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Abstract

Normally, the passengers on urban rail systems remain fairly stationary, allowing for a relatively straight-
forward approach to controlling the dynamics of the system, based on the total rest mass of the train and
passengers. However, when a mischievous rugby club board an empty train and then run and jump-stop
during the braking process, they can disrupt the automatic mechanisms for aligning train and platform
doors. This is the Rugby Club Problem for automated urban train control. A simple scenario of this kind
is modelled in Hybrid Event-B, and sufficient conditions are derived for the prevention of the overshoot
caused by the jump-stop. The challenges of making the model more realistic are discussed, and a strategy
for dealing with the Rugby Club Problem, when it cannot be prevented, is contemplated.

1. Introduction

With profuse apologies to Clement Clarke Moore: ‘Twas early in the morning, when all thro’ the
house, Not a creature was stirring, not even a mouse ... aside, that is, from the stout adherents of a rugby
club, who were bent on making their way to the Métro station, to board the otherwise empty first service
of the day on the fully automated, unmanned line.1

As the train pulls out of the station, the dynamical variables are measured by the train system,2 in
order to gauge the weight of the passengers that have got on board — this, in order to be able to accurately
predict the braking force that will be needed when the train pulls into the next station. The train becomes
cognisant of the weight of the rugby club, at this point standing at the back of the train.

As the train starts to approach the next station, the rugby club start a run up the empty train towards
the front. The velocity feedback control law governing the train’s travel detects a shortfall in velocity
and commands additional acceleration to bring the train up to speed, thereby adding to the momentum
of the whole train. The train starts to brake as it enters the next station. As the train is coming to a stop,
the rugby club complete their run with a jump-stop, impulsively imparting their momentum to the train
body. The train has calculated its braking force on the basis of the earlier, stationary rugby club, and
has not taken into account the additional momentum. As a result of the jump-stop, the train’s braking
force is inadequate, and the train overshoots its intended stopping point ... by a sufficient distance for
the misalignment with the platform side doors to exceed the permitted safety margin. The only option
for such excess misalignment (taking into account the demands of rush-hour throughput) is that the train
does not stop but continues to the next station. Having given a cheer, the rugby club make their way to
the back of the train, which still works on the basis of the original weight estimate. As the next station
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1Such as the Paris Météor Line 14, engineered using the B-Method.
2Acceleration, time taken to reach cruising speed, etc.
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is approached, they start a run ... you can guess the rest. On a circular line,3 the rugby club can amuse
themselves this way all day long, with the train never stopping until the end of service. This is the Rugby
Club Problem for automated urban railways.4

The problem of a moderate, but nevertheless unacceptable overshoot of the door position by an
automated urban train is easily solved if the train doors are equidistantly spaced. Then, it is enough to
have an additional door or two at the front end of the platform. The train then aims for its normal position,
and if an overshoot happens, the train can carefully, but quite quickly, inch along to the next spare door
position, the equidistant spacing guaranteeing that all train doors will thereby be correctly aligned.5 But
the equidistant design is not widely adopted. To have enough doors per carriage to cope with a busy rush
hour in an urban environment that is populated enough to justify an urban rail solution in the first place,
puts considerable demands on the structural integrity of the carriages, leading to additional costs.6

Putting aside levity, the aim of this paper is to demonstrate that Hybrid Event-B [20, 21] can deal
fluently with the problem of modeling the kind of impulsive physics exhibited by the Rugby Club Prob-
lem. By now, there are quite a number of published case studies using Hybrid Event-B [19, 18, 12, 16,
23, 15, 14], but none of the ones published hitherto has focused on impulsive physics to the extent that
the present case study does.

The remaining sections of the paper are as follows. In Section 2, we outline Hybrid Event-B, empha-
sising the elements that are useful in modelling impulsive physics. In Section 3, we introduce an initial
model of the Rugby Club Problem, focusing on just the epochs of the case study which are captured in
the values of relevant mode variables, but ignoring the detailed continuous dynamics for the time being.
In Section 4, we formally refine the preceding model by including the continuous dynamics, which now
brings the impulsive elements clearly to the fore. This demonstrates how the issues raised by impulsive
physics are handled in Hybrid Event-B, and we reflect on how these issues impact the formal system
associated with Hybrid Event-B.

In Section 5, we consider various other factors that can affect the dynamics of train braking, and
overview alternatives and enhancements that could be added to the model. The following two sections
examine these in more detail. Section 6 discusses how the model may incorporate additional determinis-
tic resistive forces in the dynamics. Section 7 considers the possibility that some aspects of the resistive
dynamics might be subject to uncertainty, and discusses a model that incorporates these in a simple way.
One outcome of these efforts is the realisation of how rapidly the complexity of the derivations increases
as these additional features are included. Section 8 discusses how the Rugby Club Problem might be
addressed in the context of the modelling of this paper and of its various enhancements. In Section 9 we
cover related work. Section 10 concludes.

This paper is an extended version of the conference treatment of the same problem [17]. Compared with

3O. K. The Météor line is not circular on the Paris Métro map, but you get the idea. (Actually, the Météor line is circular
behind the scenes, featuring loops at its two ends (beyond the section open to passengers) that join the tracks in the eastward
and westward directions. The thoughtful reader may wonder at this. After all, it is much less costly to simply extend the tunnel
containing the bidirectional track open to passengers with further straight sections at either end containing points to allow
crossover and change of direction (assuming that the trains are symmetrical under reflection, which is always the case these
days). However, switching the points takes some time, and points are also prone to failure (which the author can attest to from
his experience on the Manchester Metrolink system), both of which threaten the Paris rush hour throughput and dependability
requirements.)

4This delightful story originates with Thiérry Lecomte [55], who describes it as an outcome of a safety brainstorming session
at ClearSy [29]. Although evidently a little fanciful from a real world perspective, it was seized on by the author as providing a
valuable workout for the capabilities of the Hybrid Event-B formalism.

5Such a design is visible on the Shanghai Metro’s circular line 4, as well as on some other, older Shanghai Metro lines, built
when train door alignment control was less precise than today.

6The robustness of the carriages on the Shanghai line 4 would put much heavy rail to shame.
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MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x, y
VARIABLES u
INVARIANTS

x, y, u ∈ R,R,N
EVENTS

INITIALISATION
STATUS ordinary
WHEN

t = 0
THEN

clk, x, y, u := 1, x0, y0, u0

END
. . . . . .

. . . . . .
MoEv

STATUS ordinary
ANY i?, l, o!
WHERE

grd(x, y, u, i?, l, t, clk)
THEN

x, y, u, clk, o! :|
BApred(x, y, u, i?, l, o!,

t, clk, x′, y′, u′, clk′)
END

. . . . . .

. . . . . .
PliEv

STATUS pliant
INIT iv(x, y, t, clk)
WHERE grd(u)
ANY i?, l, o!
COMPLY

BDApred(x, y, u, i?, l, o!, t, clk)
SOLVE
D x = φ(x, y, u, i?, l, o!, t, clk)
y, o! := E(x, u, i?, l, t, clk)

END
END

Figure 1: A schematic Hybrid Event-B machine.

[17], which was hampered by lack of space, in this paper we give a more detailed coverage of Hybrid
Event-B and of methodological considerations. Also, we have used the additional space available to
make the modelling more detailed (in particular by building the principal model up via refinement from
the mode level version, thus exemplifying the main methodological paradigm we discuss), and including
additional appropriate material. In the later sections of the paper, we have explored extensions (and
their consequences) of the original simple deterministic modelling approach, illustrating the additional
complexity that rapidly accrues when one does so. There is also a section on related work. These parts
are new.

2. Hybrid Event-B, and Modelling Impulsive Physics

In this section we outline Hybrid Event-B for a single machine, which specifies behaviour in a single
thread of control; full details are contained in [20]. Concurrent behaviour is handled via the cooperation
of several machines; we do not need that aspect in this paper, for which see [21]. To set the scene,
we highlight the main distinction between Hybrid Event-B and its predecessor, Event-B. An Event-B
machine specifies a set of sequences of state changes. Insofar as these are intended to model behaviour
of a real world system, they are normally understood to take place at distinct moments of real world
time. Hybrid Event-B axiomatises this separation in real time of instantaneously executed discrete state
transitions, and interleaves them with episodes of continuously varying behaviour, capable of describing
the behaviour of physical and engineering systems.

In Fig. 1 we see a bare bones Hybrid Event-B machine, HyEvBMch. It starts with declarations of
time and of a clock. In Hybrid Event-B time is a first class citizen in that all variables are functions of
time, whether explicitly or implicitly. However time is special, being read-only and never being assigned,
since time cannot be controlled by any human-designed engineering process. Clocks allow a bit more
flexibility, since they are assumed to increase their value at the same rate that time does (i.e. one unit per
unit of time), but may be set during mode events (see below).

Variables are of two kinds. There are mode variables (like u, declared in the usual manner) which
take their values in discrete sets and change their values via discontinuous assignment in mode events.
There are also pliant variables (such as x, y), declared in the PLIANT clause, which take their values in
topologically dense sets (normally R) and which are allowed to change continuously; these changes are
specified via pliant events (see below).

Next are the invariants. These resemble invariants in discrete Event-B, in that the types of the vari-
ables are asserted to be the (static) sets from which the variables’ values at any given moment of time are
drawn. More complex invariants are similarly predicates involving all the variables that are required to
hold at all moments of time during a run.
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Then we get to the events. The INITIALISATION has a guard that synchronises time with the start
of any run (the WHEN clause), while all other variables are assigned their initial values in the usual way
(in the THEN clause that complements the WHEN clause). As hinted above, in Hybrid Event-B, there
are two kinds of event: mode events and pliant events.

Mode events are direct analogues of events in discrete Event-B. They can assign all machine variables
(except time itself). In the schematic MoEv of Fig. 1, we see three parameters i?, l, o!, (an input, a local
parameter, and an output respectively), and a guard grd which can depend on all the machine variables,
and defines mode event enabledness. We also see the generic after-value assignment specified by the
before-after predicate BApred, which can specify how the after-values of all variables (except time,
inputs and locals) are to be determined. The usual abbreviations using assignment notation such as :=
are available.

Pliant events are new to Hybrid Event-B. They specify the continuous evolution of the pliant variables
over an interval of time. The schematic pliant event PliEv of Fig. 1 shows the structure. There are two
guards: there is iv, for specifying enabling conditions on the pliant variables, clocks, and time; and there
is grd, for specifying enabling conditions on the mode variables. Their conjunction defines pliant event
enabledness. The separation between the two guards is motivated by considerations connected with
refinement (discussed in detail in [20]).

The body of a pliant event contains three parameters i?, l, o!, (once more an input, a local parameter,
and an output respectively) which are functions of time, defined over the duration of the pliant event.
The behaviour of the event is defined by the COMPLY and SOLVE clauses. The SOLVE clause specifies
behaviour fairly directly using two specification mechanisms: direct assignments and ordinary differen-
tial equations (ODEs). For example the behaviour of pliant variable y and output variable o! is given by
a direct assignment to the (time dependent) value of the (vector valued) expression y, o! := E(. . .). By
contrast, the behaviour of pliant variable x is given by the solution to the first order ODE D x = φ(. . .),
where D indicates differentiation with respect to time. (In fact the semantics of the y, o! := E case can
be given in terms of the ODE D y,D o! = DE, so that x, y and o! satisfy the same regularity proper-
ties.) The COMPLY clause can be used to express any additional constraints that are required to hold
during the pliant event via its before-during-and-after predicate BDApred. Typically, constraints on the
permitted range of values for the pliant variables, and similar restrictions, can be placed here.

The COMPLY clause has another purpose. When specifying at an abstract level, we do not neces-
sarily want to be concerned with all the details of the dynamics — it is often sufficient to require some
global constraints to hold which express the needed safety properties of the machine’s plaint events.
(Often these are refined to more deterministic behaviour at lower levels of abstraction.) The COMPLY
clauses of the relevant pliant events can house such constraints directly, leaving it to lower level refine-
ments to add the necessary details of the dynamics.

If, from Fig. 1, we erase time, clocks, pliant variables and pliant events, we arrive at a skeleton
(conventional) Event-B machine. This simple erasure process illustrates (in reverse) the way that Hybrid
Event-B has been designed as a clean extension of the original Event-B framework. The only difference
of note is that, now —at least according to the (conventional) way that Event-B is interpreted in the
physical world— (the mode) events (left behind by the erasure) execute lazily, i.e. not at the instant they
become enabled (which is, of course, the moment of execution of the previous event).

2.1. Semantics of Single Hybrid Event-B Machines

This section summarises the essentials of single machine Hybrid Event-B semantics that we need for
the models of this paper. This is taken from [20], where further details and references can be found.

For a machine, such as HyEvBMch, the semantics is an operational semantics that constructs system
traces. A system trace is a set of functions of time, one for each variable v declared in HyEvBMch,
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recording the value of v throughout a run of the machine. The semantics S of HyEvBMch, is the set of
all system traces.

Time is modeled as an interval T of the reals. A run starts at some initial moment of time, t0 say, and
lasts either for a finite time, or indefinitely. So for HyEvBMch, S would consist of all system traces for
clk, x, y, u, each defined over the duration of its run, which all start at t = 0.

Every system trace in the semantics must consist of piecewise absolutely continuous functions of
time, with each piece being absolutely continuous on a left-closed right-open time interval such as
[ti . . . ti+1) where ti < ti+1. This is regardless of whether the piece arises from: (a) a COMPLY clause
(in which case only piecewise absolutely continuous functions satisfying BDApred are considered); (b)
an ODE with RHS which is Lipschitz continuous in the variables and measurable in time (in which
case absolute continuity of the solution is guaranteed); (c) a direct assigment with RHS which is itself
absolutely continuous; (d) any consistent combination of (a)-(c); (e) a mode variable’s value during the
interval (which remains constant except at mode transitions).

The duration of the run T , thus breaks up into a succession of left-closed right-open subintervals:
T = [t0 . . . t1), [t1 . . . t2), [t2 . . . t3), . . . , in which mode transitions, effecting discontinuous updates, take
place at the isolated times corresponding to the common endpoints of these subintervals ti, and in be-
tween, the mode variables are constant and the pliant events stipulate continuous change in the pliant
variables.

The operational semantics of Hybrid Event-B constructs system traces via an abstract (i.e. non-
executable) algorithmic process, extending a system-trace-to-be, event execution by event execution,
and replicating system-traces-to-be over available choices when choice points are encountered during
an extension step. Evidently, without further control, such an approach can easily run into inconsis-
tency. The full description in [20] contains many ‘runtime checks’ that pick up such inconsistencies
and eliminate the corresponding system-trace-to-be from the semantics. We omit these here, firstly for
brevity (since we never need them in the models below), and secondly because they can be prevented by
verifying the Hybrid Event-B proof obligations for a given model during a static analysis.

The construction of system traces for a machine M can be summarised as follows.

[1] Let η := 0.
[2] CHOOSE an initial assignment to all variables satisfying all the invariants of M, thereby interpreting

their values at time t0.
[3] With the state variables having the values at tη, CHOOSE an enabled pliant event PliEv and CHOOSE

a simultaneous piecewise absolutely continuous solution, in a maximal left-closed, right-open in-
terval [tη . . . tMAX), of all the differential equations and direct assignments in the SOLVE clause of
PliEv, using state variable values at tη as initial values, with these initial values required to satisfy
the INIT and WHERE guards of PliEv, and with inputs and local parameters where needed, such
that BDApred in the COMPLY clause of PliEv is also satisfied in the interval, and all the invariants
of M are maintained. Use the solution to assign the values of all pliant variables (and outputs) in
[tη . . . tMAX).

[3.1] For every mode variable, extend its value at tη to a constant function in the interval [tη . . . tMAX).

[4] If no non-INITIALISATION mode event is enabled by the values of the state variables at any time
in the open interval (tη . . . tMAX) (including left-limit at tMAX itself), together with a choice of values
for inputs and local parameters, then TERMINATE.

[5] CHOOSE tη+1 > tη such that either tη+1 is the earliest time at which a non-INITIALISATION mode
event without inputs is enabled, or a non-INITIALISATION mode event with inputs is enabled
at tη+1 and there is no non-INITIALISATION mode event without inputs that is enabled within
(tη . . . tη+1).
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[6] Let η := η + 1.
[7] CHOOSE a mode event that is enabled by the values of variables at tη (or their left-limit values if

tη = tMAX), and any needed inputs and locals, and assign to all state variables and outputs according
to its BApred, such that all the invariants of M are satisfied, thereby (re)interpreting those variable
values at tη.

[7.1] For any other state variable without a value at tη, interpret its value at tη as its left-limit at tη.
[7.2] Discard the interpretation of all state variables in the open interval (tη . . . tMAX).

[8] Goto [3].

That the above abstract procedure does not fail during the construction of system runs can be guaranteed
by confirming the numerous Hybrid Event-B proof obligations (POs), discussed in detail in [20]. These
can be summarised as follows.

• Initial states are well defined (feasible).
• Feasible initial states satisfy the invariants.
• Mode events which are enabled in invariant states have well defined after-states (i.e., are feasible).
• Feasible mode events reestablish the invariants.
• Pliant events which are enabled in invariant states have time-indexed families of well defined after-

states that satisfy all the clauses in the event’s specification, in some left-closed right-open time
interval (i.e., are feasible). Optionally, the length of the interval must reach a Zeno lower bound.

• Feasible pliant event after-state families preserve the invariants at least until a preemption point.
• The after-state of any mode event disables mode events and enables some pliant event.
• The after-state family of any non-FINAL pliant event enables some mode event (the earliest time

for this defining the pliant event’s preemption point).

Besides the above, there are the Lipschitz and measurability properties of any ODE RHS to be checked.
These follow readily for practical problems. The Zeno check is optional since it is usually impossible
to verify it without solving the entire dynamics first, whereas the static checks are intended to justify
avoiding doing exactly that. The FINAL designation permitted for pliant events is intended to prevent the
last condition above from producing errors for events that are designed to complete a run.

We can summarise the above picture of the semantics in a more intuitive way thus:

[A] Every enabled mode event is feasible, i.e. has an after-state, and on its completion enables a pliant
event (but does not enable any mode event).7

[B] Every enabled pliant event is feasible, i.e. has a time-indexed family of after-states, and EITHER:

(i) During the run of the pliant event a mode event becomes enabled. It preempts the pliant
event, defining its end. ORELSE

(ii) During the run of the pliant event it becomes infeasible: finite termination. ORELSE
(iii) The pliant event continues indefinitely: nontermination.

7If a mode event has an input, the semantics assumes that its value only arrives at a time strictly later than the previous mode
event, ensuring part of [A] and [B] automatically. By this means we can ensure a mode event executes asynchronously — and
if the only purpose of having an input would be to ensure this asynchronous scheduling, we can introduce the ‘async’ status as
a shorthand, and omit the input altogether, as in Figs. 2 and 3.
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2.2. Single Hybrid Event-B Machine Refinement

Hybrid Event-B machines are developed by refinement. A concrete (refining) machine is like any
other machine, with two provisos. Firstly, each concrete event must declare which abstract event it
refines, unless it is a ‘new’ mode event — ‘new’ pliant events must also declare a refining abstract event.
Secondly, the relationship between abstract and concrete state spaces is captured in a retrieve (or gluing)
relation, also referred to as the joint invariant (supported by input and/or output relations, as needed).

A concrete machine has to obey the POs above, where ‘invariants’ is always interpreted to include
the joint invariant with its ‘dangling abstract variables’ existentially quantified. Additional POs govern
the refinement process itself, described in detail in [20]. Summarising, we have the following.

• If, in an invariant concrete state, a refining concrete mode event is enabled, then its abstract coun-
terpart is enabled in a corresponding abstract state (identified via the retrieve relation).

• If, in an invariant abstract state, any abstract mode event is enabled, then in a corresponding con-
crete state (identified via the retrieve relation), some concrete mode event (whether refining or
new) is enabled.

• If, in an invariant concrete before-state connected to a corresponding abstract before-state via the
retrieve relation, a refining concrete mode event makes a transition, then there is a transition of
its abstract counterpart from the abstract before-state to an after-state connected via the retrieve
relation to the concrete after-state.

• If, in an invariant concrete before-state connected to a corresponding abstract state via the retrieve
relation, a new concrete mode event makes a transition, then its after-state is connected via the
retrieve relation to the same abstract state.

• Every transition of a concrete new mode event decreases a variant function.
• If, in an invariant concrete state, a concrete pliant event is enabled, then its abstract counterpart is

enabled in a corresponding abstract state (identified via the retrieve relation).
• If, in an invariant abstract state, any abstract pliant event is enabled, then in a corresponding

concrete state (identified via the retrieve relation), some concrete pliant event (whether refining
or new) is enabled.

• If, in an invariant concrete before-state connected to a corresponding abstract before-state via the
retrieve relation, a concrete pliant event makes a transition, then there is a transition of its abstract
counterpart from the abstract before-state, such that for all times during that transition, the current
abstract and concrete states are connected via the retrieve relation.

The last of these is based on the premise that time flows at the same rate in abstract and concrete models.
For theoretical convenience, we assume the sets of variables used in the two machines are disjoint. But
for refinements which just add variables and behaviour to an existing model (as we typically do in this
paper), we include the abstract variables among the concrete variables and presume the retrieve relation
to be the natural projection from concrete to abstract.

With these POs verified, it becomes possible to prove that every concrete run has a simulating abstract
run with corresponding transitions matching at suitable times during the run [20].

2.3. Hybrid Event-B and the Modelling of Physics

The mode events of Hybrid Event-B, which permit the discontinuous state changes of the computa-
tional world to be represented, also allow impulsive physics to be conveniently modelled. For example,
a billiard cue strikes a ball, changing its velocity discontinuously, or a capacitor discharges, instanta-
neously reducing the electrical potential across its plates to zero. However, unlike the computational
world in which the programmer is at liberty to decide what discontinuous state changes take place, the

7



physical world is governed by immutable physical laws, hard won through extensive work in the lab-
oratory, which must be adhered to to yield a useful model. Thus, in the billiard ball example, it is the
conservation of momentum that determines the relationship between the physical states before and after
the strike. In the capacitor example, the instantaneous discharge presumes that the other elements in the
electrical circuit can react to the concomitant impulsive changes in voltage and current that the discharge
generates. We might say that ‘Hybrid Event-B cannot do your physics for you; but it can faithfully
represent the physics that you know from elsewhere.’

Connected with the preceding is the fact that discontinuous state changes in the physical world are
stimulated by forces which are ‘pure impulses’. And whereas discontinuous change can be represented
quite directly in Hybrid Event-B, these pure impulses cannot. Physicists and engineers speak of such
impulses as ‘delta functions’ — ‘zero everywhere except at a single point, were they are infinite, but
with a finite integral’. Mathematically, that last phrase is meaningless; delta functions are not functions,
but so-called distributions [80, 77, 50]. The nearest we get in Hybrid Event-B (or any other similar
formalism) to the representation of a pure impulse is the (syntactic) description of the mode event that
encapsulates the discontinuous change that results from the impulse. The occurrence of the mode event
(at runtime) corresponds to the occurrence of the physical impulse causing the discontinuous change of
state.

3. The Rugby Club Problem Mode Level Model

In this section, we begin the presentation of a very simple model of the rugby club scenario formalised
in Hybrid Event-B. Here, we describe its broad structure in terms of the epochs of the playout of the
scenario, expressed via the modes that govern the behaviour. The design of Hybrid Event-B has been
aimed at enabling the graduated development of hybrid systems, allowing the detailed dynamics to be
incorporated later via refinement. This initial model is in Fig. 2.

The initial model itself consists of little more than the modes permitted in the models, and the events
that express the transitions of the state machine whose states they embody. Thus there is only one vari-
able mode at this level, and the model starts in the initial state in which mode describes the STATionary
state of the train at the starting station. Right after the INITIALISATION, there is the PliTrue pliant event.
Although we have no intention of including pliant dynamics in the model at this level, the semantics of
Hybrid Event-B is fixed to be in terms of functions of physical time, modelled using the reals. Therefore,
in models at the mode-only level, we include a default pliant event such as PliTrue to satisfy the exigen-
cies of the semantics: it merely stipulates that the invariants be maintained any time it runs (which, in
models at this level, means at all times between the runtime occurrences of the mode events (which the
semantics stipulates must occur at isolated moments of time)).

In order to save some space (particularly with the later Fig. 3 in mind), we have economised a bit on
the notation. Primarily, we have decanted events’ STATUS declarations to a decoration at the end of the
line containing the event name. In this paper, the STATUS can be ‘pliant’, with the obvious meaning;
or the STATUS can be ‘async’, meaning that it is a mode event for every execution of which a strictly
positive amount of time since the execution of the preceding mode event must elapse; or the STATUS
can be ‘ordinary’ —normally not written, by analogy with Event-B— meaning that it is a mode event
which must execute eagerly, i.e. as soon as its guard becomes true.

In the present model, there are only mode variables and mode events. In such a situation, since
executing a mode event immediately enables its successor, the default eager semantics of Hybrid Event-
B would demand that the successor event executes at the same moment of time as its predecessor. Since
this is unphysical, Hybrid Event-B semantics forbids it. The modelling inconvenience of this is overcome
by the feature suggested in footnote 7, i.e. we can introduce an unneeded input to the mode event. Hybrid
Event-B semantics then restricts its moment of execution to be other than the moment of execution of
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MACHINE RugbyClub 0
VARIABLES mode
INVARIANTS

mode ∈ {STAT,BOARD,ACCEL,CRUISE,DECEL}
EVENTS

INITIALISATION
BEGIN

mode := STAT
END

PliTrue pliant
COMPLY INVARIANTS
END

RugbyClubBoards async
WHEN mode = STAT
THEN

mode := BOARD
END

TrainStarts async
WHEN mode = BOARD
THEN

mode := ACCEL
END

TrainAtSpeed async
WHEN mode = ACCEL
THEN

mode := CRUISE
END

. . . . . .

. . . . . .
RugbyClubStartsRun async

WHEN mode = CRUISE
THEN

skip
END

TrainBrakes async
WHEN mode = CRUISE
THEN

mode := DECEL
END

RugbyClubJumpStop async
WHEN mode = DECEL
THEN

skip
END

TrainStopSucceed async
WHEN mode = DECEL
THEN

mode := STAT
END

TrainStopFail async
WHEN mode = DECEL
THEN

mode := ACCEL
END

END

Figure 2: A mode level Hybrid Event-B model of the urban rail Rugby Club Problem.

any preceding mode event occurrence. In this manner we can make an event’s moment of execution
depend on an external choice (rather than depending purely on internal elements of the model itself,
which would make it an internal choice).

We use the ‘async’ STATUS to act as a shorthand for the modelling trick just described. And since
there are only mode variables and mode events in the present model, all mode events in the model must
be async. Refinement, in permitting the acquisition of additional guards in an event, may guarantee that a
successor mode event cannot be enabled immediately that its predecessor completes, obviating the need
for the async status. Thus an async mode event may be refined to an ordinary one. We see some instances
of this in the next section.

The STATionary epoch is brought to an end by the Rugby Club BOARDing the train. The async
status of the event signifies that its moment of execution is chosen by the environment and not just
by the model’s internal state. The BOARDed epoch ends when the train starts, changing the mode to
ACCELerating. The ACCELerating epoch ends when the train reaches cruising speed and then the mode
becomes CRUISE.

At some point during the CRUISEing epoch, the RugbyClubStartstheirRun. This will change the as
yet not introduced dynamical variables, but we intend our modelling to be sufficiently simple that we
can assume that this happens in a fixed way that can be described using constant assignments, so that
the effect of the event is in fact idempotent, and we do not need to change the mode variable (though, of
course, we could have chosen otherwise).

At some point during the CRUISEing epoch, the TrainBrakes, and this assigns the mode variable to
the value DECELerating. Since mode was not changed when the Rugby Club’s run started, the model
has no way of knowing if the run actually started or not. This imposes an obligation on the subsequent
modelling to default to normal behaviour if the Rugby Club were in fact behaving well and not running.

While the train is DECELerating, the RugbyClubJumpStops. Given the uncertainty regarding whether
the Rugby Club is running or not, this must also default to normal behaviour if the Rugby Club were
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not running. And since mode does not change during this event, the event’s semantics must also be
idempotent, as for RugbyClubStartsRun.

The two events TrainStopSucceed and TrainStopFail capture the two possible eventual outcomes of
the DECELerating epoch, when the train’s braking strategy has either succeeded or failed. The further
specifics of these events require dealing with the more detailed dynamics, in the next section.

4. The Rugby Club Problem Model Refined

In this section, we refine the mode level model of the RugbyClub 0 machine of Fig. 2 to include the
detailed dynamics. This brings to the fore the insights about impulsive physics discussed earlier. The
refined model itself is in the RugbyClub 1 machine of Fig. 3.

The more detailed dynamics of machine RugbyClub 1 depends on a number of constants (which
would be declared in a CONTEXT, which we do not show). Thus we have BIGT , an initial value for a
clock that is bigger than any value that could trigger the enabledness of any mode event; MT , the mass
of the train; Mrc, the mass of the rugby club; Vcr, the cruising speed of the train; Vrcr, the rugby club’s
running speed relative to the train’s speed (when the members of the rugby club are, in fact, running).

A number of variables contain the state of the model. Evidently there is mode, inherited from
RugbyClub 0. There are a number of new variables. Some represent mass: min, the inertial mass of
the system at any time; mpcv, the mass perceived by the train at any time (based on the dynamical prop-
erties that it measures and the moments in time that it does so). There are also: vrcr, the rugby club’s
running speed relative to the train at any time (regardless of whether the rugby club are, in fact, running
or not at that time); brTime, the train’s concept of the needed duration for the braking period, at the start
of the braking period. These variables are all mode variables, because they only need to get updated via
mode events, so only acquire a discrete number of values during any execution.

There are also pliant variables: meff , the effective mass of the system, i.e. the point mass which,
when traveling at the train’s velocity, would possess the same momentum as the whole train plus rugby
club system, thus offering the same resistance to change in momentum as the whole system — it changes
continuously when the rugby club is running during acceleration or braking, due to the continuously
changing relative proportions that the train and the rugby club contribute to the overall momentum during
the accelerating or braking episodes; vT , the speed of the train at any time; brDist, the current remaining
distance during the braking period until the train comes to a standstill, as computed by the train according
to the dynamical properties that it measures.

In reality, not all of these variables are strictly necessary. Many can be dispensed with as they can
be re-expressed in terms of constants and other variables. The variables in this category are: min, mpcv,
vrcr, meff and brTime. We nevertheless retain them in order to make the ensuing explanation of the model
easier to follow.

The invariants are trivial typing invariants in this simple model: mode is as described earlier, and
the others are all either reals or non-negative reals. We discuss some possibilities for more complex
invariants later.

We turn to what the model actually does. In order to save space in Fig. 3, we have introduced some
further notational economies. Thus, we have slightly generalised the CONST declaration of [12] to
cover a list of (pliant) variables that are to stay constant during the execution of a pliant event. Also we
have omitted the REFINES declarations from the text of the events. These are easy to reinstate. Thus
REFINES PliTrue applies to all the pliant events, and for the mode events, each of them REFINES the
identically named mode event of machine RugbyClub 0.

INITIALISATION starts the model with the train stationary in a station with no one on board. A clock
clk A, is set to an innocuous value BIGT; the mode is STAT; all the masses are set to be the train’s inertial
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MACHINE RugbyClub 1
REFINES RugbyClub 0
CLOCK clk A
VARIABLES mode,min,mpcv, vrcr, brTime
PLIANT meff , vT , brDist
INVARIANTS

mode ∈ {STAT,BOARD,ACCEL,CRUISE,DECEL}
min,mpcv, vrcr, brTime ∈ R+,R+,R+,R+

meff , vT , brDist ∈ R,R,R
EVENTS

INITIALISATION
BEGIN

clk A := BIGT
mode := STAT
min,mpcv := MT ,MT
vrcr := 0
meff := MT
vT := 0
brDist := 0
brTime := 0

END
TrainStationary pliant

WHEN mode = STAT ∨ mode = BOARD
THEN
COMPLY CONST(meff , vT , brDist)
END

RugbyClubBoards async
WHEN mode = STAT
THEN

mode := BOARD
min := MT + Mrc
meff := MT + Mrc

END
TrainStarts async

WHEN mode = BOARD
THEN

mode := ACCEL
clk A := 0

END
TrainAccelerating pliant

WHEN mode = ACCEL
COMPLY CONST(meff)
THEN
D vT = FA/min
brDist := 0

END
TrainAtSpeed

WHEN mode = ACCEL ∧ vT = Vcr
THEN

mode := CRUISE
mpcv := (FA clk A)/Vcr // . . . = min = (MT + Mrc)
meff := min

END
TrainCruising pliant

WHEN mode = CRUISE
THEN
D vT = −K(vT − Vcr)
brDist := 0

meff := mpcv +
Mrcvrcr

vT
END

. . . . . .

. . . . . .
RugbyClubStartsRun async

WHEN mode = CRUISE
THEN

vrcr := Vrcr

vT := Vcr −
Mrc Vrcr

MT + Mrc

meff :=
(MT + Mrc)[

1−
Vrcr

Vcr

[
1 +

MT

Mrc

]−1
]

END
TrainBrakes async

WHEN mode = CRUISE ∧ |vT − Vcr |< ε
THEN

mode := DECEL

brDist := −
mpcv

FD

V2
cr

2

brTime :=
mpcv Vcr

FD
END

TrainDecelerating pliant
WHEN mode = DECEL
THEN
D vT = −

FD

mpcv
D brDist = vT

meff := mpcv +
Mrcvrcr

vT
END

RugbyClubJumpStop async
WHEN mode = DECEL ∧ vT > 0
THEN

vrcr := 0

vT :=
meff

min
vT

meff := mpcv
END

TrainStopSucceed
WHEN mode = DECEL ∧ vT = 0 ∧
|brDist | ≤ BRTOL

THEN
clk A := BIGT
mode := STAT
min,mpcv := MT ,MT
brDist := 0
brTime := 0

END
TrainStopFail

WHEN mode = DECEL ∧ vT = 0 ∧
|brDist |> BRTOL

THEN
clk A := 0
mode := ACCEL
brDist := 0
brTime := 0

END
END

Figure 3: A simple Hybrid Event-B model of the urban rail Rugby Club Problem.
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mass MT ; the train’s velocity and the rugby club’s relative velocity are set to zero; and all other variables
are of no interest and are also set to zero.

The ensuing pliant event TrainStationary just perpetuates this state of affairs — all mode variables
cannot change, and the pliant variables are held constant via the CONST declaration.

At some point during this phase the async event RugbyClubBoards is executed. Although boarding
clearly does not take place instantaneously, only the overall change in mass makes any difference, and
so there is no harm in modelling the process as an impulsive change to the mass during this event. The
inertial mass min becomes MT + Mrc, as does the effective mass meff (since the train system behaves as a
single mass at this stage). Everything else stays the same. In particular, the train’s perceived mass mpcv

remains unchanged since the train is, as yet, unaware of the rugby club. After this the TrainStationary
event resumes, all variables maintaining their values, whether old values or newly acquired values.

At some point after this the dynamics starts, and for this, we assume an conventionally idealised
setup. Thus we assume the track is straight and level, the movement of the train is frictionless and
suffers no other impediment (such as air resistance), and the train can be treated as one (or several) point
mass(es) for the purpose of dynamical calculations.

In complex situations, dynamics is best treated via the d’Alembert-Lagrange approach, or an equiv-
alent. See e.g. [39, 34]. The foundations are not in fact as uncomplicated as the ancient pedigree of this
subject might suggest; [25] gives a good discussion, not to mention the gargantuan [65]. For us, it will
suffice to stick to a fairly low-level approach, provided we remember that Newton’s Second Law equates
force to rate of change of momentum, and not to mass times acceleration, as is usually stated, and to
which the more accurate form usually reduces.

So, async event TrainStarts executes. It changes the mode to ACCELerating and starts the clock.
It thus enables the TrainAccelerating pliant event which states how the pliant variables change. Since
the rugby club are stationary, the effective mass meff remains CONSTant at its value at the start of
TrainAccelerating. The braking distance variable brDist is not needed yet, so is kept at zero.8 The
nontrivial element of the TrainAccelerating event is the ODE that equates the rate of change of the train’s
momentum D (min vT) to the force applied by the train. The latter is assumed to be a constant accelerating
force FA. Since there is no relative motion between the train and rugby club, and all the train and rugby
club mass is treated as concentrated at the centre of gravity, we can take the mass element to be the
inertial mass min, and we derive the statement found in Fig. 3.

Acceleration continues until the train achieves cruising velocity, detected by the guard vT = Vcr of
the mode event TrainAtSpeed. The moment that this happens —observe that this is a case in which an
async event has been refined to an ordinary one, permissible because of the stronger guard it has acquired,
which prevents it being enabled at the moment the previous mode event executed— this event turns off
the accelerating force and changes the mode to CRUISEing. This also enables the train to calculate its
overall perceived mass mpcv from the information it has, namely clock value clk A, applied force FA and
cruise velocity Vcr. Of course, since the motion has been so simple thus far, a straightforward application
of Newtonian mechanics (namely, that change of momentum mpcv×Vcr equals duration of applied force
FA× clk A) shows that the answer mpcv, is min, as noted in the accompanying comment, but the train can
only use the information available to it, so we show the assignment to mpcv expressed using only those
quantities.

8This could also have been handled via a CONST declaration. In fact, that would have been more convenient, since
assignment to a (time dependent, in general) expression generates a verification condition to check that the initial value of the
expression agrees with the value on entry to the pliant event, in order to ensure right continuity of the variable’s history at the
entry point to the pliant event, as required by the semantics [20]. Not mentioning brDist at all would entail the default behaviour
for pliant variables during pliant events, namely of constraining them to simply obey any relevant invariants. This would be
inappropriate here.
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TrainAtSpeed enables the TrainCruising pliant event. brDist is still not needed, so is assigned as
previously. The train velocity vT is controlled by a linear constant coefficients ODE, impelling vT towards
the stable equilibrium value Vcr. Since vT = Vcr immediately after TrainAtSpeed, there is no change in
velocity at this time. Similarly, the effective mass meff remains as before, which is easy to see in the
direct assignment to meff when we notice that vrcr = 0 during this period.

While TrainCruising runs, async mode event RugbyClubStartsRun is enabled, and at some point
is executed. Now the dynamics gets more interesting. Again we idealise the change of state as an
impulsive change, since only the overall change in momentum matters, and the dynamics is completely
lossless. The rugby club’s relative velocity with respect to the train vrcr, becomes Vrcr. Since momentum
is conserved, using primes for after-values, we can write:

(MT + Mrc)vT = (MT + Mrc)v′T + MrcVrcr (1)

from which, noting that vT = Vcr, we derive the assignment to the after-value v′T that we see in
RugbyClubStartsRun. The train effective mass meff becomes the mass that is needed to generate the
momentum on either side of (1) when the velocity is the new train velocity. A slightly longer calcula-
tion, equating (1) to m′effv′T , is needed to derive the expression for the after-value m′eff (given in terms
of the cruise velocity Vcr) that appears in RugbyClubStartsRun. Note that for simplicity we have made
RugbyClubStartsRun idempotent; it does not change mode and thus does not disable itself, and its as-
signments are to constant expressions. So several occurrences of it could take place, with occurrences
after the first amounting to skip, and the end effect on the dynamical variables would be the same as for
one occurrence.

After RugbyClubStartsRun, TrainCruising is still enabled. Since the train velocity is no longer Vcr,
the feedback control law in TrainCruising now has work to do. Implicitly, an accelerating force is
applied to impel the train velocity vT towards Vcr, and it does work that adds to the total momentum of
the system. Note that as vrcr is non-zero, having become Vrcr, and given that vT changes, so does meff ,
as can be derived from (1), reflecting the changing proportion of the overall momentum that the rugby
club’s relative run velocity contributes.

When vT has returned close enough to Vcr, the async mode event TrainBrakes becomes enabled —
we are assuming that the train velocity has recovered before the train starts to brake. We assume the train
knows where it is relative to the next stopping position, and initiates braking at a point where, accord-
ing to the train’s perception about its dynamics, applying its fixed braking force FD for an appropriate
time will bring it to a halt just where needed. We assume that the train still imagines its overall mass
is the originally calculated mpcv, and taking the velocity to be Vcr, a simple Newtonian mechanics cal-
culation of the (quadratic) displacement generated by a constant force yields the brDist value assigned
in TrainBrakes, assuming further that the next stopping position is the origin of distance measurements,
and that positive distances are oriented beyond the stopping position. The time taken to come to a halt
is recorded in brTime — it is just the time needed to consume all of the assumed momentum mpcvVcr by
applying a force of magnitude FD.

TrainBrakes changes the mode to DECELerating, and thus immediately enables the behaviour in the
pliant event TrainDecelerating. During this period, it is the laws of physics, and not the train’s percep-
tions, that determine what happens. Thus, the rate of change of velocity is governed by the momentum
form of Newton’s Law:

D ((MT + Mrc)vT + MrcVrcr) = −FD (2)

In (2), only vT can vary, the other symbols being constants. Thus by rearranging (2), we derive the ODE
for vT that appears in TrainDecelerating. And vT gives the time derivative of brDist. The effective mass
meff is given by the same formula as in TrainCruising, for exactly the same reasons.
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At some point during TrainDecelerating, but while the velocity is still positive, the rugby club come
to the end of their run. The momentum that they ‘stole’ from the train when they initiated their run, and
which was unknowingly made up by the feedback control law during TrainCruising, is now suddenly
dumped back into the train when they do their jump-stop.

The physical consequences of this process are described in the RugbyClubJumpStop async mode
event. The rugby club relative run velocity vrcr changes from Vrcr to zero. Since the train system now be-
haves once more like a point mass, the effective mass must likewise become min. The process is governed
by conservation of momentum, which, using primes for after-values as usual, yields the following:

meffvT = minv′T = mpcvv′T = m′effv′T (3)

This explains the assignments to the variables in RugbyClubJumpStop. Note that RugbyClubJumpStop is
another idempotent mode event, though it is idempotent for more complicated reasons than previously.
Thus, it does not disable itself, and although the assignment vT := meff

min
vT is not to a constant expression

(whereas the other assignments are to constant expressions), the accompanying assignment meff := mpcv

ensures that any repeated execution of vT := meff
min

vT effects no change in vT .
Once RugbyClubJumpStop has executed, TrainDecelerating is enabled once more. But now, the train

velocity which the decelerating phase has to deal with is suddenly greater than before. So the braking
phase is necessarily extended compared with its previously anticipated duration (although the train is not
aware of this).

It is intuitively clear that if the rugby club consists of extreme lightweights, and that if they run
extremely slowly, the effect on the braking episode will be small due to the small amount of momentum
at issue. Equally, if the rugby club are all very heavy, and they run very fast, then the effect on the braking
episode will be more appreciable.

Mode events TrainStopSucceed and TrainStopFail handle these two possibilities. One or other is
triggered when vT hits zero (and the mode is still DECELerating). These are two more mode events
which have been refined from async ones, acquiring stronger guards and thus becoming ordinary. The
ideal stopping position is at brDist = 0. So if the discrepancy between the ideal and actual stopping
positions when vT hits zero does not exceed BRakingTOLerance, then TrainStopSucceed executes, and
the train stops at the station, as it should. The state returns to its initial configuration assuming that the
rugby club have alighted (presumably disappointed). The whole scenario can then repeat.

However, if the discrepancy between the ideal and actual stopping positions when vT hits zero ex-
ceeds BRakingTOLerance, then TrainStopFail executes, the train returns to ACCELerating mode, and the
train moves towards the next station, with the (presumably elated) rugby club on board. In this case we
have the classic Rugby Club Problem scenario which can then also repeat.

Note, by the way, that TrainStopSucceed also covers the possibilities that RugbyClubStartsRun and/or
RugbyClubJumpStop never executed at all — after all, their execution is merely enabled (and not forced,
as would be the case if no other event were enabled). In the case that RugbyClubStartsRun did not ex-
ecute, then: the effective mass meff does not get changed, RugbyClubJumpStop (if it executed) would
become equivalent to skip, and TrainStopSucceed would just implement the normal dynamics. In the
case that RugbyClubJumpStop did not execute, then: if RugbyClubStartsRun had executed, the momen-
tum stealing would have taken place but no momentum restitution would have happened, and the rugby
club’s additional momentum would have remained decoupled from the momentum of the train. So, as
the train comes to a stop at the station in the normal manner, the rugby club presumably leap off it on the
run, to conform to the conditions of our modelling.

4.1. Analysis of the Jump-Stop Phenomenon
In this section we analyse the distinction between the TrainStopSucceed and TrainStopFail cases

more precisely.
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During an execution of TrainDecelerating, if the intial velocity of the train is vIN and the pliant event
executes for a time tEX , then after this period, the velocity and distance travelled become:

vIN −
FD tEX

(MT + Mrc)
and vIN tEX −

FD t2EX
2(MT + Mrc)

(4)

respectively. To work out the implications of the jump-stop, we need to consider two such episodes,
separated by a RugbyClubJumpStop.

The braking period starts with the train moving forward with velocity Vcr. Suppose the rugby club
do their jump-stop tJS later than the start of braking. Then, substituting into (4), after the first braking
episode, the velocity and distance travelled become:

vJS = Vcr −
FD tJS

(MT + Mrc)
and dJS = Vcr tJS −

FD t2JS
2(MT + Mrc)

(5)

Then comes the jump-stop. According to RugbyClubJumpStop, the velocity needs to be rescaled by
meff/min, which increases the velocity expression in (5) to:

v′JS = vJS

[
min +

Mrc Vrcr

vJS

]/
min = vJS + Vrcr

[
1 +

MT

Mrc

]−1

(6)

= Vcr −
FD tJS

(MT + Mrc)
+ Vrcr

[
1 +

MT

Mrc

]−1

(7)

Braking is then completed by another TrainDecelerating episode. This time the initial velocity is v′JS.
Using (4) with this initial value, the pliant behaviour executes until the velocity drops to zero. Naming
this duration tHALT , it is given by:

v′JS −
FD tHALT

(MT + Mrc)
= 0 thus tHALT =

(MT + Mrc) v′JS
FD

(8)

and therefore, the distance covered in the second TrainDecelerating episode is, by (4):

dHALT = v′JS tHALT −
FD t2HALT

2(MT + Mrc)
(9)

The total distance travelled during braking is therefore dTOT = dJS + dHALT , subject to the constraint
that vJS > 0. If we call brDistTOT the (negative) value assigned by TrainBrakes to the variable brDist, it
is the discrepancy between dTOT and brDistTOT that must be compared to BRTOL to determine whether
TrainStopSucceed or TrainStopFail will be enabled. We find:

dTOT = Vcr tJS −
FD t2JS

2(MT + Mrc)
+ v′JS tHALT −

FD t2HALT
2(MT + Mrc)

= Vcr tJS −
FD t2JS

2(MT + Mrc)
+

(MT + Mrc) v′2JS
FD

−
FD (

(MT+Mrc) v′JS
FD

)2

2(MT + Mrc)

= Vcr tJS −
FD t2JS

2(MT + Mrc)
+

(MT + Mrc) v′2JS
2 FD

= Vcr tJS −
FD t2JS

2(MT + Mrc)

+
(MT + Mrc)

2 FD

(
Vcr −

FD tJS

(MT + Mrc)
+ Vrcr

[
1 +

MT

Mrc

]−1
)2

(10)
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We expand the quadratic term, which causes some cancellations. After some working we get:

dTOT =
(MT + Mrc)

2 FD

[
V2

cr + V2
rcr

[
1 +

MT

Mrc

]−2

+ 2 VrcrVcr

[
1 +

MT

Mrc

]−1

− 2 Vrcr
FD tJS

(MT + Mrc)

[
1 +

MT

Mrc

]−1
]

(11)

So

dTOT <
(MT + Mrc)

2 FD

[
V2

cr + V2
rcr

[
1 +

MT

Mrc

]−2

+ 2 VrcrVcr

[
1 +

MT

Mrc

]−1
]

(12)

The last step follows, because in the last two terms of (11), the negative one cannot exceed the positive
one in magnitude. This follows because in (5) the problem requirements force vJS to be positive, whence
tJS is bounded above. When tJS takes its maximum value, vJS is 0, and it is then easy to check that when
this holds, the last two terms of (11) cancel.

To surmount the Rugby Club Problem, it is sufficient to arrange that TrainStopSucceed always ex-
ecutes at the end of the braking process and TrainStopFail never does. For this, it is sufficient that the
value of brDist when vT = 0 (let us call this quantity brDist0, noting that it is equal to brDistTOT +dTOT ),
satisfies |brDist0 |< BRTOL.

We can use this insight to create an additional, nontrivial state invariant (13), where below, HYP
denotes the relationships between the various constants of the model that have to be true in order that the
required condition |brDist0 |< BRTOL can be proved:

HYP ` mode = DECEL ∧ vT = 0 ⇒ |brDist | ≤ BRTOL (13)

Thus, (13) states that the assumptions guarantee that at the crucial moment, the brDist variable has
reached a value within the margin BRTOL of zero, and so the enabledness of TrainStopSucceed at the
crucial moment becomes provable (and, corrrespondingly, that the non-enabledness of TrainStopFail at
the crucial moment is also provable).

Regarding brDistTOT + dTOT = brDist0, which it is easy to see equals the last two terms of (12), we
note that the V2

rcr term will be negligible in magnitude compared with the VrcrVcr term. This enables us
to derive a simple criterion that will be adequate for most engineering purposes:

brDist0 ≈ Vrcr Vcr Mrc

FD
(14)

From this we derive a simple and practically adequate condition to reassure us that the Rugby Club
Problem isn’t a problem:

VrcrVcrMrc/FD ≤ BRTOL (15)

4.2. Formal Issues Connected with the New Invariant

It is instructive, at this point, to consider how the preceding observations would be reflected in a
treatment of this scenario that was mechanically supported by a Rodin-like tool equipped with the ca-
pabilities of dealing with the requirements of the relevant applied mathematics. We sketch this in the
present section.

Regarding (13), first of all, the contents of HYP would be held in a suitable CONTEXT, that the
RugbyClub 1 machine SEES. The part of (13) after the turnstile would constitute the clause that would
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be added to the INVARIANTS. As with all invariants, it would be necessary to show that it is established
by the INITIALISATION, and that all events maintain it. We review this now. Since brDist is initialised
to 0, it is immediate that (13) is established at the start, and is maintained by all events in the left hand
column of Fig. 3, and by RugbyClubStartsRun too.

TrainBrakes also maintains it, since its guard insists that the train velocity vT is close to Vcr, which
is away from zero, which falsifies the hypothesis of the invariant, and since vT is not reassigned within
the event, the hypothesis of the invariant remain falsified in the after-state. RugbyClubJUmpStop also
maintains (13) since vT is assumed non-zero and cannot become zero in the relevant assignment. (For the
latter, we would need to add another invariant stating that meff can never be zero — but it is not too hard
to show that this is established at the start and is maintained by all events, although the latter depends on
a similar additional invariant stating that mpcv is also never zero.)

The remainder is trickier. The only pliant event during whose execution the hypotheses of (13) might
be satisfied, is TrainDecelerating. To show that in fact this is never possible, it is enough to show that vT

is never zero during any execution of the event.9 To show that, it is sufficient to show that the value of vT

is non-zero upon entry to the event, because, based on such an assumption, as the event executes, at any
moment when vT = 0 might be reached, TrainDecelerating is preempted by one of TrainStopSucceed or
TrainStopFail. To show that the value of vT is non-zero upon entry to TrainDecelerating, we examine the
events that enable it. These are RugbyClubJumpStop and TrainBrakes. But we have already argued that in
the case of both events, vT is non-zero in both the before-state and the after-state of the event. Therefore,
since vT is never zero during any execution of TrainDecelerating, we conclude that the invariant is
maintained by this event.

There remain TrainStopSucceed and TrainStopFail. In the case of TrainStopSucceed, the invariant
is assumed true in the before-state and is established by the assignment to brDist in the after-state, thus
discharging the maintenance of the invariant. In the case of TrainStopFail, the invariant is assumed false
in the before-state and is established by the assignment to brDist in the after-state, again discharging the
maintenance of the invariant. So the invariant is indeed maintained, as required.

Some observations are in order at this juncture. The first is that in the above discussion, we seem
to have avoided the very heavy calculations of Section 4.1. The reason is that in Section 4.1 we were
concerned with the truth of (13), whereas above, we were merely interested in its maintenance. The
reason that the maintenance task was easier is that the model contains the event TrainStopFail. This
caters for the possibility that the facts needed in HYP for establishing the invariant do not hold. To
caricature the situation, above, we were concerned with a property P, whereas the model caters for
P ∨ ¬P.

We can give more bite to the situation by assuming that the facts needed for HYP indeed hold, and
then removing the event TrainStopFail. In such a case, proving the maintenance of the invariant amounts
to removing the discussion of TrainStopFail above, actually simplifying matters. But trouble arises
elsewhere. In the discussion of semantics in Section 2.1, one of the POs mentioned demanded that ‘The
after-state family of [a...] pliant event enables some mode event [at] the pliant event’s preemption point’.
As a consequence of this (and disregarding irrelevant events), the after-state of TrainDecelerating10

implies the disjunction of the guards of TrainStopSucceed and TrainStopFail, which (again disregarding
irrelevant detail) amounts to mode = DECEL ∧ vT = 0, i.e. the value of brDist is unconstrained (the

9In fact, if vT could be zero on entry to TrainDecelerating, TrainStopSucceed or TrainStopFail would also be enabled
immediately after the completion of the mode event that enables TrainDecelerating, violating the PO that insists on the strict
alternation of executing pliant and mode events during a run.

10Strictly speaking, since TrainDecelerating executes for a time interval which is right open, there is no definitive after-state.
It is the limit of the family of states in the execution of TrainDecelerating at the preemption time that we are referring to as the
after-state.
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P ∨ ¬P effect). Without the TrainStopFail event though, the disjunction amounts to mode = DECEL ∧
vT = 0 ∧ | brDist | ≤ BRTOL. Now, we are forced to actually consider the value of brDist at the
preemption of TrainDecelerating so that we can establish the guard of TrainStopSucceed, bringing in the
complexity we saw in Section 4.1.

This brings us to our second observation. The reader will have noticed how the considerations of
Section 4.1 frequently required forwards reasoning about the effect of an event execution on the execution
of the successor event, and on the execution of the successor to the successor, etc., in the manner of a
simulation. This was reflected (to a lesser degree, for the P ∨ ¬P reasons just discussed) in backwards
reasoning in our account of the maintenance of (13). Either exigency rather flies in the face of the
reasoning typical of (discrete) Event-B and similar formalisms, which rely purely on reasoning about
individual states. Typically, there are two approaches to this issue.

On the one hand, we may consider introducing sufficiently many additional invariants that the dy-
namic properties of the state trajectories are, in effect, captured within sufficiently many sufficiently
detailed implications between state properties, that the facts required can be inferred. This works best
in the discrete case as individual state changes are associated with individual event occurrences. Com-
plicated situations can require the introduction of additional variables to capture information that is lost
by the original variables of the model, and the number of additional invariants that need to be introduced
is not guaranteed to be small. In the hybrid case, a continuum of states is normally visited during any
pliant event execution. The kind of reasoning we needed to do above, showed that details of temporal
behaviour are often needed. Some of these can be codified as generic properties of the class of math-
ematical functions being used.11 In other cases though, time itself, instrumented appropriately (e.g. by
the use of suitable clocks) may need to be included within the properties reasoned about, because of the
level of detail needed.12

On the other hand, we can take inspiration from the style of our argument about (13), and propagate
information along successions of event executions. In (discrete) Event-B event enabledness governs how
this can take place, while in Hybrid Event-B, this is further constrained by the ‘well formedness’ POs that
demand that mode events only enable pliant events, and vice versa. These principles are the analogues
of the sequential composition rules in more conventional languages. In Hybrid Event-B, every time one
event enables another, properties derived for the after-state of the former may be suitably incorporated
as a potential strengthening of the guard of the latter. This is what we did above, in effect. And, of
course, once we have modified some event, we can repeat the process of propagation to elicit further
consequences, iterating the process until a fixed point is obtained. By doing this we would have strayed
a long way into model checking territory, made flesh in the case of discrete Event-B in the ProB tool
[70, 57].

5. The Rugby Club Problem — Further Discussion

The details of the control strategy actually used for urban rail control are commercially confidential,
for obvious reasons. Nevertheless, it seems clear that the fact that one could imagine that there could
be a rugby club problem at all, signals a likely cause of it as being the discrepancy between a control
strategy based on pure kinematics and one based on the complete dynamics. In this section, we briefly
discuss some issues for more realistic modelling that this realisation prompts.

11Detailed issues of this kind are being explored in [4], which is the successor to [20, 21], and is concerned with reasoning
techniques for Hybrid Event-B.

12This raises interesting issues. The very word ‘invariant’ implies a lack of variability over time. So invariants that do not
mention time in any form are to be preferred. But the issues we are considering may force the use of invariants which are
logically independent of time, but which have the form of implications whose hypotheses and conclusions are definitely not
independent of time.
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Several factors would need to be taken into account in a more realistic model: the track will not
be straight and level; it will not sustain frictionless train travel; the train’s wheels will not always make
perfect rolling contact with the track (there will be some skidding at times); the control laws will not
be as simple as we have chosen them to be in our models; in the confines of an underground tunnel, air
resistance will cause significant drag on the train. And so on.

All these things will soak up some of the momentum of the train as it travels, requiring work from the
engine to maintain speed. Simple realistic models of these phenomena will not necessarily be available.
The best one might hope for, would be phenomenological models that predicted the relevant losses, based
on tabulated data taken over many journeys under a variety of conditions. These data would have to be
specific to each section of the route, and dealing with these aspects could seriously complicate the design
of the critical code controlling the train’s motion.

In the next couple of sections we enhance our model to capture some of what has just been mentioned,
albeit in a rather elementary way. To keep matters simple, we restrict the complications to just the braking
phase, the earlier part of the model remaining unchanged. We introduce some modelling of additional
frictional and other resistance as an extra braking term. We also introduce uncertainty into the modelling
to cover noisy and unpredictable variation in the dynamics.

6. Deterministic Resistance

6.1. Constant Resistance

The simplest way to incorporate the effect of additional resistive forces in the model is to assume that
they are constant along the portion of the dynamics in which they act. If, as we said, for simplicity we
restrict their effect to only act during the braking episode of the dynamics, then it is sufficient to rescale
the braking force FD to include the additional contribution: FD becomes FR

D = FD + R where R is the
additional resistive force. Then all the conclusions of Section 4.1 remain valid with FR

D replacing FD. In
particular, the Rugby Club Problem is not an issue provided:

VrcrVcrMrc/(FD + R) ≤ BRTOL (16)

6.2. Proportional Resistance

Unfortunately, additive models of dynamical resistance are not all that well borne out in practice.
More convincing but still simple models of dynamical resistive force assume that the force is proportional
to the velocity and is oppositely directed to it. This is quite well supported experimentally. A further
simplifying assumption is that the relevant proportionality factor is a constant over a broad range of
velocity values. Since this leads to an analytically solvable model, we will pursue this formulation
further.

Suppose the constant of proportionality, rescaled by the masses, is R. This leads to the modified
TrainDecelerating event of Fig. 4. The law for vT in TrainDecelerating is a simple inhomogeneous linear
ODE, analogous to the one in TrainCruising. Recalling that mpcv = min,13 if the velocity is initially vIN ,
then after a time tEX , it becomes:14(

vIN +
FD

R

)
e
− R

min
tEX − FD

R
=

∞∑
k=0

(−R)k

k!

(
tEX

min

)k [
vIN −

FD tEX

(k + 1) min

]
(17)

13We use mpcv in the model to emphasise that the train can only reason about its situation on the basis of information available
to it, but we use min in our discussion to emphasise that we are in possession of global information.

14The power series representation comes in useful later.
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TrainBrakes async
WHEN mode = CRUISE
INIT |vT − Vcr |< ε
THEN

mode := DECEL

brDist := −
mpcv

R

(
Vcr +

FD

R

)[
1−

(
1 +

R Vcr

FD

)−1
]

+
mpcvFD

R2
log

(
1 +

R Vcr

FD

)
brTime :=

mpcv

R
log

(
1 +

R vcr

FD

)
END

. . . . . .
TrainDecelerating pliant

WHEN mode = DECEL
THEN
D vT = −

1

mpcv
(FD + R vT)

D brDist = vT

meff := mpcv +
Mrcvrcr

vT
END

Figure 4: Adding resistive forces statically proportional to velocity to the dynamics of Fig. 3.

Integrating (17) from zero to a time tEX gives the distance travelled:

min

R

(
vIN +

FD

R

)[
1− e

− R
min

tEX
]
− FD

R
tEX (18)

Since the train system is presumed to have been designed to be aware of the resistive forces, the
calculation of the total braking time and total braking distance to be assigned in event TrainBrakes must
be adjusted compared with the earlier case. So, absent the rugby club, the velocity becomes zero when
(17) does, giving a duration of travel:

min

R
log

(
1 +

R vIN

FD

)
(19)

Substituting Vcr for vIN in (19) gives the expression assigned to brTime in the modified TrainBrakes
event of Fig. 4. Now, inserting that value for tEX , and Vcr for vIN , into (18), and negating the result
to account for the origin of distance being defined at the end of travel, gives the expression assigned
to brDist in the modified TrainBrakes event. We can check that this accords with our expectations by
checking the Taylor series for these expressions, which show that in the R → 0 limit the brDist and
brTime assignments reduce to the previously obtained values:

brDist := −1

2

minV2
cr

FD

[
1− 2

3

R Vcr

FD
+ O((RVcr/FD)2)

]
(20)

brTime :=
minVcr

FD

[
1− 1

2

R Vcr

FD
+ O((RVcr/FD)2)

]
(21)

To gauge the effect of all this on the Rugby Club Problem, we have to retrace the calculation of
Section 4.1. The instantaneous rescaling of velocity at the jump-stop remains the same, being given by
(6), but now, instead of using (4) for the velocity and distance we must use (17) and (18) instead.

Now (17) and (18) are relatively tractable expressions, but working out the jump-stop dynamics using
them entails rescaling (17) and using the rescaled value as the initial value in (17) again. The resulting
expressions rapidly become unwieldy, so for perspicuity, we will work to first order in R and keep linear
duration terms only in velocities. Reducing (17) and (18) in this manner gives:

vIN −
FD

min
tEX −

R vIN

min
tEX (22)

for the velocity after time tEX , starting from vIN , and gives:

vIN tEX −
1

2

FD

min
t2EX −

1

2

R vIN

min
t2EX (23)
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for the corresponding distance travelled.
Reusing the notations of Section 4.1, we get for the first part of the jump-stop episode:

vJS = Vcr −
FD

min
tJS −

R Vcr

min
tJS (24)

for the velocity, and:

dJS = Vcr tJS −
1

2

FD

min
t2JS −

1

2

R Vcr

min
t2JS (25)

for the distance. For the jump-stop itself, following (6), we add Vrcr[1 + MT/Mrc]
−1 to (24):

v′JS = Vcr −
FD

min
tJS −

R Vcr

min
tJS + Vrcr

[
1 +

MT

Mrc

]−1

(26)

This now serves as the intial value vIN for the second part of the jump-stop episode. Equating (22) to
zero with this vIN and solving for tHALT to first order in R gives:

tHALT =
m v′JS
FD
−

R m v′ 2JS

F2
D

(27)

This can now be used in (23) to get dHALT , which, to first order in R is:

dHALT =
1

2

m v′ 2JS
FD
− 1

3

R m v′ 3JS

F2
D

(28)

As before, the total distance travelled during braking is therefore dTOT = dJS + dHALT , (given by (25)
and (28), with v′JS given by (26)). This can be compared with brDist0, which to first order is:

1

2

min Vcr

FD
− 1

3

R min V3
cr

F2
D

(29)

to ascertain the effect that the jump-stop will have. That these expressions have the right form can be
seen by comparing them in the R, tJS → 0, 0 limit (and without including the jump-stop increment in
velocity in dHALT , obviously), where they agree.

6.3. Variable Proportional Resistance
Even if if proportional resistance is considered appropriate over a wide range of velocities, in practice

it is unlikely that a single proportionality constant R would be considered credible for the entire dynamics,
since conditions would be expected to vary along different parts of the route. One approach to this would
be to model the ‘constant’ of proportional resistance as a piecewise constant function of position, and
to combine instances of the work of Section 6.2 into a description of the total dynamics. Alternatively,
we could consider tackling a nonconstant R that varied continuously, using a variation of parameters
technique. The mounting complexity of the work in Section 6.2 (which was mostly sidestepped rather
brusquely by our first order approach) dissuades us from exploring these options more deeply.

7. Stochastic Resistance

Another very reasonable presumption about the behaviour of a train in a realistic environment is to
acknowledge that the motion will be subject to some uncertainty from unpredictable influences from the
environment, which will affect the detailed dynamics. In this section, we develop a simple model of this,
centred on the preceding work. Our approach is based on a device often used in simple models, namely
the idea of considering a range of plausible values for various parameters of the model, and assessing
their effect.
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7.1. Uncertain Variable Resistive Dynamics

To apply the strategy just mentioned to our situation, we consider that the parameter R, controlling
the magnitude of the resistive force, can vary. For this approach to be valid, it is not enough to simply
consider the extremes of a plausible range of values for R, which is very tempting. If the aspects of
interest in the dynamics do not vary monotonically with R, the quantities derived from the extremes of
the range of values for R will give misleading answers.

Accordingly, the first task is to examine the variation of the velocity with R, so we examine the
equation for this in TrainDecelerating in Fig. 4. It is clear from the RHS of the ODE that an increase in
R, amplifies the rate of decrease of velocity, whatever the values of the other parameters of the model.
This implies that an increase in R will cause a decrease in the stopping distance, which arises via the
integral of the velocity.

Extremes of the ODE confirm this. When R is negligible with respect to FD, the behaviour of v with
respect to time goes as vIN − FD t/min. And when FD is negligible with respect to R, the behaviour of v
with respect to time goes as vIN exp(−R t/min). Both are nonincreasing with R. We can also check the
derivative of the velocity with respect to R. Differentiating (17) gives:

FD

R2

(
1− e

− R
min

tEX

)
− tEX

min

(
vIN +

FD

R

)
e
− R

min
tEX =

∞∑
k=0

(−R)k

k!

(
tEX

min

)k+1 [
−vIN +

FD tEX

(k + 2) min

]
(30)

As in (17), the expansion in powers of R confirms that the pole terms in the R derivative cancel, as
they must, and that the leading behaviour of the derivative for any starting value vIN , and duration ∆t
which is short enough to allow R and higher powers of ∆t to be neglected, is −vIN∆t/min, i.e. always
negative, confirming the monotonicity in R of the dynamics.

We now envisage the braking phase to be divided up into a number of episodes, indexed by a natural
number j ∈ 1 . . ., each characterised by two values of R: an upper value RU

j and a lower value RL
j .

Within each episode, we imagine that the actual value of R is uncertain, but that it is nevertheless surely
confined between the relevant two values. Therefore, for each episode, the actual dynamics will be
confined between the behaviours given by assuming the two extreme values for R, given the monotonicity
established above. We can also assume (if necessary by splitting a single episode into two), that the jump-
stop takes place at the boundary between two consecutive episodes.

Suppose now that the various episodes are delimited by values of time, known a priori. Thus, when
the duration of the j−1’th episode reaches ∆tj−1, the j−1’th episode is exited, the j’th episode is entered,
and the RU

j−1 and RL
j−1 values of the j − 1’th episode are replaced by RU

j and RL
j in the j’th episode. We

assume that the ∆tk durations are bounded below to avoid Zeno phenomena. Under these assumptions,
the dynamics can be evaluated as follows.

The starting velocity of braking is assumed to be (negligibly different from) Vcr, which we can refer
to as vU

0 and as vL
0 for convenience. At the start of the j’th episode, we have an upper velocity vU

j−1 and a
lower velocity vL

j−1. We confirm that the stopping distance is not contained in the j’th episode for either
RU

j or RL
j (and thus for no value between them) by checking that ∆tj does not exceed the value given by

(19) for either vU
j−1 or vL

j−1 and either RU
j or RL

j . Then, we derive the possible variation in the velocity
and in the distance travelled in the j’th episode using: vU

j−1 and vL
j−1 as initial velocities, ∆tj as duration,

RU
j and RL

j as R values, and (17) and (18). These yield dU
j and dL

j as possible distances travelled in the
j’th episode. The possible final velocities are given by these means too, unless the end of the j’th episode
witnesses the jump-stop, in which case Vrcr[1 + MT/Mrc]

−1 has to be added, yielding vU
j and vL

j .
If ∆tj is long enough that both RU

j and RL
j produce stopping within the j’th episode, the two stopping

distances can be evaluated, as earlier, and the all the individual dU
k and dL

k values can be accumulated to
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give the total stopping distances from start of braking. If ∆tj is long enough for only RU
j to yield braking

within the j’th episode, the j + 1’th episode (and subsequent episodes, if needed) need only consider the
RL calculation(s). The process can then be completed as already described.

It can legitimately be argued though, that delimiting the episodes by values of time is not very realistic
(although the uncertainty permitted by the range of R values goes some way to alleviating that concern).
More realistic perhaps is to assume that the episodes depend on position, reflecting that fact that there
may be different conditions in different regions of the track, etc. In such a case the preceding outline
would be modified as follows.

Suppose then that the various episodes are delimited by values of distance, known a priori. Thus,
when the distance covered in the j − 1’th episode reaches ∆dj−1, the j − 1’th episode is exited, the j’th
episode is entered, and the RU

j−1 and RL
j−1 values of the j − 1’th episode are replaced by RU

j and RL
j in

the j’th episode. We assume that the ∆dk distances are bounded below to avoid Zeno phenomena. Under
these assumptions, the dynamics can be evaluated as follows.

The starting velocity of braking is assumed to be (negligibly different from) Vcr, which we can refer
to as vU

0 and as vL
0 for convenience. At the start of the j’th episode, we have an upper velocity vU

j−1 and
a lower velocity vL

j−1. We calculate the upper expected braking distance brDistU
j and lower expected

braking distance brDistL
j by the techniques that led to the brDist assignment in TrainBrakes in Fig. 4

using: vU
j−1 and vL

j−1, and RU
j and RL

j , and (17)-(19) as appropriate. We confirm that the stopping distance
is not contained in the j’th episode for either RU

j or RL
j (and thus for no value between them) by checking

that ∆dj ≤ brDistU
j and ∆dj ≤ brDistL

j . To calculate the exit velocities at the end of the j’th episode we
must do two things, We must firstly solve ∆dj = (18) (with vU

j−1 and vL
j−1 as velocities, and RU

j and RL
j

as R values, in (18)) to obtain ∆tU
j and ∆tL

j , which are upper and lower values for the time taken to cover
distance ∆dj. Secondly, we derive the possible variation in the velocity in the j’th episode using: vU

j−1

and vL
j−1 as initial velocities, ∆tU

j and ∆tL
j as durations, RU

j and RL
j as R values, and (17) and (18). These

yield the possible final velocities, unless the end of the j’th episode witnesses the jump-stop, in which
case Vrcr[1 + MT/Mrc]

−1 has to be added, yielding vU
j and vL

j .
If ∆dj ≤ brDistU

j and ∆dj ≤ brDistL
j both fail, then the two stopping distances can be evaluated, as

earlier, and the preceding ∆dk values, together with the derived stopping distances, can be accumulated
to give the total stopping distances from start of braking. If ∆dj is long enough for only RU

j to yield
braking within the j’th episode, the j + 1’th episode (and subsequent episodes, if needed) need only
consider the RL calculation(s). The process can then be completed as already described.

7.2. More sophisticated Stochastic Modelling

The previous section considered deterministic but uncertain resistive force. To go beyond that ap-
proach, i.e. to entertain greater variability in the resistive force, would entail enhancing the preceding
deterministic models with genuine stochastic elements. That, in its turn, would mean extending the hith-
erto deterministic Hybrid Event-B formalism that we have been using with the capabilities to include
such stochastic elements. In the case of mode events this would take us into the realm of probabilistic
refinement theory, e.g. [62]. In the case of pliant events, the culmination would be what the mathemati-
cians call stochastic differential equations [64, 40, 53], and what the physicists call Langevin equations
[78, 30]. A rigorous development of a fully probabilistic Stochastic Hybrid Event-B incorporating all of
these elements remains as work for the future.15 Moreover, delving more extensively into these questions
would derail us too far from the primary objective of this paper, namely the illustration of the manner in

15Nevertheless, a partial formalism, featuring stochastic behaviour for pliant events but retaining non/determinism for event
scheduling choices and for mode events, has been pioneered in [13].
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which impulsive physics can be handled in Hybrid Event-B. For this reason, we do not pursue this line
of investigation further.

8. ‘Tackling’ the Rugby Club Problem

Above, we suggested that if appropriate relationships could be made to hold between the various
constants that characterised our simple model (and by implication, for its more complicated successors
too), then the Rugby Club Problem might be overcome. In this section, we discuss how the Rugby Club
Problem may be addressed when such choices of constants are not available for whatever reason.

In all our models, the principal cause of the loss of coherence between the train’s view of the dynam-
ics and the physical reality could be attributed to the fact that the control law for the cruise phase was
based exclusively on the train’s velocity, whereas the true physics of the situation requires the accounting
of momentum.

The obvious suggestion then, would be to change the control laws for the various phases of the
dynamics to account for momentum more accurately. In the extremely idealised model of Sections 3 and
4 this would not be hard to do, because in such a simple model, the relationships between velocity and
momentum are straightforward, and the cruise phase could easily detect how much momentum it had
given away as it brought the train back up to speed. The train could then approach the stopping point
more cautiously — knowing firstly that the train is a closed system so that momentum could not be ‘lost’
in any manner, and secondly that the momentum that appeared to have been mislaid would therefore
have to reappear soon.

However, when we consider doing the same thing in the context of the more realistic models con-
templated in Section 5, and trialed in Sections 6 and 7, we quickly realise that this is easier said than
done. The rugby club steals momentum from the train, but so do all the other sources of non-ideal mo-
tion that we mentioned and modelled. Distinguishing between ‘natural losses’ and ‘unnatural losses’
becomes highly nontrivial. Therefore, only if natural and unnatural sources of momentum loss can be
distinguished clearly enough, could an optional ‘more cautious stopping strategy’ offer a potential way
forward for coping with a mischievous rugby club.

9. Related Work

Hybrid systems have been identified as being of high importance for a long time. The annual In-
ternational Conference on Hybrid Systems: Computation and Control, which is a prominent vehicle for
progress in this area, has been running for over twenty years. Some of the earliest work that we can
cite includes papers like [61, 6, 7, 45], followed, for example by [60, 37, 41, 74], and slightly later by
[59, 24, 46, 51, 28, 36]. The more than decade old survey [27] covers a large number of formulations
such as these, and in particular, the tools that support them, such as HyTech [47], d/dt [9], PHaVer [35]
and others.

A major consumer of knowledge about hybrid behaviour is, of course, the cyber-physical systems
(CPS) field, e.g. [5, 56, 71, 79, 63, 33], as well as the current work presented at the annual CPS Week
gatherings in recent years. In this context we can point to the extensive survey [38], which covers a wide
spectrum of work on cyber-physical systems, as well as the applications that are tackled practically. As
we might expect, despite the relative newness of cyber-physical systems, formal approaches are rather
overshadowed by more traditional techniques, especially when it comes to practical applications.

Much of the early work cited was characterised by low expressivity in the continuous sphere, mo-
tivated, of course, by the desire for decidability. Much work restricted the continuous behaviour to
(piecewise) time linear systems. In this context, using a differential equation such as D x = K, with
K constant, is almost the same as using a linear behaviour such as x′ = x + K∆T where ∆T is the
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duration of the behaviour. Of course, such a severe restriction is very debilitating in the face of many
real world problems that fall outside it. To go further means addressing differential equations of a less
simple form. However, despite the wealth of knowledge about differential equations and how to solve
them [68], the proportion of equations that can be solved analytically is vanishingly small, and the need
to tackle practical applications often forces the use of equations for which the only approach is numerical
[43, 44].

The fact that it is often not possible to solve a hybrid/cyber-physical system exactly is not the insu-
perable obstacle it might, at first, seem to be. Often it is sufficient to know that a system will stay in a
safe region of the state space indefinitely, without knowing exactly what the system dynamics will be.
Terminology differs here. Some authors speak of an ‘unsafe region’ which is to be avoided. Others speak
of a ‘safe region’ which the system is to be confined to. Still other work speaks of an ‘invariant’ expres-
sion concerning the state space which defines the safe region. Of course, the latter is the terminological
domain in which we find Hybrid Event-B and similar systems.

When it is sufficient for the system to stay in a target ‘safe region’ of the state space, various kinds
of ‘helper functions’ may be employed to gain assurance that the system behaves well.

Variant functions are familiar from the classical discrete programming world [49, 32, 8]. To help
control the behaviour of recursions and unbounded iterations, a variant function (of the state) is required
to be decreased by each iteration’s state change, the idea being that it is easier to ascertain this than to
argue about the iterative behaviour directly. When the variant function takes its values in a well founded
set, this gives a guarantee of termination, the ‘safe region’ aimed for being the states in which the iterative
behaviour is not enabled.

Liapunov functions are well known from continuous control theory [42, 73, 48]. To help establish
stability, the flow defined by the dynamics is required to decrease the Liapunov function (of the state),
this being easier to ascertain than to argue about the flow itself, since it can be checked directly from the
differential equation defining the flow. The Liapunov function has an easily identified minimum, which
coincides with a stable fixed point of the dynamics, the state at which this occurs being the ‘safe region’
aimed for.

Barrier functions have become a familiar technique for establishing safety in the hybrid systems
world [69, 54, 31]. They are required to have one sign (positive say) in the unsafe region, and to have
the other sign (negative) in the set of initial states. Provided the barrier function is decreased by the
flow defined by the continuous dynamics and is also decreased by each discrete state change, the unsafe
region can never be reached. Barrier functions thus combine the basic ideas behind both variant functions
and Liapunov functions. Clearly, the rich structure of the hybrid systems paradigm gives rise to many
opportunities for fusing ideas from these two precursor worlds.

To profit from the various possibilities for arguing for safety just outlined, the system in question
has to be defined precisely enough that rigorous formal reasoning about invariants and barrier functions
becomes possible.16 Among the formalisms designed for such rigour we can mention the following.

One example is the Hybrid CSP system, together with the tools that support it [45, 58, 81]. Another
option is the dynamic logic approach of Platzer [66, 67], supported by the KeyMaera verification tool
[52] which supports the kind of modelling exemplified in this paper. The original formulation of action
systems for discrete systems [11] was extended to the hybrid sphere in [10].

Action systems provided much of the inspiration for the Event-B formalism [2], which builds on
the earlier classical B-Method [1]. The mathematical flexibility of the Event-B formalism and the open
architecture of its Rodin tool [72, 3] lent themselves to supporting verification of hybrid and cyber-

16It has to be said that many systems for CPS in the literature are not defined with sufficient precision to do this, strictly
speaking. They avoid trouble by restricting attention to cases that are ‘well behaved’ in a relatively obvious manner.
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physical systems in various ways [76, 75, 26].
These Event-B extensions just cited all adhere to the Event-B paradigm of updating a global descrip-

tion of hybrid behaviour in discrete lumps. More specifically, in each of them there is an updatable
time variable, and each event execution advances it by appending a lump of behaviour (expressed as a
function from a time interval to state values) to the history-so-far. In that specific sense, they differ from
the Hybrid Event-B approach of this paper [20, 21], in which time is read-only, as stated earlier, and the
progress of time is handled by having all relevant state expressions implicitly or explicitly quantified over
intervals of time (delegating, if we might be permitted the anthropomorphism, the responsibility for the
progress of time to ‘God Himself’ (in the manner of the normal style of physical discourse)). Broadly
speaking, all of these formalisms are capable of supporting the kind of modelling we performed in the
more technical parts of this paper — if, in each case, we put aside detailed questions regarding just how
well their accompanying mechanised reasoners could cope with the calculations needed, and how much
of an overhead their particular syntactic conventions would impose.

10. Summary and Conclusions

In the preceding sections we outlined the essentials of Hybrid Event-B, including enough of the
semantic details to facilitate a reasonable grasp of some of the subtle issues needed later, and then we
focused on how impulsive physics can be handled in this framework. Then we constructed a Hybrid
Event-B model of the rather engaging Rugby Club Problem scenario described in the Introduction. For
the purposes of arriving at a reasonably clear exploration of the Rugby Club Problem, our model idealised
the situation rather severely. It was thus suffused with point mass and lossless dynamics in the familiar
style of classical mechanics. The precision of the model allowed us to derive conditions that distinguished
between the non-disruptive and disruptive case of the rugby club dynamics, and we discussed some
options for adding more complex invariants to the model. Based on these deliberations, we showed some
candidates for the resulting invariants.

We then discussed possibilities for reducing the degree of idealisation in the model, and thus the
prospects for making it more realistic, thereby bringing it closer to applicability in practice. In Sections
6 and 7 we described relatively minor enhancements to our simple model along the lines indicated. What
is notable about these enhancements is the extreme rapidity with which the calculations involved grew
in complexity — this notwithstanding the relative simplicity of the enhancements, and the fact that all
the consequences of them that we explored could be derived in closed form (albeit that the size of the
formulae involved would grow massively). The reader will probably be appreciative of the fact that we
suppressed the complicated details.17

It is worthwhile, at this point, making an observation about how the stated provability of the addi-
tional invariants that were mentioned came about. Most of the analysis of this paper was performed in a
fairly ad hoc manner. When dealing with a situation described by physical theories, this is, more or less,
unavoidable. It follows in turn because physical theories are almost always expressed using a family of
equalities. As such, any of the participating variables may (in the given situation) carry input values, with
the other variables acquiring their values from the demanded equalities, as outputs. So the derivation pro-
cess is not structured in a manner that is fixed at the outset, in the way that formal development processes
tend to be. However, once the ad hoc reasoning has yielded its fruits, we can take a step back, and re-
structure what has been discovered in a manner that better fits the flow of a formal development process.
It is in this manner that the provability that is claimed regarding the additional invariants emerges, and
we discussed issues related to this at some length in Section 4.2. Similar remarks would apply in the

17Nevertheless, if our goal had been the design of a real urban railway system rather than the illustration of some facets of
Hybrid Event-B, we would have had to swallow the ensuing complexity whole.
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more complicated case of our enhanced models. In fact, the variations in the derivation process were
illustrated quite well in the differing treatments of the stopping problem when varying resistance was
assumed to depend, on the one hand on time-defined episodes, and on the other hand on distance-defined
episodes.

In the Section 8, we addressed how this modelling exercise could be used to overcome the Rugby
Club Problem, in cases where it could not be prevented by choosing appropriate constants. The crux of
the matter would be to centre the control system for the train more firmly on the momentum dynamics of
the physical system, than on purely kinematic aspects. Confidence in this assertion is supported by the
fact that although a rugby club may be able to outwit a train control system whose design is insufficiently
suspicious, they cannot cheat the laws of physics. Nevertheless, the suggested approach is only feasible
if natural and unnatural sources of momentum depletion can be cleary distinguished, and this is likely to
be highly challenging in a realistic situation.

It is instructive to note the very major role played by knowledge of physics in the exercise undertaken
in this paper. Although computer scientists often find it convenient to downplay or neglect the influences
of non-computing disciplines in the design of systems like ours, which are cyber-physical systems [38,
27],18 the importance of such influences cannot be denied, and the present exercise shows this eloquently.
Cyber-physical systems are truly multidisciplinary and it is unwise to neglect any of the disciplines that
contribute to a given system while emphasising just one (e.g. just the computing viewpoint). See [22]
for a review of some of the less obvious issues that impact cyber-physical systems, discussed from a
mathematical viewpoint.

Acknowledgement The author is delighted to acknowledge discussions with Thiérry Lecomte of ClearSy
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[24] Bender, K. and Broy, M. and Péter, I. and Pretschner, A. and Stauner, T., Model Based Development
of Hybrid Systems: Specification, Simulation, Test Case Generation, in: Modelling, Analysis, and
Design of Hybrid Systems, volume 279, Springer, LNCS, 2002, pp. 37–51.

[25] A. Bloch, P. Krishnaprasad, R. Murray, J. Baillieul, P. Crouch, J. Marsden, D. Zenkov, Nonholo-
nomic Mechanics and Control, Springer, 2015.

[26] M. Butler, J.R. Abrial, R. Banach, Modelling and Refining Hybrid Systems in Event-B and Rodin,
in: From Action System to Distributed Systems: The Refinement Approach, CRC Press, 2016, pp.
29–42.

28



[27] L. Carloni, R. Passerone, A. Pinto, A. Sangiovanni-Vincentelli, Languages and Tools for Hybrid
Systems Design, Foundations and Trends in Electronic Design Automation 1 (2006) 1–193.

[28] A. Cimatti, M. Roveri, Requirements Validation for Hybrid Systems, in: Proc. CAV-09, volume
5643, Springer, LNCS, 2009, pp. 188–203.

[29] ClearSy, http://www.clearsy.com/.

[30] W. Coffey, Y. Kalmykov, The Langevin Equation, World Scientific, 2017. 4th ed.

[31] L. Dai, T. Gan, B. Xia, N. Zhan, Barrier Certificates Revisited, J. Symb. Comp. 80 (2017) 62–86.

[32] E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[33] A. Egyed, A Roadmap for Engineering Safe and Secure Cyber-Physical Systems, in: Proc. MEDI-
18 Workshops, volume 929, Springer, CCIS, 2018, pp. 113–114. Invited talk.

[34] A. Fasano, S. Marmi, Analytical Mechanics, Oxford University Press, 2013.

[35] G. Frehse, PHaVer: Algorithmic Verification for Hybrid Systems past HyTech, Int. J. Tools Tech.
Trans. 10 (2008) 263–279.
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