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Abstract. Hybrid and cyberphysical systems pose significant challenges for
formal development approaches based on pure discrete events. In this essay,
after a brief look at the CPS landscape, the foundations of CPS systems are
examined from the ground up, with a particular view to aspects rooted in the
continuous part of the CPS spectrum. We take a journey starting from the foun-
dations, through a number of ways of addressing the continuous mathematics
aspects, to phenomena latent only in the world of physical descriptions, such as
the onset of instability due to passing through bifurcation points in the problem
parameter space. We argue that such phenomena, that can plague CPS design
when optimising for performance metrics, can only be understood by sufficient
engagement with the continuous world.

1 Introduction

In today’s world of cheap processors, memory, sensors and controllers, the enthusiasm
for hybrid [8] and cyberphysical [12] systems (CPS) is veritably exploding. This is
increasingly fueling the cost-effectiveness of a smart-everywhere approach to services
and systems. New initiatives pour forth at a seemingly ever-increasing rate, in many
domains, e.g. health, transport, city infrastructure, communication etc., and their many
subdomains.

The presence of control as first class citizen in these systems leads to the im-
pingement of discrete techniques from the computing sphere on the one hand, onto a
plethora of techniques from continuous mathematics and the physical systems sphere
on the other, lending a highly multi-disciplinary nature to this discipline. It is fair to
say, that more than in almost any other multi-disciplinary area, the fundamental role
that mathematics plays in all the disciplines that impinge here, means that these disci-
plines can interact in a deep way, rather than merely providing a distinct view on each
other, or offering complementary but still separate families of techniques.
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3. From the Foundations Up

CPS — how it should be from a verification perspective:

CS concerns

Mathematics concerns

Physics/Eng. concerns
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CPS — how it actually is from a verification perspective:

CS concerns

Mathematics concerns

Physics/Eng. concerns

(a) (b)

Fig. 1. CPS and computer science: (a) how it should be, with all disciplines involved exerting
comparable influence; (b) how it actually is, with overwhelming weight placed on computing
perspectives, paying scant regard to the other disciplines.

It is often claimed that completely new formalisms will be needed to reason about
systems of this kind, a view that is a little puzzling considering that every component
or aspect of such systems comes with a well understood mathematical framework
that captures the predictability of its behaviour in engineering contexts. The pres-
ence of these, and the a priori consistency of mathematics, thus tends to suggest that
the underlying mathematical dialogue has not been pursued in sufficient depth. Since
Klaus-Dieter Schewe has long had a strong interest in the foundational aspects of cy-
berphysical systems, it is a pleasure to discuss some of these issues, from a particularly
personal perspective, in this festschrift essay.

These days, most design and development of cyberphysical systems is very much
rooted in the integration of, and cooperation between, existing tools and techniques
from different areas of computer science and different branches of engineering and
technology. Overwhelmingly, especially on the computer science side, such tools and
techniques are focused on discrete descriptions of system behaviour, and usually pay
scant regard to the continuous aspects of physical behaviour. Fig. 1 gives an illustration
of the uneven focus.

Unsurprisingly, such approaches are frequently fraught with problems of compat-
ibility and of unpredictable interworking. This arises from a lack of attention to the
different semantic foundations of the contributing formalisms, and a lack of precision
with which they view issues which are fundamentally continuous. Regarding the latter,
frequently, the formalisms in question are unable to speak at all, or can say very little.
Since continuous phenomena can display extraordinary subtlety, such a dislocation is
evidently undesirable.

In this essay, we look at these issues from the perspective of rigorous model-based
system development and verification, but taking a keener interest in the more problem-
atic areas rooted in the continuous world. We will find that we can point to many things
which, although perplexing from a conventional discrete/computational perspective,
become much clearer when enough notice is taken of what continuous mathematics
can tell us. We infer that if we are suitably cognisant of the insights available from all
the disciplines that contribute to CPS, then most of the foundational problems for CPS



melt away, even if the practical problems of constructing large real-world systems both
optimally and verifiably, assuredly do not.

The remaining sections of the paper are as follows. In section 2 we briefly survey
the most visible features of the CPS world as perceived within the research commu-
nity. After a few comments, in Section 3 we start from the foundations, reviewing the
elements that underpin the mathematical foundations of the theories that contribute
to CPS descriptions. The foundational view is important, since a consistent picture
must operate across all the contributing disciplines, and must connect with the world
of discrete mathematics that operates in the computing sphere. This journey through
a number of mathematical subdisciplines culminates in Section 4 with the prospects
for mechanically supported verification, based on Collins’s groundbreaking Cylin-
drical Algebraic Decomposition, and the possibilities for adapting non-semialgebraic
descriptions by using suitable approximations. In Section 5 we use this basis to re-
view a number of phenomena rooted in the continuous world, whose implications are
less obvious from a purely discrete perspective. They include: differential-algebraic
equations, control issues such as stability and the effects of multi-system descriptions,
technical issues in control, delay differential equations, and bifurcations. The section
continues by discussing numerical approaches and sampling and quantization issues.
Section 6 summarises and concludes.

2 The CPS Landscape

Nowadays, computing devices get ever smaller, more distributed and interconnected,
both to each other, and to the physical environment. This enables the construction of
systems with a bewildering variety of architectures, required performance characteris-
tics, and interplay with the real world. A very major role is played by simulation in the
design of such cyberphysical systems, with popular software suites like SIMULINK
[22], 20-sim [2], Modelica [24], much to the fore. Simulation and experimentation are
certainly the most appealing ways to realise such systems, since they are so accessible
and easily usable, with a relatively modest investment in preparation.

Somewhat more rigorous than pure simulation and experimentation are approaches
based on the control aspects of the CPS system. A large literature has grown up around
the exploration of appropriate stable control regimes for particular CPS configuration
styles and application regimes. Most of this work appears within the wider control
systems literature.

As ever though, simulation and experimentation in principle cannot achieve the
level of assurance that verification can give (provided, of course, that the models be-
ing verified can justify the faith placed in them). Here, the self-evident undecidability
of any language expressive enough to describe an interesting set of CPS systems im-
pinges directly on what can be verified and how. The hybrid automaton paradigm
(qualified in various ways, as needed) is the default descriptive mechanism in this
space. In [8] there is a good survey of well established systems for this, and over-
whelmingly, these tend to focus on linear behaviour, because of the tractability of the
fragments of arithmetic that are involved.



Another approach takes the analytical descriptions of non-trivial hybrid and cyber-
physical systems at face value, and, reflecting centuries-old practice in applied math-
ematics and physics, engages with them symbolically. The aim is to formalise and to
mechanise what can be done via such techniques. Among these approaches we can
cite Hybrid CSP [19,32], KeYmaera [26,1] and Hybrid Event-B [5,6].

Invariably, the above sketch is an oversimplification, and there are a large number
of variations on these themes to be found in the literature, e.g. [28]. We will have more
to say about the connections between some of these styles of approach below.

3 Starting from the Foundations

Cyberphysical systems, by their very name, involve physics (and thus its practical
application, engineering). Immediately this implies the involvement of mathematics.
They also involve computing, and this too implies the involvement of mathematics.
Ideally, all three contributing disciplines, namely physics, mathematics and comput-
ing, would play an equally significant role in the development of the subject. However,
what is overwhelmingly seen is a very heavy emphasis on the computing aspects, as
shown in Fig. 1. The texts [18,3] rather bear this out.

Interestingly, the two mentions of mathematics above refer to very different areas
of the subject. In the physical sciences, the mathematics is predominantly continu-
ous, dealing with real valued quantities changing according to physical laws, often
expressed via differential equations. Extremely rapid variation in these quantities is
idealised as impulsive change, resulting in discontinuities in the real valued behaviour.
In the computing sphere, the mathematics is overwhelmingly discrete, with instanta-
neous change of state being the normal paradigm. The discrete mathematics is over-
whelmingly concerned with properties and behaviours expressible via discrete, very
often finite, sets.

The discrete sets consist of elements that have no internal structure, and usually,
few relationships between them. This contrasts with the world of reals, in which, al-
though the reals are also treated as having no internal structure, we have an enormously
rich selection of properties at the disposal of the utiliser, this being due to the fruits of
the mathematical analysis that has been created over the last couple of centuries.

3.1 Insights from the Contributing Disciplines

Accepting the broad sweep of issues just mentioned, brings a number of points into
prominence:

– Cyberphysical systems are concerned with physical quantities. In physics all quan-
tities are functions of time t, and time is real. Time is also not manipulable (in
classical physics). Thus, physics deals with the way that various quantities change
over time, but time itself is not one of them.1

1 Formally, this means that time is read-only, and that physical quantities must be defined for
all applicable time points (if one interprets normal physical discourse from a formal point of
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Fig. 2. Piecewise continuous functions of time, and intervals: (a) multivalued functions of time
are simply unphysical; (b) individual values at isolated times have no physical significance; (c)
left-open right-closed intervals compose nicely, but yield executions without a definite starting
point (since there is no earliest point of a left-open interval); (c) left-closed right-open intervals
compose nicely and yield a definite starting point.

– Turning to the logical/foundational aspects of the reals, we realise that any real-
valued expression, once its parameters are fixed, can only refer to an isolated real
number: there is never a ‘next real’, nor indeed a ‘previous real’.

– The computing world re-emphasises the need for discontinuous change. Together
with the previous point, a CPS formalism must thus be capable of expressing
isolated discontinuous changes in value.

– Typical engineering and physical models require the use of differential equations.
So any CPS formalism needs to encompass those.

– Moreover, the normal calculational problem solving techniques used in applied
mathematics need to work, otherwise any putative formalism would struggle to
achieve anything useful.

3.2 Consequences

We regard the preceding observations as a kind of requirements list that sets out some
conditions that a CPS formalism must meet, and we now examine where this leads.2

We start with discontinuities. If discontinuities are isolated, then in between, func-
tions of time (that describe values of variables) must be continuous. So we are dealing
with piecewise continuous functions, which must therefore be continuous on inter-
vals that can potentially be open or closed at either end. Additionally, in formalisms
like the duration calculus [33], multiple state transitions are allowed to take place at a
single moment of time. The latter would lead to state functions on intervals that abut
at points where the function may be multi-valued — we can dismiss such functions
immediately as being unphysical.3

view). Moreover, formally, each physical quantity is identified with a particular free variable,
because physical discourse is typically much more open-ended than typical formal theories
allow.

2 Many existing CPS formalisms deal with these issues in various ad hoc ways. In this esay
we take their mathematical consequences at face value, and see where this takes us.

3 We are not saying that the duration calculus is not useful, merely that it is not useful for the
task at hand.



If a right-open interval is followed by a left-open one, then there is a single real
value in the middle at which a function that is continuous on those intervals may be
defined differently. Such individual point values also have no physical significance
since only the integrals of functions over regions (whether large or small) can have an
impact physically. So we can disregard this configuration of intervals.

So we are left with left-closed right-open intervals, or alternatively left-open right-
closed intervals. Both kinds abut nicely with others of the same kind, making bigger
ones. However, left-open right-closed intervals raise an exception at the initial time of
an execution, since there is ‘no earliest moment’ of the execution, and a single point
does not define a left-open right-closed interval. Thus, left-closed right-open intervals,
permitting a definite starting point for an execution, which can then continue over a
succession of such intervals, emerge as the winning candidate. Fig. 2 summarises this
line of argument.

Next, differential equations (ODEs). Immediately, the discontinuities create a tech-
nical issue. If we can anticipate in advance where the discontinuities in functions
occur, we can arrange for them to fall exactly at the boundaries of our left-closed
right-open intervals. But if we cannot, then the right hand side of an ODE may contain
discontinuous functions, and it itself may be discontinuous, making the derivative on
the left hand side badly defined at such a point.

Here, the instinct of pure mathematicians to imaginatively generalise previously
established notions comes to our aid. These days, ODEs are studied assuming their
right hand sides are measurable over time. Isolated points of discontinuity do not
spoil this property, allowing us to use this, the Carathéodory interpretation of ODEs
[29], for cases where there might be unanticipated discontinuities on the right.

Of course, if there are no unanticipated discontinuities, we do not need the addi-
tional sophistication. However we do need a criterion like Lipschitz continuity of the
right hand side of an ODE [29], to avoid cases like the non-Lipschitz D x = x2 + 1,
whose solution x(t) = tan(t) explodes at t = π/2.

Differentiability goes along with absolute continuity (rather than unqualified con-
tinuity) [31,27]. A function f is absolutely continuous (AC), iff the fundamental the-
orem of calculus works, iff an increment of f (over an interval) is the integral of its
derivative (which exists almost everywhere, over the same interval). This, in tandem
with the preceding observations, suggests the world of piecewise AC real functions as
a suitable semantic universe for grounding the semantics of CPS formalisms.

As a diversion, Fig. 3 shows a non-absolutely continuous function, the famous
Cantor ternary function. It is defined to be flat (with value 1

2 ) on the middle third of the
unit interval, to be flat (with values 1

4 and 3
4 ) on the middle thirds of the previous outer

thirds . . . and so on recursively. All the middle thirds add up to length 1, yet there are
enough points left over in the ‘Cantor dust’ that remains to have the cardinality of the
entire real line. Though continuous, and flat almost everywhere, this function cannot
be the integral of its derivative.

This grounding in a class of functions of time, specifically the piecewise AC real
functions of time, permits viewing the two kinds of update needed in CPS systems
(discrete and continuous) from a remarkably similar perspective. A discrete update is
a pair of valuations of the variables of the system (the before-valuation and the after-



Fig. 3. The Cantor ternary function, a function which is continuous but not absolutely continu-
ous. On all the ‘middle thirds’ (whose total length is 1) it is flat, so its derivative is zero almost
everywhere. Yet it increases in value from 0 to 1, so it is not the integral of its derivative.

valuation) pinned to a particular moment in time (the time of the discontinuity). A
continuous update is a time indexed family of pairs of valuations of the variables, with
the before-valuation being the valuation at the start of the continuous behaviour and
the after-valuation being the valuation at any choice of time subsequently. Viewing
time as merely indexing, makes it the only aspect that is different.

Although piecewise AC real functions solve the semantic foundations issue, they
permit behaviours that are extremely poorly behaved, if judged by the standards of
day-to-day applied mathematics calculations. As an example, consider the function
f(t) = exp[− 1

t2 ]. It is zero at t = 0, and so flat there that all its derivatives at t = 0
are also zero. This means that the Taylor series derived from these derivatives defines
the zero function, quite different from f(t). This implies that Taylor series in general
are unreliable when one is dealing with real functions.

We are rescued by a quotation from P. A. M. Dirac: “A number theory is beautiful,
but the complex number theory is more beautiful.”4 Its message is that although there
are many kinds of ‘numbers’ explored within mathematics, when we consider com-
plex numbers specifically, and in particular complex analytic functions, a vast array of
uniquely powerful properties suddenly burst into vivid relief [17,11]. Here are a few.

Firstly, Taylor’s theorem works. A function which is complex differentiable is au-
tomatically complex analytic, i.e. Taylor’s theorem defines it uniquely. Secondly, there
are few awkward issues to worry about: poles of finite order (e.g. 1/(z − a)k for inte-
gral k); branch points (e.g. 1/(z−a)k for fractional k); essential singularities. Thirdly,
we have unique analytic continuation: knowing complex analytic f(z) precisely in any
region, no matter how small, determines f(z) everywhere where it is defined — an in-
credibly powerful result for practical day-to-day calculations. Fourthly, the authors’
own particular favourite, Picard’s Great Theorem: Every analytic function assumes
every complex value, with possibly one exception, infinitely often in any neighborhood
of an essential singularity.

4 Note the exquisite use of the indefinite and definite articles in this quotation. Unfortunately
we are not aware of the original source of the quotation.
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Function f(t) = exp[ ]

• Suspiciously flat near 0 .... All derivatives at 0 are 0

Taylor series of f(t) at 0: f(0) + f ′(0).t + .f ′′(0).t2 + .... = 0 + 0.t + .0.t2 + .... = 0 for all t

Normal calculational stuff doesn’t necessarily work.
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Complex analytic functions ....

Function f(z) = exp[ ]

z = x + i y

Magnitude2 of f(z)

Essential singularities are the loophole by which smooth (i.e. infinitely differentiable)
real functions lose the nice properties of complex analytic functions.

Wierd real function properties always arise as real restrictions of complex analytic
functions having essential singularities.

Essential
singularity
at z = 0

|z |2

Re(z)
Im(z)

1

z2
–

Fig. 4. The real function f(t) = exp[− 1
t2
] on the left. On the right, the magnitude squared of

the complex function f(z) = exp[− 1
z2
] which extends it. Picard’s Great Theorem implies that

f(z) cannot be depicted close to the origin, because of the essential singularity there.

Viewing t as the real part of complex z in our above example, z = 0 is an essential
singularity of the function exp[− 1

z2 ], and this is the source of its wierd behaviour vis
à vis Taylor’s theorem. If we restrict our view of this function to just the real axis, we
see nothing untoward, aside from the unnerving degree of flatness; but look one iota
away from the real axis in any neighbourhood of the origin, and it’s bedlam. Fig. 4
shows both the behaviour on the real line, and the complex behavour away from the
real line. Thus, in general, in order to recover good calculational properties, we need
to restrict the piecewise AC real functions, to those which arise as piecewise complex
analytic functions which are real on the real line.

4 Proof and Verification

Complex analytic functions (even if we just focus on the real part) are fine, but to get
the best out of them often requires human ingenuity. This provides food for applied
mathematics enterprises in universities the world over. In the computer science world,
the desire for automation dictates that we prefer to invest human ingenuity in deriving
powerful algorithms that solve broad classes of problems automatically, rather than
focusing on individual problems. This sets up a tension between the applied mathe-
matics and computer science perspectives — a tension between calculation and proof.
Let us look briefly at a couple of examples.

Take the case of Propositional Logic (PL). In this case, there are only Boolean
values. There is essentially no calculation, all manipulation being equivalent to proof.
By the time we move to First Order Logic (FOL), calculation starts to play a role: there
are constant and function symbols and their interpretations, and expressions formed
from them denoting values. Yet handling these is still very generic: Hintikka sets,
Herbrand universes and the like, and they lead to the known generic semi-decidability
results, etc. Moving on to languages that are expressive enough to plausibly represent
CPS systems, generic model theoretic and proof theoretic techniques have long taken
a back seat. Whether one can solve a particular CPS system, or prove some property
of it, depends almost entirely on the specific constants and function symbols (and on
their standard interpretations) that occur in it, and what one knows about them.



Thus, at low levels of formal language expressivity, inference and decidability
form the focus, and, to the extent that particular formal languages allow, decidable
language fragments are typically defined in terms of connectives that occur, numbers
of variables, permitted numbers and alternations of quantifiers, etc. At high levels of
expressivity, inference is determined by in-depth investigation of special cases, and
typical ‘decidable language fragments’ (although the phrase is seldom used in these
contexts) are often defined by parameterisations of these special cases, making their
scope conceptually much narrower than is usual in mathematical logic.

In the traditional applied mathematics sphere, aspects that would usually be at-
tributed to ‘logic’, were, in the old days, simply done by hand in the meta-level dis-
course. These days, as automation increases the size and complexity of problems that
are tackled, there is a benefit in using automation to manage such aspects, error-prone
as they can be. They include: case analysis, completeness of coverage, bound variable
scopes, Skolem constant management, SMT-like calls to calculational oracles.

Referring back to the foundations of the CPS world, we must confront the vast gap
between the plain set theory of discrete state change on the one hand, and on the other,
sophisticated phenomena like essential singularities (that must be avoided if we are to
have any hope of calculating anything). Of course the route from simple set theory, via
naturals, integers, rationals, reals to complexes, is well known and can be formalised
in various ways. The authors have come across a number of such endeavours over the
years. When it is attempted for real, it always goes the same way, described as follows.

4.1 Formalising from the Foundations

At the start there is great enthusiasm (the work, if funded, has just been approved).
Much enthusiastic hacking of foundations takes place. There are many interleavings
of quantifiers to deal with, but morale is high, and progress is made. Work continues,
and after a year or two the foothills of applied mathematics slowly start to become
visible. As a result of all the valiant struggles with the foundations in the early days
of the project, by now, all the foundational issues have been surmounted, and what
remains is just hard work.

At this point it is legitimate to ask just how much hard work is at stake. The NIST
Handbook of Mathematical Functions [25], a standard bible of results for theoretical
physicists, applied mathematicians and their ilk, amounts to almost 1000 pages. The
typical foundational effort that has just been described seldom covers more than 50
pages of [25]. Even accepting that 500 or so of those 1000 pages might be regarded as
somewhat esoteric for everyday applications, the achievements of the typical formali-
sation of applied mathematics do not amount to a serious resource for general purpose
applied mathematics problem solving.

Going back to our typical foundational endeavour, by the time the point described
has been reached, there being no further foundational issues to chew on, the earlier en-
thusiasm of the foundations enthusiasts has become severely depleted. The endeavour
quietly dies.

Of course, there are tools that confront the needs of applied mathematics, as de-
picted in [25], head on. They are the computer algebra tools such as Mathematica
[21], Maple [20], MATLAB [22], etc. Typically, they work at a much higher level of



abstraction than the foundations-led outline above. In effect they encode the cases that
can be solved, and put great effort into powerful pattern matching routines, so that
solvable cases can be discerned as often as possible. The commercial basis of most
such tools enables the large amount of work indicated above to be undertaken in a
uniformly compatible way, and they are used extensively in real engineering design.
These days, despite not starting from the kind of foundations we discussed, the resid-
ual risk in the mathematical core of established tools of this kind is vanishingly small,
compared with other risks in the design processes during which they are used, in the
construction of the systems we rely on every day.

To summarise the above, given some fixed, specific result in mathematics, the
complexity of proving it increases dramatically as one descends into increasingly deep
foundations in order to insist on basing the proof at that level of axiomatisation. There
is a rather splendid parable about this, which the reader may enjoy, following para-
graph 7011 in Andrews’s admirable book [4].

4.2 Towards Verification

In the computing world, the added value that a formal approach brings (above and
beyond the capabilities of conventional development), amounts to the ability to prove
properties of a systems model, in a mechanically verified way. The properties in ques-
tion are predominantly safety properties. In the context of safety properties, choice is
always interpreted demonically, since safety demands adequate behaviour under all
possible circumstances. However, in the CPS world, control problems are very much
to the fore, and in the control world, the controllability property is key. Roughly speak-
ing it says: for every permitted way of setting up the system and system goal, there
exists a control input that steers the system to the goal. The emphasis on existen-
tial quantification is deliberate, it tends to imply angelic choice, and is unavoidable.5

However, as often happens when there is an assumed progress property and an angelic
property contingent on it, the latter can be wrapped into a safety property (containing
the existential quantification) of the assumed progress property, permitting a focus on
safety properties in verification after all. (This typically happens for data refinement
properties.) The inescapable progress of time, outside the control of the human user,
provides a very useful progress property in the context of CPS systems.

A major contributor to the possibility of verification in the CPS arena is Collins’s
groundbreaking Cylindrical Algebraic Decomposition (CAD) [9,7]. This is concerned
with semi-algebraic constraints, which are quantified Boolean combinations of for-
mulae of the form P (x1 . . . xn) ≥ 0, where P is a polynomial expression with real
(in practice rational) coefficients.6 It was Tarski who observed that the disposition
of real roots of a real polynomial could be discerned using an extrapolation of classi-
cal techniques: Sturm sequences, polynomial GCD calculations, and other results, that
used only the coefficients of the polynomial, and which only needed to be manipulated

5 No conveyance, be it a plane, car, or other vehicle that allows its driver to determine its travel
parameters and destination, can prevent its driver crashing it, if the driver so chooses.

6 Thus, polynomial equations and proper inequalities are subsumed.
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Fig. 5. Three dimensional space, recursively divided into cylindrical regions appropriate to the
CAD description of a single sphere of unit radius. Projecting on z produces a circle in a plane;
then projecting on y gives an interval bounded by two points, within a line. The two points define
two lines in the plane, and these then define two planes in three dimensional space. In general,
the decomposition of an n− 1 dimensional region gives rise to cylinders in n dimensions when
the projection is reversed.

symbolically. This led eventually to a decision procedure for semialgebraic constraints
that had non-elementary complexity. Collins’s great achievement was to reduce this to
doubly exponential complexity in the number of variables — making it practical for
a moderate number of variables. Collins’s result came about by paying close attention
to detail, and systematically organising the elimination of variables one at a time until
the single variable techniques could be applied, after which the eliminated variables
are reintroduced and characterised, again one at a time. We illustrate this fascinating
process in Figs. 5, 6, 7.

We take the often used single sphere of unit radius as a running example, specifi-
cally, its interior, given by the inequality P (x, y, z) < 1 (the negation of the obvious
improper inequality), where P (x, y, z) = x2 + y2 + (z − 3)2. Fig. 5 overviews the
process. In the projection phase of CAD, a rather complicated procedure, but one that
is nevertheless symbolically computable in terms of semi-algebraic constraints, im-
plicitly identifies the regions of the (x, y) plane where the disposition of the roots of
P (x, y, z) = 0 (when viewed as a polynomial in z with coefficients in (x, y)) is in-
variant. In practice this defines the circle x2 + y2 = 1. This is repeated to project out
y, leaving x2 = 1. This is now solved giving x = ±1.7

7 In general, algebraic numbers, also symbolically computable, are needed to find the roots of
an arbitrary real polynomial.



(a) (b) (c)

Fig. 6. Illustrating the CAD extension process. Witness points identifying: the region x < −1,
the point x = −1, the region −1 < x < 1, the point x = 1, the region 1 < x are all shown in
(a). In (b), this is extended to the (x, y) plane, identifying regions and points of the plane where
the projected constraints have invariant truth value. In (c) this is extended to three dimensional
space, systematically dividing it into regions in which the original family of constraints (i.e.
x2 + y2 + (z − 3)2 < 1) have constant truth value.

The CAD process now moves into the expansion phase, illustrated in Fig. 6. The
solution points for x identify regions of the x axis and their boundary points. Witness
points are chosen in the interiors of the intervals (squares and dot in Fig. 6.(a)); the
boundary points are also highlighted (stars in Fig. 6.(a)). These values are substituted
into the previously derived semi-algebraic constraints in the (x, y) plane giving lines
parallel to the y axis. These lines are subdivided into intervals (with their boundary
points) according to how they intersect the solution set of the (x, y) plane’s semi-
algebraic constraints — and witness points are again found (the small circles in the
plane z = 0 in Fig. 6.(b)). The procedure is repeated: the (x, y) plane witness point
values are substituted into the preceding set of semi-algebraic constraints, giving lines
parallel to the z axis. Again, witness points are chosen on these lines in the same
manner. This gives the dots depicted in three dimensions in Fig. 6.(c). The essential
fact throughout this procedure is that the intervals inside which the witness points are
chosen have the property that the truth values of the whole family of semi-algebraic
constraints (at the requisite level of projection) are invariant within the region con-
taining the witness point. So it is sufficient to evaluate the constraints at each witness
point, and to make suitable logical combinations of the answers, in order to know the
truth value of the whole family throughout the whole region.

The procedure as a whole builds a tree, shown for our example in Fig. 7. For
instance, the middle quintuplet in the bottom row of Fig. 7 (labelled (x, y, z)) corre-
sponds to the vertical line through x = y = 0 in Fig. 6.(c), and represents, respec-
tively: the semi-infinite interval below the sphere, the intersection of the line with the
lower hemisphere, the interior of the sphere, the intersection of the line with the upper
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Fig. 7. The tree of witness points for the extension phase of the CAD procedure in the three
dimensional sphere example. Descending one level in the tree corresponds to one ‘unprojection’
in the projection phase.

hemisphere, the semi-infinite interval above the sphere. It is clear that the decompo-
sition along the variable axes generates considerable complexity —after all, there are
only three regions of interest in our example: the interior, exterior, and surface of the
sphere— yet the tree in Fig. 7 has many nodes. Nevertheless, the procedure is reg-
ular and scalable (modulo feasibility considerations), making it widely applicable in
practice.

Unfortunately, a decision procedure for semialgebraic constraints does not directly
solve the problem of automation of reasoning in CPS systems because, aside from a
few rare exceptions, the solutions of CPS systems are not (made out of) polynomials.
However, all is not lost. Consider a solution to a CPS system of the form f(t) =
exp[−λt], for which the safety invariant t ≥ 0 ⇒ f(t) ≤ A needs to be established.
As a Taylor series, f(t) =

∑∞
k=0(−λt)k/k!. Suppose we did not know that f(t) =

exp[−λt] was monotonically decreasing (making it sufficient to check the value at
t = 0 to establish the safety invariant). For N big enough, successive terms of the
Taylor series are monotonically decreasing in magnitude and alternating in sign. Thus,
ifN is big enough and odd, successive pairs of terms make a net negative contribution
to f so that we can write f(t) = poly(t) − |corr(t)|, and discarding the correction
corr(t) gives a safe overestimate for f via the polnomial poly(t). Such an approach
allows the safety invariant to be proved within an interval using CAD, if all goes well.
(Note that this depends on the safety invariant being given by an inequality, rather than
requiring something more precise.)

The example just given was discussed in detail because the general principles ap-
ply widely. Useful solutions to (the continuous portions of) CPS systems are asymp-
totically stable, which means they decrease in magnitude over time. This also means
they are given by series whose terms decrease in magnitude and alternate in sign (per-
haps in groups). So a technique of judicious grouping of terms can manipulate the
series into a polynomial plus a correction that acts in favour of the safety inequality
that needs to be established. The MetiTarski tool [23] embodies ideas of this kind.



5 Gremlins Rooted in the Foundations

The preceding sections took us on a journey that spanned the chasm between the
simple discrete set theory of familiar computational state change, and a number of
formulations in the continuous world that emphasised existence of semantics, or cal-
culational utility, or potential for automation. Any foundational approach to CPS needs
to be able to speak somehow to all these issues, whether explicitly or implicitly.

In the computing world, there is a tendency to the view that once a formal frame-
work has been set up, then ‘the rest is programming’. This is largely a consequence
of the fact that in the world of discrete set theory and bits, the lack of structure leads
to a dearth of generic results. If an arrangement of sets and bits leads to one set of
circumstances, it is usually not too hard to find another arrangement of sets and bits
which leads to the exact opposite circumstances. In the continuous world this is not
the case. The subtle constructions that lead from the discrete foundations to the rich
continuous world that we have indicated lead to various non-trivial phenomena that
apply to broadly applicable classes of system. In this section we consider a number of
topics that are connected with problem solving for CPS systems that arise in this way.

5.1 The Influence of Control Problems

The nature of CPS systems, with their interplay between the physical world and com-
puter control, means that control systems per se form a large part of the remit of CPS
systems. Control theory has been intensively studied since early in the 20th century,
and is by now a large and mature discipline. The point of this brief paragraph is to flag
up that while many of the topics in this section are not necessarily directly couched in
control terms, their relevance to CPS systems is inevitably because of their impact on
control systems.

5.2 Differential-Algebraic Equations

Most formal systems for CPS tend to be monolithic, meaning that the whole of the
system under consideration is included in a single model, which is then subjected to
whatever analysis is envisaged. There is a good reason for this of course. Having a
single model makes the maximum information available to the analysis, maximising
its potential power. We illustrate this more concretely below.

However, non-trivial practical systems are made of collections of separate compo-
nents. This means their global properties emerge indirectly. One very mundane aspect
of this is that the separate components of the system are directly connected to each
other. Consequently, where a CPS formalism handles the continuous world exclu-
sively via ODEs, this can make for some awkwardness, because the relations express-
ing direct connections are algebraic; e.g. the voltage and current across an electrical
connection between two components are equal, rather than being related via an ODE.
Thus the continuous world of complex CPS systems is best described by systems of
differential-algebraic equations (DAEs) [16], which combine algebraic relations with
ODEs, rather than by just using ODEs.



DAEs evidently offer more possibilities than ODEs alone. Clearly, taking at face
value arbitrary algebraic relations involving variables and their derivatives as a spec-
ification mechanism forces the adoption of a purely simulation/numerical approach,
since there is no hope of an analytic solution in such a setup. This prevents proof of
properties in the usual model based way. Restricting to linear DAE specifications gives
greater leeway for proof based approaches, but still permits a much wider range of be-
haviours than we see with just linear ODEs. We illustrate what can happen with some
very simple examples. In the following, x, y are state variables, f1, f2 are inhomo-
geneous terms (all of these being potentially time dependent), and || is simultaneous
definition. We will assume that there are no other constraints on the state variables
than the ones we write.

Among the possibilities that may arise, we have the following: inconsistency, e.g.,
x := y||y := x+1; unique solution with forced initial value, e.g., x := 1; unique solu-
tion with arbitrary initial value, e.g., Dx = 1; solution with constrained initial values
and given by an unspecified arbitrary function, e.g., x := y+1; solution with arbitrary
initial values and given by an unspecified arbitrary function, e.g., Dx = y; solution
with forced initial values and involving constrained inhomogeneous functions, e.g.,
Dx = f1||x := f2.

In the case of linear systems with constant coefficients (such as all our examples)
the Kroneker canonical form of the so-called matrix pencil of coefficients of the sys-
tem covers all the possibilities that arise. DAE systems are sufficiently complicated
that even just relaxing the constant coefficients constraint to allow the coefficients to
vary over time is sufficient to materially alter the collection of possibilities available
for linear systems.

5.3 Stability Considerations, Multiple Machines

As mentioned above, there is a visible tension between the compelling verification
impulse towards monolithic descriptions, yielding global information and maximum
power for inference on the one hand, and on the other hand, the pragmatic engineering
impulse towards partitioned descriptions, yielding the maximum potential for separate
working and thus (optimistically) shorter time to market, but permitting reduced in-
formation in the context of each individual component. We give a small illustrative
example.

Suppose we have an integrated system containing two variables x(t) and y(t) sub-
ject to the dynamical equations Dx = y and D y = −x. In the context of global
information, the solution of this system is familiar: x(t) = sin(t) and y(t) = cos(t).
These behaviours for x(t) and y(t) are bounded and are (marginally) stable, realising
the bounds |x(t)| ≤ 1 and |y(t)| ≤ 1.

Now, in the interests of separate working, suppose we are obliged to put x(t) and
y(t) into separate constructs, with only partial information available to each about the
other. Specifically, let us suppose that in the x(t) construct we only know |y(t)| ≤ 1
and in the y(t) construct we only know |x(t)| ≤ 1. Then the locally known versions of
the dynamical equations become D|x| ≤ 1 and D|y| ≤ 1. The worst case of these is



|x(t)| ≤ t and |y(t)| ≤ t. Evidently these behaviours are not stable, so that the loss of
information attributable to system partitioning has destroyed certainty about stability.

We can contrast the preceding situation with that in which we have stronger in-
formation about stability. Thus instead of the preceding integrated system, suppose
that the integrated system’s x(t) and y(t) variables have the dynamical equations
Dx = y e−λt and D y = −x e−λt. Now, the integrated solution is x(t) = sin( 1−e

−λt

λ )

and y(t) = cos( 1−e
−λt

λ ). Again we have bounded and stable behaviours, realising the
bounds |x(t)| ≤ 1 and |y(t)| ≤ 1. In the partitioned system, if we have the same loss
of information about x(t) and y(t) as we had before and must replace occurrences of
x(t) and y(t) with the bounds, then the best locally known versions of the dynamical
equations become D |x| ≤ e−λt and D |y| ≤ e−λt. Now, the worst case becomes
|x(t)| ≤ 1−e−λt

λ and |y(t)| ≤ 1−e−λt
λ . This is still stable behaviour.

From the formal verification standpoint, the essential aspect of this version of
events is that, even with the degraded knowledge attributable to the partitioning, if
the worst case behaviour is nevertheless stable, safety invariants about the behaviours
of x(t) and y(t) may still be provable, even if they are suboptimal compared with the
global information case.

In section 3.2 we observed the analogy between discrete and continuous updates.
This analogy extends to stability considerations. In the discrete world, we often prove
termination of a sequential process by proving that each of its steps strictly decreases
a variant expression which takes values in a well-founded set. The lower bound pro-
vided by well-foundedness prevents the sequential process from proceeding indefi-
nitely. By contrast, in the continuous world, we often prove stability by proving that
the continuous process (over time) strictly decreases a Liapunov expression which
takes values in a portion of the reals that is bounded below. As the continuous process
forces the Liapunov expression nearer and nearer the lower bound, the dynamics is
typically increasingly confined to an asymptotic region, yielding asymptotic stability.
Viewed in this light, the termination of the sequential process may also be seen as a
kind of stability criterion, since, having terminated, the sequential process is unable to
change the value any more.

5.4 Technical Issues in Control

One consequence of the relative longevity and maturity of control theory is that a
number of different approaches have been developed to the mathematical analysis of
control problems over the years. Given the necessity of relating CPS formulations to
foundational issues that we have explored above, the impact of a foundational per-
spective on different control approaches merits examination.

Most control engineering, as taught in engineering curricula, takes place in the fre-
quency domain, using the Laplace transform (in the case of continuous control) or z
transform (for discretized control). Practically useful results are readily obtained, and
mathematically, the results in this domain are derived using an L2 notion of conver-
gence (convergence using mean square error, in less technical language).

An alternative approach, made more popular with the availability of modern sim-
ulation based tools, seeks to solve control problems directly in state space. In this



domain, some results are also derived using the L2 formulation, while others are de-
rived in L∞ (convergence using maximum pointwise deviation). While the L2 results
in the frequency domain and in the state space domain can be related via Plancherel’s
theorem, they speak about integrated square error rather than pointwise deviation. This
makes the results derivable in the two kinds of approach incompatible. A good prop-
erty derived in either domain does not carry any implication of the analogous property
holding in the other domain — in fact quite the opposite is usually the case: a good
property derived in one domain spawns a counterexample in the other.

Thus, the various domains of control theory (and others we have not mentioned)
tend to exist in separate mathematical silos to some degree, owing to the detailed dif-
ferences in the rigorous formulations that define them. This being so, it is nevertheless
notable that these subtle issue have rather little impact on the day-to-day practice of
control engineering. Nevertheless, they do have impact on an integration of control
issues with model based formal methods techniques, because the latter readily exhibit
a sensitivity to the kinds of mathematical subtleties mentioned — and day-to-day con-
trol engineering does not. This in turn, is attributable to the fact, as we mentioned
above, that model based formal methods are rooted in simple set theory, and so any
integration with other concerns has to be sound when based on such set theoretical
considerations.

5.5 Delay Differential Equations

The ODEs that we have focused on hitherto provide an excellent framework for de-
scribing fundamental physical processes at the microscopic level. However, in system
engineering we inevitably deal with finite macroscopic components, and their size and
other characteristics mean that it is often the case that there is a delay between the in-
puts that a component is subject to, and the outputs it can deliver in response. This is
especially true if the component in question involves a communication network. Delay
differential equations (DDEs) can provide a useful description of some such systems
[15,10].

To see the intriguing phenomena that DDEs can lead to, let us consider the sim-
plest possible example: Dx = −K x(t − τ). This says that the derivative of x is
proportional to a value of x that is τ time units old. In analysing the behaviour of such
an equation, is is always most useful to start by linearising, and looking at the sta-
bility of small, exponentially varying deviations. In the case of our equation, we start
with the simplest possible solution, a steady state solution. In a steady state solution x
does not vary with time, and the significance of the delay disappears. It is easy to see
that x�(t) = 0 is a steady state solution. If we now add a small exponential pertur-
bation A eλt to x�, we can analyse the tuples of K,A, λ values that yield solutions,
and examine the stability (or otherwise) of such solutions. Substituting A eλt into the
equation and simplifying yields λ = −Ke−λτ . Unfortunately, even in this simplest of
problems, the equation is a transcendental equation, and the analysis of the character
of its solutions is not trivial.

With K real and positive, if λ is real, it must be negative (because e−λτ is then
always positive). This is good news, because it implies that x� is a stable solution.
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Fig. 8. Regions of solution stability and instability for the simple DDE Dx = −K x(t− τ).

Unfortunately, as we vary the three parameters, we find that there are also solutions to
λ = −Ke−λτ with non-real λ, and these lead to oscillatory behaviour around x�.

Fig. 8 shows the general characteristics of the parameter space. Evidently, K < 0
forces real λ to be positive, yielding instability. Also, for K > 0 and τ small enough,
we find negative λ and stability. But as τ increases (withK fixed), we eventually cross
into another unstable region. What we have outlined in embryonic form is the onset of
a steady state bifurcation, in which a seemingly innocuous system, upon being subject
to a change in the values of its static parameters, suddenly destabilises and exhibits
oscillatory behaviour.

5.6 Bifurcations

Varying parameters to optimise resource utilisation or other performance metrics is
grist to the mill in engineering design. Equally, the sudden and unexpected onset of
instability and oscillatory behaviour as parameters are varied, is the bane of the engi-
neer’s life. Such behaviour is particularly perplexing to the engineer steeped in discrete
methods, since there is no possible way to discover the possibility of onset of instabil-
ity of the kind described, by looking at the system from a purely discrete perspective.
Only by non-trivially engaging with the continuous mathematics of the system can
one hope to discern the root cause of instabilities of this kind.

The steady state bifurcation we outlined above is merely the simplest example of
sudden change in the global characteristics of the solution space of a system as its
parameters are varied. Another commonly occurring kind of bifurcation is the Hopf
bifurcation [13,14].8 In this, varying the system’s static parameters causes a pair of
characteristic roots of the stability equation to cross the imaginary axis with non-zero

8 Historically, Poincaré and Andronov also studied this phenomenon, before Hopf’s account
made it more widely known.
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Fig. 9. Values of the schematic ‘energy function’ E = r4 + αr2, where r2 = (x2 + y2) for
various values of α.

velocity. As in the preceding case, a previously stable (but not steady state) solution
to the system suddenly loses stability and starts to behave in an oscillatory manner.

Figs. 9 and 10 illustrate how a Hopf bifurcation works. We imagine a system con-
taining two dynamical variables x, y (amongst others). For convenience, we suppose
that there is circular symmetry in x, y so that we can use r2 = (x2 + y2) and get
some simplification. We suppose that there is an ‘energy function’9 for x, y that looks
like E = r4 + αr2 where α is some system parameter that is subject to optimisa-
tion. We also assume that the system is dissipative, so that, left to its own devices, the
dynamical trajectory would seek a point of minimum ‘x, y energy’.

For α positive, the ‘energy function’ E looks like Fig. 9.(a); the minimum is com-
fortably at r = 0. When α = 0 the ‘energy function’ E looks like Fig. 9.(b); the
minimum is still at r = 0, but the neighbourhood of r = 0 is flatter. But when α is
negative, e.g. α = −2, the ‘energy function’ E looks like Fig. 9.(c); the minimum is
no longer at r = 0 but at a non-zero value.

Typical system trajectories for α values of +2, 0,−2 are shown in Fig. 10. In
Fig. 10.(a), for α = 2, a typical trajectory rapidly sinks to the ‘energy’ minimum
r = 0; the system is stable. In Fig. 10.(b), for α = 0, a typical trajectory still sinks to
the ‘energy’ minimum r = 0, but more slowly because of the absence of the quadratic
term in E; the system is still stable because of the quartic term. But for α = −2 the
quadratic term is negative, and close to r = 0 it overcomes the quartic term. The
‘energy’ minimum jumps away from r = 0. There is now a circular limit cycle of
minimum ‘energy’ in the x, y plane. Fig. 10.(c) shows how typical trajectories flee
from r = 0. For either variable, x or y, the observed behaviour is oscillatory once the
dynamics is tracing out the limit cycle.

In fact the ‘energy’ minimum jumps away from r = 0 infinitely fast as a function
of α as α crosses the value 0 in a negative direction. Fig. 10.(d) shows the shape of
the minimum ‘energy’ manifold as α varies. The paraboloid on its side in Fig. 10.(d)
witnesses the sharp departure from r = 0 at the critical point α = 0, at which the

9 Assuming the existence of an ‘energy function’ is not essential here but it helps to illuminate
the example. The ‘energy function’ does not have to literally be a form of energy — many
energy analogues have been identified over the years that share some of the mathematical
properties of genuine energy, without actually being forms of energy.
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Fig. 10. Typical trajectories for the dissipative ‘energy functions’ of Fig. 9. In (a) α = +2; in
(b) α = 0; in (c) α = −2 and trajectories flee from r = 0. The minimum ‘energy’ manifold
consists of the non-negative α axis together with the paraboloid on its side for negative α.

minimum energy manifold switches from a single zero value to the circle of radius√
−α/2. The various example trajectories are superposed on it.

Of course these examples are just the best known instances of change in the global
characteristics of the solution space, and they provide an inroad into a wealth of in-
creasingly complicated phenomena that can be increasingly difficult to discern from
the standard way in which problems are posed, in terms of differential and algebraic
equations. In all cases though, an approach based purely on discrete techniques is
doomed to never make contact with the underlying causes of the loss of stability, and
to leave designers who rely solely on such techniques perplexed by the instabilities
that they encounter.

5.7 Numerical Approaches

From the perspective of gaining the greatest possible insight into the behaviour of a
system, being able to attack it analytically (as we have done in the examples above)
is evidently the ideal. But this ideal approach is available in an acutely small number
of cases. The case of linear systems is familiar and provides the basis for most exact



results in the kinds of case we have discussed, but beyond linear systems, the pick-
ings for analytically based approaches are sparse indeed. Unfortunately, most realistic
descriptions of physical systems contain nonlinearities, immediately putting them be-
yond the reach of analytical approaches.

Under the circumstances, numerical approaches come to the fore. Here we can
distinguish two kinds of problem tackled numerically. The first kind concerns the cal-
culation of numerical values for situations where there is an underlying analytical
model. A typical such case would be a linear equation, Dx = Ax say, for which we
have an analytic solution eA t, and we need a specific value, e.g. at t = 5, so we need
to calculate e5A. For such problems, there are typically power series (e.g. the familiar
one for et), which we can use to home in on the value needed. It is important to note
that in such cases there is a large amount of group theoretic machinery doing a lot of
the heavy lifting behind the scenes, which allows us to focus on just the value t = 5.
Such numerical problems are relatively easy. (Evidence for the implicit presence of
the group theory is given by such familiar things as the multiplication laws for the
exponential, e.g. eaeb = ea+b, or the addition laws for trigonometric or hyperbolic
functions, and so on.)

The second, much tougher kind, are situations in which there is no discernible
group theoretic machinery around (aside from very generic results, e.g. concerning
the flow semigroup of a dynamical system, that tend not to lead to calculational tech-
niques). Then, if the dynamics starts at t = 0 and we are interested in what happens
at t = 5, there is no longer a convenient formula to have recourse to, which captures
the initial conditions at t = 0, and into which we can just plug the value t = 5 to get
the answer. Now, we must grasp the differential equation (or other dynamical system)
and must integrate it by brute force, inching along until we reach t = 5. This is much
more difficult for the following reason. Let Dx = φ(x) be our ODE. Assuming we
know the value of x at t = t0, we are interested in the value at t = t0 + h. For this
we will need (sooner or later) the values of Dx at t = t0 and t = t0 + h, the latter of
which depends on the value of φ(x) at t = t0 + h, which depends on the value of x
at t = t0 + h, which is what we are trying to find! An enormous literature has arisen
around this issue, because of both its technical challenge and its enormous practical
utility [13,14]. The fact that there are readily available existence theorems that assure
us that all these things are well defined [29] only adds to our chagrin, since they do
not easily translate into efficient numerical algorithms.

A further, related point concerns the kind of results that are available regarding
this kind of numerical integration of differential equations. Typically, they state that
in the limit of the step size h going to zero, such and such an algorithmic procedure
converges to values which are on the solution trajectory of the ODE. However, of more
interest to the engineer is a result which quantifies the closeness of the approximation
to the solution, in terms of the step size needed to achieve it. Such results are more rare,
especially since the estimates used in proving the convergence tend to be suboptimal,
to improve the perspicacity of the proof.

Given the somewhat pessimistic drift of the last paragraphs, we can reasonably
ask whether there is much scope for the kind of analytically based approaches that
we have, rather implicitly, been advocating. More specifically, how much can proof



and verification based approaches contribute to the development of CPS systems? The
answer is twofold. Firstly, there is the bespoke option. Although many systems are
not solvable analytically, mathematical ingenuity can often rigorously elicit specific
facts about the solution space of the problem, which can help improve what can be
deduced numerically. Such work goes case by case, and helps sustain applied mathe-
matics departments in universities the world over, and will continue to do so for the
forseeable future. Secondly, there is the fact that engineers need to be able to predict
how the artifacts they design will behave. If linear systems give the only route to rou-
tine predictability, then engineers will, overwhelmingly, tend to use linear techniques
in their designs, using them in designs built out of linear pieces, combined in suitable
ways to give overall behaviour which is not linear in the large. The first option offers
a significant challenge to verification approaches since each problem will demand its
own verification strategy, but the second is much more tractable, since it just requires
the flexible combination of pieces which can be handled analytically.

5.8 Sampling, Aliasing, Quantization

Although we have focused rather heavily on phenomena latent in the continuous world
in the preceding sections, in practice, system development inevitably descends to the
world of discrete implementations. In this world, the smoothly changing phenomena
of the continuous world dissolve into jumpy broken-up phenomena, whose behaviour
is not always a simple retraction of their continuous counterparts. Of course, the desire
in performing a discretization step is for the result to be exactly a simple retraction of
the continuous version, but, as often happens, the desire for the design to optimise
certain performance measures may make the discretization step cross a boundary be-
tween relatively faithful reflection of an earlier continuous design and a more chaotic
regime.

The study of the correspondence between continuous and discretized worlds is
perhaps most highly developed in the signal processing world. Real signals are contin-
uous, whereas the processing of them is done almost exclusively in the digital sphere
nowadays. The digitization process involves, firstly, the choice of a suitable sampling
rate, and at each sampling point, the conversion of the value of the continuous signal
to one of a finite number of discrete values: quantization. The converse applies when
a digital signal has to be put back into the continuous world.

Much has been learned about these processes over recent decades [30]. The rule of
thumb sine qua non in this sphere, is the Nyquist Sampling Theorem. This states that
provided the sampling rate is at least twice the highest frequency present in the signal
to be processed, discretization will not introduce false harmonics into a reconstructed
signal. In fact, the onset of false harmonics in a reproduced signal can be seen as
a kind of bifurcation in the underlying detailed dynamics. Thus, as a parameter (the
sampling rate) is steadily decreased, a threshold is crossed and the dynamics bifurcates
to allow the presence of not only the correct frequencies, but of the false ones too. The
false frequencies give rise to what is known as aliasing. These phenomena become
apparent when we precisely model what is going on in the discretization process in the
continuous sphere. Of course, what works in the time domain (i.e. as regards sampling



rate) works equally well in the value domain. Thus, too coarse a quantization strategy
can be as damaging to a discretization process as too low a sampling rate.

Inevitably, what holds in the signal processing world applies directly to the con-
trol problem world of CPS, since both the input and output of a control process are
themselves signals. The subtlety here is that, in essence, all the results derived in the
signal processing world regarding sampling and quantization are derived in the L2

sphere. This contrasts with the model based and verification approach to CPS systems
which is much more concerned with results in the L∞ sphere. This is because the
model based approach works with the current state (at the current moment in time)
and fidelity to some desired notion of acceptable behaviour is based on the pointwise
deviation between actual and desired state, as time proceeds.

As pointed out in Section 5.4, the L2 and L∞ worlds are, strictly speaking, math-
ematically incompatible. Therefore, fully understanding the complex phenomenon of
the discretization process, with its many opportunities for bifurcation arising from the
additional presence of the discretization parameters remains a considerable challenge.

6 Summary and Conclusions

The kind of mathematics that might conceivably have an impact on the formulation
and behaviour of CPS has been in development for at least 400 years. During this time
an enormous amount of relevant knowledge has been accumulated, from the applied
mathematics that strives to accurately quantify the behaviour of components and sys-
tems, to the pure mathematics that underpins the foundations of differential equations
and connects these to the kind of discrete formulations familiar in the computational
world.

In this essay we started by arguing for a world of piecewise absolutely continuous
real functions of time, since these include both the absolutely continuous functions
within which the modern theory of differential equations resides, and the discontin-
uous changes needed by computational frameworks and impulsive physical control.
This world allows the semantics of typical syntactic frameworks for CPS to be formu-
lated fairly easily. However it offers few guarantees regarding calculation.

Within this world we identified the functions that were (restrictions of) piecewise
holomorphic functions that were real on the real line, as offering dramatically better
prospects for calculation. However, despite this, they offer limited prospects for au-
tomation, since mathematical creativity is often required to get the best out of this
world.

To maximise the possibilities for automation, we pointed at the functions char-
acterised by semialgebraic properties, for which relatively more recent advances in
algebraic geometry have created decision procedures based on cylindrical algebraic
decomposition. Implemented in modern tools, these procedures have led to a vast
surge in the mechanically supported design of complex engineering systems, charac-
terised using semialgebraic properties.

It is only fair to point out that none of the preceding involves noise, noise being
a property that every physical system exhibits to some degree. Since, in many cases,



the noise can be regarded as negligible, constructing a framework that disregards it is
not a waste of time. However, in many other cases noise is not negligible, and for such
cases, we would need a stochastic extension of the preceding theory. Removing the
‘absolutely’ qualifier from our first world gives us a playground in which a stochastic
calculus extension of the ideas discussed here may find a semantics. For convenience,
we regard all this as outside the scope of the present essay.

Around this main thread, a number of other ideas swirl. In Section 5 we pointed
out a number of them: DAEs, control issues, DDEs, bifurcations, numerical issues
and quantization. Although all of them can make a difference to the description and
behaviour of CPS systems, it is perhaps the bifurcations that have the most visible and
dramatic impact: a system, hitherto quite well behaved. suddenly loses stability and
starts to oscillate wildly, in response to an innocent looking adjustment to some static
parameters.

In reality, the above constitutes a rather demanding sweep of theoretical techniques
to take on board, and almost all approaches to CPS focus on one or other fairly narrow
portion of this spectrum. The narrowness of focus is, of course, unfortunate, since it
precludes locating the source of some difficulty that arises in the design of a system
in the correct way, if the cause of the difficulty lies in some part of the spectrum
unfamiliar to a particular individual.

This phenomenon is particularly prevalent in the computational world. The some-
what understandable inclination from the computational point of view to relegate the
non-discrete aspects of CPS to a rather distant world of continuous behaviours, be-
lies their ability to dramatically affect overall system behaviour in a manner that is
essentially impossible for a discrete system formulation to engage with. Particularly
when discussing bifurcations, we have indicated just how dramatic the effects of this
can be. If this essay is to serve any useful purpose at all, it would be to help high-
light the need for a deeper appreciation of just how wide the spectrum of ideas that
impact CPS behaviour actually is, and thus to help stifle poorly judged views about
the inadequacy of the theoretical and foundational framework for CPS. The fact of the
matter remains, that all elements of CPS systems have well established mathematical
descriptions that can help explain their behaviour. It remains the responsibility of CPS
designers to appreciate the implications of all of them.
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