
Core Hybrid Event-B III: Fundamentals of a Reasoning Framework

Richard Banacha

aDepartment of Computer Science, University of Manchester,

Oxford Road, Manchester, M13 9PL, U.K.

Abstract

The Hybrid Event-B framework was introduced to add continuously varying behaviour to the discrete

changes of state characteristic of the well established Event-B method. This is made necessary by the

needs of verifying the hybrid and cyber-physical systems that are increasingly prevalent today. The se-

mantic foundation of Hybrid Event-B rests on piecewise absolutely continuous functions of time. This

enables unproblematic modelling of all classical physical phenomena, as well as the specification of

conventional discrete changes of state, regardless of whether these arise in the physical arena or as ab-

stractions of computational behaviour. In this paper, the large gap between arbitrary piecewise absolutely

continuous functions, and what can be reasoned about mechanically/symbolically, is addressed. First,

piecewise absolutely continuous real functions are restricted to piecewise complex analytic functions,

real and without singularities on a semi-infinite portion of the real axis. This class has good properties

with respect to symbolic manipulation and thus provides a good foundation for an approach to system

verification that avoids dealing with the interleaved quantifiers of mathematical analysis, thus reducing

the verification of the proof obligations of Hybrid Event-B to calculational checks. The individual proof

obligations, whose discharge assures the correctness of a Hybrid Event-B machine, are examined, and

results establishing sufficient conditions for their successful discharge via calculation are given. A small

scale case study illustrates the verification process in this setting.

1. Introduction

Event-B [3] has been a well established formalism for discrete event modelling, specification and

refinement for a long time. Tool support for Event-B via the extensible Rodin toolset [110] has been

available for over ten years, and has been downloaded more than 10,000 times by people in most devel-

oped countries around the world [129]. However, today’s system developments are increasingly targeted

at producing embedded and cyber-physical systems, and a purely discrete event perspective proves want-

ing in the face of the requirements of such developments. For this reason, Hybrid Event-B [24, 25],

has been developed as a clean extension of the original discrete event formalism, to permit continuously

varying state change alongside the discrete events.

The approach to developing this extension was semantics-first. Piecewise absolutely continuous

real functions of time provide a good universe of behaviours in which to ground the foundations of

the Hybrid Event-B formalism. Ordinary differential equation (ODE) systems, interrupted by isolated

discrete changes of state, yield such functions as solutions, via the Carathéodory interpretation [130].

Other forms of specification, such as direct assignment, or conforming to a constraint, can be defined so

as to only yield time dependent behaviours in the same class. This gives a wide range of possibilities for

specifying behaviour at the syntactic level.

Email address: richard.banach@manchester.ac.uk (Richard Banach)

Preprint submitted to Journal July 25, 2023

In [24], henceforth referred to as PaperI, we introduced Hybrid Event-B for single machines. In

that paper, we explored extensively the background and motivations for doing the design in the way it

was done, and we gave both an informal account of Hybrid Event-B, and a formal semantics, along

with a discussion of refinement. We introduced a collection of proof obligations (POs), which, suitably

intepreted, enabled us to prove correctness of a Hybrid Event-B machine (corresponding to absence of

any ‘runtime ABORT’). These were heavily patterned after the discrete Event-B POs, a strategy that

works provided time is viewed as a parameter and not as a dynamical variable.

Of course, single machines are not enough. The cyber-physical systems we mentioned, are, these

days, highly interconnected interacting multi-agent systems, coupling together a typically very heteroge-

neous collection of subsystems. A Hybrid Event-B design that caters for such situations should be able

to model separate subsystems as separate machines, independent and yet interconnected in ways that

look convincing from the application domain perspective. In [25], henceforth referred to as PaperII, we

introduced a multi-machine extension of the single machine framework. In that paper, we extended the

discussion of the issues explored in PaperI to the multi-machine case — specifically showing how we

could adapt the single machine POs to the multi-machine case using some relatively lightweight extra

syntactic restrictions.

Of course, it is important that a framework such as the one introduced in PaperI and PaperII is shown

to be fit for purpose. So, alongside the theoretical investigation, a number of case studies, small and

large, and in a variety of application areas, have been performed to confirm the effectiveness of Hybrid

Event-B for modelling and reasoning in the embedded and cyber-physical systems arena. Among these,

and without derailing ourselves from our goals in this paper with more detailed discussion, we can point

to [22, 21, 16, 19, 27, 18, 17, 23, 20].

As far as deployment in practice is concerned, the theoretical framework developed in PaperI and

PaperII is of limited use without mechanical support, and so in the present paper we address the question

of the mechanised reasoning that could be built into a tool supporting the Hybrid Event-B framework

(such as a suitable adaptation of the Rodin toolset [110]). This requires relating the implications of the

mathematical basis of the semantics, ultimately to the kind of symbolic manipulations carried out by

mechanised reasoners. This is a long journey, though fortunately the literature contains a great deal that

can profitably be brought to bear on it. The aim is to trace the ground from the syntactic form of a

Hybrid Event-B machine’s POs to the symbolic manipulations that can evidence their truth for the given

machine. Taking into account the size of this task, the purpose of this paper is thus strategic, rather than

tactical and detailed, and, since much of the material needed for it is relatively well-known, much low

level detail is frequently alluded to rather than covered fully. References are routinely included where

further detail can be found.

Given that unrestricted hybrid dynamics is undecidable, a fact that goes almost without saying, to get

to a point where mechanisation can be helpful, some restrictions must be imposed in order to be certain

that one is dealing with cases with identifiable solutions. Therefore, in the detailed sections of the paper,

various constraints on event components, invariants, etc., are introduced. The intention in doing this is

not to be prohibitive, or to discourage consideration of additional cases, but to indicate the most readily

mechanisable possibilities. Besides, in single piece of work, one has to stop somewhere.

The mathematical storehouse that one can draw on for the kind of mechanisation pursued here is

vast, and, along with focusing on specific restrictions and the results that they lead to, from time to

time there are digressions on how the specific conditions treated may be extended to yield additional

solvable cases. An ideally designed tool for supporting Hybrid Event-B would make it unproblematic to

incorporate extensions covering such additional cases.

In dealing with the selected tractable cases, and considering the breadth of material covered, as well

as omitting low level detail, the author considered that an element of pedagogical style might be helpful,

so the account refrains from being as terse as it might be for specialists in the various topics treated.

2

The rest of this rather long paper consists of eight parts. Part 1 overviews Hybrid Event-B. Thus,

Section 2 introduces the languages of Hybrid Event-B, though it glosses over a number of low level

technical details. Section 3 presents a rather minimal cruise control case study for purposes of orientation,

and for future reexamination in Section 24. Section 4 briefly recalls the proof obligations (POs) from

PaperI that are used to verify a formal development such as the cruise control one, again for purposes of

orientation, prior to detailed examination later.

Part 2 focuses on mathematical foundations. Section 5 defines the piecewise absolutely continuous

functions that underpin the semantics of Hybrid Event-B, while Section 6 restricts these to those func-

tions which arise as piecewise holomorphic functions, these being exclusively the functions that occur

in the overwhelming majority of engineering applications. Section 7 specifically considers the dead-

lock freeness and well-formedness POs. These raise technical questions that can only be answered by

reference to the more precise material in Sections 5 and 6.

After this preparatory material, Part 3 is concerned with the logical foundations that a mechanised

prover would need to be based on, in order to connect the task of verifying the POs, to the semantic

foundations of Hybrid Event-B. The main aim of the process is to circumvent the many interleavings of

quantifiers inherent in the definitions of mathematical analysis, and to replace them with calculational

checks, requiring no quantifier handling. Section 8 fixes the lexical and syntactic conventions assumed

in the sequel. Section 9 covers the base logic, a natural deduction style framework within which more

detailed calculations are expected to take place. Section 10 comments further on this.

Part 4, which is rather short, consisting of Section 11 alone, discusses mode events. There is not

much to say about those, since discharging a mode event PO amounts to doing a specific calculation

(with whatever calculational tools may be available), there being no quantifiers to be concerned about.

The bulk of the rest of the paper is concerned with pliant event POs, and how to deal with them via

calculation. Part 5 looks at general properties of pliant events. Section 12 gathers together a disparate

collection of technical notations and definitions that are needed at various points in the treatment of pliant

event POs later. Section 13 discusses pliant event basics — their wide generality is now restricted to a

range of possibilites that will allow for subsequent definitive reasoning. Section 14 covers the so-called

pliant modalities. These are properties such as continuity, that were introduced into Hybrid Event-B

as syntactic sugar in [15]. They typically involve reasoning about more than one event in sequence,

somewhat like deadlock freeness and well-formedness.

Part 6 embarks on the detailed examination of pliant event POs. Section 15 is a lead-in to the main

results of the rest of the paper, indicating the pliant event POs that are covered individually in separate

sections later. Section 16 covers the pliant event feasibility PO in detail. Given the expressivity of Hybrid

Event-B, there is a lot of case analysis, to clearly separate easy cases from more difficult ones.

Part 7 deals exclusively with machine invariants. Section 17 focuses on the structure of machine in-

variants, restricting their generality to a limited range of possibilities, deemed to be reasonably tractable,

just as Section 13 restricted the permitted form of pliant events. Section 18 covers invariant preserva-

tion for pliant events, considering how the restricted pliant events might preserve the restricted machine

invariants. Again there is a large amount of case analysis, for the same reasons as before.

Part 8 is concerned with refinement. Section 19 briefly reviews how refinement is proved on the

basis of the POs given earlier. Section 20 looks at pliant event feasibility under refinement. This is

very similar to feasibility for machine events, so does not require much discussion. Then, Section 21

considers joint invariants, restricting them to a specific, regular relation form, just as other components

were restricted earlier. Section 22 covers joint invariant preservation under pliant event refinement,

applying the restricted pliant event forms to the restricted joint invariant forms. Again, there is a lot

of case analysis — given the importance of the topic, it is vital to identify cases that can be dealt with

efficiently. Section 23 briefly considers the refinement POs that contain witness relations.

Part 9 covers remaining issues. Section 24 revisits the earlier cruise control case study in the light

3

MACHINE HyEvBMch

TIME t

CLOCK clk

PLIANT x,y
VARIABLES u

INVARIANTS

x,y,u ∈ R,R,N
EVENTS

INITIALISATION

STATUS ordinary

WHEN

t = 0

THEN

clk,x,y,u := 1,x0,y0,u0

END

.

.
MoEv

STATUS ordinary

ANY i?, l,o!

WHERE

grd(x,y,u, i?, l, t,clk)
THEN

x,y,u,clk,o! : |
BApred(x,y,u, i?, l,o!,
t,clk,x′,y′,u′,clk′)

END

.

.
PliEv

STATUS pliant

INIT iv(x,y, t,clk)
WHERE grd(u)
ANY i?, l,o!

COMPLY

BDApred(x,y,u,
i?, l,o!, t,clk)

SOLVE

Dx =
φ(x,y,u, i?, l,o!, t,clk)

y,o! :=

E(x,u, i?, l, t,clk)
END

END

Figure 1: A schematic Hybrid Event-B machine.

of the material now covered. Despite the simplicity of the example, a number of surprises emerge when

it is examined from the point of view of the POs. Section 25 discusses how the approach described

earlier may throw up non-engineering cases, and what to do about that. Section 26 looks at related work,

extending the account of PaperI. Finally, Section 27 concludes. In contrast to the focus of the present

paper, a more informal and wideranging discussion of issues relevant to the material here appears in [26].

Notation 1.1. In the sequel, for brevity, we seldom make any distinction between logical notations for

entities of interest, and their interpretation in standard set theory. This is, because, in the context of

the kind of engineering applications that our investigation is useful for, only the standard set theoretic

interpretation is ever of interest.

Part 1 — Hybrid Event-B Overview

2. Hybrid Event-B, a Sketch

In this section, we briefly review the Hybrid Event-B formalism. This is discussed more carefully

in PaperI and PaperII. Inevitably we gloss over many points covered more carefully there, though we

include those details needed for the present paper.

In Fig. 1 we see a basic Hybrid Event-B machine, HyEvBMch. It starts with declarations of time

and of a clock. In Hybrid Event-B, time is a first class citizen in that all variables are functions of time,

whether explicitly or implicitly. Time is read-only. Clocks allow more flexibility, since they increase like

time, but may be set during mode events. Variables are of two kinds. There are mode variables (like u)

which typically take their values in discrete sets and change their values discontinuously during mode

events. There are also pliant variables (such as x,y), declared in the PLIANT clause, which typically take

their values in topologically dense sets (normally R) and which may change continuously, such change

being specified via pliant events.

Next come the invariants. The types of the variables are asserted to be the sets from which the vari-

ables’ values at any given moment of time are drawn. More complex invariants are similarly predicates

that are required to hold at all moments of time during a run.

Then, the events. The INITIALISATION has a guard that synchronises time with the start of any run,

while all other variables are assigned their initial values as usual.

4

Mode events are direct analogues of events in discrete Event-B. They can assign all machine variables

(except time itself). In the schematic MoEv of Fig. 1, we see three parameters i?, l,o!, (an input, a local

parameter, and an output respectively), and a guard grd which can depend on all the machine variables.

We also see the generic after-value assignment specified by the before-after predicate BApred, which can

specify how the after-values of all variables (except time, inputs and locals) are to be determined.

Pliant events constitute the most obvious distinction between Hybrid Event-B and discrete Event-B.

They specify the continuous evolution of the pliant variables over an interval of time. The schematic

pliant event PliEv of Fig. 1 shows the structure. There are two guards: there is iv, for specifying enabling

conditions on the pliant variables, enabling conditions that mix mode and pliant variables, and clocks

and time; and there is grd, for specifying enabling conditions purely involving the mode variables. The

separation between the two is motivated by considerations connected with refinement.

The body of a pliant event contains three parameters i?, l,o!, (again an input, a local parameter, and

an output) which are functions of time, defined over the duration of the pliant event. The behaviour of

the event is defined by the COMPLY and SOLVE clauses. The SOLVE clause specifies behaviour fairly

directly. For example the behaviour of pliant variable y and output o! is given by a direct assignment to

the (time dependent) value of the expression E(. . .). Alternatively, the behaviour of pliant variable x is

given by the solution to the first order ODE Dx = φ(. . .), where D indicates differentiation with respect

to time. The COMPLY clause can be used to express any additional constraints that are required to hold

during the pliant event via its before-during-and-after predicate BDApred. Typically, constraints on the

permitted range of values for the pliant variables, and similar restrictions, can be placed here. Of all

time dependent behaviours that satisfy these clauses, only piecewise absolutely continuous functions of

time which have both left and right limits at all times, and which are right continuous at all times are

considered.

The COMPLY clause has another purpose. When specifying at an abstract level, we do not neces-

sarily want to be concerned with all the details of the dynamics — it is often sufficient to require some

constraints to hold which express the needed safety properties of the system during the pliant event.

The COMPLY clauses of the pliant events can house such constraints directly, leaving it to lower level

refinements to add the necessary details of the dynamics.

Briefly, the semantics of a Hybrid Event-B machine consists of a set of system traces, each being a

set of functions of time, expressing the value of each machine variable over the duration of a run.

Time is modelled as an interval T of the reals. A run starts at some initial moment of time, t0 say, and

lasts either for a finite time, or indefinitely. The duration of the run T , breaks up into a succession of left-

closed right-open subintervals: T = 〈[t0 . . . t1), [t1 . . . t2), [t2 . . . t3), . . .〉. The idea is that mode events (with

their discontinuous updates) take place at the isolated times corresponding to the common endpoints

of these subintervals ti, and in between, the mode variables are constant and the pliant events stipulate

piecewise absolutely continuous change in the pliant variables. Individual subintervals in such a partition

of T , and also typical left-closed right-open intervals that are of interest in the discourse, are generically

referred to using the notation [tL,tR).
Insisting on piecewise absolute continuity is equivalent to demanding that the behaviour over time

of each variable is a succession of solutions to well posed initial value problems, e.g. Dxs = φ(xs . . .),
where xs is a relevant tuple of pliant variables and D is the time derivative [130, 115, 134, 113, 87].

(‘Well posed’ means that φ(xs . . .) has Lipschitz constants which are uniformly bounded over a period of

absolutely continuous behaviour, bounding its variation with respect to xs, and that φ(xs . . .) is measurable

in t.) In between the absolutely continuous pieces, isolated discontinuities are acceptable, modelling the

actions of mode events, and of discontinuities coming from the environment.

Pursuing this view, a mode transition becomes a before-/after- pair of variable valuations (the change

taking place at a single instant, and corresponding to the (different) one-sided limits at that instant), while

a pliant transition becomes a time-parameterised set of pairs of such variable valuations (the common

5

before-valuation being at the beginning of the piecewise absolutely continuous behaviour, and the various

after-valuations being indexed by the time interval, the changes no longer taking place at a single instant).

From this perspective, many questions regarding mode and pliant events and transitions have very similar

answers.

Within any interval in which the variables’ behaviour is specified by a pliant event, we seek the

earliest time at which a mode event becomes enabled, and this time becomes the preemption point beyond

which the pliant behaviour is abandoned, and the next pliant behaviour is scheduled after the completion

of the mode event.

In this manner, assuming that the INITIALISATION event has achieved a suitable initial assignment

to variables, a system run is well formed, and thus belongs to the semantics of the machine, provided that

at runtime:

[A] Every enabled mode event is feasible, i.e. has an after-state, and on its completion enables a pliant

event (but does not enable any mode event).1

[B] Every enabled pliant event is feasible, i.e. has a time-indexed family of after-states, and EITHER:

(i) During the run of the pliant event a mode event becomes enabled. It preempts the pliant

event, defining its end. ORELSE

(ii) During the run of the pliant event it becomes infeasible: finite termination. ORELSE

(iii) The pliant event continues indefinitely: nontermination.

Thus in a well formed run mode events alternate with pliant events. The last event (if there is one) is a

pliant event whose duration may be finite or infinite. The relatively simple view of Hybrid Event-B just

expounded, persists in suitable form, in a multi-machine system.

3. A Small Case Study: Simplified Cruise Control

In this section we look at a small case study centred on cruise control, to better illustrate the technical

details which follow later. It is a reduced version of a study carried out in [22], where a more detailed

account may be found. A broader range of case studies has been mentioned in the Introduction.

In Fig. 2 we see the state transition diagram for a simplified cruise control system (CCS). The CCS

starts in the OFF state, from where it can be SwitchedOn to put it into the ON state, which sets the

speed of the car that should be maintained automatically. In this state only three things can happen in

our reduced version. In one, the driver can SwitchOff the CCS. In another, the speed can be TippedUp

by the driver to increase it a little. Finally, the speed can be TippedDown to decrease it a little.

The main advantage of using Hybrid Event-B for developments like this is the possibility of incorpo-

rating closed loop control directly into the formal development, an option which is much less practicable

1If a mode event has an input, the semantics assumes that its value only arrives at a time strictly later than the previous mode

transition, ensuring part of [A] automatically. By this means we can ensure a mode event executes asynchronously. Thus we

have eager mode events which obey all of [A], and lazy mode events which are delayed after a previous mode event completes,

regardless of other details of the event’s definition. The case study in Section 3 introduces a convenient syntactic sugar for this,

and precise technical details are covered in Section 7.

ONOFF

SwOn

SwOff

TipUp

TipDown

Figure 2: The state transition diagram for a simplified cruise control system.

6

MACHINE CruiseControl_0

VARIABLES mode

INVARIANTS

mode ∈ {OFF,ON}
EVENTS

INITIALISATION

STATUS ordinary

BEGIN mode := OFF END

PliTrue

STATUS pliant

COMPLY INVARIANTS

END

.

.
SwOn

STATUS ordinary

ANY in?

WHERE in? = swOn ∧
mode = OFF

THEN mode := ON END

SwOff

STATUS async

WHEN mode = ON

THEN mode := OFF END

.

.
TipUp

STATUS async

WHEN mode = ON

THEN skip END

TipDown

STATUS async

WHEN mode = ON

THEN skip END

END

Figure 3: Mode level description of cruise control operation.

for a purely discrete formalism like (conventional) Event-B. While most closed loop controller design

takes place within the frequency domain [102, 48, 52, 9, 11], the increasingly popular state based formu-

lation of rigorous control theory [122, 7, 71] —especially when supported by tools such as SIMULINK

[96]— enables a direct connection with the conceptual framework of Hybrid Event-B to be made.

The development starts with Fig. 3. This is an almost verbatim transcription of the state machine

of Fig. 2 into the Hybrid Event-B machine CruiseControl_0. The current state of the state machine is

represented by the variable mode, which changes discontinuously during mode events. In particular, the

only pliant behaviour is the default PliTrue, which simply demands that the invariants are maintained in

between mode transitions.

Note the difference between mode event SwOn and the others. SwOn has ‘STATUS ordinary’ and

an input in? (whose value is never used). According to footnote 1, the input arrives at some moment in

time strictly later than the most recent preceding mode transition (but additionally satisfying any other

constraints that may be present in the event’s guard). Thus, SwOn is deemed not enabled by definition

at the completion of any other mode event. The ‘STATUS async’ of the other mode events is simply

syntactic sugar to enable the verbosity of the unused input to be avoided, while still stipulating that they

are scheduled at moments strictly later than the previous mode transition.

Machine CruiseControl_0 is refined to CruiseControl_1 in Fig. 4. Variables for the cruise control set

velocity setv and for the actual velocity v are introduced, and in the state where cruise control is active

(i.e. when mode = ON), the pliant behaviour is more specific. Namely, it is stipulated in event Cruise

that v and setv do not differ by too great a margin ∆Cruise, that that margin is not exceeded, and that the

acceleration is not ever permitted to get bigger than ∆MCA. Since on entry to the mode = ON state, v

and setv are set equal, Cruise is clearly feasible. Note though, that the COMPLY clause is only a safety

property (presumably addressing a high level requirement), and not a prescription of specific dynamical

behaviour. Events TipUp and TipDown alter the set velocity setv discontinuously, by a constant amount,

either TUD, or as little as is needed to reach VCCmax or VCCmin respectively. Of course, it will not be

provable that once one of TipUp or TipDown has completed, then Cruise will have a feasible trajectory

with suitable right limit at its start. In such a case, since none of the scheduling possibilities at the end of

Section 2 holds, the execution would abort according to the semantics of PaperI.

Machine CruiseControl_1 is refined to CruiseControl_2 in Fig. 5. The only difference from the

earlier CruiseControl_1 machine is that the safety properties in Cruise are refined to an actual control

law. In Cruise, we have simple negative feedback control, giving negative exponential drift of the velocity

towards the set velocity.

This small development captures the essence of the Hybrid Event-B development philosophy, of

introducing more detailed functionality into a system model step by step, policed by refinement, as in

7

MACHINE CruiseControl_1

REFINES CruiseControl_0

PLIANT v

VARIABLES mode,setv

INVARIANTS

v ∈ [0 . . .Vmax]
CONTINUOUS(v)
mode ∈ {OFF,ON}
setv ∈ [VCCmin . . .VCCmax]

EVENTS

INITIALISATION

STATUS ordinary

REFINES INITIALISATION

BEGIN

v :∈ [0 . . .Vmax]
setv :∈ [VCCmin . . .VCCmax]
mode := OFF

END

PliDefault

STATUS pliant

REFINES PliTrue

WHEN mode = OFF

COMPLY INVARIANTS

END

.

.
SwOn

STATUS async

REFINES SwOn

WHEN mode = OFF ∧
v ∈ [VCCmin . . .VCCmax]

THEN

mode := ON

setv := v

END

Cruise

STATUS pliant

REFINES PliTrue

WHEN mode = ON

COMPLY

|v− setv| ≤ ∆Cruise ∧
|Dv| ≤ ∆MCA

END

SwOff

STATUS async

REFINES SwOff

WHEN mode = ON

THEN mode := OFF

END

.

.
TipUp

STATUS async

REFINES TipUp

WHEN mode = ON

THEN

setv := min{VCCmax,
setv+TUD}

END

TipDown

STATUS async

REFINES TipDown

WHEN mode = ON

THEN

setv := max{VCCmin,
setv−TUD}

END

END

Figure 4: Cruise control operation with abstract continuous behaviour.

Event-B. The subtleties built into this simple case study are explored in more detail in Section 24.

4. Hybrid Event-B Proof Obligations

In this section we briefly examine the proof obligations (POs) of Hybrid Event-B. In PaperI it is

proved that if these are satistfied for some user written machine, then it is both well defined, and also

satisfies the properties claimed for it (e.g. that the invariants declared within it are true at all times),

i.e. the machine is semantically correct. Below, we consider how the automated reasoning framework

described in Sections 8 onwards, is capable of discharging them.

For simplicity, we focus on the POs relevant to a single machine system. For multi-machine systems,

discussed in PaperII, it turns out that the main new issues for POs concern static scope rather than new

reasoning facilities; thus they do not impinge on the issues of interest here (typically there are questions

of visibility, concerning which variables are needed for which POs in which contexts, and where they

might be located in a multi-construct project).

Our overview of the POs uses the following conventions. State variables are u (decorated as needed),

MACHINE CruiseControl_2

REFINES CruiseControl_1

PLIANT v

VARIABLES mode,setv

INVARIANTS

.
EVENTS

.

.
INITIALISATION
PliDefault
SwOn
SwOff
TipUp
TipDown

.

.
Cruise

STATUS pliant

REFINES Cruise

WHEN mode = ON

SOLVE Dv =−C(v− setv)
END

END

Figure 5: Cruise control operation with continuous control.

8

Init/FIS ∃u′ • InitA(u
′)

Init/INV InitA(u
′)⇒ I(u′)

MoEv/FIS I(u)∧grdMoEvA(u, i?, l)⇒ (∃u′,o!•BApredMoEvA(u, i?, l,o!,u′))

PliEv/FIS I(u(tL))∧ ivPliEvA(u(tL))∧grdPliEvA(u(tL))

⇒ (∃tR > tL • [[[(tR−tL ≥ δZenoPliEvA)∧]]] (∀tL ≤ t < tR • (∃u(t), i?(t), l(t),o!(t) •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t), t))))

MoEv/INV I(u)∧grdMoEvA(u, i?, l)∧BApredMoEvA(u, i?, l,o!,u′)⇒ I(u′)

PliEv/INV I(u(tL))∧ ivPliEvA(u(tL))∧grdPliEvA(u(tL))∧ (∃tR > tL • TRM(tR)∧ (∀tL ≤ t < tR,

u(t), i?(t), l(t),o!(t)•BDApredPliEvA(u(t), i?(t), l(t),o!(t), t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t), t)))

⇒ (∀tL ≤ t < tR • I(u(t)))

MoPli/WFor ∃u0, i0?, l0,o0!• I(u0)∧grdMoEvA(u0, i0?, l0)∧BApredMoEvA(u0, i0?, l0,o0!,u)∧ I(u)

⇒¬ [∃l •grdMoEvA1(u, l)∨grdMoEvA2(u, l) . . .grdMoEvAN(u, l)]∧

[(ivPliEvA1(u)∧grdPliEvA1(u))∨ (ivPliEvA2(u)∧grdPliEvA2(u))∨ . . .∨

(ivPliEvAM(u)∧grdPliEvAM(u))]

PliMo/WFor I(u(tL))∧ ivPliEvA(u(tL))∧grdPliEvA(u(tL))∧ (∃tR > tL • (∀tL ≤ t < tR,u(t), i?(t), l(t),o!(t) •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t), t)∧MAXIMAL(tR)∧

¬ [∃i?, l •grdMoEvA1(u(t), i?, l)∨grdMoEvA2(u(t), i?, l)∨ . . .∨grdMoEvAN(u(t), i?, l)]))

⇒ WELLDEF(tR)∧ [∃i?, l •grdMoEvA1(
(((−−−→
u(tR)

)))
, i?, l)∨grdMoEvA2(

(((−−−→
u(tR)

)))
, i?, l)∨ . . .∨

grdMoEvAN(
(((−−−→
u(tR)

)))
, i?, l)]

Figure 6: Single machine correctness POs.

inputs are i?, outputs are o!. The first order predicates used in the POs are those that appear in the syn-

tactic outline of Fig. 1, described in more detail in Section 2, e.g. grd(. . .), BApred(. . .), BDApred(. . .).
When a machine is refined, the state variables, inputs, outputs of the refining machine are called w, j?, p!.

Additional decorations A/C (for abstract/concrete) are used in refinement POs for clarity. The POs them-

selves are in Figs. 6-8.

Fig. 6 contains the POs that establish correctness of an individual machine. Init/FIS (PaperI (11))

proves the feasibility of initialisation, i.e. an initial state satisfying the definition exists. Init/INV (PaperI

(12)) shows that initialisation establishes the invariants I(u′). Here u′ is the after-state of the initialisa-

tion. MoEv/FIS (PaperI (13)) is traditional mode event feasibility, i.e. there is an after-state and output

reachable from the before-state and input via BApred, when the invariants and event guard hold in the

before-state. PliEv/FIS (PaperI (14)) is pliant event feasibility, i.e. there is a time-indexed family of after-

states given by SOL, satisfying the SOLVE clause and the BDApred clause — optionally it asks that the

duration of the solution is greater than a Zeno constant δZenoPliEvA (for cases where it is practicable to

prove this).

MoEv/INV (PaperI (15)) is traditional mode event invariant preservation — I(u′) is reestablished in

the after-state. PliEv/INV (PaperI (16)) is invariant preservation for pliant events, demanding that I(u(t))
is established by the solution for all times until the preemption time, which is defined using the TRM

predicate.2 TRM itself is calculated via the disjunction of the guards of all eager mode events; precise

details are given in Section 7. MoPli/WFor (PaperI (17)) controls the handover from mode to pliant

events: if a mode event makes a valid step, it disables all (eager) mode events and enables some pliant

event. PliMo/WFor (PaperI (18)) does the converse: if a pliant event runs for a time which is MAXIMAL

2N. B. TRM is omitted in the case of pliant events declared as FINAL, i.e. events permitted to run forever.

9

Init/FISR ∃w′ • InitC(w
′)

Init/INVR InitC(w
′)⇒ (∃u′ • InitA(u

′)∧K(u′,w′))

MoEv/FISR ∃u•K(u,w)∧grdMoEvC(w, j?,k)⇒ (∃w′, p!•BApredMoEvC(w, j?,k, p!,w′))

MoEv/GRDR I(u)∧K(u,w)∧grdMoEvC(w, j?,k)⇒ (∃i?, l •grdMoEvA(u, i?, l))

MoEv/INVR I(u)∧K(u,w)∧grdMoEvC(w, j?,k)∧BApredMoEvC(w, j?,k, p!,w′)

⇒ (∃i?, l,o!,u′ •BApredMoEvA(u, i?, l,o!,u′)∧K(u′,w′))

MoEv/FISRW I(u)∧K(u,w)∧grdMoEvC(w, j?,k)∧BApredMoEvC(w, j?,k, p!,w′)

⇒ (∃i?, l,o!,u′ •W (u, i?, l,o!,u′,w, j?,k, p!,w′))

MoEv/GRDRW I(u)∧K(u,w)∧grdMoEvC(w, j?,k)∧W (u, i?, l,o!,u′,w, j?,k, p!,w′)

⇒ grdMoEvA(u, i?, l)

MoEv/INVRW I(u)∧K(u,w)∧grdMoEvC(w, j?,k)∧BApredMoEvC(w, j?,k, p!,w′)∧W (u, i?, l,o!,u′,w, j?,k, p!,w′)

⇒ BApredMoEvA(u, i?, l,o!,u′)∧K(u′,w′)

MoEv/NewR I(u)∧K(u,w)∧grdNewEvC(w, j?,k)∧BApredNewEvC(w, j?,k, p!,w′)⇒ K(u,w′)

MoEv/NewRV BApredNewEvC(w, j?,k, p!,w′)⇒V (w′)<V (w)

MoEv/RelDLF I(u)∧K(u,w)∧ (∃o!, p!,u′,w′ •W (u, i?, l,o!,u′,w, j?,k, p!,w′))∧

[grdMoEvA1(u, i?, l)∨grdMoEvA2(u, i?, l)∨ . . .∨grdMoEvAN(u, i?, l)]

⇒ grdMoEvC1(w, j?,k)∨grdMoEvC2(w, j?,k)∨ . . .∨grdMoEvCM(w, j?,k)

Figure 7: Single machine refinement POs: initialisation and mode events.

during which no mode event is enabled, then (assuming it is not a FINAL event), the termination time

must be WELLDEFined and the state values then must enable a mode event. MAXIMAL and WELLDEF

are also discussed in Section 7.

The correctness of a refinement is confirmed by POs shown in Figs. 7 and 8. Mode events are

dealt with in Fig. 7, starting with Init/FISR (PaperI (20)), which is is feasibility of refined intialisation.

Then Init/INVR (PaperI (21)) demands that the after-state w′ of initalisation establishes the joint in-

variant K(u′,w′) — for which there must now exist a suitably chosen counterpart abstract initial value

u′.3 MoEv/FISR (PaperI (22)) checks feasibility of a refining mode event, in the presence of a suit-

ably chosen abstract value. MoEv/GRDR (PaperI (23)) is mode guard strengthening — if the refining

event MoEvC is enabled, then its abstract counterpart MoEvA must be enabled too. MoEv/INVR (Pa-

perI (24)) is the conventional simulation relationship for mode events — the abstract event must be

able to simulate (via the joint invariant) anything the refining event is able to do. The next three POs

MoEv/FISRW, MoEv/GRDRW and MoEv/INVRW (PaperI (25)-(27)), redo the work of the previous

three —but this time with the help of a witness relation W that is able to supply the existential witnesses

required by the original versions— provided the witness relation W itself is feasible (MoEv/FISRW).

PO MoEv/NewR (PaperI (28)) is the simplified invariant preservation PO when a ‘new’ refining mode

event —one newly introduced during the refinement and not having an abstract counterpart— refines

‘skip’, keeping the abstract state unchanged. PO MoEv/NewRV (PaperI (29)) demands that such new

mode events (strictly) decrease a VARIANT function V (where V must take values in a well founded set,

normally N). MoEv/RelDLF (PaperI (35)) is mode event relative deadlock freeness: if one or more of

the abstract mode events is enabled, then at least one refining mode event is enabled, enforcing a kind of

synchronisation.

Then come the pliant events in Fig. 8. PliEv/FISR (PaperI (30)) is feasibility of refining pliant

3In Event-B, the joint invariant, also known as the gluing invariant or retrieve relation, defines the relationship between the

abstract and concrete state spaces. Likewise for Hybrid Event-B.

10

PliEv/FISR (∃u(tL)• I(u(tL))∧K(u(tL),w(tL))∧ ivPliEvC(w(tL))∧grdPliEvC(w(tL))

⇒ (∃tR > tL • [[[(tR−tL ≥ δZenoPliEvC)∧]]] (∀tL < t < tR • (∃w(t), j?(t),k(t), p!(t) •

BDApredPliEvC(w(t), j?(t),k(t), p!(t), t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t), t)))))

PliEv/GRDR I(u(tL))∧K(u(tL),w(tL))∧ ivPliEvC(w(tL))∧grdPliEvC(w(tL))

⇒ [[[ivPliEvA(u(tL))∧]]] grdPliEvA(u(tL))

PliEv/INVR I(u(tL))∧K(u(tL),w(tL))∧ ivPliEvC(w(tL))∧grdPliEvC(w(tL)) ⇒
(((

∃tR > tL • TRM(tR)∧ (∀tL < t < tR,w(t), j?(t),k(t), p!(t) •

BDApredPliEvC(w(t), j?(t),k(t), p!(t), t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t), t))

⇒ (∀tL < t < tR • (∃u(t), i?(t), l(t),o!(t) •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t), t)∧

K(u(t),w(t))))
)))

PliEv/FISRW I(u(tL))∧K(u(tL),w(tL))∧ ivPliEvC(w(tL))∧grdPliEvC(w(tL)) ⇒
(((

∃tR > tL • TRM(tR)∧ (∀tL < t < tR,w(t), j?(t),k(t), p!(t) •

BDApredPliEvC(w(t), j?(t),k(t), p!(t), t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t), t))

⇒ (∀tL < t < tR • (∃u(t), i?(t), l(t),o!(t)•W (u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t), p!(t))))
)))

PliEv/INVRW I(u(tL))∧K(u(tL),w(tL))∧ ivPliEvC(w(tL))∧grdPliEvC(w(tL)) ⇒
(((

∃tR > tL • TRM(tR)∧ (∀tL < t < tR,w(t), j?(t),k(t), p!(t) •

BDApredPliEvC(w(t), j?(t),k(t), p!(t), t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t), t)∧

W (u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t), p!(t)))

⇒ (∀tL < t < tR •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t), t)∧

K(u(t),w(t))
)))

PliEv/RelDLF I(u)∧K(u(tL),w(tL))∧ [(ivPliEvA1(u(tL))∧grdPliEvA1(u(tL)))∨

(ivPliEvA2(u(tL))∧grdPliEvA2(u(tL))∨ . . .∨ (ivPliEvAM(u(tL))∧grdPliEvAM(u(tL))]

⇒ [(ivPliEvC1(w(tL))∧grdPliEvC1(w(tL)))∨ (ivPliEvC2(w(tL))∧grdPliEvC2(w(tL))∨ . . .∨

(ivPliEvCN(w(tL))∧grdPliEvCN(w(tL))]

Figure 8: Single machine refinement POs: pliant event POs.

events, in the presence of suitable abstract corresponding values — a time-parameterised family of re-

fining after-states must exist. PliEv/GRDR (PaperI (31)) is pliant guard strengthening, including the

optional removal of checking abstract INIT guards (this is connected with details of refinement beyond

the scope of this paper; see PaperI). PliEv/INVR (PaperI (32)) is the pliant simulation condition, en-

suring a time-parameterised family of before-state/after-state simulations at all the individual moments

of time in [tL,tR). The POs PliEv/FISRW (PaperI (33)) and PliEv/INVRW (PaperI (34)) do the same

job as PliEv/FISR and PliEv/INVR, but with the help of a time-dependent witness relation W , as for

the mode events. Note that there is no PliEv/GRDRW, since the guards of pliant events cannot depend

on inputs (so that there is no existential quantification in PliEv/GRDR). Finally there is PliEv/RelDLF

(PaperI (36)), essentially, the same as the relative deadlock freeness PO for mode events.

11

Part 2 — Mathematical Foundations, Deadlock Freeness, Wellformedness

5. Piecewise Absolutely Continuous Functions

The semantics of Hybrid Event-B, as described in PaperI, is cast in terms of (piecewise) absolutely

continuous functions of time for each variable. We recall the basic definition.

Definition 5.1 (Absolute Continuity). Let I be a real interval and f : I → R be a function. Then f is

absolutely continuous on I iff for every positive ε there is a positive δ such that whenever a finite family

of pairwise disjoint subintervals {(xk,yk)}k satisfies ∑k(yk− xk)< δ, then ∑k | f (yk)− f (xk)|< ε.

The key property of absolutely continuous functions is the following [134, 87, 113, 115].

Theorem 5.2. The following are equivalent.

1. f is absolutely continuous on an interval.

2. f has a derivative almost everywhere, and increments of f over subintervals of the interval are

given by the Lebesgue integral of that derivative over those subintervals.

Definition 5.3 (PACcl). Let tL be a real number, and let tR be either real or ∞. Let [tL,tR) be the left

closed right open interval they define, empty if tR ≤ tL and semi-infinite if tR = ∞. Let S be either R or

a set endowed with the discrete topology. Let PACcl(S)[tL,tR) be the set of functions f : [tL,tR)→ S

which are characterised by the properties:

1. tL < tR;

2. f is Piecewise Absolutely4 Continuous on [tL,tR);

3. all discontinuities of f in [tL,tR) are isolated (i.e. are not accumulation points of discontinuities);

4. f is right continuous everywhere in [tL,tR);

5. f has left limits everywhere in (tL,tR), including at tR — implying f has a well defined piecewise

continuous extension to the closed interval [tL,tR].

When any of S or tL and tR are clear from context, or their precise values are not crucial to the discourse,

we simplify, writing e.g., PACcl.

Remark 5.4. The above makes it clear that elements of PACcl(S)[tL,tR) can always be integrated, but

can only be differentiated when they have no discontinuities in (tL,tR).

PACcl is the basic building block of the universe within which the dynamics of Hybrid Event-B plays out.

The semantics of each state variable v, taking values in a set S as described, during an execution instance

of some pliant event PliEv, is an element of PACcl(S)[tL,tR). In this, [tL,tR) defines the interval of time

during which the dynamics of that execution instance of PliEv takes place, with tL finite and tR finite or

infinite.

The property identified in Theorem 5.2 makes it essentially immaterial whether the behaviour of a

state variable is specified via an ODE (in the sense of Carathéodory [130], to allow for the Lebesgue

theory), or via a direct assignment to a PACcl function, or via a predicate expression (provided the

predicate expression is interpreted exclusively in PACcl functions). What we said about state variables

applies equally to inputs and outputs: all functions that figure in a Hybrid Event-B system are required

to be in PACcl.

4If S is not R, then the qualifier ‘absolutely’ is obviously not needed.

12

We consider the discontinuities permitted by the ‘piecewise’ of Definition 5.3. Since [73] it has been

known that when discontinuities are isolated and have well defined limits on both sides, there can be only

countably many of them. In a finite interval [tL,tR) the worst that can happen is a Zeno accumulation

of smaller and smaller discontinuities occurring closer and closer together towards a limit (which can

happen countably many times).

In Hybrid Event-B, discontinuities can enter in various ways. The most obvious is via the occurrence

of mode events that impose a finite difference between the left limit and right limit of a state variable’s

value at some time point. Other possibilities arise via pliant events, for instance: when a direct assign-

ment to a function that is continuous in its variables consumes a discontinuity in one of its inputs; when

a direct assignment is to a function that is prima facie discontinuous; or combinations of such things.

Note that a discontinuity in the RHS of an ODE integrates out the discontinuity, defining a function that

has a kink at that point, but is continuous, due to the Carathéodory interpretation.

If we lift the ‘absolutely’ qualifier, then we get a set of functions that are useful as semantic vehicles

for a stochastic version of Hybrid Event-B in which conventional ODEs are generalised to stochastic

DEs, whose trajectories are Wiener paths (again piecewise). The semantic space for such behaviours is

typically referred to as càdlàg (continue à droite, limite à gauche), and the ‘cl’ in PACcl is homage to

this. The stochastic generalisation of Hybrid Event-B will be pursued in detail elsewhere.

6. Pieces of Holomorphic Functions

While PACcl is in many ways a natural conceptual vehicle for the semantics of Hybrid Event-B, it

nevertheless contains (uncountably) many functions which, from an engineering viewpoint, are more

general or pathological than needed, in that they are complicated to define and to work with (not to

mention that they never arise in engineering problems). In this section we focus on a subset that will

form the basis of a practical framework for reasoning about Hybrid Event-B. This subset is based on

complex analytic functions [43, 128, 57, 84].

Restricting to complex analytic functions (as opposed to merely real analytic ones) avoids pathologies

latent in the real analytic case (such as having a Taylor series that does not yield the original function).

At each point where it is defined, a complex analytic function has a Taylor series which yields its value in

a non-empty disk of convergence, and generally speaking, the ‘routine procedures of engineering math-

ematics’, especially ones based on purely symbolic manipulation, are rendered valid. This is especially

important when contemplating automated tools, for which the use of symbolic/algebraic manipulations

offers the only feasible approach.

Definition 6.1 (PH). The set of functions PH[tL,tR) is the set of functions f such that:

1. f ∈ PACcl(R)[tL,tR);

2. f is the restriction to the real line interval [tL,tR) of a complex function f̂ which is holomorphic

(i.e. complex analytic) in an open tube surrounding [tL,tR] — which is to say that for every t ∈
[tL,tR], there is an open disk Dt ⊆ C, centred on t, such that f̂ is analytic in Dt .

Again, when tL,tR are not crucial, we write e.g., PH.

As noted, the real functions used in ‘engineering mathematics’ are invariably Pieces of Holomorphic

functions, i.e. members of PH, and satisfy strong calculational properties. The most heavily utilised ones

have names, universally recognised without further qualification, it being understood in both mathemat-

ical and applications discourse that those names are never to be overridden.

13

Proposition 6.2 (PH examples). The following are examples of functions in PH[tL,tR).

1. constant, polynomial and multinomial functions, that are real on [tL,tR);

2. exponential, trigonometric and hyperbolic functions;

3. rational functions with poles away from [tL,tR), that are real on [tL,tR);

4. (most) ‘special functions’ (arising from application-inspired ODEs) on suitably chosen [tL,tR);

5. Fourier sine and cosine transforms of square integrable real functions of compact support;

6. Laplace transforms of exponentially bounded real functions.

There are many similar examples (e.g. in case 5, the Fourier transform itself follows in an evident complex

extension of PACcl and PH).

Proof: Mostly these are obvious; 5 follows from e.g. Theorem 7.22 in [114]; 6 follows by differentiating

under the integral. �

The presence of cases 1 and 2 in Proposition 6.2 already puts the vast majority of applications in the

‘classical engineering’ sphere within reach of any system based on PH, since such applications rely very

heavily —in fact almost exclusively— on this class of functions. The other cases are also of help.

The focus on PH and its properties enables the design of a reasoning framework which is both specific

and extensible. It is specific in the sense of providing detailed support for selected members of PH such

as those mentioned in the early cases of Proposition 6.2. It is extensible in providing a framework aligned

with the generic properties of PH that allows for the addition of user generated information, in order to

include provision for fresh, application-specific reasoning facilities when required.

The reason for doing both comes from varying demands for scrutiny in applications demanding

varying degrees of dependability. For applications requiring moderate to high levels of dependability,

the use of tools like Mathematica [95], Maple [94], Scilab [118], Matlab [96], etc. to support PH may be

sufficient, especially when multiple tools are used to provide a measure of redundancy. These tools typ-

ically do not expose the detailed reasoning they do to outside inspection, mainly because the algorithms

employed constitute valuable commercial secrets.

However, in applications requiring the very highest levels of dependability, scrutiny of the detailed

arguments employed at all points of the development can be a requirement for certification. In such cases,

the possibility of doing the reasoning in-house as part of the development can open the relevant proof

trees to review, albeit at the cost of needing to provide the relevant axiomatic and tactical foundations as

part of the development itself.

Proposition 6.3 (PH properties). Let f ∈ PH[t
f
L,t

f
R) and g ∈ PH[t

g
L,t

g
R), and let [t

f
L,t

f
R)∩ [t

g
L,t

g
R) =

[tL,tR) be nonempty. Then:

1. Let t
f
L ≤ t

′
L < t

′
R ≤ t

f
R, then f |[t′L,t′R) ∈ PH[t′L,t

′
R).

2. Let ⋄ ∈ {+,−,×,∧ }. Then f ⋄g ∈ PH[tL,tR).

3. If g is nonzero in [tL,tR) and limt→tR
g(t) 6= 0, then f/g ∈ PH[tL,tR).

4. If t ∈ (t f
L,t

f
R), then

d f
dt
∈ PH[t f

L,t
f
R).

5. If t ∈ (t
f
L,t

f
R), then

∫ t
tL

f ds ∈ PH[t
f
L,t

f
R).

6. Let ran(f)⊆ [t
g
L,t

g
R), then g◦ f ∈ PH[t

f
L,t

f
R).

7. Let [t
f
L,t

f
R) = [t

g
L,t

g
R) = [tL,tR), and let ⋆ be convolution, namely f ⋆g(t) =

∫ t
tL

f (t− s)g(s)ds.

If tR < ∞, then f ⋆ g ∈ PH[tL,tR). If tR = ∞ and f ∈ L1([tL,tR)) and g ∈ L∞([tL,tR)), then

f ⋆g ∈ PH[tL,tR).

14

Proof: Basically, this is routine; see [128, 43, 115, 75, 84, 57]. For 7, if tR < ∞, the result follows from 2

and 5. If tR = ∞, definedness of f ⋆g follows by essentially bounding g by a constant (since g ∈ L∞) and

using integrability of f (since f ∈ L1); and local analyticity follows by differentiating under the integral.

�

It is clear that whereas an f ∈ PACcl(S)[tL,tR) can have isolated discontinuities in (tL,tR), an

f ∈ PH[tL,tR) cannot — analyticity forbids it. The members of PACcl(S)[tL,tR) that are of most

interest practically, are those that can be assembled from a finite collection of members of PH whose

domains partition [tL,tR). If the collection is not a singleton, this requires case analysis, to which we

pay attention below.

Notation 6.4. For the sake of definiteness, when needed, we refer to specific functions in PH using

their Mathematica names, e.g. Exp, Log, Sin, Cos, ArcTan, ArcCsch, Gamma, BesselJ, etc. Where the

function is multiple valued (e.g. Log, ArcTan, ArcCsch), the principal value returned by Mathematica is

understood. Where the function is polymorphic —e.g. for Gamma, where there is: the gamma function

Gamma(z); or the incomplete gamma function Gamma(a,z), etc.— the number of arguments supplied

in actual use disambiguates the possibilities. A generic element of PH is referred to using a name such

as PH f or PHg etc., decorated as needed.

For formal manipulation, the name itself is insufficient, and formally, an element of PH[tL,tR) is a

triple: 〈PH f ,φL,φR〉, where PH f names the function, and φL,φR are expressions specifying tL,tR respec-

tively. (The expressions specifying φL and φR are required also to satisfy φL < φR, of course.)

Definition 6.5 (FPH). The set of functions FPH[tL,tR) consists of functions f which are Finite se-

quences of abutting elements of PH, e.g.: 〈PH f1,φL,1,φR,1〉,〈PH f2,φL,2,φR,2〉, . . . ,〈PH fn,φL,n,φR,n〉, where

their domains partition [tL,tR). Thus, the following must all hold:

tL = φL,1 < φR,1 = φL,2 < φR,2 = φL,3 < .. . < φR,n−1 = φL,n < φR,n = tR (1)

Thus, elements of FPH[tL,tR) can be written:

〈 f ,φL,φR〉 ≡ 〈PH f1,φL,1,φR,1;PH f2,φL,2,φR,2; . . . ;PH fn,φL,n,φR,n〉 (2)

We call {tL,φL,1,φR,1, . . . ,φL,n,φR,n,tR} ≡ JP the join points of 〈 f ,φL,φR〉, and {φR,1, . . . ,φL,n} ≡ IJP the

internal join points of 〈 f ,φL,φR〉. As usual, when tL,tR are not crucial, we write e.g., FPH.

6.1. Holomorphic Functions of Several Variables

The functions in FPH on various intervals will capture the time dependence of variables in systems

specified via Hybrid Event-B. However, the specifications themselves typically require functions of (sev-

eral) variables, as well as of time. For this purpose, we will use the evident extension of the preceding

ideas to Several variables.

Definition 6.6 (PHS). The set of functions PHSn[tL,tR) is the set of functions f such that:

1. f is real on [tL,tR)×Rn;

2. f is the restriction to the real submanifold [tL,tR)×Rn of a complex function f̂ which is holomor-

phic (i.e. complex analytic) in an open region surrounding [tL,tR)×Rn — which is to say that for

every (t,z) ∈ [tL,tR]×Rn, there is an open polydisk D(t,z) ⊆Cn+1, centred on (t,z), such that f̂ is

analytic in D(t,z).

At the cost of additional complexity we could also have partitioned the last n coordinates in the definition

of PHSn[tL,tR) in various ways, but we can manage without this.

15

Definition 6.7 (FPHS). The set of functions FPHSn[tL,tR) consists of functions which are Finite se-

quences of abutting elements of PHS, in the manner of Definition 6.5 and Definition 6.6. Again, when n

and tL,tR are not crucial, we can write PHS and FPHS.

Even more so than in the case of a single variable, restricting to complex analytic functions of several

variables pays dividends in terms of guaranteeing good behaviour (see e.g. [89, 61, 55, 74, 80, 86]).

7. Deadlock Freeness and Wellformedness POs

Regarding the POs introduced in Section 4, mostly they concern a single event, or a pair of events

related through refinement. However, a number involve collections of events from the machine, selected

according to specific criteria. In this section we examine this more carefully. We recall that mode events

are either eager or lazy.

Definition 7.1 (Lazy, Eager Mode Events). A mode event is lazy iff at least one of the following holds:

1. It has an input from the environment.

2. It has a guard that constrains the value of the time variable or the value of a clock variable.

If a mode event is not lazy it is eager.

Eager mode events must be disabled upon the completion of any mode event (i.e. their grd is unsatisfiable

in the new after-state). Lazy mode events may be enabled upon the completion of a mode event but are

deemed to not execute immediately. They are designated as such to obviate the need for verbosity

or circumlocution to ensure that events do not fall foul of clause [A] of the runtime semantics when

written in the most intuitive way. Thus, inputs are deemed not to arrive at the moment of execution of

the previous mode event. Likewise, events with a time specification are deemed not to execute again

immediately upon completion. This is despite the fact that, due to the instantaneous execution of mode

events, the time at which their after-state is established is the same as the time that satisfied their guard,

potentially re-enabling them. It is not excluded that mode events satisfying further syntactic criteria may

in future also be designated lazy, in order to enhance expressivity. INITIALISATION, although written in

mode event syntax, is not regarded as in scope for the remarks that follow.

Pliant events are categorised as either final or non-final.

Definition 7.2 (Final, Non-Final Pliant Events). A pliant event is final iff its STATUS field contains the

word ‘FINAL’. Otherwise it is non-final.

Semantically, a non-final pliant event should enable a mode event at some point during its execution

(unless it merely becomes infeasible, signalling finite termination). A final pliant event need not do so.

We now discuss the POs where the remarks above could imply the need for more precision.

MoEv/RelDLF In this PO, the disjunction over abstract mode events, MoEvA1,MoEvA2, . . . ,MoEvAN,

includes all abstract mode events. Also, the disjunction over concrete mode events, MoEvC1,MoEvC2,
. . . ,MoEvCM, covers all concrete mode events.

PliEv/RelDLF In this PO, the disjunction over abstract pliant events, PliEvA1,PliEvA2, . . . ,PliEvAM,

includes all abstract pliant events. Also, the disjunction over concrete pliant events, PliEvC1,PliEvC2,
. . . ,PliEvCN, covers all concrete pliant events.

Before we consider the wellformedness POs, MoPli/WFor and PliMo/WFor, we consider the auxil-

iary predicate TRM(tR), the termination predicate for a pliant event, needed for PliEv/INV. We recall that

for a pliant event, tL will refer to the start time of an execution instance of it.

16

TRM(tR) This predicate specifies that tR is a suitable preemption point for a pliant behaviour that is speci-

fied as in the hypotheses of PliEv/INV. Thus we assume that I(u(tL))∧ ivPliEvA(u(tL))∧ grdPliEvA(u(tL))∧
BDApredPliEvA(u(t), i?(t), l(t),o!(t), t) ∧ SOLPliEvA(u(t), i?(t), l(t),o!(t), t) holds, for t in a maximal left-

closed right-open interval [tL, tmax) starting at tL. Let

tReager ≡ inf {s | (∃l •grdMoEv(u(s), l))∧MoEv ∈ eager∧ s ∈ [tL, tmax)} (3)

TR lazy ≡ {s | (∃i, l •grdMoEv(u(s), i, l,τ))∧MoEv ∈ lazy∧ s ∈ (tL,tReager]} (4)

where, in (4), τ refers to any explicit time or clock dependence. Then:

TRM(tR) ≡ (tR = tReager ∨tR ∈TR lazy) (5)

The apparent complexity of the definition in (5) is motivated by modelling convenience. Thus the in-

fimum in (3) permits tR to define a time at which none of the eager mode events is actually enabled

(because the enabled region happens to be non-left-closed). This holds even though a precise preemption

moment is required by the semantics (the preemption thus being defined to take place at the relevant

boundary point). The same laxity is not permitted for lazy mode events; the input is required to arrive

at a moment when the event is in all other respects actually enabled. (If lazy events can be enabled

at tReager, the choice of event to execute next is nondeterministic, but note that a lazy event cannot be

scheduled later than tReager; see PaperI.) Of course, tReager may be infinite, and TR lazy may be empty,

so (5) may specify an unbounded behaviour if both of these hold.

Of more use in the wellformedness (and other) POs are the sets of states obtained by removing the

detailed dependence on the trajectory u(s) in (3)-(5). Thus, letting overline denote topological closure,

we define:

pre-tReager ≡ {u | (∃l •grdMoEv(u, l))∧MoEv ∈ eager} (6)

pre-TR lazy ≡ {u | (∃i, l •grdMoEv(u, i, l,τ))∧MoEv ∈ lazy} (7)

pre-tR ≡ pre-tReager ∪ pre-tR lazy (8)

These yield more easily calculable sufficient conditions to check for in a variety of POs.

MoPli/WFor This PO treats the handover from mode events to pliant events. In this PO, the negated

disjunction over mode events MoEvA1,MoEvA2, . . . ,MoEvAN in the conclusion ranges over all eager

mode events of the machine. Moreover, the set of states that the disjunction ranges over must be as in

(6), i.e. the relevant closure. This is needed so that the after-state u established by the BApredMoEvA in

the hypothesis, which becomes the initial state of the ensuing enabled pliant event, does not fall outside

the guard of every eager mode event as required, yet does fall on an eager mode event guard boundary.

This would imply a zero duration for the ensuing pliant event, since a preemption would be enabled at

tL, contradicting [B] of Section 2. (Note that this consideration does not apply to lazy mode events since

they are axiomatically not permitted to execute immediately after another mode event.) Besides this, the

disjunction over pliant events PliEvA1,PliEvA2, . . . ,PLiEvAM in the conclusion, covers all pliant events.

PliMo/WFor This PO treats the handover from pliant events to mode events. Note that only non-final pli-

ant events are subject to it. Final pliant events may be preempted (though they usually aren’t); non-final

pliant events must be preempted. The handover involves the complexities of the termination mechanism,

and of the role of the environment in supplying inputs at nondeterministically chosen moments, as dis-

cussed above. The latter aspect takes certain considerations beyond the formal sphere of state based

formalisms such as the present one, thus making some of the notations used rather imprecise without

suitable meta level amplification. The intention of the MAXIMAL(tR) predicate is to express that the pli-

ant behaviour is to continue as long as possible while no eager mode event forces preemption — and

17

besides, the environment refuses to offer an input that would satisfy a lazy mode event’s guard. (It is in

this manner that the negated mode event guards in the hypotheses ¬ [∃i?, l • grdMoEvA1(u(t), i?, l)∨ . . .]
need to be read.) With this understanding, we can take:

MAXIMAL(tR) ≡ TRM(tR)∧tR < ∞ (9)

A consequence of (9) is that if tR ∈TR lazy−{tReager}, then the environment is committed to supplying

the appropriate input at that moment. (This, of course, concerns the appropriateness of the model for the

application domain, rather than its mathematical content.)

In the conclusion of PliMo/WFor, we have to cater for the following complication. The pliant be-

haviour whose preemption we are contemplating, at some moment t may undergo a discontinuity where

the after-value (of the state variables) u(t) enables a mode event. But the before-value (i.e. left limit)
−−→
u(t), may also enable a mode event. In order that models involving edge-triggered phenomena may be

handled in Hybrid Event-B, the design of the formalism determines the following.

If the pliant behaviour at tR is continuous, then no complication arises, and the preceding discussion

is sufficient since the left and right limits of the ongoing pliant behaviour are the same at the preemp-

tion point. If the pliant behaviour at tR is discontinuous though, then the left limit value
−−→
u(t) is disre-

garded, and only the right limit value u(t) is considered in determining the enabledness of preempting

mode events. The term WELLDEF(tR) and the presence of the optional overarrows in the conclusion of

PliMo/WFor are intended to indicate this operational interpretation.

7.1. Consequences of Wellformedness and Termination

One consequence of the above is that if a preempting mode event MoEv, enabled by a discontinuity

at time tR as just discussed, is selected for execution, it may itself reassign one or more variables used

in determining its enabledness. This will override their values at time tR, which are discarded. This

is the only occasion in which the operational semantics of variables in Hybrid Event-B does not record

within the system trace some value that they take during execution. The detailed operational semantics

are described in PaperI.

A further consequence of the determination of the termination predicate concerns refinement. When

an abstract pliant event is refined to a concrete one, and at runtime the concrete pliant event is not pre-

empted by ‘new’ events, freshly introduced at the concrete level of abstraction, then the durations of

abstract and concrete pliant transitions are the same. This follows from the guard strengthening and

relative deadlock freeness POs. This means that the tR values at the two levels must be consistent for a

pair of simulating runs. However this does not hold when ‘new’ concrete transitions occur between the

abstract pliant transition start time and end time. In the latter case, only a detailed exploration of the two

systems’ reachability relations can reveal the necessary consistency.

Part 3 — Logical Basics

8. Formal Reasoning about Hybrid Event-B: Lexical and Syntactic Issues

In this section we embark on the construction of a formal reasoning system suited to the automated

manipulation of Hybrid Event-B machines, and aiming for the mechanical proof of the POs described

before. We start with lexical considerations.

18

CONTEXT HEB_Ctx

EXTENDS A_Ctx

SETS S,T
CONSTANTS A,B,a,b
MATHEMATICA

Cos,Gamma,BesselJ

.

.
AXIOMS

A,B,a,b ∈ . . .
S = {A}
T = {A,B}

THEOREMS

S ⊆ T

END

Figure 9: A Hybrid Event-B CONTEXT.

8.1. Contexts

Fig. 9 shows a Hybrid Event-B CONTEXT HEB_Ctx, which is the container for all the static math-

ematics needed by any machine which SEES it (and which is not built-in to a practical Hybrid Event-B

tool). HEB_Ctx EXTENDS another context A_Ctx, making A_Ctx’s contents freely usable in HEB_Ctx.

It introduces some (names of) SETS. These are the sets with discrete topology spoken of in Definition

5.3.5 It introduces some CONSTANTS. These typically name elements of the sets just mentioned, or

name pieces of mathematics constructed from the built-in facilities of a supporting tool. The MATHE-

MATICA section declares Mathematica names, to be used by the machine that SEES HEB_Ctx.6

The AXIOMS section contains facts to be assumed about the preceding constituents. Its most impor-

tant role is to declare the type (i.e. enclosing basic set) of each constant introduced in the CONSTANTS

section. The THEOREMS section also contains facts about the preceding constituents, but unlike AX-

IOMS (which are assumed to be true) these must be proved (to the satisfaction of the supporting tool).

8.2. Names and Scopes

A Hybrid Event-B project consisting of a context and a machine defines a number of classes of names.

From the context there are: names of sets, SetN; names of constants, ConN; Mathematica names, MatN.

From the machine there are: the name of time, TimN; names of clocks, CloN; names of mode variables,

ModN; names of pliant variables, PliN; names of events, EveN; names of inputs, InpN; names of local

variables, LocN; names of outputs, OutN; names of locally scoped variables, LsvN.

Definition 8.1 (Free and Bound Names). In a single machine Hybrid Event-B project, the set of free

names is given by the union (assumed disjoint):

FreN ≡ SetN ⊎ConN ⊎MatN⊎TimN⊎CloN ⊎ModN⊎PliN (10)

The set of names bound by their enclosing machine is:

BoMN ≡ EveN (11)

The set of names bound by their enclosing event is given by:

BoEN ≡ InpN ⊎LocN⊎OutN (12)

The set of names bound by their local scope (lambda abstractions, universal and existential quantifiers,

etc.) is:

BoLN ≡ LsvN (13)

5Some freedom of choice exists regarding how modelling and arithmetic using N and Z are treated, since, for purposes

of verification their topologies are effectively discrete too. For simplicity in this paper though, we will subsume all matters

involving N and Z using their counterparts in R, even if a practical tool need not be constrained to do the same.
6Evidently, if other systems such as Maple, Scilab, Matlab were used instead, there would be analogous sections here.

19

The usual syntactic rules apply [28, 70, 45, 39, 38]. Thus, free names do not clash, and may be replaced

using a non-clashing global substitution on free names.7 If a (newly introduced) free name clashes with

some bound name, the bound name must be alpha converted to avoid the clash. Bound names may be

alpha converted at will, provided they do not clash with any name bound in the bound name’s own scope,

or with any name bound in an (enclosing) outer scope, or with any free name. If alpha converting a

bound name threatens a clash with a name bound in an (enclosed) inner scope, the inner scoped name

must also be alpha converted in a manner that avoids any clash.

By introducing a fresh binary lexical constructor, e.g. ‘.’, all names aside from those in BoLN may be

disambiguated using ‘named Bohm chains’, e.g. an input Inputname? of an event Eventname in machine

Machinename may be renamed Machinename.Eventname.Inputname?. In a single machine scenario

such as this paper, the top level of this structure is evidently redundant, but it is useful in the multi-

machine arena. The named Bohm chain technique does not work for BoLN since the scopes for those

names are anonymous — the Bohm chains may be extended using numerical indices as in the original

Bohm chain concept [28].

The syntactic form of a Hybrid Event-B project is rectified iff there are no free name clashes among

the subsets of FreN in (10), all free names are distinct from all bound names, and for all bound names

bn, there is exactly one binder such that all occurrences of bn appear in the scope of that binder.

Assumption 8.2 (Rectification). It is assumed that all (single machine) Hybrid Event-B projects are

given in a rectified form.

8.3. Abstract Syntax

In the material below, we will employ a more compact notation for the abstract syntax of events than

the user centred notation of Fig. 1. A mode event will be written:

MoEv : [[[[[[ll ||| grd BA]]]]]] (14)

In (14), MoEv is the event name, ll, which we write more explicitly as i?, l,o! when needed, are the locals

(from InpN, LocN, OutN), grd is the guard, and BA is (notation specifying) the before-after predicate.

Likewise, a pliant event will be written:

PliEv : {{{{{{ iv ;;; grd ||| ll ||| BDA DE ;;; DA }}}}}} (15)

In (15), PliEv is again the event name and ll are the locals. The init and guard predicates are iv and grd,

while BDA is the before-during-and-after predicate; DE and DA denote the ODEs and direct assignments

respectively of the event. The cute syntax is to enable easy readability of the various elements.

9. Formal Reasoning about Hybrid Event-B: Base Logic

Correctness of Hybrid Event-B machines rests on the POs. But before examining these in more

detail, we briefly cover the basic logical apparatus within which the later discussions reside.

There are, of course, many ways of setting up the basic machinery of mathematical logic in a formal

way. For consistency with earlier work, we follow the path that has been used in the B-Method since

its inception. Specifically, for the conventional (purely discrete) B-Method, the original formulation of

the reasoning process was based on a Rasiowa-Sikorski (RS) style natural deduction framework [108].

These days, formal reasoning for (purely discrete) Event-B in the Rodin tool [4, 110] is presented in a

sequent calculus [56, 116] style variant of this [1, 3] (though behind the scenes the system is typically

20

Propositional Rules:

H,P ⊢ P
HYP

H ⊢ Q

H,P ⊢ Q
MON

H,P ⊢ Q

H ⊢ P⇒ Q
IMP-R

H,P,Q ⊢ R

H,P,P⇒ Q ⊢ R
IMP-L

H ⊢ P H,P ⊢ Q

H ⊢ Q
CUT

H,¬Q ⊢ P

H,¬P ⊢ Q
NOT-L

H,P ⊢ ⊥

H ⊢ ¬P
NOT-R

H,⊥ ⊢ P
FALSE-L

H ⊢ P H ⊢ ¬P

H ⊢ ⊥
FALSE-R

H,P,Q ⊢ R

H,P∧Q ⊢ R
AND-L

H ⊢ P H ⊢ Q

H ⊢ P∧Q
AND-R

H,¬P ⊢ Q

H ⊢ P∨Q
OR-R

H,P ⊢ R H,Q ⊢ R

H,P∨Q ⊢ R
OR-L

Quantifier and Equality Rules:

H,∀x•P, [x := E]P ⊢ Q

H,∀x•P ⊢ Q
ALL-L

H ⊢ P x nfin H

H ⊢ ∀x•P
ALL-R

H,P ⊢ Q x nfin H,Q

H,∃x•P ⊢ Q
XST-L

H ⊢ [x := E]P

H ⊢ ∃x•P
XST-R

H ⊢ ∃x•P H,P ⊢ Q x nfin H

H ⊢ ∃x•Q
CUT-XST

[x := F]H,E = F ⊢ [x := F]P

[x := E]H,E = F ⊢ [x := E]P
EQ-LR

[x := E]H,E = F ⊢ [x := E]P

[x := F]H,E = F ⊢ [x := F]P
EQ-RL

Calculational Base:

Sets: Enumerated, BOOL, N,N1,Z. Reals: R. Rationals and real algebraic numbers: Q,A.

Operators: set theoretic (∅,=, 7→,×,P,∪,∩,∈, . . .), boolean (FALSE,TRUE,⊥,⊤,∧,∨,¬,⇒,⇔,=, . . .),
arithmetic (0,1,+,−,∗,/,mod,∧ , . . . ,=,<,≤,>,≥, . . .), dense types (0,1,+,−,∗,/, . . . ,=,<,≤,>,≥, . . .).

External call:

H,q ∈Q,x ∈ R ⊢ K K,q = qX,x = xX ⊢ KX 〈〈〈〈〈〈 KX,qX ∈Q,xX ∈ R ⊢ P(. . .E(qX,xX) . . .) 〉〉〉〉〉〉 qX,xX new

H,q ∈Q,x ∈ R ⊢ P(. . .E(q,x) . . .)
EXTERN

Figure 10: The base logic used in the B-Method, with the calculational base extended for Hybrid Event-B.

translated into a more deterministic RS system for efficiency, see [1]). Also, nowadays, Rodin includes

various alternative provers in a configurable way [111].

Fig. 10 gives the rules of the base logic, reproduced from [3]. Each rule describes a generic step of

goal oriented formal reasoning, stating that to prove the consequent (the sequent below the line), it is

sufficient to prove the antecedent (the sequent above the line). Each sequent separates the hypotheses

to the left of the turnstyle from the goal to its right. Needed hypotheses are written explicitly, with H

denoting a set of additional hypotheses.

The propositional rules are routine, with HYP being the most used to close a branch of the proof tree,

and CUT being the only ‘creative’ rule, requiring the invention of P during a backwards step. In [2, 3]

there are further derived rules for additional connectives, which we omit here.

The quantifier rules merit a little more comment. In ALL-L, if we are assuming P(x) for all values

of x anyway, then we can additionally assume P(E) if it helps in proving Q. Notation [x := E]P denotes

the substitution of all free occurrences of x in P by E . Note that in [x := E]P the variable x is bound (just

as in ∀x•P).

In ALL-R, nfin means ‘not free (but may occur bound) in’. We need x to have no free occurrences in

H when stripping the ∀ quantifier, so that its meaning is not inadvertently constrained by any other prop-

erties of free occurrences of x in H. Of course, working in a rectified framework as defined earlier, which

we can extend to apply to sequents too, the nfin property will hold automatically. Similar comments hold

for XST-L and CUT-XST. Rules EQ-LR and EQ-RL simply describe the uniform substitution of equals

by equals.

7This could be used, for example, to replace Mathematica names by (say) Maple names, if needed.

21

The calculational capabilities of the B-Method are rooted in set theory. The contexts discussed in

Section 8 allow the introduction of user defined enumerated (finite) sets, usable as types for variables.

Additionally, BOOL is regarded as a predefined set consisting of elements TRUE and FALSE (these

being terms, and having no connection with the truth or falsehood of any logical property, the latter

being written ⊤ and ⊥). Besides these, [3] introduces the naturals N and positive naturals N1.

Calculationally, the set theoretic emphasis leads to a rich algebra of constructors and operations on

sets. As well as the basics indicated in Fig. 10, there are constructors and operations for relations, and for

the many useful operations that one might want to apply to them; likewise when relations are restricted

to being functional. This quickly leads to sequences, trees, graphs, and all the other paraphernalia that is

so useful in the modelling of discrete applications. Fixpoints, and fixpoint operators, emerge naturally;

see [2, 3]. Provided the cardinality of all sets in the discourse remains finite (i.e. there is a finite universal

set for each type in the discourse), the truth of any well formed predicate can be decided in principle, at

worst by exhaustive enumeration.

The calculational properties of the naturals are introduced via Peano arithmetic. Immediately, Gödel

incompleteness leads to undecidability because of the presence of multiplication [121, 120, 93]. In

general, the unrestrained combination of logic, set theory and arithmetic, while convenient for modelling,

has poor decidability properties, and different provers fare differently in the face of the difficulties. See

e.g. [111]. Also, various calculational rules need well-definedness conditions to prevent e.g. division

by zero. These are discussed in [3]. Most calculations take place in a directed way, reflecting how the

same results are arrived at by hand. Thus they are implemented via a suite of (oriented) rewrite rules.

And, although Peano arithmetic suffices to highlight the foundational issues, it is not really adequate for

manipulating many practical system models, so more direct techniques are often used.

Assumption 9.1 (Base Logic Arithmetic). It is assumed that the base logic contains facilities for do-

ing arithmetic on naturals and integers N and Z, to a degree adequate for practical calculation in the

conventional (discrete) Event-B world.

For Hybrid Event-B, the preceding is not enough, as time is real, and smooth state evolution takes place

within the reals. Thus:

Assumption 9.2 (Base Logic Dense Types). It is assumed that the input language of Hybrid Event-B

allows variable declarations of real type R. It is assumed that the base logic recognises expressions of

other dense types: rationals Q, and real arithmetic numbers A.

While users will write system models using reals, internally, the verification system will usefully dis-

tinguish arbitrary reals from the more manipulable rationals and real arithmetic numbers — both will

require internal representations different from integers and their subsets (e.g. pairs for Q; see [100] for a

discussion of representations for A). We refer to them as the dense (numeric) types.

Assumption 9.2 is phrased carefully. Reals, rationals and arithmetic numbers are recognised, but it is

not claimed that the base logic will evaluate predicates or expressions containing them. It assumed that

one or more external systems (e.g. Mathematica) will provide an oracle to evaluate and reason about

these. The schematic rule EXTERN captures this process. It says that in order to prove a predicate P

involving an expression E depending on a rational q and a real x under hypotheses H (which include the

facts q ∈Q,x ∈ R), it is sufficient to make new copies8 qX and xX of q and x, to derive a suitable context

K for this goal from H and to make a copy KX of it, and to delegate the required reasoning to an external

system, use of which is indicated using heavy angle brackets 〈〈〈〈〈〈 KX,qX ∈Q,xX ∈ R ⊢ P(. . .E(qX,xX) . . .) 〉〉〉〉〉〉.
For this to work effectively, we need good separation between the base logic and the logic imple-

mented by the external system. This is a syntactic issue which can be handled in the following way.

8The new keyword introduces previously unused identifiers, so preserves the rectified property.

22

Firstly, there are no operators that combine a numerical value with an element of an enumerated set, so

the only possibility for interference between the base logic and calculational facilities for the dense types

is in set forming operations, when these involve numeric elements. If we order our numeric types as

∅ ≺ N1 ≺ N ≺ Z ≺ Q ≺ A ≺ R, then we can cast any numerical expression to the l.u.b. in this order

of any of the variables or constants occurring in it. We can then forbid, syntactically, the creation of

any set containing elements of a type which in this order is too complex for the base logic to handle.

Things are helped by the observation that in hybrid and cyber-physical systems, there is little call for

set-theoretically complex constructions involving continuous quantities. Of course, the restriction can

be relaxed by degrees, depending on how much effort one is prepared to expend on the interworking

of base and external reasoning systems. And while the order ≺ is conveniently viewed as straightfor-

ward inclusion in informal mathematics, internally, a good deal of care is needed to relate the different

representations appropriate to the different subsets of R, akin to the use of explicit inclusion maps in a

categorical setting.

10. Formal Reasoning about Hybrid Event-B: Beyond Base Logic

Beyond simple arithmetic, hybrid and cyber-physical systems require, at the very least, working with

elements of PH such as Exp, Log, Sin, Cos, etc. Beyond these, more complex elements such as Gamma,

BesselJ , etc., may, at times, be required. Our approach to these is two-fold.

Firstly, mature readily available tools such as Mathematica contain large amounts of knowledge

about the kind of PH functions mentioned. This includes many facts expressed, both via equalities (such

as Sin2(t)+Cos2(t) = 1 for all t), and via inequalities (such as Exp(−t)≤ 1 for t ∈ [0 . . .+∞)). Making

use of this knowledge directly is the first choice for supplementing the reasoning power of the base logic.

This requires the correct handling of the dialogue between base and external systems.

Secondly, more complex applications may require more specialised human intervention. This can

involve both exact and approximate techniques. The NIST Handbook [103] gives a good indication of

what can be aimed for regarding exact analytical approaches; such approaches could be incorporated by

hand in an interactive extensible tool. Approximate techniques may be based on the observation that

if a desired property can be safely approximated using polynomials (e.g. over a finite interval), then

quantifier elimination via cylindrical algebraic decomposition (CAD, reviewed below) provides a very

powerful decision strategy which can be incorporated into an interactive extensible tool.

Part 4 — Mode Event POs

11. Formal Reasoning about Hybrid Event-B: Mode Events

Correctness of Hybrid Event-B machines rests on the POs. The POs that deal exclusively with

mode events are in Figs. 6 and 7, covering both individual machine correctness and the correctness

of mode event refinement. These are Init/FIS, Init/INV, MoEv/FIS, MoEv/INV, Init/FISR, Init/INVR,

MoEv/FISR, MoEv/GRDR, MoEv/INVR, MoEv/FISRW, MoEv/GRDRW, MoEv/INVRW, MoEv/NewR,

MoEv/NewRV, MoEv/RelDLF.

These POs all concern relationships between individual before- and after- values of the machine

variables involved, these being the before- and after- values arising in a putative mode transition of the

machine. However, since the POs are actually PO schemas, a large number of instances is typically

covered by the same PO, and the symbolic reasoning involved in proving such a PO covers all of them.

The maturity of the B-Method, in both its classical and Event-B incarnations, provides a wealth of

experience in proving mode event POs and there is little to add here. Suitably instantiated using the

23

ingredients of a mode event such as MoEv : [[[[[[ll ||| grd BA]]]]]], the POs translate directly into formulas that

can form the consequent of rules such as those that appear in Fig. 10, constituting the starting point

for backwards reasoning. Beyond the logical structure catered for in Fig. 10, lie the demands of the

calculations needed in each case, which we overviewed in the previous sections.

The main challenge in the mode event POs is the discovery of suitable witnesses for the exis-

tentially quantified variables in PO schemas Init/FIS, MoEv/FIS, Init/FISR, Init/INVR, MoEv/FISR,

MoEv/GRDR, MoEv/INVR. In this regard, the refinement PO versions which use a witness relation

(which has to be supplied, of course), namely MoEv/GRDRW, MoEv/INVRW simplify the problem, at

the price of needing to prove the feasibility of the witness relation itself, MoEv/FISRW.

The techniques that can be used to prove the mode event POs just mentioned can also be applied

to the pliant event guard strengthening PO PliEv/GRDR, the mode-to-pliant wellformedness PO Mo-

Pli/WFor, and the pliant event relative deadlock freeness PO PliEv/RelDLF. This is because these POs

refer only to values at a single moment, i.e the initial time point of a pair of pliant transitions, the tL

of the pliant event(s) that will ensue. The same perspective can also be applied to the pliant-to-mode

wellformedness PO PliMo/WFor, if we bear in mind the more subtle details regarding this PO discussed

in Section 7.

Part 5 — Pliant POs: Technicalities, Basics, Modalities

12. Technical Definitions and Notations

In this section, we gather a range of technical material and notational conventions that are needed in

dealing with pliant events and their transitions at various points in the remainder of the paper.

12.1. Cylindrical Algebraic Decomposition (CAD)

We recall that CAD [100, 29, 36] deals with a boolean (∧, ∨, ¬) combination P of equality (=) and

inequality (<,≤, >,≥) predicates of multinomial expresssions in n variables (e.g. 57x3y2zw), i.e., a semi-

algebraic predicate (when quantification is added). It systematically partitions Rn into a finite collection

of regions, in each of which the truth or falsehood of each individual predicate is provably constant (and

thus computable by evaluating at a single point in the region). This leads to the decidability of P as

a whole (and to the decidability of quantified variants of P by combining the truth values of suitable

subcollections of the regions).

Simple examples of semi-algebraic predicates (some needing reduction to a more standard form for

further processing) are:

x3y2zw≤ 15 (16)

(∀w• (∃y• x3y2zw > w2x)) (17)

x≤ 1∧ y≤ 2∧ z≤ 2∧w≤ 2⇒ x3y2zw≤ 15 (18)

Nowadays, the CAD technique is supported by readily available tools such as QEPCAD [107], REDLOG

[109] and also Mathematica [95]. The MetiTarski tool [97, 8] applies these ideas to reasoning about

non-polynomial functions. In this paper, we merely assume the existence of these possibilities, without

delving deeper into the details. We assume the availability of the requisite calculational oracle, and of its

potential for deciding such issues, when necessary.

24

12.2. Standard, and Multidimensional Calculus notions

For precision later, we state some standard conventions used below.

1. Basic notions from logic, such as conjunctive or disjunctive normal form, are used without com-

ment.

2. When we mention topological notions on Rn (open set, interior, closure etc.), the Euclidean topol-

ogy on Rn is always to be understood. Inner products, e.g. 〈x,y〉 ≡ Σ1≤i≤n xi.yi, and norms,

e.g. ||x||2 = 〈x,x〉, are also to be understood in the Euclidean sense.

3. Where needed below, we use basic notions from geometry, multivariable calculus, etc., [90, 131,

33]. These include the directional derivative on Rn, written D(g;θ), where, in some open region

(containing a point of interest x), g is a scalar field and θ is a vector field, and:

D(g;θ)(x) ≡ ∑
1≤i≤n

θi(x)
∂g(x)

∂xi

(19)

We also need the Jacobian matrix, written J
y
x(g), where, in some open region (containing a point

of interest x), g is a vector field, and:

Jy
x(g) is the matrix

[

∂gi(x)

∂x j

]

(20)

where yi is a typical coordinate in the range of g.

When the dimensions of domain and range are equal, the determinant of J
y
x is referred to as the

Jacobian of g, and if it is non-zero, the inverse function theorem can be applied.

We also use elementary properties of foliations in Section 21.

12.3. Multidimensional Inequalities

Below, several of the pliant modalities that we consider in Section 14 and later use the usual notations

for inequalities, <, ≤, ≥, >. When applied to single real valued variables, this is uncontroversial.

However, when the arguments belong to the multidimensional FPHS world, there is less clarity. We

deal with this by using a generalisation of the notion of distribution function from probability theory

[62, 31, 88].

Definition 12.1 (Generalised Distribution Function). A function η : X→ R is a generalised distribu-

tion function (GDF) iff:

1. ∀z ∈ R • η−1(z) 6=∅

2. a < b⇒{x ∈ X | η(x) ≤ a} ⊂ {x ∈ X | η(x)≤ b}

Definition 12.2 (Generalised Inequality). Given a GDF η on a multidimensional space X (e.g. Rn),

for x,y ∈ X, we interpret x≤ y to hold iff η(x) ≤ η(y). Similarly for other kinds of inequality and on all

other properties that normally depend on the order on R, such as monotonicity, convexity, etc.

Obviously, a GDF on X generates a partial order on X, but in a way that can be used conveniently in

calculations. Natural examples of GDFs η on Rn are:

1. η((x1 . . .xn)) = max j {x j}

2. η((x1 . . .xn)) = min j {x j}

3. η((x1 . . .xn)) = Σ1≤ j≤n µ j.x j where {0} 6= {µ j} ⊆ R

4. Given fixed φ : Rn→ R and 0 6= r ∈ Rn, suppose for all x ∈ Rn, that φ(x−λr) = 0 has a unique

solution λ∗; define η((x1 . . .xn)) to be that λ∗

25

Many useful GDFs arise by specialising case 4, which works by foliating Rn with copies of the φ

hypersurface. For example, choosing φ(z) = 〈z,µ〉 with r = µ/||µ||2 recovers case 3, while choosing

φ(z) = ∏1≤ j≤n ⋄ j |z j| where, for each j, ⋄ j is a choice of + or −, and with r = (⋄11,⋄21 . . . ⋄n1) gives 2n

possibilities corresponding to all the 2n-ants of Rn. The ‘all −’ choice corresponds to case 1, while the

‘all +’ choice corresponds to case 2. Choosing different nonzero magnitudes for the components of r

leads to maxi/minimising the corresponding collections of differently weighted components of x.

Assumption 12.3. We assume below, whenever needed, that all uses of inequalities in a multidimen-

sional context are interpreted with respect to a specific (even if unstated) GDF. This allows use of the

usual notations without proliferating the terminology.

12.4. Left and Right Limits

Notation 12.4. We write
←−
e(t) for the limiting value of e from the right at time t (i.e. from greater t), and

−→
e(t) for the limiting value from the left, where e is an expression. Invariably t is one of {tL,tR}. Since all

functions in the semantics of any Hybrid Event-B system must be continuous from the right,
←−
v(t) = v(t)

must always hold. Nevertheless, we retain the left arrow for emphasis.

12.5. Syntactic and Semantic Quantifiers

Notation 12.5 (Heavy and Light Quantifiers). We use heavy quantifiers ∀∀∀,∃∃∃ to range over purely syn-

tactic quantitites e.g. event names or variable names, when the quantified element is syntactic. We use

normal quantifiers ∀,∃ to range over semantic values of individual variables (as usual). We write ∀∀∀x

(when x is a variable and the quantified property is semantic) to signify a conjunction of instances of

the semantic property conjoined over the relevant equivalence class of the finest partition of the relevant

variables that respects the variable couplings forced by the terms occurring in the property.

12.6. Proposition Notation

The propositions in the remainder of the paper typically hold true only on the basis of a large number

of hypotheses. For economy of presentation, these are given in list form, with list items grouped using

and and or, and with nesting precedence indicated by indentation. If this form were to be rearranged into

disjunctive normal form, each disjunct would contain the assumptions needed for a sound inference rule

of the more familiar ANTECEDENTS
CONSEQUENT

form, as in Fig. 10.

13. Formal Reasoning about Hybrid Event-B: Pliant Event Basics

Unlike the mode event PO schemas, which only concern properties of pairs of before- and after-

variable valuations (albeit, typically in a generic manner, covering parameterised families of instances),

the pliant event PO schemas concern properties of ranges of variable valuations directly indexed by

intervals of time, in which the time dependence may enter non-trivially (and where the PO schemas

may possibly be further parameterised in various ways). In Sections 5 and 6 we restricted the kinds of

time dependent behaviours we allowed for variables, ending with the family FPH. The aim of this was

to give scope (insofar as it is possible) for the reasoning needed about pliant event POs involving such

functions, to be reduced to the kind of discrete symbolic manipulation that works for mode event POs.

That this aim is not unrealistic is a reflection of the fact that it would just amount to a systematisation

and formalisation of a subset of the kind of calculations that could successfully be done by hand in more

traditional approaches. Then again, achieving the aim is more complicated than for mode events.

In PaperI and PaperII the runtime semantics of Hybrid Event-B systems presumed that any enabled

pliant event selected to execute would produce a suitable time dependent behaviour; if no such event

was available then the relevant system trace simply ABORTed. Likewise, when proving that the truth

26

of the POs yielded well defined system traces, their truth was simply assumed. None of this required

overly precise restriction of the syntactic content of pliant events, beyond some generic properties. In

the present paper, we want to focus more closely on the provability of the POs, so the syntactic content

of pliant events must be scrutinised with greater precision.

13.1. Differential Equations and Direct Assignments

Let PliEv : {{{{{{ iv ;;; grd ||| ll ||| BDA DE ;;; DA }}}}}} be a pliant event. The presence of both differential

equations DE and direct assignments DA pitches PliEv into the differential-algebraic equation systems

(DAEs) sphere — beyond which, the BDA clause in PliEv, in principle permits even the most general

possible specification BDA≡ P(Dxs,xs, t), where P is an arbitrary predicate.

Nowadays, DAEs are an area of active research. Basic motivating information on DAEs appears in

[65] and in the early part of [60]. A more comprehensive survey is [81], while more specialised material

can be found in [82, 78]. The cited works initiate their accounts in the analytic sphere before discussing

numerical approaches, the latter being the focus of an even more copious literature. All of these make

clear the evident fact that the unrestricted form P(Dxs,xs, t) is not a useful basis for a solution strategy;

so we put aside the BDA clause for the moment.

Turning to the DE and DA clauses, most progress is made for linear systems; [81] gives a good

overview. Unlike the case of pure ODE systems, where for non-pathological systems a unique solution

over some interval is guaranteed for arbitrary initial values (unless contradictory ODEs for the same

variable are given, or none), for DAE systems there are many more possibilities, even in the constant co-

efficients case. We may have: (1) inconsistency (e.g. x(t) := y(t) || y(t) := x(t)+1); (2) a unique solution

with forced initial value (e.g. x(t) := 1); (3) a unique solution with arbitrary initial value (e.g. Dx(t) = 1);

(4) a solution with constrained initial value depending on an arbitrary function (e.g. x(t) := y(t) + 1,

where y is another state variable rather than an inhomogeneous term); (5) a solution with partly ar-

bitrary initial value depending on an arbitrary function (e.g. Dx(t) = y(t), where y is a state variable

again); (6) a solution with forced initial value depending on arbitrary but constrained inhomogeneous

terms (e.g. Dx(t) = f1(t) || x(t) := f2(t)). The possibilities proliferate if we permit more general linear

combinations of derivatives, and non-constant coefficients.

The above indicates some of the phenomena expressible via DEs and DAs. While overspecification

(i.e. inconsistency) is clearly to be avoided, underspecification is acceptable in Hybrid Event-B models,

on the understanding that it is needed to capture generic desired properties which can be refined to

something more precise at a lower level of abstraction. What we should avoid though, is achieving

underspecification in an obscure way. Thus cases like (4) and (5) above are acceptably underspecified,

since it is evident that y(t) is unconstrained, whereas the flexibility offered by case (6) should be avoided,

since the constraint between f1(t) and f2(t) arises much more indirectly.

Linear constant coefficients (LCC) DAE systems are well suported by tools like Mathematica. The

general theory for linear variable coefficients systems is significantly more complex than the LCC case

[81, 82], and naturally enough, they are less comprehensively supported. Accordingly, constant coeffi-

cients linear systems are uppermost in our mind in the subsequent discussion of pliant events, though we

make as little use as possible of their specific properties in order to maximise the applicability of what

we say.

The general LCC case is fully analysed via the classical Kronecker canonical form of the matrix pair

containing the coefficients of the variables and of their first order derivatives of the DAE system [10, 85].

This contains blocks capturing overconstrained and underconstrained cases as above, as well as more

conventional ODE Jordan and nilpotent blocks. However, by exploiting the syntactic structure of pliant

events in Fig. 1 we can go somewhat beyond the LCC case.

Definition 13.1 (EV graph). Given a pliant event PliEv, its EV graph is a directed graph whose nodes

are either: (a) variables occurring in the DE or DA of PliEv (initially tagged ‘V’), or (b) known functions

27

SOLVE

z := x+ y

Dx = y

Dy =−x+w

w := 3

END

V : z := x + y

V : x = y V : y = – x + w

V : w := 3

DEV

DEV

DA DA

DEV

K : 3
DA

Figure 11: The EV graph of a simple SOLVE clause. The EV tags are shown in bold. The variables and constants in the graph

are in the LHSs of the DEs and DAs in the V- and K-tagged boxes. The DEs and DAs are included for illustration.

or constants (tagged ‘K’). There is a directed edge (DEV-edge, tagged ‘DEV’) from w to v precisely when

v is the LHS of a differential equation in DE, and variable w (including derivatives of w) occurs in the

RHS of that differential equation. There is a directed edge (DEK-edge, tagged ‘DEK’) from w to v

precisely when v is the LHS of a differential equation in DE, and K-tagged node w occurs in the RHS of

that differential equation. There is a directed edge (DA-edge, tagged ‘DA’) from w to v precisely when v

is the LHS of a direct assignment in DA, and w (whether tagged V or tagged K, and including derivatives

of variables) occurs in the RHS of that direct assignment.

The softened EV graph of PliEv replaces all DEV-edges in its EV graph by undirected edges. PliEv

has an admissible EV graph iff:

1. no variable occurs as the LHS of both a DE differential equation and a DA direct assignment (and

so we can refer to DE nodes and DA nodes, according to how the variable in question is assigned),

and

2. every cycle in the softened EV graph of PliEv (formed by traversing either way along the DEV-

edges, and in the direction of other edges) contains no DA-edge.

The idea behind this definition of the EV graph is that while families of ODEs whose variables are

interdependent in a fairly arbitrary manner are guaranteed solutions by the standard existence theorems

[130, 64], families of arbitrarily tangled DA systems are not, so we want the graph minor of EV formed

by contracting the DEV-edges to be acyclic, allowing for a directed solution strategy flowing up from

known functions at the leaves.

Fig. 11 shows a simple example. The directed solution strategy would first substitute the value 3 for

w in the ODE for y. Then the (x,y) DE system could be solved (assuming initial values were available).

Finally, the derived functional forms of (x,y) could be substituted into the DA for z.

Proposition 13.2 (EV strategy). Let PliEv have an admissible EV graph. Then, given suitable initial

values (see Definition 13.4, and remarks immediately following it), there is a sound directed strategy for

solving the DE/DA clauses of PliEv.

Proof: Since PliEv is finite, its EV graph is finite. The solution strategy repeats the following two steps

until no more can be done.

Step 1: For every V-tagged node v, all of whose incoming DA-edges have a K-tagged node as their

source (so v is the LHS of a DA, depending on only known data), evaluate v as a function of time and

known information, and retag v with tag K. Repeat until no more can be done.

Step 2: Collect together every V-tagged node v, which is not reachable from any DA-edge which has

a V-tagged node as its target (via a path of DA (and DEK) directed edges and DEV undirected edges9),

9In fact, there will be no DEK edges in such a path

28

solve the ODE system determined by DE for all of these v, and retag these v nodes with tag K.

Soundness of this strategy can be argued as follows. By admissibility, every V-tagged node has either

incoming DE-edges exclusively, or incoming DA-edges exclusively. We claim that while there is at least

one V-tagged node in the EV graph, then at least one V-tagged node will satisfy the criteria of Step 1 or

Step 2.

For suppose not. Choose a V-tagged node v and mark it. If v has incoming DA-edges, one of them

will have a V-tagged node w as its source. If w is marked, we have a contradiction as a cycle containing

a DA-edge has been constructed. Otherwise w is unmarked, so mark it and move to it. Alternatively, v

has incoming DE-edges, at least one of them being a DEV-edge that is reachable (via a path of DA/DEK

directed edges and DEV undirected edges) from a DA-edge which has a V-tagged node as its target.

Choose w as the source of such a DEV-edge. Mark it and move to it.

Repeat the preceding from the most recently moved to node. Since the path thereby constructed

always has a DA-edge in its sights, and the enclosing EV graph is finite, a cycle containing a DA-edge is

inevitable. This is a contradiction.

Thus, while the system contains some as-yet-unsolved-for variables, we can apply one or other of

the steps, reducing the number of these. So, by finiteness of the EV graph, all variables will be solved

for eventually, and thus the proposed solution strategy is sound. �

Regarding the solution strategy, Step 1 concerns substitutions of expressions for the LHS variables,

which we regard as doable in principle. Step 2 concerns an ODE system whose RHSs are regarded as

either known in principle or dependent on LHS variables of the same ODE system, and which we may

thus also regard as solvable in principle. If all the RHSs of the ODE system are linear in the variables

and their derivatives then, at worst, we can transform it into a variable coefficients standard form linear

ODE system; usually each choice of variable coefficients generates new special functions which may

well require ad hoc processing. If the coefficients are constant, then the system can be solved using the

usual variation of parameters formula [130, 64]. If there are no derivatives in the RHSs, then the system

is in standard form already and no precursor transformation is needed.

We remark that the approach just sketched, will produce for the state variables, functions of time

which are in FPHS, provided any functions occurring in the RHSs of the clauses in DE and DA are

themselves in FPHS, and they are combined using the algebraic and function composition operators in

Proposition 6.3. For assignments in DA this is immediate, while for the differential equations in DE it

follows from results in [130].

13.2. The COMPLY Clause

If any state variable does not figure in the DE or DA clauses the definition of Hybrid Event-B stipu-

lates that it should implicitly obey COMPLY INVARIANTS. It is timely therefore, to revisit the COMPLY

clause. As noted before, the most general form of COMPLY clause, COMPLY P(Dxs,xs, t), is not suit-

able for systematic processing, so we will be more specific. The principal idea is that, aside from specific

additional forms of constraint given below, the COMPLY clause should be a semi-algebraic predicate

in the variables. Cylindrical algebraic decomposition, mentioned earlier, then gives a partition of the

variables’ state space on which each term of the semi-algebraic predicate is uniformly true, or uniformly

false. Any earlier derived solution to DE/DA needs to fall in the true regions only, and in cases where the

DE/DA behaviour is polynomial, this can be achieved by an extension of the CAD analysis. However,

most solutions to DE/DA will not be polynomial, so suitable polynomial bounds may have to be derived,

either in an ad hoc manner, or by using a tool like MetiTarski [97, 8], designed for the mechanical proof

of inequalities of this kind.

Arbitrary semi-algebraic predicates are still too general. For technical reasons we restrict to semi-

algebraic predicates that denote sets which are ‘sufficiently open’, described as follows.

29

Definition 13.3. A semi-algebraic set is sufficiently open iff each connected component is contained

in the closure of its interior, and each connected component has full Euclidean dimension, where all

topological notions are understood in terms of the relative Euclidean topology.

For example, if the variables’ state space is three dimensional, a 3D ball, including the upper hemisphere

of its boundary but excluding the boundary’s lower hemisphere, could form a suitable sufficiently open

constraint set for the dynamics, and would be described by a straightforward semi-algebraic predicate.

But the corresponding semi-algebraic predicate could be extended to include various two dimensional

sheets or one dimensional hairs, extruding from the ball, that would be unsuitable as dynamical con-

straints. The closure of the interior of such an extension would include the original 3D ball and its part

boundary, but excise the sheets and hairs. Determining whether semi-algebraic predicates are sufficiently

open is computable, since every CAD description consists of a finite number of pieces, each of which

is homeomorphic to an open cube of appropriate dimension [29]. We call constraints satisfying the

preceding considerations the CAD constraints of BDA.

While the preceding time independent formulation will be the focus in this paper, we observe that

the formulation could be extended by allowing the parameters of the CAD to vary over time (e.g. a

region x2(t)+ y2(t) < R2
0 could become x2(t)+ y2(t) < R2(t)). In such a case, we would want the CAD

state space partitions at different times in the execution of the pliant event to be homeomorphic in a

smoothly time-dependent way, in particular, to prevent change in the global structure of the CAD state

space partition as a result of change in the discriminants of its semi-algebraic description due to the time-

dependence of the parameters. One way of assuring this is to insist on the provision of a witness to the

homeomorphism via a time-dependent strictly positive rescaling of the variables (e.g. the substitutions

x(t)→ x(t)R(t)
R0

and y(t)→ y(t)R(t)
R0

rescale the time varying earlier example to its static version, provided

R(t) is strictly positive for all relevant t).

We can enlarge the possibilities considered, by permitting the occurrence of further types of con-

straint in the COMPLY clause. For example, we will include the pliant modalities, discussed in Section

14 below. We call these the MOD constraints of BDA.

Additionally, we could add semi-algebraic conditions that constrain variable values at specific times

during the execution of the pliant event, thereby further constraining the pliant behaviours defined. Most

likely such constraints would be demanded at the pliant event termination time tR, or at chosen durations

relative to the start time, e.g. at t− tL = h with h > 0 a constant. (We require h > 0 in all such cases

since h = 0 corresponds to an INIT constraint. Also, if a pliant transition is preempted before the time

specified in such a constraint has been reached, it is not regarded as an error.) We call these the TIME

constraints of BDA.

In all of these cases, the aim would be to evaluate the consequences of the constraints by includ-

ing them in the CAD analysis. Even though derivations of closed form solutions would frequently be

impossible, existence of solutions in the algebraic number field can be discerned if the constraints can

be reduced to multinomial constraints having rational coefficients, regardless of whether these emerge

directly, or are generated by using safe approximations.

Definition 13.4 (Pliant Event Properties). Pliant event PliEv : {{{{{{ iv ;;; grd ||| ll ||| BDA DE ;;; DA }}}}}}, hav-

ing name and components as shown, will normally be assumed given as part of the discourse in the

sequel. We write ⊛ (or PliEv-⊛ where there is possible ambiguity about the name) to denote that:

1. BDA consists of CAD and MOD and TIME constraints; BDA may also contain any typing decla-

rations required for local variables;

2. all other functions occurring in the components of PliEv are FPHS functions of all their variables;

3. DE is Lipschitz bounded.

30

We say the components of PliEv, namely iv,grd, ll,BDA,DE,DA, are trivial iff they are respectively

true, true, empty, true,empty,empty. Indicating trivial components by a hyphen, we write for example,

“Suppose PliEv-⊛ : {{{{{{-;;;-|||-||| BDA DE ;;; DA }}}}}}” to hypothesise a pliant event having trivial iv,grd, ll, and

with all nontrivial components satisfying the ⊛ property.

If ll in PliEv contains no input variables, we say PliEv is input-free.

13.3. Other Possibilities

The above gives one way of making the input language of pliant events precise, together with a

rationale for processing it. But this should not be seen as excluding other possibilities, particularly when

these are supported by calculational oracles such as Mathematica. For instance, one area which we have

neglected in this paper is systems featuring delay ODEs [64, 66, 46], e.g. Dx(t) = Ax(t − 1) + f (t).
These are becoming increasingly important in the study of cyber-physical systems, since the implied

delay in the arrival of the information needed to determine the derivative term Dx(t) due to equipment

latency, can have a marked effect on issues such as system stability. Limited families of such systems are

amenable to analytic techniques; see [119, 53]. Most realistic examples are approached via numerical

simulation. Although delay ODEs are important, we do not consider them further here.

Although we do not consider delay ODEs in this paper, we do permit, in pliant events, inhomoge-

neous terms (i.e. terms that do not involve the state variables, such as R(t) above, or f1(t), f2(t) from

the earlier examples) to depend on relative time, i.e. the time since the start of the pliant event execu-

tion, e.g. R(t− tL), f1(t − tL), f2(t − tL). This decouples their behaviour from the start times of their

execution instances.

14. Formal Reasoning about Hybrid Event-B: Pliant Event Modalities

The easiest part of the programme announced at the start of Section 13 concerns the pliant modalities

[15]. These allow familiar properties of functions and variables to be referred to using familiar names,

rather than their usual, but more opaque logical definitions, thus aiding readability. Such properties can

occur in two places in Hybrid Event-B machines: in the INVARIANTS of a machine, and in pliant

events’ COMPLY clauses.

When such a modality occurs in a pliant event’s COMPLY clause, its role is specificational, and the

relevant property may be assumed during any pliant transition specified by the event. Thus, only the

consistency of the property with the rest of the event’s specification (if any) is needed for the event’s

feasibility.

When the modality occurs among the INVARIANTS, it describes a property that must be proved to

hold in all runs of the machine. This generates conditions that must hold for (reachable) pliant events and

for the mode events that interleave them. One snag that now arises is that many of the modalities consid-

ered are not properties of an individual state, but are properties that depend on a (time) neighbourhood of

a state in a run, and/or on families of these (leading to the kind of quantifications we are trying to elim-

inate). Overwhelmingly, the POs of Hybrid Event-B are individual state or event properties, so alone,

may be insufficient to establish the modalities. Accordingly, in this section, we focus on the properties of

runs that are sufficient to establish the truth of the modalities. Since all runs consist of alternating mode

and pliant transtions, establishing properties of runs reduces to induction over this alternating structure.

In each case, where needed, we follow up the properties of runs with some remarks about what would

be required to reduce the properties of interest to properties concerning individual events, or concerning

a small number of events. Later, in Section 18, we look at the POs for establishing invariants in pliant

transitions, which also contribute to what is needed here.

Given what has been stated, one easy way of dealing with an invariant modality in a pliant event is

to demand the same modality in the event’s COMPLY clause. Normally however, in this situation, more

31

precisely defined pliant behaviour is needed, and a number of evident sufficient conditions can usually

be identified that guarantee the property. Since the same conditions can be used to check consistency in

the COMPLY case, we focus on the INVARIANTS in the results below.

The modalities dealt with here are invariably introduced in the context of the properties of a single

real variable. In our context, when we say ‘variable’ we intend not only state variables, but to include

the inputs, locals, and outputs of a pliant event, as appropriate. A single real variable’s values range over

a single copy of R. Therefore the results in this section are stated in those terms too.10

The results here can be extended to trajectories of variables whose values range over several real

dimensions fairly straightforwardly. In those case where inequalities are needed to frame the required

concepts, we assume there is a given GDF η which is used to intepret the inequality relations. In partic-

ular lower or upper bounds, where needed, are assumed to be given by values of η.

14.1. The CONTINUOUS Modality and its Relatives

The CONTINUOUS(x) modality declares that a pliant variable’s behaviour is absolutely continuous

during any run of the system. Since we restrict to PH functions calculationally, the ‘absolutely’ can be

taken for granted.

Proposition 14.1 (CONTINUOUS Modality). Let x be an individual pliant variable. Then CONTINUOUS(x)
holds throughout every run if the following hold.

1. (∀∀∀MoEv • x is not assigned in MoEv), and

2. (∀∀∀PliEv • PliEv-⊛, and

(a) CONTINUOUS(x) is a top level conjunct in BDA, or

(b) x is assigned via an ODE in DE, or

(c) x is assigned via DA, and

i. PliEv is input-free, and the RHS of DA is a (vector-valued) PHS function of its argu-

ments, or

ii. PliEv has inputs, and the RHS of DA is a (vector-valued) PHS function of its arguments,

but the RHS of the equation for x does not depend on any input, or

iii. PliEv has inputs, and the RHS of DA is a (vector-valued) FPHS function of its arguments,

but the RHS of the equation for x does not depend on any input and is continuous at all

its internal join points, or

iv. PliEv has inputs, and the RHS of DA is a (vector-valued) FPHS function of its arguments,

but the RHS of the equation for x depends only on inputs that may be assumed to be

globally continuous, and the RHS is continuous at all its internal join points).

Proof: Let x be a pliant variable and suppose the stated assumptions hold. Consider a run of the machine.

It is right continuous by definition. The INITIALSATION endows x with an initial value x0. Next, a pliant

event PliEv executes. If CONTINUOUS(x) is a top level conjunct in BDA, then x is continuous during

the execution of PliEv. If x is assigned via DE, then x is continuous during the execution of PliEv (since

any discontinuities in the RHS of the ODE for x are integrated into kinks).

Otherwise, x is assigned via DA. Cases i-iii in the assumptions are strengthenings of case iv, so it is

sufficient to consider case iv alone. Unlike the DE case, any discontinuity in the RHS of a DA equation

for x is immediately reflected in the value of x, so case iv simply states that no such discontinuity arises.

So x is continuous during the execution of PliEv.

Upon completion of PliEv a mode event MoEv executes. By 1, it does not assign x, so x retains its

value and is continuous at the execution point of MoEv. The remainder of the run consists of alternating

10We use the phrase ‘individual pliant variable’ to emphasise this

32

pliant and mode event executions, and the preceding arguments apply in each case, giving an inductive

proof that CONTINUOUS(x) is true throughout the run. �

Although cases i-iii are subsumed by case iv, their conditions are easier to check statically; so it is

worth mentioning them. Moreover, further similar variations could be imagined. A technicality arises

with case iv concerning inputs, since Hybrid Event-B allows different events to have different input

spaces. The use of the phrase ‘globally continuous’ is intended to signify that despite this, continuity

across event boundaries must be ensured. Simple restrictions, such as only allowing a single input space

for all pliant events and then checking all potentially enabled pliant/mode/pliant boundary cases, would

be sufficient for this, although more complex cases can easily be imagined. We do not pursue this in full

generality.

It is clear that where the checks involved in the above do not just concern a single event, they can be

decomposed into a series of checks, each involving a set of events of small, predetermined cardinality. As

such, a verification tool would encounter no additional difficulty in generating the relevant verification

conditions from a machine definition, compared with doing the same where only a single event was

needed.

We consider the n-DIFFERENTIABLE(x) modality. The n-DIFFERENTIABLE(x) modality extrap-

olates the continuous modality, and declares that a pliant variable’s behaviour is n times differentiable

during any run of the system. The restriction to PHS functions calculationally, means that provided mode

events do not assign x, it is sufficient to check that at all join points between two PHS functions, either

the requisite degree of differentiability exists, or that the two functions’ Taylor series exist and agree on

their first several terms. We treat this modality more briefly, in particular, omitting the three special cases

of case (c) below.

Proposition 14.2 (n-DIFFERENTIABLE Modality). Let x be an individual pliant variable. Then

n-DIFFERENTIABLE(x) holds throughout every run if the following hold.

1. (∀∀∀MoEv • x is not assigned in MoEv), and

2. (∀∀∀PliEv • PliEv-⊛, and

(a) n-DIFFERENTIABLE(x) is a top level conjunct in BDA, or

(b) x is assigned via an ODE in DE, whose RHS is a FPHS function of its arguments which is

n−1 times differentiable at all its internal join points, or

(c) x is assigned via DA, and

i. PliEv has inputs, and the RHS of DA is a (vector-valued) FPHS function of its arguments,

but the RHS of the equation for x depends only on inputs that may be assumed to be

globally n times differentiable, and the RHS is n times differentiable at all its internal

join points), and

3. (∀∀∀PliEv1,MoEv,PliEv2 • whenever a transition of PliEv1 enables MoEv and the after-state of

MoEv enables PliEv2, then the Taylor series of the transitions of PliEv1 and PliEv2 exist at the

common point, and agree on their first n+1 terms).

Proof Sketch: The overall structure is as for Proposition 14.1, so we just point out the differences. At

join points in the RHS we need n times differentiability for the DA case, and n−1 times differentiability

for the DE case, to ensure n times differentiability of x. Additionally, we need n times differentiability

for the join points between abutting pliant event executions (assuming the intervening mode event does

not modify the variable). For that, a Taylor series common to n+1 terms (i.e. up to the n’th derivatives)

is sufficient. �

We see in this Proposition that the ‘global continuity’ of the previous Proposition has to be more

explictly catered for in case 3. Aside from that, the analogous remarks made there are adequate here too.

33

Note also that clause 3 of Proposition 14.2 goes beyond event-by-event verification, and strays a

little into what would usually be regarded as model checking territory, in that sequences of successively

enabled events are considered. Such possibilities could obviously be contemplated more widely.

We consider briefly the CONST(x) modality. The CONST(x) modality (and CONST(x,E)), which

declare the constancy of x (and its value as E) is only useful in the COMPLY context, since outside that

context, we can declare a constant, or a mode variable and an invariant equating its value to its initial

value, etc. Thus the role of these modalities is specificational, and does not require further discussion

here.

14.2. The PLENV Modalities

The PLENV modalities constrain their argument to remain within a PLiant ENVelope specified by

a lower bound function and/or an upper bound function. Thus PLENVL(x, lb) ensures lb ≤ x, while

PLENVU(x,ub) ensures x ≤ ub. Furthermore, PLENV(x, lb,ub) is defined to be the conjunction of

PLENVL(x, lb) and PLENVU(x,ub). For the multidimensional generalisation, here and for the remainder

of the section, we refer to remarks above.

Proposition 14.3 (PLENV Modalities). Let x be an individual pliant variable. Then PLENVL(x, lb)
holds throughout every run if the following hold.

1. (∀∀∀MoEv • x− lb≥ 0 in the after-state of every MoEv transition), and

2. (∀∀∀PliEv • PliEv-⊛, and

(a) PLENVL(x, lb) is a top level conjunct in BDA, or

(b) i. x− lb≥ 0 at every stationary point of x− lb in every transition of PliEv, and

ii. x− lb ≥ 0 at the left and right limits of every internal join point of x− lb in every

transition of PliEv, and

iii. x− lb≥ 0 at the left limit or final value at tR in every transition of PliEv).

Also, PLENVU(x,ub) holds throughout every run if the following hold.

1. (∀∀∀MoEv • ub− x≥ 0 in the after-state of every MoEv transition), and

2. (∀∀∀PliEv • PliEv-⊛, and

(a) PLENVU(x,ub) is a top level conjunct in BDA, or

(b) i. ub− x≥ 0 at every stationary point of ub− x in every transition of PliEv, and

ii. ub− x ≥ 0 at the left and right limits of every internal join point of ub− x in every

transition of PliEv, and

iii. ub− x≥ 0 at the left limit or final value at tR in every transition of PliEv).

Moreover, PLENV(x, lb,ub) is true throughout every run if both of the preceding hold.

Proof: For PLENVL(x, lb), let x be a pliant variable and suppose the stated assumptions hold. Consider a

run of the machine. The INITIALSATION, considered as a mode event executed at t0, endows x with an

initial value x0(t0)≥ lb(t0). Next, a pliant event PliEv executes, and its initial value for u satisfies x≥ lb

since these are the values at t0. If PLENVL(x, lb) is a top level conjunct in BDA, we are done. Otherwise,

since x and lb are both assumed to be FPHS functions, the extrema of x− lb in each PH piece are at its

stationary points and boundary points. These can be located by differentiating x− lb and checking the

join points. Assumptions (b).i,ii,iii confirm that the whole PliEv execution respects PLENVL(x, lb).
Upon completion of PliEv a mode event MoEv executes. Its before-state, reached by the preced-

ing PliEv, respects PLENVL(x, lb), as does its after-state by 1. After this, the arguments repeat in

the usual way. For PLENVU(x,ub) the argument is analogous, and for PLENV(x, lb,ub) we need both

PLENVL(x, lb) and PLENVU(x,ub). �

34

When lb/ub is/are constants EL/EU , we can optimise the preceding results, yielding modalities

LBND(x,EL), UBND(x,EU) and BND(x,EL,EU). These constant constraint versions are typically very

important practically.

Proposition 14.4 (BND Modalities). Let x be an individual pliant variable. Then LBND(x,EL) holds

throughout every run if the following hold.

1. (∀∀∀MoEv • x≥ EL in the after-state of every MoEv transition), and

2. (∀∀∀PliEv • PliEv-⊛, and

(a) LBND(x,EL) is a top level conjunct in BDA, or

(b) i. x≥ EL at every stationary point of x in every transition of PliEv, and

ii. x ≥ EL at the left and right limits of every internal join point of x in every transition of

PliEv, and

iii. x≥ EL at the left limit or final value at tR in every transition of PliEv).

Also, UBND(x,EU) holds throughout every run if the following hold.

1. (∀∀∀MoEv • x≤ EU in the after-state of every MoEv transition), and

2. (∀∀∀PliEv • PliEv-⊛, and

(a) UBND(x,EU) is a top level conjunct in BDA, or

(b) i. x≤ EU at every stationary point of x in every transition of PliEv, and

ii. x ≤ EU at the left and right limits of every internal join point of x in every transition of

PliEv, and

iii. x≤ EU at the left limit or final value at tR in every transition of PliEv).

Moreover, BND(x,EL,EU) is true throughout every run if both of the preceding hold.

Proof: A straightforward adaptation of Proposition 14.3 to the case where the bounds, EL and EU , are

constant. �

We see that in all the cases of this subsection, the checks needed can be carried out on a per-event

basis. This is no surprise since static bounds occur very often as invariants.

14.3. The MONINC and MONDEC Modalities

The MONINC(x) and MONDEC(x) modalities constrain their argument to be monotonically increas-

ing or decreasing respectively. There is an evident connection with LBND(Dx,0) and UBND(Dx,0) at

points where the derivative exists. The following is rather straightforward.

Proposition 14.5 (MONINC and MONDEC Modalities). Let x be an individual pliant variable. Then

MONINC(x) holds throughout every run if the following hold.

1. (∀∀∀MoEv• the after-value of x is no less than its before-value in every MoEv transition), and

2. (∀∀∀PliEv • PliEv-⊛, and

(a) MONINC(x) is a top level conjunct in BDA, or

(b) i. Dx≥ 0 at every non-join point of x in every transition of PliEv, and

ii. the after-value of x is no less than its before-value at the left and right limits of every

internal join point of x in every transition of PliEv).

Also, MONDEC(x) holds throughout every run if the following hold.

1. (∀∀∀MoEv• the after-value of x is no greater than its before-value in every MoEv transition), and

2. (∀∀∀PliEv • PliEv-⊛, and

(a) MONDEC(x) is a top level conjunct in BDA, or

35

(b) i. Dx≤ 0 at every non-join point of x in every transition of PliEv, and

ii. the after-value of x is no greater than its before-value at the left and right limits of every

internal join point of x in every transition of PliEv).

Proof Sketch: A function is monotonically increasing at a discontinuity if its after-value is no less than

its before-value. It is monotonically increasing in a neighbourhood where its derivative exists if that

derivative is nonnegative. On this basis, since the behaviours of variables are all piecewise holomorphic

functions, the conditions stated are sufficient to construct an inductive proof of monotonic increase of x

throughout a run, in the usual way. The monotonically decreasing case is similar. �

14.4. The CVEX and CCAVE Modalities

The CVEX(x) and CCAVE(x) modalities constrain their argument to be convex and concave respec-

tively. There is an evident connection with LBND(D2x,0) and UBND(D2x,0) at points where the second

derivative exists. The following is rather straightforward.

Proposition 14.6 (CVEX and CCAVE Modalities). Let x be an individual pliant variable. Then CVEX(x)
holds throughout every run if the following hold.

1. (∀∀∀MoEv • x is not assigned in MoEv), and

2. (∀∀∀PliEv • PliEv-⊛, and

(a) CVEX(x) is a top level conjunct in BDA, or

(b) i. D
2x≥ 0 at every non-join point of x in every transition of PliEv, and

ii. the after-value of Dx is no less than its before-value at the left and right limits of every

internal join point of x in every transition of PliEv), and

3. (∀∀∀PliEv1,MoEv,PliEv2 • whenever a transition of PliEv1 enables MoEv and the after-state of

MoEv enables PliEv2, then the after-value of Dx is no less than its before-value at the MoEv

transition).

Also, CCAVE(x) holds throughout every run if the following hold.

1. (∀∀∀MoEv • x is not assigned in MoEv), and

2. (∀∀∀PliEv • PliEv-⊛, and

(a) CCAVE(x) is a top level conjunct in BDA, or

(b) i. D
2x≤ 0 at every non-join point of x in every transition of PliEv, and

ii. the after-value of Dx is no greater than its before-value at the left and right limits of

every internal join point of x in every transition of PliEv).

3. (∀∀∀PliEv1,MoEv,PliEv2 • whenever a transition of PliEv1 enables MoEv and the after-state of

MoEv enables PliEv2, then the after-value of Dx is no greater than its before-value at the MoEv

transition).

Proof Sketch: If a function is convex, it must be continuous (except, perhaps, at the extremes of its

domain, when the domain is a closed interval). It is convex at a discontinuity of its derivative if the

derivative’s after-value is no less than its before-value. It is convex in a neighbourhood where its second

derivative exists if that second derivative is nonnegative. On this basis, since the behaviours of variables

are all piecewise holomorphic functions, the conditions stated are sufficient to construct an inductive

proof of convexity of x throughout a run, in the usual way. The concave case is similar. �

In this and the preceding subsection, it is clear that we have replaced conditions involving two or

three time points of a function by conditions involving derivatives at a single time point, relying on

piecewise holomorphicity for justification. This changes (and arguably simplifies) the task faced by an

automated verifier.

36

Part 6 — Pliant POs: Event Feasibility

15. Formal Reasoning about Hybrid Event-B: Pliant Event POs

The POs that deal exclusively with pliant events are in Figs. 6 and 8, and cover both individual

machine correctness, and the correctness of pliant event refinement. They are PliEv/FIS, PliEv/INV,

PliEv/FISR, PliEv/INVR, PliEv/FISRW, PliEv/INVRW. Pliant event guard strengthening and relative

deadlock freeness, PliEv/GRDR and PliEv/RelDLF, have been discussed earlier and do not need further

consideration here. The same applies for the wellformedness POs MoPli/WFor and PliMo/WFor.

The main issue around the pliant POs comes from the expressiveness of pliant events. To increase

their expressivity, several convenient clauses for specifying pliant behaviour are permitted as described

in Section 2, and various possibilities for them that lead to tractable decision procedures are discussed

in Section 13. This entails a holistic approach for pliant event verification, as the possible interactions

between the various clauses have to be taken into account when proving correctness. This was already

evident to a degree in the pliant modality propositions of Section 14.

In most practical cases, only a portion of full pliant event expressivity is used for any particular event,

leading to economies in the verification task. This opens the way for exploiting the generic properties

that are assumed about pliant events and using these to reduce pliant event verification to simple syntactic

checks to the greatest degree possible. This is the aim of the next few sections. We take the POs one by

one, and build up from structurally simple cases. We use the same notations as in Figs. 6-8 for variables

etc.

16. Pliant Event Feasibility, PliEv/FIS

The feasibility PO for pliant events, reproduced from Fig. 6 is:

PliEv/FIS:

I(u(tL))∧ ivPliEvA(u(tL))∧grdPliEvA(u(tL))

⇒ (∃tR > tL • [[[(tR−tL ≥ δZenoPliEvA)∧]]] (∀tL ≤ t < tR • (∃u(t), i?(t), l(t),o!(t) •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t), t)))) (21)

Feasibility asserts that the event in question is viable, in that its intial conditions do not rule out

a pliant event transition a priori. As noted before, ensuring statically that the Zeno bound tR− tL ≥
δZenoPliEvA holds, is usually impossible without determining the entire system dynamics, so we will not

attempt to do so. Also, tR is existentially quantified in (21), but without the clauses that fix its value as

the termination time (of any particular execution) of the event, so detailed termination considerations are

not needed.

In contrast to mode events, where feasibility depends on the before-values of the variables and inputs

alone, pliant transitions extend over time, and the BDApred predicate may impose global constraints,

which raises the question of whether feasibility should be interpreted globally or locally.

A couple of examples illustrate the point: (1) A behaviour u(t) = sin(t) for t ≥ 0 satisfies CCAVE(u)
if t does not exceed π, but fails to satisfy it if t exceeds π. If other constraints in a pliant event force this

behaviour for u and its BDApred stipulates CCAVE(u), is the event feasible if its duration, starting at t = 0,

cannot be predicted in advance (for instance its duration may depend on inputs from the environment)?

(2) The same behaviour for u may satisfy u(tR)∈ [
1
2
. . . 3

4
] if tR takes a value near π/4, but not if tR takes

a value near π. Is the event feasible in these cases? In this paper we interpret feasibility locally, which

is to say that a pliant event is feasible iff there is a neighbourhood of the initial time tL, in which all the

constraints in the event which apply within that neighbourhood are true. According to this interpretation,

37

all the examples just discussed are feasible, since we ‘need not look too far into the future’ to check

feasibility.11

Although feasibility is interpreted locally, it still asserts a non-empty left-closed right-open duration

for the event execution, and right continuous behaviour overall for the execution. For duration, this entails

the prevention of immediate termination, i.e. termination at tL. However, we need not be concerned

with this in PliEv/FIS since the PO MoPli/WFor covers it. For right continuous behaviour, while the

presumption of FPH behaviour for solutions covers most of what is required, we need to check that

consecutive pieces of behaviour join appropriately, and, for a pliant event execution, at tL in particular.

This precludes iv∧ grd being more generous than the initial values implicit in a nontrivial DA or a

nontrivial BDA, since that might be interpreted as implying a possible jump in the value of some vari-

able(s) at the start of some execution of the pliant event (that has not been achieved by the immediately

preceding mode transition).12 Therefore, for a pliant event PliEv : {{{{{{ iv ;;; grd ||| ll ||| BDA DE ;;; DA }}}}}}, we

capture the initial state values permitted by BDA∧DA thus:

ivB/DA ≡ {u | (∃ll •
←−−−−−−−−−
BDA(u, ll,tL)∧

←−−−−−−−
DA(u, ll,tL))} (22)

If iv∧ grd does not entail ivB/DA then there are two ways that a mechanised verification system can

avoid the implied jump mentioned above. One way is to conjoin ivB/DA to iv∧ grd during verification.

The guard, thus strengthened, may result in a failure of the MoPli/WFor PO, if the disjunction of pliant

event guards in the conclusion of the PO becomes too strong.

An alternative way is to demand that (I ∧ iv∧ grd ⇒ ivB/DA) is proved during verification. If this

holds, then it is clear that at runtime, any pliant event that is enabled according to the user’s definition

can execute in a right continuous manner. This is a cleaner way of handling the issue, which is therefore

adopted below.

Proposition 16.1 (PliEv/FIS-BDA). Letting x stand for any of u, i?, l,o! as appropriate, a pliant event

PliEv satisfies PO PliEv/FIS if:

1. PliEv-⊛ : {{{{{{ iv ;;; grd ||| ll ||| BDA -;;;-}}}}}}, and

2. (∀∀∀x• I and grd and (I∧ iv∧grd⇒ ivB/DA) hold for
←−−−
x(tL)), and

3. (∀∀∀x• the CAD constraints, if any, of BDA hold for
←−−−
x(tL)), and

4. (∀∀∀x• the MOD constraints, if any, of BDA hold for
←−−−
x(tL), and additionally:

(a) if PLENVL(x, lb) and/or PLENVU(x,ub) (or PLENV(x, lb,ub)) is/are present in the MOD

constraints, then
←−−−
lb(tL) and/or

←−−−−
ub(tL) is/are in the interior of the CAD constraints, if any, at

tL, and if both are present, then
←−−−
lb(tL)<

←−−−−
ub(tL), and

←−−−
lb(tL)≤

←−−−
x(tL) and/or

←−−−
x(tL)≤

←−−−−
ub(tL),

as applicable, and

(b) as for case (a) for LBND(x,EL), UBND(x,EU), BND(x,EL,EU), and

(c) if MONINC(x) or MONDEC(x) is present in the MOD constraints (both together are not

permitted), then
←−−−
x(tL) is in the interior of the CAD constraints, if any, at tL, and

(d) if CVEX(x) or CCAVE(x) is present in the MOD constraints (both together are not permitted),

then
←−−−
x(tL) is in the interior of the CAD constraints, if any, at tL).

11It is worth noting that in the correctness proofs of PaperI and PaperII (i.e. proofs that when the POs hold, an execution

does not encounter a ‘runtime error’), feasibility was implicitly assumed to hold globally, i.e. for as long as needed. Little is

lost in the distinction between these approaches, since loss of feasibility is defined as finite termination, a correct outcome (see

PaperI). In any case, in straightforward cases, local feasibility can be extended to global feasibility, though more complex cases

will require a full solution of the pliant behaviour.
12Note that DE does not create any consistency issue since the general theory of Lipschitz bounded ODEs guarantees a right

continuous solution from any initial value.

38

Proof: Let PliEv be as in 1 and suppose that 2 holds. Suppose there are only CAD constraints (or none),

satisfying 3, in BDA. Then, since all functions appearing in PliEv are FPHS and the CAD constraints

describe a region contained in the closure of its nonempty interior, there will be a PH function for any

variable x, which remains inside the CAD constraints within some right-open interval starting at tL. Such

a function will discharge the PliEv/FIS PO locally.

If any of the MOD constraints mentioned in 4 are present, then we have to ensure that we are ap-

propriately ‘away from any boundary point’ of the CAD constraints to ensure that there will be a PH

function for x that satisfies them in a right-open interval starting at tL based on the tL values alone —

hence the particular conditions in 4.(a)-4.(d). Since any PH function is smooth, any CONTINUOUS(x),
CONST(x), CONST(x,E) or n-DIFFERENTIABLE(x) modality is automatically satisfied locally.

Each of these MOD constraints generates a candidate right-open interval starting at tL inside which

they are satisfied. Since there are only a finite number of them due to the finite syntax of any PliEv, the

intersection of all of them gives a right-open interval starting at tL which is sufficient to discharge the

PliEv/FIS PO locally.

Finally, if there are TIME constraints then since each refers to a time strictly greater than tL, we

merely need to ensure the duration of the interval just discussed is curtailed to before the earliest rele-

vant moment that might force infeasibility, to ensure that none of them are required to hold in order to

discharge PliEv/FIS locally. �

We note that in avoiding certain ‘boundary situations’ above we have derived results which are subop-

timal, in that ‘boundary versions’ could be derived for some of them, provided appropriate additional

conditions were imposed. However, such additional conditions would typically have to extend beyond

just mentioning the values at tL, so we did not pursue these in the interests of simplicity (and also because

such cases are of little engineering interest; see Section 25).

Proposition 16.2 (PliEv/FIS-DE). Letting x stand for any of u, i?, l,o! as appropriate, a pliant event

PliEv satisfies PO PliEv/FIS if:

1. PliEv-⊛ : {{{{{{ iv ;;; grd ||| ll |||- DE ≡Dx = φ ;;;-}}}}}}, and

2. (∀∀∀x• I and grd and iv hold for
←−−−
x(tL)).

Proof: Let PliEv be as in 1 and suppose that 2 holds. Since BDA is vacuously true, in order to satisfy

the PO, we just need to check that DE has a solution SOLPliEv in some non-empty right-open interval

starting at tL. Since φ, the RHS of DE, is Lipschitz continuous by assumption, and is given by a(n in

general vector-valued) FPHS function of its variables making it trivally measurable in time, standard

theory [130] says that there is a FPHS solution in some right-open interval starting at tL, as required. �

Proposition 16.3 (PliEv/FIS-DA). Letting x stand for any of u, i?, l,o! as appropriate, a pliant event

PliEv satisfies PO PliEv/FIS if:

1. PliEv-⊛ : {{{{{{ iv ;;; grd ||| ll |||- -;;; DA }}}}}}, and

2. (∀∀∀x• I and grd and (I∧ iv∧grd⇒ ivB/DA) hold for
←−−−
x(tL)), and

3. the EV graph is acyclic, and its leaves refer to known FPHS functions.

Proof: Let PliEv be as in 1 and suppose that 2 and 3 hold. Since there are no DE nodes in the EV graph,

the EV graph is identical to the graph minor formed by contracting the DEV-edges, which is thus acyclic,

therefore admissible. Proposition 13.2 thus guarantees that the obvious evaluation strategy, of solving by

substitution from known information at the leaves, towards the roots, will be successful. Then, since the

RHS of all the DA assignments are FPHS functions, the outcome ensures that there is a solution to the

DA system, in some right-open interval starting at tL, discharging PliEv/FIS PO locally. �

39

Proposition 16.4 (PliEv/FIS-BDA/DE). Letting x stand for any of u, i?, l,o! as appropriate, a pliant

event PliEv satisfies PO PliEv/FIS if:

1. PliEv-⊛ : {{{{{{ iv ;;; grd ||| ll ||| BDA DE ≡Dx = φ ;;;-}}}}}}, and

2. (∀∀∀x• I and grd and (I∧ iv∧grd⇒ ivB/DA) hold for
←−−−
x(tL)), and

3. (a) (∀∀∀x•
←−−−
x(tL) is in the interior of the region specified by the CAD constraints, if any, of BDA),

or

(b) (∀∀∀x•
←−−−
x(tL) is in the boundary of the region specified by the CAD constraints of BDA, and

the vector field φ(x) points into the interior of the CAD constraints region), or

(c) (∀∀∀x•
←−−−
x(tL) is in the boundary of the region specified by the CAD constraints of BDA, and,

letting d(p) denote the Euclidean distance from a point p to the boundary of the region

specified by the CAD constraints (positive for the interior, negative for the exterior), then

D(d;φ(
←−−−
x(tL)))> 0, where D(f ;v) is the directional derivative of f in the direction v), or

(d) (∀∀∀x•
←−−−
x(tL) is in the boundary of the region specified by the CAD constraints of BDA, and,

assuming the CAD constraints satisfy: (i) they are in disjunctive normal form, CAD ≡∨n
i=1

∧mi

j=1 Qi, j, (ii) each Qi, j is of the form Qi, j ≡ Pi, j ⋄0, where ⋄ ∈ {=,>}; then, letting î in-

dicate a disjunct such that
←−−−
x(tL) satisfies

∧mî

j=1 Qî, j, and letting ĵ range over all j ∈ {1 . . .mî}

such that Qî, ĵ is of the form Pî, ĵ > 0 and it holds that Pî, ĵ(
←−−−
x(tL)) = 0, we have, for all ĵ, that

〈φ(
←−−−
x(tL)),∇Pî, ĵ(

←−−−
x(tL))〉> 0, where 〈., .〉 is the Euclidean inner product),

and

4. (∀∀∀x• the MOD constraints, if any, of BDA hold for
←−−−
x(tL), and additionally:

(a) if PLENVL(x, lb) and/or PLENVU(x,ub) (or PLENV(x, lb,ub)) is/are present in the MOD

constraints, then
←−−−
lb(tL) and/or

←−−−−
ub(tL) is/are in the interior of the CAD constraints, if any, at

tL, and if both are present, then
←−−−
lb(tL)<

←−−−−
ub(tL), and

←−−−
lb(tL)<

←−−−
x(tL) and/or

←−−−
x(tL)<

←−−−−
ub(tL),

as applicable, and

(b) as for case (a) for LBND(x,EL), UBND(x,EU), BND(x,EL,EU), and

(c) if MONINC(x) or MONDEC(x) is present in the MOD constraints (both together are not

permitted), then
←−−−
x(tL) is in the interior of the CAD constraints, if any, at tL, and

(d) if CVEX(x) or CCAVE(x) is present in the MOD constraints (both together are not permitted),

then
←−−−
x(tL) is in the interior of the CAD constraints, if any, at tL).

Proof: Let PliEv be as in 1 and suppose that 2 holds. Then the arguments used in Proposition 16.2 show

that there is a solution SOLPliEv in some non-empty right-open interval starting at tL. We need to confirm

that some initial portion of SOLPliEv lies within the constraints defined by BDA.

If
←−−−
x(tL) is in the interior of any CAD constraints in BDA, then there will be an open ball centred

on
←−−−
x(tL) also in the interior of the CAD constraints. Inside this ball, SOLPliEv will satisfy the CAD

constraints. This covers case 3.(a).

For cases 3.(b)-3.(d),
←−−−
x(tL) is in the boundary of the CAD constraints in BDA, so to ensure that

SOLPliEv has an initial portion that lies within the CAD constraints, it is sufficient that φ(
←−−−
x(tL)) points

into the interior of the CAD constraints. (If not, if there were points on SOLPliEv, arbitrarily close to
←−−−
x(tL) but outside the CAD constraints, then φ(

←−−−
x(tL)) would not point into the constraints’ interior.13)

Case 3.(b) states this directly. In case 3.(c), since the CAD constraints specify a region of full dimension,

13We avoid engagement with the weaker but more subtle conditions that would allow φ(
←−−−
x(tL)) to be tangential to the CAD

constraints while yet keeping the DE flow contained within them [130, 41, 42].

40

points in its interior will lie at a positive distance from the boundary. Thus, provided the directional

derivative of the distance function at
←−−−
x(tL) in the direction φ(

←−−−
x(tL)) is positive, φ(

←−−−
x(tL)) will point

strictly into the interior of the CAD constraints, reducing to case 3.(b).

Case 3.(d) exploits the assumed CAD structure to derive more easily computable conditions. Since

the CAD constraints are written in a first order language, the constraints can be manipulated into DNF,

and with all constraints written as P = 0 or P > 0. Since
←−−−
x(tL) is in the region specified by the CAD

constraints, there is a disjunct, labelled î say, such that all its Pî, j ⋄0 constraints are satisfied. Moreover,

since the CAD constraints specify a region with full dimension contained in the closure of its interior

and
←−−−
x(tL) is in the boundary of this region,

←−−−
x(tL) borders one or more open sets specified via one or

more Pî, ĵ > 0 constraints. The fact that P is multinomial ensures that the gradient ∇P exists, and the

form P > 0 ensures that the gradient points strictly into the interior of the region specified by the relevant

Pî, ĵ > 0. So provided the inner product 〈φ(
←−−−
x(tL)),∇Pî, ĵ(

←−−−
x(tL))〉 is strictly positive, φ(

←−−−
x(tL)) will point

into the interior of the Pî, ĵ > 0 region. Therefore, if this holds for all relevant ĵ, then φ(
←−−−
x(tL)) will point

into the intersection of these regions, i.e. into the interior of the CAD constraints, as required.14

Turning to the MOD constraints, we can largely rerun the arguments of Proposition 16.1. The prin-

cipal difference is the need to ensure that there is an open ball centred on
←−−−
x(tL) in which all required

constraints hold, so that some initial portion of SOLPliEv lies within the constraints, regardless of the

direction in which φ(
←−−−
x(tL)) points. The only tangible effect of this is the strengthening of the nonstrict

inequalities in 4.(a) of Proposition 16.1 to strict inequalities in 4.(a) here. Otherwise the arguments are

appropriate.

We deal with any TIME constraints as in Proposition 16.1; and again, we take the intersection of any

intervals generated under separate cases above, to get an interval satisfying all relevant conditions for

discharging the PliEv/FIS PO locally. �

As previously, we have avoided various ‘boundary situations’ in the proposition above, most prominently

the ones in point 4.(a). The techniques used in 3.(d) could be used to enlarge the remit of the proposition,

if desired.

Proposition 16.5 (PliEv/FIS-BDA/DA). Letting x stand for any of u, i?, l,o! as appropriate, a pliant

event PliEv satisfies PO PliEv/FIS if:

1. PliEv-⊛ : {{{{{{ iv ;;; grd ||| ll ||| BDA -;;; DA }}}}}}, and

2. (∀∀∀x• I and grd and (I∧ iv∧grd⇒ ivB/DA) hold for
←−−−
x(tL)), and

3. The EV graph is acyclic, and its leaves refer to known FPHS functions, and

4. condition 3.(a) in Proposition 16.4 holds, and

5. condition 4 in Proposition 16.4 holds.

Proof: Let PliEv be as in 1 and suppose that 2 and 3 hold. Then we can replay the proof of Proposition

16.3 to deduce that there is a solution, in some right-open interval starting at tL, to the DA system of

PliEv. We need to check that we have enough conditions on BDA to ensure that the solution says within

the BDA constraints for some nontrivial initial subinterval. But here, we can replay the relevant parts of

the proof of Proposition 16.4, since there, we showed that conditions 3 and 4 were sufficient to ensure that

14The applicability of case 3.(d) can depend on the representation of the CAD region. Thus, consider the ODE system

Du1 = 1,Du2 = 0 with (u1(tL),u2(tL)) = (0,0) in the region (0 ≤ u1 < 1)∧ (−1 < u2 < 1) with the region represented

in the obvious way as a single rectangle plus appropriate boundary line. Then 4.(d) succeeds. But if the (u1,u2) region was,

perversely, described as (u1 > 0∧−u1 +1 > 0∧u2 > 0∧−u2+1 > 0)∨(u1 > 0∧−u1+1 > 0∧u2 +1 > 0∧−u2 > 0)∨(u1 =
0∧u2 +1 > 0∧−u2 +1 > 0)∨ (u1 > 0∧−u1 +1 > 0∧u2 = 0); then 3.(d) would fail.

41

a suitable function given in advance —by a DE system there, by a DA system here, and in contrast to the

situation in Proposition 16.1 where the function could be chosen while considering the BDA constraints

themselves— remained within the BDA constraints to the extent needed. We are done. �

Proposition 16.6 (PliEv/FIS-DE/DA). Letting x stand for any of u, i?, l,o! as appropriate, a pliant event

PliEv satisfies PO PliEv/FIS if:

1. PliEv-⊛ : {{{{{{ iv ;;; grd ||| ll |||- DE ;;; DA }}}}}}, and

2. (∀∀∀x• I and grd and (I∧ iv∧grd⇒ ivB/DA) hold for
←−−−
x(tL)), and

3. the EV graph is admissible, and any leaves of the EV graph refer to known FPHS functions, and

4. condition 3.(a) in Proposition 16.4 holds, and

5. condition 4 in Proposition 16.4 holds.

Proof: This is very much like Proposition 16.5. The main difference is that we need to consider a general

EV graph with both DE and DA nodes. Admissibility then guarantees that the DE/DA system is solvable

in principle in some right-open interval starting at tL, by Proposition 13.2. �

Proposition 16.7 (PliEv/FIS-BDA/DE/DA). Letting x stand for any of u, i?, l,o! as appropriate, a pliant

event PliEv satisfies PO PliEv/FIS if:

1. PliEv-⊛ : {{{{{{ iv ;;; grd ||| ll ||| BDA DE ;;; DA }}}}}}, and

2. (∀∀∀x• I and grd and (I∧ iv∧grd⇒ ivB/DA) hold for
←−−−
x(tL)), and

3. the EV graph is admissible, and any leaves of the EV graph refer to known FPHS functions, and

4. condition 3 in Proposition 16.4 holds, and

5. condition 4 in Proposition 16.4 holds.

Proof: This is very much like Proposition 16.5 and Proposition 16.6 too. The argument splits into two.

The first part deals with the existence of a solution to the DE+DA system of PliEv in some right-open

interval starting at tL, dealt with as in Proposition 16.6. Then the second part deals with the satisfaction

of the BDA constraints in some nontrivial initial subinterval. But this is exactly as in Propositions 16.4

and 16.5. We are done. �

Part 7 — Pliant POs: Machine Invariants

17. Formal Reasoning about Hybrid Event-B: Machine Invariants

The interplay of mode and pliant variables and transitions permitted by a formalism like Hybrid

Event-B permits the writing of potentially quite exotic invariants. However, engineering concerns are

typically more focused on the simpler cases. This also enhances the possibilities for automating the rea-

soning. Regarding the trajectories of a pliant variable, we focus on what we call proto-invariants. These

are not required to be invariant themselves, but to constitute basic units regarding pliant variables, that,

in combination with properties concerning mode variables, make up machine and refinement invariants.

The properties assumed for the valuations of pliant variables enable the derivation of some generic re-

sults about their trajectories, and checking such properties might well be entrusted to external reasoners,

using the EXTERN rule of Fig. 10. The remaining reasoning would then be delegated to more conven-

tional reasoners, SMT-style. Below, when discussing pliant event invariant preservation, we focus on the

proto-invariants, since their constituents are the only ones that can change during pliant transitions.

42

We admit two types of proto-invariant. In the first, the trajectory of a pliant variable x is contained in

a sufficiently open CAD set. We refer to such a proto-invariant as a CAD.PI. In the second, the trajectory

of a pliant variable x satisfies one of the pliant modalities discussed in Section 14: CONTINUOUS,

n-DIFFERENTIABLE, PLENVL, PLENVU, PLENV, LBND, UBND, BND, MONINC, MONDEC, CVEX,

CCAVE. We refer to such a proto-invariant as a MOD.PI.

In a CAD.PI the trajectory of x is confined to a suitable safety region, a reasonable engineering

requirement. In a MOD.PI a particular characteristic of the pliant trajectory is demanded. Of the pliant

modalities mentioned above, those from CONTINUOUS to BND are straighforwardly compatible with

a variable remaining within a finite region indefinitely, in line with the safety region requirement just

stated. The remainder, from MONINC to CCAVE, are not —unless relevant properties are forced to

approach zero asymptotically— which would be unusual in an engineering context. Thus, an invariant

in which any of these others could occur might be conditional on circumstances (e.g. the values of mode

variables) that could be expected to hold only intermittently, at best.

Connected with the preceding point is the question of whether time itself ought to be permitted to

occur in invariants. The intuitive notion of an invariant, as a property that holds at all times, suggests not.

On the other hand, time’s essence as a read-only variable that is synchronised once at the beginning of an

execution and is thereafter not updated by any event, suggests that invariants that assert state properties

that are conditional on the current time may be contemplated. The present author would discourage the

latter kind of invariant, in case it prompts inappropriate intuitions at user level, but we do not forbid them

here.15

Similar remarks apply, with different emphasis, to clocks. Clocks may be reset by mode events.

Therefore, an invariant that says ‘provided clock casio_clk says it is 3 o’clock, P holds’ depends on what

mode events reset casio_clk previously. One could thus say that such an invariant is very incomplete, in

that a lot of the context that makes precise under what conditions casio_clk would say ‘3 o’clock’ has

been omitted from the invariant. One may even argue that an invariant that says ‘provided 3 hours have

elapsed since the start of the execution, P holds’ has a more universally understood meaning. At any

rate, we would urge the maximum caution if, despite the misgivings just described, such invariants were

to be used.

18. Pliant Event Invariant Preservation, PliEv/INV

The invariant preservation PO for pliant events, reproduced from Fig. 6 is:

PliEv/INV:

I(u(tL))∧ ivPliEvA(u(tL))∧grdPliEvA(u(tL))∧ (∃tR > tL • TRM(tR)∧ (∀tL ≤ t < tR,

u(t), i?(t), l(t),o!(t)•BDApredPliEvA(u(t), i?(t), l(t),o!(t), t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t), t)))

⇒ (∀tL ≤ t < tR • I(u(t))) (23)

As indicated in Section 17, since invariants can exhibit fairly arbitrary dependencies between mode

and pliant variables that are too general to permit worthwhile generic analysis, in this section we focus

on the proto-invariants described there, assuming that it is the truth of any such proto-invariant that is

needed to discharge the invariant that contains it. More so than with feasibility, we focus on cases that

allow (proto-)invariant preservation to be deduced rather easily, since small departures from the simplest

cases tend to make the complexity of the task comparable to that of the general case.

15The analogue, in a purely discrete event framework, of having an invariant that depended on time, would be to have a read-

only variable that counted all the event occurrences in an execution, and to have an invariant that depended on it. Described

thus, it comes across as a rather unnatural thing to do.

43

Proto-invariants come in two kinds: CAD.PI and MOD.PI, as already stated. Along with the CAD.PIs,

we introduce internal CAD proto-invariants CAD.IPIs, which we focus on where appropriate. A CAD.IPI

is defined like a CAD.PI, and is intended to be contained in some enclosing CAD.PI. Just as when in

proving algorithms correct we sometimes strengthen the invariant for technical convenience, a CAD.IPI

can strengthen the invariant given by its enclosing CAD.PI for technical convenience. Thus, whereas a

CAD.PI originates from the original invariants, and thus reflects the concerns of the application being

modelled, a CAD.IPI may be chosen with the concerns of formal verification uppermost. Provided the

containment is as stated, both sets of concerns may be optimally addressed.

Below, we seek to identify conditions that enable us to deduce that a proto-invariant (PI) is safely

maintained by a pliant transition. This can happen in a number of ways. Firstly, we may be able to

deduce that the PI holds indefinitely. In such a case, whether or not any particular transition is preempted

by a mode transition becomes irrelevant to the correctness of the pliant transition. Secondly, we may be

able to deduce that the PI holds until a time at which the pliant transition becomes infeasible. In that

case, if the state reached at the limit of feasibility enables a mode transition, then the pliant transition

is preempted and the execution continues, or if it does not, then we have finite termination. Both are

regarded as correct according to the semantics of PaperI. Thirdly, we may be able to deduce that the PI

holds for a (potentially undetermined) period, but that the transition may subsequently violate the PI.

This is incorrect, and in such a case, we must identify additional conditions that prevent the violation in

order to deduce safe execution.

Definition 18.1 (Pliant Event Maintains Property). We say that a pliant event PliEv in machine M

maintains a property Φ iff, in every execution of M every pliant transition Π specified by PliEv either:

(a) is preempted by a mode transition, or (b) becomes infeasible (thus ending the execution of Π), or (c)

continues indefinitely; and in each of these three cases, Φ holds throughout Π if it holds at the start, tL.

Proposition 18.2 (PliEv/INV/CAD.PI-BDA). Let x stand for any of u, i?, l,o! as appropriate. Let the

invariants I of a machine with pliant event PliEv contain a proto-invariant CAD.PI. Then PliEv main-

tains CAD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll ||| BDA -;;;-}}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.1, and

3. (a) if BDA contains CAD constraints, then CAD⇒ CAD.PI, and

(b) if BDA contains MOD constraints, then

(∀∀∀x• CAD.PI can be written as CAD.PIx∧CAD.PIx where CAD.PIx contains all occur-

rences of x in CAD.PI and CAD.PIx contains no occurrences of x, and

i. if CAD.PIx bounds x above, then the MOD constraints contain PLENV(U) or (U)BND

constraints which are adequate to prove the CAD.PIx bound on x, and

ii. if CAD.PIx bounds x below, then the MOD constraints contain PLENV(L) or (L)BND

constraints which are adequate to prove the CAD.PIx bound on x, and

iii. if there is a PLENV(U) or PLENV(L) or MOD constraint for which there exists tINF ,

where tINF is the infimum of all times at which the MOD constraint becomes inconsistent

with CAD.PIx and tINF > tL, then there is a TIME constraint that forces infeasibility at

tTIME ≤ tINF).

Additionally, for each of cases 3.(a), 3.(b).i, 3.(b).ii, if BDA contains no constraints other than the ones

mentioned, then any pliant transition of PliEv specified by that case continues indefinitely, or until pre-

empted.

Proof: Let Π be a pliant transition satisfying PliEv. We examine the available alternatives. Suppose that

case 3.(a) holds. Then CAD.PI is maintained as long as Π continues, which will be a non-empty interval

44

of time, by feasibility. The time-independent nature of both CAD and CAD.PI ensures that if there are

no other constraints in BDA, any behaviour of the variables respecting BDA can continue indefinitely, or

until it is preempted by a mode transition. Alternatively, if there are additional constraints in BDA, they

may become inconsistent with CAD at some future time, resulting in infeasibility of Π.

Suppose that case 3.(b) holds. Then for each relevant state variable x we can identify a top level

conjunct of CAD.PI that contains all the occurrences of x in CAD.PI. If this conjunct demands upper

or lower bounds on x, then cases 3.(b).i and 3.(b).ii ensure that the MOD constraints in BDA contain

constraints strong enough to satisfy the demanded bounds. In case 3.(b).iii, the time dependent nature

of the bound in the MOD constraint is prevented from allowing behaviour that violates CAD.PI by the

hypothesised TIME constraint. The time-independent nature of constraint satisfaction in cases 3.(a),

3.(b).i, 3.(b).ii, ensures that if there are no other constraints in BDA, any behaviour of the variables

respecting BDA can continue indefinitely, or until it is preempted by a mode transition. Alternatively, if

there are additional constraints in BDA, they may become inconsistent with CAD at some future time,

resulting in infeasibility of Π. �

Evidently, the above could be strengthened to extend the scope of the ∀∀∀x quantification to include case

3.(a) too, allowing some variables to be deduced safe on the basis of the CAD constraints of BDA and

others to be handled via the MOD constraints. However, in such a framing of the proposition care has to

be taken so that e.g., variables other than the x in question are not existentially quantified or otherwise

inappropriately coupled to other variables, as that would be unsound. We do not pursue the complications

that can arise in this way.

Proposition 18.3 (PliEv/INV/MOD.PI-BDA). Let x stand for any of u, i?, l,o! as appropriate. Let the

invariants I of a machine with pliant event PliEv contain a proto-invariant MOD.PI. Then PliEv main-

tains MOD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll ||| BDA -;;;-}}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.1, and

3. BDA contains the same MOD constraints as are in MOD.PI.

Additionally, if BDA contains no constraints other than the ones mentioned in MOD.PI, then any pliant

transition of PliEv continues indefinitely, or until preempted.

Proof: Let Π be a pliant transition satisfying PliEv. Feasibility ensures that Π has a non-empty duration,

and it is obvious that MOD.PI can be maintained indefinitely provided the MOD constraints in BDA

specify the same constraints as are demanded in MOD.PI. If there are additional MOD constraints, the

argument is as in Proposition 18.2. �

Evidently, in condition 3 of Proposition 18.3, we can also allow strengthenings of the MOD.PI constraints

in MOD (e.g. by tightening an upper or lower bound), provided these do not lead to infeasibility. Similar

observations apply below. For simplicity, we do not elaborate the details.

The next result concerns constraining the behaviour of an ODE system within a region, which is a

well studied problem, so we just touch on the basics. The first few cases in clause 5 mimic the structure

of Proposition 16.4 to the extent possible. After that, further cases consider mode event enabledness (and

thus preemption) preempting escape from the region of constraint, and the availability of safe estimates

on the behaviour to imply remaining within the desired region. Further comments follow the proof.

Proposition 18.4 (PliEv/INV/CAD.PI-DE). Let x stand for any of u, i?, l,o! as appropriate. Let the

invariants I of a machine with pliant event PliEv contain a proto-invariant CAD.PI. Then, letting overline

denote topological closure, PliEv maintains CAD.PI if:

45

1. PliEv-⊛ : {{{{{{ iv ;;; grd ||| ll |||- DE ≡Dx = φ ;;;-}}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.2, and

3. there exists an internal CAD PI, CAD.IPI, such that CAD.IPI ⊆ CAD.PI, and

4.
←−−−
x(tL) ∈ CAD.IPI, and

5. (a) (∀∀∀x• if x is in the boundary of CAD.IPI, then the vector field φ points into the interior of

CAD.IPI), or
(b) (∀∀∀x• if x is in the boundary of CAD.IPI, letting d(p) denote the Euclidean distance from a

point p to the boundary of CAD.IPI (positive for the interior, negative for the exterior), then

D(d;φ(x)) > 0, where D(f ;v) is the directional derivative of f in the direction v), or
(c) (∀∀∀x• if x is in the boundary of CAD.IPI, assuming CAD.IPI satisfies: (i) it is in disjunctive

normal form, CAD.IPI ≡
∨n

i=1

∧mi

j=1 Qi, j, (ii) each Qi, j is of the form Qi, j ≡ Pi, j ⋄ 0, where

⋄ ∈ {=,>}; then, letting î indicate a disjunct such that x satisfies
∧mî

j=1 Qî, j, and letting ĵ

range over all j ∈ {1 . . .mî} such that Qî, ĵ is of the form Pî, ĵ > 0, and it holds that Pî, ĵ(x) = 0,

we have, for all ĵ, that 〈φ(x),∇Pî, ĵ(x)〉> 0, where 〈., .〉 is the Euclidean inner product), or

(d) co-CAD.IPI ⊆ pre-tR, or co-CAD.IPI ⊆ pre-tReager , as applicable, where co- denotes set

complement, or
(e) (∀∀∀x • ∃Kx• defining t̃ = (t − tL), if the solution to DE ≡ Dx = φ is given for t̃ ≤ Kx by

an absolutely convergent power series in t̃, x(t̃) = ∑∞
k=0 akt̃k, and is given for t̃ ≥ Kx by an

inverse power series x(t̃) = ∑∞
k=0 bk t̃−k, and

i. if CAD.IPI specifies an upper bound XDU for x then, regarding the power series, there

exist NPU and TPU ≥ Kx such that for k > NPU and t̃ ≥ TPU the terms in the series

beyond index NPU can be partitioned into groups such that the value of each group is

negative, and the truncated series (i.e. polynomial) xtrnPU(t̃) = ∑
NPU

k=0 akt̃k satisfies t̃ ∈
[0 . . .TPU]⇒ xtrnPU(t̃) ≤ XDU , and regarding the inverse power series, there exist NAU

and TAU ≤ Kx such that for k ≤ NAU and t̃ ≥ TAU the truncated series (i.e. rational

function) xtrnAU(t̃) = ∑
NAU

k=0 bkt̃−k satisfies t̃ ∈ [TAU . . . ∞]⇒ xtrnAU(t̃)+εAU ≤ XDU , where

εAU is a safe bound for the terms in the series beyond index NAU , and
ii. if CAD.IPI specifies a lower bound XDL for x then, regarding the power series, there

exist NPL and TPL ≥ Kx such that for k > NPL and t̃ ≥ TPL the terms in the series beyond

index NPU can be partitioned into groups such that the value of each group is positive,

and the truncated series (i.e. polynomial) xtrnPU(t̃) = ∑
NPL

k=0 ak t̃k satisfies t̃ ∈ [0 . . .TPL]⇒
xtrnPL(t̃) ≥ XDL, and regarding the inverse power series, there exist NAL and TAL ≤ Kx

such that for k≤ NAL and t̃ ≥ TAL the truncated series (i.e. rational function) xtrnAL(t̃) =

∑
NAL

k=0 bk t̃−k satisfies t̃ ∈ [TAL . . . ∞]⇒ xtrnAL(t̃)− εAL ≥ XDL, where εAL is a safe bound

for the terms in the series beyond index NAU ,)
or

(f) (∀∀∀x• the characteristics of the solution to DE ≡ Dx = φ can be ascertained with enough

precision that the number and value of any turning points and join points can be determined

sufficiently accurately to show that they fall within any upper or lower bounds set by CAD.IPI

— e.g. if DE is a linear system, and especially if it has constant coefficients).

Let pre-tR(
←−−−
x(tL)) denote the set of (path) connected components of pre-tR that have nonempty intersec-

tion with the component of CAD.IPI containing
←−−−
x(tL). Then, in addition to the preceding:

6. If pre-tR(
←−−−
x(tL)) is non-empty, and there is a 0 < B ∈ R such that, for all x ∈ CAD.IPI we have

that D(b;φ) ≥ B, where b(p) is the Euclidean distance from a point p to the boundary of the

nearest component of pre-tR(
←−−−
x(tL)) (positive for the interior, negative for the exterior), then the

trajectory of PliEv from
←−−−
x(tL) has finite duration, and is preempted at a time tR satisfying tR ≤

tL +b(
←−−−
x(tL))/B.

46

Proof: Let Π be a pliant transition satisfying PliEv, for which the stated conditions hold. We permit

checking the required conditions against CAD.IPI rather than CAD.PI in case they fail for CAD.PI but

hold for a suitable subset. Since CAD.IPI may be smaller than CAD.PI, we need condition 4 to ensure

that the initial value of x is in CAD.IPI. After this, the argument follows the proof of Proposition 16.4

broadly speaking.

Thus, Π will continue for a non-empty interval of time by feasibility, and if the region we need it to

be confined to, hypothesised to be the internal proto-invariant CAD.IPI, has the property that at all times

the vector field φ at its boundary points strictly into its interior, then the dynamics never escapes from

CAD.IPI, which becomes an attractor for the dynamics. The alternatives in 5.(a)-(c) patterned after their

counterparts in Proposition 16.4, give sufficient conditions for this; and if φ is independent of time (as

CAD.IPI is assumed to be), then it is sufficient to ignore time in checking the conditions, whereas if φ

depends on time, then the checks need to be established for all (relevant) times.

Thus, 5.(a) demands directly that φ points into the interior of CAD.IPI at its boundary, while 5.(b)

relies on the distance function to the boundary, which will be non-zero in the non-empty interior of

CAD.IPI. 5.(c) presumes a DNF form for the CAD structure of CAD.IPI, and the argument is as in

Proposition 16.4.

For 5.(d), feasibility guarantees that Π will continue for a non-empty interval of time. Condition

5.(d) guarantees that if Π attempts to escape from CAD.IPI, it will encounter pre-tR first, and thus be

preempted. (To preclude the possibility that a guard may be disabled (by conditions depending on time) at

the moment the state trajectory enters pre-tR, we assume that lazy mode events cooperate sufficiently to

provide any preemption that depends on them. If not, we use pre-tReager instead.) If the encounter takes

place at a boundary point of pre-tR, the semantics of PaperI stipulates that preemption takes priority over

invariant failure (should it be the case that invariant failure is a possibility), thus ensuring maintenance

of CAD.PI.

For 5.(e), we assume that we can divide the trajectory of DE into two, a prefix for t̃ = t − tL not

lasting beyond t̃ = Kx and a suffix for t̃ extending from t̃ = Kx to infinity. Assuming that an upper

bound, demanded by CAD.IPI, is required, for the former, we truncate the power series in a way that

the discarded part contributes negatively, thus allowing us to assert that if the retained part satisfies the

CAD.IPI upper bound (using CAD techniques for example), then so does the exact solution. For the

latter, we truncate the inverse power series, assuming that there is a safe estimate for the retained part,

that enables the deduction that the exact solution also satisfies the CAD.IPI upper bound. The argument

for lower bounds is similar.

For 5.(f), we observe that the RHS of DE ≡ Dx = φ is a FPHS function, which we can write as

〈φ1, t̃L,1, t̃R,1;φ2, t̃L,2, t̃R,2; . . . ;φn, t̃L,n, t̃R,n〉. On each piece (φk, t̃L,k, t̃R,k), the solution to DE will be analytic,

and so its extremal values will occur among the turning points of φk and its values at t̃L,k, t̃R,k. If these

can be ascertained with enough precision to determine whether any upper or lower bounds demanded

by CAD.IPI are satisfied, then the preservation of CAD.IPI can be reduced to a finite number of checks.

Moreover, if DE is linear, then its solution may be accessed via the standard variation of parameters

form; and if DE is linear with constant coefficients, then the solution is available in closed form.

For 6, we firstly note that the preoccupation with connected components is motivated by the obser-

vation that Hybrid Event-B dynamics depend not only on pliant variables, but on mode variables too.

These do not have any intrinsic notion of Euclidean distance, so we have to restrict to specific compo-

nents, agreeing on the values of all the mode variables (which remain constant during a pliant transition),

in order to have a meaningful result.16

16The same comments apply earlier, to the feasibility results. There though, the fact that the point of interest
←−−−
x(tL), lay on

the boundary, effectively resolved the issue.

47

Now, the preceding conditions ensure that the trajectory of x stays within CAD.IPI, and assumption

6 states that the rate of approach of the trajectory of x to pre-tR(
←−−−
x(tL)) is bounded below by B, and

since b(x) is assumed always finite (otherwise it would be undefined), the expression given is the latest

time at which preemption can occur, assuming that the environment will supply any needed existentially

quantified values, and that any explicit time/clock constraints and dependencies are consistent. �

A number of comments on the preceding result are merited. In particular, the various subcases of con-

dition 5 point the way to a much larger range of detailed approaches to deducing something about the

region within which the solution to a DE system is confined. For example, the early subcases point the

way to Lyapunov and related techniques; see for example [63, 135, 122, 71] not to mention many other

sources. The use of polynomials and CAD techniques has been discussed earlier, and the use of asymp-

totic techniques can yield good information about large t̃ behaviour; see for example [132, 44, 47, 30, 68].

Global techniques can also be brought to bear; see for example [76, 77, 104]. Linear systems are familiar

and are covered in many places, among which we can mention [130, 37, 9, 7, 102]. All of the topics just

indicated are ancient, consequently the literature around them is extensive and we have just indicated

essential entry points.

Beyond the preceding, and beyond the time invariant restrictions for CAD invariants adopted in

this paper, lie more dynamic behaviours. For instance we may contemplate cases in which an initial

consistency between CAD.PI and CAD.IPI (one or both of which may be time dependent), becomes an

inconsistency, but where nevertheless, the correctness of the dynamics is rescued by a provably timely

preemption. Some of these cases impinge on the results that follow.

Proposition 18.5 (PliEv/INV/MOD.PI-DE). Let x stand for any of u, i?, l,o! as appropriate. Let the in-

variants I of a machine with pliant event PliEv contain a proto-invariant MOD.PI. Then PliEv maintains

MOD.PI if:

1. PliEv-⊛ : {{{{{{ iv ;;; grd ||| ll |||- DE ≡Dx = φ ;;;-}}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.2, and

3. (∀∀∀x• if MOD.PI is any of the following forms, then the associated conditions apply (with substi-

tution of φ for Dx where relevant):

(a) CONTINUOUS(x): Proposition 14.1.2.(b),

(b) n-DIFFERENTIABLE(x): Proposition 14.2.2.(b),

(c) PLENVL(x, lb) or PLENVU(x,ub) or PLENV(x, lb,ub): Proposition 14.3.2.(b), as applicable,

(d) LBND(x,EL) or UBND(x,EU) or BND(x,EL,EU): Proposition 14.4.2.(b), as applicable,

(e) MONINC(x) or MONDEC(x): Proposition 14.5.2.(b), as applicable,

(f) CVEX(x) or CCAVE(x): Proposition 14.6.2.(b), as applicable)

Proof: This result simply repackages results from the various propositions mentioned, and is included to

record completeness of coverage. �

Proposition 18.6 (PliEv/INV/CAD.PI-DA). Let x stand for any of u, i?, l,o! as appropriate. Let the in-

variants I of a machine with pliant event PliEv contain a proto-invariant CAD.PI. Then PliEv maintains

CAD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll |||- -;;; DA≡ x := E }}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.3, and

3. (∀∀∀x • x = E⇒ CAD.PI)

48

Proof: Let PliEv be as in 1 and suppose that 2 holds. Feasibility ensures that any pliant transition Π

satisfying PliEv starts out by maintaining CAD.PI. The fact that 3 holds independently of time then

ensures that CAD.PI is maintained indefinitely. �

This result evidently generalises to the time dependent CAD.PI case, simply by interpreting condition 3

in a fully time dependent way.

Proposition 18.7 (PliEv/INV/MOD.PI-DA). Let x stand for any of u, i?, l,o! as appropriate. Let the in-

variants I of a machine with pliant event PliEv contain a proto-invariant MOD.PI. Then PliEv maintains

MOD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll |||- -;;; DA≡ x := E }}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.3, and

3. (∀∀∀x• if MOD.PI is any of the following forms, then the associated conditions apply (with substi-

tution of E for x where relevant):

(a) CONTINUOUS(x): Proposition 14.1.2.(c),

(b) n-DIFFERENTIABLE(x): Proposition 14.2.2.(c),

(c) PLENVL(x, lb) or PLENVU(x,ub) or PLENV(x, lb,ub): Proposition 14.3.2.(b), as applicable,

(d) LBND(x,EL) or UBND(x,EU) or BND(x,EL,EU): Proposition 14.4.2.(b), as applicable,

(e) MONINC(x) or MONDEC(x): Proposition 14.5.2.(b), as applicable,

(f) CVEX(x) or CCAVE(x): Proposition 14.6.2.(b), as applicable)

Proof: This result simply repackages results from the various propositions mentioned, and is included to

record completeness of coverage. �

Proposition 18.8 (PliEv/INV/CAD.PI-BDA/DE). Let x stand for any of u, i?, l,o! as appropriate. Let

the invariants I of a machine with pliant event PliEv contain a proto-invariant CAD.PI. Let CAD.IPI ⊆
CAD.PI be an internal proto-invariant for CAD.PI. Then PliEv maintains CAD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll ||| BDA DE ;;;-}}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.4, and

3. condition 3 of Proposition 18.2 holds, and

4. conditions 4-6 of Proposition 18.4 hold.

Proof: The requirements of feasibility are dealt with in Proposition 16.4. Beyond that, we simply com-

bine the conditions demended in Proposition 18.2 and Proposition 18.4 and conclude that if all hold as

required, the proto-invariant will be maintained. (If inconsistency between the conditions demanded in

the two propositions arises during the course of the execution, this is infeasibility, and causes finite ter-

mination — unless a mode event is enabled at the same moment, in which case preemption takes place.)

�

For the remaining results, the arguments are, as in the previous result, just combinations of earlier argu-

ments so the sketch proofs are omitted.

Proposition 18.9 (PliEv/INV/MOD.PI-BDA/DE). Let x stand for any of u, i?, l,o! as appropriate. Let

the invariants I of a machine with pliant event PliEv contain a proto-invariant MOD.PI. Then PliEv

maintains MOD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll ||| BDA DE ;;;-}}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.4, and

3. condition 3 of Proposition 18.3 holds, and

4. condition 3 of Proposition 18.5 holds.

49

Proposition 18.10 (PliEv/INV/CAD.PI-BDA/DA). Let x stand for any of u, i?, l,o! as appropriate. Let

the invariants I of a machine with pliant event PliEv contain a proto-invariant CAD.PI. Let CAD.IPI ⊆
CAD.PI be an internal proto-invariant for CAD.PI. Then PliEv maintains CAD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll ||| BDA -;;; DA }}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.5, and

3. condition 3 of Proposition 18.2 holds, and

4. condition 3 of Proposition 18.6 holds.

Proposition 18.11 (PliEv/INV/MOD.PI-BDA/DA). Let x stand for any of u, i?, l,o! as appropriate. Let

the invariants I of a machine with pliant event PliEv contain a proto-invariant MOD.PI. Then PliEv

maintains MOD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll ||| BDA -;;; DA }}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.5, and

3. condition 3 of Proposition 18.3 holds, and

4. condition 3 of Proposition 18.7 holds.

Proposition 18.12 (PliEv/INV/CAD.PI-DE/DA). Let x stand for any of u, i?, l,o! as appropriate. Let

the invariants I of a machine with pliant event PliEv contain a proto-invariant CAD.PI. Let CAD.IPI ⊆
CAD.PI be an internal proto-invariant for CAD.PI. Then PliEv maintains CAD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll |||- DE ;;; DA }}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.6, and

3. conditions 4-6 of Proposition 18.4 hold, and

4. condition 3 of Proposition 18.6 holds.

Proposition 18.13 (PliEv/INV/MOD.PI-DE/DA). Let x stand for any of u, i?, l,o! as appropriate. Let

the invariants I of a machine with pliant event PliEv contain a proto-invariant MOD.PI. Then PliEv

maintains MOD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll |||- DE ;;; DA }}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.6, and

3. condition 3 of Proposition 18.5 holds, and

4. condition 3 of Proposition 18.7 holds.

Proposition 18.14 (PliEv/INV/CAD.PI-BDA/DE/DA). Let x stand for any of u, i?, l,o! as appropri-

ate. Let the invariants I of a machine with pliant event PliEv contain a proto-invariant CAD.PI. Let

CAD.IPI ⊆CAD.PI be an internal proto-invariant for CAD.PI. Then PliEv maintains CAD.PI if:

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll ||| BDA DE ;;; DA }}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.7, and

3. condition 3 of Proposition 18.2 holds, and

4. conditions 4-6 of Proposition 18.4 hold, and

5. condition 3 of Proposition 18.6 holds.

Proposition 18.15 (PliEv/INV/MOD.PI-BDA/DE/DA). Let x stand for any of u, i?, l,o! as appropriate.

Let the invariants I of a machine with pliant event PliEv contain a proto-invariant MOD.PI. Then PliEv

maintains MOD.PI if:

50

PliEvC

PliEv/FISC

PliEv/INVC

PliEvC SOUND

PliEvA

PliEv/FISA

PliEv/INVA

PliEvA SOUND

PliEvC

PliEv/FISR

PliEvC PliEvA

PliEv/GRDR

PliEv/INVR

PliEvC REFINES PliEvA

Figure 12: Schematic pliant event refinement verification.

1. PliEv-⊛ : {{{{{{ iv∧ ivB/DA ;;; grd ||| ll ||| BDA DE ;;; DA }}}}}}, and

2. PliEv-⊛ satisfies the feasibility criteria of Proposition 16.7, and

3. condition 3 of Proposition 18.3 holds, and

4. condition 3 of Proposition 18.5 holds, and

5. condition 3 of Proposition 18.7 holds.

Part 8 — Pliant POs: Refinement

19. Pliant Event Refinement Verification

While the procedure for proving that an event of an individual machine is correct is relatively straight-

forward in principle —one proves that the event is feasible, and then proves that its possible behaviours

preserve the invariants— the procedure for proving that an event refinement is correct is a little more

complicated. Fig. 12 indicates what is involved in a sequent style, the bold items highlighting steps

involving pliant behaviour that are yet to be discussed in detail.

Suppose we wish to prove that PliEvC refines PliEvA. On the left of Fig. 12 are two branches that

prove the soundness of PliEvC and PliEvA on their own terms. Presuming the soundness of PliEvC

and PliEvA, the refinement is the concern of the right subtree. First, we strengthen PliEv/FISC to get

PliEv/FISR, as insisting that the intial state w(tL) of PliEvC is suitably connected to an abstract state

(over and above what is demanded in PliEv/FISC) could conceivably render it infeasible. Alongside,

we rely on the soundness of PliEvC and PliEvA to confirm that the guards of PliEvC, when mapped

through the joint invariant K, always fall within the guards of PliEvA, giving PliEv/GRDR. Once all this

is known, the simulation PO, PliEv/INVR, can be addressed, showing that each transition of PliEvC can

be simulated by one of PliEvA. In particular, the truth of PliEv/FISR and PliEv/GRDR ensure that there

is no need to address feasibility or enabledness of the desired PliEvA transition within PliEv/INVR itself.

20. Pliant Event Feasibility Under Refinement, PliEv/FISR

The feasibility PO for pliant events under refinement, reproduced from Fig. 8 is:

PliEv/FISR:

(∃u(tL)• I(u(tL))∧K(u(tL),w(tL))∧ ivPliEvC(w(tL))∧grdPliEvC(w(tL))

⇒ (∃tR > tL • [[[(tR−tL ≥ δZenoPliEvC)∧]]] (∀tL < t < tR • (∃w(t), j?(t),k(t), p!(t) •

BDApredPliEvC(w(t), j?(t),k(t), p!(t), t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t), t))))) (24)

We see that the only material difference between (21) and (24) is the presence of the extra assumption

about the abstract variables at time tL in (24). Therefore, aside from modifying hypothesis 2 in the

propositions of Section 16 to include I and K suitably, we regard this PO as covered by Section 16.

51

21. Formal Reasoning about Hybrid Event-B: Joint Invariants

Just as for machine invariants, we focus on proto-invariants as the key ingredients of joint invariants.

Definition 21.1 (Regular Relation). Let R⊆ X×Z be a relation. Then R is a regular relation iff any of

the following equivalent conditions holds:

1. R = R o
9 RT o

9 R.

2. ∀x,x′ ∈ X • R(x,_)∩R(x′,_) 6=∅⇒ R(x,_) = R(x′,_)
(and a corresponding result involving R(_ ,z) and R(_ ,z′)).

3. ∃Y , f : X 7։Y ,g : Z 7։Y • R = f o
9 g−1.

4. ∃ a bijection ≈ between equipollent partitions of dom R and ran R • R(x,z)⇔ [x]≈ [z].

where _T is relational transpose, R(x,_) = {z | R(x,z)}, R(_,z) = RT(z,_), 7։ denotes a partial onto

function, o
9 is (forward) relational composition, and [y] is the equivalence class of y in the relevant

partition.

A regular relation R is primitive iff R = domR× ranR (i.e. R is universal from its domain to its

range).

The claimed equivalences are easily shown. Regular relations are so useful because they subsume func-

tions, partial or not, inverse or not, as well as the more general cases. Especially because of their connec-

tion with functions and their inverses, they arise with great frequency in the refinement of specifications

[99, 98, 14, 13], though the fact is not hugely appreciated.

Lemma 21.2. Each regular relation R can be uniquely decomposed as a (disjoint) union of primitive

regular relations:

R≡
⋃

ix∈IX

Rix (25)

where IX is a suitable indexing set.

Proof: It is sufficient to identify the Rix subrelations of R with primitive regular relations formed from

the cartesian products of the equivalence classes of domR and ranR that are paired by the bijection ≈ in

Definition 21.1.4. Disjointness and uniqueness are relatively straightforward. �

A proto-invariant which is a regular relation between appropriate components of the abstract and concrete

spaces X and Z of a Hybrid Event-B refinement will be referred to as an RR.PI, provided it satisfies

suitable regularity conditions, similar to the definitions in Section 6. Specifically, we have the following.

Definition 21.3 (RR.PI). Let R : X↔ Z be a regular relation. Let XR≡ domR and ZR ≡ ran R. Then R

is an RR.PI iff, for suitable n,m,k:

1. XR is a CAD subset of the real subspace of Cn;

2. ZR is a CAD subset of the real subspace of Cm;

3. ∃ f̃ : Cn 7→Ck which: is holomorphic and of constant (complex) rank k ≤ n in an open neighbour-

hood of XR, is real on the real subspace of Cn, the graph of f̃ |XR
is a CAD subset of Rn×Rk, and

f ≡ f̃ |XR;

4. ∃ g̃ : Cm 7→Ck which: is holomorphic and of constant (complex) rank k≤m in an open neighbour-

hood of ZR, is real on the real subspace of Cm, the graph of g̃ |ZR
is a CAD subset of Rm×Rk, and

g≡ g̃ |ZR;

5. f̃ [X] = g̃[Z], and R arises as f o
9 g−1, as in Definition 21.1.3.

52

We note some redundancy in Definition 21.3. Since the domain and range of a function are exis-

tentially quantified over its graph, the facts that XR and ZR are CAD, follow from points 3 and 4. We

will similarly assume below that any further properties required of an RR.PI R are available in com-

putable form via the CAD nature of the graphs of f and g, including the representation of R using

R(x,z)≡ (∃y • fgr(x,y)∧ggr(z,y)), where fgr and ggr are the graphs of f and g. In the sequel, we will as-

sume that the notations and conventions of Definitions 21.1 and 21.3 (in particular, the dimensionalities

of the domains and ranges of f and g) are adopted by default.

RR.PIs are the only PIs we consider for the role of joint invariant in this paper. Although other kinds

of invariant may be justifiably viewed as interesting in the pliant event refinement context —such as ones

denoting approximate relationships of various kinds between abstract and concrete states— these often

do not behave well vis à vis the refinement notion in (26), at least not without significant and detailed

system-specific help (for example, regarding stability and/or contracting properties of the dynamics). For

the sake of economy, we do not treat them in this paper, but leave their consideration for future work.

Lemma 21.4 (Trajectory Lifting). Let R : X↔ Z ≡ f o
9 g−1 be an RR.PI. Let ΠC : [tL,tR)→ ZR be a

PHSm[tL,tR) function and let R(x0,z0) hold, where z0 = ΠC(tL). Then there is a PHSn[tL,tR) function

ΠA : [tL,tR)→ XR, such that x0 = ΠA(tL) and for all t ∈ [tL,tR), we have R(ΠA(t),ΠC(t)). If n = k then

ΠA is unique. If n > k then there is a family of different functions ΠA satisfying the claimed properties.

Similarly, when the roles of ΠC and ΠA are reversed.

Proof: Consider χ = g ◦ΠC. Since it is a composition of holomorphic functions, it is a PHSk[tL,tR)
function. Since f is holomorphic, is of constant rank, and is onto its range, it is a submersion of XR, and

by the implicit function theorem, is a projection map, which thus foliates XR [90, 131, 61, 55]. Let XRx0

be the leaf containing x0.

For any t ∈ [tL,tR), consider f−1(g◦ΠC(t)). If n = k, it is a singleton set (because f is injective),

and we can take ΠA(t) to be given by the single point it contains. This gives a unique ΠA, and the

required holomorphy properties follow easily. If n > k, then there will be a local coordinate system for

the fiber f−1(g ◦ΠC(t)), which extends to a local coordinate system for XR at XRx0
∩ f−1(g ◦ΠC(t)),

made by adding coordinates in the leaf XRx0
to the fiber coordinates. We can then choose ΠA so that its

leaf coordinates remain within the leaf XRx0
, and its fiber coordinates vary arbitrarily within the fibers,

provided the variation remains holomorphic and real on real coordinates. The required holomorphy

properties again follow easily and the reverse result follows easily too. �

Corollary 21.5. Lemma 21.4 applies also to FPHSm[tL,tR) functions.

Proof: We need merely to repeat the construction for each succeeding holomorphic piece of ΠC, choosing

for each such piece, the initial value in XR arbitrarily in the fiber above its initial value in ZR, including

the option of making ΠA stay in the same leaf. �

The pliant event refinement PO (26) requires us to exhibit an abstract pliant transition corresponding

to a given concrete one, satisfying a simulation property based on a joint invariant K. The fact that

primitive (i.e. universal) relations are regular, and that products, intersections and disjoint unions of

regular relations are regular, helps considerably in ensuring that an analysis based on RR.PIs extends to

a useful wider class of joint invariants. The main tool for achieving the analysis will be the trajectory

lifting lemma (and the details in its proof). Consistent with Notation 1.1, we do not distinguish between

regular relations as (set theoretic) relations, and their definitions using logical expressions — so universal

relations are left unstated or are true, and products and intersections are given by conjunctions.

53

22. Pliant Event Invariant Preservation Under Refinement, PliEv/INVR

The invariant preservation PO for pliant events under refinement, reproduced from Fig. 8 is:

PliEv/INVR:

I(u(tL))∧K(u(tL),w(tL))∧ ivPliEvC(w(tL))∧grdPliEvC(w(tL)) ⇒
(((

∃tR > tL • TRM(tR)∧ (∀tL < t < tR,w(t), j?(t),k(t), p!(t) •

BDApredPliEvC(w(t), j?(t),k(t), p!(t), t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t), t))

⇒ (∀tL < t < tR • (∃u(t), i?(t), l(t),o!(t) •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t), t)∧

K(u(t),w(t))))
)))

(26)

In Section 16 we considered feasibility in detail, taking the various mechanisms available to define a

pliant event, BDA, DE, DA, into account. Examining all non-empty combinations of these led to seven

results. In Section 18 we considered invariant preservation in detail. Taking the two kinds of machine

proto-invariant plus the pliant event mechanisms into account, doubled the number of results, some being

covered quite briefly.

In the case of pliant event refinement, there are two pliant events in play, an abstract one and a con-

crete one, thus forty nine mechanism combinations to consider, even when there is only one kind of

refinement proto-invariant. Since we observed in Section 18 that the more complex mechanism combi-

nations were covered by merely conjoining the conditions pertinent to the individual mechanisms inside

them, in this section, we take a similar approach to the complex cases, but without explicitly listing all the

results regarding these conjunction-generated cases. Thus, the number of explicit results in this section

reduces to a more manageable nine: one for each combination of a single abstract mechanism with a sin-

gle concrete mechanism. We reduce our work further by noting that certain combinations, ones refining

a more precise mechanism to a less precise one, e.g. DA refined to BDA, make little practical sense, so

we do not treat them in detail. We also combine the four DE/DA cases into one result, including (because

these mechanisms interact closely via the EV graph) the further cases that arise when both mechanisms

are present in either machine.

Definition 22.1 (Syntactic and Semantic Refinement). In the context of an abstract machine MA con-

taining PliEvA and a concrete machine MC containing PliEvC, the phrase ‘PliEvC is a syntactic refine-

ment of PliEvA’ means that MC declares that PliEvC refines PliEvA. In the same context, the phrase

‘PliEvC is a semantic refinement of PliEvA via RR.PI’ means that the PO (26), with K instantiated to

RR.PI, and with suitable initial values, is, in fact, provable.17

Proposition 22.2 (PliEv/INVR/RR.PI-BDA›BDA). Let x stand for any of u, i?, l,o! as appropriate, the

variables of an abstract pliant event PliEvA. Let z stand for any of w, j?,k, p! as appropriate, the variables

of a concrete pliant event PliEvC. Let PliEvC be a syntactic refinement of PliEvA. Let the joint invariants

of the refinement contain an RR.PI proto-invariant R :X↔Z. Suppose I(u(tL))∧R(u(tL),w(tL)) holds.

Then PliEvC is a semantic refinement of PliEvA via RR.PI if:

1. PliEvA-⊛ : {{{{{{ ivA ;;; grdA ||| i?, l,o! ||| BDAA -;;;-}}}}}},
PliEvC-⊛ : {{{{{{ ivC ;;; grdC ||| j?,k, p! ||| BDAC -;;;-}}}}}}, and

2. PliEvA-⊛ satisfies the feasibility criteria of Proposition 16.1, and

17This implies that if the actual joint invariant K between the two machines is a more complex expression than just RR.PI

alone, then, at minimum, all occurrences of RR.PI in K are positive, i.e. they are under an even number of negations.

54

3. PliEvC-⊛ satisfies the feasibility criteria of Proposition 16.1 and Section 20, and

4. (∀z•BDAC∧R⇒ BDAA), and (alternatively)

5. if BDAA contains CAD constraints CADA, then

(a) BDAC contains CAD constraints CADC, and (∀z•CADC∧R⇒ CADA), or

(b) BDAC contains MOD constraints MODC, and

(∀∀∀x• if x is needed to satisfy the hypotheses of any of clauses i-iii below, then CADA can be

written as CADAx∧CADAx where CADAx contains all occurrences of x in CADA and CADAx

contains no occurrences of x, and

i. if CADAx bounds x above, then the MOD constraints MODC contain PLENV(U) or

(U)BND constraints which, conjoined with R (as in 4), are sufficient to prove the CADAx

bound on x, and

ii. if CADAx bounds x below, then the MOD constraints MODC contain PLENV(L) or

(L)BND constraints which, conjoined with R (as in 4), are sufficient to prove the CADAx

bound on x, and

iii. if MODC contains a PLENV(U) or PLENV(L) or other MOD constraint for which there

exists tINF , where tINF is the infimum of all times at which the MOD constraint, conjoined

with R (as in 4), becomes inconsistent with CADAx and tINF > tL, then there is a TIME

constraint TIMEC that forces infeasibility at tTIMEC
≤ tINF), and

6. if BDAA contains MOD constraints MODA, then BDAC contains MOD constraints MODC which,

conjoined with R (as in 4), are sufficient to prove MODA, and

7. if BDAA contains TIME constraint TIMEA, then BDAC contains TIME constraint TIMEC or MOD

constraint MODC that forces infeasibility no later than TIMEA does.

Clause 4 of this proposition states the obvious, in demanding that BDAC, mapped through the joint

invariant R, satisfies BDAA. The clauses that follow are all special cases of clause 4, structured to follow

the form of results in Section 18. Specifically, in Section 18 we had non-trivial invariants, and non-

trivial specifications of behaviour that had to conform to them. Here, the earlier non-trivial invariants are

replaced by the abstract behaviour specifications, and the earlier non-trivial behaviours are replaced by

concrete behaviour specifications that are mapped through R.

Proof: Let ΠC be a feasible concrete pliant transition with its intial state w(tL) RR.PI-related to an

abstract state u(tL) which satisfies the abstract invariant I. We apply the Lifting Lemma 21.4 to get

an abstract pliant transition ΠA. We will assume that ΠA stays within the leaf containing u(tL). It is

immediate from the lemma that RR.PI is satisfied throughout the duration of ΠA, so it remains to check,

across the cases, that if the assumed behavioural specification holds for ΠC, then the corresponding

required behavioural specification holds for ΠA.

It is now evident that case 5 supports an argument based on the proof of Proposition 18.2; that case 6

supports an argument based on the proof of Proposition 18.3; and that case 7 discharges the PO correctly

too (since the semantics of PaperI permits a concrete execution to terminate sooner than the abstract

execution it refines). �

In the rest of this section, the difunctional form R ≡ f o
9 g−1 of an RR.PI enables us to use properties

involving the middle space Y.

Proposition 22.3 (PliEv/INVR/RR.PI-BDA›DA). Let x stand for any of u, i?, l,o! as appropriate, the

variables of an abstract pliant event PliEvA. Let z stand for any of w, j?,k, p! as appropriate, the variables

of a concrete pliant event PliEvC. Let PliEvC be a syntactic refinement of PliEvA. Let the joint invariants

of the refinement contain an RR.PI proto-invariant R : X↔ Z ≡ f o
9 g−1, where the ranges of f and g

are in Y ∋ y. Referring to item 1 below, let Ey ≡ g ◦E, and let DAy ≡ y := Ey. Suppose I(u(tL))∧
R(u(tL),w(tL)) holds. Then PliEvC is a semantic refinement of PliEvA via RR.PI if:

55

1. PliEvA-⊛ : {{{{{{ ivA ;;; grdA ||| i?, l,o! ||| BDA -;;;-}}}}}},
PliEvC-⊛ : {{{{{{ ivC ;;; grdC ||| j?,k, p! |||- -;;; DA≡ z := E }}}}}}, and

2. PliEvA-⊛ satisfies the feasibility criteria of Proposition 16.1, and

3. PliEvC-⊛ satisfies the feasibility criteria of Proposition 16.2 and Section 20, and

4. if BDAA contains CAD constraints CAD, letting CADy ≡ (∃x •CAD∧ f), then the conditions of

Proposition 18.6 hold, with CADy, Ey and DAy playing the roles of CAD.PI, E and DA respectively

in the Proposition, and

5. if BDA contains MOD constraints MOD, then

(∀∀∀x• if MOD is any of the following forms, then the associated conditions apply (with substitution

of Ey for E where relevant in the cited Propositions):

(a) CONTINUOUS(x):
Proposition 14.1.2.(c) applied to DA, so that it satisfies CONTINUOUS(z),

(b) n-DIFFERENTIABLE(x):
Proposition 14.2.2.(c) applied to DA, so that it satisfies n-DIFFERENTIABLE(z),

(c) PLENVL(x, lb) or PLENVU(x,ub) or PLENV(x, lb,ub):
provided f and g are both monotonically increasing, either or both of Proposition 14.3.2.(b),

as applicable, applied to DA, so that it satisfies

PLENVL(z,R[lb]) or PLENVU(z,R[lb]) or PLENV(z,R[lb],R[lb]) respectively,

(d) LBND(x,EL) or UBND(x,EU) or BND(x,EL,EU):
provided f and g are both monotonically increasing, either or both of Proposition 14.4.2.(b),

as applicable, applied to DA, so that it satisfies

LBND(z,R[EL]) or UBND(z,R[EU]) or BND(z,R[EL],R[EU]) respectively,

(e) MONINC(x) or MONDEC(x):
provided f and g are both monotonically increasing, Proposition 14.5.2.(b), as applicable,

applied to DA, so that it satisfies MONINC(z) or MONDEC(z) respectively,

(f) CVEX(x) or CCAVE(x):
provided g is monotonically increasing,

i. for CVEX(x): [either f−1 is convex, or f is decreasing, invertible and convex] and

Proposition 14.5.2.(b), as applicable, applied to DA, so that it satisfies MONINC(z),
ii. for CCAVE(x): [either f−1 is concave, or f is increasing, invertible and convex] and

Proposition 14.5.2.(b), as applicable, applied to DA, so that it satisfies MONINC(z)).

Proof: Let ΠC be a DA trajectory. As earlier, let y = g◦ΠC lift ΠC to Y. Let u(tL) be the abstract state

corresponding to ΠC(tL) in the hypotheses of (26).

For case 4, adherence to a CAD constraint hinges on containment (of a trajectory within the CAD

set). Now, set containment is preserved by both image and inverse image through a function. So, if y

remains within CADy, then the further lift of y via f−1 to a trajectory within the leaf containing u(tL)
will remain within f−1(CADy) = CAD, as required.

For case 5, compliance with a MOD constraint hinges on verifying generic properties of trajectories.

These are typically preserved through holomorphic maps, with the addition of some further assumptions

at times. For 5.(a),(b), n-differentiability (including n = 0) follows from the facts that ΠC is holomorphic,

g is holomorphic, f−1 within the leaf containing u(tL) is holomorphic, and the relevant propositions take

care of any join points.

For the remaining cases, the caveats and assumptions of Section 14.2 regarding the interpretation of

≤,≥ according to the formulation in Section 12.3 apply.

For 5.(c),(d), If z≥ zlb for all zlb ∈ g−1(f (lb)), then g(z)≥ f (lb) since g is monotonic. Consequently,

if f (x) = g(z), then x ≥ lb since f is monotonic and inverse image maintains non-strict monotonicity

(provided ‘equal cases are suitable ordered’). Thus PLENVL(x, lb) follows for x in the leaf containing

56

u(tL) if all z visited in ΠC satisfy z ≥ zlb for all zlb ∈ g−1(f (lb)), i.e. PLENVL(z,R[lb])). The other

results are analogous.

For 5.(e), the preceding argument may be readily adapted to the increase (or decrease) over time,

rather than the maintenance of a bound.

For 5.(f).i, if f−1 is convex and g is monotonically increasing, then f−1 ◦ g is evidently convex

on arguments that increase over time within the leaf containing u(tL). Alternatively, if f is decreasing,

invertible and convex, then f−1 is convex [101], so precomposing with monotonically increasing g yields

f−1 ◦g which is again convex on arguments that increase over time within the leaf containing u(tL). The

proposition adds conditions that take care of join points. For 5.(f).ii, the reasoning is dual. �

We note that 5.(f).i/ii above indicate only a small selection of results that can be obtained by consid-

ering combinations of in/dec-rease, (non-)invertibility, convex/concav-ity, etc. for both f and g — we

regard such further results as of less interest. We note further that we cannot exploit the conditions in

Proposition 14.6.2.(b) directly (i.e. without additional guarantees), since, even if f−1 ◦g is increasing, its

rate of increase may be too low to maintain the convexity of a ΠC assured convex using the Proposition.

In the results below, the notation J
y
z = ∂g/∂z denotes the Jacobian of partial derivatives of the com-

ponents of the range of g (held in vector y) with respect to the components of the domain of g (held in

vector z); see Section 12.2.

Proposition 22.4 (PliEv/INVR/RR.PI-BDA›DE). Let x stand for any of u, i?, l,o! as appropriate, the

variables of an abstract pliant event PliEvA. Let z stand for any of w, j?,k, p! as appropriate, the variables

of an concrete pliant event PliEvC. Let PliEvC be a syntactic refinement of PliEvA. Let the joint invariants

of the refinement contain an RR.PI proto-invariant R : X↔ Z≡ f o
9 g−1, where the ranges of f and g are

in Y ∋ y. Let J
y
z = ∂g/∂z be the Jacobian matrix of g, and, referring to item 1 below, let φy ≡ (∃z•J

y
z ∧φ),

and let DEy≡Dy= φy. Suppose I(u(tL))∧R(u(tL),w(tL)) holds. Then PliEvC is a semantic refinement

of PliEvA via RR.PI if:

1. PliEvA-⊛ : {{{{{{ ivA ;;; grdA ||| i?, l,o! ||| BDA -;;;-}}}}}},
PliEvC-⊛ : {{{{{{ ivC ;;; grdC ||| j?,k, p! |||- DE ≡Dz = φ ;;;-}}}}}}, and

2. PliEvA-⊛ satisfies the feasibility criteria of Proposition 16.1, and

3. PliEvC-⊛ satisfies the feasibility criteria of Proposition 16.2 and Section 20, and

4. if BDA contains CAD constraints CAD, letting CADy be given by (∃x•CAD∧ f), then the condi-

tions of Proposition 18.4 hold, with CADy and DEy playing the role of CAD.PI and DE respectively

in the Proposition, and

5. if BDA contains MOD constraints MOD, then

(∀∀∀x• if MOD is any of the following forms, then the associated conditions apply:

(a) CONTINUOUS(x):
Proposition 14.1.2.(b), applied to DE, so that its integral curve satisfies CONTINUOUS(z),

(b) n-DIFFERENTIABLE(x):
Proposition 14.2.2.(b), applied to DE, so that its integral curve satisfies n-DIFFERENTIABLE(z),

(c) PLENVL(x, lb) or PLENVU(x,ub) or PLENV(x, lb,ub):
provided f and g are both monotonically increasing, either or both of Proposition 14.3.2.(b),

as applicable, applied to DE, so that its integral curve satisfies

PLENVL(z,R[lb]) or PLENVU(z,R[ub]) or PLENV(z,R[lb],R[ub]) respectively,

(d) LBND(x,EL) or UBND(x,EU) or BND(x,EL,EU):
provided f and g are both monotonically increasing, either or both of Proposition 14.4.2.(b),

as applicable, applied to DE, so that its integral curve satisfies

LBND(z,R[EL]) or UBND(z,R[EU]) or BND(z,R[EL],R[EU]) respectively,

57

(e) MONINC(x) or MONDEC(x): provided f and g are both monotonically increasing, Proposi-

tion 14.5.2.(b), as applicable, applied to DE, so that its integral curve satisfies MONINC(z)
or MONDEC(z) respectively,

(f) CVEX(x) or CCAVE(x):
provided g is monotonically increasing,

i. for CVEX(x): [either f−1 is convex, or f is decreasing, invertible and convex] and

Proposition 14.5.2.(b), as applicable, applied to DE, so that its integral curve satisfies

MONINC(z),
ii. for CCAVE(x): [either f−1 is concave, or f is increasing, invertible and convex] and

Proposition 14.5.2.(b), as applicable, applied to DE, so that its integral curve satisfies

MONINC(z)).

Proof: Let ΠC be an integral curve of DE. It satisfies Dz = φ. As earlier, let g◦ΠC lift ΠC to Y. Then

g(ΠC) will satisfy Dy = J
y
z ◦φ = φy.

For case 4, if g(ΠC) satisfies the CAD constraints CADy, and u(tL) is the abstract state corresponding

to ΠC(tL) in the hypotheses of (26), then the further lifting of g(ΠC) via f−1 to the leaf containing u(tL)
will satisfy the CAD constraints CAD of BDA. The proposition supplies conditions under which g(ΠC)
satisfies CADy.

For case 5, as before, compliance with a MOD constraint hinges on verifying generic properties,

with the addition of further assumptions where needed. For 5.(a),(b), re. n-differentiability (including

n = 0), it follows that if ΠC is n-DIFFERENTIABLE, then the holomorphy of g and f−1 within the leaf

containing u(tL) ensure the required property, and the stated conditions ensure n-differentiability of ΠC

as well as taking care of any join points.

For the remaining cases, the caveats and assumptions of Section 14.2 regarding the interpretation of

≤,≥ according to the formulation in Section 12.3 apply.

For 5.(c),(d), the argument is as in Proposition 22.3, with the cited proposition supplying sufficient

conditions, and for those, the zeros of φ−Dlb identify the needed non-join-point stationary points. The

other results are analogous.

For 5.(e), the preceding argument may be readily adapted to the increase (or decrease) over time,

rather than the maintenance of a bound.

For 5.(f), the reasoning is similar to the corresponding case in Proposition 22.3. �

Proposition 22.5 (PliEv/INVR/RR.PI-DA›BDA). This would refine a behaviour specified by a direct

assignment to a behaviour specified by CAD or PM or TIME constraints, which are usually employed

for more loosely defined behaviours, so is not of great practical interest. (In any case, aside from the

direction of the central implication, it can be viewed as symmetric to Proposition 22.3).

Proposition 22.6 (PliEv/INVR/RR.PI-DE›BDA). This would refine a behaviour specified by a differ-

ential equation to a behaviour specified by CAD or PM or TIME constraints, which are usually employed

for more loosely defined behaviours, so is not of great practical interest. (In any case, aside from the di-

rection of the central implication, it can be viewed as symmetric to Proposition 22.4).

Proposition 22.7 (PliEv/INVR/RR.PI-DE/DA›DE/DA). Let x, partitioned into xDE,xDA, stand for any

of u, i?, l,o! as appropriate, the variables of an abstract pliant event PliEvA. Let z, partitioned into

zDE,zDA, stand for any of w, j?,k, p! as appropriate, the variables of a concrete pliant event PliEvC. Let

PliEvC be a syntactic refinement of PliEvA. Let the joint invariants of the refinement contain an RR.PI

proto-invariant R : X↔ Z ≡ f o
9 g−1, where the ranges of f and g are in Y ∋ y. Let J

y
z = ∂g/∂z be the

Jacobian matrix of g, and, referring to item 1 below, let EC,y≡ (∃z•J
y
z ∧dEC/dt), let φC,y ≡ (∃z•J

y
z ∧φC),

and let DEC,y ≡Dy = EC,y +φC,y. Let J
y
x = ∂ f/∂x be the Jacobian matrix of f , and, referring to item 1

58

below, let EA,y ≡ (∃z•J
y
x ∧dEA/dt), let φA,y ≡ (∃x•J

y
x ∧φA), and let DEA,y ≡Dy = EA,y+φA,y. Suppose

I(u(tL))∧R(u(tL),w(tL)) holds. Then PliEvC is a semantic refinement of PliEvA via RR.PI if:

1. PliEvA-⊛ : {{{{{{ ivA ;;; grdA ||| i?,-,o! |||- DEA ≡DxDE = φA ;;; DAA ≡ xDA := EA }}}}}},
PliEvC-⊛ : {{{{{{ ivC ;;; grdC ||| j?,-, p! |||- DEC ≡DzDE = φC ;;; DAC ≡ zDA := EC }}}}}}, and

2. PliEvA-⊛ satisfies the feasibility criteria of Proposition 16.1, and

3. PliEvC-⊛ satisfies the feasibility criteria of Proposition 16.2 and Section 20, and

4. for every choice of j?, there is an i?, both ranging over [tL . . .tR), such that:

DEA,y ≡Dy = EA,y +φA,y = EC,y +φC,y = Dy≡ DEC,y .

Proof: Let ΠC be a solution to PliEvC-⊛ consisting of a directly assigned trajectory for zDA and an

integral curve for zDE. Let ΠA refer to the corresponding solution to PliEvA-⊛, desired according to (26),

and already given by DEA and DAA. The given ΠC will be a refinement of the given ΠA if f maps ΠA

to the same thing to which g maps ΠC. Since both abstract and concrete behaviours are deterministic

once the functions i? and j? have been chosen to satisfy the stated criteria, the desired equality can be

established by considering either the solution in Y itself, or the differential equation that it satisfies. Since

differentiation is more readily done than integration, we opt for the latter. The ODE satisfied by mapping

the desired ΠA via f is DEA,y, while the ODE satisfied by mapping the given ΠC via g is DEC,y. If the

right hand sides of these two ODEs are the same, then the fact that R(u(tL),w(tL)) holds means that

f (u(tL)) = g(w(tL)), i.e. both ODEs also have the same initial values, from which the result follows by

the uniqueness of solutions to ODEs that have the Lipschitz property. �

23. Formal Reasoning about Hybrid Event-B: POs with Witnesses

The POs for feasibility and invariant preservation under refinement, incorporating witness relations,

reproduced from Fig. 8 are:

PliEv/FISRW

I(u(tL))∧K(u(tL),w(tL))∧ ivPliEvC(w(tL))∧grdPliEvC(w(tL)) ⇒
(((

∃tR > tL • TRM(tR)∧ (∀tL < t < tR,w(t), j?(t),k(t), p!(t) •

BDApredPliEvC(w(t), j?(t),k(t), p!(t), t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t), t))

⇒ (∀tL < t < tR • (∃u(t), i?(t), l(t),o!(t)•W (u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t), p!(t))))
)))

(27)

PliEv/INVRW

I(u(tL))∧K(u(tL),w(tL))∧ ivPliEvC(w(tL))∧grdPliEvC(w(tL)) ⇒
(((

∃tR > tL • TRM(tR)∧ (∀tL < t < tR,w(t), j?(t),k(t), p!(t) •

BDApredPliEvC(w(t), j?(t),k(t), p!(t), t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t), t)∧

W (u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t), p!(t)))

⇒ (∀tL < t < tR •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t), t)∧

K(u(t),w(t))
)))

(28)

For (27), it is clear that if we already have PliEv/FISR (which is presumed for the conventional purpose

for which such witnesses are used in Event-B), then we can assume the hypotheses of both implications,

after which the PO reduces to showing that W, assumed provided already, (and depending, of course,

on the pliant abstract and concrete event pair in question), holds over the required interval. Given the

59

structure of (27), this amounts to checking that the trajectory defined by BDApredPliEvC ∧ SOLPliEvC

remains within the range of W (when W is regarded as a relation from abstract to concrete spaces). This

resembles an invariant preservation check for the BDApredPliEvC∧SOLPliEvC trajectory, except that it can

depend on time, and more variables (abstract and concrete ones) are involved. Given that perspective,

we regard verification of (27) as subsumed by our earlier work.

If we know that (27) holds, then (28) can be viewed as another analogue of a time dependent invariant

preservation check, except that this time W plays the role of trajectory, and BDApredPliEvA∧SOLPliEvA∧K

is the time dependent invariant.

We note that the structure of (28) resembles that of the propositions in Section 22, even if the visual

appearance of the two things does not obviously suggest it. In the propositions of Section 22, various

properties are hypothesised among the case analyses of the listed propositions. Pulling apart all these

case analyses to generate individual results, would reveal implications with the structure of (28), with

the various properties mentioned, playing the role of candidate W. We can thus conclude that, since the

the properties mentioned are sufficient to prove the propositions, they provide cases that are sufficient

to instantiate W (i.e., they are ‘witnesses for W witnesses’). The converse does not hold. In (28), W is

defined as a generic sufficient condition. In particular, there is no need for W to specify a regular relation.

So there is no necessity for an arbitrary W , that is sufficient for (28), to fall into one of the cases in the

propositions of Section 22.

The above not withstanding, we note that the above covers only witnesses for the joint invariant of a

claimed refinement, and the discharge of the existential quantifiers involved. But proof in Hybrid Event-

B involves many instances of existential quantification. We observe that in all of those cases, a similar

approach could be taken, introducing a ‘W-like witness’ in the hypotheses of the relevant implication,

as happens in (28). This observation has particular force for Hybrid Event-B, much more so than for

discrete Event-B, since existential witnesses that have non-empty duration (as opposed to witnesses that

just assert the existence of a single value) are typically needed. Were this observation to be pursued more

seriously, the approach just discussed for joint invariant witnesses could be replicated mutatis mutandis.

Part 9 — Case Study, Boundary Cases, Related Work, Conclusions

24. Revisiting the Example

In this section we revisit the small case study of Section 3 (Figs. 3-5) from the perspective of the

preceding material. Since most of the case study uses mode events, and their POs are dealt with in the

usual calculational way, we can be relatively brief.

One thing missing from Section 3 is mention of any CONTEXT. In a real development this would be

needed to list the attributes of all the constants and similar identifiers that appear in Figs. 3-5.

24.1. CruiseControl_0

If we look at machine CruiseControl_0, we see that INITIALISATION will trivially satisfy Init/FIS

and Init/INV. Beyond that, the only pliant event, PliTrue, merely states that the invariants are to be com-

plied with (in some unspecified manner), which creates no work for a verifier, so disposes of PliEv/FIS

and PliEv/INV. The mode events either skip and are thus trivial, or simply swap one choice of an element

from the finite set {OFF,ON} for the other, again trivial for a verifier, so we can say that the MoEv/FIS

and MoEv/INV instances are easily discharged.

This leaves MoPli/WFor and PliMo/WFor. We refer to Section 7. For MoPli/WFor, since all the

mode events are asynchronous, whenever one of them completes, the enabledness of any of them is

irrelevant, and PliTrue is always enabled anyway, thus satisfying the PO. For PliMo/WFor, since there

60

are no eager mode events, tReager in (3) is infinite, and so TR lazy is all of time after tL. Therefore, since

PliTrue can always execute for as long as needed, a tR value chosen to be any time strictly after tL

will do, and will satisfy MAXIMAL(tR). The non-satisfaction of guard disjunction prior to tR in the PO

hypotheses is irrelevant because lazy mode events do not contribute to the disjunction, and, once time

reaches the chosen tR, the guard disjunction in the PO conclusions ranges over all mode events, and is

thus trivially satisfied. So the PO holds.

24.2. CruiseControl_1

Machine CruiseControl_1 starts by mentioning some real constants: 0,Vmax,VCCmin,VCCmax. As

mentioned, these, their types, and the relationships between them, e.g. 0 < VCCmin < VCCmax < Vmax,

would be held in a suitable CONTEXT. The same applies to all the other constants needed.

24.2.1. The CruiseControl_1 Dynamics

Before turning to the POs and their verification, we review the dynamics informally, adding more

detail to the brief account in Section 3. The dynamics starts in the OFF mode, with the velocity variables

set arbitrarily within their ranges. PliDefault maintains this state of affairs until v satisfies the stronger

[VCCmin . . .VCCmax] constraint, at which point SwOn can execute, setting the mode to ON, and setting

setv to the current value of v. The Cruise event then runs, allowing v to vary smoothly (but not too

fast, since |Dv| is bounded), while maintaining the |v− setv| ≤ ∆Cruise constraint. Provided ∆Cruise ≤
min{VCCmin,Vmax−VCCmax} (which can be specified in the CONTEXT), this also maintains all the

invariants, including CONTINUOUS(v) (which follows directly from Proposition 14.1.1).

Since the mode is ON, from time to time TipUp and TipDown can execute, after which, Cruise must

resume (since it is the only pliant event that is enabled when the mode is ON). TipUp and TipDown

have been designed so that their assignments to setv maintain the [VCCmin . . .VCCmax] invariant on setv.

However there is no guarantee that these assignments maintain the |v−setv| ≤∆Cruise constraint of Cruise

(unless VCCmax−VCCmin itself is less than ∆Cruise). This is required because, as discussed in Section

13.3, according to the semantics of PaperI, when Cruise executes, the behaviour it imposes on v must

be right continuous at tL and must satisfy the BDApred constraint. In other words |v(tL)− setv(tL)| ≤
∆Cruise must hold, and the immediately preceding mode event must ensure this. If not, the execution

ABORTs.

Of course, it is easy enough to avoid the ABORT possibility, and at least four options suggest them-

selves. Option 1: We can alter the assigned values in TipUp and TipDown to min{VCCmax,setv +
TUD,v+∆Cruise} and max{VCCmin,setv− TUD,v−∆Cruise} respectively. Option 2: We can augment

the guards in both TipUp and TipDown to add |setv− v|+ TUD ≤ ∆Cruise, which ensures they only

execute when it is safe to do so. Option 3: We can try to incorporate |setv− v| ≤ ∆Cruise into an addi-

tional invariant. Since the value of setv is irrelevant in the OFF mode, the most suitable such invariant

would be mode = ON ⇒ |setv− v| ≤ ∆Cruise. However, while making the need for the additional prop-

erty explicit, this alone would not fix things without altering the mode events according to either of the

preceding options, since it is what they do that causes the property to fail. Option 4: We can make

Cruise itself more forgiving, e.g. by suitably incorporating in the BDApred clause a condition such as

|v− setv|> ∆Cruise⇒Dv = sgn(setv− v)∆MCA.18

18It is to be noted that such a condition in BDApred falls outside the limitations we have imposed on BDApred clauses in

this paper, despite the fact that it does the job required. The situation is easily remedied by splitting the Cruise event into

two: e.g., CruiseNormal and CruiseConverge. The former would be like the existing Cruise, but with an additional guard

|v− setv| ≤ ∆Cruise. The latter would have guard |v− setv| > ∆Cruise and would replace the COMPLY BDApred clause with

SOLVE Dv = sgn(setv−v)∆MCA. We omit the straightforward details.

61

Each option has its pros and cons. For Option 1, TipUp and TipDown might alter the acceleration

by less than what the user might be expecting. For Option 2, TipUp and TipDown might not execute

upon user demand, which is almost certain to surprise users. Option 3 has the same effect at user level

as the first two, but makes the requirement much clearer in the model. Option 4, with its more forgiving

approach to the violation of the stated property, might be seen as offering the best solution from the user

perspective. And, once Cruise is executing again, the above repeats indefinitely.

24.2.2. The CruiseControl_1 POs, Original Formulation

We now reexamine the above from the point of view of the POs, looking at the correctness of

CruiseControl_1, both as a machine in its own right, and —given that it is declared to be a syntactic

refinement of CruiseControl_0— whether it is also a semantic refinement of CruiseControl_0. We start

from the original formulation of Figs. 3-5, and discuss the optional enhancements later.

There is no declaration in CruiseControl_1 of an explicit joint invariant, but the abstract variables

are duplicated there, extended by further concrete variables, so the joint invariant is an inverse projection

from the abstract mode variable to the concrete (mode,v,setv) tuple: K ≡ (mode,(mode,v,setv)).
INITIALISATION easily satisfies Init/FIS and Init/INV, and since it is a simple extension of the

CruiseControl_0 INITIALISATION to additional variables, and the inverse projection K is total and onto,

it also trivially satisfies Init/FISR and Init/INVR.

PliDefault is like its abstraction PliTrue, hence readily satisfies PliEv/FIS and PliEv/INV. But it has

a stronger guard, and so, clearly satisfies PliEv/FISR, PliEv/GRDR and PliEv/INVR too.

There is also the Cruise event, a pliant event that gives a different refinement of PliTrue when the

strengthened guard of PliDefault does not hold. As noted above, without modification, we cannot guar-

antee |v(tL)− setv(tL)| ≤ ∆Cruise for executions of Cruise. This is made visible in the PliEv/FIS PO for

Cruise:

v(tL) ∈ [0 . . .Vmax]∧CONTINUOUS(v(tL))∧mode(tL) ∈ {OFF,ON}∧

setv(tL) ∈ [VCCmin . . .VCCmax]∧mode(tL) = ON⇒

(∃tR > tL • (∀tL ≤ t < tR • (∃v(t),setv(t),mode(t)•

|v(t)− setv(t)| ≤ ∆Cruise∧ |Dv(t)| ≤ ∆MCA))) (29)

which is not provable, where we have underlined the elements that cause the proof failure. Fortunately,

this failure to prove follows immediately from the values at tL alone. It thus holds regardless of whether

we interpret the semantics as originally formulated in paperI (i.e., using PACcl functions) or we restrict

to just FPHS functions, as we would have to if we were intending to exploit the propositions earlier

in the paper. Indeed, if we wished to use Proposition 16.1 for feasibility, we would need to verify the

tL consistency check (I∧ iv∧ grd⇒ ivB/DA), and this would fail to prove because the same underlined

elements occur in it.19

Regarding PliEv/INV, all the terms appearing in (29) occur in the hypotheses, which are therefore

inconsistent. Since falsity proves anything, on a purely formal level PliEv/INV discharges, but the in-

consistency of its hypotheses raises alarm in a model based formal development, since it leads to the

conclusion of some specific properties (CruiseControl_1’s invariants) for an impossible element of the

model. On this basis, we can say that PliEv/INV fails.

19However, this would not be the sole reason Proposition 16.1 would not succeed. In the COMPLY clause of Cruise, we

also have |Dv(t)| ≤ ∆MCA, and Proposition 16.1 says nothing about conditions on derivatives, so would not be applicable. Of

course, it would be easy enough to enhance the provisions of Proposition 16.1 to include CAD constraints on derivatives, since

only existence in a right-open interval is needed for feasibility. This is a good illustration of the open ended and extensible

nature of the results presented in this paper — it is always relatively easy to think of sound extensions that are not explicitly

catered for in the paper.

62

The same story repeats for PliEv/FISR and PliEv/INVR, since the only difference in these POs is

the appearance of K among the hypotheses, which is trivially satisfied, since as stated before, K is total

and onto. Aside from that, PliEv/GRDR is provable for Cruise since it just refers to strengthened guard

values at tL.

Regarding the mode events, SwOff is identical to its abstraction, so POs MoEv/FIS, MoEv/INV,

MoEv/FISR and MoEv/INVR are trivially discharged. And SwOn is scarcely more complicated, adding

a guard, and an assignment to a fresh variable, so the four POs are easily discharged for it too. TipUp and

TipDown follow the same pattern. Their guards are unchanged, and the assignment to a fresh variable

causes no difficulty, so their four POs are easily discharged.

This leaves the POs that control the structure of executions, MoPli/WFor, PliMo/WFor, and the POs

that synchronise across refinements, MoEv/RelDLF, PliEv/RelDLF. For the first two POs, MoPli/WFor

and PliMo/WFor, some of the reasoning for CruiseControl_0 applies once more. Thus, for MoPli/WFor,

since all the mode events are asynchronous, whenever one of them completes, the enabledness of any of

them is irrelevant, and then, whether PliDefault runs or Cruise runs depends solely on the after-value of

the mode variable. If the after-value is OFF, then PliDefault runs, and the argument for the discharge

of the PO is as for CruiseControl_0, since the value of the mode variable is the only fact relevant to the

PliDefault guard. If the after-value is ON, then Cruise runs, and the argument is similar, since the value

of the mode variable is again the only nontrivial point.20

For PliMo/WFor, the argument for PliTrue from CruiseControl_0 can be applied vebatim to both

PliDefault and Cruise. Additionally, since we have the CONTINUOUS(v) invariant, the detail of concern

in Section 7 for the term WELLDEF(tR) also holds without issue, so the PO is easily dealt with. We turn to

MoEv/RelDLF, PliEv/RelDLF. For both of these, in the original formulation, it is easy to see that at both

abstract and concrete levels, the requisite disjunctions of guards evaluate to true, so the POs are trivially

discharged.21

Taking stock at this juncture, we see that regardless how the event consistency condition is handled,

verification detects the flaw in the CruiseControl_1 machine,

24.2.3. The CruiseControl_1 POs, Optional Enhancements

In this section we briefly examine how the preceding account changes in the light of the enhance-

ments to the model suggested at the end of Section 24.2.1. We do not repeat all the detail that stays the

same, focusing on the new phenomena that arise, and taking the options in turn.

For Option 1, TipUp and TipDown have merely had their assigned values altered, so their POs will go

through as before. Cruise is insensitive to the changed mode events, so the previous account continues

to hold unchanged regarding its various POs. For MoPli/WFor and PliMoWFor, and for MoEv/RelDLF

and PliEv/RelDLF, the story is as before since no guards have changed, and these four POs are only

sensitive to guards.

For Option 2, TipUp and TipDown have had their guards strengthened, so their POs will go through

as before. The story for Cruise is again as previously. For MoPli/WFor, the strengthened guards in TipUp

and TipDown will make the PO proof go through, since it did so before. For PliMo/WFor, the argument is

unchanged, as in the previous case. PliEv/RelDLF remains unaffected, and, for MoEv/RelDLF, although

the guard strengthening would lead us to expect the PO to fail to prove (because the stronger guards are

in the PO conclusions), we see that SwOff remains enabled even when TipUp and TipDown are not, and

20We note though, that had we taken the route of conjoining ivB/DA to the guard of Cruise to enforce consistency, as discussed

in Section 15, then this PO would have failed to prove since assuming the invariants in the hypothesis of the PO would not have

been sufficient to prove the stronger |v(t)− setv(t)| ≤ ∆Cruise — which just replays the arguments above in a different context.
21We note, as for MoPli/WFor, that had we strengthened the Cruise guard with ivB/DA, the proof would have failed as the

abstract guard disjunction true would not have implied the stronger concrete one.

63

so the PO succeeds! Obviously, a more sensitive relative deadlock freeness PO could pick up this detail.

Option 3 is, in practice, largely like the first two, the precise effects depending on which of options 1

or 2 accompanies the adoption of the additional invariant.

Option 4 changes the ivB/DA of Cruise to true, so all issues connected with pliant event consistency

become trivial.

24.3. CruiseControl_2 POs, Original Formulation

Machine CruiseControl_2 has similar dynamics to machine CruiseControl_1. Only the Cruise event

has been altered, and has a more precisely defined and deterministic dynamics — in this case it can be

solved for completely (in terms of Exp if the external reasoner is Mathematica). So the joint invari-

ant between the two machines is an identity. We subscript identically named events to distinguish the

CruiseControl_1 version from the CruiseControl_2 version, e.g. Cruise1 and Cruise2.

Focusing on the original formulation, all the mode events are identical in the two models, and the

identity joint invariant makes their refinement trivial. We note that the pliant event consistency problem

has disappeared from machine CruiseControl_2, as the DE in Cruise has a well defined, holomorphic,

right continuous solution from any initial value, and thus does not demand any additional initial value

constraint.

We check the POs that need examination. For Cruise, PliEv/FIS holds by an easy application of

Proposition 16.2. For PliEv/INV, we refer to Proposition 18.4. Clauses 1 and 2 hold trivially, For clause

3 we can identify both the required CAD.PI and its CAD.IPI subset with the interval [0 . . .Vmax]. Then,

clause 4 holds since v ∈ [0 . . .Vmax] is an invariant, and we assume the invariants in the hypotheses of

the PO. Finally, noting that the interval [VCCmin . . .VCCmax], which constrains setv, is strictly inside

[0 . . .Vmax], we see that the vector field in the RHS of the DE Dv = −C(v− setv) points into the interior

of the interval [0 . . .Vmax] for all values of setv that satisfy the invariants, and for all values of v that satisfy

the invariants and lie on the boundary of [0 . . .Vmax]. Therefore, we can use clause 5.(a) to complete the

discharge of the PO. And since there is no stronger constraint such as |v− setv| ≤ ∆Cruise∧|Dv| ≤ ∆MCA

to worry about, the PliMo/WFor and MoPli/WFor POs go through without difficulty. So, it is evident

that in its own terms, CruiseControl_2 is unproblematic.

However, regarding a refinement from CruiseControl_1 to CruiseControl_2, it is a different matter,

as the previous difficulties reappear due to the involvement of CruiseControl_1. We need to reexamine

PliEv/FISR, PliEv/GRDR, PliEv/INVR, MoEv/RelDLF, PliEv/RelDLF.

PO PliEv/FISR proves successfully since the PO only asks for an execution of Cruise2, not of

Cruise1, and the joint invariant is an identity. PO PliEv/GRDR proves successfully for Cruise1 and

Cruise2 since the PO just compares guards, which are identical. PO PliEv/INVR fails to prove for

Cruise1 and Cruise2 because, outside the |v(tL)− setv(tL)| ≤ ∆Cruise region, Cruise1 does not have an

execution that satisfies the joint invariant (which demands equality between the two machines’ values of

v).

For MoEv/RelDLF, we have success as before, since the simple guard of SwOff , unchanged between

the two models, subsumes the guards of TipUp and TipDown. Finally, for PliEv/RelDLF, we also have

success, since the abstract guards are at least as strong as the concrete ones.

24.3.1. The CruiseControl_2 POs, Optional Enhancements

For the optional modifications, options 1 and 2 are unremarkable, and go as in the preceding para-

graphs. More interesting is option 3 enhanced by the option 1 modifications to TipUp and TipDown. This

will be provable as a refinement, as the strengthened CruiseControl_1 invariants now curtail the reach of

the PliEv/FISR, PliEv/GRDR, PliEv/INVR PO conclusions for Cruise1 and Cruise2 so that they are not

demanded outside the |v(tL)− setv(tL)| ≤ ∆Cruise region.

64

A B

C D

1

2

3

Figure 13: A step, with some trajectories of an incident ball.

Also of interest is option 4. As stated, this proposed refinement will fail, since the |v− setv| >
∆Cruise⇒Dv = sgn(setv− v)∆MCA clause in Cruise1 stipulates a constant Dv, whereas the correspond-

ing DE of CruiseControl_2 cannot satisfy that property. Still, we can contemplate a modification such

as |v− setv| > ∆Cruise ⇒Dv ≥ sgn(setv− v)∆MCA, which would work better. The modification would

evidently be better still if there were also an upper bound on the magnitude of Dv. This could be done,

but would require an upper bound on the magnitude of v. This could be achieved via TipUp and TipDown

and would need to be captured in an additional invariant or included as a result in the THEOREM section

of the machine, as it is a global property.

The above completes our reprise of the case study. Although the models contained relatively few

pliant events, we saw clearly how the issues they raised impacted mode events too.

25. Dealing with Non-Engineering Cases

Fig. 13 shows an ideal rectangular step A, B, C, D. We can imagine an ideal pointlike ball, moving

under gravity, thrown against it along a family of trajectories (indexed using a parameter α) like the

three shown in the figure. For definiteness, the value of α can be the distance from D along a straight

line running through D and B, with points above D positive, and the three trajectories shown having

parameters α1 < α2 < α3 respectively. We consider a number of scenarios.

In Scenario 1, we assume ideal bounces on impact with a surface, i.e. no loss of energy. Given

appropriate initial energy, trajectory 1 first impacts CD, then bounces up, impacts BC, and bounces out

along a trajectory like the reverse of trajectory 2. Given lossless dynamics, with appropriate choice of

dynamical parameters, the trajectory can be exactly the reverse of trajectory 2. Thus, there is a similar

story for trajectory 2, bouncing down and reversing trajectory 1.

As we increase α from α1, trajectory 1’s impact point with CD drifts towards C, and, keeping the two

trajectories synchronised, trajectory 2’s impact point with BC also drifts towards C. This synchronised

process reaches a unique limit at C, which yields an acceptable definition of an ideal bounce from an

ideal corner like C.

If we view the dynamical variables, position and velocity, as functions of α, they will be continuous

but not smooth at C. Of course, their derivatives can acquire discontinuities there.

In Scenario 2, we introduce a nontrivial coefficient of restitution c < 1. Then, no version of trajec-

tory 1 can be the reverse of trajectory 2, and vice versa, because of the loss of energy during a bounce.

Nevertheless, as C is approached, the initial segments of the two trajectories can be arranged to con-

verge smoothly to the same limiting segment reaching C, after which, the same post-bounce22 behaviour

ensues.

The dynamical variables will be continuous in α, but not smooth at C once more. Some derived

quantities, e.g. the total system energy at C, will be discontinuous where they were continuous before.

22The bounce at C has to be viewed as a limit of a pair of bounces, as in Scenario 1.

65

In Scenario 3, we turn our attention to the other corner, B. Things are quite different here. The post-

bounce behaviour of trajectory 2 is always downwards and to the right, whereas post-bounce behaviour

of trajectory 3 is always upwards and to the left. Thus there is no common limiting behaviour that we can

use to define the bounce at B itself, even when the initial segments of trajectories 2 and 3 have a common

limit at B, whose components in the direction of the parameter α are moreover smooth. Of course, we

can make an ad hoc definition at B, but this is not necessarily helpful.

Situations like the three scenarios just described are not uncommon. Examples include Buridan’s

Principle [83], and the impossibility of implementing various phenomena on circles and spheres smoothly

[117]. Many such situations are handled quite effectively these days via non-smooth analysis [40, 41, 42].

The structure of the exceptional cases can also align well with the CAD descriptions of relevant spaces,

whether physical spaces or parameter spaces.

The correct understanding of these situations is a valid mathematical challenge. However it is of

much less concern from an engineering perspective, in which, any useful system must have behaviour

that is stable in an appropriate neighbourhood of its basic definition. From the point of view of Hybrid

Event-B, mainly aimed at the design of practical systems, the engineering viewpoint is thus much more

relevant than the mathematical one. Still, a relatively idealised level of modelling will invariably throw

up such cases from time to time, so the question arises of how to deal with them efficiently. Regarding

this, we make some observations.

Firstly, we notice that inconvenient phenomena such as those noted always arise on a manifold of

lower dimension than that of the model as a whole. This is further emphasised by our earlier insistence

that the CAD domains we consider must be sufficiently open. This implies that the set of values that

characterise the problematic cases will be of Lebesgue measure zero in the set of values that characterise

the problem domain as a whole. This helps considerably in isolating the problematic cases.

Secondly, it is possible that different sufficiently open regions that abut in the model space, in fact

do so along boundaries that characterise such problematic cases. Presuming that transitions between

different sufficiently open regions are likely to be managed using mode events, problematic cases may

possibly cause violation of condition [A] mentioned in the semantic sketch of Section 2, as the limiting

values in one region overlap with limiting values in another region.23

For both of these reasons, it is easiest to simply exclude the relevant values from the model, once the

system implications of the situation have been properly understood. We call the relevant sets of values,

the non-engineering cases. In a backwards oriented formal reasoning process, the relevant sets of values

will emerge within unprovable statements, or statements that characterise the violation of some semantic

condition. This makes their precise identification easier.

Recommendation 25.1 (Non-Engineering Case Elimination). Once the non-engineering cases have

been identified, they should be excluded from the model. For a non-engineering case characterised by

a condition involving only static data, the negation of the condition identifying it can be accommodated

in the AXIOMS of the model CONTEXT. For a non-engineering case characterised by a condition also

involving dynamic data, the negation of the condition identifying it can be accommodated in the AXIOMS

of the model’s MACHINE.

26. Related Work

PaperI included an account of related approaches to hybrid systems, and how they are connected (or

not) with the B Method in general and with the design of Hybrid Event-B in particular. In this paper we

23Of course, this can happen with non-problematic cases too.

66

progress this line, with a focus on different approaches to mechanising the reasoning needed for hybrid

systems in more contemporary work. For longer established approaches see [35, 127, 59].

The KeYmaera formalisation of hybrid and cyber-physical systems (more recently evolved to KeY-

maeraX) [106, 105] features a logic based perspective. Thus, specific formal languages such as hybrid

programs for the description of systems are developed, and logics such as differential dynamic logic are

elaborated in order to formally reason about them. Support from computer algebra tools is central to the

practical handling of mathematics beyond pure arithmetic and logic, as here. A large literature based on

this approach can be found at [79].

There is a big overlap between the KeYmaera and Hybrid Event-B approaches. After all, they are

targeting broadly the same class of systems. Perhaps the chief differences are that differential dynamic

logic admits expressing liveness as well as safety properties, and that KeYmaera is program based,

whereas the Hybrid Event-B approach is event based. And KeYmaera has its own tool, which Hybrid

Event-B currently lacks.

Also related to Hybrid Event-B is the Hybrid Action Systems approach [12, 112]. This approach is

based on the weakest precondition semantics of actions, the actions being of two kinds, conventional and

differential. These are rather analogous to our mode and pliant events, except that differential actions

can proceed only as long as a guard condition holds. The focus on weakest preconditions makes the

connection with safety properties such as (global) invariants more indirect, although these can be built in

to the individual actions. On the other hand, the same focus puts a stress on refinement, which is handled

in the normal weakest precondition manner.

In the Hybrid CSP approach [67, 138, 91, 137], the process approach of CSP is extended with a

differential equation term which is executed while a boolean condition remains true (as for the differential

actions of Hybrid Action Systems). In [136] it is evident that the same general class of properties and

analysis approaches seen in contemporary hybrid systems verification are translated to this world. That

this is possible is inevitable, as the mathematics that underpins these approaches is common to all, and

is rather far from the details of their surface syntax, which constitutes the major distinguishing feature

between them.

Approaches such as these (and many surveyed in [35]) focus on the applications level, and strive to

progress the analysis towards actual implementation, as far as proves possible. Most restrict expressivity

in various ways in order to gain decidability. Other approaches focus on automating specific engineering

criteria, such as stability via the Lyapunov technique, progressing to code, and based on underpinning

the reasoning via PVS [69]. In [58] there is an extensive treatment of such work, targetted towards the

code level.

Other relevant work starts at the foundational level, building the continuous mathematics needed for

applications work from the ground up, axiomatically. By now, there are several such approaches, and in

[32] there is an extensive survey of the differences between them and of some of the consequences of

those differences. It is noteworthy that different detailed choices at foundational level lead to different

kinds of difficulty later on, as larger results, at higher levels of abstraction, are pursued.

Despite the rigour of such approaches, it seems unlikely that they will lead to systems that will appear

attractive to use to engineers, at least not without heavy (tool level, software) engineering. This would

be needed to evade the foundational level issues that proving within these frameworks routinely throws

up. The approach of Hybrid Event-B is based not on real analysis but on complex analysis, given that

it legitimises routine engineering calculation, while excluding the pathological cases that real analysis

admits, the exclusion of which complicates the purely real theory.24

24For a simple illustration, the function fR(t) = exp(t−2) is infinitely smooth, so has derivatives, hence a Taylor series, for

all t. But at t = 0 the derivatives are all 0, so the Taylor series represents the zero function there, and not fR. The corresponding

complex function fC(z) = exp(z−2) has an essential singularity at z = 0, so is not holomorphic in any region containing z = 0.

67

Closer to Hybrid Event-B is a body of work that attempts to use the existing Rodin tool as is, in order

to prove correctness of hybrid and cyber-physical systems. Among these we can mention [126, 125, 124,

5, 34, 123]. All of these make use of the Theory Plugin of Rodin [92, 72], which enables Rodin to be

extended by new types, bearing new properties. (A comparison of modelling the same simple system

using Event-B and Hybrid Event-B appears in [23].)

A more recent development of this strategy, of using Rodin as is, can be found in [50, 51, 49]. In

these works, the theory plugin is used to build a theory of ODEs and their solutions at a fairly high level

of abstraction, and refinement is used to progress closer to implementation. In [6], some of the theoretical

approach of the KeYmaera framework is adapted into the Event-B/Rodin context.

There are two main things to say about these approaches. The first is that they all depend on building

up some continuous mathematics from scratch in the theory plugin. Especially in the earlier works, this

only allows very simple examples to be treated, due to the large amount of theory that needs to be built

before contact with applications is made. Hence these approaches have limited scalability, although the

situation is eased a little in the later works, due to the higher level of abstraction aimed for. The second

is that they model an evolving function of time (typically the trajectory of a continuous variable) by ap-

pending increments of its graph, whose domains are contiguous time intervals. The restrictions imposed

by Event-B, and implemented in Rodin, then force time to be a dynamical variable (whose updates are

used to define the domains of the contiguous time intervals), and this decants the responsibility of cor-

rectly using the time variable onto the user. Unfortunately, this cannot always be relied on, and models

featuring causally invalid invariants can easily be written and proved correct.25 Hybrid Event-B has been

designed to avoid both risks (among others).

27. Conclusions

In the preceding sections we journeyed along the road announced in the Introduction, that started

with the syntactic form of a Hybrid Event-B machine and derived sufficient conditions for the discharge

of the associated proof obligations, focusing on those that were not already covered within the existing

(discrete) Event-B and its tools — i.e. the kind of continuously varying quantities that are found in

hybrid and cyber-physical systems. The aim for these is to reduce the required verification conditions

to the kind of calculations and logical inferences that could be readily performed in a tool, specifically

avoiding having to deal with the many interleavings of quantifiers that would have to be faced if the raw

mathematical analysis style definitions of the mathematical entities involved were to be faced head on.

How painful the latter approach might get, should something more technically demanding be attempted,

can be judged from the small scale case study [34].

We first outlined Hybrid Event-B informally, and give a tiny cruise control case study. We also

briefly introduced the POs. After that we focused on the foundations more precisely. We introduced the

piecewise absolutely continuous functions, noting that they provided a suitable foundation for the Hybrid

Event-B semantics of PaperI. We then focused on the subset of these consisting of piecewise holomorphic

functions, noting that these had much more robust properties vis à vis calculation. In practical use, all

instances of the former class that are actually needed are also members of the latter subclass.

After these foundations, we moved on to the reasoning that could underpin a mechanised approach

to the discharge of the proof obligations of Hybrid Event-B. This occupied many sections, as described

In any region excluding z = 0, fC is holomorphic and its Taylor series represents it faithfully. In fact, a significant proportion of

‘pathological’, or ‘peculiar’ examples in real analysis are constructed by using pieces of holomorphic functions, but continuing

them to points at which holomorphy fails.
25For example: ‘it is 3 o’clock⇒ property P holds’, where the progress of time is (of course) inexorable, but the occurrence

of MaybeEv, needed to establish P, is not guaranteed in the context of the model.

68

in the Introduction. The main approach throughout all of these was to focus on instances of the issue

at hand that would yield to a general approach founded on familiar results from analysis (specialised,

where appropriate, to the complex case), and thereby to reduce the issue in question to the calculational

checks that would confirm that that specialisation was applicable. We concluded by revisiting the earlier

tiny case study to illustrate how the issues it threw up were dealt with using the approach to verification

developed in the bulk of the paper.

The present paper can be viewed as a strategic template for a semi-automated verification system for

Hybrid Event-B. The intention was to provide a framework that, as well as providing a basic structure

that could be implemented, was also broad enough to be extensible, should the need arise. Such need

might indeed arise, if it were driven strongly enough from the application sphere. Thus it is important

to emphasise that the account we gave should not be viewed as closing the book on reasoning about

continuously varying quantities in Hybrid Event-B. In our drive to construct a mechanisation framework,

many generalisations of what we specifically covered were mentioned in passing, and could be pursued in

more detail. Moreover, the fields of pure and applied mathematics, not to mention engineering in general

and control engineering in particular, have generated an enormous literature over the centuries, of which

we have just scratched the surface. Many elements of this could be incorporated into a mechanised

reasoning framework for Hybrid Event-B, should there be sufficient incentive to do so, as hinted at in

our related work section.

In this paper, we rarely descended to a sufficiently low level to allow direct coding of such a system.

Still, the author hopes that what has been done will provide sufficient guidance for a viable implemen-

tation. These days, it is recognised that to get a wide variety of reasoning capabilities into a single tool,

multiple reasoners need to be combined. Tools such as Why3 [133, 54] have been designed to provide a

framework to permit such interoperability effectively. Thus, as well as following the backward reasoning

approach that has implicitly underpinned the approach of this paper, it is envisaged that other reasoners

with specific capabilities would be brought to bear to more effectively realise the goals pursued here.

Acknowledgements

I would like to thank Shengchao Qin for comments on earlier drafts of this paper. I would also like to

thank an anonymous reviewer for suggestions that resulted in worthwhile improvements to the paper.

References

[1] J.R. Abrial, Event-B: Structure and Laws, in: Rodin Project Deliverable D7: Event-B Language.

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf.

[2] J.R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge University Press, 1996.

[3] J.R. Abrial, Modeling in Event-B: System and Software Engineering, Cambridge University Press,

2010.

[4] J.R. Abrial, M. Butler, S. Hallerstede, T. Hoang, F. Mehta, L. Voisin, Rodin: An Open Toolset for

Modelling and Reasoning in Event-B, Int. J. Soft. Tools for Tech. Trans. 12 (2010) 447–466.

[5] J.R. Abrial, W. Su, H. Zhu, Formalizing Hybrid Systems with Event-B, in: Derrick, Fitzgerald,

Gnesi, Khurshid, Leuschel, Reeves, Riccobene (Eds.), Proc. ABZ-12, volume 7316, Springer,

LNCS, 2012, pp. 178–193.

[6] M. Afendi, R. Laleau, A. Mammar, Modelling Hybrid Programs with Event-B, in: Raschke, Mery,

Houdek (Eds.), Proc. ABZ-20, volume 12071, Springer, LNCS, 2020, pp. 139–154.

69

[7] N. Ahmed, Dynamic Systems and Control With Applications, World Scientific, 2006.

[8] B. Akbarpour, L. Paulson, MetiTarski: An Automatic Prover for the Elementary Functions, in:

Proc. Calculemus-08, volume 5144, Springer, LNCS, 2008, pp. 217–231.

[9] P. Antsaklis, A. Michel, Linear Systems, Birkhauser, 2006.

[10] J. Aplevich, Implicit Linear Systems, Springer, 1991.

[11] K. Astrom, T. Hagglund, Advanced PID Control, ISA, 2006.

[12] R.J. Back, L. Petre, I. Porres, Continuous Action Systems as a Model for Hybrid Systems, Nordic

J. Comp. 8 (2001) 2–21. Extended version of FTRTFT-00, LNCS 1926, 202-213.

[13] R. Banach, Regular Relations and Bicartesian Squares, Theor. Comp. Sci. 129 (1994) 187–192.

[14] R. Banach, On Regularity in Software Design, Sci. Comp. Prog. 24 (1995) 221–248.

[15] R. Banach, Pliant Modalities in Hybrid Event-B, in: Liu, Woodcock, Zhu (Eds.), Proc. Jifeng He

Festschrift 2013, volume 8051 of LNCS, Springer, 2013, pp. 37–53.

[16] R. Banach, The Landing Gear Case Study in Hybrid Event-B, in: Ait Ameur, Schewe (Eds.), Proc.

ABZ-14: Landing Gear Case Study, volume 433 of CCIS, Springer, 2014, pp. 126–141.

[17] R. Banach, Formal Refinement and Partitioning of a Fuel Pump System for Small Aircraft in

Hybrid Event-B, in: Bonsangue, Deng (Eds.), Proc. IEEE TASE-16, IEEE, 2016, pp. 65–72.

[18] R. Banach, Hemodialysis Machine in Hybrid Event-B, in: Butler, Schewe, Mashkoor, Biro (Eds.),

Proc. ABZ-16, volume 9675, Springer, LNCS, 2016, pp. 376–393.

[19] R. Banach, The Landing Gear System in Multi-Machine Hybrid Event-B, Int. J. Soft. Tools for

Tech. Trans. 19 (2017) 205–228.

[20] R. Banach, J. Baugh, A Simple Hybrid Event-B Model of an Active Control System for Earth-

quake Protection, in: Adamatzky, Kendon (Eds.), Proc. Susan Stepney Festschrift 2019, vol-

ume 35 of Emergence, Complexity, Computation, Springer, 2019, pp. 157–194.

[21] R. Banach, M. Butler, A Hybrid Event-B Study of Lane Centering, in: Aiguier, Boulanger, Krob,

Marchal (Eds.), Proc. CSDM-13, Springer, 2013, pp. 97–111.

[22] R. Banach, M. Butler, Cruise Control in Hybrid Event-B, in: Z. Liu, Woodcock (Ed.), Proc.

ICTAC-13, volume 8049 of LNCS, Springer, 2013, pp. 76–93.

[23] R. Banach, M. Butler, Modelling Hybrid Systems in Event-B and Hybrid Event-B: A Comparison

of Water Tanks, in: Ogata, Lawford, Liu (Eds.), Proc. ICFEM-16, volume 10009, Springer, LNCS,

2016, pp. 90–105.

[24] R. Banach, M. Butler, S. Qin, N. Verma, H. Zhu, Core Hybrid Event-B I: Single Hybrid Event-B

Machines, Sci. Comp. Prog. 105 (2015) 92–123.

[25] R. Banach, M. Butler, S. Qin, H. Zhu, Core Hybrid Event-B II: Multiple Cooperating Hybrid

Event-B Machines, Sci. Comp. Prog. 139 (2017) 1–35.

70

[26] R. Banach, W. Su, Cyberphysical Systems: A Behind-the-Scenes Foundational View, in:

Mashkoor, Wang, Thalheim (Eds.), Models: Concepts, Theory, Logic, Reasoning, and Seman-

tics (Klaus-Dieter Schewe Festschrift), College Publications, Tribute Series, vol. 34, 2018, pp.

177–201.

[27] R. Banach, P. Van Schaik, E. Verhulst, Simulation and Formal Modelling of Yaw Control in a

Drive-by-Wire Application, in: Proc. FedCSIS-15 (IWCPS), pp. 731–742.

[28] H. Barendregt, The Lambda Calculus, Its Syntax and Semantics, Elsevier, 1981.

[29] S. Basu, R. Pollack, M.F. Roy, Algorithms in Real Algebraic Geometry, Springer, 2006.

[30] C. Bender, S. Orszag, Advanced Mathematical Methods for Scientists and Engineers I, Springer,

2010.

[31] P. Billingsley, Probability and Measure, Wiley, 1995. 3rd ed.

[32] S. Boldo, C. Lelay, G. Melquiond, Coquelicot: A User-Friendly Library of Real Analysis for Coq,

Math. Comput. Sci. 9 (2015) 41–62. Also HAL: hal-00860648, https://hal.inria.fr/hal-00860648v1.

[33] F. Brickell, R. Clark, Differentiable Manifolds, Van Nostrand Reingold, 1970.

[34] M. Butler, J.R. Abrial, R. Banach, Modelling and Refining Hybrid Systems in Event-B and Rodin,

in: From Action System to Distributed Systems: The Refinement Approach, CRC Press, 2016,

pp. 29–42.

[35] L. Carloni, R. Passerone, A. Pinto, A. Sangiovanni-Vincentelli, Languages and Tools for Hybrid

Systems Design, Foundations and Trends in Electronic Design Automation 1 (2006) 1–193.

[36] B. Caviness, J. Johnson (eds.), Quantifier Elimination and Cylindrical Algebraic Decomposition,

Springer, 1998.

[37] C. Chicone, Ordinary Differential Equations with Applications, Springer, 2nd edition, 2006.

[38] A. Church, The Calculi of Lambda Conversion, Princeton University Press, 1941.

[39] A. Church, Introduction to Mathematical Logic, Princeton University Press, 1956.

[40] F. Clarke, Optimization and Nonsmooth Analysis, Society for Industrial Mathematics, 1987.

[41] F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Springer, 2013.

[42] F. Clarke, Y. Ledyaev, R. Stern, P. Wolenski, Nonsmooth Analysis and Control Theory, Springer,

1997.

[43] E. Copson, An Introduction to the Theory of Functions of a Complex Variable, Oxford University

Press, 1935.

[44] E. Copson, Asymptotic Expansions, Cambridge University Press, 1965.

[45] H. Curry, R. Feys, Combinatory Logic, Vol. I, Elsevier, 1958.

[46] O. Diekmann, S. van Gils, S. Verduyn Lunel, H.O. Walther, Delay Equations: Functional-,

Complex-, and Nonlinear Analysis, Springer, 1995.

[47] R. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic, 1973.

71

[48] R. Dorf, R. Bishop, Modern Control Systems, Pearson, 2010.

[49] G. Dupont, Y. Ait-Ameur, M. Pantel, N. Singh, An Event-B Based Generic Framework for Hybrid

Systems Formal Modelling, in: Proc. IFM-20, volume 12546, Springer, LNCS, 2020, pp. 82–102.

[50] G. Dupont, Y. Ait-Ameur, N. Singh, F. Ishikawa, T. Kobayashi, M. Pantel, Embedding Approxi-

mation in Event-B: Safe Hybrid System Design Using Proof and Refinement, in: Proc. ICFEM-20,

volume 12531, Springer, LNCS, 2020, pp. 251–267.

[51] G. Dupont, Y. Ait-Ameur, N. Singh, M. Pantel, Event-B Hybridation: A Proof and Refinement-

based Framework for Modelling Hybrid Systems, ACM Trans. Emb. Com. Sys. 20, Article 35

(2021).

[52] K. Dutton, S. Thompson, B. Barraclough, The Art of Control Engineering, Addison Wesley, 1997.

[53] T. Erneux, Applied Delay Differential Equations, Springer, 2009.

[54] J.C. Filliatre, C. Marche, The Why/Krakatoa/Caduceus Platform for Deductive Program Verifi-

cation, in: Damm, Hermanns (Eds.), Proc. CAV-07, volume 4590, Springer, LNCS, 2007, pp.

173–177.

[55] K. Fritzsche, H. Grauert, From Holomorphic Functions to Complex Manifolds, Springer, 2002.

[56] J. Gallier, Logic for Computer Science, Wiley, 1987.

[57] T. Gamelin, Complex Analysis, Springer, 2001.

[58] P.L. Garoche, Formal Verification of Control System Software, Princeton University Press, 2019.

[59] E. Geisberger, M. Broy (eds.), Living in a Networked World. Integrated Research Agenda

Cyber-Physical Systems (agendaCPS), 2015. http://www.acatech.de/fileadmin/user_upload/Baumstruk

tur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS _eng_

WEB.pdf.

[60] M. Gerdts, Optimal Control Problems of ODEs and DAEs, De Gruyter, 2012.

[61] H. Grauert, K. Fritzsche, Several Complex Variables, Springer, 1976.

[62] G. Grimmett, D. Stirzaker, Probability and Random Processes, Oxford University Press, 2001. 3rd

ed.

[63] W. Haddad, V. Chellaboina, Nonlinear Dynamical Systems and Control: A Lyapunov-Based Ap-

proach, Princeton University Press, 2008.

[64] E. Hairer, S. Norsett, G. Wanner, Solving Ordinary Differential Equations I Nonstiff Problems,

Springer, 1993.

[65] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II Stiff and Differential-Algebraic

Problems, Springer, 1996.

[66] J. Hale, S. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, 1993.

[67] J. He, From CSP to Hybrid Systems, in: Roscoe (Ed.), A Classical Mind, Essays in Honour of

C.A.R. Hoare, Prentice-Hall, 1994, pp. 171–189.

72

[68] J. Heading, An Introduction to Phase-Integral Methods, Dover, 2013.

[69] H. Herencia-Zapana, R. Jobredeaux, S. Owre, et al., PVS Linear Algebra Libraries for Verification

of Control of Software Algorithms in C/ACSL, in: Goodloe, Person (Eds.), Proc. NASA NFM-12,

volume 7226, Springer, LNCS, 2012, pp. 173–177.

[70] R. Hindley, J. Seldin, Introduction to Combinators and λ-Calculus, Cambridge University Press,

1986.

[71] D. Hinrichsen, A. Pritchard, Mathematical Systems Theory I, Springer, 2005.

[72] T.S. Hoang, L. Voisin, A. Salehi, M. Butler, T. Wilkinson, N. Beauger, Theory Plug-in for Rodin

3.x. https://arxiv.org/abs/1701.08625.

[73] E. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier’s Series, Cam-

bridge University Press, 1907. Later enlarged, Vol. 1 and Vol. 2, reprinted Dover, 1957.

[74] L. Hormander, An Introduction to Complex Analysis in Several Variables, Elsevier, 3rd. edition,

1990.

[75] J. Howie, Complex Analysis, Springer, 2003.

[76] J. Hubbard, B. West, Differential Equations: A Dynamical Systems Approach: Ordinary Differ-

ential Equations, Springer, 1991.

[77] J. Hubbard, B. West, Differential Equations: A Dynamical Systems Approach: Higher-

Dimensional Systems, Springer, 1995.

[78] A. Ilchmann, T. Reis (Eds.), Surveys in Differential-Algebraic Equations (3 vols.), Springer, 2013,

2015.

[79] KeYmaera. http://symbolaris.com.

[80] S. Krantz, Function Theory of Several Complex Variables, John Wiley, 1982.

[81] P. Kunkel, V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution,

European Mathematical Society, 2006.

[82] R. Lamour, R. Marz, C. Tischendorf, Differential-Algebraic Equations: A Projector Based Anal-

ysis, Springer, 2013.

[83] L. Lamport, Buridan’s Principle, Foundations of Physics 42 (2012) 1056–1066.

[84] S. Lang, Complex Analysis, Springer, 2008.

[85] A. Laub, Matrix Analysis for Scientists and Engineers, SIAM, 2004.

[86] C. Laurent-Thiébaut, Holomorphic Function Theory in Several Variables, Springer, 2011.

[87] R. Leadbetter, S. Cambanis, V. Pipiras, A Basic Course in Measure and Probability, Cambridge

University Press, 2014.

[88] R. Leadbetter, S. Cambanis, V. Pipras, A Basic Course in Measure and Probability, Cambridge

University Press, 2014.

[89] J. Lebl, Tasty Bits of Several Complex Variables, lulu.com, 2019.

73

[90] J. Lee, Introduction to Smooth Manifolds, Springer, 2002.

[91] J. Liu, J. Lv, Z. Quan, H. Zhao, C. Zhou, L. Zou, A Calculus for Hybrid CSP, in: Ueda (Ed.),

Proc. APLAS-10, volume 6461, Springer, LNCS, 2010, pp. 1–15.

[92] I. Maamria, M. Butler, A. Edmunds, A. Rezazadeh, On an Extensible Rule-Based Prover for

Event-B, in: Frappier, Glasser, Khurshid, Laleau, Reeves (Eds.), Proc. ABZ-10, volume 5977,

Springer, LNCS, 2010, p. 407.

[93] Y. Manin, A Course in Mathematical Logic, Springer, 1977.

[94] Maple. http://www.maplesoft.com.

[95] Mathematica. http://www.wolfram.com.

[96] MATLAB and SIMULINK. http://www.mathworks.com.

[97] MetiTarski. https://www.cl.cam.ac.uk/ lp15/papers/Arith/.

[98] A. Mili, An Introduction to Program Fault Tolerance, Prentice-Hall, 1990.

[99] A. Mili, W. Xiao-Yang, Y. Quing, Specification Methodology: An Integrated Relational Approach,

Soft. Prac. Exp. 16 (1986) 1003–1030.

[100] B. Mishra, Algorithmic Algebra, Springer, 1993.

[101] M. Mrsevic, Convexity of the Inverse Function, The Teaching of Mathematics (2008) 21–24.

http://www.teaching.math.rs/.

[102] K. Ogata, Modern Control Engineering, Pearson, 2008.

[103] F. Olver, D. Lozier, R. Boisvert, C. Clark, NIST Handbook of Mathematical Functions, Cambridge

University Press, 2010.

[104] L. Perko, Differential Equations and Dynamical Systems, Springer, 4th edition, 2008.

[105] A. Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics,

Springer, 2010.

[106] A. Platzer, Logical Foundations of Cyber-Physical Systems, Springer, 2018.

[107] QEPCAD. http://www.usna.edu/CS/qepcadweb/B/QEPCAD.html.

[108] H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics, Polish Scientific Publishers,

1963.

[109] REDLOG. http://www.redlog.eu/.

[110] RODIN Tool. http://www.event-b.org/.

[111] RODIN User’s Handbook. http://handbook.event-b.org/current/pdf/rodin-doc.pdf.

[112] M. Rönkö, A. Ravn, K. Sere, Hybrid Action Systems, Theor. Comp. Sci. 290 (2003) 937–973.

[113] H. Royden, P. Fitzpatrick, Real Analysis, Pearson, 2010.

[114] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1976.

74

[115] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987. 3rd. ed.

[116] Ryan, M. and Sadler, M., Valuation Systems and Consequence Relations, in: Abramsky, Gabbay,

Maibaum (Eds.), Handbook of Logic in Computer Science, Vol. 1, Oxford University Press, 1992.

[117] R. Sanfelice, Hybrid Feedback Control, Princeton University Press, 2021.

[118] Scilab. http://www.scilab.org.

[119] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences,

Springer, 2011.

[120] Smorynski, C., The Incompleteness Theorems, in: Barwise (Ed.), Handbook of Mathematical

Logic, Elsevier, 1977.

[121] R. Smullyan, Gödel’s Incompleteness Theorems, Oxford University Press, 1992.

[122] E. Sontag, Mathematical Control Theory, Springer, 1998.

[123] W. Su, J.R. Abrial, Aircraft Landing System: Approaches with Event-B to the Modelling of an

Industrial System, Int. J. Soft. Tools Tech. Trans. 19 (2017) 141–166.

[124] W. Su, J.R. Abrial, H. Zhu, Complementary Methodologies for Developing Hybrid Systems with

Event-B, in: Proc. ICFEM-12, volume 7504, Springer, LNCS, 2012, pp. 230–248.

[125] W. Su, J.R. Abrial, H. Zhu, R. Huang, From Requirements to Development: Methodology and

Example, in: Proc. ICFEM-11, volume 6991, Springer, LNCS, 2011, pp. 437–455.

[126] W. Su, F. Yang, X. Wu, J. Gou, H. Zhu, Formal Approaches to Mode Conversion and Positioning

for Vehicle Systems, in: Proc. 3rd IEEE International Workshop on Security Aspects of Process

and Services Engineering (COMPSAC Workshops), IEEE, 2011, pp. 416–421.

[127] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic Approach, Springer, 2009.

[128] E. Titchmarsh, The Theory of Functions, Oxford University Press, 2nd. edition, 1939.

[129] L. Voisin, J.R. Abrial, The Rodin Platform has Turned Ten, in: Ait Ameur, Schewe (Eds.), Proc.

ABZ-14, volume 8847, Springer, LNCS, 2014, pp. 1–8.

[130] W. Walter, Ordinary Differential Equations, Springer, 1998.

[131] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, 1983.

[132] E. Whittaker, G. Watson, A Course of Modern Analysis, Cambridge University Press, 4th. edition,

1927.

[133] Why3. http://why3.lri.fr/.

[134] Wikipedia, Absolute continuity.

[135] V. Yakubovich, G. Leonov, Stability of Stationary Sets in Control Systems with Discontinuous

Nonlinearities, World Scientific, 2004.

[136] N. Zhan, S. Wang, H. Zhao, Formal Verification of Simulink/Stateflow Diagrams: A Deductive

Approach, Springer, 2017.

75

[137] N. Zhan, S. Wang, H. Zhao, Hybrid CSP, in: Formal Verification of Simulink/Stateflow Diagrams:

A Deductive Approach, Springer, 2017, pp. 71–90.

[138] C. Zhou, J. Wang, A. Ravn, A Formal Description of Hybrid Systems, in: Alur, Sontag, Henzinger

(Eds.), Proc. HS-95, volume 1066, Springer, LNCS, 1995, pp. 511–530.

76

