perhaps) 10 time units, we
can describe the scenario mentioned in the ruleset below. Inthose rules, we assume that at integral times
t ∈N, the new value of the control signal is chosen (arbitrarily,for simplicity, fromU, the type ofu), and
that in between these integral times,u is held constant andθ obeys (44):

START =
if t = 0 then

do mode:= behave,
θ := θ0, u := u0

(45)

BEHAVE
c
=

if mode= behavethen
do θ, u := solve[Dθ,Du] = [u,0]

(46)

UPDATEU =
if mode= behave∧ t ∈ N ∧ t ≤ 9 then chooseu′ ∈ U

do u := u′

(47)

STOPU =
if mode= behave∧ t ∈ N ∧ t = 10 then

do mode:= stop, u := 0

(48)

IDLEU
c
=

if mode= stop then do skip
(49)

21

Now we can examine what happens when we decompose the above system according to our con-
troller synthesis strategy described earlier. In contrastto our earlier practice, we list the controller rules
first, plant rules afterwards, rather than interleaving them. Here are the controller rules.

STARTC =
if t = 0 then

do mode:= behave,
u := u0

(50)

BEHAVEC
c
=

if mode= behavethen
do u := solveDu = 0

(51)

UPDATEUC =
if mode= behave∧ t ∈ N ∧ t ≤ 9 then chooseu′ ∈ U

do u := u′

(52)

STOPUC =
if mode= behave∧ t ∈ N ∧ t = 10 then

do mode:= stop,
u := 0

(53)

IDLEUC
c
=

if mode= stop then do skip
(54)

And now the plant rules.

STARTP =
if t = 0 then do θ := θ0

(55)

BEHAVEP
c
=

if mode= behavethen do θ := solveDθ = u
(56)

UPDATEUP =
if mode= behave∧ t ∈ N ∧ t ≤ 9 then do skip

(57)

STOPUP =
if mode= behave∧ t ∈ N ∧ t = 10 then do skip

(58)

IDLEUP
c
=

if mode= stop then do skip
(59)

What is interesting about the decomposed version of the rules, is rules (57) and (58). These are mode
rules thatskip. Our decomposition technique has generated mode rules thatdo nothing. Mode rules that
do nothing are unlike pliant rules that do nothing. Let us pause momentarily to examine why.

Since real time is a first class citizen in the continuous ASM framework, and behaviour is continuous,
a continuous ASM system model must always be obeyingsomerule. Given the finite nature of continuous
ASM system descriptions, the rule that the system will be obeying will, almost always,12 be a pliant rule.
Thus, even if the system is to remain in some particular fixed state over a period of time, this idle
behaviour must be explicitly specified somehow.

12‘Amost always’ is intended in the technical, measure theoretic sense of ‘almost everywhere, in the set of times’.

22

The case for mode rules thatskip is different. The runtime behaviour of a mode rule has no duration.
If the rule effects no change in any variable, then one would normally expect the continuous behaviour
of the variables that was being implemented by the pliant rule(s) that was(were) active immediately prior
to the mode rule’sskip to continue.

We said ‘would normally expect. . . to continue’ rather than ‘will continue’ just now, for the following
continuous-ASM-specific reason. Let us say for the sake of argument that a mode rule thatskips,MoSkip,
is the only rule schedulable at a given moment. Then executing MoSkipintroduces a scheduling point
into the dynamics.With the mode rule MoSkip included in the run, the previously running pliant rule(s),
PliBefore(suppose there is just one), which was preempted byMoSkip, may no longer be enabled after
MoSkip(even thoughMoSkipdid nothing), sincePliBefore may have disabled itself through its own
activities, for example by altering some variables in such away thatPliBefore’s guards became false.
And MoSkip, once (trivially) completed, may enable some new pliant rule(s),PliAfter (suppose again
that there is just one), which then takes over and gives rise to new behaviour. Now suppose thatMoSkip
is not scheduled at that moment (for example by considering a system that does not containMoSkip
but is otherwise identical).Without the mode rule MoSkip included in the run, the previously running
PliBeforemay well continue to effect the behaviour it was previously implementing (even though it may
have disabled its own guards — since it only needs to check itsguards at the beginning of its execution),
and since there is no mode rule occurrence to preemptPliBefore, the new pliant rule spoken of in the
preceding case,PliAfter, remains locked out and cannot cause the new behaviour mentioned. Therefore,
whether or not a modeskip actually executes at a given point in a system run, can make a difference.

We regard (the semantics of) each run of a well formed system as the set of time dependent functions
—one for each variable of the system— that define the value of each of the system’s variables at each
time within the duration of the run. With this definition, we say that a set of continuous ASM rules is
normal, iff, no two distinct pliant rules of the system can give riseto the same time dependent valuations
for the set of all variables over any open interval of time, and, whenever all mode rules that merelyskip
are removed, then the set of runs is unchanged (i.e. no runs are added, no runs are removed, and no runs
are changed in any way13). Note that whether or not a set of rules containing modeskips is normal or
not may depend on the modeskip rules’ guards. These guards may havetrue-sets that are sufficiently
small that they prevent the rules being scheduled at times when they might otherwise cause some visible
alteration in the set of runs of the system.

We can now apply these insights to our example above. We note that the guards of rules (57) and
(58), which are modeskips, are strong enough to ensure they are scheduled only at the same time as
nontrivial mode rules (52) and (53) respectively. Therefore, we can omit them from the aggregated set
of controller and plant rules, without altering the time dependent valuation function of any variable.

Theorem 9.1. Let Full be a system of continuous ASM rules. Let Brief be the system derived from Full
by removing all the modeskip rules from Full. Suppose Full is a well formed normal system of rules.
Then Brief is a complete refinement of Full.

Proof: If Full has no modeskip rules, thenFull andBrief are identical — the collection of(1,1) diagrams
expressing an identity refinement, between, on the one hand,a simultaneously enabled set of rules, and
on the other hand, itself, is evidently a complete refinement, and there is nothing more to show.

13In other words, if a well formed system is normal, then the occurrence of a modeskip causes no observable effect, and in
particular, the phenomenon of allowingPliAfter to run after the modeskip, as described above, certainly does not take place.
In a well formed normal system, for each variable, the left limit value at the moment the modeskip occurs, is equal to the right
limit value at that moment (and is, in turn, equal to the actual value at that moment), so the occurrence or not of the modeskip
is not visible in the time dependent function of the values ofany variable.

23

Otherwise,Full andBrief are different, despite which, by assumption, they have the same sets of
runs (interpreted as variables’ time dependent valuations). To show a complete refinement, we have to
exhibit an appropriate set of(m,n) refinement diagrams. We have to supply enough of these to cater for
all ways in which modeskips might (or not) have contributed to any run in particular.

The set of(m,n) diagrams consists of the following three batches. Firstly,it has all(1,1) diagrams
expressing an identity refinement, between, on the one hand,a simultaneously enabled set of rules con-
taining no modeskips, and on the other hand, the same set of rules. Secondly, it contains all(1,1)
diagrams expressing an identity refinement, between, on theone hand, a simultaneously enabled set of
rules containing at least one modeskip but also at least one non-modeskip rule, and on the other hand,
the same set of rules with all the modeskips removed. For these first two batches, it is evident that the
complete refinement criteria are easily met.

Thirdly, it contains all(m,1) diagrams constructed according to the following criteria:(a) the se-
quence ofm steps ofFull is reachable, occuring in some run ofFull; (b) the numberm is odd, at least
3; (c) the first, last and all odd-indexed transitions of them steps ofFull are pliant transitions; (d) all
even-indexed transitions of them steps ofFull are mode transitions defined by modeskip rules only; (e)
the single step ofBrief is a pliant transition which refines them steps ofFull. We must justify that the
definition of the third case is both consistent, and covers all the situations needed that arise, and that are
not already covered by the first two cases.

Regarding consistency, we claim that all the pliant transitions of the sequence ofm steps ofFull are
defined by the same (set of simultaneously enabled) rule(s).For suppose not, and that the first transition
(pliant) was defined byPli1, and, following the second (modeskip) transition, the third transition (pliant)
was defined byPli2 6= Pli1. Then, removing the intervening modeskip, would renderPli2 unschedulable
in any run in which this fragment occurred, and therefore, this run (with modeskips removed) could not
be a run ofBrief . Since we assumedFull is well formed and normal, this is a contradiction. Since allthe
pliant transitions of the sequence ofmsteps ofFull are defined by the same set of simultaneously enabled
rules, they join together into a single behaviour, as explained in footnote 13. This single behaviour is the
content of the 1 pliant transition of theBrief system in the(m,1) diagram. The requirements of complete
refinement now follow readily for this(m,1) diagram.

Regarding coverage, we argue as follows. Consider a run ofFull. BecauseFull is well formed
and normal, we can remove all modeskips, to get a run ofBrief . As argued above, when we remove
the transitions consisting of modeskips alone, we are secure in the knowledge that the pliant behaviour
either side can be joined into a single behaviour ofBrief , defined by the same set of rules. Whenever this
happens fork consecutive pure-mode-skip transitions, we view it as an instance of a(2k+1,1) diagram
of the kind constructed above. All other steps of theFull run and of theBrief run are covered by the
(1,1) diagrams of the first or second batch discussed above. SinceFull is well formed and normal, there
are no other runs to consider for eitherFull or Brief . We are done.2

9.1. skips and Multicomponent Systems

So far, we have been regarding the decomposed system of rulesas a single aggregated set of rules
specifying overall system behaviour, albeit that we regardone subset of the rules as belonging to the
plant and the remainder as belonging to the controller. In this sense the partition of rules is a meta level
concept: in the terminology of Section 2 we are talking aboutSysC+P, rather than the two subsystems
SysC andSysP separately. In this view, we saw that we could discard the mode skip rules (57) and (58),
since they are always scheduled with non-skip rules, and thus ASM scheduling semantics implied that
the overall runtime semantics was unaffected by their removal. So in this view, all the modeskip rules
fall into the second batch discussed in the proof of Theorem 9.1.

If we change the viewpoint, and now look at the system as two separate (sub)systems,SysC andSysP,
then the picture changes. A number of questions present themselves.

24

The main question is: how independent are the two systems intended to be, and what are the conse-
quences of this?

When components are designed independently of one another,they need to precisely define the
mechanisms by which they interact with their companion components in the rest of the system. Usually
in component based software engineering (CBSE), components have ports of some kind, through which
they communicate and/or synchronise (see e.g. [1] for coverage of this large discipline). The communi-
cation/synchronisation mechanisms need to be very well understood for assemblies of such components
to be able to work together at all. If we consider our subsystemsSysC andSysP in this light, we see that
our controller synthesis process leaves us well short by comparison with the expectations of CBSE. It
simply gives us a collection of rules, partitioned according to attributed functionality. The formalised
communication/synchronisation mechanisms that a CBSE view would need, are left very implicit in the
structure of the rules and their interdependencies.

We can see this reality reflected in the properties of the modeskip rules (57) and (58) discussed
above. Let us discuss these one by one.

The UPDATEUP rule (57) causes no plant variable update, but marks times atwhich the variableu
may undergo discontinuous change as a result of the action ofcontroller mode rule (52). It is thus acting
as a communication mechanism to receive notice of these changes inu (even though the plant system
needs to do nothing as a result of these discontinuous changes happening). IfSysP were to be regarded as
an independent component, then all aspects of this would need to be recorded in the interface thatSysP
offers to the rest of the world. Purely technically, rule UPDATEUP may be discarded without causing
discomfortprovideda particular observation holds, namely that we interpret the differential equations
occurring in a continuous ASM system in the sense of Carathéodory [10]. Amongst other things, this
allows the right hand sides of differential equations such as Dθ = u to suffer the kind of discontinuity
just mentioned, without harming the existence or continuity of the resulting solutions. This is exactly the
property we need to handle the effects of (52).14

The STOPUP rule (58) is of a different nature. It causes no plant variable update, but marks the
time at which themodevariable changes frombehaveto stopby the action of the controller subsystem.
As above, it is acting as a communication mechanism to receive notice of the changes in the value
of mode. Again, if SysP were to be regarded as an independent component, then all aspects of this
would need to be recorded in the interface thatSysP offers to the rest of the world. However, this time,
the technical optimisation that we had before is no longer available, since the plant subsystem needs
to change its own behaviour as a result of the change inmode, by launching a different pliant rule.
Before, the pliant behaviour is defined by BEHAVEP, whereas after, the pliant behaviour is defined by
IDLEUP. If we omitted the STOPUP rule, the behaviour of the plant subsystem,viewed in isolation,
would feature a pliant transition followed by a different pliant transition, without an intervening mode
transition, violating well formedness. So we cannot omit STOPUP in the way we could before. But this
should not trouble us, since STOPUP is acting as the receiver of a communication from the environment
of the change inmode: omitting one half of a communication would be a very unusualthing to do. The
fact that we might actually be able to do that in the case UPDATEUP is the more unusual possibility.

Recapitulating, viewing theSysC andSysP subsystems that our process generates as truly independent
components is really carrying the separation analogy too far. Simply viewing them as two collections
of rules, neglects all the interface aspects that need to be taken into account which ensure that these two
systems of rules are able to cooperate fruitfully. We have seen that this turns out to hold some quite
subtle connotations, since the cooperation is mediated by shared variables, which invariably leads to a

14As well as relating to variables that are read directly, similar remarks apply to pliant rule input variables, that happen to be
governed by other system components, and which also undergodiscontinuities.

25

very tight semantic interdependency between the two systems. This however, is the normal case for
control systems, where the interplay between controller and plant is indeed predominantly via shared
variables and the coupling between them is rather intimate.So the differing fortunes of the modeskip
elimination strategy should not surprise us.

10. Conclusion

In this paper we have introduced the controller synthesis problem for ASM systems. The motiva-
tion was that from a goal oriented point of view, it is often more convenient to focus on overall system
objectives at the outset, and to postpone detailed implementation issues, such as the specific assignment
of functionality to controller or to plant, till later. Thiscontrasts somewhat with the usual approach ad-
vocated in the ASM method, which recommends paying close attention to the classification of variables
and functions into monitored and controlled categories right at the outset of system design. We believe
that there is merit in both points of view, and that a goal oriented approach can be a useful adjunct to the
recommended method in the early stages of design.

We showed that controller synthesis, as we have defined it, isundecidable, and we gave a safe
approximation. We argued that the success of the approach invariably depends on having a suitable
domain theory to bind the separate behaviours of controllerand plant into a consistent whole, and we
discussed the nature of such a domain theory in some detail. We also showed that our notion of controller
synthesis was quite closely related to the previously existing and more general ASM notion of complete
refinement. We then illustrated our technique with a simple case study based on holding food with
chopsticks. The chopstick case study illustrated rather well the need for the domain theory discussed in
general terms earlier.

We note that the conditions demanded of the controller and ofthe plant in our conditions for safe
controller synthesis in (4), each relate the subsystem in question to the originating system (and only to
the originating system). Thus they are completely symmetrical between the controller and plant and do
not depend either on there being exactly two subsystems in play. Therefore, the result generalizes to a
partition of the originating system into an arbitrary number of subsystems, each built in the same fashion,
with some variables to which it has exclusive write access, and a larger set of variables to which it has
read access.

The preceding remark is well illustrated by the chopstick case study, since after the initial decompo-
sition into food (plant) and hand plus chopsticks (controller), we were able to repeat the decomposition
of the hand plus chopsticks subsystem yielding a further separation into chopsticks (plant) and hand
(controller), resulting in a three way partition of the original system.

We then gave a rather brief overview of continuous ASMs, arguing that for typical applications,
such a brief description was usually sufficient, referring to a more through description elsewhere. In this
context, we briefly discussed how the controller synthesis problem could be extended to the continuous
formalism, illustrating it with a further elaboration of the chopsticks case study. We closed by discussing
how mode rules thatskip, generated by the decomposition process, could be discarded under certain
circumstances, focusing on the more interesting continuous version of the theory for this.

Although we have targeted a very simple scenario, the ideas that we have explored have an applica-
bility that is much wider than we have mentioned hitherto, especially in the context of today’s hybrid and
cyber-physical systems [7, 8, 9, 11]. In these, there is nowadays a strong tendency towards distributed
solutions to problems describable in a global manner. So theinitial global conception of the problem
needs to be decomposed into a number of subsystems that co-operate to form the global solution. Not
only are many of these problems intrinsically control problems anyway, making our approach directly
applicable, but the abstract version of the decomposition technique that we have explored, tailored as it

26

is to the details of ASM rule scheduling, acts as a surrogate for a much wider gamut of problems and
their solutions.

References

[1] Component-Based Software Engineering: InternationalSymposia, Springer, LNCS, 1997 onwards.

[2] R. Banach, H. Zhu, W. Su, R. Huang, Continuous KAOS, ASM, and Formal Control System Design
Across the Continuous/Discrete Modeling Interface: A Simple Train Stopping Application., Form.
Asp. Comp. (2013). To appear.

[3] R. Banach, H. Zhu, W. Su, X. Wu, Continuous ASM, and a Pacemaker Sensing Fragment, in:
Derrick, Fitzgerald, Gnesi, Khurshid, Leuschel, Reeves, Riccobene (Eds.), Proc. ABZ-12, volume
7316, Springer, LNCS, 2012, pp. 65–78.

[4] R. Banach, H. Zhu, W. Su, X. Wu, A Continuous ASM ModellingApproach to Pacemaker Sensing
(2013). Submitted.

[5] R. Banach, H. Zhu, W. Su, X. Wu, Moded and Continuous ASM (2013). Submitted.

[6] E. Börger, R. Stärk, Abstract State Machines. A Methodfor High Level System Design and Anal-
ysis, Springer, 2003.

[7] A. Platzer, Logical Analysis of Hybrid Systems: ProvingTheorems for Complex Dynamics,
Springer, 2010.

[8] J. Sztipanovits, Model Integration and Cyber Physical Systems: A Semantics Perspective, in: But-
ler, Schulte (Eds.), Proc. FM-11, Springer, LNCS 6664, p.1,http://sites.lero.ie/download.aspx?f=
Sztipanovits-Keynote.pdf, 2011. Invited talk, FM 2011, Limerick, Ireland.

[9] P. Tabuada, Verification and Control of Hybrid Systems: ASymbolic Approach, Springer, 2009.

[10] W. Walter, Ordinary Differential Equations, Springer, 1998.

[11] J. Willems, Open Dynamical Systems: Their Aims and their Origins. Ruberti Lecture, Rome, 2007.
http://homes.esat.kuleuven.be/̃ jwillems/Lectures/2007/Rubertilecture.pdf.

27

