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Abstract

Faced with the increasing need for correctly designed hybrid and cyber-physical systems today, the
problem of including provision for continuously varying behaviour as well as the usual discrete changes
of state is considered in the context of Event-B. An extension of Event-B called Hybrid Event-B is
presented, that accommodates continuous behaviours (called pliant events) in between familiar discrete
transitions (called mode events in this context). The continuous state change can be specified by a combi-
nation of indirect specification via ordinary differentialequations, or direct specification via assignment
of variables to values that depend on time, or indirect specification by demanding that behaviour obeys
a time dependent predicate. The syntactic elements of the extension are discussed, and the semantics is
described in terms of the properties of time dependent valuations of variables. Refinement is examined
in detail, with reference to the notion of refinement inherited from discrete Event-B. A full suite of proof
obligations is presented, covering all aspects of the new framework. A selection of examples and case
studies is presented. A particular challenge —bearing in mind the desirability of conforming to exist-
ing intuitions about discrete Event-B, and the impact on tool support (as embodied in tools for discrete
Event-B like Rodin)— is to design the whole framework so as todisturb as little as possible the existing
structures for handling discrete Event-B.

1. Introduction

Today, we see an ever-increasing interaction between digital devices and the physical world. Once, it
was enough to see this in terms of predominantly isolated systems, in which a single digital device inter-
acted with a fixed suite of physical equipment, and to talk, therefore, of embedded systems. Nowadays
though, this picture is proving more and more inadequate. Itis more and more the case that families of
such systems are coupled together using communication networks, and can thus influence each others’
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working. These days then, the talk is ofCyber-Physical Systems[45, 51, 52, 54, 49, 13, 18, 44, 1, 37],
which is the name that has been adopted for these interactingfamilies of embedded systems.

These new systems throw up novel challenges in terms of design technique, as it is increasingly
difficult to ignore the continuous characteristics in theirbehaviours. Unfortunately, the usual kinds of
approaches to the modeling, specification and development of conventional discrete systems, offer lit-
tle help for developing the continuous aspects, simply because the usual semantic foundations of such
approaches make almost no contact with what is needed for thecontinuous world.

That is not to say that discrete techniques have never impinged on the design of systems that are con-
tinuous as regards their physical characteristics — far from it. However, the usual way that purely discrete
technologies interact with the continuous aspects is to tiptoe round them — predominantly because of the
semantic inadequacy just mentioned. Often, the inconvenient continuous aspects are permitted to occur
in only very simplified form, and then their consequences cantypically be reduced to a small number of
algebraic facts, which can be accommodated within the discrete world.

For very simple problems, this approach can almost be convincing, aside from the fact that the
collection of algebraic facts that are accumulated, usually fail to come with the necessary invariants that
bind them together — precisely because the required invariants emerge from the continuous world, which
is being studiously ignored. Obviously this undermines theintegrity of such a technique and weakens
the dependability that it can deliver.

For more complex systems, the problem only gets worse. First, the design is approached from the
purely continuous side (since it is too complicated to ignore the continuous aspects altogether). Con-
ventional techniques from the continuous sphere are applied, until the design has reached a reasonable
state. Then, some engineering heuristics are applied that turn a continuous design into a discrete one,
after which, a kind of collective amnesia takes place. All thoughts of the continuous world are forgotten,
and the discrete design that emerged from the earlier activity —which is regarded now as the top level
spec— is treated as if it were the most obvious and natural wayto abstractly specify the desired system.

Unfortunately, there is a major defect to this strategy. Specifications, by their nature, are intended to
be as clear and perspicuous as the intrinsic nature of the problem will allow, so that they can be clearly
related to domain level requirements, and properly understood by all problem domain stakeholders as
easily as possible. An essential ingredient of this is simplicity of expression and of structure. The B
Method [2, 3] —which is our concern in this paper— more than most, stresses the importance of starting
out with a clear and simple view of the system-to-be, and of adding the complexity only gradually.
However, that which is clear and perspicuous in the continuous world is not the same as that which
is clear and perspicuous in the discrete world. The limitingprocesses that go into the construction of
continuous world quantities, sweep away vast (in fact unbounded) quantities of the discrete level detail
that goes into their bottom-up construction. This radically changes the nature of what is ‘simple’ in the
two worlds.

In this paper we extend the formalism of Event-B so that it candeal with continuous behaviour
as a first class citizen. This extends the reach of the B Methodso that it is better able to capture the
kind of developments needed to realise the cyber-physical systems spoken of earlier. As a byproduct, in
enabling continuous behaviour to occur in native fashion atthe most abstract levels of the development,
the complex, unintuitive detail manufactured by discretization processes, takes its rightful place at the
intermediate levels of a more broadly based development.

In cyber-physical systems design, the communication side of the communication / continuous inter-
play that has to be faced, can be handled by relatively conventional means. After all, communicating
systems have been studied in computer science for many years, and Event-B is no exception in providing
many examples of the modeling of communication (see e.g. [3]). This leaves the continuous side to be
faced, and our extension of Event-B enables it to encompass hybrid behaviour in a first class way. This
is the main objective of the present paper.
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Our extension of Event-B is designed to cause as little disruption as possible to the existing structure
of discrete Event-B. This point is important since considerable investment has already been made in tool
support for Event-B, through projects like RODIN [39], DEPLOY [21] and ADVANCE [4], resulting in
the current state of the Rodin tool [40]. This, we do not wish to spoil.

The remainder of the paper is as follows. In Section 2 we explore preexisting work in more detail
and contrast some of its common features with what we do in this paper. In Section 3 we briefly review
discrete Event-B. Section 4 is concerned with setting out the semantic foundations for incorporating
continuous behaviours into Event-B in our approach. In Section 5 we define the core syntax of our
Event-B extension, indicating how the issues discussed previously relate to it. In Section 7 we discuss
the formal semantics of our framework, relying on standard results from the literature to handle routine
matters. In Section 8 we discuss refinement in the extended Event-B framework. Section 9 collects
together the proof obligations that keep all the issues discussed previously under control in a specific
development. Section 10 describes a number of small case studies, starting with the bouncing ball,
continuing with a simple discretization of continuous behaviour, and culminating with a simple study of
the European Train Control System. Section 11 concludes.

2. Related Work and the Hybrid Event-B Approach

The framework for Hybrid Event-B that we will build below is similar in many respects to a num-
ber of formulations of hybrid systems in the literature. Hybrid systems themselves have been stud-
ied intensively for many years, and the literature is too large by now to cover everything in detail
here. Some of the earliest work includes [35, 5, 6, 28, 33]. Shortly after these papers appeared, other
works such as [34, 24, 25, 53] and [26, 43, 22, 8] were published. Slightly later formulations include
[33, 14, 29, 30, 17, 7, 16, 23]. Of particular note is the survey [15], which covers a large number of these
formulations, and especially, the tools that support them.A modern and unified theoretical overview of
many of these established approaches is to be found in [46], and there is [38] which is closest to our
approach. Moreover, a large body of work has appeared in theInternational Conference on Hybrid Sys-
tems: Computation and Controlseries of international meetings, and this, combined with the modern
trends noted above, has joined with other relevant events, creating the major annualCPS Weekmeeting
in recent years. We now comment on three characteristic thatare frequently seen in this class of system.

The first characteristic of many extant systems for addressing hybrid behaviour, is that they are
conceived with the strategy of verifying that a given hybridsystem satisfies some desirable property
— obviously this is a laudable aim in itself. Unfortunately,any language that is expressive enough to
encompass a significant portion of hybrid behaviour is highly undecidable. As a consequence, the desire
to make mechanisable inroads into the verification high level goal has led to many systems that curtail
quite severely the expressivity of the language used to describe the candidate hybrid system, in order
to lend some decidability to the problem. Even so, the neededdecision procedures often have high
complexity, adding yet more difficulties.

The second characteristic comes from this severe curtailment of expressivity inherent in the strategy
just described, which chimes with a kind of bottom up approach. If one cannot express a problem
in the most transparent way, its description will most likely reduce to a complex set of lower level
subproblems (such as with discretization, discussed above). This only makes worse any challenge from
high complexity decision procedures.

The third characteristic is a typical further consequence of this kind of strategy, namely that the con-
nection between the formal description of the two sides of the framework can become weak. While the
discrete side is invariably captured quite precisely, the side of the formalism that deals with the contin-
uous side is either: precise but severely curtailed in expressivity; or is more encompassing regarding
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the admitted continuous behaviour but significantly less precise regarding its foundations — in extreme
cases delegatingall aspects of continuous behaviour to, e.g., the semantics of asimulation tool.3

The extent to which any of these characteristics is present in any given formalism varies widely, of
course. Our own approach for Hybrid Event-B attempts to bypass some of these difficulties by advocating
a top down methodology. By starting with simple models, and designing the properties that they should
satisfy along with them (rather than trying to discover those post hoc), and enriching both along the
way to the final system, the aim is to keep the tractability of all aspects of design and verification much
higher than if one was confronted with the final system outright — without any clues as to its underlying
structure or design motivations.

A salient characteristic of the B-Method in general, of Event-B in particular, and of our hybrid
extension of it, is the extent to which the top down approach is integral to the formalism. This approach
has given Event-B considerable momentum worldwide [47], good reason to inspire our hybrid extension
of it here. The top down approach also has some consequences regarding the issues mentioned above,
which we comment on now.

Regarding verification, because we model at the highest level of abstraction possible, we avoid the
pitfalls of an inherently bottom up approach, that would be forced by a low degree of expressivity. This
has the advantage that we can attempt verification where it potentially has the least complexity; but it also
has the disadvantage that we can easily write down models forwhich no verification strategy is known.
We elaborate this point further shortly.

Regarding concerns about the formal description of the framework, our approach to the design of Hy-
brid Event-B is more readily distinguished from alternative approaches. First and foremost, we ground
the semantics of the Hybrid Event-B framework-to-be in established facts from the world of textbook
pure mathematics (facts concerning properties of suitablefamilies of piecewise continuous real func-
tions). This standpoint separates soundness-in-principle of the formalism (established by appeal to facts
from mathematical analysis) from verifiability-in-practice (performed by executable algorithms running
with acceptable complexity on specific classes of examples)— and leads to situations in which we know
(semantically) certain generic facts on which we can rely, even though, in specific instances we cannot
calculate their consequences. Still, this approach gives our formulation an equally consistent level of
formal rigour for both the discrete and continuous parts of the theory, at least in principle.

In this paper we focus on the generic formal semantics. The preceding remarks imply that there is
a non-trivial road to be navigated from the generic semanticworld to the world of verifiable problem
instances. We do not embark on that road in this paper, postponing those details to other publications.

Verifiability in practice is the primary concern of tools, and along with the theoretical development
of this paper, there is an intention to enhance the Rodin tool[39] to incorporate the capability to verify
suitable classes of practical examples. Typically, this capability will be somewhat open-ended, in line
with the vast range of applied mathematics about which detailed consequences can be calculated, and
the capability of the extended tool at any point will depend on the effort invested in tool enhancement up
till then.4

What is needed for comprehensive verification goes beyond mere calculation of some continuous
behaviour. Looking forward to the needs of the formal semantics, we require the calculation of the times
of preemption of an episode of continuous behaviour by the next discrete transition, and the confirmation
of invariants over a period of time; looking towards the needs of refinement, we additionally require
confirmation of joint invariants over time. All this requires significant capability in symbolic calculation

3In fact, the behaviour of many commercial simulation tools intended for the modelling of physical systems is highly
customer-driven, and makes no real contact with any foundational semantic concerns whatsoever [36].

4Thus, we envisage tool capability increasing over time. Despite this though,everyversion of such a tool will engage with
some subset of the semantic world described in this paper, simplifying the conceptual challenge for practitioners.
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for the tool, making the design of a suitable verification environment non-trivial, as stated.
Beyond these aspects, there are questions regarding the useof heuristic techniques, and of implemen-

tation. The reach of purely symbolic techniques will not cover all cases of interest, so more approximate
techniques will need to be incorporated into the methodology. And when modelling has reached a suf-
ficiently low level, code generation for appropriate parts of the system becomes relevant. Ideally, these
aspects would be controlled by suitably incisive invariants, but it is to be noted that reasoning about
approximate techniques is usually as difficult as the issuesthat cause their use in the first place, so this
ideal may not be completely attainable.

Putting aside these questions of Hybrid Event-B internal strategy, the picture of system behaviour
that it offers is quite similar to that offered by many of the systems mentioned at the beginning of this
section. The majority of the works mentioned take an automata-theoretic view of hybrid systems, having
named states for the discrete control. Within each of these,continuous behaviour evolves until the next
preemption point, which is triggered by the truth of the guard condition of the next discrete state. We
achieve a similar effect via the mode and pliant events of Hybrid Event-B, described below.

This relatively small degree of difference between formulations is in fact reassuring since, in Hybrid
Event-B and in other approaches, among many things, we need to describe the physical world, and the
physical world is as it is. Obviously, to be effective, any description of it must conform to the single
existing reality. The combination of isolated discontinuous change of state, together with smoothly
continuous behaviour has proved to be a useful framework in anumber of formulations at the level of
abstraction needed for applications.

3. Discrete Event-B

In this section we summarise discrete Event-B [3]. Event-B is characterised by proof obligations
(POs) that define what consistency means for constructs, andfor relationships between constructs. In
keeping with a style we will follow throughout the paper, we do not quote the POs formally as we
discuss various issues in the body of the paper, instead we accumulate all the POs, in Section 9, using a
consistent notation, for better reference. The exception to this is when a PO of discrete Event-B needs to
be modified in some way for the continuous extension. Then we quote the original form here.

3.1. Event-B Machines

Event-B consists of MACHINEs, supported by CONTEXTs. Contexts define the static data envi-
ronment within which the dynamic behaviour of the machines takes place. Fig. 1 contains a context and
a machine that depends on it. Contexts typically define sets and constants, the latter being any static
mathematical objects needed by the machines that use them. Relationships between the objects intro-
duced can be asserted using AXIOMS. Further properties thatfollow from those that are asserted may be
declared in THEOREMS, which must be provable from the axioms. Furthermore, a context may extend
another via an EXTENDS clause, making the entities defined there available.

An event has a STATUS field which indicates the role it plays inthe development as a whole. An
event may haveparameters, declared by ANY. In general these includeinputs, local parametersand
outputs, indicated using notationsi?, l,o! respectively. While inputs and outputs are connected with
the environment in the expected way, local parameters serveto resolve inherent nondeterminism in the
event’s actions. The WHERE clause gives theguards, which specify any constraints that the parameters
have to satisfy, and any other conditions that have to hold before the event is enabled. If there are no
parameters, then ANY. . . WHERE is abbreviated to WHEN. The THEN clause gives theactionswhich
specify the required updates to the values of the VARIABLES (i.e. specify the required change of state).
Actions that update a set of variablesvar may take the most general formvar :| BApred(var,var′), where
BApred(var,var′) is a before-after predicatedepending on the before-valuesvar and the after-values
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MACHINE Nodes
SEES NCtx
VARIABLES nod
INVARIANTS

nod∈ P(NSet)
EVENTS

INITIALISATION
STATUS ordinary
BEGIN

nod := ∅

END
. . . . . . . . . . . .

. . . . . . . . . . . .
AddNode

STATUS ordinary
ANY n
WHERE n∈ NSet−nod
THEN nod := nod∪{n}
END

END

CONTEXT NCtx
SETS NSet
CONSTANTS aa,bb,cc,dd
AXIOMS NSet= {aa,bb,cc,dd}
END

Figure 1: A simple Event-B machine, together with its context.

var′, and specifying thatvar is to be updated to any after-values such thatBApredis satisfied. There are
simpler forms, e.g.var := E(var), to handle straightforward assignment to the value of an expression.
Among the events there is theINITIALISATIONevent, whose guard is posited to betrue (indicated by
the guardless BEGIN ... END syntax).

The behaviour of a machine must respect the INVARIANTS. Thishas a number of consequences.
Firstly, the values established by the initialisation mustsatisfy the invariants. This is expressed formally
in POs (11) and (12).

Secondly, each variable update must also preserve the invariants. Variable updates are implemented
by event executions. If an event is to be executed, it must be enabled and be feasible. An event is enabled
in the current state, if the event’s guards are true in this state for an appropriate choice of values for
the parameters. An event is said to be feasible iff, wheneverin a putative before-state the invariants are
true and the event’s guards are also true, then there is an after-state for which the event’s before-after-
predicate becomes true (when evaluated with the mentioned before-state). This is expressed formally in
PO (13). Furthermore, a feasible event is required to preserve the invariants. So if the invariants and the
event’s guards are true, and a chosen after-state makes the before-after-predicate true, then the after-state
must also make the invariants true. This is expressed formally in PO (15).

For non-terminating systems, after every event, some eventmust become enabled. Since this is one
point at which the conditions for discrete Event-B differ from those for our continuous extension, we
quote the discrete Event-B PO here:

I(u)⇒ (grdMoEv1(u, l) ∨ grdMoEv2(u, l) ∨ . . . ∨ grdMoEvN(u, l)) (1)

In (1), MoEv1. . .MoEvN are the requisite events, withl as the parameter for each of them, andI(u) is
the invariant, whereu is the state variable. For simplicity, we assumed that all parameter types were the
same. It is possible to be more specific by separately quantifying each parameter occurrence.

3.2. Event-B Refinement

In Event-B, development progresses towards implementation via refinement. We give a small exam-
ple of Event-B refinement in Fig. 2. It enhances the node set example above with a dynamically added
set of node pairs, yielding a dynamically generated directed graph structure. The requirement of having
directed edges between graph nodes is handled by adding a newvariables, invariants and a new event
AddEdge. SinceAddEdgedoes not refine any existing event, its occurrences at runtime are considered
to refine a ‘notional abstractskip’ event that is not present in the abstract model. Also, to prevent new
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MACHINE Nodes

SEES NCtx
VARIABLES nod
INVARIANTS

nod∈ P(NSet)

EVENTS
INITIALISATION

STATUS ordinary

BEGIN
nod := ∅

END
AddNode

STATUS ordinary

ANY n
WHERE n∈NSet−nod
THEN nod := nod∪{n}
END

END

MACHINE Edges
REFINES Nodes
SEES NCtx
VARIABLES nod,edg
INVARIANTS

nod∈ P(NSet)
edg∈ P(NSet×NSet)
edg⊆ nod×nod

EVENTS
INITIALISATION

STATUS ordinary
REFINES INITIALISATION
BEGIN

nod:= ∅ || edg:= ∅

END
AddNode

STATUS ordinary
REFINES AddNode
ANY n
WHERE n∈ NSet−nod
THEN nod := nod∪{n}
END

AddEdge
STATUS convergent
ANY n,m
WHERE {n,m} ⊆ nod

n 7→m∈NSet×NSet−edg
THEN edg:= edg∪{n 7→m}
END

VARIANT card(NSet×NSet−edg)
END

Figure 2: A refinement of the earlier Event-B machine.

events from taking permanent control at runtime, they must be ‘convergent’, i.e. they must decrease the
N-valued VARIANT, ensuring relative deadlock freedom.

Ensuring the proper operation of this process is a collection of POs. These cover initialisation (20)
and (21), feasibility and refinement of existing events (22)-(27), and ‘refinement ofskip’ behaviour and
convergence of ‘new’ events (28)-(29). Finally, a machine can also contain THEOREMS, which must be
provable from the facts available to the machine.

4. Continuous Behaviours

In this section, we discuss, at an appropriately informal level, a number of issues that influence the
way that our extension of discrete Event-B is designed.

4.0. Discrete Event-B behaviours.The states of an Event-B machine are given by valuations of the
tuple of the machine’s variables, i.e. functions from the tuple of variables that yield a tuple of values.
Runs of Event-B machines are given as sequences of such valuations, each valuation being generated
from its predecessor by some event. Of course, this does not correspond to the real world, where time is
not discrete. So when runs of an Event-B machine are intendedto reflect real world behaviour, each state
is deemed to persist for an appropriate interval of time, andis then superseded by its successor. So the
time dependence of the state is piecewise constant. In this paper, we extend this picture to also include
continuously varying behaviour, taking into account several points as follows.
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4.1. Time. We model time as an intervalT of the realsR, with a finite left endpoint and with a
right endpoint which is either finite or infinite, depending on whether the dynamics is finite or infinite,
and on whether the final transition (if there is one) lasts forever or not. The values of all variables
become functions ofT . In our semantics, we will allow change of state to happen both continuously,
and discontinuously. The discontinuous changes are restricted to isolated time points, so thatT partitions
into a sequence of intervals,T ≡ 〈[t0 . . . t1), [t1 . . . t2), . . .〉, each non-empty, left-closed, right-open. Times
t0, t1, t2, t3, . . . specify the coarsest partition ofT such that all mode transitions (specifying discontinuous
change, see 4.6) take place at some boundary pointti .5 Note that theti are not givena priori but emerge
via the runtime semantics. Additionally, below, ‘piecewise continuous’ always means continuous on
non-empty, left-closed, right-open intervals.

4.2. Variables.Variables are partitioned into two subsets:mode variables, which are only permitted to
change discontinuously, andpliant variables, whose types include topologically dense sets, and which
are permitted to evolve both continuously and via discrete changes. Restricting to mode variables, we re-
cover conventional Event-B. In practice, the pliant variables take values in ‘nice’ subsets ofR, i.e. subsets
that can be specified by simple first order constraints overR-valued variables. This is certainly needed
if the formal semantics of Section 7 is to be made precise. Still, such constraints are quite sufficient to
construct many quite exotic scenarios using the usual combinators.

4.3. Limits. We consider now how discontinuities are handled. For every variablex, and for every time

t ∈ T , the left limit limδ→0x(t−δ) written
−→
x(t) and right limit limδ→0 x(t+δ), written

←−
x(t) (with δ > 0 in

both cases) both exist, and for everyt, x(t) =
←−
x(t). (At the endpoint(s) ofT , if is needed for any purpose,

any missing limit is defined to equal its counterpart.) Thus all valuations are continuous from the right
and have limits from the left. This space of functions is commonly known as Càdlàg,6 and is much used
in stochastic analysis (pointing to a subsequent smooth stochastic extension of our theory).

4.4. Differentiability. In an interval[ti . . . ti+1), the behaviour of every pliant variablex is given, piece-
wise, by the solution of a well posed initial value problemDxs= φ(xs, t) (wherexs is a relevant tuple
of pliant variables andD is the time derivative). ‘Well posed’ implies two conditions. Firstly: φ(xs, t)
has a Lipschitz constant which is uniformly bounded over[ti . . . ti+1). Specifically, there is a constantK
such that for allt ∈ [ti . . . ti+1), we have||φ(xs1, t)− φ(xs2, t) || ≤ K || xs1− xs2 ||. Secondly:φ(xs, t) is
measurable int. (In the preceding,|| . || denotes theL∞ norm of a real vector, i.e. the maximum absolute
value of any of its components.) The conditions stated for the DEDxs= φ imply that once initial values
are specified, the solutionxsexists and is unique in the Carathéodory sense, and is absolutely continuous
over some maximal right-open interval. (See e.g. [48] for differential equations, and [50, 41, 32] for
the biimplication betweenabsolutecontinuity and differentiability almost everywhere (amounting to the
Carathéodory interpretation of DEs).)

We included the word ‘piecewise’ here, because, for convenience and modelling fluency, pliant vari-
ables may also be directly assigned, e.g.xs := E. (See Section 5.) The expressionE is constrained to
yield piecewise absolutely continuous behaviour forxsduring a left-closed right-open interval[ti . . . ti+1).
Thus, although a DE will yield absolutely continuous valuesduring [ti . . . ti+1), a direct assignment may
have isolated discontinuities coming from the nature ofE and not from machineM ’s mode events.

4.5. Zeno.We desire a constantδZeno, such that for alli that are relevant,ti+1− ti ≥ δZeno. We say ‘de-
sire’, since Zeno properties are extremely hard to establish statically, usually requiring a full knowledge

5Various approaches to hybrid system and timed automaton semantics take varying views on the closedness/openness of the
intervals dividing up real time. All can be related to one another, modulo some low level technical details.

6From the French: continue à droite, limite à gauche.

8



of the dynamics. Moreover, in idealised modelling situations, Zeno behaviour may be tolerable, even if
it is always unphysical in reality. Still, it would typically pose problems for mechanical calculation.7

4.6. Transitions. With the distinction between mode and pliant variables, there is a distinction between
mode transitions andpliant transitions . Mode transitions are just conventional Event-B transitions,
recording a discrete transition from before-values to after-values of some subset of (mode and pliant)
variables, specified syntactically by an Event-Bmode event.

Pliant transitions record piecewise continuous behaviourof some pliant variables during an interval
[ti . . . ti+1). Since any such interval is only determined at runtime, valuesti andti+1 are unknown statically.
So we introduce two generic constants,tL andtR, to refer to the start and end of any such interval, both
in the concrete syntax of the system definition, and in our discourse about its behaviour.

Pliant transitions are syntactically specified bypliant events. A pliant event can specify the initial
conditions that have to hold for the pliant variables. It canalso specify other guard conditions needed for
the enabledness of the pliant transition (typically concerning mode variables). It also specifies the DE to
be obeyed (subject to the conditions in 4.4).

As an alternative to writing a differential equation, if therequired continuous behaviour is directly
known, then it may be directly assigned to the pliant variable instead of writing a corresponding DE.
Obviously this is very convenient, but to avert the pathologies inherent in mere continuity,8 we insist that
such continuous behaviours should also be piecewise absolutely continuous solutions to well posed initial
value problems. One consequence of allowing direct assignments, is the possibility of discontinuities in
the pliant variable behaviour being defined during[tL . . .tR), as noted in 4.4.

Additionally, any further constraints that need to hold while the pliant transition runs can be specified
within the pliant event. Parameters may be introduced in a pliant event. Their syntactic scope is the whole
of the pliant event, and at runtime, they refer to functions of time over the interior of the relevant time
interval,(tL . . .tR)). Inputs and local parameters should have the same properties as pliant variables. So
they should be piecewise absolutely continuous solutions to well posed initial value problems.

4.7. Syntactic aspects of time.The semantic aspects of time must be connected with the syntax of
events. Because of its special properties, i.e. as a read-only variable, the time variable must be declared
as such. It is necessary to declare the initial value ofT , most conveniently done in theINITIALISATION.
We also admitclocks. A clock, by definition, increases at the same rate as time during every pliant event
(i.e. its time derivative is 1), so this property need not be mentioned in the syntax. Clocks can be updated
in mode events. More exotic clocks can be implemented using normal pliant variables.

4.8. Interpretation of mode events.In discrete Event-B, an event describes how two successive valu-
ations in a run are related. In Hybrid Event-B, if the mode transition is regarded as taking place at time
tq, then the before-values are normally interpreted as the left limits of the valuations attq, and the after-
values are the right limits (which equal their values attq itself). Note that the parameters are regarded as
being defined only at the timetq itself, so do not possess limits.

The exception to ‘normally’ occurs when a pliant variable undergoes a discontinuity (at timetq say)
arising from a direct assignment (as in 4.4 and 4.6), and the after-value of the discontinuity enables the
mode event (whether the before-value does so or not). Then, to aid fluency in modelling, particularly of
edge-triggered phenomena, the discontinuity after-valueplays the role of mode event before-value, the

7Our approach contrasts with many other approaches to the Zeno problem, which demand that any finite time interval
contains only a finite number of transitions, or that the sequence of discrete transition times contains no accumulationpoints.
But this still permits the sequence of times specified byti+1− ti = 1/i, which, while satisfying the mentioned restrictions,
nevertheless allows theti to get arbitrarily (and thus unphysically) close together.

8See standard texts on mathematical analysis, e.g. [42, 31, 27].
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mode event executes attq, and variable values attq become as specified for after-values in the assignments
of the mode event.

4.9. Interpretation of pliant events. As noted already, there are two ways of specifying pliant be-
haviour: via a DE, and directly. In both cases, the right handside of the DE or assignment, may contain
discontinuities. In the DE case,Dxs= φ, the Carathéodory interpretation integrates over any disconti-
nuity in φ, yielding behaviour that although absolutely continuous,is nonsmooth. See e.g. [19, 20].

In the direct assignment case,xs:= E, any discontinuity inE remains visible inxs. Piecewise absolute
continuity of E thus yields piecewise absolute continuity ofxs. The interaction of such discontinuities
with the enabling of mode events requires care, as already noted. If the discontinuity after-value en-
ables the mode event, then the discontinuity after-value issuperseded by the mode event after-value.
(N. B. We deliberately disregard the case where the discontinuity before-value enables a mode event but
the discontinuity after-value doesn’t.)

The solution to a DE gives rise to its transition relationQ. For an interval such as[tL . . .tR), for
t ∈ (tL . . .tR), Q(tL, t) is a t-indexed set of before-/after-value pairs, relating the valuation at timetL to
the valuation at timet. This gives perhaps the closest correspondence to the before-after picture familiar
from the discrete world. For direct assignments, the picture is exactly the same; any discontinuities
encountered are not visible (as such) in the individualQ(tL , t) pairs of values.

Although beyond the scope of this paper, an additional benefit of the formalism described, arises in
multi-machine systems. There, a mode transition in one machine may be sensed as a kink or discontinuity
during pliant behaviour in another machine which does not experience a mode transition at the same time.

4.10. Mode and pliant event interleaving.In 4.0 we indicated that discrete Event-B transitions were
isolated from each other in time, and that we want to preservethis picture in Hybrid Event-B. Conse-
quently, pliant transitions and mode transitions must alternate. To ensure this, we stipulate that both kinds
of events are feasible, and that at run time, each kind of transition enables the other kind. Therefore a
Hybrid Event-B run ought to have the following properties, where we assume that the machine contains
anINITIALISATIONmode event to start a system run.

• Every enabled mode transition is feasible, i.e. has an after-state, and on its completion enables
a pliant transition (but does not enable any mode transition).9,10

(2)

• Every enabled pliant transition is feasible, i.e. has a time-indexed family of after-states, and
EITHER:

(i) During the run of the pliant transition a mode transitionbecomes enabled. Such a mode
transition preempts the pliant transition, and defines the end of its family of after-states.
ORELSE

(ii) During the run of the pliant transition it becomes infeasible, i.e. for some point in time,
all the conditions stipulated cannot be satisfied simultaneously — finite termination.
ORELSE

(iii) The pliant transition continues indefinitely — non-termination.

(3)

It is clear from (2), (3) that the time pointsti for a given run emerge at runtime. The construction of a
given system trace thus proceeds piece by piece, determining the ti as it goes. The set of successfully
constructed system traces will constitute the semantics ofthe system. See Section 7 for details.

4.11. Preemption. In (3), and in earlier discussion, it is clear that as soon as amode event becomes
enabled, it preempts the current pliant event. Thiseagerscheduling of mode events in Hybrid Event-B
is the sharpest departure from discrete Event-B, since discrete Event-B schedules eventslazily, as noted
in 4.0. The difference is motivated by physical law, which isso relevant to the systems for which Hybrid
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MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x,y
VARIABLES u
INVARIANTS

x∈ R

y∈R

u∈ N

EVENTS
INITIALISATION

STATUS ordinary
WHEN

t = 0
THEN

clk := 1
x := x0
y := y0
u := u0

END
. . . . . .

. . . . . .
MoEv

STATUS ordinary
ANY i?, l,o!
WHERE grd(x,y,u, i?, l, t,clk)
THEN

x,y,u,o!,clk :| BApred(
x,y,u, i?, l, t,clk,x′,y′,u′,o!,clk′)

END
PliEv

STATUS pliant
INIT iv(x,y,u, t,clk)
WHERE grd(u)
ANY i?, l,o!
COMPLY BDApred(x,y,u, i?, l,o!, t,clk)
SOLVE Dx = φ(x,y,u, i?, l, t,clk)

y,o! := E(x,u, i?, l, t,clk)
END

END

Figure 3: A schematic Hybrid Event-B machine.

Event-B is intended. Physical laws are all eager: e.g. a falling bouncing ball, when it hits a horizontal
surface, does not have any choice about when to bounce up again; see Section 10.1 for more discussion.

5. Syntax of Core Hybrid Event-B Machines

Fig. 3 shows the elements of a Hybrid Event-B machine. After the machine name is the TIME
declaration, which names the variable used to denote real time (if needed). This permits read-only access
to time in the rest of the machine. Time is synchronised (via aWHEN clause) with the start of a run in the
INITIALISATION. Next comes a CLOCK variableclk. This allows the restrictions discussed in Section
4.7 to be enforced. Then come the PLIANT and VARIABLES declarations. The former introduces the
pliant variables, while the latter introduces the mode variables.

Next come the INVARIANTS. Where these declare typing information, the conventions used in
discrete Event-B are extended to Hybrid Event-B in that the type of a pliant variable such asx or y in
Fig. 3 is the set of values that it can takeat any given moment of time(specificallyR in the case ofx,y).11

Other invariants may be written as usual. The fact that time dependence isnot part of the type of any
variable, means that an occurrence of a variable in an invariant necessarily refers to its current value,
which is at an arbitrary time during a system run. Consequently any invariant expression written in the
INVARIANTS section has to be trueat all timesduring a system run.

9We deliberately forbid successive mode transitions to occur, as is permitted in some alternative frameworks. This prevents
the semantics of a ‘mode event cascade’ having to be defined via a fixed point calculation, and permits the characterisation of
system traces as functions of time for each variable.

Regarding interfacing between continuous and discrete behaviour, it is helpful to have the discrete behaviours described in
straightforward before-after terms. Such specifications can subsequently be refined to sequential code by conventional means,
outside of, and below the level of abstraction of the presentformalism.

10If a mode event has an input parameter, to facilitate simplermodelling, the semantics assumes that its value only becomes
available at a time strictly later than the previous occurrence of a mode event, ensuring part of (2) automatically.

11In particular, in our formulation, the type of a pliant variable such asx is not, for example,R+→R (as it would be in some
related formalisms), i.e. the time dependence isnot mentioned explicitly in the type.
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Then come the EVENTS, starting with theINITIALISATION. The STATUS ofINITIALISATION
is ‘ordinary’ — for simplicity, existing event status designations are taken over from discrete Event-B
for mode events. The initial value of real time is synchronised to the initial state of the machine in the
WHEN clause. Real time is read-only; it is never assigned. Other variables are assigned their initial
values as usual, including assignment of initial values to clocks. If a nondeterministic initial assignment
to some variables is needed, it can be achieved via the usual ANY . . . WHERE. . . THEN . . . mechanism.

Then come the remaining mode events and pliant events. Mode events are as in discrete Event-B,
aside from timing details, discussed in Sections 4.8 and 6.13. A mode eventMoEvappears in Fig. 3.

Pliant events need new syntax. As mentioned in Section 4.6, pliant variables can be assigned values
either via the solution of a DE, or directly by being assignedthe value of a (time dependent) expression,
or indeed by being assigned a value consistent with some (time dependent) predicate. We have a flexible
syntax that accommodates all these possibilities.

A schematic pliant event is shown inPliEv. It starts with a new status declaration, ‘STATUS: pliant’,
on which the remaining new syntax depends. Next come two guard clauses. The INIT guard specifies
initial constraints that must hold concerning the pliant variables (and, if any, constraints that mix mode
and pliant variables), and the WHERE guard specifies initialconstraints that must hold concerning mode
variables alone.12

The ANY clause introduces parametersi?, l,o!, satisfying the restrictions mentioned in Section 4.6.
As with mode events, if there is no ANY clause, the WHERE clause can be renamed WHEN.

The COMPLY clause defines a before-during-after-predicateBDApred(x,y,u, i?, l,o!, t,clk). The
BDApredpredicate defines conditions that must hold for the durationof any pliant transition speci-
fied by PliEv. If BDApredis sharp enough, orPliEv is being specified in a sufficiently loose manner,
thenBDApredalone may be enough to specify the behaviour required ofPliEv. As an expressiveness
metaphor for the convenience of modellers, we allow pliant variables in COMPLY clauses to refer to
time explicitly. Thus we permit occurrences of terms like ‘Ξ(y(ex), . . .)’, whereΞ is a predicate,y is a
pliant variable andex is an expression that evaluates to a time betweentL andt.

Otherwise, the behaviour of the pliant variables during anypliant transition specified byPliEv may
be further constrained by the SOLVE clause. This can containDEs and direct assignments of pliant
variables and outputs. The form of any DE in the SOLVE clause is required to be in general first order
form, Dx = φ, as discussed earlier, guaranteeing existence and uniqueness via standard machinery [48].

A direct assignmenty,o! := E is acceptable providedE is a piecewise absolutely continuous function
of its piecewise absolutely continuous parameters. In thatcase, direct assignment is equivalent to solving
Dy,Do! = DE, where the solution is reinitialised at points of discontinuity of E, and provided that it
yields a consistent solution.

Although we are quite precise about the structure and meaning of SOLVE clauses, we are less pre-
scriptive about the COMPLY clause (although, in practice, it will typically consist of straightforward al-
gebraic constraints on the variables). To see why, considera COMPLY clause likex∈ [0. . .1]. Unlike dis-
crete Event-B, this specifies a time indexed family of assignments of values tox(t) for all t ∈ (tL . . .tR).
Without any further restriction, this allows the functionx(t) to vary uncontrollably, despite the extreme
simplicity of the constraintx ∈ [0. . .1]. To address this, we stipulate that of all the functions oft that
the bareBDApredin the COMPLY clause admits for the pliant variables, we consider only those that are
piecewise absolutely continuous fort ∈ [tL . . .tR). Thereby, we restrict the pliant variable behaviours
mentioned in theBDApredto the same class of time functions that are specifiable usingthe earlier DE
and direct assignment forms.

To aid modelling fluency, we define two further constructs permitted to occur as top level conjuncts

12There is no evident reason why initial constraints on mode and pliant variable might be separated, but it proves useful later.
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in COMPLY clauses:skip andINVARIANTS. The former specifies constant behaviour, while the latter
allows arbitrary piecewise absolutely continuous behaviour, provided the machine’s invariants are re-
spected. Both constructs can be used to specify behaviour for pliant variables not otherwise constrained
in the event. To further simplify model description, when atleast one of the COMPLY or SOLVE clauses
contains non-trivial content, COMPLYINVARIANTSis understood to apply to any pliant variables whose
behaviour is not specified in these clauses. So COMPLYINVARIANTSonly needs to be written when
both the COMPLY and SOLVE clauses have no (other) content. However, we insist that COMPLYskip
must always be written when needed, since it defines specific behaviour.

In total then, the set of permitted behaviours for the pliantvariables defined by a pliant event, consists
of the intersection of those permitted by the COMPLY clause and those permitted by the SOLVE clause.

As already mentioned, in the absence of a SOLVE clause, the COMPLY clause can serve as an
implicit specification of the required behaviour. This makes it very useful for specifying behaviours that
have to obey global (though potentially time-dependent) constraints, without committing to any specific
dynamics. We call such specificationspliant envelopes.13

Overall machine consistency requires that we check variousproperties of a Hybrid Event-B machine.
Fortunately, a good portion of these are taken care of already in the purely discrete Event-B framework,
and we have commented on them in Section 3. What remains are POs relevant exclusively to pliant
events, and to the interaction between mode and pliant events.

Turning to the pliant event POs, pliant events firstly have tobe feasible. This means that at a presumed
starting timetL , given that the invariants hold and theiv andgrd clauses of the pliant event also hold,
then for some duration of the pliant event defined bytR > tL , for all times t ∈ (tL . . .tR), values for
the variables exist, that satisfy the specification of the pliant event, i.e. that the COMPLY and SOLVE
clauses are satisfied. The formal PO is (14).

Pliant events have to preserve the invariants. Thus, if attL we have the invariants, and in the interval
to tR a behaviour of the system satisfies the COMPLY and SOLVE clauses, then that behaviour must
also satisfy the invariants throughout this interval. The formal PO is (16).

Note that a subtlety arises concerning the failure of invariants andBDA predicates. If an invariant
ever fails during the construction of a system trace, then that trace is abandoned; failure of invariants
is not permitted. However, if aBDA predicate fails during the construction of a system trace, it simply
indicates that the pliant transition in question has becomeinfeasible. Such infeasibility just indicates
finite termination if no mode event became enabled during thecourse of the transition, c.f. (3).

Machine well-formedness is concerned with the expected alternation between mode and pliant tran-
sitions in a run. In going from a mode transition to a pliant transition, we demand that in any mode
transition after-state, no mode event guard is true for any choice of parameter, but that some pliant event
guard is true. The formal PO is (17). Conversely, in going from a pliant transition to a mode transition,
we demand that no mode event is ever enabledduring the transition, but thateither the values of the
variables at the endpointtR, do enable some mode event for some parameter,or the left limits attR

enable a mode event in case values attR do not exist.14

We still have to be careful though. A final pliant transition runs forever or till it becomes infeasible.
If we require such a final pliant transition in the system, forthe relevant proof obligation to be effective
(i.e. to not fail on final pliant transitions), we need to knowstatically which pliant events are supposed

13In [38] and in other works by Platzer, such specifications arecalleddifferential invariants. In the context of Event-B, where
the word ‘invariant’ has strong connotations with literally time independent properties, we prefer an alternative terminology, to
avoid potential misunderstanding.

14Observe that this definition handles the pliant/mode issue of Sections 4.8 and 4.9. If a pliant behaviour is continuous attR
then both options are equivalent. If there is a discontinuity at tR, then presuming all discontinuities are right continuous (see
Section 4.0), the correct value is used for the mode event guard. Otherwise, the left limit must be used.
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to be final and which are not. For this purpose we introduce a new status tag for final pliant events,
‘STATUS: pliant final’. This declares the tagged event as a final one and prevents the relevant check
being demanded of it. See (18) for the formal PO.15

6. Further Technical Considerations

In this section we discuss some additional technical issuesregarding Hybrid Event-B machines.

6.12. Mode event guard closure.Suppose expressionx < 3 occurs in the guard of a mode eventMoEv,
wherex is a pliant variable. Supposexbehaves asx(t) = 4− t during a pliant transition, wheret starts at 0.
Eventually,MoEvwill become enabled, but since there is no ‘earliest timeimmediatelyaftert = 1’, MoEv
cannot execute at an identifiable time unless we replacex < 3 in the guard byx≤ 3, which becomes true
exactly att = 1 in our example. However, the negation ofx≤ 3 is x > 3, which resurrects the problem.
Our solution is toallow expressions likex< 3 in mode event guards, but tointerpret them at runtime via
the topological closure of the regions they define when constructing system traces. This interpretation
ensures that mode transitions occur at specific times, but also allows mode events with non-overlapping
guards (e.g. guards such asx≤ 3 together withx > 3, or more symmetrically,x < 3 together withx > 3)
to be easily defined for more fluent modelling and reasoning purposes. In the semantics of Section 7,
we restrict to pliant variables whose values are in (subsetsof) R. For such variables, we need merely to
replace strict inequalities by nonstrict ones in determining guard closure.

We accept that adding such boundary values into mode event guards may give rise to pathological
counterexamples in which the trajectory does not satisfy event definitions, or invariants,as written. How-
ever, we claim that these will have little impact in practice, since for the kind of engineering applications
we envisage, the dynamics has to be locally stable in order tobe useful. So, a small disturbance to
trajectory data must have a relatively small effect on the trajectory, at least within some time range (the
acceptable limits on such disturbances being highly application dependent). The chief thing is that rea-
soning about the system model allows the maintenance of the invariants to be proved, since these express
what is important about the system. Provided any pathological behaviour permitted by the operational
semantics arises from a disturbance set of measure zero, we can ignore it for practical purposes.

6.13. Event parameter availability. In early versions of discrete Event-B, any parameters needed by an
event were simply assumed available, a natural view when parameters merely resolved nondeterminism.
However, in more recent versions incorporating code generation, parameters can also be input parameters
(decorated with ?), or output parameters (decorated with !); local parameters are written undecorated, as
before. Considering that in discrete Event-Ball connections with real time are neglected, the issue of
whenany parameter might become available does not really arise.

However, in Hybrid Event-B the issue needs more thought, because of the presence of real time.
There are two design decisions to be made, one for mode transitions and the other for pliant transitions.

For mode transitions, we stipulate that input parameters become available at some time which is
strictly greater than the time at which the most recent preceding mode transition occurred. At that
moment, nondeterminism is resolved by choice of local parameters, and output parameters are calculated
using the event’sBApred. The strict inequality prevents runs contravening the condition in (2), that
forbids a mode transition from immediately enabling another mode transition, and avoids the need to
complicate mode event guards to achieve this effect. This mechanism also gives a convenient way of
modelling stimuli from the environment that arise spontaneously (from the model’s viewpoint).

15Restricting to statically knowable final pliant events theoretically constricts computational expressivity, but does so in way
that can only be regarded as beneficial from an engineering standpoint.
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For pliant events, we stipulate that all required parameters are available immediately that values exist
(in the sense of existential quantification), that would enable the event, regardless of whether the event is
then scheduled for execution. In practice, since pliant transitions occupy extended periods of time, their
parameters will also need similar durations, so will most likely be held in permanent elements of any
actual implementation. However Hybrid Event-B makes no assumptions about this and only assumes
that parameters are available during transitions themselves.

6.14. Invariant checking. In modelling a system in which some physical attribute is to be confined to
some region, the simplest approach is to define an invariant that confines the relevant variable to that
region. Then enough events should be designed to ensure the invariant is maintained.

Often, mode events are involved in maintaining the invariant, having guards stating that the dynamics
is at the boundary of the region, and with actions that cause asuitable change of course. This raises a
technical niggle for the semantics.

In determining the trajectory of a pliant transition, the semantics first looks for the maximal interval
within which the pliant event specifies a consistent dynamics. Only then is the next preemption point
sought. In the situation we are discussing, the dynamics will therefore usually overshoot the desired
region’s boundary (breaking the invariant) before the discovery of the next preemption point. It is thus
important that the invariant is not checked before the next preemption point has been found.

As modelling descends towards implementation, we would normally expect there to be some toler-
ance between the true region boundary and a mode event guard’s view of it, to allow for quantization
errors and similar effects.

6.15.BDApredtR left-limits. The considerations that made us impose a closure interpretation on mode
event guards, and the remarks in 6.14, have implications also for theBDApredicates of pliant events. In
the earlier description, a pliant event gave rise to a transition whose duration was a left-closed right-open
interval [tL . . .tR), its right endpoint being determined by the next preemptionpoint, otherwise being
determined by infeasibility beyondtR. To maximise simplicity of modelling, we allow preemption to
be defined by the truth of a mode event guard for variable values which: either arise in the interior of
a piecewise absolutely continuous evolution,or arise asfinite limits at tR in case theBDApreddefining
feasibility is not true beyondtR.16

7. Formal Semantics

In this section we describe the formal semantics of Core Hybrid Event-B. In order to not waste space
on repeating routine material, we rely extensively on existing work. We rely on [3] (especially Chapters
5, 9, 14) for the semantics of discrete Event-B; and on [48] (especially Chapter III §10) for differential
equations in the sense of Carathéodory.

In this paper we define the semantics of a single Hybrid Event-B machineM . For simplicity, the
semantics performs several checks at runtime. In a practical system, most of this would be avoided by
imposing syntactic tests, which would provably guarantee the runtime semantics (see Section 9.15).

We turn to the semantics itself. Firstly, we make precise a few points of terminology and convention.

• Time, referred to ast, takes values in the real left-closed right-open set[t0 . . .+ ∞), wheret0
is an initial value for time. For every other system variablevar, there is a typeUvar. If var is
pliant, thenUvar is R.

(4)

16Note that the latter case precludes the occurrence of a discontinuity attR.

15



• Time is a distinguished variable (read-only, never assigned by events, and synchronised with
the machine duringINITIALISATION). All state variables have interpretations which are func-
tions of an interval of time starting att0; see (7). As well as directly referring to the time
variable, time may be handled indirectly by using clock variables (declared as such), whose
values may be reset by mode events.

(5)

• The events of a machineM consist of mode events and pliant events. Given a valuation of
all the state variables, inputs and local parameters, and time, a mode event isenablediff the
valuation lies in the topological closure of the set of tuples of values in which the WHERE
clause of the event evaluates totrue. Given a valuation of all the state variables, and time, a
pliant event isenablediff the INIT and WHERE clauses evaluate totrue.

(6)

• The semantics ofM is a set of system tracesS . Each system traceS∈ S is given by a time
interval T = [t0 . . . tFINAL ) (wheretFINAL , with tFINAL > t0, is finite or +∞), and a set of time
dependent variable interpretationsζvar : T → Uvar, one for each state variablevar. If S is
empty we say that the semantics ofM is VOID. (N. B. For reasons of simplicity, we omit
inputs, local parameters and outputs from system traces. These are regarded as existing only
for the duration of the transitions that they belong to; i.e., the single time value at which a mode
transition occurs, or the topological interior of the interval during which a pliant transition takes
place. With additional machinery, such parameters could beincluded in system traces.)

(7)

• The set of tracesS is constructed by the step by step process below, which describes how
individual system traces are constructed incrementally.17 Whenever aCHOOSEis encountered,
the current trace-so-far is replicated as many times as there are different possible choices, a
different choice is allocated to each copy, and the procedure is continued for each resulting
trace-so-far. Whenever aTERMINATE is encountered, the current trace-so-far is complete and
is added to the semanticsS , of M . Whenever anABORT is encountered, the current trace-so-
far is abandoned (and eliminated fromS ). If a VOID is encountered, the semantics isVOID.

(8)

The construction of system traces is as follows.

[1] Let η := 0 (whereη is a meta-level variable).
[2] Assuming theINITIALISATIONis feasible,CHOOSEan initial assignment to all variables satisfy-

ing all the invariants ofM , thereby interpreting their values at timet0. Otherwise,VOID.
[3] If any non-INITIALISATIONmode event that does not have any inputs (but which may have local

parameters or outputs), is enabled when the state variableshave the values attη and enabling values
exist for the local variables, thenABORT.

[4] With the state variables having the values attη, CHOOSEan enabled pliant eventPliEv provided
there is one, elseABORT.

[4.1] Considering all occurrences of differential equations anddirect assignments in the SOLVE
clause ofPliEv, if any pliant variablepli appears in the left hand side of more than one
occurrence thenABORT.

[5] If there does not exist atMAX > tη such that there is a simultaneous piecewise absolutely continuous
solution of all the differential equations and direct assignments in the SOLVE clause ofPliEv in
the left-closed, right-open interval[tη . . . tMAX ), using state variable values attη as initial values,
with these initial values required to satisfy the INIT and WHERE guards ofPliEv, and with inputs
and local parameters where needed, such that theBDApred(including any implicitINVARIANTS
constraint) in the COMPLY clause ofPliEv in the interval(tη . . . tMAX ) is satisfied, thenABORT.

17N. B. The process is not intended to be an executable sequential procedure. All traces-so-far are intended to be explored
simultaneously and to completion, even if completion involves an infinite amount of time for a non-terminating system trace.
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[6] Otherwise,CHOOSEa simultaneous solution as in[5], let tMAX be maximal such that the properties
in [5] hold, and use the solution to assign the values of all pliant variables (and outputs) in the
interval [tη . . . tMAX ).

[6.1] For every mode variable, extend its value attη to a constant function in the interval[tη . . . tMAX ).

[7] If no non-INITIALISATIONmode event is enabled by the values of the state variables at any time
tNEXT in the open interval(tη . . . tMAX ) (including left-limit at tMAX itself), together with a choice
of values for inputs and local parameters, then if the invariants ofM are not satisfied in the open
interval(tη . . . tMAX ), thenABORT. OtherwiseTERMINATE.

[8] CHOOSEtη+1 > tη such thateither tη+1 is the earliest time at which a non-INITIALISATIONmode
event without inputs (but potentially having suitably chosen local parameters) is enabled according
to the criteria in[7], or a non-INITIALISATION mode event having inputs is enabled (with a
suitable choice of inputs and local parameters) according to the criteria in[7] at tη+1 and there is
no non-INITIALISATIONmode event without inputs that is enabled according to the criteria in [7]
at any time betweentη andtη+1.

[9] If the invariants are not satisfied in the open interval(tη . . . tη+1), thenABORT.
[10] Let η := η+1.

[10.1] Let MoEvsbe the set of non-INITIALISATIONmode events that are enabled when all state
variablesvar are interpreted as their valuesvar(tη) at tη (or their left-limit values

−−−−→
var(tη) at

tη if tη = tMAX ), and suitable values are chosen for inputs and local parameters where needed.
[10.2] CHOOSEan enabled event fromMoEvs, and an assignment to all state variables and outputs

according to itsBApred, such that all the invariants ofM are satisfied, thereby (re)interpreting
those variable values at timetη. OtherwiseABORT.

[10.3] For any other state variablevar without a value attη, interpret its value attη as its left-limit

at tη, i.e. as
−−−−→
var(tη), provided this is finite. OtherwiseABORT.

[10.4] Discard the interpretation of all state variables in the open interval(tη . . . tMAX ), wheretMAX

is the value determined in[6]. (If tη = tMAX then the interval is empty.)

[11] Goto[3].

Regarding the soundness of the above construction, since wecan take some basic things like mode
event update semantics and the semantics of the existence ofsolutions to differential equations for
granted, the key remaining issue is whether the handover from pliant to mode transitions, and from
mode to pliant transitions, is well defined.

We observe that the handover from pliant to mode transitionsis trouble-free as follows. Consider
first, mode events without inputs. Since the set of values at which the WHERE guard of any such mode
event is interpreted is closed (by (6)), then this set, with dependence on local parameters existentially
quantified away, is also closed. Then, since the system trajectory is a piecewise continuous function
during any interval in which a pliant rule is active, if the system trajectory meets the quantified closure
at all during such an interval, it first meets it at some specific time point. (This happens regardless of
whether the time point occurs in the interior of the intervalor at its end, and takes into account our
earlier discussion of discontinuities.) In both of these cases the timetη+1 will be strictly greater thantη,
since the test in[3] has earlier been passed, by assumption. Since there are onlyfinitely many rules, the
minimum of such time points across all of the rules to which these considerations apply, is a unique well
defined time pointtη+1 > tη at which the pliant transition is to be preempted — if it is to be preempted
by a mode event without inputs.

Secondly, consider mode events with inputs. Point[8] stipulates thattη+1 is to be chosen so that
tη+1 > tη is satisfied, in line with remarks in Section 6.13. Thus, eventhough a mode event with inputs
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can have its WHERE guard satisfied by state variable values (plus inputs and local parameters) at time
tη (since such a situation is excluded from causing anABORT in [3]), in [8] tη is never selected as
preemption point. Apart from this, mode events with inputs can cause the selection of preemption point
at any time at which their WHERE guard is satisfiable, provided this is not later than a preemption point
that could be selected according to the first case. With a preemption point selected, a consistent set of
mode updates can be derived, by[7], [10.1], [10.2].

Note the careful wording in[10.2]. If a machine has a mode event without inputs,MoEvX say,
enabled attη, then the machine has to executesomemode event attη (to comply with the remarks in
Section 4.11), but the event does not have to beMoEvX. The same does not apply to mode events with
inputs (that would be enabled attη if inputs were supplied). The semantics has the option of simply not
supplying the required inputs attη.

We argue that the handover from mode to pliant transitions isalso consistent. Upon completion of
a mode transition, some pliant events will (typically) be enabled,[4], required to be unambiguous and
consistent by[4.1]. One can then be selected to run[5], [6], in an ensuing nonempty interval.

With suitable attention to routine details, the above remarks can be turned into a formal proof of the
consistency of the definition of system traces. The alternation between mode and pliant transitions is a
structural feature that can be policed by proof obligationsthat enforce a static version of these constraints.
These new POs, specific to Hybrid Event-B, are given in (17) and (18).

We observe that for pliant transitions, the invariants are checked only after their endpoint has been
determined, in line with remarks in Section 6.14. Only the open interval(tη . . . tη+1) needs to be checked
since variable values attη are confirmed to satisfy the invariants during the precedingmode event.

The above semantics, although for a single machine, is stillan opensemantics in that outputs are
delivered to the environment, and inputs are accepted from the environment provided they are piecewise
absolutely continuous. Such inputs might be produced by some other Hybrid Event-B machine outside
the discourse, and, specifically, might themselves have isolated discontinuities. However, our interpreta-
tion of direct assignment and use of the Carathéodory interpretation of differential equations ensures that
a well defined meaning is available.

Definition 7.1. A Hybrid Event-B machineM is said to benon-void iff its semantics is notVOID, i.e. its
set of system tracesS 6= ∅. It is said to becorrect iff it is non-void, and also, during the construction of
its semantics, noABORT is ever encountered.

8. Refinement

It is desirable that as far as possible Hybrid Event-B refinement should add to, rather than modify,
the existing notion of refinement in discrete Event-B. Seeking to fulfil this aim restricts the design of
Hybrid Event-B refinement quite severely. This has the benefit of limiting the complexity of the POs that
capture the new notion, making it more practicable and useful.

We base our design on two principal assumptions. Firstly, weassume that in discrete Event-B, the
events take place at (real world) times appropriate to the application context.18 Secondly, we assume that
in refining an abstract modelA to a concrete modelC, the application context remains the same, and the
timings of thoseC events that are refinements ofA events remain unaltered. Therefore, if the refinement
to C introduced new events, the timings of occurrences of these will interleave the timings of occurrences
of the events inherited fromA.

18This is indeed an assumption. In discrete transition systems, the occurrence of an event,instantlyenables any successor.
That this successor does not run immediately is an interpretation that is imposed from outside the formal framework.
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In Hybrid Event-B refinement we assume that time flows at the same rate in both the abstract and
concrete systems. Consequently, the times at which abstract states and concrete states should be com-
pared, in relations like the joint invariant, should be the same. Thus, relations like the joint invariant, will
be required to hold at all individual times. On this basis, the coincidence of the times at which abstract
and corresponding concrete mode events are deemed to occur becomesderivablein Hybrid Event-B.

Thus, suppose a mode eventMoEvAbecomes enabled inA. Then, by relative deadlock freedom for
mode events, some concrete mode eventMoEvCbecomes enabled inC. Since the times at which the
abstract and concrete states being compared in the relativedeadlock freedom PO are the same, the times
at whichMoEvCandMoEvAbecome enabled are the same. Conversely, suppose a mode event MoEvC
becomes enabled inC. ThenMoEvC is either an ‘old’ event or a ‘new’ event. If it is an old event,then
using guard strengthening for mode events, some abstract eventMoEvAsimultaneously becomes enabled
in A. If it is a new event, a ‘notionalskip’ is enabled. However, the concept of ‘notionalskip’ acquires,
in Hybrid Event-B, additional connotations, not present indiscrete Event-B.

In discrete Event-B, it makes no difference whether we view a‘notional skip’ as actually running or
not. The point is that when an event executes (in general, changing the machine state), a choice point is
generated for the scheduler to select the next enabled eventto run. However, if the event that ran was a
skip, the choices available remain the same as before, since the state has not changed. So running or not
running askip event has no influence on the scheduler.

In Hybrid Event-B though, in between the mode transitions, pliant transitions run. Now, it makes a
difference whether we view a notionalskip as actually executing or not. If it executes, then fresh choices
may become available to the scheduler, since the pliant transition preceding theskip will have changed
the state. This would be an unwelcome complication. Therefore, we determine thatin Hybrid Event-B,
notional skips do not introduce scheduling choice points.

We illustrate the above in a schematic example. Fig.4 shows afragment of the refinement of an
abstract run. Time goes left to right. The narrowly spaced vertical bars represent mode events, taking
place instantaneously. The horizontal lines represent thepliant events that interleave them, having non-
zero durations. At the abstract level we have the eventsMoEvA1, PLiEvA1, MoEvA2, PliEvA2, MoEvA3.
The mode events are refined by concrete mode eventsMoEvC1, MoEvC2, MoEvC3. BetweenMoEvC1

andMoEvC2 there is pliant eventPLiEvC1 which refinesPLiEvA1. By the argument above,MoEvA1 and
MoEvC1 are simultaneous, as areMoEvA2 andMoEvC2, and noting that mode transitions both enable
and preempt pliant transitions, we conclude that the durations ofPLiEvC1 andPLiEvA1 are the same.

In betweenMoEvC2 and MoEvC3, there are some ‘new’ concrete mode events,MoEvC2,1 and
MoEvC2,2, and interleaving these, are shorter pliant eventsPliEvC2,1, PliEvC2,2 and PliEvC2,3. The
sequencePliEvC2,1, MoEvC2,1, PliEvC2,2, MoEvC2,2, PliEvC2,3 refinesPliEvA2 — if we take due ac-
count of the ‘notionalskips’ that are needed to abstractMoEvC2,1 andMoEvC2,2, indicated by the heav-
ier strokes through thePliEvA2 timeline. Overall, the duration of the sequencePliEvC2,1, MoEvC2,1,
PliEvC2,2, MoEvC2,2, PliEvC2,3, equals that ofPliEvA2 becauseMoEvA2 andMoEvA3 fix the endpoints
via their refinementsMoEvC2 andMoEvC3. In general, the time period during which an abstract pliant
transition runs must consist of one or more concrete pliant event durations, as Fig. 4 shows.

Hybrid Event-B needs proof obligations to guarantee the behaviour just described, while disturbing
discrete Event-B as little as possible. It turns out that we can deal with mode events essentially as
in discrete Event-B, for which the POs are standard. The onlyremaining point concerns variants and
convergence, to which we return below.

Regarding pliant transitions, an abstract pliant transition starts at the same moment as a refining con-
crete pliant transition. This requires pliant guard strengthening, which works like mode guard strength-
ening. Thus, if the abstract and concrete invariants hold, and the concrete pliant INIT and WHERE
guards hold, then so too must the abstract pliant INIT and WHERE guards. The formal PO is (31).

After guard strengthening comes invariant preservation. Since we demand that invariants are true at
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MoEvA1 MoEvA2
MoEvA3

MoEvC1 MoEvC2 MoEvC3

MoEvC2.1 MoEvC2.2

PliEvA1

PliEvA2

PliEvC1

PliEvC2.1

PliEvC2.2

PliEvC2.3

Figure 4: Typical phenomena observed during the refinement of some abstract transitions. The progress of time is correlated in
the abstract and concrete systems, implying that the endpoints of abstract and concrete coincide.

all times, if the invariants and concrete guards are all trueinitially, then for the common duration of both
pliant events, the concreteBDApredand the predicateSOLPliEvC that defines the concrete solution19 im-
ply the existence of abstract states and parameters that cause the abstractBDApredand solution predicate
SOLPliEvA to hold. See (32) for the formal details. This covers cases inwhich the concrete pliant event
refines an abstract one.

The remaining case is when a concrete pliant transition is aninstance of a ‘new’ concrete pliant event,
and occurs after a ‘new’ concrete mode event (the latter refining a ‘notional abstractskip’), for example
PliEvC2.2 in Fig. 4. The point here is that the new mode transition (and its following pliant transition)
run while some abstract pliant transition is also running and continually changing the abstract state, a
situation absent from discrete Event-B due to piecewise constant behaviour.

The new concrete mode event is unproblematic. Its guard strengthens thetrue guard of an abstract
notionalskip, and the discrete Event-B invariant preservation PO for newmode events works as required,
since all the invariants are true by assumption in its before-state, hence easy to re-verify in the after-state.

We turn to the new concrete pliant events. These are trickierdue to the continuously changing
abstract state in a period preceding the new concrete plianttransition. This aspect makes a comparison
between the new concrete pliant event’s guards (at the moment it starts) and the guards of the abstract
event it refines (which started earlier), much more questionable.

It was for this reason we split pliant events’ guards into two: the INIT guard, involving pliant vari-
ables and combinations of pliant and mode variables, and theWHERE guard, permitted to involve mode
variables alone. The mode variables in the WHERE guard of theabstract pliant event being refined by
a new concrete pliant event, have piecewise constant trajectories which do not change throughout any
transition defined by the abstract pliant event, no matter how many new concrete pliant events contribute
to the refinement. Therefore, it is reasonable to construct aguard strengthening PO for new concrete
pliant events that refers just to the WHERE guard variables.Syntactically, we indicate the alternative
guard strengthening tactic via a new event status ‘pliant convergent’.

Invariant preservation is the same for old concrete pliant events and for new ones. In both cases, the
concrete event has to name the abstract event it refines, since both the abstract and concrete behaviours

19SOLPliEvC is the formal name of the transition relationQ discussed in Section 4.9.
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MACHINE AMch
. . .

PLIANT u
VARIABLES x
INVARIANTS I(u,x)
. . .
EVENTS

INITIALISATION
. . .

MoEvA1
STATUS ordinary
. . .

PliEvA1
STATUS pliant
. . .

MoEvA2
STATUS ordinary
. . .

PliEvA2
STATUS pliant
. . .

MoEvA3
STATUS ordinary
. . .

END

MACHINE AMchR
REFINES AMch
. . .
PLIANT w
VARIABLES y
INVARIANTS K(u,x,w,y)
. . .
EVENTS

INITIALISATION
. . .

MoEvC1
REFINES MoEvA1
STATUS ordinary
. . .

PliEvC1
REFINES PliEvA1
STATUS pliant
. . .

MoEvC2
REFINES MoEvA2
STATUS ordinary
. . .

PliEvC2.1
REFINES PliEvA2
STATUS pliant
. . .

MoEvC2.1
STATUS convergent
. . .

PliEvC2.2
REFINES PliEvA2
STATUS pliant convergent
. . .

MoEvC2.2
STATUS convergent
. . .

PliEvC2.3
REFINES PliEvA2
STATUS pliant convergent
. . .

MoEvC3
REFINES MoEvA3
STATUS ordinary
. . .

END

Figure 5: Syntax for expressing a machine and its refinement,a fragment of whose behaviour is shown in Fig. 4.

are non-trivial. Moreover the abstract guard, which causesthe problems just addressed, does not figure
in the PO, the formal expression for which is (32).

Next is relative deadlock freedom. If, in a given abstract state, some abstract event is enabled, then
viewed through the abstract and joint invariants, a corresponding concrete state should enable some
concrete event. The requirements are the same for mode and pliant events, expressed in the POs (35) and
(36), two individual POs to maintain the separation betweenmode and pliant aspects.

The final topic in this section is convergence and variants. Suppose that discrete convergence holds
for new mode events via a variantV defined on a well-founded set. This gives us relative non-Zenoness;
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if the abstract system is Zeno-free, then the concrete system cannot have a Zeno point at any finite time.
Now suppose all concrete pliant events last for at leastδZeno,C. Suppose a concrete run contains

an unbounded sequence of new pliant transitions, refining a single abstract pliant transition. Two facts
follow. Firstly, the unbounded sequence must occur at the end of the run. Secondly, the occurrences of
the new pliant transitions must be interleaved with occurrences of new mode transitions only (since if
not, an old concrete mode transition would refine an old abstract mode transition, which would preempt
the single abstract pliant transition, a contradiction).

Likewise, suppose a concrete run contains an unbounded sequence of new mode transitions, part
of the refinement of a single abstract pliant transition. Thenew mode transitions must be interleaved
with new pliant transitions only (since if not, an old plianttransition would refine an old abstract pliant
transition, implying the original single abstract pliant transition was preempted, a contradiction).

The above shows two things. The first is that tackling Zeno properties is most profitably done at
the most abstract level possible, since lower level models may then inherit relative Zeno-freedom. The
second is that with non-Zenoness in both models, concrete divergence takes unbounded time, and implies
an unbounded abstract pliant transition at the end of the run. This is in line with conventional views of
divergence through refinement.

Thus, convergence in the mode event and pliant event regimesof Hybrid Event-B are closely con-
nected. In practice, it is still often easiest to address convergence in the discrete regime, since it avoids
potential problems around asymptotic approach to convergence in the pliant regime.

In Fig. 5, we give the relevant syntactic details that connect the syntactic descriptions of the various
events in Fig. 4 that we discussed above. These are sufficientto enable a tool to generate the required
POs in the correct form.

Definition 8.1. A Hybrid Event-B machineMR correctly refines a Hybrid Event-B machineM iff for
every system trace SR ofMR there is a system trace S ofM such that:

(i) If SR occupies the time interval[t0 . . . tFINR), then S occupies a time interval[t0 . . . tFIN), where
tFINR≤ tFIN.

(ii) For each t in [t0 . . . tFINR), all the invariants hold.
(iii) At each occurrence of a mode event in S there is an occurrence of a mode event in SR.

9. Proof Obligations

In this section, we gather together the proof obligations discussed above. Of course, the main purpose
of the POs is to give a static guarantee of correctness, and weturn to this aspect at the end of the section.

For clarity below, when dealing with mode events, viewed as taking place instantaneously, we write
just the variable names involved, e.g.u. When dealing with pliant events, viewed as defining time-
indexed families of before-after pairs of states, we indicate time dependence explicitly. We write e.g.u(t),
while not excluding other forms of time dependence e.g.u(t−1), (provided their use yields piecewise
absolutely continuous behaviours). First we summarise thenew status tags introduced earlier.

9.1. New STATUS Tags
For ease of reference, we summarise the various additional status tags introduced through the course

of the paper to indicate various attributes of pliant events.

Tag Remarks (9)

pliant an ‘ordinary’ pliant event

pliant convergent a ‘new’ pliant event of a refinement

pliant final a final pliant event that does not need to enable any mode event
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9.2. Contexts
Contexts define the static mathematical apparatus with which machines are specified. Contexts can

beextendedas in discrete Event-B, which implies that any axioms assumed in an abstract context, must
be proved to still hold in the instantiation provided by the extension. Thus ifStatA contains the static
definitions of a contextConA, containing axiomsAxiomsA, andStatE contains the static definitions of a
contextConE, which extendsStatA, containing axiomsAxiomsE, the following PO must hold.

StatA ∧ StatE ∧ AxiomsE⇒ AxiomsA (10)

9.3. Machine Initialisation POs
For a machineA with variablesu, initialisation eventInitA and invariantI to be well defined, the

initialisation PO has to first of all be feasible:

∃u′ • InitA(u′) (11)

so at least one initial state exists. Also, any initial statehas to establish the invariants:

InitA(u′)⇒ I(u′) (12)

Primes are used in (11) and (12), since initialisation is regarded as a kind of event in Event-B.

9.4. Machine Consistency POs
Machine consistency begins with feasibility POs for both mode and pliant events. For a mode event

MoEvA, with state variablesu, parametersi?, l,o! and guardgrdMoEvA, given invariantsI and with before-
after-predicateBApredMoEvA(u, i?, l,o!,u′), the PO reads:

I(u) ∧ grdMoEvA(u, i?, l)⇒ (∃u′,o! •BApredMoEvA(u, i?, l,o!,u′)) (13)

Note that in (13) we do not use the topological closure of the state space region defined bygrdMoEvA, in
line with our remarks in Section 6.12. The topological closure is relevant to the runtime semantics of a
Hybrid Event-B machine, but should be ignored for static verification.

For a pliant eventPliEvA, with stateu, parametersi?, l,o!, INIT guard ivPliEvA and WHERE guard
grdPliEvA, given invariantsI , and with before-during-after-predicateBDApredPliEvA, feasibility asserts that
there is an open interval given by sometR > tL within which the pliant event specifies a behaviour of
the machine. This means that there is a solution predicateSOLPliEvA which, either solves the differential
equation of, or expresses the direct assignment in, the SOLVE clause ofPliEvA, and that in the interval
(tL . . .tR), bothSOLPliEvA andBDApredPliEvA are jointly satisfied:

I(u(tL)) ∧ ivPliEvA(u(tL)) ∧ grdPliEvA(u(tL))

⇒ (∃tR > tL • [[[ (tR−tL ≥ δZenoPliEvA) ∧ ]]] (∀tL ≤ t < tR• (∃u(t), i?(t), l(t),o!(t) •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t) ∧ SOLPliEvA(u(t), i?(t), l(t),o!(t), t)))) (14)

In (14) the portion in bold square brackets expresses the Zeno property ofPliEvA, presuming that
δZenoPliEvA is a suitable constant. The square brackets indicate that itmay be regarded as optional, since
Zeno properties are often so hard to prove statically.

Machine consistency continues with invariant preservation. For mode events, with the conventions
used in (13) we have:

I(u) ∧ grdMoEvA(u, i?, l) ∧ BApredMoEvA(u, i?, l,o!,u′)⇒ I(u′) (15)

Machine consistency also includes invariant preservationfor pliant events:

I(u(tL)) ∧ ivPliEvA(u(tL)) ∧ grdPliEvA(u(tL)) ∧ (∃tR > tL • TRM(tR) ∧ (∀tL ≤ t < tR,u(t),

i?(t), l(t),o!(t)•BDApredPliEvA(u(t), i?(t), l(t),o!(t), t) ∧ SOLPliEvA(u(t), i?(t), l(t),o!(t), t)))

⇒ (∀tL ≤ t < tR• I(u(t))) (16)
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In (16), for anonfinal pliant event,TRM(tR) signifies thattR is (at least as big as) the preemption time
of a pliant transition specified by the event and started attL (i.e. tR records the termination time of the
transition). The minimum value oftR is obtainable via the calculation needed for well-formedness in the
PO (18). For afinal pliant event,TRM(tR) signifies that (16) must be true for unboundedly largetR.

9.5. Machine Well Formedness POs

Well formedness statically checks that mode and pliant steps alternate during a system run. Ifu is an
after-state of a transition of mode eventMoEvA, then it: disables mode events thatdo not have inputs20

(by ensuring that the disjunction of those mode events’ guards evaluates tofalse), and enables some
pliant event (by ensuring that the disjunction of pliant event initial values and guards evaluates totrue).

∃u0, i0?, l0,o0! • I(u0) ∧ grdMoEvA(u0, i0?, l0) ∧ BApredMoEvA(u0, i0?, l0,o0!,u) ∧ I(u)

⇒¬ [ ∃ l •grdMoEvA1(u, l) ∨ grdMoEvA2(u, l) . . .grdMoEvAN(u, l) ] ∧

[ (ivPliEvA1(u) ∧ grdPliEvA1(u)) ∨ (ivPliEvA2(u) ∧ grdPliEvA2(u)) ∨ . . . ∨

(ivPliEvAM(u) ∧ grdPliEvAM(u)) ] (17)

In (17), we have simplified matters by assuming that all mode event local parameters have the same type.
Dually, if PliEvA is a nonfinal pliant event, then the end of the state trajectory in any of its pliant

transitions enables some mode event. Since pliant transitions do not, typically, become infeasible when
preempted, (18) does not demand that pliant events are disabled. We again simplify (18) a little by
assuming that all the mode event inputs and local parametersrespectively have the same types.

I(u(tL)) ∧ ivPliEvA(u(tL)) ∧ grdPliEvA(u(tL)) ∧ (∃tR > tL • (∀tL ≤ t < tR,u(t), i?(t), l(t),o!(t) •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t) ∧ SOLPliEvA(u(t), i?(t), l(t),o!(t), t) ∧ MAXIMAL(tR) ∧

¬ [ ∃ i?, l •grdMoEvA1(u(t), i?, l) ∨ grdMoEvA2(u(t), i?, l) ∨ . . . ∨ grdMoEvAN(u(t), i?, l) ]))

⇒ WELLDEF(tR) ∧ [ ∃ i?, l •grdMoEvA1(
(((−−−→
u(tR)

)))
, i?, l) ∨ grdMoEvA2(

(((−−−→
u(tR)

)))
, i?, l) ∨ . . . ∨

grdMoEvAN(
(((−−−→
u(tR)

)))
, i?, l) ] (18)

In (18), the termMAXIMAL(tR) abbreviates the statement that there is no greater value oftR such that
the properties stated in the assumptions hold. Likewise, the termWELLDEF(tR) insists that all variables
have well defined values attR, whether through, continuity, discontinuity or left-limit attR. The PO (18)
covers two cases. In both cases the assumptions state that there is no time strictly less thantR such that
the pliant solution exists and a mode event is enabled. Regarding the conclusions, in the first case, the
solution exists at (and necessarily beyond)tR, and is either continuous there, or suffers a discontinuity

precisely attR — in which case the overarrows in the terms
−−−→
u(tR) are disregarded (indicated by the bold

parentheses surrounding the overarrows), and the actual value u(tR) is used to enable some mode event.
In the second case the solution becomes infeasible attR, and the left limit is needed. As noted above,
the calculation needed fortR in (18) yields the duration of any pliant transition.

9.6. The Zeno Property

The discussion in Section 4 noted the desirability of non-Zenoness. In fact we already addressed this
in PO (14), since proving it with the Zeno terms for all pliantevents gives global non-Zenoness, as the
number of pliant events is finite.

20The semantics ensures mode event inputs are not available atthe same time as previously scheduled mode transitions.
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9.7. Measurability and the Lipschitz PO

Two conditions discussed in Section 4 were the Lipschitz andmeasurability criteria for differential
equations. Regarding measurability in time of the right hand side of DEs, we can rest easy. Non-
measurable functions require considerable mathematical ingenuity to construct, and do not figure in
engineering applications.

The Lipschitz criterion is of more relevance. Standard references, e.g. [48], delight in showing the
pathologies that arise regarding existence and uniquenessof solutions to DEs when some aspect of the
Lipschitz condition fails. The easiest way to guarantee it is to demand a uniform Lipschitz bound on the
right hand side of every DE that we have to deal with. Thus, letDxs= φ(xs, t) be a DE specifying the
behaviour of some pliant event. Then the uniform bound condition reduces to:

∃K •∀ t• ||φ(xs1, t)−φ(xs2, t) || ≤ K ||xs1−xs2 || (19)

where|| . || denotes theL∞ norm of a real vector, i.e. the maximum absolute value of any of its com-
ponents. Normally, the truth of such a property will follow from generic properties of the class of DEs
being used, so will not normally need to be verified explicitly.

9.8. Absolute Continuity in the Direct Assignment Case

Besides differential equations, a pliant event may be specified via a direct assignment, for example
xs := E(xs, t). As we stated in Section 5, we demand directly thatE is piecewise absolutely continuous,
so the property we need forxs is immediate.

9.9. Absolute Continuity in the Implicit Case

A pliant event may also be specified more indirectly, via theBDApredalone (rather than just using the
BDApredas an additional constraint). Aside from the need for all behaviours to be absolutely continuous,
we do not place further restrictions on what is permitted to be specified by this means. While, theoret-
ically, this opens the door to defining a wide range of truly exotic behaviours, in practice these are of
no interest for engineering applications, since the content of BDApredwill normally exclude excessively
wild behaviour.

One consequence of permitting ‘pureBDApredspecification’ is that various POs relating to pliant
events are affected. However, this is rather trivial. Sinceanypiecewise absolutely continuous behaviour
SOLsatisfying theBDApredis allowed, the combinationBDApred∧ SOL(this being the only context in
which SOLappears in any PO) reduces to justBDApredin the PO.

9.10. Refinement POs

Suppose that as well as machineA as above, we have another machineC, with state variablew, and
joint invariant K(u,w), which is a refinement ofA. This means that the concrete (joint) invariant is a
relation over bothu andw, aligning with the B-Method view that a refinement is anenhancementof its
abstract counterpart rather than a replacement for it. The next sections cover the relevant POs.

9.11. Refinement Initialisation POs

Concrete initialisation feasibility is:

∃w′ • InitC(w′) (20)

while correct initialisation ofC is relative toA:

InitC(w′)⇒ (∃u′ • InitA(u′) ∧ K(u′,w′)) (21)
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9.12. Refinement Mode Event Consistency POs
Next are the concrete event POs. Let the concrete mode event that refines an abstract mode event

MoEvA is calledMoEvC. Let MoEvChave statew, input, local and output parametersj?,k,p!, guard
grdMoEvC(w, j?,k), and before-after predicateBApredMoEvC(w, j?,k,p!,w′). Then, given the concrete in-
variantK(u,w), event feasibility is:

∃u•K(u,w) ∧ grdMoEvC(w, j?,k)⇒ (∃w′,p! •BApredMoEvC(w, j?,k,p!,w′)) (22)

Two POs must hold ifMoEvC refinesMoEvA. The first, guard strengthening, states that when the
invariants hold, the concrete guard implies the abstract one:

I(u) ∧ K(u,w) ∧ grdMoEvC(w, j?,k)

⇒ (∃ i?, l •grdMoEvA(u, i?, l)) (23)

The second, invariant preservation, also referred to as thecorrectness PO, reads:

I(u) ∧ K(u,w) ∧ grdMoEvC(w, j?,k) ∧ BApredMoEvC(w, j?,k,p!,w′)

⇒ (∃ i?, l,o!,u′ •BApredMoEvA(u, i?, l,o!,u′) ∧ K(u′,w′)) (24)

While the guard strengthening and correctness POs, (23) and(24) express what needs to be true for
MoEvCto refineMoEvA, they do not indicate how particular abstracti?, l,o!,u′ are to be found for given
concretej?,k,p!,w′. This is remedied by providing a witness relationW(u, i?, l,o!,u′,w, j?,k,p!,w′) that
can be used to indicate appropriate values. The witness itself has to be feasible:

I(u) ∧ K(u,w) ∧ grdMoEvC(w, j?,k) ∧ BApredMoEvC(w, j?,k,p!,w′)

⇒ (∃ i?, l,o!,u′ •W(u, i?, l,o!,u′ ,w, j?,k,p!,w′)) (25)

Given a feasible witness which is appropriate for the problem, the guard strengthening PO changes to:

I(u) ∧ K(u,w) ∧ grdMoEvC(w, j?,k) ∧W(u, i?, l,o!,u′ ,w, j?,k,p!,w′)

⇒ grdMoEvA(u, i?, l) (26)

while the correctness PO changes to:

I(u) ∧ K(u,w) ∧ grdMoEvC(w, j?,k) ∧ BApredMoEvC(w, j?,k,p!,w′) ∧

W(u, i?, l,o!,u′ ,w, j?,k,p!,w′)

⇒ BApredMoEvA(u, i?, l,o!,u′) ∧ K(u′,w′) (27)

where in (26) and (27), there are no more existential quantifiers to find values for.
If machineC has ‘new’ events that refine notional abstractskips, then the preceding simplifies. The

abstract state does not change, so there is no abstract inputeither. This obviates the need for existential
quantification, or witnesses. The result is:

I(u) ∧ K(u,w) ∧ grdNewEvC(w, j?,k) ∧ BApredNewEvC(w, j?,k,p!,w′)⇒ K(u,w′) (28)

New events are normally prevented from ‘taking control of the run forever’, which is achieved by de-
manding that each execution of a new event decreases a variant V. We can retain this criterion in Hybrid
Event-B, and the PO reads:

BApredNewEvC(w, j?,k,p!,w′)⇒ V(w′) < V(w) (29)

A possibility in Hybrid Event-B is the fact that it might be harder to restrict the type of the variant to an
‘obviouslywell founded’ set. But in engineering applications this canusually be overcome with a little
ingenuity.
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9.13. Refinement Pliant Event Consistency POs

Turning to pliant events, we demand that abstract pliant events are refined by concrete pliant events.
We start with relative event feasibility, which again features an optional Zeno term, and is again like the
abstract case, aside from the existentially quantified abstract state:

(∃u(tL)• I(u(tL)) ∧ K(u(tL),w(tL)) ∧ ivPliEvC(w(tL)) ∧ grdPliEvC(w(tL))

⇒ (∃tR > tL • [[[ (tR−tL ≥ δZenoPliEvC) ∧ ]]] (∀tL < t < tR• (∃w(t), j?(t),k(t),p!(t) •

BDApredPliEvC(w(t), j?(t),k(t),p!(t), t) ∧ SOLPliEvC(w(t), j?(t),k(t),p!(t), t))))) (30)

Next is the analogue of guard strengthening. This comes in two forms, differing in whether the term
ivPliEvA(u(tL)) is included or not (indicated by enclosing it in heavy squarebrackets):

I(u(tL)) ∧ K(u(tL),w(tL)) ∧ ivPliEvC(w(tL)) ∧ grdPliEvC(w(tL))

⇒ [[[ ivPliEvA(u(tL)) ∧ ]]] grdPliEvA(u(tL)) (31)

The conditions for ignoringivPliEvA(u(tL)) come from refinement, as discussed in Section 8.
The correctness PO becomes:

I(u(tL)) ∧ K(u(tL),w(tL)) ∧ ivPliEvC(w(tL)) ∧ grdPliEvC(w(tL))⇒

(((∃tR > tL • TRM(tR) ∧ (∀tL < t < tR,w(t), j?(t),k(t),p!(t) •

BDApredPliEvC(w(t), j?(t),k(t),p!(t), t) ∧ SOLPliEvC(w(t), j?(t),k(t),p!(t), t))

⇒ (∀tL < t < tR• (∃u(t), i?(t), l(t),o!(t) •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t) ∧ SOLPliEvA(u(t), i?(t), l(t),o!(t), t) ∧

K(u(t),w(t))))))) (32)

The form of (32) implies a number of things. The main one is that time progresses at the same rate in the
abstract and concrete systems. This is a consequence of citing the same time value in both occurrences
of time in K in the conclusion of the inner (universally quantified), implication; and also, of using the
sametR value in both the assumptions and conclusions of this implication (as enforced by the scope of
the existential quantification overtR). The termination termTRM(tR) refers to preemption (or nontermi-
nation) of a concrete transition started attL. So (32) assures us that a simulating pair of pliant transitions
lasts as long at the abstract level as at the concrete level.

The PO (32) suffers from the same problem as (24), namely thatthere is no indication of how to find
suitableu(t), i?(t), l(t),o!(t) for any givenw(t), j?(t),k(t),p!(t), a situation made worse by the fact that
these quantities now depend on time.

The remedy is the same as before. We introduceW(u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t),p!(t)), a
pliant witness relation, to point the way. Note that guard strengthening no longer requires a witness,
since it does not involve any of the parameters in the pliant case.

The witness relationW(u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t),p!(t)) has to be as feasible as the con-
crete transition needs to last:

I(u(tL)) ∧ K(u(tL),w(tL)) ∧ ivPliEvC(w(tL)) ∧ grdPliEvC(w(tL))⇒

(((∃tR > tL • TRM(tR) ∧ (∀tL < t < tR,w(t), j?(t),k(t),p!(t) •

BDApredPliEvC(w(t), j?(t),k(t),p!(t), t) ∧ SOLPliEvC(w(t), j?(t),k(t),p!(t), t))

⇒ (∀tL < t < tR• (∃u(t), i?(t), l(t),o!(t)•W(u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t),p!(t)))))))
(33)
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With the help of the witness, the PO (32) becomes:

I(u(tL)) ∧ K(u(tL),w(tL)) ∧ ivPliEvC(w(tL)) ∧ grdPliEvC(w(tL))⇒

(((∃tR > tL • TRM(tR) ∧ (∀tL < t < tR,w(t), j?(t),k(t),p!(t) •

BDApredPliEvC(w(t), j?(t),k(t),p!(t), t) ∧ SOLPliEvC(w(t), j?(t),k(t),p!(t), t) ∧

W(u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t),p!(t)))

⇒ (∀tL < t < tR •

BDApredPliEvA(u(t), i?(t), l(t),o!(t), t) ∧ SOLPliEvA(u(t), i?(t), l(t),o!(t), t) ∧

K(u(t),w(t))))) (34)

9.14. Refinement Relative Deadlock Freedom POs

Acting in tandem with feasibility, relative deadlock freedom guarantees that, despite guards being
individually strengthenedduring refinement (see (24)), all together (i.e. taking new events into account)
the concrete system is enabled ‘at least as much’ as the abstract one.

For mode events, utilising the witness relationW(u, i?, l,o!,u′ ,w, j?,k,p!,w′) given earlier, and as-
suming at both levels that all events have the same parametertypes, the PO reads:

I(u) ∧ K(u,w) ∧ (∃o!,p!,u′,w′ •W(u, i?, l,o!,u′ ,w, j?,k,p!,w′)) ∧

[ grdMoEvA1(u, i?, l) ∨ grdMoEvA2(u, i?, l) ∨ . . . ∨ grdMoEvAN(u, i?, l) ]

⇒ grdMoEvC1(w, j?,k) ∨ grdMoEvC2(w, j?,k) ∨ . . . ∨ grdMoEvCM(w, j?,k) (35)

We also demand relative deadlock freedom in the continuous sphere. Note that we don’t need a
witness here, since pliant events do not have parameters that can be sensed at the initial instant of a pliant
transition.

I(u) ∧ K(u(tL),w(tL)) ∧ [ (ivPliEvA1(u(tL)) ∧ grdPliEvA1(u(tL))) ∨

(ivPliEvA2(u(tL)) ∧ grdPliEvA2(u(tL)) ∨ . . . ∨ (ivPliEvAM(u(tL)) ∧ grdPliEvAM(u(tL)) ]

⇒ [ (ivPliEvC1(w(tL)) ∧ grdPliEvC1(w(tL))) ∨ (ivPliEvC2(w(tL)) ∧ grdPliEvC2(w(tL)) ∨ . . . ∨

(ivPliEvCN(w(tL)) ∧ grdPliEvCN(w(tL)) ] (36)

9.15. Correctness

The objective of having static POs is to enable us to conclude, statically, that runtime errors do not
occur. In this section we examine some correctness properties that follow from the POs above.

Theorem 9.1. LetM be a Hybrid Event-B machine. Suppose that no event (whether mode or pliant)
has an inconsistent specification for the update of any variable. Suppose that the POs listed earlier in
this section hold. Then the Hybrid Event-B machineM is correct according to Definition 7.1.

Proof: It will be sufficient to go through the steps of the formal semantics in Section 7, and to confirm that
the static properties assumed are sufficient to ensure that theABORT or VOID cases are never encountered.

Regarding step[2], we assume that initialisation assigns values to all variables, consistent with the
invariants.

Next, the mode-to-pliant machine well-formedness PO (17) guarantees that no mode event without
inputs is enabled, passing step[3]; it also guarantees that there is an enabled pliant event governing the
subsequent behaviour, passing step[4]. The check in[4.1] is passed, by assumption.

Pliant event feasibility, (14), ensures that in step[5], some nonempty interval(t0 . . . tMAX ) can be
found, leading to a choice of explicit solution for some maximal tMAX in [6]. Step[6.1] is unproblematic.
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If no mode event becomes enabled during (or at the end of) the interval(t0 . . . tMAX ) then, the invariant
preservation PO (16) guarantees successful termination attMAX , by [7].

Otherwise, the next cycle of execution starts, and step[8] determines the next preemption point
tη+1. PO (18) guarantees that however this preemption point is determined, whether by continuous
or discontinuous behaviour assigning variable values, or by left-limit values at the end of a region of
feasibility, all variables are well defined and enable a non-INITIALISATIONmode event. Step[10.1]
determines the set of enabled non-INITIALISATIONmode events attη, and step[10.2] chooses a mode
transition selected from them. Step[10.3] completes the (re)definition of variable values attη. Because
of PO (18), none of these steps canABORT. Finally, step[10.4] cleans up the time interval(tη . . . tMAX ).
The proof then continues as from the third paragraph above, though it deals with a generictη instead of
t0. We are done.2

Note that the above proof, while asserting correctness as inDefinition 7.1, does not assure the absence
of Zeno phenomena,unlesswe are able to include theδZenoPliEvA terms in the POs that contain them. Note
also that mode event guard closure was never mentioned in either the POs or the proof. Although it is
useful for runtime semantics, it may give rise to phenomena beyond the reach of static verification.

Theorem 9.2. LetM andMR be Hybrid Event-B machines. Suppose the conditions of Theorem 9.1 are
satisfied for both machines. Suppose that the refinement POs hold forM andMR. ThenMR refinesM
in the sense of Definition 8.1.

Proof: The proof proceeds by induction. LetSRbe a system trace ofMR, given by a collection of time
dependent valuations for all the variables ofM R over an interval[t0 . . . tFINR). We show that we can
simulateSRby a system traceS of M , such that all the invariants of both machines hold, and at each
occurrence of a mode event inS, there is an occurrence of a mode event inSR.

System traceSRstarts with an initial state satisfyingMR’s invariants, and the initialisation refine-
ment POs ensure a correspondingM initial state satisfyingM ’s invariants. Thereafter, pliant transitions
and mode transitions alternate inSR. POs (30)-(32) ensure that the first pliant transition ofSRcan be cor-
rectly simulated until it is preempted by the next mode transition of SR. (That the abstract system trace
S cannot be preempted sooner than the next mode transition ofSRfollows by the mode event relative
deadlock freedom PO (35), which would enable anMRmode event, forcing an earlierSRpreemption.)

Then POs (22)-(28) ensure that the mode transition is correctly simulated, whether by an ‘old’ ab-
stract transition or by a ‘notionalskip’, both of which preserve the invariants. The subsequent pliant
transition ofSRmay be for an ‘old’ or a ‘new’ event. In both cases, given that this SRtransition is fea-
sible by assumption, the refinement correctness PO for pliant events (32) guarantees that the simulating
abstract pliant transition is feasible and executes, preserving the invariants. (In particular, in the case of
a ‘new’ event simulated by a ‘notionalskip’, it prevents the previous abstract transition from becoming
infeasible precisely at the moment of preemption.)

The inductive process continues to cover all of the interval[t0 . . . tFINR), giving a simulating abstract
system traceSlasting at least as long asSR. It is also clear that for each mode transition inS(disregarding
the notionalskip’ transitions) there is a mode transition inSRwhich gave rise to theS transition through
simulation. We are done.2

We point out that although the above account discussed machines in terms of their state variables
alone, similar considerations apply when events feature parameters. (This typically necessitates suitable
existential claims in the hypotheses regarding inputs etc.).
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MACHINE Bouncing
SEES BounceCtx
TIME t
PLIANT h,v
VARIABLES mode
INVARIANTS

mode∈MODES
h∈ R

h∈ [0. . .H]
v∈R

EVENTS
INITIALISATION

STATUS ordinary
WHEN t = 0
THEN

mode := bouncing
h := h0
v := v0

END
Episode

STATUS pliant
WHEN mode= bouncing
SOLVE Dh = v

Dv =−g
END

Bounce
STATUS ordinary
WHEN mode= bouncing∧ h = 0∧

v < 0
THEN v := −cv
END

. . . . . . . . . . . .

. . . . . . . . . . . .
DeadBall

STATUS ordinary
WHEN mode= bouncing∧ h = 0∧

v < 0∧ v2 ≤ Elow
THEN mode := dead
END

FINAL
STATUS pliant final
WHEN mode= dead
SOLVE h := 0

v := 0
END

END

CONTEXT BounceCtx
SETS MODES
CONSTANTS bouncing,dead

h0,v0,g,c,H,Elow
AXIOMS

MODES= {bouncing,dead}
h0 ∈ R ∧ h0 > 0
v0 ∈ R

g∈ R ∧ g > 0
c∈R ∧ c∈ (0. . .1)
H ∈ R ∧H > 0
Elow ∈ R ∧ Elow > 0

END

Figure 6: A Hybrid Event-B machine for the bouncing ball.

10. Case Studies

In this section we look at a number of relatively small case studies that illustrate the framework we
have described previously. Somewhat larger case studies can be found in [12, 11, 9, 10].

10.1. The Bouncing Ball

We treat a favourite example, the bouncing ball — a nice account can be found in [38]. A pointlike
ball of unit mass is subject to gravityg, and bounces vertically over some point on a horizontal surface,
starting at timet = 0. The ball’s height above the surface ish(t), initially set toh0 > 0 at t = 0, and its
vertical velocity isv(t) (positive values indicating upward movement), initiallyv0 at t = 0. Whenever the
ball hits the surface, the speed diminishes by a factorc < 1, and the kinetic energy by a factorc2. When
the ball’s energy is low enough, the bounce may simply absorball the energy, leaving the ball stationary
on the horizontal surface.

To understand this ball’s behaviour, let us consider a single full bouncing episode, with the ball
leaving the surface with velocity ˜v. Such an episode reaches a heighth̃ given bygh̃ = 1

2 ṽ2, since this
expresses the conversion of pure kinetic energy at the surface to pure potential energy at the highest point.
Since the energy is diminished after the ball returns to the surface, the maximum height reached during
any individual full episode is an upper bound for any remaining dynamics of the ball. Therefore, if we
wish to impose an invariant such ash(t)≤H (whereH is a constant), it is sufficient to check whether the
property is maintained through the first (partial) episode,and through the next (full) episode.

30



At time t = 0 the energy isgh0 + 1
2v2

0. This becomes pure kinetic energy when the ball reaches the
ground, at which point it has a velocity−vmax given by:

vmax =

√
2

(
gh0 +

1
2

v2
0

)
(37)

If the ball happened to be moving upwards att = 0, then it would reach a heighthmax given by
ghmax = 1

2v2
max, and this would be the maximum height it would ever reach. If the ball was moving

downwards att = 0, then it would lose speed by the factorc upon bouncing, and, rebounding at a
velocity cvmax, would subsequently reach a maximum heighthm̃ax given byghm̃ax = 1

2(cvmax)
2. These

facts provide the basis for a case analysis that determines whether an invariant likeh(t)≤H is respected
or not, depending on the initial values. (Of course the aboveaccount depended on our knowing about
energy and its conservation, allowing us to shortcircuit a more laborious solution of the system as might
be performed by an unsophisticated mechanised reasoner, which would simply integrate the equations
episode by episode, arriving eventually at the same conclusions.)

A Hybrid Event-B model for the system appears in Fig. 6. The context BounceCtxcollects all the
easy-to-forget facts concerning the constants that play a role in the system, without which the observa-
tions made above would not be provable. TheINITIALISATIONsynchronises real time to 0, and assigns
the other variables their initial values. TheEpisodepliant event describes a bouncing episode. It has no
constraints on the initial values of variables except that it checks that themodeis bouncing. Mode event
Bouncediscontinuously flips the velocity of the ball when it hits the horizontal surface, and when the
energy of the ball is small enough (v2 ≤ Elow), instead of bouncing, the ball has the option of resting on
the horizontal surface and enabling theFINAL pliant event that brings the dynamics to an end.

Without the mode eventDeadBall, the system would exhibit Zeno behaviour — the system’s energy
is conserved except at bounces, and since each bounce depletes the energy by a multiplicative factorc2,
an infinite number of these would be needed to consume all the energy. Since the duration of a bouncing
episode is proportional to the ‘lift-off energy’, successive episode durations would be similarly reduced,
leading to a Zeno point at a finite point in time. Note that thisillustrates well the fact that Zeno behaviour
is generally intimately connected with reachability.

With DeadBall, Zeno behaviour is not excluded — it could be though, by strengthening the guard of
Bounceto exclude bouncing at low energy.

The bouncing ball also illustrates the utility of allowing mode event guards to define non-closed
regions of the state space, even though such mode event guards are potentially reinterpreted as their
closure at runtime. In the eventBounce, the guard,mode= bouncing∧ h = 0∧ v < 0 specifies a non-
closed region, its closure beingmode= bouncing∧ h = 0∧ v≤ 0. Statically, the after-state established
by Bouncein the case thatv = 0 is the same as the before-state, so re-establishes the guard of Bounce,
and causes a failure of the PO (17). Dynamically though, we know thatv = 0 cannot be reached after
any finite number of events ifv0 6= 0, so insisting on statically closed guards would lead to inconvenient
modelling metaphors.

10.2. A Simple Refinement-Based Discretization Example

In this example, we examine a simple case of discretization.In the left part of Fig. 7, there is a simple
Hybrid Event-B machineExUp. It has a single mode variablemdand a single pliant variablex. As well
as timet, we have a clock variableclk, included to show the syntax. The mode variablemd has two
possible values,stat anddyn. Time is defined as the non-negative reals, andx has values in the closed
interval [0. . .10].

MachineExUphas four events:INITIALISATION, IncPli, Stop, FINAL. Upon initialisation, which
is synchronised with time 0, the clock is set to 1, the modemd becomesdyn, andx is set to 0. Upon
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MACHINE ExUp

TIME t
CLOCK clk
PLIANT x
VARIABLES md
INVARIANTS

md∈ {stat,dyn}
t ∈ [0. . .∞)
x∈ [0. . .10]

EVENTS
INITIALISATION

STATUS ordinary

WHEN t = 0
THEN

md := dyn
x := 0
clk := 1

END
IncPli

STATUS pliant

WHEN md= dyn
SOLVE Dx = 1
END

IncD
STATUS ordinary
WHEN t ∈N ∧

t ∈ {1. . .9}
THEN skip
END

Stop
STATUS ordinary

WHEN t = 10
THEN md := stat

END
FINAL

STATUS pliant final

WHEN clk = 11
COMPLY skip
END

END

MACHINE ExUpR
REFINES ExUp
TIME t
CLOCK clk
PLIANT w
VARIABLES md
INVARIANTS

md∈ {stat,dyn}
t ∈ [0. . .∞)
w∈ [0. . .10]
w = ⌊x⌋

EVENTS
INITIALISATION

STATUS ordinary
REFINES INITIALISATION
WHEN t = 0
THEN

md := dyn
w := 0
clk := 1

END
IncPli

STATUS pliant
REFINES IncPli
WHEN md= dyn
SOLVE skip
END

IncD
STATUS ordinary
WHEN t ∈ N ∧

t ∈ {1. . .9}
THEN w := w+1
END

Stop
STATUS ordinary
REFINES Stop
WHEN t = 10
THEN md := stat

w := w+1
END

FINAL
STATUS pliant final
REFINES FINAL
WHEN clk = 11
COMPLY skip
END

END

Figure 7: A simple example of discretization via refinement.

md becomingdyn, the pliant eventIncPli becomes enabled, which causesx to increase at a steady rate
since its derivative is set to 1. The clockclk also increases at this rate, by definition. The behaviour of
IncPli continues for 10 time units, whereupon the mode eventStopchanges the mode tostat disabling
IncPli. By this time, the clock has reached 11, which enables the pliant eventFINAL, which takes over,
maintaining the value ofx unchanged for the rest of time.

Shown in a box, indented, is a ‘notionalskip’, IncD, that will be refined to a real mode event in
machineExUpR. It is included to illustrate that, unlike for discrete Event-B, the notionalskip has to
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Figure 8: The European Train Control System. A movement authority, defined by its endpointMA, start braking positionSB,
and start talking positionST; dividing the track into afar region, a re-negotiate region, and acorrection region (together with
the transition diagram for the corresponding modes).

be envisaged as happening at some specific time(s), because the real events that refine them,do have to
happen at specific times.

MachineExUp is refined toExUpR. The main feature of this refinement is the introduction of pliant
variablew, and joint invariantw = ⌊x⌋. In ExUpR, eventIncD is now a real event, and machineExUpR
evidently has shorterIncPli pliant events (of duration one time unit instead of ten), since IncD preempts
the refinedIncPli frequently.

Event IncD refines the notionalskip. Note that despite the discontinuity that the concreteIncD
specifies, it does nevertheless refineskip. To see this better, consider a small interval surroundingt = 5.
The behaviour ofx is continuous throught = 5, consistent with askip taking place at any chosen moment,
including t = 5. On the other hand, the behaviour ofw jumps from 4 to 5 att = 5. Just beforet = 5, we

havex < 5, so⌊x⌋ = w = 4, a fact that persists to the left limit:
−−−→
⌊x⌋(5) =

−−→
w(5) = 4. But as soon ast = 5,

thenx = 5 holds, so⌊x⌋(5) = w(5) = 5. These two facts confirm that the behaviour ofw refinesskip at
t = 5.

Observe that this example illustrates a particularly benign instance of discretization. The previously
smooth (but non-trivial) behaviour ofIncPli and trivial behaviour of (the notional)IncD, is replaced by
a trivial behaviour ofIncPli and non-trivial behaviour ofIncD. This is a typical ‘zero order hold’, in
which boundary values of pliant transitions correspondingto isolated observations and actuations, define
constant behaviour in the next interval.

10.3. The European Train Control System

In our last example we present a simple treatment of the European Train Control System (ETCS),
broadly based on the models in [38]. For ease of comparison, we use the same notations as [38] for
variables where possible (even though this strays beyond the usual lexical conventions of Event-B).

Unlike older train control systems which confined trains to asuccession of statically defined rail
track sections, with consequent latencies when crossing section boundaries, the rail track is organised
into dynamically controlledmovement authorities. The key invariants are thatdistinct movement
authorities are always disjoint, thateach movement authority contains (at most) one train, and that
each train is in some movement authority. If these are always maintained, then trains cannot collide.

Fig. 8 shows a movement authority. The movement authority issplit into successive regionsfar, neg
andcor, the last of which terminates the movement authority at limit MA. Within far the train can travel
freely. When pointST (start talking) is reached, which is the boundary betweenfar andneg, the train
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Figure 9: The European Train Control System. A generalised movement authority, defined by its recommended speed limit
m.r, end positionm.e and demanded speed limit (at end)m.d. This is used to control the train parameters: train acceleration
τ.a, train speedτ.v, and train positionτ.p. The essential safety invariant isτ.p≥m.e⇒ τ.v≤m.d.

enters the negotiation region, and starts to negotiate withthe Radio Block Controller (RBC) about an
extension to the movement authority. If this is successful,then the movement authority is extended and
the train once more finds itself in a newfar region. If the negotiation is unsuccessful for some reason
(e.g. unreliable communication, or an emergency situationbeyondMA), and the train crosses the point
SB (start braking), it finds itself in thecor (correction) region, at which point it goes into emergency
braking mode. The design is such that emergency braking mustbring the train to a standstill beforeMA.
Once the train has stopped, manual intervention is needed torestart the system.

Following [38], we actually model ageneralised movement authority, shown in Fig. 9. This formu-
lation checks whether the emergency braking distance in thecor region (modelled by train variableτ.sb)
is adequate, by reconciling it with the other dynamical variables of the train motion.

The heart of the model consists of train variables and movement authority variables, supported by
suitable constants and other variables. The train variables areτ.p, τ.v andτ.a which represent the current
position, velocity and acceleration of the train, respectively, together with the train emergency braking
distanceτ.sb (which corresponds toMA−SBearlier). The movement authority variables arem.r, m.e
andm.d. These represent respectively therecommendedspeed (in what would correspond to thefar
andnegregions of the earlier model), the movement authorityendpoint(corresponding toMA earlier),
and thedemandedspeed at the endpoint (corresponding to the maximum permissible speed when the
endpoint is reached).

The object of the exercise is to ensure thatm.sb is of sufficient length, that should it happen that the
train passes theSBpoint, maximum deceleration is capable of reducing the speed to no more thanm.d
by the timem.e is reached, i.e. to maintain the invariantτ.p≥m.e⇒ τ.v≤m.d.

We now describe a Hybrid Event-B machine to capture this situation. The static data is in the CON-
TEXT ECTSCtx in Fig. 10. It contains thenormal andemergencymode constants, and theemrgand
newMAmessage values. It also contains the maximum train deceleration b and maximum train accelera-
tion A, and alsoε, which is the polling interval.21 In addition, it contains two static functions,bd andod,
which we will need later.

The ETCSMch machine itself is in Fig. 11. Aside from variables already mentioned, there is a
clock τ.clk to implement the polling. Note that onlyτ.p andτ.v are declared pliant since they change

21We follow [38] in having a top level model which is already a polling model. An alternative approach, which will be pursued
elsewhere, starts with a ‘more continuous’ abstract top level model, and introduces polling further down the development.
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CONTEXT ETCSCtx
SETS MODES,MSGS
CONSTANTS

normal,emergency
emrg
b,A,ε
bd,od

AXIOMS
MODES= {normal,emergency}
MSGS= {emrg,newMA}

. . . . . . . . . . . .

. . . . . . . . . . . .
b∈ R ∧ b > 0
A∈R ∧ A > 0
ε ∈R ∧ ε > 0
bd ∈R×R→ R

∀x,y•bd(x,y) =
x2−y2

2×b
od ∈R→ R

∀z•od(z) = zε+
1
2
Aε2

END

Figure 10: Static data for the European Train Control System.

continuously. Other variables are piecewise constant (albeit having values inR), so are mode variables.
An important feature of Fig. 11 isinv9, which expresses the key safety property,τ.p≥m.e⇒ τ.v≤m.d.

We now consider the behaviour of the system. The radio block controller has the exclusive mode
eventEMERGENCY, to declare that emergency braking is required, and participates in the mode event
MOVEMENTAUTHORITY, whereby new data are assigned to the movement authority, and the train
simultaneously reacts by updating its emergency braking point τ.sb. Both mode events have input pa-
rameters, so, according to the semantics, the needed valuesbecome available at undetermined times that
do not clash with any other mode event occurrences. Note thatEMERGENCYcan only occur once.
Having happened, an emergency brings the system to rest, completing the dynamics.

Turning to theMOVEMENTAUTHORITYevent, we see that when prompted by the receipt of the
input parameternewMAfrom the environment it reassigns the movement authority variables,m.r, m.e,
m.d, according to nondeterministically chosen valuesr,e,d, subject to some restrictions as follows.
Firstly, the event can only take place innormalmode. Secondly, the values assigned must all be positive,
consistent with the restriction that, when under automaticcontrol, the train can only move forwards.
Thirdly, the new values form.r andm.d must satisfyr ≥ d, i.e. the recommended (i.e. cruising) speed
is greater than the demanded (i.e. limiting) speed, which isalso expressed ininv8. This is a natural
property to expect, and although not essential, it simplifies some case analysis below. Fourthly, there are
two further dynamical restrictions on the new movement authority values.

To understand the first, there is a requirement that any update to a movement authority must be no
more demanding than its predecessor, in case the train is already braking as hard as it can in order to
remain within the current movement authority. Consequently, if the new demanded speedd is greater
than the current onem.d, then since the train is (by assumption) guaranteed to be capable of remaining
within the current movement authority (i.e. to not go pastm.e), we need only ensure that the new endpoint
e is no earlier than the current one,(d≥m.d⇒ e≥m.e).

To understand the second, consider the following. When ideal one-dimensional motion is governed
by acceleration that is piecewise constant over time, then velocity is piecewise linear over the same
time periods within which the acceleration is constant,each piece with respect to an origin of time
appropriate to ensuring continuity (though not differentiability) of the velocity as a whole. Furthermore,
in this situation, position is piecewise quadratic, again over the same time periods within which the
acceleration is constant, and such that each piece is quadratic with respect to the same origin of time
that applied to the velocity, and with an initial value that ensures continuity (though not differentiability
beyond first order) of the position as a whole. Thus, during a period of constant ac- or de- celerationa,
the velocity behaves likev = at and the position liked = d0 + 1

2at2, with respect to an appropriate origin
for time t, and initial positiond0. Eliminating t, we find d = d0 + v2/2a, so that over some period of
constant celeration where the velocity does not cross 0, we have:
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MACHINE ETCSMch
SEES ETCSCtx
CLOCK τ.clk
PLIANT

τ.p,τ.v
VARIABLES

τ.a,τ.sb
mode
m.r,m.e,m.d

INVARIANTS
inv0 : τ.p∈ R ∧ τ.p≥ 0
inv1 : τ.v∈ R ∧ τ.v≥ 0
inv2 : τ.a∈ R ∧ τ.a∈ [−b. . .A]
inv3 : τ.sb∈R ∧ τ.sb≥ 0
inv4 : mode∈MODES
inv5 : m.r ∈ R ∧m.r ≥ 0
inv6 : m.e∈R ∧m.e≥ 0
inv7 : m.d∈R ∧m.d≥ 0
inv8 : m.r ≥m.d
inv9 : τ.p≥m.e⇒ τ.v≤m.d

EVENTS
INITIALISATION

STATUS ordinary
BEGIN

τ.clk := 0
τ.p,τ.v := 0,0
τ.a,τ.sb := 0,0
mode := normal
m.r,m.e,m.d := 0,0,0

END
MOVEMENT AUTHORITY

STATUS ordinary
ANY msg?, r,e,d
WHERE

mode= normal∧
msg?= newMA∧
r ∈ R ∧ r > 0∧
e∈R ∧ e> 0∧
d∈R ∧ d > 0∧
r ≥ d∧
(d≥m.d⇒ e≥m.e) ∧
(d≤m.d⇒ e≥m.e+(m.d2−d2)/2b)

THEN
m.r,m.e,m.d := r,e,d
τ.sb := bd(r +Aε,d)+od(r)

END
EMERGENCY

STATUS ordinary
ANY msg?
WHERE

msg?∈MSGS∧msg?= emrg∧
mode= normal

THEN mode := emergency
END

. . . . . . . . . . . .

. . . . . . . . . . . .
DRIVE

STATUS pliant
WHEN τ.clk = 0
COMPLY τ.v≥ 0∧

τ.clk < ε
SOLVE D τ.v = τ.a

D τ.p = τ.v
END

SPEEDOK
STATUS ordinary
ANY a
WHEN

τ.clk = ε ∧mode= normal∧
m.e− τ.p≥ τ.sb∧ τ.v≤m.r ∧
a∈ [−b. . .A]

THEN τ.a := a
τ.clk := 0

END
SPEEDHIGH

STATUS ordinary
WHERE

τ.clk = ε ∧mode= normal∧
m.e− τ.p≥ τ.sb∧ τ.v≥m.r

THEN τ.a := −b
τ.clk := 0

END
AUTOMATICTRAIN PROTECTION

STATUS ordinary
WHEN

τ.clk = ε ∧ (mode= emergency∨
m.e− τ.p≤ τ.sb)

THEN τ.a := −b
τ.clk := 0

END
FULL STOP

STATUS ordinary
WHEN τ.v = 0∧mode= emergency
THEN τ.a := 0

τ.clk := 0
END

FINAL TRAIN
STATUS pliant final
WHEN

τ.clk = 0∧mode= emergency∧
τ.v = 0∧ τ.a = 0

COMPLY skip
END

END

Figure 11: A Hybrid Event-B machine for the European Train Control System.
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relative displacement=
difference in squared velocity

2×celeration
(38)

where both the numerator and denominator of (38) are positive.
Returning to the lastMOVEMENTAUTHORITYguard, if the new demanded speedd is less than the

current onem.d, then for the new endpointe, we must allow an extra distance at least enough to permit
maximum braking to successfully bring the train down to velocity d in the worst case. The worst case
is given by assuming that the train started braking as hard aspossible as late as possible to still remain
within the current movement authority. In that case, when the train arrives at the current endpointm.e,
it will be travelling at velocitym.d, by definition. Therefore, to be going atd by the timee is reached,
we must add at least(m.d2− d2)/2b extra displacement ontom.e to remain feasible, whereb is the
maximum braking deceleration. Hence(d≤m.d⇒ e≥m.e+(m.d2−d2)/2b). We discuss the update
to τ.sb in MOVEMENTAUTHORITYlater.

The remaining events refer purely to the train. The only non-final pliant event isDRIVE, which is
scheduled whenever the clock is reset to 0, and lasts for a period τ.clk< ε. At the left limit of the endpoint
of this period, various mode events can become enabled (via aguardτ.clk = ε), so by the semantics in
Section 7, such events can continue the system trace. TheDRIVEevent itself merely stipulates that the
train follows the laws of Newtonian mechanics during any pliant transition specified by this event.

The eventSPEEDOK stipulates that innormalmode, at the end of a polling interval, if the train’s
current speed does not exceed the recommended maximum and the train has not reached the emergency
braking zone, the acceleration for the next polling interval can be set arbitrarily between its static mini-
mum and maximum values. The clock is reset andDRIVE is re-enabled for the next polling interval.

The next event isSPEEDHIGH. If, in normal mode, at the end of a polling interval, the train’s
current speed exceeds the recommended maximum and the trainhas not reached the emergency braking
zone, the acceleration for the next polling interval is set,for simplicity, to its static minimum. The clock
is reset andDRIVE is re-enabled for the next polling interval.22

If, by the end of a polling interval, the mode has been set toemergencyor the emergency braking
zone has been entered, then in the next event,AUTOMATICTRAIN PROTECTION, the acceleration
is set to maximum braking and the clock is reset. The actions of this event are identical to those of
SPEEDHIGH in this very simple model (essentially for the reasons explained in footnote 22).

The last mode event,FULL STOP, is triggered inemergencymode when the velocity reaches 0, at
which point the acceleration is set to 0 too, and the train’s motion stops, enabling the final pliant event
FINAL TRAIN, which keeps the train at rest indefinitely henceforth.

We return to theMOVEMENTAUTHORITYevent. The job of the train’s portion of the event is to
update its start braking variableτ.sb, so that it remains consistent with the requirement of beingable to
decelerate to the new demanded speedd by the time the new endpoint of the movement authoritye is
reached.

Before resolving the implications of this we observe that ifthe train is travelling at velocityτ.v, then
by (38), to reduce speed tom.d (assuming that the train is braking at rateb and thatτ.v≥m.d) requires
a braking distance:

22N.B. In [38], for the corresponding situation, braking is set arbitrarily between−b and 0 (i.e. it permits no braking at allin
extremis), but the ensuing safety discussion of the system is always phrased in terms of the trainchoosingmaximum braking
when appropriate. This is in line with the control engineering concern ofcontrollability, i.e. the ability to choose a suitable
behaviour for the system under particular circumstances bysuitably assigning the controlled variables. This approach amounts
to anangelic choiceof course. In the B-Method, system behaviour is always analysed with respect todemonic choice, so we
have made the behaviour here more deterministic in order to more easily address the safety requirements.
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bd(τ.v,m.d) =
τ.v2−m.d2

2×b
(39)

This means that at all times it must hold that,

bd(τ.v,m.d) ≤ τ.sb (40)

i.e. (40) must be an invariant.
To go from this to a safety property and to a safe assignment ofτ.sb in MOVEMENTAUTHORITY,

we must relate (40) to the data of a movement authority, to thetiming of events in the train, and to how
movement authority data changes during theMOVEMENTAUTHORITYevent.

If the train is travelling at velocityτ.v andτ.v≤m.r, then the maximum speed attainable (within an
unchanging movement authority) ism.r +Aε. This is because the only event that can make the acceler-
ation positive isSPEEDOK, and this event is still enabled whenτ.v = m.r. At that pointSPEEDOK
might choose to setτ.a to as much asA, which could increase the speed to as much asm.r +Aε over the
next polling interval. After that,SPEEDOK will be disabled and the only other mode events all make
τ.a nonpositive; so speedm.r +Aε cannot be exceeded.

In going fromm.r to m.r +Aε the train travels an overshoot distance which is at most:

od(m.r) = m.r ε+
1
2
Aε2 (41)

Therefore, ifτ.v≤m.r holds at some point and the movement authority does not change, then

bd(m.r +Aε,m.d)+ od(m.r)≤ τ.sb (42)

represents a safe static weakening of (40) for the remainderof the movement authority. (Note that we
have usedinv8 here.)

Alternatively, if the train is travelling at velocityτ.v andτ.v≥m.r, then on the next polling occur-
rence, the train will be compelled to reduce speed tom.r. During this speed reduction the train will travel
a distance, at most:

bd(τ.v+Aε,m.r)+ od(τ.v) (43)

and, ifm.e is close enough and deceleration is to continue down tom.d, it will require a further distance
of bd(m.r,m.d) to reach demanded speed, making a total ofbd(τ.v+Aε,m.d)+ od(τ.v).

The above facilitates a case analysis for determining a safevalue ofτ.sbwhen the movement author-
ity is updated to a new tuple of valuesr,e,d.

If τ.v≤ r, then we can use the first case above to setτ.sb to bd(r + Aε,d)+ od(r). If τ.v≥ r, then
we can rely onSPEEDHIGH or AUTOMATICTRAIN PROTECTIONto ‘immediately’23 start braking
to reduce the speed tor. After that, an assignment ofτ.sb to bd(r + Aε,d) + od(r) will take care of
deceleration to demanded speed when needed. Thus the value to be assigned toτ.sb is the same in
both cases, although the justification is different in the two branches. This completes our discussion of
MOVEMENTAUTHORITYand of the ECTS case study.

23‘Immediately’ means within an overshoot tolerance ofod(τ.v) which will have been allowed for in a preceding movement
authority.
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10.4. Some Behaviours of the ETCS Hybrid Event-B Machine.

Superficially all seems well. However, when we look at thingsin more detail, potentially undesirable
system behaviours become apparent.

Consider the following system behaviourSB1. The system is initialised. During the first polling
interval nothing changes (except the clock). At the next mode transition,SPEEDOK is enabled, chooses
τ.a= A and is scheduled; the train starts to accelerate. At the end of the next polling interval the invariants
are checked and since the speed is nowAε, invariant inv9 fails. ThereforeSB1 ABORTs. We conclude
that the ETCS machine cannot be correct according to the criteria in Definition 7.1.

Now consider system behaviourSB2. The first polling interval is as inSB1. At the next mode
transition,SPEEDOK choosesτ.a = 0; the train remains stationary. Subsequent mode and plianttran-
sitions are replicas of these two. The completely stationary behaviour carries on indefinitely. Since no
ABORT is encountered, we conclude that the ETCS machine is at leastnon-void according to the criteria
in Definition 7.1.

The reason for the failure ofSB1 is not hard to find. The initialisation ofτ.sb did not take into
account the more delicate reasoning that revealed the need for od in calculatingτ.sb.

Now consider system behaviourSB3[τ.sb/od(0)], in which we change the initialisation so thatτ.sb
is initialised tood(0). Now, after the first polling interval (during which, the only thing that changes is
the clock), onlyAUTOMATICTRAIN PROTECTIONis enabled andτ.a is set to−b. In the next polling
intervalDRIVE is infeasible since, with an initial velocity of 0 and negative τ.a, it becomes impossible
to COMPLY with τ.v≥ 0 for any finite time. SoSB3[τ.sb/od(0)] alsoABORTs.

Consider next system behaviourSB4, in which, exactly at the end of the first polling interval (i.e. the
first occurrence ofτ.clk = ε), a MOVEMENTAUTHORITYevent occurs which sets the movement au-
thority data to ‘sensible values’ that permit the train to move forward while maintaining the invariants.
Suppose the train reaches the emergency braking zone, i.e.AUTOMATICTRAIN PROTECTIONbe-
comes enabled. The train decelerates, and suppose its velocity reaches 0 when the clock readsτ.clk =
ε/2, making theDRIVEevent no longer feasible. Suppose no mode event occurs at this time. Then we
have successful finite termination.

Now consider system behaviourSB5. This is just likeSB4, but when the train has stopped mid-
way through a polling interval atτ.clk = ε/2, a MOVEMENTAUTHORITYevent occurs precisely at
that moment (because the environment produced suitabler,e,d values just then) that sets the movement
authority data to some new sensible values that (in their ownterms) permit sensible progress of the train.
After the MOVEMENTAUTHORITYevent occurrence, theDRIVE pliant event is disabled (because
τ.clk 6= ε). Since there is no other enabled pliant event after theMOVEMENTAUTHORITYevent, the
semantics causes anABORT.

Finally, consider system behaviourSB6. This is like SB5, except that the original movement au-
thority data are such that the train comes to a standstill at apolling interval boundary, i.e.τ.clk = ε.
A MOVEMENTAUTHORITYevent occurs precisely then, reassigning the movement authority data to
new sensible values. This time the train can continue movingaccording to the new data and there is no
ABORT.

The above scenarios, consequences of a fairly uncritical transliteration of the ECTS case study in
[38], serve to show a number of things. Firstly, they illuminate some of the darker corners of the Hybrid
Event-B semantics of Section 7. This, although giving a defined behaviour for all Hybrid Event-B
projects is, in practice, such that we would want to exclude the more undesirable of the possibilities
via suitably stringent static checks. Secondly, the uncritical transliteration discarded a number of the
properties inherent in the originaldL programs in [38]. For example, in the original treatment of [38],
MOVEMENTAUTHORITYwas only scheduled at polling interval boundaries, and also, AUTOMATIC
TRAIN PROTECTION, if enabled, always overrode theSPEEDOK andSPEEDHIGH provisions due
to being sequentially composed after them — such issues are easy to fix via more careful programming
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and this would obviously be taken care of in a more serious attempt at ECTS via Hybrid Event-B.
Thirdly, we also saw the consequences of the purely demonic policy of the B-Method approach, versus
the option of using angelic choice as utilised in controllability arguments. This forced us to change the
behaviour ofSPEEDHIGH, in order to get any guarantee that when the train needed to, then (aside from
emergencies), it could actually be relied on to slow down.

11. Conclusions

In this paper we recalled conventional Event-B before embarking on a design of an extension that
would cope with the demands of the continuous behaviours exhibited by today’s hybrid and cyber-
physical systems. We examined in some detail the often unstated assumptions behind the relationship
between discrete event based systems (such as discrete Event-B) and the real world, in order that the
extension that we eventually presented disturbed existingEvent-B conventions and assumptions as little
as possible.24 As well as seeking to minimise the human risk that accompanies inadvertent change to
unspoken assumptions, seeking to stay as consistent as possible with the existing framework for discrete
Event-B enables us to undermine as little as possible the existing features of Event-B as implemented in
the Rodin tool, in which so much effort has been invested to date.

We then examined how these conventions and assumptions could be extended to encompass the
needs of Hybrid Event-B. The exercise focused on the semantic domain, to determine the universe of
mathematical objects in which the extended language would take its values. Given the nature of typical
engineering applications, in which discrete discontinuities in signals commonly occur as systems move
from mode to mode, the chosen universe was the world of piecewise absolutely continuous functions of
time, which allowed characterisation in various ways, DEs,assignments, and predicates with models in
(sets of) such functions. We also examined the implicationsof imposing a Zeno condition.

After that we presented Hybrid Event-B itself, giving the syntax and semantics for a Hybrid Event-B
machine. We then moved on to consider refinement. In seeking to disturb existing Event-B as little
as possible, we kept continuous behaviour apart from the existing discrete event framework as far as
possible, and this goal proved achievable.

In Section 9 we gathered together the proof obligations thatwould give substance to the semantics
of this framework in the Event-B style, and we gave two simplecorrectness results. In the last section
we gave a collection of examples of Hybrid Event-B modelling. After considering the bouncing ball and
a simple discretization problem, we ended with a simple version of the European Train Control System.
This case study, deliberately patterned rather loosely after the models in [38], gave us an opportunity
to discuss how some of the darker corners of the semantics of Hybrid Event-B could be exercised by
imprudently designed Hybrid Event-B specifications. Future work will extend the present account to
multiple Hybrid Event-B machines, and further, to include stochastic behaviour as first class citizen.
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