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Abstract A case study on automotive lane centering control is examined in Hybrid
Event-B (an extension of Event-B that includes provision for continuously varying
behaviour as well as the usual discrete changes of state). This allows aspects be-
yond the reach of a discrete Event-B treatment to be more deeply investigated. Lane
centering offers particular challenges concerning how the monitoring of continu-
ously varying continuous functions is handled and how this interacts with discrete
mode-level decision making.

1 Introduction

These days, an ever increasing proportion of the equipment we interact with all the
time involves digital control of analogue phenomena. The repercussions of this trend
include an increasing number of devices that could do real harm if they malfunc-
tioned. Besides this, the capabilities of digital control bring with it ever increasing
complexity, with the risks that this inevitably brings.

It is by now well accepted that formal techniques, appropriately deployed, can
help with both of these issues. However, in the main, formal techniques are strongly
focused on purely discrete reasoning, dealing poorly with continuous behaviours.
The hybrid and cyberphysical systems we speak of (see, e.g. [30, 33, 2, 32, 12])
are rather poorly served by conventional formal techniques. See, for example, the
extensive review in [14], which covers a large number of approaches and their ac-
companying tool systems, including: Charon [5, 6], CheckMate [29], HSolver [25],
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HyTech [7, 17], Modelica [23] and Simulink [22], among others. Although these
techniques have enjoyed success over the years, most of them are either limited in
their expressivity (typically driven by a desire to achieve decidability for a given lan-
guage fragment), or they lack rigour by comparison with most discrete techniques
(for example by employing simulation as a strategy for verification).

An exception to this general trend is KeYmaera (see [1, 24]). This is a system
that combines formal proof of a quality commensurate with contemporary formal
techniques, with the kind of continuous behaviour that is needed in the descrip-
tion of genuine physical systems. KeYmaera concentrates on the verification of
properties of a defined system model. In this sense its focus is different from the
refinement-based approach of the B-Method —our concern in this paper— since,
although verification of some properties can often be seen as a kind of refinement,
KeYmaera does not emphasise refinement as a development approach in the way
that the B-Method emphatically does.

The increasing interest in hybrid and cyberphysical systems just noted, and the
desire to achieve high dependability in their development, has led to attempts to
use Event-B [3] for their development, for example during the DEPLOY project
[16]. However it is fair to say that the absence of the ability to deal with continuous
phenomena directly within the discrete Event-B framework during such work is
keenly felt.

This need to deal with continuous phenomena within Event-B has prompted the
development of an extension, Hybrid Event-B [11], treating discrete and continuous
behaviour on the same footing. In this paper, we apply Hybrid Event-B to a case
study previously done in discrete Event-B: the modelling of an automotive lane
centering system first investigated during a collaboration between the second author
and GM Research. Among other things, such revisiting of the case study can confirm
the suitabilty of the Hybrid Event-B formalism to adequately deal with facets of the
original discrete Event-B treatment that were less than ideal.

The lane centering case study explored in this paper forms a natural accompani-
ment to another automotive-based case study, on cruise control, done by the present
authors in [10]. The contrast between the two is instructive. In cruise control, the
problem can be seen as completely self-contained. The desired speed is set, and the
car can easily monitor progress towards it, and how well it is being maintained. This
gives rise to a situation in which convincing invariants can be established. In lane
centering though, the road ahead is unpredictable in principle. So the problem is
not self-contained any more. Progress towards the desired goal is constantly depen-
dent on external information, which impacts the kind of invariants one can establish.
These aspects are discussed in detail in Section 4.

In contrast to KeYmaera, there is at present no dedicated tool support for Hybrid
Event-B. So a further benefit of case studies like this one is to confirm that Hybrid
Event-B contains the right collection of ingredients for industrial scale modelling,
before the serious investment in extending the Rodin Tool [4, 26, 27] is made.

The rest of this paper is as follows. Section 2 overviews the lane centering sys-
tem, including how our case study differs in detail from the requirements tackled in
the previous version. Section 3 then gives a pure mode based model for the lane cen-
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tering control system, while Section 4 refines it to a model where both modes and
continuous behaviour are fully defined. These models are related to one another us-
ing a suitable refinement. Section 5 discusses various issues raised by the preceding
material, and concludes.

2 Lane Centering Controller Overview

A lane centering controller (LCC) is a software system which automatically keeps
a car correctly aligned with respect to the centre of the lane in which it is travelling.
It does this based primarily on information received from a path generator unit,
which calculates the target and predicted paths of the car for a short period into the
future, based in turn on information from an image processing unit (which looks for
lane markings in the road) and other data available from the engine management
system. The car’s driver can engage the LCC, which will then attempt to discharge
its lane centering obligations, but the LCC is an assistance system rather than a
safety system, so when it is unable to perform its function, it issues a warning, at
which point the driver must resume responsibility for steering the car. In addition, it
must disengage upon request of the driver (or in case of a system fault). All of these
are safety properties.

The left hand side of Fig. 1 gives a diagrammatic view of the LCC architecture,
taken from [34]. We see the image processing unit, which feeds information about
the car’s lateral position in the lane, and information about the road curvature, to
the path generator unit. This then receives further information regarding the yaw
angle and rate, the steering angle, the lateral and longitudinal speed, and the driver-
selected offset. From all this information, the target path, the predicted actual path
and a safety margin, are calculated and fed to the LCC itself, which generates the
actuated steering angle for keeping the car on target.

The right hand side of Fig. 1 illustrates how some of these parameters relate to the
movement of the car. In reality, the LCC only works when an adaptive cruise control
system is actively controlling the speed of the car, leading to a coupling between the
two systems. As noted in the Introduction, we have considered cruise control earlier
in [10], but for simplicity, in this paper we neglect the coupling between it and the
LCC. In the same vein, we neglect the lateral offset parameter, and a number of
more subtle considerations concerning circumstances under which the LCC has to
curtail its activity because the information it has is insufficient, or is of insufficient
quality. We cater for all such cases by switching the LCC off or by taking an error
transition, offering some further discussion in the Conclusions.

With these caveats in place, in Fig. 2 we see the state transition diagram for the
LCC at an intermediate level of description, comparable to, but simplified from, the
LCC description in [34].

The LCC starts in the OFF state, from where it can be made to SwitchOn, putting
it into the STANDBY state. In this state the LCC can be made to SwitchOff . Al-
ternatively, the driver may try to engage the LCC. If the motion of the car is too
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Fig. 1 Architecture of a lane centering controller (LCC) on the left. On the right, a schematic
illustration of the geometric elements that figure in LCC computations.

UnAligned with the lane markings for the LCC to take over, the state remains
STANDBY , but if the motion is adequately Aligned, the the LCC goes into the
ACTIVE state, in which it actively steers the car.

Normal LCC working can be overridden by putting the IndicatorOn, which sig-
nifies that the driver will shortly turn out of the lane. Alternatively, the driver may
try to steer the car manually by forcing the steering wheel out of the orientation
determined by the LCC. In either of these cases the state becomes OVERRIDE.

Putting the IndicatorOff , or ceasing to try to steer the car manually causes the
LCC to try to Resume normal working in the ACTIVE state — provided the car is
adequately aligned; if it is not then the OutOfAlignment transition switches the LCC
off.

In addition to these ways of working, the driver can SwitchOff the LCC in the
ACTIVE and OVERRIDE states (as well as STANDBY), and when in any of these
three states, the LCC can undergo an Error transition into the ERROR state, for
example if the path generator unit or image processing unit undergo some failure,
or their information is too low quality to be relied on safely.

We take it for granted that the state transition diagram in Fig. 2 does an effective
job of modelling the top level requirements of the LCC system. For example, it ad-
dresses the requirement that when it is switched on, the LCC does not start working
immediately, but waits in the STANDBY state until instructed to take control of the
steering. Likewise, the transitions between the ACTIVE and OVERRIDE states cor-
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Fig. 2 The state transition diagram for a simplified LCC.
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respond to requirements embodying assumptions about the appropriateness of the
use of the accelerator during LCC working. And so on.

In the following sections, we will develop a series of Hybrid Event-B machines
to capture this design. We explain the technicalities of Hybrid Event-B as we go.

3 Lane Centering — Top Level Mode Oriented Control

In this section we start the development of the LCC system. Fig. 3 contains a
straightforward translation of the state transition diagram in Fig. 2 to the discrete,
mode oriented part of Hybrid Event-B. The nature of the translation is rather self-
evident, so we restrict ourselves to a few essential comments.

The state of the system is recorded in the mode variable, which is restricted to the
values we mentioned above (this observation constituting the sole invariant at this
level of abstraction), and is initialised to OFF. Beyond this, the events of the model
simply record the state changes permitted by Fig. 2 in a relatively obvious way.

The events merit three further technical observations at this point. Firstly, the
design is aggressive, in the sense that although each event is guarded by a condition
that permits its sensible execution, the states are not protected against inappropriate
requests from the environment. In each state, only those events can be executed that
make sense in our model, whereas in the real world, the driver, could, if a little
unwisely, engage controls that one would not expect to see engaged there. At a
higher level of abstraction than we model in this paper, the system would have to be
protected against such stimuli.

Secondly, although we only appear to have discrete transitions, these mode events
each have an input, whose value is essentially just the event’s name (except for
UnAl and Aligned where there is a genuinely nondeterministic choice), which is
furthermore never used. The explanation for this is that Hybrid Event-B models real
time behaviour, which therefore means that the occurrence times of mode events
(which execute instantaneously) must be defined. For convenient modelling, Hybrid
Event-B stipulates that unscheduled stimuli from the environment —such as the
otherwise unspecified timings of occurrences of our mode events— are modelled
by the arrival of inputs to the relevant mode events.

Thirdly, and following on from the previous point, there is also another, pliant
event, PliTrue. Its nature is signalled by the ‘STATUS pliant’ tag. Unlike mode
events, pliant events describe periods of continuous behaviour, taking place over
nonempty intervals of time, in between mode events (occurrences of which are thus
isolated in time). The semantics of Hybrid Event-B stipulates that a mode event can
prempt a running pliant event as soon as the mode event becomes enabled, and upon
the completion of the mode event, some pliant event should have become enabled
and should be selected for execution to take forward the continuous evolution of the
system.1

1 This eager semantics for preemption of pliant events by mode events gives another reason why
an asynchronous arrival semantics for inputs to mode events is needed. In discrete Event-B as soon
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MACHINE LCC 0
VARIABLES mode
INVARIANTS

mode ∈ {OFF,STANDBY,ACTIVE,
OVERRIDE,ERROR}

EVENTS
INITIALISATION

STATUS ordinary
BEGIN

mode := OFF
END

SwOn
STATUS ordinary
ANY in?
WHERE in? = swOn ∧ mode = OFF
THEN mode := STANDBY
END

SwOff
STATUS ordinary
ANY in?
WHERE in? = swOff ∧ mode ∈
{STANDBY,ACTIVE,OVERRIDE}

THEN mode := OFF
END

UnAl
STATUS ordinary
ANY in?
WHERE in? = tryAct ∧

mode = STANDBY
THEN skip
END

Aligned
STATUS ordinary
ANY in?
WHERE in? = tryAct ∧

mode = STANDBY
THEN mode := ACTIVE
END

IndOn
STATUS ordinary
ANY in?
WHERE in? = indOn ∧

mode = ACTIVE
THEN mode := OVERRIDE
END

IndOff
STATUS ordinary
ANY in?
WHERE in? = indOff ∧

mode = OVERRIDE
THEN mode := ACTIVE
END

OvrSteer
STATUS ordinary
ANY in?
WHERE in? = ovrSteer ∧

mode = ACTIVE
THEN mode := OVERRIDE
END

Resume
STATUS ordinary
ANY in?
WHERE in? = resume ∧

mode = OVERRIDE
THEN mode := ACTIVE
END

OOAl
STATUS ordinary
ANY in?
WHERE in? = oOAl ∧

mode = OVERRIDE
THEN mode := OFF
END

Error
STATUS ordinary
ANY in?
WHERE in? = error ∧ mode ∈
{STANDBY,ACTIVE,OVERRIDE}

THEN mode := ERROR
END

PliTrue
STATUS pliant
COMPLY INVARIANTS
END

END

Fig. 3 Mode level description of lane centering control.

as an event has completed, its successor is enabled, since the state does not change in beteen event
occurrences (which are assumed separated in time as a matter of interpretation). In Hybrid Event-
B, real time figures explicitly, and a second mode event is not permitted to execute immediately
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In our case, PliTrue stipulates in the COMPLY INVARIANTS clause merely that
the continuous behaviour in between mode event occurrences should obey the in-
variants. With its help, the behaviour of the model is defined for all times after
the initialisation point, since, having a trivial guard, whenever a mode event runs,
PliTrue is re-enabled immediately afterwards.

4 Lane Centering — From Mode Control to Continuous Control

In this section we go beyond the pure mode oriented model of Section 3, to include a
description of the continuous behaviour in the periods between occurrences of mode
events, that a more complete model demands.

Our enhanced model appears in Fig. 4, completed in Fig. 5. We go through this
element by element, giving, as we go, appropriate commentary, not only on the
technical background of the case study itself, but also on relevant aspects of Hy-
brid Event-B and its semantics, especially when this is at odds with corresponding
aspects of discrete Event-B, or raises interesting issues in its own right.

Fig. 4 starts with the INTERFACE LCC PG IF block. The INTERFACE con-
struct is the Hybrid Event-B syntactic construct that enables different machines to
be coupled to each other to form a larger system, working together in an integrated
way, under the control of the required invariants. In our case study, we have taken the
view that the LCC will ‘own’ those variables whose values it can control, whereas,
variables which are set externally, or inferred indirectly from the car’s environment
via the image processing unit, will not be owned by the LCC.

The LCC PG IF interface contains these ‘externally owned’ variables, that need
to be shared with the LCC. The first is a measure of the torque applied by the driver
to the steering wheel, trq. The other two concern the target path and deviation from
the lane centre, both of which need to be calculated from the visual inputs to the
overall system.

For lack of space in this paper, we simplify matters considerably compared with
the system architecture of Fig. 1. Thus the target path variable (for which one can
imagine a large number of quite detailed formulations), is assumed to have already
been converted to a target steering angle, θT . What we intend by this is the fol-
lowing: if it were the case that the car was already exactly in the middle of the lane,
then steering at θT would keep it exactly where the overall lane control system would
want the car to go. We accept that this amounts to a rather specific treatment of the
requirements of an LCC system, since in reality, such requirements would speak in
more detail about what constitutes the kind of road that the system is expected to
be able to cope with, and what kind of behaviour would be expected under those
conditions. A further simplification in our model is the assumption that if the path
generator is sending the value of θT to the LCC and has not called an Error transi-
tion, then it is safe for the car to proceed down the path defined by θT at its current

after a first mode event, despite being enabled then. Giving the second mode event an asynchronous
input gets round the problem.
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velocity (e.g. the car has not driven into a muddy field that the image processing
unit and path generator could not cope with).

The last variable in the LCC PG IF interface is d, which represents the measured
deviation of the car from the lane centre. All of trq, θT and d are declared PLIANT,
which means that they are subject to continuous change during the pliant transitions
that interleave occurrences of the mode events at runtime.

The LCC PG IF interface also contains the invariants that these variables must
obey. These say that trq, θT and d are all real-valued, and that they remain within
statically determined bounds. Finally, the LCC PG IF interface also contains these
variables’ initialisations.

We come to the LCC 1 machine itself, which is a refinement of LCC 0 and CON-
NECTS to the LCC PG IF interface, making the latter’s variables accessible. As
well as the earlier mode variable, we have a pliant variable, θ , which holds the
current steering angle (this being a representation, on the lines noted above, of the
predicted path in Fig. 1). It is real-valued and bounded within static contraints.

Proceeding to the events, θ is initialised to an arbitrary value at system switch
on time. After that, PliDefault is the refinement of the PliTrue event of LCC 0 that
demands no more than invariant preservation during pliant transitions when it is
enabled. We observe that PliDefault is enabled during all modes other than ACTIVE,
so in effect, all the additional design that is embodied in the refined system model is
targetted at just the ACTIVE state.

Given the last remark, some of the earlier mode events remain unchanged. This
applies for instance to the SwOn and SwOff events, that cater for the driver deliber-
ately turning the LCC on or off.

The next two events deal with the driver trying to actively engage the LCC sys-
tem. To facilitate the discussion, we introduce the ACTIVE state tolerance condition:
ASTC ≡ (|d |< ∆d ∧|θ −θT |< ∆θ ). We make the assumption that the LCC is not
to be used when the current conditions are such that the target path (as determined
by the path generator) is too different from the current path. We model this in a
simplified way by demanding that the target and current steering angle do not differ
by too much | θ − θT |< ∆θ , and that the lane centre deviation d is not excessive
|d |< ∆d. Hence the ASTC.

The ASTC enters our model in a number of places. Firstly, when the driver at-
tempts to engage the LCC, he cannot know in advance whether the ASTC will be
satisfied or not — aside from anything else, it depends on internal constants, ∆d
and ∆θ , that he does not know and would not be able to make use of during driv-
ing even if he did. So in the LCC 0 machine earlier, this ignorance was catered for
in a genuinely nondeterministic choice between the UnAligned and Aligned events,
indicated by having them both demand the same input value tryAct. In the LCC 1
machine, the choice between UnAl and Aligned is further refined by the truth of
ASTC. If the ASTC is true, then Aligned is selected, whereas if the ASTC is false,
UnAl is selected. On a technical note, we remark that the disjunction of the LCC 1
machine’s UnAl and Aligned guards is equivalent to the disjunction of the LCC 0
machine’s UnAl and Aligned guards, addressing both guard strengthening and rela-
tive deadlock freedom refinement requirements. Besides this, we note that UnAl, in
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INTERFACE LCC PG IF
PLIANT trq,θT ,d
INVARIANTS

trq ∈ R ∧ | trq |≤ MAXtrq
θT ∈ R ∧ |θT |≤MAXθ

d ∈ R ∧ |d |≤ MAXd
INITIALISATION

trq ∈ [−MAXtrq . . .MAXtrq]
θT := 0
d := 0

END

MACHINE LCC 1
REFINES LCC 0
CONNECTS LCC PG IF
VARIABLES mode
PLIANT θ

INVARIANTS
mode ∈ {OFF,STANDBY,ACTIVE,

OVERRIDE,ERROR}
θ ∈ R ∧ |θ |≤ MAXθ

EVENTS
INITIALISATION

STATUS ordinary
REFINES INITIALISATION
BEGIN

mode := OFF
θ ∈ [−MAXθ . . .MAXθ ]

END
PliDefault

STATUS pliant
REFINES PliTrue
WHEN mode 6= ACTIVE
COMPLY INVARIANTS
END

SwOn
STATUS ordinary
ANY in?
WHERE in? = swOn ∧ mode = OFF
THEN mode := STANDBY
END

SwOff
STATUS ordinary
REFINES SwOff
ANY in?
WHERE in? = swOff ∧ mode ∈
{STANDBY,ACTIVE,OVERRIDE}

THEN mode := OFF
END

UnAl
STATUS ordinary
REFINES UnAl
ANY in?,out!
WHERE in? = tryAct ∧

mode = STANDBY ∧
¬(|d |< ∆d ∧|θ −θT |< ∆θ )

THEN out! := BEEP
END

Aligned
STATUS ordinary
ANY in?
WHERE in? = tryAct ∧

mode = STANDBY ∧
(|d |< ∆d ∧|θ −θT |< ∆θ )

THEN mode := ACTIVE
END

LCC Active
STATUS pliant
REFINES PliTrue
WHEN mode = ACTIVE
SOLVE Dθ =−C(θ −θT)−Kd
END

SwOff Emrg
STATUS ordinary
REFINES SwOff
ANY out!
WHEN mode = ACTIVE ∧
¬(|d |< ∆d ∧|θ −θT |< ∆θ )

THEN mode := OFF
out! := BEEP

END
IndOn

STATUS ordinary
REFINES IndOn
ANY in?
WHERE in? = indOn ∧

mode = ACTIVE
THEN mode := OVERRIDE
END

IndOff
STATUS ordinary
REFINES IndOff
ANY in?
WHERE in? = indOff ∧

mode = OVERRIDE ∧
(|d |< ∆d ∧|θ −θT |< ∆θ )

THEN mode := ACTIVE
END

Fig. 4 Enhancing the mode level lane centering control to fully continuous control. First part.
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OvrSteer
STATUS ordinary
REFINES OvrSteer
WHEN mode = ACTIVE ∧
| trq |≥ THRACTIVE

THEN mode := OVERRIDE
END

Resume
STATUS ordinary
REFINES Resume
WHEN mode = OVERRIDE ∧
| trq |≤ thrACTIVE ∧
(|d |< ∆d ∧|θ −θT |< ∆θ )

THEN mode := ACTIVE
END

OOAl Ind
STATUS ordinary
REFINES OOAl
ANY in?,out!
WHERE in? = oOAl ∧

mode = OVERRIDE ∧
¬(|d |< ∆d ∧|θ −θT |< ∆θ )

THEN mode := OFF
out! := BEEP

END

OOAl OvrSteer
STATUS ordinary
REFINES OOAl
ANY out!
WHERE mode = OVERRIDE ∧
| trq |≤ thrACTIVE ∧
¬(|d |< ∆d ∧|θ −θT |< ∆θ )

THEN mode := OFF
out! := BEEP

END
Error

STATUS ordinary
ANY in?,out!
WHERE in? = error ∧ mode ∈
{STANDBY,ACTIVE,OVERRIDE}

THEN mode := ERROR
out! := BEEP

END
END

Fig. 5 Enhancing the mode level lane centering control to fully continuous control. Second part.

refusing to perform a function that the driver is expecting (i.e. to engage the LCC),
alerts him to this fact via an audible alarm, represented in our model by sending a
BEEP on the output variable out!.

Assuming successful engagement of the LCC, the LCC Active pliant event runs.
It has no nontrivial guards (aside from the mode), since the relevant initial conditions
are already confirmed by the Aligned event that enables it. The job of LCC Active
is to align the car’s path to the target path. For simplicity, we model this using a
straightforward negative feedback control law applied to the current steering angle,
indicated in the SOLVE clause of the LCC Active event: Dθ = −C(θ −θT)−Kd.
Assuming that steering to the right, and deviation to the right from the lane centre,
are both measured positively, the time derivative (D) of the current steering angle
θ is set to a negative linear combination of steering angle excess (of current over
target) and deviation, tending both to bring the car closer to the lane centre, and to
align the steering angle with the target steering angle.

We regard the θT and d parameters in the above ordinary differential equation
(ODE) as external signals. Doing this reduces it to a linear ODE with inhomoge-
neous term; see [8, 31]. Ordinary differential equations of this form have a standard
solution. In this case it is: θ(t) = θ(tL)e−C(t−tL) +

∫ t
tL

e−C(t−s)[CθT(s)−Kd(s)]ds,
where tL is the symbol used in Hybrid Event-B to refer generically to the start time
of any time interval during which a pliant event runs.
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If, in the feedback system described, θT and d were both constant, then steady
convergence of the car to the lane centre and of the current steering angle to the
target steering angle would be guaranteed. A consequence of this would be that the
ASTC, true at the start of an LCC Active pliant transition, would be an invariant
during any such transition. However, the fact that θT and d are both time dependent
(preventing these terms from being extracted from under the integral in the θ(t)
solution above) means that we have no such guarantee. If θT or d were to vary
wildly enough during an LCC Active transition, then the bounds in ASTC might be
breached. Since we cannot prove that the bounds won’t be breached, we have to
make separate provision for the case where they are.

This is the purpose of the SwOff Emrg mode event. It is enabled in the ACTIVE
state when the ASTC fails. Since it has no input, like all mode events without input,
it becomes eligible for scheduling as soon as its guard becomes true, and (if selected
from among all the mode events whose guards become true at that moment, if there
is more than one such event), it preempts the currently running pliant transition,
LCC Active in our case.

The effect of SwOff Emrg is like that of SwOff , except that, being an event that is
scheduled spontaneously rather than at the behest of the driver, there is an additional
audible BEEP to alert the driver.

The next few events handle the driver’s temporarily countermanding the ACTIVE
state. Use of the indicator is modelled by IndOn and IndOff , mode events caused by
the discrete actions of flicking the indicator on or off to enter or exit the OVERRIDE
state. Of course, when the ACTIVE state is re-entered via IndOff , the ASTC must be
checked.

The driver can also countermand the ACTIVE state by wilful use of the steer-
ing wheel. The trq variable tracks the torque applied to the steering wheel during a
system run. If, in the ACTIVE state, this exceeds a threshold value THRACTIVE, the
OvrSteer event changes the state to OVERRIDE while the driver takes control of
the steering. Once the torque drops below the threshold value thrACTIVE again, the
Resume event re-enters the ACTIVE state, having confirmed that ASTC holds. Nor-
mally, we would have that thrACTIVE < THRACTIVE to prevent Zeno-like thrashing as
the applied torque hovered around the threshold value.

Of course, since the ASTC has to hold if the ACTIVE state is to be re-entered, we
have to contend with the possibility that it might not. Two new events cater for this.
When using the indicator, event OOAl Ind, scheduled when the indicator is flicked
off by the driver (denoted using the in? = oOAl input) but ASTC does not hold,
switches the LCC off, alerting the driver with a BEEP. When using the steering
wheel, event OOAl OvrSteer, scheduled when the torque drops below thrACTIVE but
ASTC does not hold, switches the LCC off, alerting the driver with a BEEP. We need
two OOAl events at the LCC 1 level, since one has an input and the other does not,
even if their actions are the same. Both events refine the LCC 0 level OOAl event,
the different I/O signatures in the OOAl OvrSteer case being handled by a suitable
witness relation. Finally, we have the LCC 1 level Error event, BEEP-enhanced
compared with its LCC 0 counterpart. It completes our survey of the LCC 1 model.
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5 Discussion and Conclusions

In the preceding sections, we overviewed the lane centering controller case study,
previously examined using discrete Event-B in [34], with a view to creating an en-
hanced development using the richer facilities of Hybrid Event-B. We then pre-
sented such a development, based first on a mode level description in Section 3,
subsequently refined to a description incorporating a definition of the required con-
tinuous behaviour in Section 4. The relatively simple modelling in these sections,
partly a consequence of lack of space in this paper, raises two particular issues that
deserve further discussion.

The first issue is that the simple modelling approach reduced path descriptions
to a single real quantity, θ . This simplicity meant that controlling the path could be
reduced to a simple linear feedback control law, with external input depending on
the steering angle difference and lane centre deviation. Obviously, a path is actually
a function from some parameter to position, i.e. a higher order concept, so more
sophisticated representations can certainly be contemplated.

For example, the image processing unit may generate a moving representation of
the road in front of the car —provided it is discernable (c.f. earlier remarks about
muddy fields)— as a time dependent strip of varying width, length and direction.
This could be communicated to the path generation unit via a few time dependent
geometric parameters. The path generation unit could combine this with car veloc-
ity and direction information to derive the desired and predicted paths, as functions
from time to position in the moving strip. According to the architectural diagram
in Fig. 1, it would then be the responsibility of the LCC to synthesise the required
steering angle from this information. In principle this is a problem in adaptive opti-
mal control, and how it would be approached would depend crucially on the notion
of optimality adopted (see, e.g. [15, 19, 20, 9, 28]).

We evaded the repercussions of all this potential complexity by assuming that
the path generation unit already emitted a desired and safe steering angle and devi-
ation from the middle of the road, and that it was sufficient for us to approach the
required path via a relatively simple feedback law. However, if we were to take on
board the more sophisticated modelling indicated in a more serious way, it would
be appropriate to consider how the concepts involved would be handled in a system
like Hybrid Event-B.

On the theoretical side there would be no problem, since higher order entities
can be handled just as conveniently as basic variables can, within conventional con-
tinuous mathematics. On the practical side though, the relative dearth of analytic
results for higher order entities, manifests itself in a smaller portfolio of cases that
could be mechanised in an automated proving system. A further observation on the
same point is that mechanical provers tend to perform much more poorly on higher
order objects than they do on first order ones. So a completely abstract formulation
of paths in the way we sketched it might need to be approached with caution in the
context of mechanical proof.

The second issue concerns the nature of the ASTC that figured heavily around the
ACTIVE state. We already argued that we could not guarantee that the ASTC would
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be maintained for arbitrarily long periods while the LCC wished to remain in the
ACTIVE state, i.e. that the ASTC would be an invariant for such periods. However,
our remedy, of preempting the LCC Active pliant transition whenever the ASTC
failed at runtime, does in fact guarantee that ‘mode = ACTIVE⇒ ASTC’ is indeed
an invariant. Why then did we not include such an invariant in our model?

To answer this, we note that ASTC contains variables from both the interface
LCC PG IF (i.e. θT and d) and the machine LCC 1 (i.e. θ ). In which of these
then, should we put this candidate invariant? Note that neither of them declares all
of the variables mentioned. Assuming that an invariant should only use variables
that are declared in the syntactic unit it resides in, we would have to amalgamate
LCC PG IF into LCC 1 to declare the suggested invariant.2 In our case study, we
managed to sidestep this problem, since we were able to demand ASTC on entry to
LCC Active, and preempted LCC Active whenever ASTC failed, which together are
tantamount to the stated invariant.

Nevertheless, the wider problem, of desirable invariants straddling the bound-
aries of otherwise sensible partitionings of large systems, remains. Perhaps the most
promising suggestion for improvement regarding this issue comes from the ‘shared
event’ approach of Butler [13] in which bound variables carrying communicated
values can enjoy nontrivial properties without breaking the syntactic structuring of
separate components. A generalisation of this to shared variables would be widely
applicable across the B-Method.

Thus, we can safely say that the case study undertaken here has amply demon-
strated the suitability of Hybrid Event-B for formally describing the requirements,
specification and behaviour, of the kind of hybrid system that Event-B is increas-
ingly being applied to these days, and moreover, it has raised a number of issues for
future consideration. This is valuable experience which acts as a further spur to the
development of full mechanical support for Hybrid Event-B within the framework
of the Rodin Tool [4, 26, 27].

From the present vantage point, we can envisage without too much danger of
error, on how such mechanical support could be organised. The KeYmaera tool
[1, 24] provides sound inspiration. The KeYmaera tool started life by integrating an
adapted version of the KeY proof tool [18] with Mathematica [21], thus allowing
all the continuous reasoning to be delegated to the Mathematica tool. Since then,
a number of other provers have been integrated into KeYmaera. A similar strategy
could be followed for Rodin. The fact that Hybrid Event-B distinguishes cleanly
between mode events and pliant events, makes it particularly evident that the POs of
Hybrid Event-B [11] separate cleanly those in which discrete reasoning can be used
from those in which continuous mathematics is needed. Just as for KeYmaera, the
latter can be delegated to Mathematica in the first instance.

However, the fact that Mathematica is proprietary, and its reasoning is thus not
open to scrutiny by users, means that complete reliance on its conclusions might

2 It is sometimes suggested that existentially quantifying the ‘other’ variable(s) in an invariant of
this kind can solve the problem. Unfortunately it does not, since asserting that some values merely
exist (that satisfy some property) is quite different from asserting that the actual current values
satisfy it. This is particularly dangerous when the invariant is a nontrivial safety property.
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not be warranted in a context where the highest levels of dependability were de-
manded of a Hybrid Event-B development. In such cases, the requisite fragments
of continuous mathematics could be developed in Rodin-specific rulesets, and the
prover could be organised to use these in preference to Mathematica in situations
where they were available. By this means, more and more of the problems tackled
via Hybrid Event-B and Rodin could be covered by proofs that were fully open to
inspection. The present authors intend to pursue the strategy just described for the
mechanisation of Hybrid Event-B.
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