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Abstract

Faced with the increasing need for correctly designed Hyand cyber-physical systems today, the
problem of including provision for continuously varyinghaviour as well as the usual discrete changes
of state is considered in the context of Event-B. An extansib Event-B called Hybrid Event-B is
presented, that accommodates continuous behavioursdgaiant events) in between familiar discrete
transitions (called mode events in this context). The cotiis state change can be specified by a combi-
nation of indirect specification via ordinary differenteduations, or direct specification via assignment
of variables to values that depend on time, or indirect $gation by demanding that behaviour obeys
a time dependent predicate. The syntactic elements of teasirn are discussed, and the semantics is
described in terms of the properties of time dependent tiahsof variables. Refinement is examined
in detail, with reference to the notion of refinement inteatifrom discrete Event-B. A full suite of proof
obligations is presented, covering all aspects of the naméwork. A selection of examples and case
studies is presented. A particular challenge —bearing imdntthe desirability of conforming to exist-
ing intuitions about discrete Event-B, and the impact or sopport (as embodied in tools for discrete
Event-B like Rodin)— is to design the whole framework so adisburb as little as possible the existing
structures for handling discrete Event-B.

1. Introduction

Today, we see an ever-increasing interaction betweeratgices and the physical world. Once, it
was enough to see this in terms of predominantly isolategss in which a single digital device inter-
acted with a fixed suite of physical equipment, and to talkrdfore, of embedded systems. Nowadays
though, this picture is proving more and more inadequats. ritore and more the case that families of
such systems are coupled together using communicatiororietywand can thus influence each others’
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working. These days then, the talk is@fyber-Physical Systenié5, 51, 52, 54, 49, 13, 18, 44, 1, 37],
which is the name that has been adopted for these interdatimgies of embedded systems.

These new systems throw up novel challenges in terms of més@hnique, as it is increasingly
difficult to ignore the continuous characteristics in theghaviours. Unfortunately, the usual kinds of
approaches to the modeling, specification and developnfartinwentional discrete systems, offer lit-
tle help for developing the continuous aspects, simply beedhe usual semantic foundations of such
approaches make almost no contact with what is needed faotitewuous world.

That is not to say that discrete techniques have never ireding the design of systems that are con-
tinuous as regards their physical characteristics — fan ftoHowever, the usual way that purely discrete
technologies interact with the continuous aspects is togippund them — predominantly because of the
semantic inadequacy just mentioned. Often, the inconué@ntinuous aspects are permitted to occur
in only very simplified form, and then their consequencestygpitally be reduced to a small number of
algebraic facts, which can be accommodated within the elisarorld.

For very simple problems, this approach can almost be coimgn aside from the fact that the
collection of algebraic facts that are accumulated, ugdail to come with the necessary invariants that
bind them together — precisely because the required imigremerge from the continuous world, which
is being studiously ignored. Obviously this underminesitttegrity of such a technique and weakens
the dependability that it can deliver.

For more complex systems, the problem only gets worse., Hirstdesign is approached from the
purely continuous side (since it is too complicated to ignttre continuous aspects altogether). Con-
ventional techniques from the continuous sphere are appliatil the design has reached a reasonable
state. Then, some engineering heuristics are applieduhatat continuous design into a discrete one,
after which, a kind of collective amnesia takes place. Adiuthts of the continuous world are forgotten,
and the discrete design that emerged from the earlier gctivivhich is regarded now as the top level
spec— is treated as if it were the most obvious and naturaltevapstractly specify the desired system.

Unfortunately, there is a major defect to this strategy.c8jations, by their nature, are intended to
be as clear and perspicuous as the intrinsic nature of thegmowill allow, so that they can be clearly
related to domain level requirements, and properly undedsby all problem domain stakeholders as
easily as possible. An essential ingredient of this is dititpl of expression and of structure. The B
Method [2, 3] —which is our concern in this paper— more tharsinsiresses the importance of starting
out with a clear and simple view of the system-to-be, and afirafd the complexity only gradually.
However, that which is clear and perspicuous in the contisueorld is not the same as that which
is clear and perspicuous in the discrete world. The limipngcesses that go into the construction of
continuous world quantities, sweep away vast (in fact unded) quantities of the discrete level detalil
that goes into their bottom-up construction. This radicalianges the nature of what is ‘simple’ in the
two worlds.

In this paper we extend the formalism of Event-B so that it daal with continuous behaviour
as a first class citizen. This extends the reach of the B Mesioothat it is better able to capture the
kind of developments needed to realise the cyber-physysé¢ms spoken of earlier. As a byproduct, in
enabling continuous behaviour to occur in native fashiahatmost abstract levels of the development,
the complex, unintuitive detail manufactured by discigian processes, takes its rightful place at the
intermediate levels of a more broadly based development.

In cyber-physical systems design, the communication sidieeocommunication / continuous inter-
play that has to be faced, can be handled by relatively cdioret means. After all, communicating
systems have been studied in computer science for many, wear&vent-B is no exception in providing
many examples of the modeling of communication (see e.. [3jis leaves the continuous side to be
faced, and our extension of Event-B enables it to encompasidhbehaviour in a first class way. This
is the main objective of the present paper.



Our extension of Event-B is designed to cause as little gt&yn as possible to the existing structure
of discrete Event-B. This point is important since consaidg investment has already been made in tool
support for Event-B, through projects like RODIN [39], DEBY [21] and ADVANCE [4], resulting in
the current state of the Rodin tool [40]. This, we do not wskpoil.

The remainder of the paper is as follows. In Section 2 we eggboeexisting work in more detail
and contrast some of its common features with what we do snghper. In Section 3 we briefly review
discrete Event-B. Section 4 is concerned with setting oets¢bmantic foundations for incorporating
continuous behaviours into Event-B in our approach. IniBed we define the core syntax of our
Event-B extension, indicating how the issues discussedaqursgly relate to it. In Section 7 we discuss
the formal semantics of our framework, relying on standasiits from the literature to handle routine
matters. In Section 8 we discuss refinement in the extendeditEBs framework. Section 9 collects
together the proof obligations that keep all the issuesudised previously under control in a specific
development. Section 10 describes a number of small cadeestistarting with the bouncing ball,
continuing with a simple discretization of continuous bébar, and culminating with a simple study of
the European Train Control System. Section 11 concludes.

2. Related Work and the Hybrid Event-B Approach

The framework for Hybrid Event-B that we will build below igslar in many respects to a num-
ber of formulations of hybrid systems in the literature. Hgbsystems themselves have been stud-
ied intensively for many years, and the literature is tog@éaby now to cover everything in detail
here. Some of the earliest work includes [35, 5, 6, 28, 33prBhafter these papers appeared, other
works such as [34, 24, 25, 53] and [26, 43, 22, 8] were puldist&ightly later formulations include
[33, 14, 29, 30, 17, 7, 16, 23]. Of particular note is the syfii&], which covers a large number of these
formulations, and especially, the tools that support thArmodern and unified theoretical overview of
many of these established approaches is to be found in [d€]treere is [38] which is closest to our
approach. Moreover, a large body of work has appeared imteenational Conference on Hybrid Sys-
tems: Computation and Contrgeries of international meetings, and this, combined wighrhodern
trends noted above, has joined with other relevant evergating the major annu&PS Weekneeting
in recent years. We now comment on three characteristiatiedtequently seen in this class of system.

The first characteristic of many extant systems for addngshkiybrid behaviour, is that they are
conceived with the strategy of verifying that a given hylsigstem satisfies some desirable property
— obviously this is a laudable aim in itself. Unfortunatedyyy language that is expressive enough to
encompass a significant portion of hybrid behaviour is lyiginidecidable. As a consequence, the desire
to make mechanisable inroads into the verification highllgeal has led to many systems that curtail
quite severely the expressivity of the language used toribesthe candidate hybrid system, in order
to lend some decidability to the problem. Even so, the neeldmision procedures often have high
complexity, adding yet more difficulties.

The second characteristic comes from this severe curtailofeexpressivity inherent in the strategy
just described, which chimes with a kind of bottom up apphoatf one cannot express a problem
in the most transparent way, its description will most fketéduce to a complex set of lower level
subproblems (such as with discretization, discussed abdwés only makes worse any challenge from
high complexity decision procedures.

The third characteristic is a typical further consequerfdgis kind of strategy, namely that the con-
nection between the formal description of the two sides efftamework can become weak. While the
discrete side is invariably captured quite precisely, ite sf the formalism that deals with the contin-
uous side is either: precise but severely curtailed in esgivigy; or is more encompassing regarding



the admitted continuous behaviour but significantly legxige regarding its foundations — in extreme
cases delegatingll aspects of continuous behaviour to, e.g., the semanticsiofdation tool®

The extent to which any of these characteristics is preseany given formalism varies widely, of
course. Our own approach for Hybrid Event-B attempts to bygame of these difficulties by advocating
a top down methodology. By starting with simple models, aesighing the properties that they should
satisfy along with them (rather than trying to discover thpsst hog¢, and enriching both along the
way to the final system, the aim is to keep the tractabilitylodspects of design and verification much
higher than if one was confronted with the final system obtrig- without any clues as to its underlying
structure or design motivations.

A salient characteristic of the B-Method in general, of BvBrin particular, and of our hybrid
extension of it, is the extent to which the top down approadhtegral to the formalism. This approach
has given Event-B considerable momentum worldwide [47¢dg@ason to inspire our hybrid extension
of it here. The top down approach also has some consequesgasling the issues mentioned above,
which we comment on now.

Regarding verification, because we model at the highest téastraction possible, we avoid the
pitfalls of an inherently bottom up approach, that would teeéd by a low degree of expressivity. This
has the advantage that we can attempt verification wheréghpally has the least complexity; but it also
has the disadvantage that we can easily write down modelsHimh no verification strategy is known.
We elaborate this point further shortly.

Regarding concerns about the formal description of thedwaonk, our approach to the design of Hy-
brid Event-B is more readily distinguished from alternatapproaches. First and foremost, we ground
the semantics of the Hybrid Event-B framework-to-be in leisthed facts from the world of textbook
pure mathematics (facts concerning properties of suitibtélies of piecewise continuous real func-
tions). This standpoint separates soundness-in-pracipthe formalism (established by appeal to facts
from mathematical analysis) from verifiability-in-prasgi (performed by executable algorithms running
with acceptable complexity on specific classes of exampteahd leads to situations in which we know
(semantically) certain generic facts on which we can refgnethough, in specific instances we cannot
calculate their consequences. Still, this approach givedarmulation an equally consistent level of
formal rigour for both the discrete and continuous parteftheory, at least in principle.

In this paper we focus on the generic formal semantics. Thegoling remarks imply that there is
a non-trivial road to be navigated from the generic semamtidd to the world of verifiable problem
instances. We do not embark on that road in this paper, poisipohose details to other publications.

Verifiability in practice is the primary concern of tools,daalong with the theoretical development
of this paper, there is an intention to enhance the Rodin[883Ito incorporate the capability to verify
suitable classes of practical examples. Typically, thizatélity will be somewhat open-ended, in line
with the vast range of applied mathematics about which léetaionsequences can be calculated, and
the capability of the extended tool at any point will dependlee effort invested in tool enhancement up
till then?

What is needed for comprehensive verification goes beyona wedculation of some continuous
behaviour. Looking forward to the needs of the formal seinantve require the calculation of the times
of preemption of an episode of continuous behaviour by thkédiscrete transition, and the confirmation
of invariants over a period of time; looking towards the reedl refinement, we additionally require
confirmation of joint invariants over time. All this requesignificant capability in symbolic calculation

3In fact, the behaviour of many commercial simulation tositended for the modelling of physical systems is highly
customer-driven, and makes no real contact with any foummiztsemantic concerns whatsoever [36].

4Thus, we envisage tool capability increasing over time.fleshis thoughgeveryversion of such a tool will engage with
some subset of the semantic world described in this papepli§ying the conceptual challenge for practitioners.



for the tool, making the design of a suitable verificationiemvment non-trivial, as stated.

Beyond these aspects, there are questions regarding tbéhegristic techniques, and of implemen-
tation. The reach of purely symbolic techniques will noteoall cases of interest, so more approximate
techniques will need to be incorporated into the methodolégd when modelling has reached a suf-
ficiently low level, code generation for appropriate paftshe system becomes relevant. Ideally, these
aspects would be controlled by suitably incisive invaariut it is to be noted that reasoning about
approximate techniques is usually as difficult as the isthuscause their use in the first place, so this
ideal may not be completely attainable.

Putting aside these questions of Hybrid Event-B internatatyy, the picture of system behaviour
that it offers is quite similar to that offered by many of thestems mentioned at the beginning of this
section. The majority of the works mentioned take an autarttaoretic view of hybrid systems, having
named states for the discrete control. Within each of thesatjnuous behaviour evolves until the next
preemption point, which is triggered by the truth of the gueondition of the next discrete state. We
achieve a similar effect via the mode and pliant events ofrldyiBvent-B, described below.

This relatively small degree of difference between formates is in fact reassuring since, in Hybrid
Event-B and in other approaches, among many things, we wedgesktribe the physical world, and the
physical world is as it is. Obviously, to be effective, anysddption of it must conform to the single
existing reality. The combination of isolated discontinaocchange of state, together with smoothly
continuous behaviour has proved to be a useful frameworknanaber of formulations at the level of
abstraction needed for applications.

3. Discrete Event-B

In this section we summarise discrete Event-B [3]. EvensBharacterised by proof obligations
(POs) that define what consistency means for constructsfaarreélationships between constructs. In
keeping with a style we will follow throughout the paper, we dot quote the POs formally as we
discuss various issues in the body of the paper, instead ewgradate all the POs, in Section 9, using a
consistent notation, for better reference. The exceptidhis is when a PO of discrete Event-B needs to
be modified in some way for the continuous extension. Thenwe¢egthe original form here.

3.1. Event-B Machines

Event-B consists of MACHINES, supported by CONTEXTs. Catdalefine the static data envi-
ronment within which the dynamic behaviour of the machirmé®$ place. Fig. 1 contains a context and
a machine that depends on it. Contexts typically define selscanstants, the latter being any static
mathematical objects needed by the machines that use thetatidRships between the objects intro-
duced can be asserted using AXIOMS. Further propertieddhedv from those that are asserted may be
declared in THEOREMS, which must be provable from the axiofsthermore, a context may extend
another via an EXTENDS clause, making the entities defineckthvailable.

An event has a STATUS field which indicates the role it playshie development as a whole. An
event may havgparameters declared by ANY. In general these includguts local parametersand
outputs indicated using notationg?, |, 0! respectively. While inputs and outputs are connected with
the environment in the expected way, local parameters semesolve inherent nondeterminism in the
event's actions. The WHERE clause gives ¢luards which specify any constraints that the parameters
have to satisfy, and any other conditions that have to holdreghe event is enabled. If there are no
parameters, then ANY.. WHERE is abbreviated to WHEN. The THEN clause givesabgonswhich
specify the required updates to the values of the VARIABLES épecify the required change of state).
Actions that update a set of variables may take the most general fowar :| BApredvar,var'), where
BApredvar,var’) is a before-after predicatelepending on the before-valugar and the after-values



MACHINE Nodes
SEES NCitx AddNode
VARIABLES nod STATUS ordinary
INVARIANTS ANY n
nod € P(NSe} WHERE n € NSet-nod
EVENTS THEN nod:= nodu {n}
INITIALISATION END
STATUS ordinary END
BEGIN
nod:= & CONTEXT NCtx
END SETS NSet
CONSTANTS aa, bb, cc,dd
AXIOMS NSet= {aa, bb,cc,dd}
END

Figure 1: A simple Event-B machine, together with its cohtex

var’, and specifying thatar is to be updated to any after-values such ®@predis satisfied. There are
simpler forms, e.gvar := E(var), to handle straightforward assignment to the value of amesgon.
Among the events there is thRITIALISATIONevent, whose guard is posited to thge (indicated by
the guardless BEGIN ... END syntax).

The behaviour of a machine must respect the INVARIANTS. Has a number of consequences.
Firstly, the values established by the initialisation magisfy the invariants. This is expressed formally
in POs (11) and (12).

Secondly, each variable update must also preserve theantar Variable updates are implemented
by event executions. If an event is to be executed, it mushbbled and be feasible. An event is enabled
in the current state, if the event’s guards are true in ttatesfor an appropriate choice of values for
the parameters. An event is said to be feasible iff, whenevamputative before-state the invariants are
true and the event’s guards are also true, then there is enstdite for which the event's before-after-
predicate becomes true (when evaluated with the mentioefldastate). This is expressed formally in
PO (13). Furthermore, a feasible event is required to pvegbe invariants. So if the invariants and the
event’s guards are true, and a chosen after-state makesftre{after-predicate true, then the after-state
must also make the invariants true. This is expressed forimalPO (15).

For non-terminating systems, after every event, some exest become enabled. Since this is one
point at which the conditions for discrete Event-B diffeorfr those for our continuous extension, we
guote the discrete Event-B PO here:

I(u) = (grdmoew (U, 1) V grdvoewe (u,1) Vv ... V grdmoevn(u 1)) D

In (1), MoEML...MoEvVN are the requisite events, withas the parameter for each of them, afu) is
the invariant, where is the state variable. For simplicity, we assumed that atupeter types were the
same. It is possible to be more specific by separately gyargieach parameter occurrence.

3.2. Event-B Refinement

In Event-B, development progresses towards implementaieorefinement. We give a small exam-
ple of Event-B refinement in Fig. 2. It enhances the node smhple above with a dynamically added
set of node pairs, yielding a dynamically generated dicegtaph structure. The requirement of having
directed edges between graph nodes is handled by adding san@bles, invariants and a new event
AddEdge SinceAddEdgedoes not refine any existing event, its occurrences at rgndéira considered
to refine a ‘notional abstrackip’ event that is not present in the abstract model. Also, tegmenew



MACHINE Nodes MACHINE Edges
REFINES Nodes
SEES NCix SEES NCtx
VARIABLES nod VARIABLES nod edg
INVARIANTS INVARIANTS
nod € P(NSej nod € P(NSej}
edge P(NSetx NSe}
edgC nodx nod
EVENTS EVENTS
INITIALISATION INITIALISATION
STATUS ordinary STATUS ordinary
REFINES INITIALISATION
BEGIN BEGIN
nod:= & nod:= o || edg:=9
END END
AddNode AddNode
STATUS ordinary STATUS ordinary
REFINES AddNode
ANY n ANY n
WHERE n € NSet-nod WHERE n € NSet—nod
THEN nod:= nodu {n} THEN nod:= nodu {n}
END END
END AddEdge
STATUS convergent
ANY n,m

WHERE {n,m} C nod
n+— me NSetx NSet— edg
THEN edg:= edgu {n — m}
END
VARIANT card(NSetx NSet- edg)
END

Figure 2: A refinement of the earlier Event-B machine.

events from taking permanent control at runtime, they mastbnvergent’, i.e. they must decrease the
N-valued VARIANT, ensuring relative deadlock freedom.

Ensuring the proper operation of this process is a colleaioPOs. These cover initialisation (20)
and (21), feasibility and refinement of existing events {2), and ‘refinement ofkip’ behaviour and
convergence of ‘new’ events (28)-(29). Finally, a machiae also contain THEOREMS, which must be
provable from the facts available to the machine.

4. Continuous Behaviours

In this section, we discuss, at an appropriately informetllea number of issues that influence the
way that our extension of discrete Event-B is designed.

4.0. Discrete Event-B behaviours.The states of an Event-B machine are given by valuationseof th
tuple of the machine’s variables, i.e. functions from theléuof variables that yield a tuple of values.
Runs of Event-B machines are given as sequences of suchigakjaeach valuation being generated
from its predecessor by some event. Of course, this doeon@spond to the real world, where time is
not discrete. So when runs of an Event-B machine are intetodexdflect real world behaviour, each state
is deemed to persist for an appropriate interval of time,iariden superseded by its successor. So the
time dependence of the state is piecewise constant. Inapierpwe extend this picture to also include
continuously varying behaviour, taking into account salpoints as follows.



4.1. Time. We model time as an interval” of the realsR, with a finite left endpoint and with a
right endpoint which is either finite or infinite, depending whether the dynamics is finite or infinite,
and on whether the final transition (if there is one) last®fer or not. The values of all variables
become functions of’. In our semantics, we will allow change of state to happein lsontinuously,
and discontinuously. The discontinuous changes areatestrio isolated time points, so thatpartitions
into a sequence of intervald, = ([tp...t1),[t1...t2),...), each non-empty, left-closed, right-open. Times
to, 11,10, t3, ... specify the coarsest partition @f such that all mode transitions (specifying discontinuous
change, see 4.6) take place at some boundary pdiMote that the; are not givera priori but emerge
via the runtime semantics. Additionally, below, ‘piecesvisontinuous’ always means continuous on
non-empty, left-closed, right-open intervals.

4.2. Variables. Variables are partitioned into two subsetsode variables which are only permitted to
change discontinuously, amdiant variables, whose types include topologically dense sets, and which
are permitted to evolve both continuously and via discrenges. Restricting to mode variables, we re-
cover conventional Event-B. In practice, the pliant vaealiake values in ‘nice’ subsetsRf i.e. subsets
that can be specified by simple first order constraints @&galued variables. This is certainly needed
if the formal semantics of Section 7 is to be made precisdl, Siich constraints are quite sufficient to
construct many quite exotic scenarios using the usual auaidis.

4.3. Limits. We consider now how discontinuities are handled. For evariahklex, and for every time
gy Py

t € 7, the left limit limg_ o Xx(t — &) writtenx(t) and right limit lims_,ox(t+ &), writtenx(t) (with 8> 0in
both cases) both exist, and for evér(t) = % (At the endpoint(s) off, if is needed for any purpose,
any missing limit is defined to equal its counterpart.) Thillsauations are continuous from the right
and have limits from the left. This space of functions is camiy known as Cadla§and is much used
in stochastic analysis (pointing to a subsequent smootiinasbic extension of our theory).

4.4. Differentiability. In an intervallt;...ti1), the behaviour of every pliant variabkes given, piece-
wise, by the solution of a well posed initial value probl@xs= @(xst) (wherexsis a relevant tuple
of pliant variables and® is the time derivative). ‘Well posed’ implies two condit@nFirstly: @(xs t)
has a Lipschitz constant which is uniformly bounded dter.ti,1). Specifically, there is a constakit
such that for alt € [t;...t+1), we have|| @(xs;,t) — @(x,t) || < K || x5 — xS ||. Secondly:@(xst) is
measurable it (In the preceding)| . || denotes thee™ norm of a real vector, i.e. the maximum absolute
value of any of its components.) The conditions stated felQk D xs= ¢ imply that once initial values
are specified, the solutiotsexists and is unique in the Carathéodory sense, and isuablsotontinuous
over some maximal right-open interval. (See e.qg. [48] fdfedential equations, and [50, 41, 32] for
the biimplication betweenbsolutecontinuity and differentiability almost everywhere (amting to the
Carathéodory interpretation of DES).)

We included the word ‘piecewise’ here, because, for comrezg and modelling fluency, pliant vari-
ables may also be directly assigned, eg:= E. (See Section 5.) The expressiris constrained to
yield piecewise absolutely continuous behavioundduring a left-closed right-open intervial. . .ti,1).
Thus, although a DE will yield absolutely continuous valdesing [t;...t;1), a direct assignment may
have isolated discontinuities coming from the natur& aind not from machiné/’s mode events.

4.5. Zeno.We desire a constalteno, such that for all that are relevant;, 1 —tj > dzeno. We say ‘de-
sire’, since Zeno properties are extremely hard to estabtistically, usually requiring a full knowledge

Svarious approaches to hybrid system and timed automatoarsiérs take varying views on the closedness/openness of the
intervals dividing up real time. All can be related to onetheo, modulo some low level technical details.
6From the French: continue & droite, limite & gauche.



of the dynamics. Moreover, in idealised modelling situagioZeno behaviour may be tolerable, even if
it is always unphysical in reality. Still, it would typicalpose problems for mechanical calculatfon.

4.6. Transitions. With the distinction between mode and pliant variablesteth® a distinction between
mode transitions and pliant transitions. Mode transitions are just conventional Event-B transiijo
recording a discrete transition from before-values torafédues of some subset of (mode and pliant)
variables, specified syntactically by an Eventridde event

Pliant transitions record piecewise continuous behawdwome pliant variables during an interval
[ti...ti+1). Since any such interval is only determined at runtime,estiandt; ; are unknown statically.
So we introduce two generic constants,andtg, to refer to the start and end of any such interval, both
in the concrete syntax of the system definition, and in owralisse about its behaviour.

Pliant transitions are syntactically specified fliant events A pliant event can specify the initial
conditions that have to hold for the pliant variables. It atso specify other guard conditions needed for
the enabledness of the pliant transition (typically conitey mode variables). It also specifies the DE to
be obeyed (subject to the conditions in 4.4).

As an alternative to writing a differential equation, if theguired continuous behaviour is directly
known, then it may be directly assigned to the pliant vagahktead of writing a corresponding DE.
Obviously this is very convenient, but to avert the pathi@ednherent in mere continuifywe insist that
such continuous behaviours should also be piecewise ablotontinuous solutions to well posed initial
value problems. One consequence of allowing direct assigisnis the possibility of discontinuities in
the pliant variable behaviour being defined durjng. .. tr), as noted in 4.4.

Additionally, any further constraints that need to hold Metihe pliant transition runs can be specified
within the pliant event. Parameters may be introduced imeapévent. Their syntactic scope is the whole
of the pliant event, and at runtime, they refer to functiohsirne over the interior of the relevant time
interval, (¢ ...tR)). Inputs and local parameters should have the same prepegipliant variables. So
they should be piecewise absolutely continuous solutiongell posed initial value problems.

4.7. Syntactic aspects of time.The semantic aspects of time must be connected with thexsgiita
events. Because of its special properties, i.e. as a rdgdrarable, the time variable must be declared
as such. Itis necessary to declare the initial valug ainost conveniently done in thBIITIALISATION

We also admitlocks A clock, by definition, increases at the same rate as timeg@very pliant event
(i.e. its time derivative is 1), so this property need not ntioned in the syntax. Clocks can be updated
in mode events. More exotic clocks can be implemented usingal pliant variables.

4.8. Interpretation of mode events.In discrete Event-B, an event describes how two successive v
ations in a run are related. In Hybrid Event-B, if the modasion is regarded as taking place at time
ty, then the before-values are normally interpreted as thdirgits of the valuations atfy, and the after-
values are the right limits (which equal their valuesjatself). Note that the parameters are regarded as
being defined only at the tintg itself, so do not possess limits.

The exception to ‘normally’ occurs when a pliant variablelergoes a discontinuity (at tintg say)
arising from a direct assignment (as in 4.4 and 4.6), andftee@alue of the discontinuity enables the
mode event (whether the before-value does so or not). Thexnd tfluency in modelling, particularly of
edge-triggered phenomena, the discontinuity after-vplags the role of mode event before-value, the

7Our approach contrasts with many other approaches to the gerblem, which demand that any finite time interval
contains only a finite number of transitions, or that the sege of discrete transition times contains no accumulai@nts.
But this still permits the sequence of times specifiediy — t; = 1/i, which, while satisfying the mentioned restrictions,
nevertheless allows theto get arbitrarily (and thus unphysically) close together.

8See standard texts on mathematical analysis, e.g. [427B1, 2



mode event executestgt and variable values & become as specified for after-values in the assignments
of the mode event.

4.9. Interpretation of pliant events. As noted already, there are two ways of specifying pliant be-
haviour: via a DE, and directly. In both cases, the right hsidd of the DE or assignment, may contain
discontinuities. In the DE casé&)xs= ¢, the Carathéodory interpretation integrates over angodits-
nuity in @, yielding behaviour that although absolutely continudssionsmoothSee e.g. [19, 20].

In the direct assignment case,.= E, any discontinuity irE remains visible irxs Piecewise absolute
continuity of E thus yields piecewise absolute continuityxsf The interaction of such discontinuities
with the enabling of mode events requires care, as alreathdndf the discontinuity after-value en-
ables the mode event, then the discontinuity after-vallsuperseded by the mode event after-value.
(N. B. We deliberately disregard the case where the distoityi before-value enables a mode event but
the discontinuity after-value doesn't.)

The solution to a DE gives rise to its transition relati@n For an interval such &g, ...tg), for
te (t...tr), Q(tL,t) is at-indexed set of before-/after-value pairs, relating theaton at timeg,_ to
the valuation at timé. This gives perhaps the closest correspondence to theshbafimr picture familiar
from the discrete world. For direct assignments, the peciarexactly the same; any discontinuities
encountered are not visible (as such) in the individd@l, ,t) pairs of values.

Although beyond the scope of this paper, an additional beokfhe formalism described, arises in
multi-machine systems. There, a mode transition in one machay be sensed as a kink or discontinuity
during pliant behaviour in another machine which does npeeagnce a mode transition at the same time.

4.10. Mode and pliant event interleaving.In 4.0 we indicated that discrete Event-B transitions were
isolated from each other in time, and that we want to prestngepicture in Hybrid Event-B. Conse-
guently, pliant transitions and mode transitions mustiadtee. To ensure this, we stipulate that both kinds
of events are feasible, and that at run time, each kind ositian enables the other kind. Therefore a
Hybrid Event-B run ought to have the following propertie)efe we assume that the machine contains
anINITIALISATIONmode event to start a system run.

e Every enabled mode transition is feasible, i.e. has an-aféde, and on its completion enables (2)
a pliant transition (but does not enable any mode tran3ifidf

e Every enabled pliant transition is feasible, i.e. has a {intexed family of after-states, and (3)
EITHER:

() During the run of the pliant transition a mode transitimecomes enabled. Such a mode
transition preempts the pliant transition, and defines tiieaé its family of after-states.
ORELSE

(i) During the run of the pliant transition it becomes indéae, i.e. for some point in time,
all the conditions stipulated cannot be satisfied simutiasly — finite termination.
ORELSE

(i) The pliant transition continues indefinitely — norrAteination.

It is clear from (2), (3) that the time pointsfor a given run emerge at runtime. The construction of a
given system trace thus proceeds piece by piece, detegningt; as it goes. The set of successfully
constructed system traces will constitute the semantitiseafystem. See Section 7 for details.

4.11. Preemption. In (3), and in earlier discussion, it is clear that as soon a®de event becomes
enabled, it preempts the current pliant event. Hagerscheduling of mode events in Hybrid Event-B
is the sharpest departure from discrete Event-B, sinceades&vent-B schedules evedzily, as noted

in 4.0. The difference is motivated by physical law, whickdsrelevant to the systems for which Hybrid
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MACHINE HyEvBMch
TIME t MoEv
CLOCK clk STATUS ordinary
PLIANT x,y ANY 21,0l
VARIABLES u WHERE grd(x,y,u,i?1,t,clk)
INVARIANTS THEN
xeR xy,u,ol clk :| BApred
yeR Xy, u,i? 1t clk, Xy U ol clk)
ueN END
EVENTS PliEv
INITIALISATION STATUS pliant
STATUS ordinary INIT iv(x,y,u,t,clk)
WHEN WHERE grd(u)
t=0 ANY 21,0l
THEN COMPLY BDApredx,y, u,i?,l1,0!,t,clk)
ck =1 SOLVE Dx=@(x,y,u,i?l,t,clk)
X = Xg y,ol := E(x,u,i?,l,t,clk)
Y = Yo END
u = up END
END

Figure 3: A schematic Hybrid Event-B machine.

Event-B is intended. Physical laws are all eager: e.g. méathouncing ball, when it hits a horizontal
surface, does not have any choice about when to bounce up agaiSection 10.1 for more discussion.

5. Syntax of Core Hybrid Event-B Machines

Fig. 3 shows the elements of a Hybrid Event-B machine. After inachine name is the TIME
declaration, which names the variable used to denote real(if needed). This permits read-only access
to time in the rest of the machine. Time is synchronised (MW&HEN clause) with the start of a run in the
INITIALISATION Next comes a CLOCK variablglk. This allows the restrictions discussed in Section
4.7 to be enforced. Then come the PLIANT and VARIABLES detians. The former introduces the
pliant variables, while the latter introduces the modealass.

Next come the INVARIANTS. Where these declare typing infation, the conventions used in
discrete Event-B are extended to Hybrid Event-B in that ipe tof a pliant variable such asor y in
Fig. 3 is the set of values that it can takieany given moment of tin{specificallyR in the case ok, y).*
Other invariants may be written as usual. The fact that tiegeddence isot part of the type of any
variable, means that an occurrence of a variable in an mmariecessarily refers to its current value,
which is at an arbitrary time during a system run. Consedyeamly invariant expression written in the
INVARIANTS section has to be truat all timesduring a system run.

9We deliberately forbid successive mode transitions to p@miis permitted in some alternative frameworks. Thisemey
the semantics of a ‘mode event cascade’ having to be defilaeal fiked point calculation, and permits the characterigaifo
system traces as functions of time for each variable.

Regarding interfacing between continuous and discretawbetr, it is helpful to have the discrete behaviours désctiin
straightforward before-after terms. Such specificati@as subsequently be refined to sequential code by convehtitaans,
outside of, and below the level of abstraction of the prefamalism.

10f a mode event has an input parameter, to facilitate simpledelling, the semantics assumes that its value only besome
available at a time strictly later than the previous ocaureeof a mode event, ensuring part of (2) automatically.

n particular, in our formulation, the type of a pliant vasia such ax is not, for exampleR* — R (as it would be in some
related formalisms), i.e. the time dependenceasmentioned explicitly in the type.
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Then come the EVENTS, starting with thiITIALISATION The STATUS ofINITIALISATION
is ‘ordinary’ — for simplicity, existing event status desggions are taken over from discrete Event-B
for mode events. The initial value of real time is synchrediso the initial state of the machine in the
WHEN clause. Real time is read-only; it is never assignedcheOvariables are assigned their initial
values as usual, including assignment of initial valueddoks. If a nondeterministic initial assignment
to some variables is needed, it can be achieved via the udlial. A WHERE. .. THEN ... mechanism.

Then come the remaining mode events and pliant events. Maatdseare as in discrete Event-B,
aside from timing details, discussed in Sections 4.8 an8. &Imode evenMoEvappears in Fig. 3.

Pliant events need new syntax. As mentioned in Section #aB\tvariables can be assigned values
either via the solution of a DE, or directly by being assigtteslvalue of a (time dependent) expression,
or indeed by being assigned a value consistent with some (tapendent) predicate. We have a flexible
syntax that accommodates all these possibilities.

A schematic pliant event is shownHliEv. It starts with a new status declaration, ‘STATUS: pliant’,
on which the remaining new syntax depends. Next come twodgelauses. The INIT guard specifies
initial constraints that must hold concerning the plianiafsles (and, if any, constraints that mix mode
and pliant variables), and the WHERE guard specifies iritialstraints that must hold concerning mode
variables aloné?

The ANY clause introduces parametéPd,o!, satisfying the restrictions mentioned in Section 4.6.
As with mode events, if there is no ANY clause, the WHERE atacsn be renamed WHEN.

The COMPLY clause defines a before-during-after-predi@b#predx,y,u,i?,1,0!,t,clk). The
BDApred predicate defines conditions that must hold for the duratibany pliant transition speci-
fied by PliEv. If BDApredis sharp enough, dPliEv is being specified in a sufficiently loose manner,
thenBDApredalone may be enough to specify the behaviour requiredliefv. As an expressiveness
metaphor for the convenience of modellers, we allow pliartables in COMPLY clauses to refer to
time explicitly. Thus we permit occurrences of terms likgy(ex),...)’, where = is a predicatey is a
pliant variable anexis an expression that evaluates to a time betwegesndt.

Otherwise, the behaviour of the pliant variables during plignt transition specified bRliEv may
be further constrained by the SOLVE clause. This can coridis and direct assignments of pliant
variables and outputs. The form of any DE in the SOLVE clagsequired to be in general first order
form, Dx = @, as discussed earlier, guaranteeing existence and umisgiera standard machinery [48].

A direct assignmeny, 0! := E is acceptable provideH is a piecewise absolutely continuous function
of its piecewise absolutely continuous parameters. Indase, direct assignment is equivalent to solving
Dy, Dol = DE, where the solution is reinitialised at points of discouiiy of E, and provided that it
yields a consistent solution.

Although we are quite precise about the structure and mgafiSOLVE clauses, we are less pre-
scriptive about the COMPLY clause (although, in practiteiill typically consist of straightforward al-
gebraic constraints on the variables). To see why, conai@®MPLY clause likexe [0...1]. Unlike dis-
crete Event-B, this specifies a time indexed family of agsignts of values ta(t) for allt € (¢ ... tR).
Without any further restriction, this allows the functig(t) to vary uncontrollably, despite the extreme
simplicity of the constraink € [0...1]. To address this, we stipulate that of all the functions tifat
the bareBDApredin the COMPLY clause admits for the pliant variables, we w&sonly those that are
piecewise absolutely continuous foe [t ...tr). Thereby, we restrict the pliant variable behaviours
mentioned in thdBDApredto the same class of time functions that are specifiable ubmgarlier DE
and direct assignment forms.

To aid modelling fluency, we define two further constructanitied to occur as top level conjuncts

12There is no evident reason why initial constraints on modepiant variable might be separated, but it proves usefatla
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in COMPLY clauses:skip andINVARIANTS The former specifies constant behaviour, while the latter
allows arbitrary piecewise absolutely continuous behayiprovided the machine’s invariants are re-
spected. Both constructs can be used to specify behavioptidémt variables not otherwise constrained
in the event. To further simplify model description, wheteaist one of the COMPLY or SOLVE clauses
contains non-trivial content, COMPLMVARIANT S$s understood to apply to any pliant variables whose
behaviour is not specified in these clauses. So COMMYARIANTSonly needs to be written when
both the COMPLY and SOLVE clauses have no (other) conteniveder, we insist that COMPL¥kip
must always be written when needed, since it defines speeifiaviour.

In total then, the set of permitted behaviours for the pliamiables defined by a pliant event, consists
of the intersection of those permitted by the COMPLY clausa those permitted by the SOLVE clause.

As already mentioned, in the absence of a SOLVE clause, theIR1¥ clause can serve as an
implicit specification of the required behaviour. This makevery useful for specifying behaviours that
have to obey global (though potentially time-dependentistaints, without committing to any specific
dynamics. We call such specificatiopant envelopes®

Overall machine consistency requires that we check vapoyserties of a Hybrid Event-B machine.
Fortunately, a good portion of these are taken care of ajrizathe purely discrete Event-B framework,
and we have commented on them in Section 3. What remains asadd¥ant exclusively to pliant
events, and to the interaction between mode and pliant®vent

Turning to the pliant event POs, pliant events firstly haved@easible. This means that at a presumed
starting timet,_, given that the invariants hold and theandgrd clauses of the pliant event also hold,
then for some duration of the pliant event definedthy> t,, for all timest € (¢, ...tR), values for
the variables exist, that satisfy the specification of thenplevent, i.e. that the COMPLY and SOLVE
clauses are satisfied. The formal PO is (14).

Pliant events have to preserve the invariants. Thus,tif ate have the invariants, and in the interval
to tr a behaviour of the system satisfies the COMPLY and SOLVE el®uken that behaviour must
also satisfy the invariants throughout this interval. Towrfal PO is (16).

Note that a subtlety arises concerning the failure of imreg andBDA predicates. If an invariant
ever fails during the construction of a system trace, tham titace is abandoned; failure of invariants
is not permitted. However, if BDA predicate fails during the construction of a system tracginmply
indicates that the pliant transition in question has becorfeasible. Such infeasibility just indicates
finite termination if no mode event became enabled duringtiugse of the transition, c.f. (3).

Machine well-formedness is concerned with the expectedration between mode and pliant tran-
sitions in a run. In going from a mode transition to a pliaringition, we demand that in any mode
transition after-state, no mode event guard is true for &mjoe of parameter, but that some pliant event
guard is true. The formal PO is (17). Conversely, in goingrfr@ pliant transition to a mode transition,
we demand that no mode event is ever enabladng the transition, but thagither the values of the
variables at the endpoirtiz, do enable some mode event for some parametethe left limits attg
enable a mode event in case valuesgatio not exist

We still have to be careful though. A final pliant transitiams forever or till it becomes infeasible.
If we require such a final pliant transition in the system,tfar relevant proof obligation to be effective
(i.e. to not fail on final pliant transitions), we need to knetatically which pliant events are supposed

131n [38] and in other works by Platzer, such specificationscateddifferential invariants In the context of Event-B, where
the word ‘invariant’ has strong connotations with liteyaiime independent properties, we prefer an alternativiaiteslogy, to
avoid potential misunderstanding.

140bserve that this definition handles the pliant/mode is§@otions 4.8 and 4.9. If a pliant behaviour is continuouszat
then both options are equivalent. If there is a discontynaittr, then presuming all discontinuities are right continucsese(
Section 4.0), the correct value is used for the mode eventig@therwise, the left limit must be used.
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to be final and which are not. For this purpose we introduceva status tag for final pliant events,
‘STATUS: pliant final’. This declares the tagged event as alfone and prevents the relevant check
being demanded of it. See (18) for the formal EO.

6. Further Technical Considerations

In this section we discuss some additional technical iseegerding Hybrid Event-B machines.

6.12. Mode event guard closureSuppose expression< 3 occurs in the guard of a mode evébEy,
wherexis a pliant variable. Supposeehaves as(t) = 4—t during a pliant transition, whetestarts at 0.
EventuallyMoEvwill become enabled, but since there is no ‘earliest timeediatelyaftert = 1', MoEv
cannot execute at an identifiable time unless we replac8 in the guard by < 3, which becomes true
exactly att = 1 in our example. However, the negationxof 3 is x > 3, which resurrects the problem.
Our solution is tallow expressions like < 3 in mode event guards, butititerpret them at runtime via
the topological closure of the regions they define when coasihg system traces. This interpretation
ensures that mode transitions occur at specific times, batadlows mode events with non-overlapping
guards (e.g. guards suchyas 3 together withx > 3, or more symmetricallyg < 3 together withx > 3)

to be easily defined for more fluent modelling and reasoninggses. In the semantics of Section 7,
we restrict to pliant variables whose values are in (sulbs@tR. For such variables, we need merely to
replace strict inequalities by nonstrict ones in deterngrguard closure.

We accept that adding such boundary values into mode evantiguay give rise to pathological
counterexamples in which the trajectory does not satisépedefinitions, or invariantgs written How-
ever, we claim that these will have little impact in practismce for the kind of engineering applications
we envisage, the dynamics has to be locally stable in ordéetaseful. So, a small disturbance to
trajectory data must have a relatively small effect on tagttory, at least within some time range (the
acceptable limits on such disturbances being highly agtidin dependent). The chief thing is that rea-
soning about the system model allows the maintenance ofitheiants to be proved, since these express
what is important about the system. Provided any pathaddiehaviour permitted by the operational
semantics arises from a disturbance set of measure zer@migrwore it for practical purposes.

6.13. Event parameter availability. In early versions of discrete Event-B, any parameters riebgan
event were simply assumed available, a natural view whesmpaters merely resolved nondeterminism.
However, in more recent versions incorporating code géioergarameters can also be input parameters
(decorated with ?), or output parameters (decorated withdal parameters are written undecorated, as
before. Considering that in discrete EvenaB connections with real time are neglected, the issue of
whenany parameter might become available does not really arise.

However, in Hybrid Event-B the issue needs more thoughtabee of the presence of real time.
There are two design decisions to be made, one for modetitenssand the other for pliant transitions.

For mode transitions, we stipulate that input parametecerne available at some time which is
strictly greaterthan the time at which the most recent preceding mode transiiccurred. At that
moment, nondeterminism is resolved by choice of local patars, and output parameters are calculated
using the event'®Apred The strict inequality prevents runs contravening the d@ardin (2), that
forbids a mode transition from immediately enabling anotimede transition, and avoids the need to
complicate mode event guards to achieve this effect. Thishar@sm also gives a convenient way of
modelling stimuli from the environment that arise spontarsty (from the model's viewpoint).

15Restricting to statically knowable final pliant events tiegizally constricts computational expressivity, but slse in way
that can only be regarded as beneficial from an engineeramglgbint.
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For pliant events, we stipulate that all required paransedeg available immediately that values exist
(in the sense of existential quantification), that wouldm@ashe event, regardless of whether the event is
then scheduled for execution. In practice, since pliamisitaons occupy extended periods of time, their
parameters will also need similar durations, so will mastlyy be held in permanent elements of any
actual implementation. However Hybrid Event-B makes nagdions about this and only assumes
that parameters are available during transitions theraselv

6.14. Invariant checking. In modelling a system in which some physical attribute is@abnfined to
some region, the simplest approach is to define an invariettdonfines the relevant variable to that
region. Then enough events should be designed to ensumevdreant is maintained.

Often, mode events are involved in maintaining the invdribaving guards stating that the dynamics
is at the boundary of the region, and with actions that causgtable change of course. This raises a
technical niggle for the semantics.

In determining the trajectory of a pliant transition, thensatics first looks for the maximal interval
within which the pliant event specifies a consistent dynamionly then is the next preemption point
sought. In the situation we are discussing, the dynamicstimdkefore usually overshoot the desired
region’s boundary (breaking the invariant) before the aiscy of the next preemption point. It is thus
important that the invariant is not checked before the nee¢mption point has been found.

As modelling descends towards implementation, we woulenadly expect there to be some toler-
ance between the true region boundary and a mode event gwigd/ of it, to allow for quantization
errors and similar effects.

6.15.BDApredtr left-limits. The considerations that made us impose a closure intetipretan mode
event guards, and the remarks in 6.14, have implicatiomsfaigthe BDA predicates of pliant events. In
the earlier description, a pliant event gave rise to a ttemsiwhose duration was a left-closed right-open
interval [t ...tR), its right endpoint being determined by the next preempgioimt, otherwise being
determined by infeasibility beyontk. To maximise simplicity of modelling, we allow preemptiom t
be defined by the truth of a mode event guard for variable galugch: either arise in the interior of

a piecewise absolutely continuous evolutionarise adinite limits at tr in case theBDApreddefining
feasibility is not true beyondg.1®

7. Formal Semantics

In this section we describe the formal semantics of Core idylBvent-B. In order to not waste space
on repeating routine material, we rely extensively on éxgstvork. We rely on [3] (especially Chapters
5, 9, 14) for the semantics of discrete Event-B; and on [48)€eially Chapter 11l 810) for differential
eguations in the sense of Carathéodory.

In this paper we define the semantics of a single Hybrid Eentachine?/. For simplicity, the
semantics performs several checks at runtime. In a prasiyséem, most of this would be avoided by
imposing syntactic tests, which would provably guaranteertintime semantics (see Section 9.15).

We turn to the semantics itself. Firstly, we make precisengdeints of terminology and convention.

e Time, referred to as, takes values in the real left-closed right-open[get . + ), wherety  (4)
is an initial value for time. For every other system variabde, there is a typ&JY¥'. If var is
pliant, thenUY®" is R.

18Note that the latter case precludes the occurrence of ardieaity attg.
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e Time is a distinguished variable (read-only, never assigneevents, and synchronised with (5)
the machine duringNITIALISATION). All state variables have interpretations which are func-
tions of an interval of time starting &; see (7). As well as directly referring to the time
variable, time may be handled indirectly by using clock aales (declared as such), whose
values may be reset by mode events.

e The events of a machin®/ consist of mode events and pliant events. Given a valuation d6)
all the state variables, inputs and local parameters, amg, ta mode event isnablediff the
valuation lies in the topological closure of the set of tgptd values in which the WHERE
clause of the event evaluatesttoe. Given a valuation of all the state variables, and time, a
pliant event issnablediff the INIT and WHERE clauses evaluatettoe.

e The semantics of\ is a set of system traces Each system tracBc S is given by a time (7)
interval 7 = [to...tanaL ) (Wheretgyar, With teyal > to, is finite or +o), and a set of time
dependent variable interpretatiofg, : 7 — UV, one for each state variablar. If S is
empty we say that the semantics @f is voidb. (N.B. For reasons of simplicity, we omit

inputs, local parameters and outputs from system tracesseTare regarded as existing only
for the duration of the transitions that they belong to; tlee single time value at which a mode
transition occurs, or the topological interior of the inv@rduring which a pliant transition takes
place. With additional machinery, such parameters coulitidladed in system traces.)

e The set of traces is constructed by the step by step process below, which ideschow (8)
individual system traces are constructed incrementaM/henever &HOOSEis encountered,
the current trace-so-far is replicated as many times ag twer different possible choices, a
different choice is allocated to each copy, and the pro&dicontinued for each resulting

trace-so-far. Whenever@&RMINATE is encountered, the current trace-so-far is complete and
is added to the semanticgs of M. Whenever amBORT is encountered, the current trace-so-

far is abandoned (and eliminated frgh If a vOID is encountered, the semantics/i3ID.

The construction of system traces is as follows.

[1] Letn :=0 (wheren is a meta-level variable).

[2] Assuming thdNITIALISATION:Is feasible,cHOOSEan initial assignment to all variables satisfy-
ing all the invariants of\/, thereby interpreting their values at tirge OtherwiseyoID.

[3] Ifany nonINITIALISATIONmMode event that does not have any inputs (but which may haeé lo
parameters or outputs), is enabled when the state variaéesthe values & and enabling values
exist for the local variables, thexBORT.

[4] With the state variables having the valuedatcHoOSEan enabled pliant evemliEv provided
there is one, elseBORT.

[4.1] Considering all occurrences of differential equations dindct assignments in the SOLVE
clause ofPliEyv, if any pliant variablepli appears in the left hand side of more than one
occurrence theaBORT.

[5] Ifthere does not existiyx >t such that there is a simultaneous piecewise absolutelyncmnts
solution of all the differential equations and direct aasignts in the SOLVE clause &fiEv in
the left-closed, right-open intervdt, ...tyax ), USing State variable values tgtas initial values,
with these initial values required to satisfy the INIT and BRE guards oPIiEv, and with inputs
and local parameters where needed, such thaBBwpred(including any implicitiINVARIANTS
constraint) in the COMPLY clause #fliEv in the interval(t, ...twax ) is satisfied, themBORT.

17N. B. The process is not intended to be an executable seqUpriicedure. All traces-so-far are intended to be explored
simultaneously and to completion, even if completion imeglan infinite amount of time for a non-terminating systeswer
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[6] OtherwisecHOOSEa simultaneous solution as[if], letty.x be maximal such that the properties
in [5] hold, and use the solution to assign the values of all plianiables (and outputs) in the
interval [ty . .. tyax ).

[6.1] Forevery mode variable, extend its valugab a constant function in the intervigj .. . tyax ).

[7] f no nondINITIALISATIONmMode event is enabled by the values of the state variables/dinae
tyext in the open intervalty ... tyax ) (including left-limit attyax itself), together with a choice
of values for inputs and local parameters, then if the iawds of M are not satisfied in the open
interval (t; ... tuax ), thenABORT. OtherwiseTERMINATE.

[8] cCHOOSEt,;+1 >ty such thakither t, 1 is the earliest time at which a ndNHTIALISATIONmode
event without inputs (but potentially having suitably chiosocal parameters) is enabled according
to the criteria in[7], or a nonINITIALISATION mode event having inputs is enabled (with a
suitable choice of inputs and local parameters) accordinbe criteria in[7] att, 1 and there is
no noniNITIALISATIONmode event without inputs that is enabled according to tieria in[7]
at any time betweety, andt, 1.

[9] If the invariants are not satisfied in the open interfigl . . ty+1), thenABORT.

[10] Letn:=n+1.

[10.1] Let MoEvsbe the set of notNITIALISATIONmode events that are enabled when all state
variablesvar are interpreted as their valuear(t,) att, (or their left-limit valuesvar(t,) at
ty if t, = twax), @and suitable values are chosen for inputs and local paeasn@here needed.

[10.2] cHoosEan enabled event frofloEvs and an assignment to all state variables and outputs
according to it8Apred such that all the invariants 6ff are satisfied, thereby (re)interpreting
those variable values at tintg. OtherwiseABORT.

[10.3] For any other state variablear without a value at,, interpret its value aff, as its left-limit

atty, i.e. asvar(t, ), provided this is finite. OtherwiseBORT.
[10.4] Discard the interpretation of all state variables in theropgerval (ty, ... tuax ), Wheretyax
is the value determined §6]. (If t, = tuax then the interval is empty.)

[11] Goto[3].

Regarding the soundness of the above construction, sin@am&ke some basic things like mode
event update semantics and the semantics of the existenselutfons to differential equations for
granted, the key remaining issue is whether the handover fittant to mode transitions, and from
mode to pliant transitions, is well defined.

We observe that the handover from pliant to mode transitisrouble-free as follows. Consider
first, mode events without inputs. Since the set of valueshidiwthe WHERE guard of any such mode
event is interpreted is closed (by (6)), then this set, wigpahdence on local parameters existentially
quantified away, is also closed. Then, since the systenctomeis a piecewise continuous function
during any interval in which a pliant rule is active, if thestggm trajectory meets the quantified closure
at all during such an interval, it first meets it at some spetifie point. (This happens regardless of
whether the time point occurs in the interior of the intergalat its end, and takes into account our
earlier discussion of discontinuities.) In both of thessesathe time, 1 will be strictly greater thar,,
since the test ifi3] has earlier been passed, by assumption. Since there arérotdly many rules, the
minimum of such time points across all of the rules to whidsthconsiderations apply, is a unigue well
defined time point, .1 > t, at which the pliant transition is to be preempted — if it is togreempted
by a mode event without inputs.

Secondly, consider mode events with inputs. P{8htstipulates that,; is to be chosen so that
th1 > ty is satisfied, in line with remarks in Section 6.13. Thus, ed@ugh a mode event with inputs
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can have its WHERE guard satisfied by state variable valuas {jpputs and local parameters) at time
t, (since such a situation is excluded from causingAaiORT in [3]), in [8] t, is never selected as
preemption point. Apart from this, mode events with inpwta cause the selection of preemption point
at any time at which their WHERE guard is satisfiable, progithes is not later than a preemption point
that could be selected according to the first case. With awgrden point selected, a consistent set of
mode updates can be derived,[@Y, [10.1], [10.2].

Note the careful wording ifi10.2]. If a machine has a mode event without inpIMBEVX say,
enabled at,, then the machine has to executememode event at, (to comply with the remarks in
Section 4.11), but the event does not have tdloEEvX The same does not apply to mode events with
inputs (that would be enabled @tif inputs were supplied). The semantics has the option oplsimot
supplying the required inputs &t

We argue that the handover from mode to pliant transitiorasis consistent. Upon completion of
a mode transition, some pliant events will (typically) beleled,[4], required to be unambiguous and
consistent by4.1]. One can then be selected to B, [6], in an ensuing nonempty interval.

With suitable attention to routine details, the above ré&am@an be turned into a formal proof of the
consistency of the definition of system traces. The alt@rndietween mode and pliant transitions is a
structural feature that can be policed by proof obligatitwas enforce a static version of these constraints.
These new POs, specific to Hybrid Event-B, are given in (1d)(a8).

We observe that for pliant transitions, the invariants dmecked only after their endpoint has been
determined, in line with remarks in Section 6.14. Only themmterval(t, ...t,+1) needs to be checked
since variable values & are confirmed to satisfy the invariants during the precediogle event.

The above semantics, although for a single machine, isastddpensemantics in that outputs are
delivered to the environment, and inputs are accepted fnenetvironment provided they are piecewise
absolutely continuous. Such inputs might be produced byesaitmer Hybrid Event-B machine outside
the discourse, and, specifically, might themselves havatembdiscontinuities. However, our interpreta-
tion of direct assignment and use of the Carathéodorypregaition of differential equations ensures that
a well defined meaning is available.

Definition 7.1. A Hybrid Event-B machiné/ is said to benon-void iff its semantics is notolD, i.e. its
set of system trace$+# @. Itis said to becorrect iff it is non-void, and also, during the construction of
its semantics, Nn@BORT is ever encountered.

8. Refinement

It is desirable that as far as possible Hybrid Event-B refiminshould add to, rather than modify,
the existing notion of refinement in discrete Event-B. Segkbo fulfil this aim restricts the design of
Hybrid Event-B refinement quite severely. This has the beag&fimiting the complexity of the POs that
capture the new notion, making it more practicable and lisefu

We base our design on two principal assumptions. Firstlyassame that in discrete Event-B, the
events take place at (real world) times appropriate to tidicgtion context® Secondly, we assume that
in refining an abstract modélto a concrete modeZ, the application context remains the same, and the
timings of thoseC events that are refinementsAevents remain unaltered. Therefore, if the refinement
to C introduced new events, the timings of occurrences of thdsmterleave the timings of occurrences
of the events inherited from.

18This is indeed an assumption. In discrete transition systéne occurrence of an evenstantlyenables any successor.
That this successor does not run immediately is an intexfoetthat is imposed from outside the formal framework.
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In Hybrid Event-B refinement we assume that time flows at tleeseate in both the abstract and
concrete systems. Consequently, the times at which abstates and concrete states should be com-
pared, in relations like the joint invariant, should be tahme. Thus, relations like the joint invariant, will
be required to hold at all individual times. On this basig tlincidence of the times at which abstract
and corresponding concrete mode events are deemed to emamesierivablein Hybrid Event-B.

Thus, suppose a mode evéibEvVAbecomes enabled . Then, by relative deadlock freedom for
mode events, some concrete mode eWtoEvC becomes enabled i@. Since the times at which the
abstract and concrete states being compared in the retiadiock freedom PO are the same, the times
at whichMoEvCandMoEvAbecome enabled are the same. Conversely, suppose a motid/leéarC
becomes enabled i@. ThenMoEvCis either an ‘old’ event or a ‘new’ event. If it is an old evetiten
using guard strengthening for mode events, some abstragtMeoEvAsimultaneously becomes enabled
in A. If it is a new event, a ‘notionadkip’ is enabled. However, the concept of ‘notiorsip’ acquires,
in Hybrid Event-B, additional connotations, not presentliscrete Event-B.

In discrete Event-B, it makes no difference whether we viémo#ional skip’ as actually running or
not. The point is that when an event executes (in generahgth@ the machine state), a choice point is
generated for the scheduler to select the next enabled ®veimi. However, if the event that ran was a
skip, the choices available remain the same as before, sinceatieehss not changed. So running or not
running askip event has no influence on the scheduler.

In Hybrid Event-B though, in between the mode transitionignp transitions run. Now, it makes a
difference whether we view a notionslip as actually executing or not. If it executes, then fresh ami
may become available to the scheduler, since the pliansitram preceding thekip will have changed
the state. This would be an unwelcome complication. Theeefwe determine thah Hybrid Event-B,
notional skips do not introduce scheduling choice points

We illustrate the above in a schematic example. Fig.4 shofvagment of the refinement of an
abstract run. Time goes left to right. The narrowly spaceticad bars represent mode events, taking
place instantaneously. The horizontal lines represenplibat events that interleave them, having non-
zero durations. At the abstract level we have the ewslaiSvA, PLIEVA;, MoEVvA, PlIEVA;, MOEVAs.
The mode events are refined by concrete mode eWdoEvG, MOEVG, MOEVG. BetweenMoEVG
andMoEvG there is pliant everPLIEVC which refinesPLiEvA;. By the argument abov&JoEvA and
MoEvG are simultaneous, as aMoEvA andMoEvG, and noting that mode transitions both enable
and preempt pliant transitions, we conclude that the damatofPLIEVC; andPLIEvA are the same.

In betweenMoEVG and MoEVG;, there are some ‘new’ concrete mode evel®EvG; and
MoEVG», and interleaving these, are shorter pliant evéhiEvC, 1, PlIEVC,, and PlIEVC,3. The
sequenceliEvC; 1, MOEVG 1, PlIEVC; 2, MOEVG,, PIIEVG, 3 refinesPliEvA, — if we take due ac-
count of the ‘notionakkips’ that are needed to abstraddbEvG 1 andMoEVG », indicated by the heav-
ier strokes through thPIliEvA; timeline. Overall, the duration of the sequerREVC; 1, MOEVG 1,
PliEVC, 2, MOEVG », PIIEVG,; 3, equals that oPliEvA; becauséVloEvA andMoEvA; fix the endpoints
via their refinements1oEvG andMoEVG;. In general, the time period during which an abstract pliant
transition runs must consist of one or more concrete plia@biedurations, as Fig. 4 shows.

Hybrid Event-B needs proof obligations to guarantee thebielir just described, while disturbing
discrete Event-B as little as possible. It turns out that wae deal with mode events essentially as
in discrete Event-B, for which the POs are standard. The menyaining point concerns variants and
convergence, to which we return below.

Regarding pliant transitions, an abstract pliant traoisistarts at the same moment as a refining con-
crete pliant transition. This requires pliant guard stthaging, which works like mode guard strength-
ening. Thus, if the abstract and concrete invariants haid, the concrete pliant INIT and WHERE
guards hold, then so too must the abstract pliant INIT and \RBBuards. The formal PO is (31).

After guard strengthening comes invariant preservationceSwe demand that invariants are true at
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Figure 4: Typical phenomena observed during the refinenfesdroe abstract transitions. The progress of time is caaélm
the abstract and concrete systems, implying that the entdpoi abstract and concrete coincide.

all times, if the invariants and concrete guards are allimitelly, then for the common duration of both
pliant events, the concreBDApredand the predicat8OLpjieyc that defines the concrete solutiérim-
ply the existence of abstract states and parameters theg daeiabstra@DApredand solution predicate
SOLpjieva to hold. See (32) for the formal details. This covers caseghiith the concrete pliant event
refines an abstract one.

The remaining case is when a concrete pliant transitioniissgance of a ‘new’ concrete pliant event,
and occurs after a ‘new’ concrete mode event (the latteringfia ‘notional abstractkip’), for example
PIIEVC, in Fig. 4. The point here is that the new mode transition (asdoilowing pliant transition)
run while some abstract pliant transition is also running eontinually changing the abstract state, a
situation absent from discrete Event-B due to piecewisstamm behaviour.

The new concrete mode event is unproblematic. Its guardgitrens therue guard of an abstract
notionalskip, and the discrete Event-B invariant preservation PO for mede events works as required,
since all the invariants are true by assumption in its bestage, hence easy to re-verify in the after-state.

We turn to the new concrete pliant events. These are trickier to the continuously changing
abstract state in a period preceding the new concrete piamgition. This aspect makes a comparison
between the new concrete pliant event’'s guards (at the miingtarts) and the guards of the abstract
event it refines (which started earlier), much more queahtn

It was for this reason we split pliant events’ guards into:t INIT guard, involving pliant vari-
ables and combinations of pliant and mode variables, andiERE guard, permitted to involve mode
variables alone. The mode variables in the WHERE guard oalistract pliant event being refined by
a new concrete pliant event, have piecewise constant toajes which do not change throughout any
transition defined by the abstract pliant event, no mattertnany new concrete pliant events contribute
to the refinement. Therefore, it is reasonable to constrigtiaad strengthening PO for new concrete
pliant events that refers just to the WHERE guard variab®gtactically, we indicate the alternative
guard strengthening tactic via a new event status ‘pliantement’.

Invariant preservation is the same for old concrete pligahts and for new ones. In both cases, the
concrete event has to name the abstract event it refineg, Isoth the abstract and concrete behaviours

1950Lpji ¢ is the formal name of the transition relatiQdiscussed in Section 4.9.
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MACHINE AMch

PLIANT u
VARIABLES x
INVARIANTS | (u,X)
EVENTS
INITIALISATION
MoEvA
STATUS ordinary

PliEVA
STATUS pliant

MoEvA
STATUS ordinary

PliEVA,
STATUS pliant

MACHINE AMchR
REFINES AMch
PLIANT w
VARIABLES y
INVARIANTS K(u,X,w,Y)
EVENTS
INITIALISATION
MoEvG
REFINES MoEvA
STATUS ordinary

P“EVC]_
REFINES PIiEVAy
STATUS pliant
MoEvG
REFINES MoEvA,
STATUS ordinary

PliEVCz_l
REFINES PliEvAy

STATUS pliant

MoEVG 1
STATUS convergent

PliEVC2_2
REFINES PIiEvA,
STATUS pliant convergent

MoEvVG »
STATUS convergent

P|iEVC2A3
REFINES PliEVA,
STATUS pliant convergent

MoEvAg MoEvG
STATUS ordinary REFINES MoEvAg
STATUS ordinary

END END

Figure 5: Syntax for expressing a machine and its refinenagnbgment of whose behaviour is shown in Fig. 4.

are non-trivial. Moreover the abstract guard, which catisegproblems just addressed, does not figure
in the PO, the formal expression for which is (32).

Next is relative deadlock freedom. If, in a given abstraatestsome abstract event is enabled, then
viewed through the abstract and joint invariants, a cooedjmg concrete state should enable some
concrete event. The requirements are the same for mode iantglents, expressed in the POs (35) and
(36), two individual POs to maintain the separation betwaede and pliant aspects.

The final topic in this section is convergence and variantgp8se that discrete convergence holds
for new mode events via a variavitdefined on a well-founded set. This gives us relative noneAess;
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if the abstract system is Zeno-free, then the concretersysé@not have a Zeno point at any finite time.

Now suppose all concrete pliant events last for at I@ash, c. Suppose a concrete run contains
an unbounded sequence of new pliant transitions, refiningghesabstract pliant transition. Two facts
follow. Firstly, the unbounded sequence must occur at tldeogthe run. Secondly, the occurrences of
the new pliant transitions must be interleaved with ocowres of new mode transitions only (since if
not, an old concrete mode transition would refine an old abstnode transition, which would preempt
the single abstract pliant transition, a contradiction).

Likewise, suppose a concrete run contains an unboundectsegwf new mode transitions, part
of the refinement of a single abstract pliant transition. Tike/ mode transitions must be interleaved
with new pliant transitions only (since if not, an old pligransition would refine an old abstract pliant
transition, implying the original single abstract pliardrisition was preempted, a contradiction).

The above shows two things. The first is that tackling Zengeries is most profitably done at
the most abstract level possible, since lower level modelg then inherit relative Zeno-freedom. The
second is that with non-Zenoness in both models, concre¢egince takes unbounded time, and implies
an unbounded abstract pliant transition at the end of the Tars is in line with conventional views of
divergence through refinement.

Thus, convergence in the mode event and pliant event regifnidgbrid Event-B are closely con-
nected. In practice, it is still often easiest to addresvexence in the discrete regime, since it avoids
potential problems around asymptotic approach to connergen the pliant regime.

In Fig. 5, we give the relevant syntactic details that cohtiee syntactic descriptions of the various
events in Fig. 4 that we discussed above. These are suffici@mable a tool to generate the required
POs in the correct form.

Definition 8.1. A Hybrid Event-B machiné/R correctly refines a Hybrid Event-B machif¢ iff for
every system trace SR @fR there is a system trace S@f such that:

(i) If SR occupies the time intervdly...trnr), then S occupies a time intervip...try), where
tenr < teine
(i) Foreachtinty...tsnRr), all the invariants hold.
(iii) At each occurrence of a mode event in S there is an oetwg of a mode event in SR.

9. Proof Obligations

In this section, we gather together the proof obligatiossussed above. Of course, the main purpose
of the POs is to give a static guarantee of correctness, aridrwéo this aspect at the end of the section.

For clarity below, when dealing with mode events, vieweda&inty place instantaneously, we write
just the variable names involved, ely. When dealing with pliant events, viewed as defining time-
indexed families of before-after pairs of states, we ingitene dependence explicitly. We write eugt),
while not excluding other forms of time dependence a(g— 1), (provided their use yields piecewise
absolutely continuous behaviours). First we summarisaéwestatus tags introduced earlier.

9.1. New STATUS Tags

For ease of reference, we summarise the various addititatakgags introduced through the course
of the paper to indicate various attributes of pliant events

Tag Remarks 9)
pliant an ‘ordinary’ pliant event

pliant convergent a ‘new’ pliant event of a refinement

pliant final a final pliant event that does not need to enabjenamde event
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9.2. Contexts

Contexts define the static mathematical apparatus withhwiniachines are specified. Contexts can
be extendedhs in discrete Event-B, which implies that any axioms assliman abstract context, must
be proved to still hold in the instantiation provided by th@éemsion. Thus ifStaj contains the static
definitions of a contex€om, containing axiom#xiomsg, andStat contains the static definitions of a
contextCorg, which extendsStal, containing axiom#xiomsg, the following PO must hold.

Staj A Stag A Axiomg = Axiomg, (10)
9.3. Machine Initialisation POs

For a machineA with variablesu, initialisation eventinita and invariantl to be well defined, the
initialisation PO has to first of all be feasible:

U e Inita(U) (11)
So at least one initial state exists. Also, any initial stee to establish the invariants:
Inita(u’) = 1(U) (12)

Primes are used in (11) and (12), since initialisation isirédgd as a kind of event in Event-B.

9.4. Machine Consistency POs

Machine consistency begins with feasibility POs for bothdeand pliant events. For a mode event
MoEVA with state variables, parameterg?, |, ol and guardyrdyveeva given invariantsd and with before-
after-predicatBApredyoeva(U,i?, 1, 0! u'), the PO reads:

| (u) A grdwoeva(U,i?, 1) = (3U/, 0! e BApredsoeva(u,i? 1,0l U')) (13)

Note that in (13) we do not use the topological closure of thtesspace region defined Qydvoeva, in
line with our remarks in Section 6.12. The topological chesis relevant to the runtime semantics of a
Hybrid Event-B machine, but should be ignored for statigfieation.

For a pliant evenPliEVA, with stateu, parameter$?,l,0!, INIT guard ivpjieya and WHERE guard
grdpiieva, given invariantg, and with before-during-after-predicaB®Apregiieva, feasibility asserts that
there is an open interval given by somye > ¢, within which the pliant event specifies a behaviour of
the machine. This means that there is a solution predi&@ig iz a Which, either solves the differential
equation of, or expresses the direct assignment in, the Elatise ofPliEVA, and that in the interval
(tL...tR), bothSOLpjieya andBDApredjieya are jointly satisfied:

I(u(tL)) A iveiieva(U(tL)) A grdpieva(u(tL))
= (HER >t 0[ (TtR —tL > 6ZenoP|iEvA) A ] (VﬂZL <t< tre (3 U(t),i?(t), |(t),0! (t) °
BDApredbiiva(U(t), i?(t),1(t),0!(t),t) A SOLpiieva(u(t),i?(t),I(t),0l(t),1)))) (14)

In (14) the portion in bold square brackets expresses the® Peoperty of PIEVA, presuming that
OzenoPliEvA IS @ Suitable constant. The square brackets indicate thatyitbe regarded as optional, since
Zeno properties are often so hard to prove statically.

Machine consistency continues with invariant preservatior mode events, with the conventions
used in (13) we have:

I (u) A grdwoeva(U,i?, 1) A BApreduoeva(u,i? 1,0, u’) = I (U) (15)
Machine consistency also includes invariant preservdtiopliant events:
|(U(ﬂ3|_)) VAN iVPIiEVA(u(mL)) A gl’dp“EvA(U(ﬂlL)) A (HﬂlR >t OTRM(TI;R) N (VEL <t< ﬂlR,U(t),
i?(t),1(t),0!(t) e BDApredijieva(u(t),i?(t),l(t),0!(t),t) A SOLpjevalu(t),i?(t),l(t),0!(t),1)))
= (VL <t<trel(u(t))) (16)
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In (16), for anonfinal pliant event,TRM(tR) signifies thattg is (at least as big as) the preemption time
of a pliant transition specified by the event and startet] dt.e. tr records the termination time of the
transition). The minimum value ak is obtainable via the calculation needed for well-formesdna the
PO (18). For dinal pliant event,TRM(tRr) signifies that (16) must be true for unboundedly latge

9.5. Machine Well Formedness POs

Well formedness statically checks that mode and plianssééiprnate during a system runulfs an
after-state of a transition of mode evéndEVA then it: disables mode events tliat not have inputs®
(by ensuring that the disjunction of those mode events’ dui@valuates téalse), and enables some
pliant event (by ensuring that the disjunction of pliantreitial values and guards evaluatesne).

Juo,i0?,lp,00! @1 (Up) A grdmoeva(Uo,io? lo) A BApredoeva(Uo,io?,lo, 00!, u) A 1(u)
= = [ 3l egrdvoevar(U,1) V grdvoeva (U,1) ... grdvoevan(u, 1) | A
[ (ivpiievat (U) A grdpiievat (U)) V (ivpiievae (U) A grdpiivaz(U)) V... V
(ivpiievam(u) A grdpiievam(u)) | (17)

In (17), we have simplified matters by assuming that all mageeocal parameters have the same type.
Dually, if PliEVA is anonfinal pliant event, then the end of the state trajectory in anysopltant
transitions enables some mode event. Since pliant transitio not, typically, become infeasible when
preempted, (18) does not demand that pliant events arelelisabVe again simplify (18) a little by

assuming that all the mode event inputs and local parametspectively have the same types.

|(U(T|:|_)) AN |Vp||EVA( (TI}L)) VAN gl’dp“EVA( (TI}L)) VAN (3 tr>tLe® (VEL <t<tgr,Uu (t) I')(t),l(t),d (t) .
BDAprediza(U(t),i2(t), 1), 01(t),t) A SOLpigva(U(t), i2(t),1(t),0l (t),t) A MAXIMAL(tR) A
—|[ 3i?,1 .grdMoEvAl(U( ),I?,l) V grdMoE\,Ag(u(t),i?,I) V...V grdMoEvAN( ( ) i?, |) ]))

= WELLDEF(TI;R) VAN [ Ji?| ogrdMoEvAl((u(ttR)),i?,l) vV gI’dMoEVAg((U(ﬂZR)), i?, |) V...V
rchiouan( U(tR) 12,1 18)

In (18), the termmaxiMAL(tr) abbreviates the statement that there is no greater valag sfich that
the properties stated in the assumptions hold. LikewisetdtmweLLDEF(tR) insists that all variables
have well defined values &gk, whether through, continuity, discontinuity or left-lingittr. The PO (18)
covers two cases. In both cases the assumptions stateehaigino time strictly less thatk such that
the pliant solution exists and a mode event is enabled. Hegathe conclusions, in the first case, the
solution exists at (and necessarily beyomnd) and is either continuous there, or suffers a discontinuity
precisely attr — in which case the overarrows in the teru{TR)) are disregarded (indicated by the bold
parentheses surrounding the overarrows), and the actiu@ w@aRg) is used to enable some mode event.
In the second case the solution becomes infeasibig,and the left limit is needed. As noted above,
the calculation needed fag in (18) yields the duration of any pliant transition.

9.6. The Zeno Property

The discussion in Section 4 noted the desirability of nonafeess. In fact we already addressed this
in PO (14), since proving it with the Zeno terms for all pliavents gives global non-Zenoness, as the
number of pliant events is finite.

20The semantics ensures mode event inputs are not available same time as previously scheduled mode transitions.
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9.7. Measurability and the Lipschitz PO

Two conditions discussed in Section 4 were the Lipschitzraedsurability criteria for differential
equations. Regarding measurability in time of the rightchaide of DEs, we can rest easy. Non-
measurable functions require considerable mathematicgnuity to construct, and do not figure in
engineering applications.

The Lipschitz criterion is of more relevance. Standardresfees, e.g. [48], delight in showing the
pathologies that arise regarding existence and uniqueriessgutions to DEs when some aspect of the
Lipschitz condition fails. The easiest way to guarantes ibidemand a uniform Lipschitz bound on the
right hand side of every DE that we have to deal with. ThusPDlgs= @(xst) be a DE specifying the
behaviour of some pliant event. Then the uniform bound d¢@rreduces to:

K eVte |[@(xsy,t) — O(xs, 1) [| <K || xs — XS || (19)

where|| .|| denotes the.” norm of a real vector, i.e. the maximum absolute value of &nysacom-
ponents. Normally, the truth of such a property will folloverin generic properties of the class of DEs
being used, so will not normally need to be verified explcitl

9.8. Absolute Continuity in the Direct Assignment Case

Besides differential equations, a pliant event may be fipdcvia a direct assignment, for example
xs:= E(xst). As we stated in Section 5, we demand directly thas piecewise absolutely continuous,
so the property we need fasis immediate.

9.9. Absolute Continuity in the Implicit Case

A pliant event may also be specified more indirectly, viaB\predalone (rather than just using the
BDApredas an additional constraint). Aside from the need for albvéburs to be absolutely continuous,
we do not place further restrictions on what is permitteddgspecified by this means. While, theoret-
ically, this opens the door to defining a wide range of trulptexbehaviours, in practice these are of
no interest for engineering applications, since the car@EBDApredwill normally exclude excessively
wild behaviour.

One consequence of permitting ‘puB®Apredspecification’ is that various POs relating to pliant
events are affected. However, this is rather trivial. Siacgpiecewise absolutely continuous behaviour
SOLsatisfying theBDApredis allowed, the combinatioBDApredA SOL (this being the only context in
which SOLappears in any PO) reduces to jBRApredin the PO.

9.10. Refinement POs

Suppose that as well as machidas above, we have another mach@ewith state variablev, and
joint invariantK (u,w), which is a refinement oA. This means that the concrete (joint) invariant is a
relation over bothu andw, aligning with the B-Method view that a refinement isemhancemenf its
abstract counterpart rather than a replacement for it. €Ekegections cover the relevant POs.

9.11. Refinement Initialisation POs
Concrete initialisation feasibility is:

Jw e Initc (W) (20)
while correct initialisation ofC is relative toA:

Initc(W) = (3U e Inita(u') A K(U,wW)) (21)
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9.12. Refinement Mode Event Consistency POs

Next are the concrete event POs. Let the concrete mode dwantefines an abstract mode event
MoEvAis calledMoEvC Let MoEvC have statew, input, local and output parametgfsk, p!, guard
grdmvoevc(W,j?, k), and before-after predica@Apredioevc(w,j?,k,p!,w). Then, given the concrete in-
variantK (u,w), event feasibility is:

Jue K (u,w) A grdwoevc(W,j?,k) = (3w, p! e BApredioevc(w,j?,k,p!,w)) (22)

Two POs must hold iMoEVC refinesMoEVA The first, guard strengthening, states that when the
invariants hold, the concrete guard implies the abstraget on
[(u) A K(u,w) A grdvoevc(W,j?,K)
= (3 i?, o grdMoEvA(u, i?, |)) (23)
The second, invariant preservation, also referred to asdirectness PO, reads:
I (u) A K(u,w) A grduoevc(W,j? K) A BApreduoevc(W,j?, K, p!,w)
= (3i?21,0", U e BApreduoeva(U,i?, 1,0, u") A K(U,wW)) (24)
While the guard strengthening and correctness POs, (23[2dnaxpress what needs to be true for
MoEvCto refineMoEVA they do not indicate how particular abstré®t, o!,u are to be found for given
concretg? k,p!,w. This is remedied by providing a witness relatidf{u,i?,l,o!,u’,w,j? k,p!,w) that
can be used to indicate appropriate values. The witnedth®to be feasible:
I (u) A K(u,w) A grdwoevc(W,j? K) A BApreduoevc(W,j?,k, p!,w)
= (3i?2 1,0, U e W(u,i? 1,0 U, w,j? k pl,w)) (25)
Given a feasible witness which is appropriate for the prohlédne guard strengthening PO changes to:
I (u) A K(u,w) A grdmoevc(W,j? K) A W(u,i? 1 ol U, w,j? k p!l,w)
= grdMOEVA(u7 I’)y I) (26)
while the correctness PO changes to:
I (u) A K(u,w) A grduoevc(W,j? K) A BApreduoevc(W,j?, K, pl,w') A
W(u,i?, 1,0l u,w,j? Kk, p!,w)
= BApredioeva(U,i? 1,0l u) A K(U,w) (27)
where in (26) and (27), there are no more existential quargitio find values for.
If machineC has ‘new’ events that refine notional abstrsldips, then the preceding simplifies. The

abstract state does not change, so there is no abstractitipert This obviates the need for existential
guantification, or witnesses. The result is:

I (u) A K(u,w) A grdnewevdW,j?, K) A BAprediewevd W, j?, K, pl,w') = K(u,w) (28)

New events are normally prevented from ‘taking control a thn forever’, which is achieved by de-
manding that each execution of a new event decreases atWdrigve can retain this criterion in Hybrid
Event-B, and the PO reads:

BAprediewevd W, j 2, Kk, pl,w) = V(W) < V(w) (29)

A possibility in Hybrid Event-B is the fact that it might be foker to restrict the type of the variant to an
‘obviouslywell founded’ set. But in engineering applications this canally be overcome with a little
ingenuity.
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9.13. Refinement Pliant Event Consistency POs

Turning to pliant events, we demand that abstract plianitsvare refined by concrete pliant events.
We start with relative event feasibility, which again feagian optional Zeno term, and is again like the
abstract case, aside from the existentially quantifiedratisstate:

(E] U(ﬂ:L) ol (U(ﬂ:L)) VAN K(U(ﬂlL),W(ﬂlL)) VAN iVPIiEvC(W(mL)) A gl’dp“Evc(W(ﬂlL))
= (E]ﬂ:R >t 0[ (TtR —tL > 6ZenoP|iEvC) N ] (VﬂlL <t<tre (HW(t),j?(t),k t),p! (t) °
BDApregiievc(W(t),j2(t), k(t), p!(t),t) A SOLpiievc(W(t),j2(t), k(). p!(1),1)))))  (30)

Next is the analogue of guard strengthening. This comesarfdwns, differing in whether the term
iVpiiev, (U(tL)) is included or not (indicated by enclosing it in heavy squaaekets):

|(U(ﬂ:|_)) VAN K(U(ﬂlL),W(ﬂlL)) VAN iVPIiEvC(W(mL)) VAN gl’dp“Evc(W(ﬂlL))
= [ ivpiigva(u(tL)) A] grdpiigva(u(tL)) (31)

The conditions for ignoringvpiiey, (U(tL )) come from refinement, as discussed in Section 8.
The correctness PO becomes:

F(u(tL)) A K(u(tp),w(tL)) A iveieve(W(tL)) A grdpiieve(W(tL)) =
(Ftr >t e TRM(tR) A (VL <t < tR,W(t),j2(t),k(t),pl(t) o
BDApregiievc(W(t),j2(t), k(t), p!(t),t) A SOLpiievc(W(t),j2(t),k(t), pl (1), 1))
= (VoL <t< tre(Fu(t),i?At),l(t),0l(t) e
BDApredbiigya(U(t),i?(t),1(t),0!(t),t) A SOLpiieva(u(t),i?(t),1(t), 0! (t),t) A
K(u(t),w(t))))) (32)

The form of (32) implies a number of things. The main one i$ timde progresses at the same rate in the
abstract and concrete systems. This is a consequencengf itie same time value in both occurrences
of time in K in the conclusion of the inner (universally quantified), liogtion; and also, of using the
sametgr value in both the assumptions and conclusions of this iraptia (as enforced by the scope of
the existential quantification oveg). The termination termirRm(tR) refers to preemption (or nontermi-
nation) of a concrete transition startedtat So (32) assures us that a simulating pair of pliant traorsti
lasts as long at the abstract level as at the concrete level.

The PO (32) suffers from the same problem as (24), namelttibed is no indication of how to find
suitableu(t),i?(t),(t),o!(t) for any givenw(t),j?(t),k(t),p!(t), a situation made worse by the fact that
these quantities now depend on time.

The remedy is the same as before. We introdigei(t),i?(t),l(t),o! (t),w(t),j?2(t),k(t),p!(t)), a
pliant witness relation, to point the way. Note that guar@rsjthening no longer requires a witness,
since it does not involve any of the parameters in the pliaséc

The witness relatioW(u(t),i?(t),l(t),o! (t),w(t),j?(t),k(t),p!(t)) has to be as feasible as the con-
crete transition needs to last:

|(U(11:|_)) AN K(U(TI;L),W(TI:L)) AN iVPIiEvC(W(‘tL)) AN gl’dp"EVc(W(l‘tL)) =
(Ftr >t e TRM(tR) A (VL <t < tR,W(t),j?2(t),K(t),pl(t) o
BDApregiievc(W(t),j2(t), k(t), p!(t),t) A SOLpiievc(W(t),j2(t),k(t), pl (1), 1))

t
= (VtL <t < tre (Ju(t),i?2t),l(t),o!(t) e W(u(t),i2(t),I(t),0! (t),w(t),jAt),k(t), p'(1)))))
(33)
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With the help of the witness, the PO (32) becomes:

I(u(tL)) A K(u(tL),w(tL)) A iveiievc(W(tL)) A grdprieve (W(tL)) =
(Ftr >t o TRM(tR) A (VL <t < tR,W(t),j?2(t),K(t),pl(t) o
BDAprediievc(W(t),j (1), k(t), P! (t),t) A SOLpiievc(W(t),j2(t), k(t), p!(t), 1) A
W(u(t),i?(t), (1), 0 (t), w(t), j2(t), k(t), pl()))
= (Vi <t<tre
BDAprediigva(u(t), i?(t),1(t), 0l (t),t) A SOLpiiva(u(t),i?(t), I(t),0l(t),t) A
K (u(t),w(t))) (34)

9.14. Refinement Relative Deadlock Freedom POs

Acting in tandem with feasibility, relative deadlock freed guarantees that, despite guards being
individually strengthenedluring refinement (see (24)), all together (i.e. taking neanés into account)
the concrete system is enabled ‘at least as much’ as theabstre.

For mode events, utilising the witness relatddf{u,i? 1,0, u’,w,j? k p',w) given earlier, and as-
suming at both levels that all events have the same paratypts, the PO reads:

I (u) A K(u,w) A (3ol p! U, W eW(u,i?, |, ol U, w,j?2 kp!,w)) A
[ grdMoEvm(u, i?, |) V grdMoEvpz(u, i?, |) V...V grdMoEvAN(u, i?, |) ]
= grdmoevct (W,j?,K) V grdvoeve2 (W,j2,K) V ... V grdmvoevem(W,j?,K) (35)

We also demand relative deadlock freedom in the continupbers. Note that we don't need a
witness here, since pliant events do not have parametdrsathde sensed at the initial instant of a pliant
transition.

(u) AK(u(tL),W(tL)) A [ (ivpigvar (U(tL)) A grdpiigvar (U(tL))) V
(ivpiievaz (U(tL)) A grdpiievaz(U(tL)) V ... V (iVpiievam(U(tL)) A grdpievam(U(tL)) |
= [ (ivpiever (W(tL)) A grdpiiever(W(tL))) V (iVpiievc2(W(tL)) A grdpiievca (W(EL)) V... V
(iVpiieven(W(tL)) A grdpieven(W(tL)) | (36)

9.15. Correctness

The objective of having static POs is to enable us to conglsidically, that runtime errors do not
occur. In this section we examine some correctness prepdhat follow from the POs above.

Theorem 9.1. Let M be a Hybrid Event-B machine. Suppose that no event (whetbéde or pliant)
has an inconsistent specification for the update of any wgiaSuppose that the POs listed earlier in
this section hold. Then the Hybrid Event-B machivies correct according to Definition 7.1.

Proof: It will be sufficient to go through the steps of the formal seties in Section 7, and to confirm that
the static properties assumed are sufficient to ensurent@aBDRT or VOID cases are never encountered.

Regarding stejp?], we assume that initialisation assigns values to all veeglronsistent with the
invariants.

Next, the mode-to-pliant machine well-formedness PO (liBrgntees that no mode event without
inputs is enabled, passing st&}; it also guarantees that there is an enabled pliant evertrgioyg the
subsequent behaviour, passing §#p The check if4.1] is passed, by assumption.

Pliant event feasibility, (14), ensures that in s{ep some nonempty intervdly...tyax) can be
found, leading to a choice of explicit solution for some nmaaity,.x in [6]. Step[6.1] is unproblematic.
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If no mode event becomes enabled during (or at the end offiteeval(ty . . . tyax ) then, the invariant
preservation PO (16) guarantees successful terminatign.atby [7].

Otherwise, the next cycle of execution starts, and $8pletermines the next preemption point
ty+1. PO (18) guarantees that however this preemption point tsrmiéned, whether by continuous
or discontinuous behaviour assigning variable values,ydeft-limit values at the end of a region of
feasibility, all variables are well defined and enable a NWIHALISATION mode event. Stefl0.1]
determines the set of enabled nNdNITIALISATIONmode events &f;, and sted10.2] chooses a mode
transition selected from them. Stff®.3] completes the (re)definition of variable valueg atBecause
of PO (18), none of these steps caORT. Finally, step[10.4] cleans up the time intervty . .. tyax ).
The proof then continues as from the third paragraph abbeegh it deals with a genertg instead of
tg. We are doner

Note that the above proof, while asserting correctnesssfinition 7.1, does not assure the absence
of Zeno phenomenainlesswe are able to include tRgenopiieva terms in the POs that contain them. Note
also that mode event guard closure was never mentionedhier éiie POs or the proof. Although it is
useful for runtime semantics, it may give rise to phenomenahbd the reach of static verification.

Theorem 9.2. Let M and MR be Hybrid Event-B machines. Suppose the conditions ofdime® 1 are
satisfied for both machines. Suppose that the refinement 8@$dn A and MR. ThenM R refinesmM
in the sense of Definition 8.1.

Proof: The proof proceeds by induction. L8Rbe a system trace @¥R, given by a collection of time
dependent valuations for all the variablesfR over an intervallty...trng). We show that we can
simulateSRby a system trac& of 4/, such that all the invariants of both machines hold, and el ea
occurrence of a mode event$there is an occurrence of a mode everSiR

System tracé&SRstarts with an initial state satisfyin@/ R's invariants, and the initialisation refine-
ment POs ensure a correspondifginitial state satisfyingM’s invariants. Thereafter, pliant transitions
and mode transitions alternate3iR POs (30)-(32) ensure that the first pliant transitiosBtan be cor-
rectly simulated until it is preempted by the next mode titeors of SR (That the abstract system trace
Scannot be preempted sooner than the next mode transiti@R@fllows by the mode event relative
deadlock freedom PO (35), which would enablefdiR mode event, forcing an earli@Rpreemption.)

Then POs (22)-(28) ensure that the mode transition is diyrsicnulated, whether by an ‘old’ ab-
stract transition or by a ‘notionalkip’, both of which preserve the invariants. The subsequeminpli
transition ofSRmay be for an ‘old’ or a ‘new’ event. In both cases, given tléd SERtransition is fea-
sible by assumption, the refinement correctness PO fortmhaants (32) guarantees that the simulating
abstract pliant transition is feasible and executes, praggthe invariants. (In particular, in the case of
a ‘new’ event simulated by a ‘notionakip’, it prevents the previous abstract transition from becani
infeasible precisely at the moment of preemption.)

The inductive process continues to cover all of the inteftgal . t-\r), giving a simulating abstract
system trac&lasting at least as long &R Itis also clear that for each mode transitiorSi(disregarding
the notionakkip’ transitions) there is a mode transition®Rwhich gave rise to th&transition through
simulation. We are donel

We point out that although the above account discussed mexim terms of their state variables
alone, similar considerations apply when events featuranpeters. (This typically necessitates suitable
existential claims in the hypotheses regarding inputg.etc.
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MACHINE Bouncing
SEES BounceCtx DeadBall
TIME t STATUS ordinary
PLIANT h,v WHEN mode= bouncinghAh=0A
VARIABLES mode V<OAV? < Epw
INVARIANTS THEN mode := dead
modec MODES END
heR FINAL
he0...H] STATUS pliant final
veR WHEN mode= dead
EVENTS SOLVE h := 0
INITIALISATION vi=0
STATUS ordinary END
WHEN t=0 END
THEN
mode := bouncing CONTEXT BounceCtx
h:=ho SETS MODES
V= Vo CONSTANTS bouncingdead
END ho, V0,9, ¢, H, Ejow
Episode AXIOMS
STATUS pliant _ MODES= {bouncingdead:
WHEN mode= bouncing ho € R A hy >0
SOLVE Dh=v Vo R
Dv=-g geRAQ>0
END ceRAce(0...1)
B()Su'lr'],:ﬁus ordinary Aefnm=0
WHEN mode= bouncing\ h=0A ENDElow € R A Bow >0
v<O0
THEN v = —cv
END

Figure 6: A Hybrid Event-B machine for the bouncing ball.

10. Case Studies

In this section we look at a number of relatively small caselists that illustrate the framework we
have described previously. Somewhat larger case studmdsectbound in [12, 11, 9, 10].

10.1. The Bouncing Ball

We treat a favourite example, the bouncing ball — a nice aticoan be found in [38]. A pointlike
ball of unit mass is subject to gravity and bounces vertically over some point on a horizontabserf
starting at timet = 0. The ball’s height above the surfacehig), initially set tohg > 0 att = 0, and its
vertical velocity isv(t) (positive values indicating upward movement), initiallyatt = 0. Whenever the
ball hits the surface, the speed diminishes by a factorl, and the kinetic energy by a factet. When
the ball’s energy is low enough, the bounce may simply abatthe energy, leaving the ball stationary
on the horizontal surface.

To understand this ball's behaviour, let us consider a sifigll bouncing episode, with the ball
leaving the surface with velocity. "Such an episode reaches a hellglglven bygh = 2v2 since this
expresses the conversion of pure kinetic energy at thecgutdgpure potential energy at the highest point.
Since the energy is diminished after the ball returns to timase, the maximum height reached during
any individual full episode is an upper bound for any remagnilynamics of the ball. Therefore, if we
wish to impose an invariant such la@) < H (whereH is a constant), it is sufficient to check whether the
property is maintained through the first (partial) episad®] through the next (full) episode.

30



Attime t = 0 the energy ighy +%v§. This becomes pure kinetic energy when the ball reaches the
ground, at which point it has a velocityvnax given by:

Vmax= {[ 2 (g ho + %V%> (37)

If the ball happened to be moving upwardstat 0, then it would reach a height, .« given by
ghmax = %vrznax and this would be the maximum height it would ever reach.hé# ball was moving
downwards at = 0, then it would lose speed by the factoupon bouncing, and, rebounding at a
velocity cVinax, Would subsequently reach a maximum heilght;, given byghyz = %(cvmax)Z. These
facts provide the basis for a case analysis that determihether an invariant liké(t) < H is respected
or not, depending on the initial values. (Of course the alam@unt depended on our knowing about
energy and its conservation, allowing us to shortcircuitarariaborious solution of the system as might
be performed by an unsophisticated mechanised reasonieh wbuld simply integrate the equations
episode by episode, arriving eventually at the same coiocisis

A Hybrid Event-B model for the system appears in Fig. 6. Thetext BounceCtxcollects all the
easy-to-forget facts concerning the constants that playeaim the system, without which the observa-
tions made above would not be provable. TRETIALISATIONsynchronises real time to 0, and assigns
the other variables their initial values. TEpisodepliant event describes a bouncing episode. It has no
constraints on the initial values of variables except thelhécks that thenodeis bouncing Mode event
Bouncediscontinuously flips the velocity of the ball when it hitethorizontal surface, and when the
energy of the ball is small enough?(< Ejow), instead of bouncing, the ball has the option of resting on
the horizontal surface and enabling &AL pliant event that brings the dynamics to an end.

Without the mode everideadBall the system would exhibit Zeno behaviour — the system’sggner
is conserved except at bounces, and since each bounceesdpletenergy by a multiplicative factof,
an infinite number of these would be needed to consume alhthige Since the duration of a bouncing
episode is proportional to the ‘lift-off energy’, successepisode durations would be similarly reduced,
leading to a Zeno point at a finite point in time. Note that thistrates well the fact that Zeno behaviour
is generally intimately connected with reachability.

With DeadBall Zeno behaviour is not excluded — it could be though, by giiteening the guard of
Bounceto exclude bouncing at low energy.

The bouncing ball also illustrates the utility of allowingode event guards to define non-closed
regions of the state space, even though such mode eventsgaiggotentially reinterpreted as their
closure at runtime. In the eveBbunce the guardmode= bouncingA h= 0 A v < 0 specifies a non-
closed region, its closure beimgode= bouncinghA h=0 A v < 0. Statically, the after-state established
by Bouncein the case that = 0 is the same as the before-state, so re-establishes the giuBounce
and causes a failure of the PO (17). Dynamically though, wenkiihatv = O cannot be reached after
any finite number of events ¥ # 0, so insisting on statically closed guards would lead torwenient
modelling metaphors.

10.2. A Simple Refinement-Based Discretization Example

In this example, we examine a simple case of discretizatiothe left part of Fig. 7, there is a simple
Hybrid Event-B machin&xUp. It has a single mode variabiedand a single pliant variabbe As well
as timet, we have a clock variablelk, included to show the syntax. The mode variafvld has two
possible valuesstatanddyn Time is defined as the non-negative reals, amas values in the closed
interval [0...10].

MachineExUphas four eventstNITIALISATION IncPli, Stop FINAL. Upon initialisation, which
is synchronised with time 0, the clock is set to 1, the moakbecomeslyn andx is set to 0. Upon
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MACHINE ExUp

MACHINE ExUpR
REFINES ExUp

TIME t TIME t

CLOCK clk CLOCK clk

PLIANT X PLIANT w

VARIABLES md VARIABLES md

INVARIANTS INVARIANTS
md e {stat dyn} md € {stat dyn}
te0...) te0...)
xe€[0...10Q we [0...10Q]

w=[X|

EVENTS EVENTS

INITIALISATION INITIALISATION

STATUS ordinary

STATUS ordinary
REFINES INITIALISATION

WHEN t=0 WHEN t=0
THEN THEN
md := dyn md := dyn
x:=0 w:=0
ck =1 ck =1
END END
IncPli IncPli
STATUS pliant STATUS pliant
REFINES IncPli
WHEN md=dyn WHEN md=dyn
SOLVE Dx=1 SOLVE skip
END END
IncD IncD
STATUS ordinary STATUS ordinary
WHEN te N A WHEN te N A
te{1...9} te{1...9}
THEN skip THEN w = w+1
END END
Stop Stop
STATUS ordinary STATUS ordinary
REFINES Stop
WHEN t=10 WHEN t=10
THEN md := stat THEN md := stat
w = w+1
END END
FINAL FINAL

STATUS pliant final

STATUS pliant final
REFINES FINAL

WHEN clk=11 WHEN clk=11
COMPLY skip COMPLY skip
END END

END END

Figure 7: A simple example of discretization via refinement.

md becomingdyn the pliant eventncPli becomes enabled, which cause® increase at a steady rate
since its derivative is set to 1. The clock also increases at this rate, by definition. The behaviour of
IncPli continues for 10 time units, whereupon the mode e&tapchanges the mode &iat disabling
IncPli. By this time, the clock has reached 11, which enables tlamiplivent=INAL, which takes over,
maintaining the value of unchanged for the rest of time.

Shown in a box, indented, is a ‘notionsitip’, IncD, that will be refined to a real mode event in
machineExUpR It is included to illustrate that, unlike for discrete Et3) the notionalskip has to
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Figure 8: The European Train Control System. A movementaiiyh defined by its endpoiri¥lA, start braking positiolsB
and start talking positioST, dividing the track into dar region, a renegptiate region, and aorrection region (together with
the transition diagram for the corresponding modes).

be envisaged as happening at some specific time(s), bedeuseat events that refine thedyg have to
happen at specific times.

MachineExUpis refined toEXUpR The main feature of this refinement is the introduction adrl
variablew, and joint invariantv = |x|. In EXUpR eventincD is now a real event, and machigUpR
evidently has shortdncPli pliant events (of duration one time unit instead of ten)¢csincD preempts
the refinedncPli frequently.

EventIncD refines the notionaskip. Note that despite the discontinuity that the concieteD
specifies, it does nevertheless refskip. To see this better, consider a small interval surrountiad.
The behaviour okis continuous through= 5, consistent with akip taking place at any chosen moment,
includingt = 5. On the other hand, the behaviounojumps f% to 5_at): 5. Just beforé = 5, we

havex < 5, so| x| =w = 4, a fact that persists to the left limitx|(5) = w(5) = 4. But as soon ais= 5,
thenx =5 holds, so|x|(5) = w(5) = 5. These two facts confirm that the behavioumafefinesskip at
t=>5.

Observe that this example illustrates a particularly beimgtance of discretization. The previously
smooth (but non-trivial) behaviour dficPli and trivial behaviour of (the notionalhcD, is replaced by
a trivial behaviour ofincPli and non-trivial behaviour ofincD. This is a typical ‘zero order hold’, in
which boundary values of pliant transitions correspondmigolated observations and actuations, define
constant behaviour in the next interval.

10.3. The European Train Control System

In our last example we present a simple treatment of the Eamgdrain Control System (ETCS),
broadly based on the models in [38]. For ease of comparisenysg the same notations as [38] for
variables where possible (even though this strays beyandgbal lexical conventions of Event-B).

Unlike older train control systems which confined trains tsuacession of statically defined rail
track sections, with consequent latencies when crossiciipeeboundaries, the rail track is organised
into dynamically controllednovement authorities The key invariants are thalistinct movement
authorities are always disjoint, thateach movement authority contains (at most) one trainand that
each train is in some movement authority If these are always maintained, then trains cannot collide

Fig. 8 shows a movement authority. The movement authorgplisinto successive regiotfiar, neg
andcor, the last of which terminates the movement authority attiivih. Within far the train can travel
freely. When pointST (start talking) is reached, which is the boundary betwieerandneg the train
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Figure 9: The European Train Control System. A generalisedement authority, defined by its recommended speed limit
m.r, end positiorm.e and demanded speed limit (at emd)d. This is used to control the train parameters: train acattar
T.a, train speed.v, and train positiort.p. The essential safety invariantigp > m.e= 1.v<m.d.

enters the negotiation region, and starts to negotiate tiwérRadio Block Controller (RBC) about an
extension to the movement authority. If this is successfidn the movement authority is extended and
the train once more finds itself in a ndar region. If the negotiation is unsuccessful for some reason
(e.g. unreliable communication, or an emergency situdieyondMA), and the train crosses the point
SB (start braking), it finds itself in theor (correction) region, at which point it goes into emergency
braking mode. The design is such that emergency braking lonugf the train to a standstill befoMA.
Once the train has stopped, manual intervention is needestart the system.

Following [38], we actually model generalised movement authorighown in Fig. 9. This formu-
lation checks whether the emergency braking distance ingheegion (modelled by train variablesb)
is adequate, by reconciling it with the other dynamicalales of the train motion.

The heart of the model consists of train variables and mowémgthority variables, supported by
suitable constants and other variables. The train vasadier.p, T.v andt.awhich represent the current
position, velocity and acceleration of the train, respetyi together with the train emergency braking
distancet.sb (which corresponds tMA — SBearlier). The movement authority variables arg, m.e
andm.d. These represent respectively tieeommendedpeed (in what would correspond to tfee
andnegregions of the earlier model), the movement authceitgpoint(corresponding tdvA earlier),
and thedemandedspeed at the endpoint (corresponding to the maximum pdabigsspeed when the
endpoint is reached).

The object of the exercise is to ensure timasbis of sufficient length, that should it happen that the
train passes th8Bpoint, maximum deceleration is capable of reducing thedpe®o more tham.d
by the timem.eis reached, i.e. to maintain the invariarp > m.e=1.v < m.d.

We now describe a Hybrid Event-B machine to capture thissdn. The static data is in the CON-
TEXT ECTSCtxin Fig. 10. It contains th@ormal andemergencynode constants, and tleenrgand
newMAmessage values. It also contains the maximum train detielelsand maximum train accelera-
tion A, and alsce, which is the polling interva#! In addition, it contains two static functionisg andod,
which we will need later.

The ETCSMch machine itself is in Fig. 11. Aside from variables alreadyntiened, there is a
clock 1.clk to implement the polling. Note that oniyp andt.v are declared pliant since they change

2l\\e follow [38] in having a top level model which is already dljmg model. An alternative approach, which will be pursued
elsewhere, starts with a ‘more continuous’ abstract togellmodel, and introduces polling further down the developme
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CONTEXT ETCSCtx e e e
SETS MODESMSGS beRAb>O0
CONSTANTS AceRAA>0

normal emergency cecRAE>0

emrg bdeRxR—dRz )

b,A € _X -y

bd, od Yxyebd(xy) ="
AXIOMS odeR— R 1

MODES= {normal emergency Vzeod(z) = zs+§A£2

MSGS= {emrg newMA END

Figure 10: Static data for the European Train Control System

continuously. Other variables are piecewise constaneifattaving values ifR), so are mode variables.
An important feature of Fig. 11 isv9, which expresses the key safety properfy,> m.e=-1.v< m.d.

We now consider the behaviour of the system. The radio blocitroller has the exclusive mode
eventEMERGENCYto declare that emergency braking is required, and ppaties in the mode event
MOVEMENTAUTHORITY, whereby new data are assigned to the movement authoriythentrain
simultaneously reacts by updating its emergency brakingt pcsh. Both mode events have input pa-
rameters, so, according to the semantics, the needed \wueme available at undetermined times that
do not clash with any other mode event occurrences. NoteBRERGENCYcan only occur once.
Having happened, an emergency brings the system to respleting the dynamics.

Turning to theMOVEMENTAUTHORITYevent, we see that when prompted by the receipt of the
input parametenewMAfrom the environment it reassigns the movement authoritialkes,m.r, m.g,
m.d, according to nondeterministically chosen values d, subject to some restrictions as follows.
Firstly, the event can only take placennrmalmode. Secondly, the values assigned must all be positive,
consistent with the restriction that, when under autometiatrol, the train can only move forwards.
Thirdly, the new values fom.r andm.d must satisfyr > d, i.e. the recommended (i.e. cruising) speed
is greater than the demanded (i.e. limiting) speed, whicilde expressed imv8. This is a natural
property to expect, and although not essential, it simplé@me case analysis below. Fourthly, there are
two further dynamical restrictions on the new movement @ity values.

To understand the first, there is a requirement that any apgdad movement authority must be no
more demanding than its predecessor, in case the traingigdgirbraking as hard as it can in order to
remain within the current movement authority. Conseqyeiftthe new demanded spee&ds greater
than the current onm.d, then since the train is (by assumption) guaranteed to bebtaypf remaining
within the current movement authority (i.e. to not go past), we need only ensure that the new endpoint
eis no earlier than the current on@l > m.d = e > m.e).

To understand the second, consider the following. When mlezdimensional motion is governed
by acceleration that is piecewise constant over time, tredacity is piecewise linear over the same
time periods within which the acceleration is constadch piece with respect to an origin of time
appropriate to ensuring continuity (though not differaiiity) of the velocity as a whold-urthermore,
in this situation, position is piecewise quadratic, agamerahe same time periods within which the
acceleration is constant, and such that each piece is ditadith respect to the same origin of time
that applied to the velocity, and with an initial value thaseres continuity (though not differentiability
beyond first order) of the position as a whole. Thus, duringrgop of constant ac- or de- celeratian
the velocity behaves like = at and the position likel = dg +%at2, with respect to an appropriate origin
for time t, and initial positiondy. Eliminatingt, we findd = do+v2/2a, so that over some period of
constant celeration where the velocity does not cross 0,ave:h
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MACHINE ETCSMch

SEESETCSCtx

CLOCK Tt.clk

PLIANT
T.p,T.V

VARIABLES
T.a,1.sb
mode
m.r,m.em.d

INVARIANTS
inv0:tpeRATP>0
invi:tveRATV>0
inv2:tacRATac [-b...A
inv3:t.she RAT.sb>0
inv4 : modec MODES
invs:mreRAmMr>0
inv6:mecRAMe>0
invi:mdeRAM.d>0
inv8 : m.r > m.d
inv9:1t.p>me=tv<md

EVENTS
INITIALISATION
STATUS ordinary
BEGIN
t.clk :=0
T.p,T.v := 0,0
T.a,1T.sh:= 0,0

mode := normal
m.r,m.em.d := 0,0,0
END
MOVEMENTAUTHORITY
STATUS ordinary
ANY ms@,r,ed
WHERE
mode= normal A
ms@ = newMAA
reRAr>0A
ecRAe>0A
deRAD>0A
r>da
(d>md=e>m.e A
(d<m.d=e>m.e+(m.d?—d?)/2b)
THEN
m.r,m.em.d :=r,ed
T.8b := bd(r + Ae,d) +od(r)
END
EMERGENCY
STATUS ordinary
ANY ms@
WHERE
ms@ € MSGSA ms@ = emrgA
mode= normal
THEN mode := emergency
END

DRIVE
STATUS pliant
WHEN t1.clk=0
COMPLY 1v>0A
t.ck<e
SOLVE Dtv=rt.a
Dip=1Vv
END
SPEEDOK
STATUS ordinary
ANY a
WHEN
1.clk = € A mode= normal A
m.e—T.p>T.sbATVSmrA
ac[—b...A
THEN t1.a := a
tck =0
END
SPEEDHIGH
STATUS ordinary
WHERE
1.clk =€ A mode= normalA
m.e—T1.p>T1T.sbATvV>m.r
THEN 1.2 = —b
tck =0
END
AUTOMATICTRAIN.PROTECTION
STATUS ordinary
WHEN
1.clk= ¢ A (mode= emergency/
m.e—1.p < T1.sh)
THEN 1.2 := —-b
Tck =0
END
FULL_STOP
STATUS ordinary
WHEN 1.v= 0 A mode= emergency
THEN 1.a := 0

tck =0
END
FINAL_TRAIN
STATUS pliant final
WHEN

1.clk = 0 A mode= emergency\
tv=0AT.a=0
COMPLY skip
END
END

Figure 11: A Hybrid Event-B machine for the European Traimttal System.
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difference in squared velocity

relative displacement .
2 x celeration

(38)

where both the numerator and denominator of (38) are pesitiv

Returning to the ladnOVEMENTAUTHORITYguard, if the new demanded spekis less than the
current onem.d, then for the new endpoirg, we must allow an extra distance at least enough to permit
maximum braking to successfully bring the train down to edlod in the worst case. The worst case
is given by assuming that the train started braking as hapbssible as late as possible to still remain
within the current movement authority. In that case, whentthin arrives at the current endpomnte,
it will be travelling at velocitym.d, by definition. Therefore, to be going dtby the timee is reached,
we must add at leagim.d? — d?)/2b extra displacement ontm.e to remain feasible, wherg is the
maximum braking deceleration. Hen@< m.d = e > m.e+ (m.d? — d?)/2b). We discuss the update
to 1.sbin MOVEMENTAUTHORIT Ylater.

The remaining events refer purely to the train. The only fioal pliant event iDRIVE, which is
scheduled whenever the clock is reset to 0, and lasts foi@daeclk < €. At the left limit of the endpoint
of this period, various mode events can become enabled @im@t.clk = €), so by the semantics in
Section 7, such events can continue the system traceDIRIE event itself merely stipulates that the
train follows the laws of Newtonian mechanics during angmlitransition specified by this event.

The eventSPEEDOK stipulates that imormal mode, at the end of a polling interval, if the train’s
current speed does not exceed the recommended maximumeatndithhas not reached the emergency
braking zone, the acceleration for the next polling intecam be set arbitrarily between its static mini-
mum and maximum values. The clock is reset BRIVEIis re-enabled for the next polling interval.

The next event ISPEEDHIGH. If, in normal mode, at the end of a polling interval, the train’s
current speed exceeds the recommended maximum and thbdsaiot reached the emergency braking
zone, the acceleration for the next polling interval is @tsimplicity, to its static minimum. The clock
is reset andRIVE s re-enabled for the next polling interv&l.

If, by the end of a polling interval, the mode has been setn@rgencyr the emergency braking
zone has been entered, then in the next ev@difOMATIC TRAIN.PROTECTION the acceleration
is set to maximum braking and the clock is reset. The actidrbi® event are identical to those of
SPEEDHIGH in this very simple model (essentially for the reasons érplain footnote 22).

The last mode evenEULL_STOR is triggered inemergencynode when the velocity reaches 0, at
which point the acceleration is set to 0 too, and the trairdgion stops, enabling the final pliant event
FINAL_TRAIN, which keeps the train at rest indefinitely henceforth.

We return to theIOVEMENTAUTHORITYevent. The job of the train’s portion of the event is to
update its start braking variabtesb, so that it remains consistent with the requirement of beiolg to
decelerate to the new demanded speday the time the new endpoint of the movement authaceity
reached.

Before resolving the implications of this we observe thaé train is travelling at velocity.v, then
by (38), to reduce speed to.d (assuming that the train is braking at ratand thatt.v > m.d) requires
a braking distance:

22N.B. In [38], for the corresponding situation, braking i$ agbitrarily between-b and 0 (i.e. it permits no braking at afl
extremi3, but the ensuing safety discussion of the system is alwhgespd in terms of the traithoosingmaximum braking
when appropriate. This is in line with the control enginegrconcern oftcontrollability, i.e. the ability to choose a suitable
behaviour for the system under particular circumstancesuligbly assigning the controlled variables. This appnaaoounts
to anangelic choiceof course. In the B-Method, system behaviour is always aealywith respect tdemonic choiceso we
have made the behaviour here more deterministic in ordeote easily address the safety requirements.
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.2 —m.d?

bd(t.v,m.d) = 5%b (39)
This means that at all times it must hold that,
bd(t.v,m.d) < 1.sb (40)

i.e. (40) must be an invariant.

To go from this to a safety property and to a safe assignmensbin MOVEMENTAUTHORITY,
we must relate (40) to the data of a movement authority, tdithieg of events in the train, and to how
movement authority data changes duringM@VEMENTAUTHORIT Yevent.

If the train is travelling at velocity.v andt.v < m.r, then the maximum speed attainable (within an
unchanging movement authority)ns.r + Ac. This is because the only event that can make the acceler-
ation positive iISSPEEDOK, and this event is still enabled wherv = m.r. At that pointSPEEDOK
might choose to satato as much ag, which could increase the speed to as muchmast Ac over the
next polling interval. After thatSPEEDOK will be disabled and the only other mode events all make
T.a nonpositive; so speead.r + As cannot be exceeded.

In going fromm.r to m.r + Ae the train travels an overshoot distance which is at most:

1
od(m.r) = m.rs+§As2 (41)

Therefore, ift.v < m.r holds at some point and the movement authority does not ehamgn
bd(m.r + Ag,m.d) +od(m.r) <t.sb (42)

represents a safe static weakening of (40) for the remaioidigtre movement authority. (Note that we
have usednv8 here.)

Alternatively, if the train is travelling at velocity.v andt.v > m.r, then on the next polling occur-
rence, the train will be compelled to reduce speethia During this speed reduction the train will travel
a distance, at most;

bd(T.v+ Ag,m.r) + od(T.v) (43)

and, ifm.eis close enough and deceleration is to continue down.th it will require a further distance
of bd(m.r,m.d) to reach demanded speed, making a totalddf.v+ Ae, m.d) + od(t.v).

The above facilitates a case analysis for determining avsédifie oft.sbwhen the movement author-
ity is updated to a new tuple of valuege, d.

If T.v <r, then we can use the first case above tors#ito bd(r + Ag,d) + od(r). If T.v>r, then
we can rely orSPEEDHIGH or AUTOMATIC TRAIN.PROTECTIONo ‘immediately?? start braking
to reduce the speed to After that, an assignment afsb to bd(r + Ag,d) 4 od(r) will take care of
deceleration to demanded speed when needed. Thus the gabheedassigned to.sb is the same in
both cases, although the justification is different in the twanches. This completes our discussion of
MOVEMENTAUTHORITYand of the ECTS case study.

23|mmediately’ means within an overshoot tolerancendft.v) which will have been allowed for in a preceding movement
authority.
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10.4. Some Behaviours of the ETCS Hybrid Event-B Machine.

Superficially all seems well. However, when we look at thimgsore detail, potentially undesirable
system behaviours become apparent.

Consider the following system behavioBB1 The system is initialised. During the first polling
interval nothing changes (except the clock). At the next enoansition SPEEDOK is enabled, chooses
T.a= Aand is scheduled; the train starts to accelerate. At thefahé aext polling interval the invariants
are checked and since the speed is Wawinvariantinv9 fails. ThereforéeSB1 ABORTs. We conclude
that the ETCS machine cannot be correct according to therierin Definition 7.1.

Now consider system behavio@B2 The first polling interval is as I8BL At the next mode
transition,SPEEDOK choosed.a = 0; the train remains stationary. Subsequent mode and piemt
sitions are replicas of these two. The completely statphahaviour carries on indefinitely. Since no
ABORT is encountered, we conclude that the ETCS machine is atreasbid according to the criteria
in Definition 7.1.

The reason for the failure dB1is not hard to find. The initialisation of.sb did not take into
account the more delicate reasoning that revealed the peed in calculatingt.sh.

Now consider system behavio8B3[t.sb/od(0)], in which we change the initialisation so thasb
is initialised tood(0). Now, after the first polling interval (during which, the grthing that changes is
the clock), onlyAUTOMATICTRAIN.PROTECTIONSs enabled and.a is set to—h. In the next polling
interval DRIVE s infeasible since, with an initial velocity of 0 and negati.a, it becomes impossible
to COMPLY witht.v > 0O for any finite time. S&B3[t.sb/od(0)] alSOABORTS.

Consider next system behavidBB4, in which, exactly at the end of the first polling intervak(ithe
first occurrence of.clk = €), aMOVEMENTAUTHORITYevent occurs which sets the movement au-
thority data to ‘sensible values’ that permit the train tove@orward while maintaining the invariants.
Suppose the train reaches the emergency braking zondUTEOMATIC TRAIN.PROTECTIONbe-
comes enabled. The train decelerates, and suppose itstyetaches 0 when the clock readslk =
€/2, making theDRIVE event no longer feasible. Suppose no mode event occurssatrtid@. Then we
have successful finite termination.

Now consider system behavio®B5 This is just likeSB4, but when the train has stopped mid-
way through a polling interval at.clk = £¢/2, aMOVEMENTAUTHORITYevent occurs precisely at
that moment (because the environment produced suitadld values just then) that sets the movement
authority data to some new sensible values that (in theirtewns) permit sensible progress of the train.
After the MOVEMENTAUTHORITYevent occurrence, thBRIVE pliant event is disabled (because
1.clk # €). Since there is no other enabled pliant event afteM@/EMENTAUTHORITYevent, the
semantics causes aBORT.

Finally, consider system behavio®B6. This is like SB5 except that the original movement au-
thority data are such that the train comes to a standstill @illeng interval boundary, i.et.clk = €.

A MOVEMENTAUTHORITYevent occurs precisely then, reassigning the movementiytidata to
new sensible values. This time the train can continue moactprding to the new data and there is no
ABORT.

The above scenarios, consequences of a fairly uncritiaakliteration of the ECTS case study in
[38], serve to show a number of things. Firstly, they illuati some of the darker corners of the Hybrid
Event-B semantics of Section 7. This, although giving a @efibehaviour for all Hybrid Event-B
projects is, in practice, such that we would want to exclude rmore undesirable of the possibilities
via suitably stringent static checks. Secondly, the uicatitransliteration discarded a number of the
properties inherent in the origindlC programs in [38]. For example, in the original treatment38][
MOVEMENTAUTHORITYwas only scheduled at polling interval boundaries, and, &8 OMATIC.
TRAIN.PROTECTIONIf enabled, always overrode tIBPEEDOK andSPEEDRHIGH provisions due
to being sequentially composed after them — such issuesaayete fix via more careful programming
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and this would obviously be taken care of in a more serioummadt at ECTS via Hybrid Event-B.
Thirdly, we also saw the consequences of the purely dematicypof the B-Method approach, versus
the option of using angelic choice as utilised in contraligbarguments. This forced us to change the
behaviour ofSPEEDHIGH, in order to get any guarantee that when the train needeldeo (aside from
emergencies), it could actually be relied on to slow down.

11. Conclusions

In this paper we recalled conventional Event-B before ekibgron a design of an extension that
would cope with the demands of the continuous behavioursoetl by today’s hybrid and cyber-
physical systems. We examined in some detail the often t@ustssumptions behind the relationship
between discrete event based systems (such as discreteEvamd the real world, in order that the
extension that we eventually presented disturbed exigirent-B conventions and assumptions as little
as possiblé* As well as seeking to minimise the human risk that accompainiadvertent change to
unspoken assumptions, seeking to stay as consistent aklpaegith the existing framewaork for discrete
Event-B enables us to undermine as little as possible ttstimyifeatures of Event-B as implemented in
the Rodin tool, in which so much effort has been invested te.da

We then examined how these conventions and assumptiond beuéxtended to encompass the
needs of Hybrid Event-B. The exercise focused on the semdontnain, to determine the universe of
mathematical objects in which the extended language walldgl its values. Given the nature of typical
engineering applications, in which discrete discontiegiin signals commonly occur as systems move
from mode to mode, the chosen universe was the world of piseeabsolutely continuous functions of
time, which allowed characterisation in various ways, D&ssignments, and predicates with models in
(sets of) such functions. We also examined the implicatafnsposing a Zeno condition.

After that we presented Hybrid Event-B itself, giving thegx and semantics for a Hybrid Event-B
machine. We then moved on to consider refinement. In seekiristurb existing Event-B as little
as possible, we kept continuous behaviour apart from th&tiegi discrete event framework as far as
possible, and this goal proved achievable.

In Section 9 we gathered together the proof obligationswtatid give substance to the semantics
of this framework in the Event-B style, and we gave two simgerectness results. In the last section
we gave a collection of examples of Hybrid Event-B modelliAter considering the bouncing ball and
a simple discretization problem, we ended with a simpleigarsf the European Train Control System.
This case study, deliberately patterned rather loosedr difte models in [38], gave us an opportunity
to discuss how some of the darker corners of the semanticy/lofidHEvent-B could be exercised by
imprudently designed Hybrid Event-B specifications. Feitwork will extend the present account to
multiple Hybrid Event-B machines, and further, to includeckastic behaviour as first class citizen.
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