ASM, Controller Synthesis, and Complete Refinement

Richard Banach!, Huibiao Zh#2, Wen S(, Xiaofeng Wi?

aSchool of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
bShanghai Key Laboratory of Trustworthy Computing, Easn@tlormal University,
3663 Zhongshan Road North, Shanghai 200062, P.R. China.
¢School of Computer Engineering and Science, Shanghai titiye
Shanghai, P.R. China.

Abstract

While many systems are naturally viewed as the interacteiwéen a controller subsystem and a con-
trolled, or plant subsystem, they are often most easilyaihitunderstood and designed monolithically,
simply as a collection of variables that represent vari@peets of the system, which interact in the most
self-evident way. A practical implementation needs to sgfgacontroller from plant though. We study
the problem of when a monolithic ASM system can be split irdotmller and plant subsystems along
syntactic lines derived from variables’ natural affiliatso We give restrictions that enable the split to
be carried out cleanly, and we give conditions that enswaettie resulting pair of controller and plant
subsystems have the same behaviours as the original dégggmrelate this phenomenon to the concept of
completeefinement in ASM. Making this strategy work effectivelyuadly requires a nontrivial domain
theory, into which a number of properties which are neitherdole possession of the controller subsys-
tem nor of the plant subsystem must be placed. We argue thset fhroperties are latent in the original
monolithic model. We illustrate the theory with a case stadgpcerning eating with chopsticks. This
leads to an extension of controller synthesis for contisud®M systems, which are briefly covered.
The chopsticks case study is then extended into the continsphere.

1. Introduction

Today, when one considers the ubiquity of embedded coetsplvhich take on the digital role in the
interaction of a digital and an external system, it becontesr¢hat many systems are naturally viewed
as the interaction between a controller subsystem and aotledt or plant subsystem. Regarding the
high level design of such systems, the fact that the ultirdatign needs to be split into controller and
plant subsystems is evident from the outset. However, iftenceasier in the earlier stages of design
to ignore that fact, and to focus exclusively on the ovengdtem goals. This means postponing for the
time being the issue of how the solution arrived at is to bawoiged into the two subsystems. Such a
monolithicapproach means that there is simply less to worry about iedhleer stages of design, when
there is the most uncertainty concerning the most critispeats of the problem. This allows the bulk of
this early design activity to focus on the overall goals eathan lower level technical detail.

Email addresseshanach@s. man. ac. uk (Richard Banachhbzhu@ei . ecnu. edu. cn (Huibiao Zhu),
wsu@hu. edu. cn (Wen Su)xf w@ei . ecnu. edu. cn (Xiaofeng Wu)
LA large portion of the work reported in this paper was dondenfiie first author was a visiting researcher at the Shanghai
Key Laboratory of Trustworthy Computing at East China Ndrbhaiversity. The support of ECNU is gratefully acknowledge
2Huibiao Zhu is supported by National High Technology Reseaand Development Program of China (No.
2012AA011205), National Natural Science Foundation oin@i{No. 61361136002 and No. 61321064), Shanghai Knowledge
Service Platform Project (No. ZF1213) and Shanghai MinhEaignt Project.

Preprint submitted to Science of Computer Programming May 9, 2014

However, a practical implementation needs to separateahiatler from the plant, since it is the
controller which behaves according to a human-createdadiggsign, and the plant behaves according to
patterns determined by the laws of nature. In this paper uwdyghe problem of when a monolithic ASM
system design, embodying this dual controller/plant regtcan be split into separate controller and plant
subsystems. This is to be done along generic syntacticdieesed from the most natural associations of
the system variables to one or other (controller or plartsgstem. The approach generalises a specific
case study in which this task arose and where it was tackikedrimformally [2]. We find that the success
of the generic approach to such a goal requires that the mizicalesign satisfies some simple criteria
ab initio. As well as studying the problem from an abstract viewpaoimt present some examples.

In more detail, the rest of the paper is as follows. Sectioastdbes the controller synthesis problem
in abstract terms, focusing on the specific way that comirelhd plant are to be separated. A sufficient
condition for the success of the desired controller/pl@pasation is formulated and proved. The unde-
cidability of controller synthesis is also discussed int®e&c2.1 by reduction to the Halting Problem. In
Section 3 we consider a straightforward computable appration to the controller synthesis problem,
and argue that it is adequate for practical purposes. $edtiscusses the role of the domain theory in
the formulation of the controller synthesis problem — in maases, the rules governing the behaviour
of the system overall, can be viewed as belonging neith@egnto the controller subsystem nor entirely
to the plant subsystem. Section 5 relates the precedingialdtethe ASM concept ofomplete refine-
ment When the controller synthesis problem is resolved sutggsseach version of the overall system
description refines the other. Section 6 introduces an ebabgsed on the idea of picking up food
with chopsticks, viewed as a control problem. Section 7apdlates the preceding ideas to the case of
continuous ASM, in which smoothly changing (as well as disglly changing) behaviours are admitted.
Section 8 extends the discussion of the chopsticks casg bjudking on board the continuous notions.
In section 9, we loosen the tight synchronisation betweetratber and plant, evident in the account so
far, to create a slightly more liberal framework for the ¢onbus case. Section 10 concludes.

2. The Controller Synthesis Problem

We consider a generic ASM system consisting of basic ASMsruéng straightforward single vari-
able locations and a simple element of nondeterminismowallg [6], for our purposes, such a rule can
be written as:

Op(pars) = Q)
if guard(xs pars) then choosexs with rel(xs,xspars) do xs := xs

In (1), pars are the input parameters (as needed) xsdre the variables modified by the rule. The
rule’s guard isguard, andrel represents the relationship that is to hold between thenpateas, the
before-values of the variables, and their after-values referred to s, when the rule fires. As usual,
in a single step of a run of the system, all rules which are ledafi.e. whose guards are true) fire
simultaneously, provided that the totality of updates defithereby is consistent, else the run aborts.

In this paper we are interested in control applications, wadnvisage the design done in a mono-
lithic way at the outset, addressing system-wide desigmsdmfore plunging into the details of subsys-
tem design. Thus the design may start by being expressed sygstem-wide variables. However, by a
process of gradual refinement, the collection of variabldisewentually end up such that each variable
can be identified as belonging to either the controller-gsiesn-to-be, or the plant-subsystem-to-be. De-
spite this prospective partition of the variables thougtypécal legacy of the top-down design process
will be that many, or even all, of the rules of the sytem dextimm will still involve variables of both
kinds.

The controller synthesis problem is the problem of takinghsa collection of rules (call By3, and
separating it into one set of rules for the controller (da@on) and another set for the plant (calFta),
such that each subsystem of rules reads only the variabbessible to it, and each modifies only the
variables that it owns. Moreover, this is to be done in suclagtivat the combination of the rules@on
andPla generates the same behaviour (i.e. the same set of run® adghmal ruleseSys

Note that in [6], the importance of distinguishirgntrolledfunctions frommonitoredones is firmly
stressed, in one sense solving the controller syntheskgmoright at the outset, since the distinction
already separates the controller from the plant. Our petseds different however, since it permits this
aspect to be postponed for an initial portion of the develpm In this sense, the activity deriving
which are the controlled and which are the monitored funwids brought under the umbrella of the
formal development process our approach, since it permits some formal scrutiny ofegetof the
development that otherwise would be done entirely infolynaDur goal in the present work is to ask
therefore under what conditions the separation can be danswtable moment in a systematic way.

We perform the separation in a systematic manner. We asshehéhie variabled/ar of Syscan
be partitioned into the variables for which the controllershwrite access, writters: C Varc, and
the variables for which the plant has write access, wrikenC Varp; with Varc nVarp = @. We
assume that for each rulepQpars) € Sys the guard can be written in the forguard(xs pars) =
guardc (Xsc, XS, parse) A guarda(xsa,x%parsa), wherexs; are the plant variables to which the con-
troller has read access, axg} are the controller variables to which the plant has readsaca#fe also as-
sume that for each rule, the update relatielixs , xs pars) can be written in the formel(xs, xs pars) =
relc(Xse, Xsc, X, parse) A relp(xs‘P,xsa,x%parsa). We say that a system &dmissible (with respect
to the given method of splitting) iff the above hold. (We atsdl a system admissible when the method
of splitting has not been explicitly described, but is hypstised to exist — whereupon, if there is more
than one such splitting, it is assumed that one particularistorne in mind and is to remain fixed for
the duration of the relevant discour¥e.

We view the ease with which an admissible splitting can beeseld for a given system as a vin-
dication of the appropriate and successful completion efdhrlier stages of the development. In this
regard, and especially since the standard approach aédoce5] is predicated on resolving these mat-
tersa priori, we expect that arriving at an admissible splitting showddchb more problematic than the
invention of the initial system model would be in the convem&l approach.

Under the above assumptions, the desired constructioaisvedy clear. For each rule like (1) in
Sys we generate two fresh rules:

Opc(pars) = (2
if guardc(xsc,xsp,parsc) then choosexs. with relc(xs.,Xsc, Xsh, parse)

do X = X%
Opp(pars) = 3)
if guarda(xsa,xsf:,parsa) then choosexs, with relp(xs‘P,xsa,x%,parsa)

do x = X%

Of these, (2), called th€-portion, goes into the controller subsyst€an and (3), called th&-portion,
goes into the plant subsystdpta. We complete the construction GbonandPla by defining their initial
states. These are constructed by restricting the initeestofSysto the variables invarc and Varp
respectively.

3In these circumstances, it does not mattlich such splitting is intended, for, without further informai only remarks
which are generically applicable &l such splittings can be made.

(Technically, theCon andPla initial states are generated by existentially quantifying the vari-
ablesVar — Varc of the Sysinitial states inCon, and existentially quantifying out the variabMar — Varp
of the Sysinitial states inPla— provided there are no non-trivial joint initial propesidf there are non-
trivial joint initial properties, in other words if the sef mitial states ofSysis not just the Cartesian
product of the initial states of th€onvariables and the initial states of tRda variables, then the con-
struction cannot be carried through.)

Let us now consider the syste8ys. p, Which consists of the variables and initial state$Sg§ and
whose rules are the union of thee@rules fromConand the @®p rules fromPla. It is rather obvious
that whenever a rule ©of Sysis enabled, irSys.. p, the corresponding rulesf@ and Cpp from Sysg
andSys will also be enabled, since their guards are just weakerdfi@3r’'s guard. Consequently the
runs ofSysare a subset of the runs 8§s.p

(Returning to the issue of initial states, technically, thitial states ofSyg,p are recovered by
conjoining initial state declarations &yg and Sys. This raises the intriguing possibility that more
states could be declared initial by doing this than are dedlariginally in Sys since the existential
guantifications in the initial declarations 8yg andSy$ may include more states than are defined in the
initial declaration ofSysitself. We confirm that the ‘no non-trivial joint initial ppeerties’ stipulation, as
defined above, prevents this, enabling the identificaticth@initial states oBys . p with those ofSys)

Regarding runs though, the runs®fsmay be gropersubset of the runs @ys. p since the guards
of the individual Qrc and Cpp rules are weaker than the guard af,@nd so, in certain states, may enable
one or other of ®: and QP without the counterpart rule being enabled. This is highgesirable from
a requirements point of view of course, since the overakctije was to achieve the behaviourQyfs
and not to introduce some spurious additional behaviours.

Definition 2.1. A system Sys, with Vaf Varc W Varp which is admissible, has a resolvable controller
synthesis problem iff, after the construction above, tieeebijectionk between the runs of Sys and the
runs of Syg, p, such that for each step of a run of Sys matched twya run of Sys, p, the rules used in
the Sys, p step are exactly the C-portions and P-portions of the rukssdun the corresponding step of
the Sys run.

Next, we give a sufficient condition for resolvability of tkentroller synthesis problem. It features
the domain theory for the development of the sys&m The domain theory is intended as a repository
for facts about the variables in the two subsystems that eeded to establish the equivalence of the
original and partitioned systems. We elaborate the rold@fdomain theory much more extensively in
Section 4.

Theorem 2.2. Suppose a system Sys is admissible. Then Sys has a resclvaint#ler synthesis prob-
lem if:
For all rules Op, their derived ruleOpc and OpPp, and reachable states xs

[Domain(xs) A guards (Xsc, XS, parsc) = guard(xs pars) | A
[Domainxs) A guarda(xsa,xsf:, pars) = guard(xs pars) | (4)

where Domaifixs) is the domain theory for the development of Sys.

Proof: To get the result, it is sufficient to show that when (4) hpkelgery run ofSyg.p amounts to a
run of Sys since we argued above that 8§sruns areSys . p runs already (under an obvious injection
of runsk, that mapsSysruns toSysg . p runs by mapping eacBysstep to theSys p step consisting of
its C-portions andP-portions).

We proceed by induction on the length of the run. The baseisd@iseal since the initial states @ys
and of Syg, p are stipulated to be identical. Suppose then that we haveesiudt for allSyg. p runs of

4

lengthn or less. Choose a rumof lengthn, reaching stat&s which is extendable. This means that there
is some set of rules with a consistent update set in g&tiat is enabled ixs Let Opc, a C-portion
rule, be one such rule (the argument is symmetricaPf@ortion rules). Since € is enabled irxs its
guardguard: holds, whenceuard holds by (4). Sincguarde weakengguard, guarde holds, whence
the correspondin@-portion, Opp, is enabled. Since both#g and Opp are enabled for every such rule,
the update oBysis emulated bysys . p in the next step of the run. Doing the same for all possiblesvay
of extending all extendable runs of lengtltompletes the inductive step. This allows us to conclude tha
all runs ofSyg. p correspond to runs @ysin a way that extends to a bijection of the required kindl

2.1. Undecidability of Controller Synthesis
The presence of the reachability criterion in (4) makes ttiewing result relatively unsurprising.

Theorem 2.3. The resolvability of the controller synthesis problem iglecidable.

Proof: We outline a reduction of the Halting Problem to the cogradynthesis problem. L&tM be an
arbitrary Turing Machine. LeTMg be an emulation oTM by an ASM constructed in a rather obvious
way: i.e. there is an alphabet of states, another of tape aligmd variable for the current state, a data
structure for the tape, and a separate rule for each tramsitithe transition relation ofFM. LetTMS be
another such ASM emulation, isomorphictM2, but with all alphabets and variable names completely
disjoint from those oﬂ'Mg. Therefore the following exist: a bijection between thesjaint) alphabets of
states ofTM2 and TMS; a bijection between the (disjoint) alphabets of tape symbbTM2 and TM3;

a bijection between values of the current state variabIéEMﬁ andTMZ; a bijection between the tape
data structures aFMZ andTM3; and a bijection between the sets of rules for 2 andTMS versions

of the transitions oM that work with respect to the preceding collection of bijgcs.

Now consider the ASMTM2, , constructed as in the previous section. It has twice as mdey as
TM has transitions, but due to the bijections mentioned, theyeaabled pairwise at exactly the same
moments, sd’M&P just emulates two disjoint copies ®M running in lockstep.

By contrast, consider the ASMIM2 , constructed as follows. We fuse each pair of rule3
that correspond via the bijections, into a single rule, byj@iming the two guards, and combining the

updates. The Turing MachiﬁlélvlgAP has exactly as many rules @M has transitions since the doubling

in TM2, » has been removed. It is clear tHEY2, , and TM2, , are strongly bisimilar to each other,
and toTM, by a simple inductive argument over the length of runs o$¢h&SMs and off M. Now we
modify TM2, and modifyTMZ, as follows.

SinceTM is arbitrary, it may contain halting before-configs —i.eirp&t, s) wheret is a tape symbol
andsis a state— from which no transition issues. T has a halting before-confi@,s), we do the
following. Let (tc,sc) be the counterpart dft,s) in TM2. To TM2 we add a rule that implements a
self-loop guarded ofitc, sc) (without moving the tape head). Call the result of this maedifion TMc.

Let (tp, Sp) be the counterpart dt,s) in TM3. To TMS we add a rule that implements a self-loop guarded
on sp alone (i.e. ignoring the tape symbol, and without movingtdme head), calling this modification
TMp.

Now consider the two ASM systeni@,p and TMc, p, created froml'Mc and TMp by manipu-
lations analogous to the ones that produ@®tf , , andTMZ, , from TM2 andTMS. In TMc,p (Which
plays the role oBysabove), the stronger guard of th&lc rule, in effect subsumes the weaker one of the
TMp rule, and the fused rule is only enabled exactly wheriltife rule is enabled. However iiMc ., p
(which plays the role oBys p above), this is not the case. There, Tidp rule exists independently,
and if the computation 6fM reaches a machine configuration in which the statetisen theTMp rule
is enabled when the tape symbol and state(asg, for anyt +# t (as well as when the tape symbol)s
giving rise to observable behaviours not reflected i p.

Since (the rules defining) the behaviour at the halting leeéamfig(t,s) are the only thing we have
changed, we can say that if a before-cortfig) (for anyf) is neverreached during the computation of
TM, thenTMc,p andTMc_ p both reflect the behaviour @M, and thus stay in lockstep, and that there-
fore TMcAp has a resolvable controller synthesis problem when it islved into TMc and TMp and
these are subsequently recombined ifikdc, p. On the other hand, if a before-confiys) (for somet)
is reached during the computation ¥, then the behaviour oFMc,p andTMc p after the first occur-
rence of such a before-config differ, and therefolkd ,p does not have a resolvable controller synthesis
problem when it is resolved intdMc and TMp and these are subsequently recombined i p.

By the undecidability of the Halting Problem, we cannot imgel determine algorithmically whether
a given halting before-confi¢f,s) is ever reached, so we cannot in turn algorithmically deiieenn
general whether the controller synthesis problem is resbdvor not.C

3. Computable Controller Synthesis

Restricting to a safe approximation to reachability, we gegomputable version of (4), which we
argue will be adequate for all practical purposes.

Theorem 3.1. Suppose a system Sys is admissible and XS is a set of statexhhdes all reachable
states. Then Sys has a resolvable controller synthesisquroif:

For all rules Op, their derived ruleOpc and Opp, and all xsc XSe
[Domain(xs) A guards (Xsc, X, parsc) F guard(xs pars) | A
[Domainxs) A guarda(xsa,xsf:, pars) - guard(xs pars) | (5)

where Domaifixs) is the domain theory for Sys aidis provability in a suitable system.

4. The Role of the Domain Theory

In equations (4) and (5) we saw the presence of a domain tHeonyainxs) underpinning the
derivability of the whole-system guard from the partial gisaof the controller and plant subrule®®
and Opp of a given whole-system rule f© In this section we comment on this further.

In any formal development/verification system there willebeollection of definitions, of constants,
static mathematical objects etc., that create a contexhremainder of the development. In ASM,
these entities will be captured by static rather than dyodumictions. Often, when discussing the for-
mal development/verification environment informally, on@ not always mention this static context
explicitly whenever it might be needed, but it will nevetss still need to be present (for example
among the hypotheses of a verification condition), othexwiseded properties of the identifiers occur-
ring in a particular system model would be unavailable. VWmitmean by a domain theory in this paper,
is an extension of this basic idea of a collection of axionasg support the remainder of the development.

Turning to the design process, one of the most natural coesegs of early-phase monolithic design
is that all sorts of issues can get entangled from the baggnriihis in itself is no bad thing, as we have
already said above, since it allows early-phase effortotnig on the crucial application level issues
rather than on technicalities of structure, but it does nthkesubsequent disentanglement rather more
challenging than it otherwise might be.

When we contemplate disentangling an integrated designcimtroller and plant, certain aspects
will naturally fall into the controller subsystem and othevill naturally fall into the plant subsystem.
Thus, when we partition the variables during our proces®nofroller synthesis, each variable goes into
either theConor thePla subsystem. However, there will typically be remaining paftthe monolithic
design where it is not immediately obvious how to handle tleeation to one or other subsystem. Thus

6

there will be properties of the overall design that mix théalaes of the two subsystems. Frequently,
such aspects concern what might be referred to as elemepitgysital law that couple the behaviour of
controller and plant variables. After all, it is physicaMaf this kind that we rely on when we envisage
being able to adequately control the plant using the cdetrol the first place, given that they are, as we
describe, two separate (though coupled) systems. Sucteetsrof the monolithic design, expressing
the unavoidable interdependence between the variablée ¢tivb subsystems, are the prime candidates
for inclusion in the domain theory.

A more crude, though rather effective way of putting it, iattbnce the variables have been parti-
tioned, and the rules and static properties of the originahalithic design that exclusively concern the
variables of one or other subsystem have been allocateatgubsystem, everything else goes into the
domain theory.

To illustrate with an example, suppose we have a systemioingaa massive body, whose motion
we want to influence by the application of a force. The thingf éhetermines the force to be applied
to the body is Newton’s Second Law of Motion, namely that edion is proportional to the force
applied. In an integrated design, the Second Law would jesirie of the equations that contributed to
the specification of the solution, and would be treated theesaay as all the other equations contributing
to the design. However, in a design separated into contralid plant subsystems, one would have to
decide how to express the Second Law and where to put it.

We face two issues. One issue is that the Second Law is nottsimigehat applies exclusively to
the design being undertaken, but is much more generic. trsémse it does not ‘belong’ to the variables
to which it is applied, but is a much more widely applicablepbhmenon of nature. The other issue is
whether the massive body and force both reside in one of thestwesystems into which we split our
monolithic design, or not, with, in the latter case, the &oirtthe controller typically, and the body in the
plant. We address these in turn.

Regarding the first issue, the great general applicabififfewton’s Second Law suggests a highly
generic formulation. Newton’s Second Law conventionadlgdsF = mx. This contains the free identi-
fiersF, mandx — as well as globally understood constants for equalityliegiion of the differentiation
operation with respect to time, and (implicitly) multipiton. Taking it for granted that the globally un-
derstood constants are part of the fabric of the formalism identifiersF, m andx cannot, though, be
taken as free in the normal formal sense. They stand forc@pnames of force, mass and position in
‘typical’ informal descriptions of physical processes. eféfore, formally, they must be understood as
bound variables to be substituted with the actual variap&taining to a given problem. Using fairly
conventional lambda notation, Newton’s Second Law canfpectNSL= AP.Ap.AE. (P =uD.D.E),
whereD is a formal symbol for differentiation with respect to timehe ideal place for such a generic
expression of Newton’s Second Law would be in a shared dothaory, from where it could be applied
by any subsystem that needed it.

To utilise theNSLform of the Second Law in a specific application, we would g$Lto the actual
system variables which were subject to the Second Law. HethlveerelF, m a respectively, we would
instantiate the bound variables NfSL thus: NSLF.m.a. This (or an equivalent formal mechanism)
would appropriately express: (a) the generality of Newg@econd Law, (b) its application to a specific
example, and the relationship between these ideas.

Although the preceding gives an account of an ‘ideal’ metobtbrmally incorporating generally
applicable laws in a specific application, a couple of fatailitate against following this process to the
letter. Firstly, there is the loss of clarity deriving frommetuse of multiple identifiers for essentially the
same thing, and the mechanisms of binding of free variabidsirgsstantiation of bound variables that
manage this — a development using this technique is bound todse obscure than one which avoids
its use. Secondly, if mechanical reasoning (in any formdibd used to support the development, then
having to manage the abstraction/application mechanisipigcily will normally dramatically impact

the power of any such reasoning system in a negative wayetddtriment of the overall development.

It is thus recommended that a less ‘purist’ approach is usquldctice in most cases, which brings
us to our second issue. Continuing with Newton’s Second kauah a less purist approach would embed
an occurrence of the Second Law directly into the subsystartaming the variable being controlled by
it, where the law would be written directly using the vareggbinvolved, e.gF = mDDx. In effect, the
previous application of, m,ato NSLwould be done informally.

If all the variables involved belonged to one or other sutesys then there would be nothing more
to say. However, typically, the plant will contain the caflied variablex, but the controller will contain
the controlling forcer. In that case the plant subsystem will contain the rule esgingF = mDDx
and it must be the case that the force variable can be reacelpgldht subsystem. In this case, the role
of the domain theory would be reduced somewhat, since itdvoat need to contain the geneNSL
statement.

Still, in situations as just described, there is often a/osguirements-led motivation for each sub-
system to name the variables that it uses according to itscomentions. If that were the case, then an
additional role for the domain theory would be to contain ¢g@alities that connect differently named
instances of the same overall system variable in the twoystdr®s to each other. (Such a state of affairs
would also reduce the need for each subsystem to read \exmiablhe other subsystem directly, as in (4)
or (5), although the needed access would now be via the daimeany.)

Summarising, we have identified a range of roles for the dortteory in the context of controller
synthesis, beyond merely holding the static context of y@ieation. They range from answering the
guestion: Where do you put the (generic, or inter-subsystem) phystesfolding cross-cutting prop-
erties that interrelate variables of the two subsystemspotding the gluing relationships that connect
differently named versions of the same entity in subsystadiering to their own internal naming con-
ventions. Moreover, the points that we have discussed attelyvapplicable beyond ASM to model
based approaches in general, since we have said practicatiing that was ASM-specific.

Nevertheless, there is one further point tlASM-specific, to which we now turn. Consider a
rule Op of the undecomposed system whose guard might be wigtiieind = guard: A guards, where
guard: andguard are the guards of the decomposed rules @nd Opp. In the undecomposed case,
ASM scheduling policy demands that only when bgtlard: andguards are true, does the rulerdire
(since both together are equivalentgiaard). In the decomposed case, therefore, to gain the equivalent
behaviour, i.e. that the firing of either off@ or Opp implies also the simultaneous firing of the other, we
would need that each gluard: andguards implies the other, too. Now, it might be that the simultareou
truth of guard: andguards could follow from the truth of one of them alone, but it is higlanlikely that
real designers would create a high level system designioomjesuch a level of redundancy. Therefore,
in general, each ofuard: andguard would, alone, be too weak to enable us to dedggard (and
thus the enabledness offDwhen only one of them held. Consequently, in order to abléohderive
guardwhen only one ofyuard: or guards is available, we would be forced, in general, to rely on some
additional information.

It becomes an additional duty of the domain theory that we leen discussing, to supply the addi-
tional information needed. Normally, this additional infaation will be a consequence of the properties
of the earlier monolithic design anyway, since our congolynthesis strategy amounts, in the end, to
a kind of syntactic rearrangement, and thus should notdote new semantic properties. However,
the conjunction of thguard: andguarde guards in the monolithic rule, may conveniently obscure the
underlying physical reason why neither part of the rule canviithout the other, and in the separation
of the two subsystems, these reasons may need to be broughoiclearly in the properties contained
in the domain theory. So, as well as its job of expressing tatcscontext of the application, and its
potential to act as repository for facts at the interfacearftller and plant, the facts that the domain
theory contains should be designed in such a way that theidaheory can succeed in bridging the gap

m steps
——

X O0O——0— s —>0—=>0 X
RX,Y(x7 y) RX’Y(x,v y’)
VO—@0—@ =+ = = = = o—0—0)
n steps

Figure 1: An ASM(m,n) diagram, showing hown abstract steps, going from stateo statex’ simulaten concrete steps,
going fromy toy'. The simulation is embodied in the equivalefey, which holds for the before-states of the series of steps
Rx,v(x,y), and is re-established for the after-states of the s&iegx,Y).

between either afjuard: or guards alone, and their conjunction, in the way indicated in (4) &)d

Like any formal derivation challenge, bridging the indeditgap can itself be relatively easy, or
potentially difficult. In the worst case, it may require aalketd reachability argument, established by an
induction over run length. However, the contents of the darttaeory should be construed, at least in
part, with the aim of helping to make this goal tractable. \&feehobserved earlier that, in principle, the
domain theory should not contain anything that is not a aguesiece of the original monolithic system.
But this does not prevent it from explicitly mentioning ledsvious consequences of these foundations
as derived theorems, so that they may be more convenierdtytosase the proof of (4) and (5).

5. ASM Complete Refinement

In this section we explore the connection between the rabdity of the controller synthesis problem
and the ASM concept of complete refinement. First we briefliexe the necessary technical machinery.
In general, to prove that a concrete ASM systéns a refinement of an abstract ASM syst&imwe
verify so-called(m,n) diagrams, in whichm abstract steps simulateconcrete ones in an appropriate
way. The situation is illustrated in Fig. 1. It will be sufigeit for us to focus on the refinement proof

obligations (POs) which are the embodiment of this policy.

In Fig. 1 the equivalenc‘é,Rx,y, between abstract and concrete states, holds at the begiand
end of the(m,n) pair. This permits us to ‘glue together’ su¢im,n) diagrams to create relationships
between abstract and concrete runs in wiigly is periodically re-established. For our purposes, it will
be sufficient to restrict to thél, 1) case.

The first PO is the initialization PO:

VyeYInit(y) = (3 xe XInit(x) A Rxy(X,y)) (6)

which demands that for every concrete initial stateere is arR-related abstract initial state

The second PO is correctness. The PO is concerned with tHieaon of (m,n) diagrams. In the
general case, we would have to have some way of deciding whiah) diagrams are sufficient for the
application in question, a problem that would often reqaineapplication-specific solution. However in
the simpler(1,1) case the solution is much more generic, amounting to stfaigrard (1,1) simulation
of all concrete steps, expressed by the following corresstiO:

VX Y,Y e Rxy(XY) A YOP(Y,Y) = (3 X e XOP(x,X) A Rxv(X,Y)))

“For the purposes of this paper, it is sufficient that the exjeice is understood to be a bijection.

In (7), itis demanded that whenever there is a concrete SBg(YY) carried out by a concrete operation
YOP (where, by an operation, we mean a maximal enabled set & reprovided its updates are
consistent), andRx y(x,y) holds in the before-state, then an abstract stepp(kQ() can be found to
re-establish the equivalen& y(X,y).

The ASM refinement policy also demands that non-terminaiepreserved from concrete to ab-
stract runs. (The examples in this paper will not need trosigih.)

Assuming that (6) holds, and that we can prove (7)dachconcrete step Y&(y,y), then the
concrete model is aorrect (1,1) refinement of the abstract model. A correct refinement ensures that
all functional properties of the concrete system, as seeudi the equivalenci, are suitably reflected
as properties of the abstract system. This is because ofrgaidn of the implication in (7).

If we have a correctl, 1) refinement, and in addition, the abstract system is alsoracaefinement
of the concrete system using the converse of the same egubeR?, then we have aomplete refine-
ment (of the abstract system by the concrete system). A compdéteement corresponds, in our model
based world, to what is termed a strong bisimulation (thihoting state equivalence and input and output
relations and their converses) in more abstract termirylioga complete refinement, we can reverse the
direction of the argument about preservation of propertied state that the functional properties of the
abstract system are preserved by the concrete system.

We return now to the controller synthesis problem, and sHwt tesolvable controller synthesis
coincides with a special case of complete refinement.

Theorem 5.1. Let Sys be a system of ASM rules, and suppose that Sys is adssainpccording to a
suitable partition of the variables, into two systems oésuCon and Pla, as described above. LetSys
be the recombined system. Then Sys has a resolvable censgtithesis problem with respect to the
decomposition given, iff Sysp is a complete refinement of Sys with respect to:

(i) the equivalence on states defined by the identity resttito reachable states, and,
(i) the set of(1,1) diagrams given by:

(a) relating each single Sys rul@p to the simultaneous execution of its C-portidrc and its
P-portion OpPp, and,

(b) generating all the(1,1) diagrams (XOP,YOP) derivable therefrom by the simultaneous
scheduling (when simultaneously enabled), of maximal ale®ys rules and their corre-
sponding C- and P- portions — i.e. XfOP is a transition ofOp; ... OP,, this being a max-
imal set of simultaneously enabled Sys rules in some staysfthen the corresponding
YOr s the corresponding transition @rc 1,0Pp 1 ... OPc n, OPp .

In (i) of Theorem 5.1 we restrict the equivalence to reaahalidtes in order that the weaker guards of the
Sys..p rules do not enable them to fire at inopportune places in tite space that do not correspond to
reachable states &ys

Proof: Suppose&yshas a resolvable controller synthesis problem with redpdbe given decomposition
into ConandPla. We must show thays . p is a complete refinement &yswith respect to the identity
equivalence on reachable states and the sét,df diagrams given by refining a sing&ysrule to the
simultaneous execution of iG-portion andP-portion (and operations generated thereby).

To do this we must firstly show that all instances of the ilig&tion PO (6), hold as given, and that
they also hold when the roles of abstraBy$ and concreteQys.p) systems are reversed. However,
since the sets of initial states 8fsandSys. p are identical by construction, and the equivaleRés an
identity, this is essentially trivial.

10

Secondly, we must show that all instances of the correctif€s§7), hold as given for abstraSys
and concret&Sys. p systems, and that they also hold with the roles of abstrattcancrete reversed.
Lety be a concrete (i.68yg p) state, reachable from some initial state via somertupet x be another
name fory (allowing us to conveniently regardas an abstract (i.&y$ state, also reachable from the
same initial state via the counterpart mimatched by the« of Definition 2.1). Sincex =y, we have
R(x,y) whereR is equality on reachable states. Supp8y&.p makes a step C . p(y,y). Then,
sinceSyshas a resolvable controller synthesis problem,Pe@(y,y’) consists of pairs o€-portions
andP-portions ofSysrules, each pair derived by decomposing a sirfg@ysrule. Therefore, the set of
correspondingysrules can also make an abstract steppOX), where ACP consists of theSysrules
mentioned, and’ =y (so thatR(X,y)). This establishes (7), showing that the A&tep simulates the
COpPc.p step. SinceR is an identity, and the steps 8ys.p (WhereSyshas a resolvable controller
synthesis problem) are always performed by sets o€Hpertions andP-portions ofSysrules, it is easy
to invert this argument to show that for every such®&dep, the corresponding G, p step simulates
it too. In this manner, aggregating over all reachable statel all steps issuing from them, gives us the
complete refinement required.

For the converse, suppose ti®&ts . p is a complete refinement &yswith respect to the identity
equivalence on reachable states, and the sgt,&f diagrams given by refining a sing&ysrule to the
pair of its C-portion andP-portion (and the set of operations that this generates)m& show thaBys
has a resolvable controller synthesis problem with resjeitte given decomposition intdonandPla.

We proceed by induction on the length of runs. The base cdsgi& since the initial states dys
and ofSyg. p are stipulated to be identical. SysandSys. p have the same set of runs of length zero.

For the inductive step, we assume that the set of rurgyebf lengthn or less, is in bijective corre-
spondence with the set of runs 8ys, p of lengthn or less, via a bijectiok,, in which corresponding
steps ofky-related runs are performed by a set of rules in$lgscase, and exactly the set Gfportions
andP-portions of the same set of rules in tBgs, p case. To go tm+ 1, consider one such rumof
lengthn of Syswhich is extendable. If 8ysstep extends, it is easy to see that, since we havsoaplete
refinement, theSysstep can be simulated bySysp step that splits each rule in tf&ysstep into its
C-portion and itsP-portion. Equally, since we have a refinement, and this cmaléisteps ofSys..p by
definition, all steps oBys:p are performed by sets of pairs Gfportions andP-portions ofSysrules
(because of the way that thié, 1) diagrams of the refinement are defined), and therefore wiy sas
that anySys:. p step that extends thg, image of aSysrun 1, will be simulated in the obvious way by a
Sysstep that recombines all tii&portions andP-portions of theSys: , p step. This extends, to this pair
of extended runs. Doing the same for all possible exten®ba$ lengthn runs completes the inductive
step. Ultimately we arrive at the required bijection betwea# runs ofSysand those oByg.p. O

6. An Example: Eating with Chopsticks

We now look at a simple example of the preceding theory: gdtiwod with chopsticks. To keep
things simple, we do a statics based treatment of the prgliiegiecting many aspects that would make
it more realistic. For example, we neglect the role of gsawhich obviously plays a part in genuine
situations. Likewise, we ignore the role of the moments ef fibrces that we do consider round the
fulcrum point of application on the chopsticks, viewing fireblem as if all the forces were applied at a
single point in order to simplify the calculations (the martsemust balance of course). In this simplified
framework, Fig. 2 shows the forces involved in grasping aseloof food with chopsticks.

6.1. Food and Chopsticks

In a statically stable situation, the chopsticks extertésron the food, and the food exerts equal and
opposite forces on the chopsticks. The forces exerted bjothek aref -y on the upper chopstick and

11

Figure 2: Forces involved in grasping a piece of food withpdtizks.

frL on the lower chopstick. For simplicity we assume that thesees sum to zero (else the food would
accelerate) and are also colin@aReacting tdf ry andfg,, the chopsticks exert their forcégcy and
fLcL, equal and opposite fgy andfg . So we have:

fru+fre =0 8)
fucu +froL =0 9)
fru+fhcu=0 (10)
fre +fhcL =0 (11)
[frul=Ifr[=|fHcul=|fHcL[= D (12)

The last of these (12), expresses a constraint that thesfdhed we have mentioned in this problem

have to be large enougIb) that they generate additional frictional forces (whicim dee taken to be

proportional to the forces mentioned), which are sufficientounteract gravity (which we have not

taken into account), and which thereby stop the food frododgng from the chopsticks when lifted.
We can write this as an ASM model, with a rule:

GRASPFOOD = (13)
choosefr, fr, fhcy, flc
with fry + e = flucy +fucr = fru +fhcu = fro +fict = 0 A
[frul=1fe [=1fhcyl=Iflc [= D
do f|:U Z:f;:U, f|:|_ Z:f;:L, fHCU ::ﬂﬂCU’ fHCL ::thL’
grasped:= TRUE
There will be another rule BLODGEFOOD, differing from (13) in the replacement of'D’ by ‘ < D’
and of TRUE by FALSE, which models the dislodgement of food as being due to thdicappn of
inadequate force, and disregarding any other maladragitoeghe part of the user. Given the similarity
of the two rules, we will not mention BLODGEFOOD further, unless it is unavoidable, in order to avoid
clutter.
We can regard 8AsPFOOD (and DSLODGEFOOD) as a simple design for a control system — the
chopsticks are intended to control the food by grasping itusTwe can pursue our earlier strategy by

5In reality, slight deviations from colinearity are compatesi for by forces of friction and deformation arising fronet
food, aided where appropriate, by surface tension forcasrgpfrom any sauce that the food might be prepared in (asasgell
many other similar considerations which we neglect).

12

separating the system into plant (food) and controller jfstioks) subsystems. TherR@SPFOOD rule
separates into RASPFOODc and CRASPFOODp:

GRASPFOODc = (14)
choo_sefﬁ/cu, f/Hc/L / /
with f,c, +/fHCL :OAHH/CU’:”HCL‘Z D
do frcu = flcy, frel = fhcL,
grasped:= TRUE

GRASPFOODp = (15)
choo_sef’F/U, f’FL/

In (14) and (15) we see thatRa sPFooDc only ‘owns’f ey andf 1L, SO only assigns to those variables,
and QRAsPFOODp only ‘owns’ fy andfg, so only assigns to them. We also observe that some pieces
of GRASPFOOD are not present in eitherf3sPFOODc or GRASPFOODp, namely the terms that relate
the food forces to the chopstick forces. This is explainedhieyobservation that the relevant equations
are part of the domain theory of statics: action and reaai@alwaysequal statically, by Newton’s
Third Law. (This is an example of our comments in Section 4hwhe domain theory playing the role

of ‘somewhere to put the physics’.) Additionally, the stat that successful grasping needs adequate
force is also part of the domain theory, so we can write thealpras:

Domainpyc = fry + fucu =0Afr. + fucL =0 A (grasped= TRUE < | fycL|> D) (16)

Now, in the context of (16), it is easy to see that:

Domain:yc A guardgraseroon: F guardsrasrroon (17)
Domairneyc A guardsraseFooos - guUardsraseroon (18)

6.2. Chopsticks and Hand

The preceding was rather elementary. In particular, itypresd that chopsticks somehow grasp food
by themselves, which is silly. In reality, chopsticks arédhia the right hand, which causes them to
exert the forces spoken of previously. We can now enrich auateghby considering the hand-chopstick
system as a further control system, and decomposing iteuitito a plant subsystem (the chopsticks
themselves) and a controller subsystem (the hand).

We refer to Fig. 2 again. For a solid object to remain stabl@Dnspace, it needs to have four non-
colinear forces summing to zero acting on it. If gravity isirg (as it normally is) then it supplies one
force, and we derive the well-known fact that an object néedse supported from underneath by three
or more forces for stability.

This applies to the hand-chopstick system, where for siitpliwe are ignoring gravity. Given how
chopstick are disposed with respect to the hand, it is indanvenient to view the hand as exerting five
forces per chopstick. Fig. 2 shows the forces involved.

The middle of the lower chopstick is held steady on the ringdin Typically it is gently wedged
in the angle between the edge of the fingernail and the sideeofléshy pad of the fingertip, which
we model by the forceby 1 andfy > in Fig. 2. These are predominantly directed in the plane ef th
diagram, with a small component at right angles, out of theglof the diagram, towards the reader. The
back end of the lower chopstick is held on the fleshy part betvtiee thumb and palm, and the forces are
modeled byf 4 andf 5. Again these are mostly in the plane of the diagram, with dlstoenponent
outwards, towards the reader. Opposing all the outwardgpoaents i 3 (the force drawn with the

13

blob at its tail in Fig. 2), which is exerted by the lower endlaf thumb, predominantly inwards into the
diagram®

If the chopstick is merely being held steady, then theseefostim to zero. However, if food is being
held, then the user adjusts the individual forces so thgtshen tof yc:

frir +frae +fas +fas +fas = faol (19)

The story for the upper chopstick is similar. The for€gg;, andf.y,, formed by the more pro-
nounced wedge between first and second fingers, serves tg fiold and direct the middle of the
chopstick in order to open and close the chopsticks for gngspod. Force$ys andfys, exerted by
the dip between the palm knuckle and first knuckle of the irfdeger, support the back of the chopstick.
And vertical movement is restrained fyyys, once more indicated with a blob at its tail in Fig. 2, exerted
by the upper part of the thumb. Again, if the chopstick is heihg held steady, then these forces sum to
zero. However, if food is being grasped, then they sufiytg;:

frut + fruz + frus + fhus + frus = facu (20)

With these observations, we can decompose tRas$BF00Dc function into its plant and controller
subsystems, rulesHOPSTICK> and HAND .

In those rules, we have singled digfy, andf ¢, as output parameters in the signature ef\ ¢ for
emphasis. They are quantities derived from the underlyamgiHorces, which the chopsticks react to by
setting their forces appropriately. The equaliiggy = fcy andfyc. = fcL again become part of the
domain theory of statics.

CHOPSTICKp = (22)
choosef{,,, frcL

with ficy +flc, =0

do frcu = fhcys frer = fhc

HANDc(outfcy, foL) = (22)
choosefyyy, fhyz Fhus: Frua Fhus Thiss Fre Fhoss frs fhs
with fy; +fhuo + Flus + fhua + fHu5+
fa +fho +fhs + i +fhs =0
| fHu1 +fhuz + fhus + Frus + flus | =
[fhis +Fho +fhs +fhs +fhis|> D
do fHu1 = fhuw Fruz = flhuo, Frus = flys, frua == figs, frus = flyys,
fris == iy fre = fr fas = fis, frwe = s fas = flys,
feu = fhur + fhvz + Fhus + Fhua + Flus:
feu =1t + o +Fls + fhs + s,
grasped:= TRUE

The above completes our brief treatment of chopstick usetaiics.

6N.B. In reality, many guides to eating with chopsticks reaeend all sorts of alternative configurations for holdinggho
sticks — the reader may get a good idea of the various posigbifrom a simple Google search on the topic of eating with
chopsticks. The configuration described here is the onlytluaiethe first author has found that permits both adequatestio&
maneuvreability and sufficient deployable resultant foespecially when it comes to bigger pieces of food. A lot deiseon
the precise development of the musculature in the forearemahdividual, and how it is able to compel the fingers to exert
forces in specific directions. Starting young helps a lot.

14

7. Continuous Controller Synthesis

The reader may well have noticed that there are some slighthatural aspects of the account of
chopstick use that we gave. The ASM rules in the precedingosewere the usual kind of discrete
ASM rules. However, grasping via chopsticks is not the usirad of discrete event control system.
In particular, in line with the behaviour of all physical sgss, both the chopsticks and the food react
instantaneously to the force exerted by the other, and rsntrtee previous value maintained by the other,
the latter being what one would expect in a normal discreémtegontrol system. We handled this via
the domain theory, which demanded that the opposed foreetlgxnatched, without giving any inkling
as to how this might be accomplished.

In a more realistic account, the force applied by the chokstio the food moves smoothly from zero
to a value sufficient to ensure grasping, and the food sehiseartd smoothly reacts by offering a match-
ing resistive force. The sudden assignment to equal andsgpp@lues in the discrete picture is replaced
by a pair of differential equations which state that thedgives of the chopstick and food forces are
equal and opposite over time, which together with initiaiditions stating that both are zero, guarantees
that the forces themselves remain equal and opposite. Qdlyithis is again an oversimplification of
reality, but it is sufficient to illustrate the next chaptéroar controller synthesis story.

Incorporating these insights into the ASM framework regsiian extension of ASM to include con-
tinuously varying behaviours as well as discrete changed3]l a work subsequently expanded and
elaborated in [5] and [4], the authors give such an extensiuich we briefly recapitulate now.

7.1. Continuous ASM

We partition the variables into two subsets: thede variables whose types are discrete sets, and
the pliant variables, whose types include topologically dense sets, and whielparmitted to evolve
both continuously and via discrete changes. By restrictimgnode variables alone, we recover the
conventional discrete ASM framework.

Time is modelled as an interval of the real number®, with a finite left endpoint for the initial
state, and with a right endpoint which is finite or infinite, reeeded. 7 partitions into a sequence of
left-closed right-open intervalgty...t1),[t1...t2),...), the coarsest partition such that all discontinuous
changes take place at some boundary ppinfThe actual time pointg are determined by the runtime
behaviour of the system during some run, as becomes claartfre account below.) Mode variables
are constant on each of these intervals, while pliant veagabvolve continuously. Otherwise arbitrary
continuous evolution is constrained within reasonablendsiby three main restrictions:

| Zeno: there is a constadgen,, such that for all neededtj; 1 —t > dzeno-

Il Limits: for every variablex, for every timet € 7, and withd > 0, the left limit lims_ox(t — &)

RN «—

written x(t) and right limit lims_o X(t + &), written x(t) exist, and for every, x(t) = %

[l Differentiability: The behaviour of every pliant vati¢e x in the intervallt; .. .ti1) is given by the
solution of a well posed initial value probleiixs= @(xst) (wherexsis an appropriate vector of
pliant variables, an@® is the time derivative).

Regarding these three conditions, we make the followingtiaddl comments. Re. I, the presence
or absence of Zeno behaviour is most often a property of thkaflreachability relation of a system
permitting the kind of hybrid behaviour we are admittingteof depending sensitively on the relative
values of various constants in the system model. So | is micaedesirable goal andide memoirghan
a condition that could be imposed as a static restrictionll,Ree admittance of different left and right
limits is just what is needed to accommodate discontinubasges that take place instantaneously. The

15

space of functions defined by Il is well studied in stochaatialysis, where it goes by the name of cadlag.
Re lll, as well as differential equatiomer se we admit direct assignments of continuous behaviour, and
even implicit assignment to any function obeying a statédseestrictions, providedhese are capable

of being defined by a well posed initial value probleim practice, this means restriction to absolutely
continuous functions; they have the property of being smhgtto well posed initial value problems in
the sense of Carathéodory, see [10].

The two kinds of variable (mode and pliant) are reflected in kinds of transitions: mode and
pliant. Mode transitions, given by rules of the form (23)dwel just record discrete transitions from
before-values to after-values of variables, with the usthefleft limit for before-values and right limit
for after-values giving an instantaneous interpretatmthe semantics of these transitions. Both kinds
of variable can be subject to a mode transition, and in (28)chwis a typical ASM rule syntax for an
instantaneous transition, in which the variables have deenrated with the relevant limit informatidn,
we single out inputss and outputsin the signature of @.

OR(in is,out 63) = (23)
— —
if guard(Xs, is) then chooseXs, 0s with rel(Xs, XS, is, 0s)
do xsos := Xs,0s

Pliant transitions describe continuous changes for pliariables. While a mode transition captures
a single before-/after-value pair, a pliant transition farily of before-/after-value pairs parameterized
by the relevant time intervdl;...ti.1). The before-value is, in each case, the valug,awhile the
after-value refers to an arbitrary time in the interval, Ise two values are temporally separated. A rule
for a pliant transition can be written as in (24), where thealsgl = syntactically distinguishes a pliant
transition from a mode transition.

PLI OP(in iS(t € (tL(t) .. .tR(t))),OUt OS(t € (tL(t) .. -tR(t)))) = (24)
if IV(x(t,«py)) and guardxs(t,))) then with rel(xsis,ost)
do xg(t),09(t) := solveDE(xg(t),is(t),05(t),t)

In (24), L(t) =maxXi |t <t} and Rt) = min{i | t >t} so that we do not have to statically know the index
i for the intervallt;...ti;1), thus making the notation generic. Furthermdkéandguard refer to the
initial value and any additional guard restriction that lgdr the initial value problem irft;...t1).2
The solve keyword announces that what follows is a differential emumeDE that defines the needed
behaviour of the initial value problem, whilel expresses any additional constraints that must hold
beyondDE. Inputsis and outputss (shown as depending on the whole interialy . .. tr))) again
appear in the signature. If, as can often happen, we knowothe &f the continuous behaviour that we
want (in contrast to merely knowing a differential equatibat specifies it), then we can replace the
solveclause with a straightforward assignment usirgpabearing in mind that what is being expressed
is a time-indexed family of individual assignments.

We say that a continuous ASM rulesetnigll formed iff the initial state is regarded as being estab-
lished by the (after-state ofteue-guarded) initial mode transitichand:

e Every enabled mode transition is feasible, i.e. has an-sfige, and on its completion (25)
enables a pliant transition (but does not enable any modsiti@n).

7So the overarrows are just semantic decoration, and nobptre syntax.

8|n a pliant transition, it is often convenient to separatarguestrictions applying to mode variables, which are ldown
remain true during the whole of the ensuing pliant transitfcom initial value constraints on pliant variables, whare prone
to failure immediately that the continuous evolution comiges. We can put the former guard and the latter ilV.

9Formulating the initial state this way simplifies the degtidn of the formal operational semantics in [5] a little.

16

e Every enabled pliant transition is feasible, i.e. has adinatexed family of after-states, and (26)
EITHER:

(i) During the run of the pliant transition a mode transitmtomes enabled. It preempts
the pliant transition, defining its end. ORELSE
(i) During the run of the pliant transition it becomes irddae: finite termination.
ORELSE
(i) The pliant transition continues indefinitely: nonteination.

Although it is rather selfevident that the preceding infatraccount of the continuous extension of
ASM misses out much of the fine detail of a complete operatisamantics, in the kind of relatively
simple continuous behaviours that are usually of intereapplications like ours, intuition is a powerful
guide to the required behaviour, and the full details maydabely relegated to a more precise treatment,
as can be found in [5]. Accordingly, in this paper, we contarselves with the sketch just given.

7.2. Continuous ASM as an Extension of Conventional ASM

Given the above outline of continuous ASM, we can regard & aenservative extension of tradi-
tional, discrete ASM, by embedding a generic conventioisdrdte ASM system into continuous ASM
in the following manner:

e We consider all of the original discrete ASM rules as modesul
e We decide on a fixed duratiawn > O for all the pliant transitions.
e We determine that each state of the discrete event ASM systipersist ford;.

e We add continuous ASM rules for all needed pliant transgi¢perhaps only one), that in effect
just skip in a continuous manner (by setting the time derivatives loA&8M state variables to 0
where needed).

¢ We add atime variabliesay, and enable all mode transitions after the elapse oféeyral multiple
of & (by adding an expression like/d; € N” to each mode rule guard).

We see that the above merely expresses a specific instanieat afhiich is normally assumed without
comment in discrete transition systems. Thus (firstly),¢om@ventional discrete transition system, transi-
tions are normally understood to take place instantangoAtdo (secondly), as soon as such a transition
has taken place, the state variables already have the \taktesill enable the next transition (since they
do not change in between transitions). However (thirdlyis hext transition does not take place straight
away (which would imply that it happened at the same instariha preceding transition, and hence, by
induction, that the entire run of the discrete transitiostsgn took place at a single moment of time), but
is normally assumed to take place some time later.

7.3. Continuous ASM Refinement

In the context of the preceding account, a natural questisesaregarding the impact on ASM re-
finement. In fact, given the clean way our continuous extansf ASM extends the discrete framework,
and the extreme flexibility of the notion of discrete ASM refiment, very little has to change. It is
possible to set up a notion of continuous ASM refinement bynafig, in a generigm, n) diagram, the
abstract and concrete operation sequences(X®) and YOP(y,Y') to consist of arbitrary sequences of
interleaved mode and pliant transitions, rather than theimgosequences of exclusively mode transitions
as in the discrete case. The POs (6) and (7) remain unchanged.

In this case, X@ defines a function from time to state values, lasting fromaaginning of the first
operation of X@ to the end of the last operation of XQtaking suitable limits if these are needed to

17

obtain precise values. Similarly for SO These initial and final value pairs are the ones appearitiggin
equivalencefR(x,y) andR(X,y) in the POs. And with these technical details understoodptimeiple
of abutting occurrences ¢, n) diagrams to form a simulation between runs remains uncliange

It is worth pointing out that the above remarks, in not denraguanore than the original POs of
the discrete version, doot stipulate any particular restriction on the relative pgssaf time in the
abstract and concrete models, nor on any other aspect nlatigpnentioned. We can interpret the
great flexibility of the original ASM refinement notion as encaging the greatest possible flexibility
in the continuous extension, accompanied of course, bydfgonsibility of justifying any particular
decision taken in any particular application, against dmirements.

7.4. Continuous Controller Synthesis

We can ask how the process of separating a set of rules intcoienand plant rules works, when
we have pliant as well as mode transitions. In fact, the @®cevery similar to what went before. Since
mode rules are identical to the rules we considered eatfierg is nothing new for them. For pliant
rules, they also haveguard and arel, and for these we demand the same conditions as previousty. B
there is also theolveclause. We need to stipulate that it separates cleanly oritraler and plant in
the same way thajuard andrel do so that the rule as a whole splits neatly.

The tuple of differential equatiorid xs= @(xs t) contained in theolveclause of é&Sysrule naturally
splits into two: Dxsc = @c(Xst) andD xs = @p(xst). But there is na priori guarantee thapc(xst)
contains only the variables,xs5, and@s(xs t) contains only the variable&,x% So for admissi-
bility, we must additionally demand the following:(xs t) contains occurrences of only the variables
XSc, XS, and@(xs t) contains occurrences of only the variabkss, x@

With these provisos, the pliant counterparts of (1) and82)become, respectively, (24) and:

PLIOPc(in iSC(t S (tL(t) - tR())) out OSc(t S (tL() tR()))) < (27)
if IVe(xsc(tyw) Xs(tLr))) and guarde(x), X (tL ()
then with relc (X, x$ |sc,osc t)

do xs(t),05c(t) := solveDEc(xsc(t),xs(t),isc(t),0(t),1)

PLIOPp(in iSp(t S (tL(t)-- tR())) out OSD(t S (tL() tR()))) < (28)
if IVp(xsp(ty), X5 (t) and guards(x), X (t
then with relp (Xsp, x% |sp,osp t)

do xs(t),08(t) := solveDEp(xs(t), X (1),isp(t),0%(t),t)

Itis now clear that the embedding of discrete ASMs into cardius ASMs outlined at the end of the last
section is admissible in the extended sense just discupsexdded the original discrete ASM system
is admissible, so that the properties derived for contrdigthesis in Sections 2 and 3 carry through
essentially unchanged.

We can also say that the remarks about domain theories mdslkection 4 remain true in the con-
tinuous context, particularly when we recognise that défftial equations couple instantaneous rates
of change of variables at some tirheo values of variables dhe samdimet, in a manner analogous
to the situation we have already seen in the statics treatofernopstick use in Section 6. And if we
further observe thatl, 1) refinement for an abstract/concrete pair of pliant tramsgtiin the continuous
case can be regarded as a time-parameterised family oétéigdrl) refinement relations, relating ab-
stract/concrete before-valuestgt, to abstract/concrete after-valuest gtor all t € (t,(y)...try)), then
the results on complete refinement in Section 5 carry thraugfne appropriate manner as well.

18

8. Continuous Grasping

We now revisit the chopsticks case study from Section 6 irctrginuous ASM framework, to see
how the latter can lend it a more persuasive air.

As before, to keep things relatively simple, we restrictiimdeling to that of forces only (albeit now
allowing them to vary continuously), neglecting other ssas in Section 6. This avoids complications
arising from having to consider movement of either the foothe chopsticks, or distortions of the shape
of either the food or chopsticks consequent on them exparigrthe forces that we model, and keeps
the model that we present within a relatively limited space.

We concentrate on elaborating the simpler model in Sectibn®Bmet = 0 triggers the initial mode
rule:

START = (29)
if t=0 then
do mode:= grasping grasped.= undef,
f|:U = 0, f|:|_ = 0, fHCU = 0, fHCL =0

Thegraspingmode enables the following pliant rule:

GRASPING = (30)
if mode= grasping then
do fru, frL, freu, froL =
solve[Dfpy, DfpL, Dfpcu, DfpeL | = (€, —€;, —€;,6;]

This rule causes the forcésy, fr., frcu, fHcL t0 acquire suitable pairwise equal and opposite rates
of change, of magnitude 1, oriented along the unit vectohefz axis. This causes these forces to

change continuously (although in fact non-smootf)yaway from zero at a uniform rate. The continuous

grasping persists until a timerop, When it is determined whether enough force has been appliedid

the food:

STOPGRASPED = (31)
|f t= ts‘rop VAN fHCU 2 D then
do mode:= stop grasped.= TRUE

STOPDISLODGED = (32)
if t=1tsrop A fHcu <D then
do mode:= stop grasped:= FALSE

The stopped mode just enters a pliant final state:
F-IDLE = if mode= stop then do skip (33)

The above is all consistent with the domain theory (16),ait/n the variables in the theory would have
to be interpreted as functions of time, and the theory itagfild have to be augmented by various
facts concerning time and the additional variables intoeduabove, in order that the natural continuous
counterparts of the statements in (5) could hgld.

10since the derivatives of the forces jump discontinuously=aD, the forces themselves, though continuous, experience a
kink att =0.

11The domain theory would also have to be supplemented withclgoaund theory of facts about calculus, continuous
mathematics etc., as needed.

19

8.1. Decomposing Continuous Grasping
We now look at applying the decomposition strategy disalisselier to the above integrated model.
We assume that the chopsticks, as controller, are in chargkpwn variables likenodeandgrasped
We decompose the rules above one by one, starting witiR 8
STARTc = (34)
if t=0 then
do mode:= grasping grasped:= undef,
fhcu=0,fucL =0

STARTp = (35)

if t=0 then
do fFU =0, f|:|_ =0
Next, the decomposition of theEAsPING rule. This yields:
GRASPING: (out of ycy, Of e) = (36)
if mode= grasping then
do fhcu, fHeL = solve| Dfpcy, DfreL | =[— €, €],
of icu := frcu, of el == freL

GRASPINGp(in if peu, if el) = (37)
if mode= grasping then
do fry:= —ifpcu, frL = —ifHoL

The above rules display a slightly more complex manner obugosition than we have considered
hitherto. Instead of merely partitioning the variables determining that subsystem B has read access
to some of the variables owned by subsystem A, we have intemtlinput and output variables that do
this job explicitly. So the chopsticks have output varialdé,cy andofyc, which are just copies of
variablesf ycy andfyc,, and the food has input variablés,cy andif yc, which are used to read the
relevant values in. Thus, the modeling is a now little défarin that the food explicitly reacts to the
forces it senses, by generating equal and opposite forciés @fvn, instead of generating these forces
directly as a result of solving separate differential emunet for these forces, as in (30). Technically, we
have substituted equals for equals, but have gone beyorsintme syntactic transformation described
earlier in the paper. Itis a natural temptation to do thikathore realistic and practical level of modeling
that we have reached. Since the new variables are just cofpéedsting ones, only trivial modifications
are needed to the earlier formal results, and it would meadty clutter to complicate the earlier theory
by including them.

Next are the $opPrules:

STOPGRASPED: = if t =tgtop A fHcu > D then (38)
do mode:= stop grasped.:= TRUE

STOPDISLODGED: = if t =tstop A fHcu < D then (39)
do mode:= stop grasped:= FALSE

STOPGRASPED> = if t=tgrop then do skip (40)

STOPDISLODGEDp = if t=tgrop then do skip (41)

20

And lastly the final idle rules:

F-IDLEc = if mode= stop then do skip (42)

F-IDLEp = if mode= stop then do skip (43)

The preceding shows that the controller synthesis proectthat we have described is as applicable
to the continuous extension of ASM as it is to the discretsiger We could now go on to apply the same
approach to create a continuous version of the decomposet-tlaopsticks model, but although there
is no technical impediment to doing so, it would introducetaof complexity into the model description,
without bringing any genuinely new insight to the table. s reason, we do not pursue it in detalil.

9. Unsynchronised Continuous Controller Synthesis

In this section we explore a phenomenon connected with altertisynthesis that is exclusive to the
continuous case. The situation arises as follows. Suppeageve have a physical proce@shat is to be
controlled using some input signal using a first order DE:

DO=u (44)

For our purposes, it will not matter exactly whabr u might actually be. More important is the fact
that, in line with the overwhelming majority of control ajgaltions today, we regamas being set by a
digital process, which instructs actuators to hold paldicualues orf’s input signal until re-instructed

to hold new ones by a fresh digital command. i in fact a piecewise constant signal, and at the
level of abstraction of interest to us, we consider the wgxltdu to be performed by mode events. In a
unified modeling framework, assuming a single period of biehe lasting (perhaps) 10 time units, we
can describe the scenario mentioned in the ruleset beldobe rules, we assume that at integral times
t € N, the new value of the control signal is chosen (arbitrafdy simplicity, fromU, the type ofu), and
that in between these integral timeds held constant anél obeys (44):

START = (45)
if t=0 then
do mode:= behave
0:=6p, U= U

BEHAVE = (46)
if mode= behavethen
do 6,u := solve[DB, Du|=[u,0]

UPDATEU = (47)
if mode= behaven teN A t<9 then chooseu € U

dou:=u
StorPU = (48)

if mode=behaven te N A t=10 then
do mode:=stop u:=0

IDLEU < (49)
if mode= stop then do skip

21

Now we can examine what happens when we decompose the alxigensgccording to our con-
troller synthesis strategy described earlier. In conti@stur earlier practice, we list the controller rules
first, plant rules afterwards, rather than interleavingrth&lere are the controller rules.

STARTc = (50)
if t=0 then
do mode:= behave
u:= U
BEHAVEC = (51)

if mode= behavethen
do u := solveDu=0

UPDATEUc = (52)
if mode=behaveA te N A t<9 then chooseu € U

dou:=1U
StoPUc = (53)

if mode=behaven te N A t=10 then
do mode:= stop
u=~0

C

IDLEUc = (54)
if mode= stop then do skip

And now the plant rules.

STARTp = (55)
if t=0 thendo 6:= 6

BEHAVEp = (56)
if mode= behavethen do 6 := solveD6=u

UPDATEUp = (57)
if mode=behaveA te N A t <9 then do skip

STOoPUp = (58)
if mode=behaveA te N A t=10 then do skip

IDLEUp = (59)
if mode= stop then do skip

What is interesting about the decomposed version of the rideules (57) and (58). These are mode
rules thatskip. Our decomposition technique has generated mode ruleddhaithing. Mode rules that
do nothing are unlike pliant rules that do nothing. Let usggannomentarily to examine why.

Since real time is a first class citizen in the continuous A&\ework, and behaviour is continuous,
a continuous ASM system model must always be obesargerule. Given the finite nature of continuous
ASM system descriptions, the rule that the system will beyistgpwill, almost alwaysi? be a pliant rule.
Thus, even if the system is to remain in some particular fixatesover a period of time, this idle
behaviour must be explicitly specified somehow.

12Amost always’ is intended in the technical, measure théosense of ‘almost everywhere, in the set of times’.

22

The case for mode rules theltip is different. The runtime behaviour of a mode rule has notitura
If the rule effects no change in any variable, then one wooltnally expect the continuous behaviour
of the variables that was being implemented by the pliat(g)ithat was(were) active immediately prior
to the mode rule’skip to continue.

We said ‘would normally expect. to continue’ rather than ‘will continue’ just now, for thellimwing
continuous-ASM-specific reason. Let us say for the sakegufraent that a mode rule theltips, MoSkip
is the only rule schedulable at a given moment. Then exegiioSkipintroduces a scheduling point
into the dynamicsWith the mode rule MoSkip included in the rdine previously running pliant rule(s),
PliBefore (suppose there is just one), which was preempteMbgkip may no longer be enabled after
MoSkip (even thoughMoSkipdid nothing), sinceRliBefore may have disabled itself through its own
activities, for example by altering some variables in suckag thatPliBeforés guards became false.
And MoSkip once (trivially) completed, may enable some new pliang(g)l PliAfter (suppose again
that there is just one), which then takes over and givesaisew behaviour. Now suppose tibSkip
is not scheduled at that moment (for example by considering amsy#tat does not contaiMoSkip
but is otherwise identical)Without the mode rule MoSkip included in the raime previously running
PliBeforemay well continue to effect the behaviour it was previoustypliementing (even though it may
have disabled its own guards — since it only needs to chegkudsds at the beginning of its execution),
and since there is no mode rule occurrence to predttiBefore the new pliant rule spoken of in the
preceding casé&liAfter, remains locked out and cannot cause the new behaviourenedti Therefore,
whether or not a modskip actually executes at a given point in a system run, can makféesetice.

We regard (the semantics of) each run of a well formed sysetiesset of time dependent functions
—one for each variable of the system— that define the valuadci ef the system’s variables at each
time within the duration of the run. With this definition, waysthat a set of continuous ASM rules is
normal, iff, no two distinct pliant rules of the system can give risghe same time dependent valuations
for the set of all variables over any open interval of timej,amhenever all mode rules that merekip
are removed, then the set of runs is unchanged (i.e. no reredded, no runs are removed, and no runs
are changed in any wa3). Note that whether or not a set of rules containing mskigs is normal or
not may depend on the modeip rules’ guards. These guards may hawe-sets that are sufficiently
small that they prevent the rules being scheduled at timesnwhiey might otherwise cause some visible
alteration in the set of runs of the system.

We can now apply these insights to our example above. We hatdhe guards of rules (57) and
(58), which are modekips, are strong enough to ensure they are scheduled only aanhe time as
nontrivial mode rules (52) and (53) respectively. Therefave can omit them from the aggregated set
of controller and plant rules, without altering the time eieg@ent valuation function of any variable.

Theorem 9.1. Let Full be a system of continuous ASM rules. Let Brief beyktem derived from Full
by removing all the modskip rules from Full. Suppose Full is a well formed normal systdmuées.
Then Brief is a complete refinement of Full.

Proof: If Full has no modekip rules, therf-ull andBrief are identical — the collection dfL, 1) diagrams
expressing an identity refinement, between, on the one laasidjultaneously enabled set of rules, and
on the other hand, itself, is evidently a complete refinememd there is nothing more to show.

13n other words, if a well formed system is normal, then theunnce of a modskip causes no observable effect, and in
particular, the phenomenon of allowilRiiAfter to run after the modekip, as described above, certainly does not take place.
In a well formed normal system, for each variable, the lefitivalue at the moment the modgip occurs, is equal to the right
limit value at that moment (and is, in turn, equal to the alcimiue at that moment), so the occurrence or not of the nsaige
is not visible in the time dependent function of the valueamyf variable.

23

Otherwise,Full and Brief are different, despite which, by assumption, they have #messets of
runs (interpreted as variables’ time dependent valuatiofis show a complete refinement, we have to
exhibit an appropriate set ¢, n) refinement diagrams. We have to supply enough of these tofoate
all ways in which modekips might (or not) have contributed to any run in particular.

The set of(m,n) diagrams consists of the following three batches. Firgtlyas all(1,1) diagrams
expressing an identity refinement, between, on the one laasidjultaneously enabled set of rules con-
taining no modeskips, and on the other hand, the same set of rules. Secondlyntiine all(1,1)
diagrams expressing an identity refinement, between, onribéhand, a simultaneously enabled set of
rules containing at least one mosldp but also at least one non-moslép rule, and on the other hand,
the same set of rules with all the mosldps removed. For these first two batches, it is evident that the
complete refinement criteria are easily met.

Thirdly, it contains all(m,1) diagrams constructed according to the following crite@} the se-
guence oim steps offull is reachable, occuring in some runkdll; (b) the numbem is odd, at least
3; (c) the first, last and all odd-indexed transitions of thateps offFull are pliant transitions; (d) all
even-indexed transitions of tmesteps ofFull are mode transitions defined by magkép rules only; (e)
the single step oBrief is a pliant transition which refines thma steps offFull. We must justify that the
definition of the third case is both consistent, and covdrhalsituations needed that arise, and that are
not already covered by the first two cases.

Regarding consistency, we claim that all the pliant trams# of the sequence aofi steps ofFull are
defined by the same (set of simultaneously enabled) rulE¢s)suppose not, and that the first transition
(pliant) was defined bfli1, and, following the second (modkip) transition, the third transition (pliant)
was defined byPli2 £ Plil. Then, removing the intervening moslép, would rendePli2 unschedulable
in any run in which this fragment occurred, and thereforis, hin (with modeskips removed) could not
be a run oBrief. Since we assumdelll is well formed and normal, this is a contradiction. Sincezd!
pliant transitions of the sequencerofteps of-ull are defined by the same set of simultaneously enabled
rules, they join together into a single behaviour, as erplaiin footnote 13. This single behaviour is the
content of the 1 pliant transition of tigrief system in thém, 1) diagram. The requirements of complete
refinement now follow readily for thiém, 1) diagram.

Regarding coverage, we argue as follows. Consider a ruruthf Because-ull is well formed
and normal, we can remove all moslkips, to get a run oBrief. As argued above, when we remove
the transitions consisting of modeips alone, we are secure in the knowledge that the pliant bedavi
either side can be joined into a single behaviouBéf, defined by the same set of rules. Whenever this
happens fok consecutive pure-modskip transitions, we view it as an instance of2k+ 1,1) diagram
of the kind constructed above. All other steps of Ehédl run and of theBrief run are covered by the
(1,1) diagrams of the first or second batch discussed above. Buites well formed and normal, there
are no other runs to consider for eitiarll or Brief. We are donel

9.1. skips and Multicomponent Systems

So far, we have been regarding the decomposed system ofasil@single aggregated set of rules
specifying overall system behaviour, albeit that we regard subset of the rules as belonging to the
plant and the remainder as belonging to the controller. imgénse the partition of rules is a meta level
concept: in the terminology of Section 2 we are talking atfyg ., p, rather than the two subsystems
Syg andSy$ separately. In this view, we saw that we could discard theewskip rules (57) and (58),
since they are always scheduled with reip rules, and thus ASM scheduling semantics implied that
the overall runtime semantics was unaffected by their rethaddo in this view, all the modskip rules
fall into the second batch discussed in the proof of Theorem 9

If we change the viewpoint, and now look at the system as tparsge (sub)systemSys andSy$,
then the picture changes. A number of questions presenstiees.

24

The main question is: how independent are the two systerasdet to be, and what are the conse-
guences of this?

When components are designed independently of one andaliesr,need to precisely define the
mechanisms by which they interact with their companion conents in the rest of the system. Usually
in component based software engineering (CBSE), compsteawe ports of some kind, through which
they communicate and/or synchronise (see e.g. [1] for emeeof this large discipline). The communi-
cation/synchronisation mechanisms need to be very webnstobd for assemblies of such components
to be able to work together at all. If we consider our subsysiBys andSys in this light, we see that
our controller synthesis process leaves us well short bypamison with the expectations of CBSE. It
simply gives us a collection of rules, partitioned accogdia attributed functionality. The formalised
communication/synchronisation mechanisms that a CBSE wieuld need, are left very implicit in the
structure of the rules and their interdependencies.

We can see this reality reflected in the properties of the mstglerules (57) and (58) discussed
above. Let us discuss these one by one.

The UPDATEUp rule (57) causes no plant variable update, but marks timediah the variableu
may undergo discontinuous change as a result of the acticondfoller mode rule (52). It is thus acting
as a communication mechanism to receive notice of thesegekanu (even though the plant system
needs to do nothing as a result of these discontinuous chéragpening). I8y were to be regarded as
an independent component, then all aspects of this would twelee recorded in the interface tigys
offers to the rest of the world. Purely technically, rulehTeUp may be discarded without causing
discomfortprovideda particular observation holds, namely that we interpretdifferential equations
occurring in a continuous ASM system in the sense of Caoaktwy [10]. Amongst other things, this
allows the right hand sides of differential equations sue®®& = u to suffer the kind of discontinuity
just mentioned, without harming the existence or continaftthe resulting solutions. This is exactly the
property we need to handle the effects of (52).

The SrorPUp rule (58) is of a different nature. It causes no plant vagalghdate, but marks the
time at which theanodevariable changes frorehaveto stopby the action of the controller subsystem.
As above, it is acting as a communication mechanism to receotice of the changes in the value
of mode Again, if Sys were to be regarded as an independent component, then aliteagy this
would need to be recorded in the interface B¢ offers to the rest of the world. However, this time,
the technical optimisation that we had before is no longeilable, since the plant subsystem needs
to change its own behaviour as a result of the changmade by launching a different pliant rule.
Before, the pliant behaviour is defined by¥BAVEp, whereas after, the pliant behaviour is defined by
IDLEUp. If we omitted the $SopPUp rule, the behaviour of the plant subsysteriewed in isolation
would feature a pliant transition followed by a differentgpit transition, without an intervening mode
transition, violating well formedness. So we cannot onTib8Up in the way we could before. But this
should not trouble us, sincer8pPUp is acting as the receiver of a communication from the enwiremt
of the change imode omitting one half of a communication would be a very unushailg to do. The
fact that we might actually be able to do that in the cas®ArEUp is the more unusual possibility.

Recapitulating, viewing th8yg andSys subsystems that our process generates as truly independent
components is really carrying the separation analogy tooSanply viewing them as two collections
of rules, neglects all the interface aspects that need takamtinto account which ensure that these two
systems of rules are able to cooperate fruitfully. We hawn dbat this turns out to hold some quite
subtle connotations, since the cooperation is mediateth@red variables, which invariably leads to a

14as well as relating to variables that are read directly, Eintiemarks apply to pliant rule input variables, that hapizebe
governed by other system components, and which also undé&gontinuities.

25

very tight semantic interdependency between the two systehhis however, is the normal case for
control systems, where the interplay between controller @ant is indeed predominantly via shared
variables and the coupling between them is rather intim8tethe differing fortunes of the modsip
elimination strategy should not surprise us.

10. Conclusion

In this paper we have introduced the controller synthesiblpm for ASM systems. The motiva-
tion was that from a goal oriented point of view, it is oftenm@onvenient to focus on overall system
objectives at the outset, and to postpone detailed impl&tien issues, such as the specific assignment
of functionality to controller or to plant, till later. Thisontrasts somewhat with the usual approach ad-
vocated in the ASM method, which recommends paying closan to the classification of variables
and functions into monitored and controlled categoriebtrag the outset of system design. We believe
that there is merit in both points of view, and that a goalrigd approach can be a useful adjunct to the
recommended method in the early stages of design.

We showed that controller synthesis, as we have defined itndecidable, and we gave a safe
approximation. We argued that the success of the approaeahiably depends on having a suitable
domain theory to bind the separate behaviours of contralhel plant into a consistent whole, and we
discussed the nature of such a domain theory in some detaifl$@ showed that our notion of controller
synthesis was quite closely related to the previously iexjsind more general ASM notion of complete
refinement. We then illustrated our technique with a simglsecstudy based on holding food with
chopsticks. The chopstick case study illustrated rathdirthve need for the domain theory discussed in
general terms earlier.

We note that the conditions demanded of the controller artheoplant in our conditions for safe
controller synthesis in (4), each relate the subsystem é@stipn to the originating system (and only to
the originating system). Thus they are completely symmatihetween the controller and plant and do
not depend either on there being exactly two subsystemsin filherefore, the result generalizes to a
partition of the originating system into an arbitrary numbksubsystems, each built in the same fashion,
with some variables to which it has exclusive write accesd, alarger set of variables to which it has
read access.

The preceding remark is well illustrated by the chopstickecstudy, since after the initial decompo-
sition into food (plant) and hand plus chopsticks (coném|lwe were able to repeat the decomposition
of the hand plus chopsticks subsystem yielding a furthearsgjon into chopsticks (plant) and hand
(controller), resulting in a three way partition of the onigl system.

We then gave a rather brief overview of continuous ASMs, iagyuhat for typical applications,
such a brief description was usually sufficient, referringtmore through description elsewhere. In this
context, we briefly discussed how the controller synthessblpm could be extended to the continuous
formalism, illustrating it with a further elaboration ofgtlthopsticks case study. We closed by discussing
how mode rules thatkip, generated by the decomposition process, could be distanmider certain
circumstances, focusing on the more interesting contisweusion of the theory for this.

Although we have targeted a very simple scenario, the idestsite have explored have an applica-
bility that is much wider than we have mentioned hithert@eesally in the context of today’s hybrid and
cyber-physical systems [7, 8, 9, 11]. In these, there is days a strong tendency towards distributed
solutions to problems describable in a global manner. Sanikial global conception of the problem
needs to be decomposed into a number of subsystems thaecat®po form the global solution. Not
only are many of these problems intrinsically control pesbt anyway, making our approach directly
applicable, but the abstract version of the decomposigehriique that we have explored, tailored as it

26

is to the details of ASM rule scheduling, acts as a surrogate fmuch wider gamut of problems and
their solutions.

References

[1]
2]

[3]

[4]

[5]
[6]

Component-Based Software Engineering: Internati@yahposia, Springer, LNCS, 1997 onwards.

R. Banach, H. Zhu, W. Su, R. Huang, Continuous KAOS, ASiMi Bormal Control System Design
Across the Continuous/Discrete Modeling Interface: A Sanirain Stopping Application., Form.
Asp. Comp. (2013). To appeat.

R. Banach, H. Zhu, W. Su, X. Wu, Continuous ASM, and a Patamn Sensing Fragment, in:
Derrick, Fitzgerald, Gnesi, Khurshid, Leuschel, Reevaescébene (Eds.), Proc. ABZ-12, volume
7316, Springer, LNCS, 2012, pp. 65-78.

R. Banach, H. Zhu, W. Su, X. Wu, A Continuous ASM ModelliAgproach to Pacemaker Sensing
(2013). Submitted.

R. Banach, H. Zhu, W. Su, X. Wu, Moded and Continuous ASBI@). Submitted.

E. Borger, R. Stark, Abstract State Machines. A MetlimdHigh Level System Design and Anal-
ysis, Springer, 2003.

[7] A. Platzer, Logical Analysis of Hybrid Systems: Provifddeorems for Complex Dynamics,

Springer, 2010.

[8] J. Sztipanovits, Model Integration and Cyber Physicgt8ms: A Semantics Perspective, in: But-

[9]
[10]
[11]

ler, Schulte (Eds.), Proc. FM-11, Springer, LNCS 6664, ptth;//sites.lero.ie/download.aspx?f=
Sztipanovits-Keynote.pdf, 2011. Invited talk, FM 2011, Limerick, Ireland.

P. Tabuada, Verification and Control of Hybrid SystemsSynbolic Approach, Springer, 2009.
W. Walter, Ordinary Differential Equations, Spring&98.

J. Willems, Open Dynamical Systems: Their Aims andrtleigins. Ruberti Lecture, Rome, 2007.
http://homes.esat.kuleuven.befjwillems/Lectures/2007/Rubertilecture.pdf.

27

