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Abstract

A case study centred on a fuel supply system for a small aircraft is presented in Hybrid Event-B, an
extension of conventional Event-B that allows for the modelling and verification of hybrid and cyber-
physical systems exhibiting nontrivial continuous behaviour. In contrast to many such case studies,
which concentrate predominantly on timing issues, the focus in the present work is on nontrivial physi-
cal behaviour, and on the effect that this has on various refinement and partition strategies. More liberal
proof obligations are developed to add flexibility to the decomposition process.

1. Introduction

In today’s ever-increasing interaction between digital devices and the physical world, formalisms are
needed to express the more complex behaviours that this allows. Furthermore, these days, it is no longer
sufficient to focus on isolated systems, as it is more and more the case that families of such systems are
coupled together using communication networks, and can thus influence each others’ working. Today,
the concept of Cyber-Physical Systems [29, 44, 48, 1, 20] has risen to prominence. These new kinds of
system throw up novel challenges in terms of design technique, and it is proving more and more difficult
to ignore the continuous characteristics in their behaviours, especially if designers want to engineer close
to optimal values of system parameters.

The B-Method has long been well extablished as a methodology for modelling and verification of
discrete event systems. The standard reference for the classical B-Method is [2]. The classical method
emphasised accumulation of submodels into a reference abstract model, to be followed by relatively
monolithic refinement of this towards implementation, ending in machine generated compilable and
runnable source code (in a language such as C, for example). The classical B-Method and its Atelier B
toolkit is by now well established as the certified development engine behind many automated urban rail
systems [35].

In the last decade or so, the B-Method evolved into a more flexible modelling and verification frame-
work, Event-B [3]. In Event-B, action refinement [9, 10, 12] is the main underlying mechanism for using
refinement to accumulate design detail. The Event-B approach, and its supporting tool Rodin [4, 42] has
proved to be popular in the model based development world [47].

However, despite this, the purely discrete event foundation of Event-B makes it poorly adapted to
the needs of continuously evolving behaviour such as that found in cyberphysical systems. Therefore,
Hybrid Event-B [18, 19] has been introduced to bring continuous capabilities to the traditionally based
discrete Event-B, in order to address some of the challenges referred to. Earlier applications of this
formalism include [17, 16, 13, 15]. As described below, traditional discrete Event-B events serve as the
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‘mode events’ that interleave the ‘pliant events’ of Hybrid Event-B. The latter express the continuously
varying behaviour of a hybrid formalism that includes both kinds of event. In this manner, a rigorous
link can be made between continuous and discrete update, as needed in contemporary applications.

In this paper, we present a case study based on a fuel pumping system in a small aircraft. Unlike
many case studies of cyberphysical systems targetted at the verification domain, where there is an em-
phasis on timing considerations, there is a preponderance of focus on physical behaviour in this case
study, which brings the physical modelling capabilities of Hybrid Event-B to the fore. Besides this, we
explore the ramifications of different partition and refinement strategies in the given context. As we
explain below, there are non-trivial consequences of different choices regarding these aspects when we
have continuous state update, compared with the situation for pure isolated instantaneous state update.
Exploring these topics in detail, as we do in this paper, constitutes a significant exercise in the application
of the structuring tools of multi-machine Hybrid Event-B, providing valuable insight into best practice.

The main contributions of this paper are: (a) the exercising of the structuring, decomposition and
refinement capabilities of multi-machine Hybrid Event-B in an application requiring significantly more
involvement of pliant variables and pliant events than in previous case studies; (b) the eliciting of best
practice from the experience gained; (c) the enrichment of a number of structuring and decomposition
conditions from the original multi-machine Hybrid Event-B proposal [19], generating PO schemas that
add to the flexibility of these mechanisms when applied in practical contexts. Ideally, all this would have
been done with the help of tool support for Hybrid Event-B. However, at the time of writing the intended
tool support has not yet been implemented. To mitigate this, care has been taken to keep the case study
simple enough, and the description of it detailed enough, that following the paper account is not overly
taxing. This also enables its verification to be reduced to simple checks whose truth follows essentially
by inspection (once one is familiar with the theory), which was the approach used in the paper.

This paper arose as an extension of [14], but gives the background theory in greater depth. The rest of
the paper is as follows, including an account of how it differs from [14]. Section 2 gives the background
on the fuel pumping system we study, indicating some of the inherent engineering challenges. Section 3
outlines the main elements of Hybrid Event-B. An outline of how the semantics works is given, based on
[18]. Section 4 extends this to survey the multi-machine theory and its principal structuring features, and
outlines how the single machine semantics is bootstrapped to provide multi-machine semantics. Section
5 discusses the structural constraints in [19] that govern the decomposition process, and how they can be
relaxed to yield proof obligations that enable decomposition to be done in a more flexible manner.

Section 6 gives the top level model of the fuel system in Hybrid Event-B (which is identical to the
version in [14]). After this, the developments in [14] and here part company. The entire development
in [14] is done monolithically, to save space, whereas here, starting from the first refinement which is
also contained in this section, the development is decomposed into different components, to utilise the
multi-machine features, as stated above. Inevitably, this results in a larger text, since the formal text
has to not only capture the model itself, but has to contain elements that precisely capture how all the
different pieces are connected together. Section 7 covers the refinement that introduces the non-trivial
continuous behaviour that is of interest here, again in the multi-machine version. Section 8 considers
further strategies for partitioning and refinement, introducing the concepts of partitioning in space and in
time. Although [14] discusses these ideas briefly, their detailed development is exclusive to the present
paper. Thus, Section 9 considers doing space partitioning followed by time partitioning, and pursues the
development according to that strategy, while Section 10 considers the opposite order, and pursues the
development according to the alternative strategy. Section 11 compares the two approaches and elicits
general recommendations for partition and refinement that are widely applicable. Section 12 revisits
the discussion of Section 5 and reviews how the ideas there are reflected in the development just done.
Section 13 describes related approaches, and Section 14 concludes.
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Figure 1: A schematic of a small aircraft fuel delivery system.

2. A Simplified Aircraft Fuel System

Fig. 1 outlines some elements of a simplified engine fuel delivery system for a light aircraft. The
aircraft engine itself, not shown in Fig. 1, receives fuel via a high pressure pump from the relatively
small Collector tank. This high pressure system is beyond the scope of our study. The collector tank in
turn is fed from the main left and right fuel tanks, contained in the wings. An arrangement of pipework
and valves is in place to enable fuel to move from the main tanks to the collector, and between the two
main tanks. In addition to these components, there is often also a reserve tank to provide additional fuel
supplies for emergency situations. This too is beyond the scope of this study. Many variations on this
scheme are possible, and found in practice on various types of aircraft.

Each of the two main tanks has a low pressure pump; these are PL and PR in Fig. 1. The pumps have
bypass mechanisms so that if the relatively low pump pressure is not sufficient to cause the flow of fuel
out of the tank then the fuel is simply returned to the tank without damage to any part of the apparatus
(for instance if the needed valves are not open, or if there is no more room in the fuel system downstream
of the pump, or if there is a blockage in the pipe system in some inopportune place). This also protects
against hydraulic hammer.1

Immediately beyond the pumps are non-return valves NRL and NRR. Beyond the non-return valves
there are various pipes and valves to allow various flow arrangements as described. L and R are the (two
way) valves that allow fuel to move into the collector tank from the left and right main tanks respectively.
There are also further two way valves VL1,VL2,VR1,VR2. Two fuel gauges, GL and GR, inform the cockpit
of the current amount of fuel in the tanks.

It is clear that if (say) all the right valves are closed, and all the left valves are open, then at least part
of any fuel pumped from the left tank will return to the tank via VL1 and VL2, depending on the relative
hydraulic resistence in the various pipes, decreasing the flow into the collector tank, even though L is
open. So it is important that in order to achieve a desired movement of fuel, not only must certain valves
be open, but others must also be closed.

Two controls are provided within the framework we work with in this paper. The fuel pump control
may be OFF,BOTH,LEFT,RIGHT . Also the fuel rebalance control may be OFF,L2R,R2L. These
controls are independent, aside from the constraint that it is forbidden that when the engine is being fed
by a single pump, PL or PR, that that same pump, PL or PR respectively, is simultaneously rebalancing

1Hydraulic hammer is the phenomenon of shock waves propagating round a hydraulic circuit following sudden movements
in parts of the circuit, such as when valves are switched on or off in a high pressure circuit. Hydraulic hammer can cause severe
damage to equipment if not defended against properly.
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MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x, y
VARIABLES u
INVARIANTS

x, y, u ∈ R,R,N
EVENTS

INITIALISATION
STATUS ordinary
WHEN

t = 0
THEN

clk := 1
x, y, u := x0, y0, u0

END
. . . . . .

. . . . . .
MoEv

STATUS ordinary
ANY i?, l, o!
WHERE grd(x, y, u, i?, l, t, clk)
THEN

x, y, u, clk, o! :| BApred(x, y, u,
i?, l, o!, t, clk, x′, y′, u′, clk′)

END
. . . . . .

. . . . . .
PliEv

STATUS pliant
INIT iv(x, y, t, clk)
WHERE grd(u)
ANY i?, l, o!
COMPLY

BDApred(x, y, u, i?, l, o!, t, clk)
SOLVE
D x = φ(x, y, u, i?, l, o!, t, clk)
y, o! := E(x, u, i?, l, t, clk)

END
END

Figure 2: A schematic Hybrid Event-B machine.

fuel to the other tank.
In the framework of this paper, we treat the output of the fuel gauges as information for the pilot. This

information can obviously influence the pilot’s decisions on the use of the fuel pump and fuel rebalance
controls, but for this paper, the gauges remain outside the control loop. In a realistic system, there will
be various signals in the cockpit when the current state of the fuel system enters an undesirable regime,
but we do not include such considerations in this paper.

Many details of a practical system have been omitted from the preceding account. For example, there
are usually two pumps per tank, one mechanically driven from the engine for normal operation, and the
other electrically driven, for engine startup, and as a fallback in case the other pump fails.

Aside from the features noted above, the fuel system of an aircraft must have a large number of
additional capabilities. It must function properly, keeping the engine fed with fuel, if (even a considerable
amount of) water gets into the fuel system (which must also be prevented from freezing). It must not
allow an excessive amount of air into the system (which could cause engine failure) regardless of the
altitude that the aircraft reaches. Along with the preceding, the fuel tanks must be properly vented to the
outside air so that depletion of fuel does not cause negative relative pressure in the tanks, (which would
cause potential starvation of the fuel supply to the engine). Venting notwithstanding, the fuel system
must keep working properly even when the aircraft is flying upside down (if it is licensed to do so). The
fuel system must prevent ignition of fuel vapour when the aircraft is hit by lightning. The list goes on. A
good idea of the true complexity of the fuel supply system problem may be gained from Chapter 14 of
[46].

3. An Outline of Hybrid Event-B

In this section we outline Hybrid Event-B for a single machine. We will also need to consider
multiple machines, which are examined in the next two sections. Further comments on various semantic
details are included in the context of the machines of our case study.

3.1. Single Hybrid Event-B Machines

In Fig. 2 we see a bare bones Hybrid Event-B machine, HyEvBMch. It starts with declarations of
time and of a clock. In Hybrid Event-B time is a first class citizen in that all variables are functions of
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time, whether explicitly or implicitly. However time is special, being read-only and never being assigned,
since time cannot be controlled by any human-designed engineering process. Clocks allow a bit more
flexibility, since they are assumed to increase their value at the same rate that time does (i.e. one unit per
unit of time), but may be set during mode events (see below).

Variables are of two kinds. There are mode variables (like u, declared in the usual manner) which
take their values in discrete sets and change their values via discontinuous assignment in mode events.
There are also pliant variables (such as x, y), declared in the PLIANT clause, which take their values in
topologically dense sets (normally R) and which are allowed to change continuously; these changes are
specified via pliant events (see below).

Next are the invariants. These resemble invariants in discrete Event-B, in that the types of the vari-
ables are asserted to be the (static) sets from which the variables’ values at any given moment of time are
drawn. More complex invariants are similarly predicates involving all the variables that are required to
hold at all moments of time during a run.

Then we get to the events. The INITIALISATION has a guard that synchronises time with the start
of any run (the WHEN clause), while all other variables are assigned their initial values in the usual way
(in the THEN clause that complements the WHEN clause). As hinted above, in Hybrid Event-B, there
are two kinds of event: mode events and pliant events.

Mode events are direct analogues of events in discrete Event-B. They can assign all machine variables
(except time itself). In the schematic MoEv of Fig. 2, we see three parameters i?, l, o!, (an input, a local
parameter, and an output respectively), and a guard grd which can depend on all the machine variables,
and defines mode event enabledness. We also see the generic after-value assignment specified by the
before-after predicate BApred, which can specify how the after-values of all variables (except time,
inputs and locals) are to be determined. The usual abbreviations using assignment notation such as :=
are available.

Pliant events are new to Hybrid Event-B. They specify the continuous evolution of the pliant variables
over an interval of time. The schematic pliant event PliEv of Fig. 2 shows the structure. There are two
guards: there is iv, for specifying enabling conditions on the pliant variables, clocks, and time; and there
is grd, for specifying enabling conditions on the mode variables. Their conjunction defines pliant event
enabledness. The separation between the two guards is motivated by considerations connected with
refinement (discussed in detail in [18]).

The body of a pliant event contains three parameters i?, l, o!, (once more an input, a local parameter,
and an output respectively) which are functions of time, defined over the duration of the pliant event.
The behaviour of the event is defined by the COMPLY and SOLVE clauses. The SOLVE clause specifies
behaviour fairly directly using two specification mechanisms: direct assignments and ordinary differen-
tial equations (ODEs). For example the behaviour of pliant variable y and output variable o! is given by
a direct assignment to the (time dependent) value of the (vector valued) expression y, o! := E(. . .). By
contrast, the behaviour of pliant variable x is given by the solution to the first order ODE D x = φ(. . .),
where D indicates differentiation with respect to time. (In fact the semantics of the y, o! := E case can
be given in terms of the ODE D y,D o! = DE, so that x, y and o! satisfy the same regularity proper-
ties.) The COMPLY clause can be used to express any additional constraints that are required to hold
during the pliant event via its before-during-and-after predicate BDApred. Typically, constraints on the
permitted range of values for the pliant variables, and similar restrictions, can be placed here.

The COMPLY clause has another purpose. When specifying at an abstract level, we do not neces-
sarily want to be concerned with all the details of the dynamics — it is often sufficient to require some
global constraints to hold which express the needed safety properties of the machine’s plaint events.
(Often these are refined to more deterministic behaviour at lower levels of abstraction.) The COMPLY
clauses of the relevant pliant events can house such constraints directly, leaving it to lower level refine-
ments to add the necessary details of the dynamics.
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If, from Fig. 2, we erase time, clocks, pliant variables and pliant events, we arrive at a skeleton
(conventional) Event-B machine. This simple erasure process illustrates (in reverse) the way that Hybrid
Event-B has been designed as a clean extension of the original Event-B framework. The only difference
of note is that, now —at least according to the (conventional) way that Event-B is interpreted in the
physical world— (the mode) events (left behind by the erasure) execute lazily, i.e. not at the instant they
become enabled (which is, of course, the moment of execution of the previous event).

3.2. Semantics of Single Hybrid Event-B Machines

This section summarises the essentials of single machine Hybrid Event-B semantics that we need for
the models of this paper. This is taken from [18], where further details and references can be found.

For a machine, such as HyEvBMch, the semantics is an operational semantics that constructs system
traces. A system trace is a set of functions of time, one for each variable v declared in HyEvBMch,
recording the value of v throughout a run of the machine. The semantics S of HyEvBMch, is the set of
all system traces.

Time is modeled as an interval T of the reals. A run starts at some initial moment of time, t0 say, and
lasts either for a finite time, or indefinitely. So for HyEvBMch, S would consist of all system traces for
clk, x, y, u, each defined over the duration of its run, which all start at t = 0.

Every system trace in the semantics must consist of piecewise absolutely continuous functions of
time, with each piece being absolutely continuous on a left-closed right-open time interval such as
[ti . . . ti+1) where ti < ti+1. This is regardless of whether the piece arises from: (a) a COMPLY clause
(in which case only piecewise absolutely continuous functions satisfying BDApred are considered); (b)
an ODE with RHS which is Lipschitz continuous in the variables and measurable in time (in which
case absolute continuity of the solution is guaranteed); (c) a direct assigment with RHS which is itself
absolutely continuous; (d) any consistent combination of (a)-(c); (e) a mode variable’s value during the
interval (which remains constant except at mode transitions).

The duration of the run T , thus breaks up into a succession of left-closed right-open subintervals:
T = [t0 . . . t1), [t1 . . . t2), [t2 . . . t3), . . . , in which mode transitions, effecting discontinuous updates, take
place at the isolated times corresponding to the common endpoints of these subintervals ti, and in be-
tween, the mode variables are constant and the pliant events stipulate continuous change in the pliant
variables.

The operational semantics of Hybrid Event-B constructs system traces via an abstract (i.e. non-
executable) algorithmic process, extending a system-trace-to-be, event execution by event execution,
and replicating system-traces-to-be over available choices when choice points are encountered during
an extension step. Evidently, without further control, such an approach can easily run into inconsis-
tency. The full description in [18] contains many ‘runtime checks’ that pick up such inconsistencies
and eliminate the corresponding system-trace-to-be from the semantics. We omit these here, firstly for
brevity (since we never need them in the models below), and secondly because they can be prevented by
verifying the Hybrid Event-B proof obligations for a given model during a static analysis.

The construction of system traces for a machine M can be summarised as follows.

[1] Let η := 0.
[2] CHOOSE an initial assignment to all variables satisfying all the invariants of M, thereby interpreting

their values at time t0.
[3] With the state variables having the values at tη, CHOOSE an enabled pliant event PliEv and CHOOSE

a simultaneous piecewise absolutely continuous solution, in a maximal left-closed, right-open in-
terval [tη . . . tMAX), of all the differential equations and direct assignments in the SOLVE clause of
PliEv, using state variable values at tη as initial values, with these initial values required to satisfy
the INIT and WHERE guards of PliEv, and with inputs and local parameters where needed, such
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that BDApred in the COMPLY clause of PliEv is also satisfied in the interval, and all the invariants
of M are maintained. Use the solution to assign the values of all pliant variables (and outputs) in
[tη . . . tMAX).

[3.1] For every mode variable, extend its value at tη to a constant function in the interval [tη . . . tMAX).

[4] If no non-INITIALISATION mode event is enabled by the values of the state variables at any time
in the open interval (tη . . . tMAX) (including left-limit at tMAX itself), together with a choice of values
for inputs and local parameters, then TERMINATE.

[5] CHOOSE tη+1 > tη such that either tη+1 is the earliest time at which a non-INITIALISATION mode
event without inputs is enabled, or a non-INITIALISATION mode event with inputs is enabled
at tη+1 and there is no non-INITIALISATION mode event without inputs that is enabled within
(tη . . . tη+1).

[6] Let η := η + 1.
[7] CHOOSE a mode event that is enabled by the values of variables at tη (or their left-limit values if

tη = tMAX), and any needed inputs and locals, and assign to all state variables and outputs according
to its BApred, such that all the invariants of M are satisfied, thereby (re)interpreting those variable
values at tη.

[7.1] For any other state variable without a value at tη, interpret its value at tη as its left-limit at tη.
[7.2] Discard the interpretation of all state variables in the open interval (tη . . . tMAX).

[8] Goto [3].

That the above abstract procedure does not fail during the construction of system runs can be guaranteed
by confirming the numerous Hybrid Event-B proof obligations (POs), discussed in detail in [18]. These
can be summarised as follows.

• Initial states are well defined (feasible).
• Feasible initial states satisfy the invariants.
• Mode events which are enabled in invariant states have well defined after-states (i.e., are feasible).
• Feasible mode events reestablish the invariants.
• Pliant events which are enabled in invariant states have time-indexed families of well defined after-

states that satisfy all the clauses in the event’s specification, in some left-closed right-open time
interval (i.e., are feasible). Optionally, the length of the interval must reach a Zeno lower bound.

• Feasible pliant event after-state families preserve the invariants at least until a preemption point.
• The after-state of any mode event disables mode events and enables some pliant event.
• The after-state family of any non-FINAL pliant event enables some mode event (the earliest time

for this defining the pliant event’s preemption point).

Besides the above, there are the Lipschitz and measurability properties of any ODE RHS to be checked.
These follow readily for practical problems. The Zeno check is optional since it is usually impossible
to verify it without solving the entire dynamics first, whereas the static checks are intended to justify
avoiding doing exactly that. The FINAL designation permitted for pliant events is intended to prevent the
last condition above from producing errors for events that are designed to complete a run.

We can summarise the above picture of the semantics in a more intuitive way thus:

[A] Every enabled mode event is feasible, i.e. has an after-state, and on its completion enables a pliant
event (but does not enable any mode event).2

2If a mode event has an input, the semantics assumes that its value only arrives at a time strictly later than the previous mode
event, ensuring part of [A] and [B] automatically.
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[B] Every enabled pliant event is feasible, i.e. has a time-indexed family of after-states, and EITHER:

(i) During the run of the pliant event a mode event becomes enabled. It preempts the pliant
event, defining its end. ORELSE

(ii) During the run of the pliant event it becomes infeasible: finite termination. ORELSE
(iii) The pliant event continues indefinitely: nontermination.

3.3. Single Hybrid Event-B Machine Refinement

Hybrid Event-B machines are developed by refinement. A concrete (refining) machine is like any
other machine, with two provisos. Firstly, each concrete event must declare which abstract event it
refines, unless it is a ‘new’ mode event — ‘new’ pliant events must also declare a refining abstract event.
Secondly, the relationship between abstract and concrete state spaces is captured in a retrieve (or gluing)
relation, also referred to as the joint invariant (supported by input and/or output relations, as needed).

A concrete machine has to obey the POs above, where ‘invariants’ is always interpreted to include
the joint invariant with its ‘dangling abstract variables’ existentially quantified. Additional POs govern
the refinement process itself, described in detail in [18]. Summarising, we have the following.

• If, in an invariant concrete state, a refining concrete mode event is enabled, then its abstract coun-
terpart is enabled in a corresponding abstract state (identified via the retrieve relation).

• If, in an invariant abstract state, any abstract mode event is enabled, then in a corresponding con-
crete state (identified via the retrieve relation), some concrete mode event (whether refining or
new) is enabled.

• If, in an invariant concrete before-state connected to a corresponding abstract before-state via the
retrieve relation, a refining concrete mode event makes a transition, then there is a transition of
its abstract counterpart from the abstract before-state to an after-state connected via the retrieve
relation to the concrete after-state.

• If, in an invariant concrete before-state connected to a corresponding abstract state via the retrieve
relation, a new concrete mode event makes a transition, then its after-state is connected via the
retrieve relation to the same abstract state.

• Every transition of a concrete new mode event decreases a variant function.
• If, in an invariant concrete state, a concrete pliant event is enabled, then its abstract counterpart is

enabled in a corresponding abstract state (identified via the retrieve relation).
• If, in an invariant abstract state, any abstract pliant event is enabled, then in a corresponding

concrete state (identified via the retrieve relation), some concrete pliant event (whether refining
or new) is enabled.

• If, in an invariant concrete before-state connected to a corresponding abstract before-state via the
retrieve relation, a concrete pliant event makes a transition, then there is a transition of its abstract
counterpart from the abstract before-state, such that for all times during that transition, the current
abstract and concrete states are connected via the retrieve relation.

The last of these is based on the premiss that time flows at the same rate in abstract and concrete models.
For theoretical convenience, we assume the sets of variables used in the two machines are disjoint. But
for refinements which just add variables and behaviour to an existing model (as we typically do in this
paper), we include the abstract variables among the concrete variables and presume the retrieve relation
to be the natural projection from concrete to abstract.

With these POs verified, it becomes possible to prove that every concrete run has a simulating abstract
run with corresponding transitions matching at suitable times during the run [18].
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PROJECT HyEvB Prj
INTERFACES

Itf IF
MACHINES

HyEvBMch 1
HyEvBMch 2

SYNCH(MoEv)
HyEvBMch 1.MoEv,
HyEvBMch 2.MoEv

END
END

MACHINE HyEvBMch 2
CONNECTS Itf IF

MoEv . . . . . .
PliEv . . . . . .

END

INTERFACE Itf IF
PLIANT x, y
VARIABLES u
INVARIANTS

x ∈ R
y ∈ R
u ∈ N

INITIALISATION
BEGIN

x := x0
y := y0
u := u0

END
END

MACHINE HyEvBMch 1
CONNECTS Itf IF
TIME t
CLOCK clk
EVENTS

INITIALISATION
STATUS ordinary
WHEN

t = 0
THEN

clk := 1
END

MoEv . . . . . .
PliEv . . . . . .

END

Figure 3: A schematic Hybrid Event-B project. The PROJECT file names the constituent machines and interfaces, and defines
the project-wide mode event SYNCHronisations. The INTERFACE file declares shared variables, their intialisations, and any
invariants that involve them.

4. Multiple Hybrid Event-B Machines

The principal objective in modelling complex systems in the B-Method is to start with small simple
descriptions and to refine to richer, more detailed ones. This means that, at the highest levels of abstrac-
tion, the modelling must abstract away from concurrency. By contrast, at lower levels of abstraction,
the events describing detailed individual behaviours of components become visible. Thus an integrated
representation risks hitting the combinatorial explosion of needing to represent each possible combina-
tion of concurrent activities within a separate event, and there is a much stronger incentive to put each
(relatively) independent component into its own machine, synchronised appropriately. To put it another
way, there is a very strong incentive to not abstract away from concurrency, an impulse that matches
with the actual system architecture. Thus to model large systems, multi-machine configurations are cer-
tainly desirable. At minimum, they partition the functionality, allowing limited focus and independent
working. We introduce the essentials of multi-machine working, referring to [19] for a fuller description.

Fig. 3 shows a schematic multi-machine project, building on Fig. 2. The PROJECT file names the
syntactic constituents of the project: interfaces and machines (also synchronisations, described later).
The INTERFACE file declares shared variables, their intialisations, and any invariants that contain an
occurrence of any of their variables.3 In Fig. 3, the variables of Fig. 2, their intialisations, and the
invariants have been made shared, and have been moved into interface Itf IF. This leaves the machines
HyEvBMch 1 and HyEvBMch 2 with just time and clock declarations, and their events.

The structural rules that govern projects largely follow from the scope rules for the various identifiers
present. These are as follows. The scopes of INTERFACE names, MACHINE names and variable names
are project-wide. The scopes of event names are their containing machine (thus HyEvBMch 1.MoEv
uniquely identifies the MoEv belonging to HyEvBMch 1), and the scopes of inputs, locals and outputs
are their containing event (so HyEvBMch 1.MoEv.l uniquely identifies local l of HyEvBMch 1.MoEv).

Since the verification process demands that events preserve invariants, a MACHINE must have a
CONNECTS itf clause for every interface itf that has a variable that any of its events need; READS
itf provides read-only access if that is sufficient. Evidently the connected interfaces also contain all the

3The INTERFACE concept is adapted from the similarly named idea in [31].
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invariants that any event of the machine must preserve. A more detailed description of the structural
constraints governing multi-machine projects (the diamond rules) appears in [19], but they amount to
little more than an elaboration of what just been stated.

In a multi-machine project, all the machines run concurrently, all the time. Pliant events execute in
each machine separately. Mode events also execute in each machine separately, unless they occur in a
SYNCH clause in the PROJECT file. The SYNCHronisation clause specifies that all the mode events
named in it must execute simultaneously, effectively aggregating them into a single project-wide mode
event.4 Evidently, simultaneously executing events of any kind must not specify conflicting updates to
variables, so we assume that the updates in the two PliEv’s of HyEvBMch 1 and HyEvBMch 2 of Fig. 3
are disjoint (because they execute concurrently), having, for example, arisen by partitioning the updates
in the PliEv of Fig. 2. Likewise, we can imagine that the provisions of the BAPred of Fig. 2 have also
been split into the updates in the two MoEv’s of HyEvBMch 1 and HyEvBMch 2 of Fig. 3 (since they are
required to execute simultaneously because of the SYNCH clause in the project file).

4.1. Semantics of Multiple Hybrid Event-B Machines
The semantics of multiple Hybrid Event-B machines is built, as much as possible around the se-

mantics of single machines. Thus the key concept is again the system trace, recording the values of the
variables of all machines throughout a run. Additionally, a system trace contains a record of which pliant
event is being executed in each machine at all times during the run.

Instead of SYNCHronisations (which are syntactic), the definition in [19] uses clusters of mode
events, which are simply arbitrary sets of mode events containing at most one from any machine. The
definition does not specify how clusters arise. (This enables different syntactic synchronisation mecha-
nisms to be defined on top of the semantics, if desired.) A cluster is enabled iff all its events are enabled.

The construction of system traces proceeds as in the outline given in Section 3.2, with minor modifi-
cations. Thus, after initialisation, enabled pliant events are selected in all machines and start to execute.
The execution continues until a mode event (cluster) is enabled, at which point pliant event execution
is paused and the mode event cluster is executed. Upon its completion, it is known which machines
specified the events involved in the cluster just executed — those machines select a fresh pliant event to
execute. For the remaining machines, the pliant event execution pause is a technical artifice, and they
resume execution of their preceding pliant event, whose identity is recorded in the system trace, as noted
above. Execution continues in this manner, with mode event cluster execution alternating with plaint
event execution/continuation. Details are in [19].

That the procedure outlined does not fail during the construction of multi-machine runs can be guar-
anteed by confirming the multi-machine Hybrid Event-B POs. And, just as multi-machine semantics
is a minimal departure from single machine semantics, so the multi-machine POs are the same as the
single machine POs, except that, where a cluster forces the consideration of events from more than one
machine, all the events of all the machines in question must, in principle, be taken into account simulta-
neously. (The fact that pliant events cannot be clustered helps enormously.) There is a careful discussion
in [19].

The single machine POs, suitably reinterpreted as indicated, together with a small number of addi-
tional conditions, enable the correctness of multi-machine Hybrid Event-B projects to be proved (Theo-
rem 12.4 of [19]).

4.2. Multiple Hybrid Event-B Machine Refinement
Each machine in a multi-machine project executes independently unless coupled to other machines

via shared variables and synchronised events. This default independence forces a fairly restrictive disci-

4To prevent specifying complicated mutual exclusion protocols by stealth, SYNCH clauses in a project must be disjoint.
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pline on the refinement of machines and interfaces. Thus, each separate abstract machine must be refined
to a corresponding separate concrete machine, with a retrieve relation restricted to the variables of the
two machines. And each separate abstract interface must be refined to a corresponding separate concrete
interface, with a retrieve relation restricted to the variables of the two interfaces. Thus, the project-wide
retrieve relation is some subrelation of a cartesian product of universal relations, one for each refining
pair of components.

5. Decomposition and Verification

Above we discussed multi-machine projects assuming them given a priori. However, taking an
existing machine and decomposing it into a multi-machine project (or decomposing a machine within a
larger project) requires additional considerations.

Partitioning for Hybrid Event-B is discussed in [19], where the partitioning process is designed as
a purely syntactic transformation of a large machine into a collection of smaller machines. This simple
picture was intended to not divert attention from the main job of [19], which was the proof that the
single machine POs, suitably reinterpreted and with little additional support, guaranteed correctness of
any execution.

Still, it is not hard to see that purely syntactic manipulations can grow increasingly complicated, and
eventually can get sufficiently involved that they become more akin to development steps requiring proof,
than to pure syntax rearrangement. In this section, we take such an approach to the partitioning process,
making it more flexible, at the price of requiring the verification of new POs to establish its soundness in
the context of any specific system model.

We start with the conditions constraining the decomposition process as discussed in [19]. These state
that if a machine M is part of a project P , and M is decomposed into submachines M1 . . .Mk with new
interfaces Itf1 . . . Itfl, then firstly: the new components must adhere to the general structural conditions
governing collections of machines and interfaces in a project as overviewed in Section 4; and secondly,
the following more specific conditions must also hold.

[�20] Every pliant event PliEv of M is decomposed into subevents PliEv1 . . .PliEvk, one for each sub-
machine M1 . . .Mk, with each subevent having the same INIT and WHERE guards as PliEv, and
with the assigning clauses appropriately distributed among the PliEv1 . . .PliEvk.

[�21] For every pair of distinct pliant events of M, the (pairwise) conjunction of its WHERE guards is
unsatisfiable.

[�22] For every pair MoEv1,MoEv2 of distinct mode events of M, if the (pairwise) conjunction of its
WHERE guards is satisfiable, then there is a submachine Mj of the decomposition of M, such that
some subevent of the synchronised decomposition of MoEv1 and some subevent of the synchro-
nised decomposition of MoEv2 (or, in each case, the event itself if the event is undecomposed), are
both declared in Mj.

It is easiest to discuss these in reverse order. Regarding mode events, if a mode event MoEv is syntacti-
cally decomposed into two subevents MoEvX and MoEvY , then if MoEvX and MoEvY are synchronised
within the relevant project file, it is evidently much easier to ensure that their collective effect is the same
as that of MoEv. So we always assume that that is the case.

As in [19], we need to ensure that the result of decomposition has the same properties as the original
machine regarding: enabledness of (synchronised) events, updates to the state, and scheduling choices
of (synchronised) events.
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Regarding mode events’ enabledness, the synchronisation assumption means that it is sufficient to
distribute the clauses of MoEv’s guard between the guards of MoEvX and MoEvY to ensure that their
conjunction is equivalent to the guard of MoEv. However, we can weaken this requirement to the PO:

Inv(u)⇒ [ ∀ i? • grdMoEv(u, i?)⇔ grdMoEvX(uX, i?X) ∧ grdMoEvY(uY , i?Y) ] (1)

In (1), u refers to the part of the overall system state relevant to MoEv, and uX, uY refer to those parts of
u needed by MoEvX and MoEvY respectively — likewise for the inputs i? of MoEv and MoEvX,MoEvY .
Inv refers to all the invariants that concern the state variables that appear in MoEv,MoEvX,MoEvY . The
invariants will be distributed in various ways among the machines and interfaces of P and its decom-
posed version, but can always be identified unambiguously since invariants are never transformed during
decomposition; they may merely be moved from place to place, according to the structural rules (which
demand that any invariant resides in the interface or machine containing all the variables that occur in it).

The PO (1) is strictly more powerful than mere distribution of the clauses of MoEv’s guard because
the equivalence is only required to hold when Inv is true. We assume that the undecomposed machine
M has been proved correct, so that Inv truly denotes an invariant set of the system, and is thus a safe
over-approximation of the reachable subset of the state space. This observation may permit some non-
trivial transformation of MoEv’s guard when MoEvX and MoEvY are constructed. The biimplication in
(1) ensures equivalence between the enabledness of the undecomposed and decomposed systems. And
equivalence of enabledness in any given state implies the same scheduling choices in that state, provided
[�22] holds to enforce appropriate mutual exclusion between different synchronisations.

The argument just detailed applies analogously to state update. Accordingly, we get the PO:

Inv(u)⇒ [ ∀ u′, o! • BApredMoEv(u, i?, u′, o!)⇔
BApredMoEvX(uX, i?X, u′X, o!X) ∧ BApredMoEvY(uY , i?Y , u′Y , o!Y) ] (2)

In the overwhelming majority of cases, the BApred of a mode event is expressed using a collection of
individual state updates x := E. In such cases (2) offers no additional generality since all that can be
done is to move such assignments into the relevant subevent. Nevertheless, the more general possibility
exists. With the same state updates guaranteed, and the same enabledness and scheduling possibilities
in all states, the equivalence of the undecomposed and decomposed systems follows relatively trivially
when only mode events are decomposed.

Pliant events obey different rules. For predominantly physical reasons pliant events are unsynchro-
nised, a design decision that has an impact. Specifically, absence of synchronisation implies that pieces
of different decomposed (but simultaneously enabled) events could not be prevented from being exe-
cuted simultaneously by a nondeterministic scheduling policy, a possibility that would destroy semantic
equivalence. Hence we introduced the restriction in [�21]. The same facts also imply that each piece
of a decomposed pliant event must be enabled exactly when the undecomposed event is; hence we have
[�20]. Following our line of reasoning above, we can relax [�20] to:

Inv(u)⇒ [ grdPliEv(u) ∧ ivPliEv(u)⇔ grdPliEvX(uX) ∧ ivPliEvX(uX) ] (3)

Inv(u)⇒ [ grdPliEv(u) ∧ ivPliEv(u)⇔ grdPliEvY(uY) ∧ ivPliEvY(uY) ] (4)

In (3) and 4) we assume we are dealing with a pliant event PliEv which is to be decomposed into PliEvX
and PliEvY . The fact that there are two statements is another reflection of the absence of synchronisation.

In [�20] it states that ‘the assigning clauses [are] appropriately distributed among’ PliEvX and PliEvY

(for our case). When the assigning clauses are ODEs and direct assignments, this definition is as uncon-
troversial as in the mode event case. However, its implications are potentially more subtle for COMPLY
clauses.
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Figure 4: The top level fuel delivery system transition diagram. The pump state diagram is on the left and the rebalance control
state diagram is on the right. The heavy crossed lines connect the only forbidden pairs of states. Otherwise, every pair of states,
and every transition involving one or other of the pump or rebalance controls, is permitted.

Suppose CmplyPliEv(u, i?) is the comply clause of PliEv. We assume that CmplyPliEv(u, i?) can be
rearranged into an exclusive-or normal form (by reducing to disjunctive normal form first, and then ma-
nipulating further, if necessary): CmplyPliEv(u, i?) ≡

⊕
j∈J CmplyPliEv,j(u, i?). This kind of structure rep-

resents a typical modelling case analysis in logical form. Considering PliEvX and PliEvY , we analogously
assume that CmplyPliEvX(uX, i?X) ≡

⊕
jX∈JX

CmplyPliEvX,jX(uX, i?X) and that CmplyPliEvY(uY , i?Y) ≡⊕
jY∈JY

CmplyPliEvY,jY (uY , i?Y).
We express our liberalisation of [�20] by assuming that for each term CmplyPliEv,j of CmplyPliEv there

are unique terms CmplyPliEvX,jX in CmplyPliEvX and CmplyPliEvY,jY in CmplyPliEvY such that CmplyPliEv,j is
equivalent to the conjunction of CmplyPliEvX,jX and CmplyPliEvY,jY . Calling the function on the index sets
implied by the preceding statement Z, we have:

Z : J→ JX × JY (5)

Inv(u)⇒ [ ∀∀∀j ∈ J • ∀ i? • CmplyPliEv,j(u, i?)⇔
CmplyPliEvX,πX(Z(j))(uX, i?X) ∧ CmplyPliEvY,πY(Z(j))(uY , i?Y) ] (6)

In (6), the universal quantifier ∀∀∀j ∈ J is written bold to underline that it quantifies over syntactic
items rather than semantic values; πX and πY are the projectors to the first and second components
of Z(j). The fact that for each u, i?, only one CmplyPliEv,j term can be true follows from the assumed
exclusive-or normal form. Of course, (5) and (6) give just one way of ensuring that CmplyPliEv(u, i?)
and CmplyPliEvX(uX, i?X) ∧ CmplyPliEvY(uY , i?Y) are equivalent, which would be sufficient to ensure the
equivalence we need. Other schemes that achieve this would also be acceptable. As the case study below
develops, we will see the utility of some of these more flexible rules in its various stages.

6. Top Level Fuel System Models

We now embark on the modelling of the fuel system in Hybrid Event-B, and on uncovering the
insights this can offer. The state machine view of the fuel supply system is shown in Fig. 4. This consists
of two state machines, corresponding to the pump control and the rebalance control. The overall state
machine is the product of these two, aside from the two forbidden states indicated by the heavy struck
through lines. For the sake of simplicity, we will assume that these state machines are implemented in the
cockpit by a set of four press-and-latch buttons for the pump control, and a set of three press-and-latch
buttons for the rebalance control, with, in addition, a mechanical interlock to prevent the engagement of
the forbidden states. We assume that pressing-and-latching any button of either set causes the release of
the previously depressed button from the set.

The state level view merely reflects the changes of configuration of the fuel system that can be
effected by the pilot. And although we have described it in purely mechanical terms, there is, of course,
no reason that such state control should not be implemented digitally in a modern light aircraft.
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MACHINE Pilot 0
VARIABLES pumpctrl, rebalctrl
INVARIANTS

pumpctrl ∈ {OFF,BOTH,LEFT,RIGHT}
rebalctrl ∈ {OFF,L2R,R2L}
pumpctrl = LEFT ⇒ rebalctrl 6= L2R
pumpctrl = RIGHT ⇒ rebalctrl 6= R2L
rebalctrl = L2R⇒ pumpctrl 6= LEFT
rebalctrl = R2L⇒ pumpctrl 6= RIGHT

EVENTS
INITIALISATION

BEGIN
pmpctrl, rebalctrl := OFF,OFF

END
PumpOFF

STATUS async
BEGIN pumpctrl := OFF END

PumpBOTH
STATUS async
BEGIN pumpctrl := BOTH END

. . . . . .

. . . . . .
PumpLEFT

STATUS async
WHEN rebalctrl 6= L2R
THEN pumpctrl := LEFT END

PumpRIGHT
STATUS async
WHEN rebalctrl 6= R2L
THEN pumpctrl := RIGHT END

RebalOFF
STATUS async
BEGIN rebalctrl := OFF END

RebalL2R
STATUS async
WHEN pumpctrl 6= LEFT
THEN rebalctrl := L2R END

RebalR2L
STATUS async
WHEN pumpctrl 6= RIGHT
THEN rebalctrl := R2L END

PliTrue
STATUS pliant
COMPLY INVARIANTS
END

END

Figure 5: The top level Hybrid Event-B model of the fuel delivery system. The pilot’s view.

The mode level view, being essentially the view seen by the pilot, is captured in the Hybrid Event-
B machine Pilot 0 of Fig. 5. The machine has two variables, pumpctrl and rebalctrl, with the obvi-
ous meanings, and the values each can take are described in the first two lines of the INVARIANTS
clause. The remaining invariants describe the forbidden configurations. The remainder of the machine
describes the EVENTS that are available. There are events to manipulate the fuel control: PumpOFF,
PumpBOTH, PumpLEFT, PumpRIGHT; and events to manipulate the rebalance control: RebalOFF,
RebalL2R, RebalR2L. These are all mode events in Hybrid Event-B parlance, i.e. they specify instan-
taneous changes of state at isolated moments of time. To this extent they are just like (conventional)
Event-B events, and the notation is deliberately kept the same.

Events’ STATUS declarations distinguish mode events from pliant events, and record other pragmatic
properties of events. The most important of these is the ‘async’ property, which allows mode events to
execute lazily (i.e. not as soon as they are enabled). This is a shorthand that removes the need for an
input, which is the normal trick that specifies lazy execution (see [5] in Section 3.2, and [18]). In the
case of the present application, these async events would be stimulated from the environment (i.e. by the
pilot) and not by the immediate action of some physical law.

Furthermore, since Hybrid Event-B describes the behaviour at all moments of time, each Hybrid
Event-B machine must have at least one pliant event, to cover continuous behaviour between the iso-
lated mode events. In Pilot 0 this duty is covered by the PliTrue event, which simply stipulates default
compliance with the INVARIANTS any time a mode event is not executing.

A certain amount of previous experience [17, 16, 13, 15], has shown that focusing first on a mode
description of a desired design is highly beneficial in organising the refinement based development of
a complex hybrid system in a perspicuous manner. In the present case we follow the same strategy,
but notice first that the mode level description we gave is not yet at the pumps and valves level of the
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PROJECT FuelPump Prj 1
[ REFINES FuelPump Prj 0 ]

INTERFACES
Central IF 1

MACHINES
Pilot 1
Controller 1

SYNCH(PumpOFF)
Pilot 1.PumpOFF S,
Controller 1.PumpOFF S

END
SYNCH(PumpBOTH)

Pilot 1.PumpBOTH S,
Controller 1.PumpBOTH S

END
SYNCH(PumpLEFT)

Pilot 1.PumpLEFT S,
Controller 1.PumpLEFT S

END
SYNCH(PumpRIGHT)

Pilot 1.PumpRIGHT S,
Controller 1.PumpRIGHT S

END
SYNCH(RebalOFF)

Pilot 1.RebalOFF S,
Controller 1.RebalOFF S

END
SYNCH(RebalL2R)

Pilot 1.RebalL2R S,
Controller 1.RebalL2R S

END
SYNCH(RebalR2L)

Pilot 1.RebalR2L S,
Controller 1.RebalR2L S

END
END

INTERFACE Central IF 1
VARIABLES

pumpctrl, rebalctrl,
pumpPL, pumpPR, valveL, valveR,
valveVL1, valveVL2, valveVR1, valveVR2

INVARIANTS
pumpctrl ∈ {OFF,BOTH,LEFT,RIGHT}
rebalctrl ∈ {OFF,L2R,R2L}
pumpctrl = LEFT ⇒ rebalctrl 6= L2R
pumpctrl = RIGHT ⇒ rebalctrl 6= R2L
rebalctrl = L2R⇒ pumpctrl 6= LEFT
rebalctrl = R2L⇒ pumpctrl 6= RIGHT
pumpPL, pumpPR ∈ {OFF,ON}
valveL, valveR,

valveVL1, valveVL2, valveVR1, valveVR2

∈ {CL,OP}
pumpctrl = OFF ⇔

pumpPL = OFF ∧ pumpPR = OFF ∧
valveL = CL ∧ valveR = CL

pumpctrl = LEFT ⇔
pumpPL = ON ∧ pumpPR = OFF ∧
valveL = OP ∧ valveR = CL

pumpctrl = RIGHT ⇔
pumpPL = OFF ∧ pumpPR = ON ∧
valveL = CL ∧ valveR = OP

pumpctrl = BOTH ⇔
pumpPL = ON ∧ pumpPR = ON ∧
valveL = OP ∧ valveR = OP

rebalctrl = OFF ⇔
valveVL1 = CL ∧ valveVR1 = CL ∧
valveVL2 = CL ∧ valveVR2 = CL

rebalctrl = L2R⇔
valveVL1 = CL ∧ valveVR1 = OP ∧
valveVL2 = OP ∧ valveVR2 = CL

rebalctrl = R2L⇔
valveVL1 = OP ∧ valveVR1 = CL ∧
valveVL2 = CL ∧ valveVR2 = OP

INITIALISATION
BEGIN

pmpctrl, rebalctrl := OFF,OFF
pumpPL, pumpPR, valveL, valveR :=

OFF,OFF,CL,CL
valveVL1, valveVL2, valveVR1, valveVR2, :=

CL,CL,CL,CL
END

END

Figure 6: Level 1 Hybrid Event-B project for the fuel delivery system. Introduction of the valves and pumps. Here is the
FuelPump Prj 1 PROJECT file and the INTERFACE Central IF 1.
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MACHINE Pilot 1
REFINES Pilot 0
CONNECTS Central IF 1
EVENTS

PumpOFF S
REFINES PumpOFF
STATUS async
BEGIN pumpctrl := OFF END

PumpBOTH S
REFINES PumpBOTH
STATUS async
BEGIN pumpctrl := BOTH END

PumpLEFT S
REFINES PumpLEFT
STATUS async
WHEN rebalctrl 6= L2R
THEN pumpctrl := LEFT END

PumpRIGHT S
REFINES PumpRIGHT
STATUS async
WHEN rebalctrl 6= R2L
THEN pumpctrl := RIGHT END

RebalOFF S
REFINES RebalOFF
STATUS async
BEGIN rebalctrl := OFF END

RebalL2R S
REFINES RebalL2R
STATUS async
WHEN pumpctrl 6= LEFT
THEN rebalctrl := L2R END

RebalR2L S
REFINES RebalR2L
STATUS async
WHEN pumpctrl 6= RIGHT
THEN rebalctrl := R2L END

PliTrue
STATUS pliant
COMPLY INVARIANTS
END

END

MACHINE Controller 1
CONNECTS Central IF 1
EVENTS

PumpOFF S
BEGIN

pumpPL, pumpPR, valveL, valveR :=
OFF,OFF,CL,CL

END
PumpBOTH S

BEGIN
pumpPL, pumpPR, valveL, valveR :=

ON,ON,OP,OP
END

PumpLEFT S
WHEN ¬(valveVL1 = CL ∧ valveVR1 = OP)
THEN

pumpPL, pumpPR, valveL, valveR :=
ON,OFF,OP,CL

END
PumpRIGHT S

WHEN ¬(valveVL1 = OP ∧ valveVR1 = CL)
THEN

pumpPL, pumpPR, valveL, valveR :=
OFF,ON,CL,OP

END
RebalOFF S

BEGIN
valveVL1, valveVR1, valveVL2, valveVR2 :=

CL,CL,CL,CL
END

RebalL2R S
WHEN ¬(pumpPL = ON ∧ pumpPR = OFF)
THEN

valveVL1, valveVR1, valveVL2, valveVR2 :=
CL,OP,OP,CL

END
RebalR2L S

WHEN ¬(pumpPL = OFF ∧ pumpPR = ON)
THEN

valveVL1, valveVR1, valveVL2, valveVR2 :=
OP,CL,CL,OP

END
PliTrue

STATUS pliant
COMPLY INVARIANTS
END

END

Figure 7: Level 1 Hybrid Event-B project for the fuel delivery system. Introduction of the valves and pumps. The two machines,
Pilot 1 and Controller 1.
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description in Section 2, so is not yet good to interface with the more physical behaviour we wish to
capture in this case study.

In this paper, we develop the fuel supply application by combining component machines for all the
different spheres of activity. Accordingly, we next introduce the Controller 1 machine which manipu-
lates the pumps and valves at the pilot’s behest.

Given that we have more than one machine, we need the full apparatus of the multi-machine PROJECT
formalism, omitted hitherto. Fig. 6 shows the FuelPump Prj 1 PROJECT file and the Central IF 1 IN-
TERFACE. The project shows a hypothetical refinement of an earlier project FuelPump Prj 0, which
would exist had we indeed packaged the Pilot 0 machine inside a project. As well as now containing
the previously introduced variables, the interface contains the new variables for the valves and pumps. It
also contains the invariants that connect these to the pump control variables.

Fig. 7 shows the two machines in the project, Pilot 1 and Controller 1. The former refines Pilot 0.
Notice how the presence of the interface construct has removed a large part of the content of Pilot 0.
REFINES clauses in the events of Pilot 1 state which parent events in Pilot 0 they refine. Controller 1
is new, and describes how the events manipulate the valve and pump variables.

The two machines Pilot 1 and Controller 1 must act in harmony. This is enforced by the SYNCH
clauses of the FuelPump Prj 1 project file. For example, synchronisation SYNCH(PumpOFF) requires
that event PumpOFF S in machine Pilot 1 executes simultaneously with event PumpOFF S in machine
Controller 1. And so on. The ‘ S’ suffixes on the event names are for readability, to indicate participation
in a synchronisation, but have no semantic significance.

The newly introduced variables are named by analogy with the description in Section 2. Pumps are
either OFF or ON, while valves are either CLosed or OPen. After declaring the variables and their al-
lowed values, the remainder of the new INVARIANTS in Central IF 1 are joint invariants, concerned
with expressing the relationship between the Pilot 0/1 variables and the Controller 1 variables (in tra-
ditional Event-B manner).

Our assumptions about how the controls work result in a relatively simple correspondence between
pilot controls and settings of the pumps and valves. The joint invariants make clear that the fuel control
can be implemented using just the pumps and their valves to the collector (L for pump PL), while the
rebalancing control can be implemented using the various V− valves. This makes for a particularly clean
design. It is easy to imagine that if the pipework depicted in Fig. 1 were controlled in a different way,
then the correspondence between the two levels could come out more complicated.

It has to be admitted that the clean design is partly a consequence of deliberate oversimplification.
Thus the only practical way of achieving fuel rebalancing is if the pumps are BOTH on. That way
part (but only part) of the flow of one pump is diverted to refilling the other tank. But we might wish to
rebalance on the ground, without the other pump running. Or we might wish (in the air) to feed the engine
using one pump and use the other pump exclusively for rebalancing. Both scenarios are impossible in
our setup since they couple the state of the L and R valves to the state of rebalctrl. Representing such
things would be entirely possible, at the cost of a more detailed, longer description. We avoid doing so
for simplicity and brevity.

7. Physical Behaviour of the Pumps

In Fig. 8 we find the next level of detail in our development. At the top is the new project file
FuelPump Prj 2. It introduces the FuelFlow 2 machine, but is otherwise unchanged from FuelPump Prj 1
which it refines.

The FuelFlow 2 machine READS the existing interface. This denotes that it only needs read access
to the variables declared in Central IF 1, and does not introduce any new invariants involving those
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variables. (From the mechanical verification point of view, this makes the access by FuelFlow 2 to the
interface lighter.)

The FuelFlow 2 machine introduces some pliant variables to represent the continuous behaviour. We
focus exclusively on the flow rates in the pipework of the model of Fig. 1. The fuel flow rate delivered
to the engine is flrdE. The raw pumping rates of the left and right pumps are flrL and flrR respectively.
The fuel rates delivered to the engine by the left and right pumps are flrdL and flrdR respectively, leading
the equation flrdE = flrdL + flrdR, reflecting the fact that the fuel is assumed to be an incompressible
fluid. This equation could be an invariant, were it not for the fact that the same equation appears in the
COMPLY clause of the SupplyEngine pliant event, making its presence as an invariant superfluous. The
excess of the raw fuel rates over the demanded rates, which are fed back to the left and right tanks are
expressed by flrfbL and flrfbR for the two pumps respectively. The rebalancing flow rates are flrL2R and
flrR2L. So flrL = flrdL + flrfbL or flrL = flrdL + flrL2R + flrfbL is true for the left pump, depending on
whether flrL2R is nonzero (and assuming we only mention flrL2R when it is nonzero). Similarly for the
right pump.

The invariants of FuelFlow 2 give some of the properties of these flow rates. Thus they are all real
numbers, and are either zero (if the relevant part of the apparatus is switched off), or within a real interval.
For the engine, the interval lies between ERTMIN and ERTMAX . For the raw pumping rates, the interval
lies between RPRTMIN and RPRTMAX , which is assumed to be a fairly narrow real interval reflecting the
relatively fixed rate at which the pumps work. The various dependent flow rates, when nonzero, are
assumed to lie in a broader interval [PRTMIN . . .PRTMAX], reflecting the variability of engine demand,
and of the different possibilities for directing the fuel round the system. All these variables are initialised
to 0. Note that we do not write e.g. flrE(t) — the time dependence is an automatic consequence of the
PLIANT declaration. (N. B. Mode variables are also functions of time, albeit piecewise constant ones.)

We turn to the pliant event SupplyEngine. Recalling that the fuel is an incompressible fluid, fuel
entering the pipework is instantaneously balanced by fuel leaving the pipework. Thus, the semantics of
the pipework system is overwhelmingly one of equality between various quantities. However, the relative
dependencies between the various quantities are less clear. The engine demands as much fuel as it needs
to function at the power the pilot requests. The pumps, when switched on, wish to pump as hard as their
mechanical specification stipulates. Aside from pilot demand, the extent to which they are able to push
fuel through the pipework depends also on which flows though the pipework are available.

The ANY clause of FlyAircraft introduces a number of quantities. All are implicitly time dependent.
flrCH

E is the chosen fuel rate corresponding to the pilot’s request; it is constrained to the same values as flrE

in the WHERE clause. The other quantities, in pairs, describe how pairs of flows which meet at a single
place must be constrained. Thus they are all values in the open interval (0 . . . 1) (hence all are nonzero),
and pairwise, they sum to 1 (reflecting incompressibility), with an additional constraint concerning their
relative magnitude. Thus cL and cR describe how the raw outputs of the left and right pumps are scaled
back when both are feeding the engine (with the remaining pump outputs flrfbL and flrfbR fed back to the
relevant tanks). They sum to 1, and do not differ by much |cL − cR | < H, reflecting our expectation that
the two pumps are physically similar. The quantities cL2R,E and cL2R,R describe how the output of the left
pump is divided between feeding the engine (cL2R,E) and filling the right tank (cL2R,R), when rebalancing
is set to L2R and the left pump is working. Here we expect the rebalancing to outweigh feeding the
engine, reflected in the constraint cL2R,E/cL2R,R < H. Similarly for cR2L,E and cR2L,L. The same constant
H is used for all these constraints, for simplicity.

At the present level of modelling, the dynamics of the fuel system is still very nondeterministic. The
COMPLY clause stipulates what is defined. The first line stipulates that the fuel rate delivered to the
engine, flrdE, must be the rate chosen by the pilot, flrCH

E , according to how the aircraft is being flown.
The next line says that flrdE is the sum of the delivered fuel rates from the two pumps, flrdL + flrdR.

The lines after that treat the case when both pumps are switched off. Then, there is no raw output from
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PROJECT FuelPump Prj 2
REFINES FuelPump Prj 1

INTERFACES
Central IF 1

MACHINES
. . . . . .

. . . . . .
Pilot 1
Controller 1
FuelFlow 2

SYNCH(PumpOFF) . . . . . .
END

MACHINE FuelFlow 2
READS Central IF 1
PLIANT flrdE, flrdL, flrdR, flrL, flrR, flrfbL, flrfbR,

flrL2R, flrR2L

INVARIANTS
flrdE ∈ R ∧ flrdE ∈ {0} ∪ [ERTMIN . . .ERTMAX]
flrdL ∈ R ∧ flrdL ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrdR ∈ R ∧ flrdR ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrL ∈ R ∧ flrL ∈ {0} ∪ [RPRTMIN . . .RPRTMAX]
flrR ∈ R ∧ flrR ∈ {0} ∪ [RPRTMIN . . .RPRTMAX]
flrfbL ∈ R ∧ flrfbL ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrfbR ∈ R ∧ flrfbR ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrL2R ∈ R ∧ flrL2R ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrR2L ∈ R ∧ flrR2L ∈ {0} ∪ [PRTMIN . . .PRTMAX]

EVENTS
INITIALISATION

BEGIN
flrdE, flrdL, flrdR, flrL, flrR, flrfbL, flrfbR,
flrL2R, flrR2L := 0, 0, 0, 0, 0, 0, 0, 0, 0

END
SupplyEngine

STATUS pliant
ANY flrCH

E , cL, cR, cL2R,E, cL2R,R, cR2L,E, cR2L,L

WHERE
flrCH

E ∈ R ∧
flrCH

E ∈ {0} ∪ [ERTMIN . . .ERTMAX] ∧
{cL, cR, cL2R,E, cL2R,R, cR2L,E, cR2L,L} ⊂ R ∧
{cL, cR, cL2R,E, cL2R,R, cR2L,E, cR2L,L} ⊂
(0 . . . 1) ∧

cL + cR = 1 ∧ |cL − cR |< H ∧
cL2R,E + cL2R,R = 1 ∧ cL2R,E/cL2R,R < H ∧
cR2L,E + cR2L,L = 1 ∧ cR2L,E/cR2L,L < H

. . . . . .

. . . . . .
COMPLY

flrdE = flrCH
E ∧

flrdE = flrdL + flrdR ∧
[pumpctrl = OFF ⇒

flrdL = flrfbL = flrL = flrL2R = 0 ∧
flrdR = flrfbR = flrR = flrR2L = 0] ∧

[rebalctrl = OFF ⇒
flrL2R = 0 ∧ flrR2L = 0 ∧
[pumpctrl = BOTH ⇒

flrdL = cL flrdE ∧ flrdR = cR flrdE ∧
flrL = flrdL + flrfbL ∧
flrR = flrdR + flrfbR] ∧

[pumpctrl = LEFT ⇒
flrdL = flrdE ∧ flrL = flrdL + flrfbL ∧
flrdR = flrfbR = flrR = 0] ∧

[pumpctrl = RIGHT ⇒
flrdL = flrfbL = flrL = 0 ∧
flrdR = flrdE ∧ flrR = flrdR + flrfbR] ] ∧

[rebalctrl = L2R⇒
[pumpctrl = BOTH ⇒

flrdL = cL cL2R,E flrdE ∧
flrdR = (cR + cL cL2R,R) flrdE ∧
flrL2R = cL cL2R,R flrL ∧
flrR2L = 0 ∧
flrL = flrdL + flrL2R + flrfbL ∧
flrR = flrdR + flrfbR] ∧

[pumpctrl = RIGHT ⇒
flrdL = flrfbL = flrL = flrL2R = 0 ∧
flrdR = flrdE ∧ flrR = flrdR + flrfbR ∧
flrR2L = 0] ] ∧

[rebalctrl = R2L⇒
[pumpctrl = BOTH ⇒

flrdL = (cL + cR cR2L,L) flrdE ∧
flrdR = cR cR2L,E flrR ∧
flrL2R = 0 ∧
flrR2L = cR cR2L,L flrR ∧
flrL = flrdL + flrfbL ∧
flrR = flrdR + flrR2L + flrfbR] ∧

[pumpctrl = LEFT ⇒
flrdL = flrdE ∧ flrL = flrdL + flrfbL ∧
flrdR = flrfbR = flrR = flrR2L = 0 ∧
flrL2R = 0] ]

END
END

Figure 8: Level 2 Hybrid Event-B model of the fuel delivery system. Introduction of the fuel flow rates to the engine.
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either pump. Therefore there is no delivered output to the engine either: flrL, flrR, flrdL, flrdR, flrfbL, flrfbR

are all 0. Neither can there be any rebalancing going on: flrL2R and flrR2L are also both 0, regardless
of the setting of the rebalance control. When flrCH

E is nonzero, this case is interesting, since then, the
collection of constraints 0 < flrdCH

E = flrE = flrdL + flrdR = 0 + 0 is unsatisfiable. The semantics of
Hybrid Event-B stipulates that if the specification of a pliant event becomes infeasible (as is the case
here), and there is no mode event enabled at that moment, then the execution stops. Here, it corresponds
to the case of the pilot switching the pumps off while the aircraft is flying. This causes engine failure and
the aircraft crashes (unless the pilot restarts the engine). So this is well represented in our model.

Equally interesting is the case of the engine catching fire. Now, the pilot isolates the fuel supply
from the engine to allow the fire to go out: flrCH

E = 0. Because the fuel is incompressible, the delivered
fuel rates become 0 too, and so any raw pumping outputs drop to zero too (according to cases discussed
below), with all pumping output returned to the relevant tank. The pilot can now switch the pumps off
while the fire is going out. Once the fire is extinguished, the pilot can switch the pumps on again, and
then restart the engine (flrCH

E > 0). This sequence of events does not cause infeasibility, so is also well
represented in our model.

The remaining cases are easiest to understand according to the setting of rebalctrl, starting with the
rebalctrl = OFF case. Then, when pumpctrl = BOTH, the left and right pumps’ delivered output to the
engine are respectively proportional to cL and cR times their raw output (for the given engine demand, the
rest going to bypass). When pumpctrl is LEFT or RIGHT then the relevant pump is solely responsible
for its delivered output matching the engine demand.

We examine the case when rebalctrl = L2R, noting that the R2L case is symmetrical. When
pumpctrl = BOTH, not only are the output rates scaled by cL and cR, but the left pump’s cL-scaled
output is further scaled by cL2R,E, a relatively small number, to reflect the small contribution that the left
pump makes to feeding the engine in this case, since most of its output (the cL2R,R proportion) will be
refilling the right tank. To maintain the total demand to the engine, the right pump must supply an ad-
ditional cL cL2R,R flrdE fuel rate to make up for the left pump’s shortfall. (The right pump can obviously
do this since it can supply any engine demand by itself anyway.) In the pumpctrl = RIGHT case no
refilling takes place since the left pump is inactive — it is like the OFF/LEFT case above. Finally, the
pumpctrl = LEFT case is excluded by the invariants (since it is assumed that cL cL2R,E flrdE is not enough
to feed the engine).

We comment further on the nondeterminism of this specification. Consider the pumpctrl = BOTH
case without rebalancing. At any moment, the demand flrCH

E = flrdE is fulfilled by flrdL + flrdR. This
is a combination of two nondeterministic quantities, so may supply the needed value in many ways. In
reality, what governs the actual flows of fuel in those parts of the system made accessible by the valve
settings, is a combination of: the power of the pumps, the hydrostatic resistances needed to activate
the bypass mechanisms in each pump, the relative hydrostatic resistances of the connecting pipework,
the hydrostatic resistances in the collector/engine assembly, and the requirement of maintaining a single
value of hydrostatic pressure throughout the considered system owing to the incompressible nature of the
fuel. Since we do not model these things explicitly, our approach is but an approximation to the reality
of such a system, and the nondeterministic (and time dependent) nature of the contributing values makes
up for our ignorance of the details. Still, the proportionality factors we use give a reasonable indication
of the portion of the pumps’ outputs being used in the various cases.

If rebalctrl = L2R this aspect is exacerbated. The fuel demand flrCH
E = flrdE is now fulfilled by

cL cL2R,E flrdE + (cR + cL cL2R,R) flrdE, a more complicated combination involving four nondeterministic
quantities, with a further expression cL cL2R,R flrL describing the flow to the right tank. Whether this is, in
reality, credible as given, with a multiplicative rescaling taking account of the flow distribution, depends
again on the factors mentioned. However, the remainder of our development is not critically affected by
this, so we retain this style of description for the sake of simplicity.
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FuelFlow_2 SupplyEngine

Engine_SP_3 Engine PumpL_SP_3 PumpLeft PumpR_SP_3 PumpRight

PumpL_SPtTI_4

PumpLeft_OFFany_RIGHToff_RIGHTl2r

PumpLeft_BOTHany

PumpLeft_LEFToff_LEFTr2l

PumpLeft_BOTHl2r

PumpLeft_BOTHr2l

PumpR_SPtTI_4

PumpRight_OFFany_LEFToff_LEFTr2l

PumpRight_BOTHany

PumpRight_RIGHToff_RIGHTl2r

PumpRight_BOTHr2l

PumpRight_BOTHl2r

Figure 9: The fate of the SupplyEngine pliant event through the system decomposition, when partitioning in space precedes
partitioning in time. Machine FuelFlow 2 is decomposed into Engine SP 3, PumpL SP 3, PumpR SP 3, and the latter two
become PumpL SPtTI 4, PumpR SPtTI 4. SupplyEngine is decomposed into the events shown inside these machines.

FuelFlow_2 SupplyEngine

Engine_SP_3 Engine

SupplyEngine_OFFany

SupplyEngine_LEFToff

FuelFlow_TI_3

SupplyEngine_BOTHoff
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SupplyEngine_BOTHr2l

SupplyEngine_BOTHr2l

SupplyEngine_OFFany_Right

SupplyEngine_LEFToff_Right

FuelFlow_TItSP_Right_4

SupplyEngine_BOTHoff_Right

SupplyEngine_RIGHToff_Right

SupplyEngine_BOTHl2r_Right

SupplyEngine_RIGHTl2r_Right

SupplyEngine_BOTHr2l_Right

SupplyEngine_BOTHr2l_Right

SupplyEngine_OFFany_Left
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SupplyEngine_RIGHToff_Left

SupplyEngine_BOTHl2r_Left

SupplyEngine_RIGHTl2r_Left

SupplyEngine_BOTHr2l_Left

SupplyEngine_BOTHr2l_Left

Figure 10: The fate of the SupplyEngine pliant event through the system decomposition, when partitioning in time precedes
partitioning in space. Machine FuelFlow 2 is decomposed into FuelFlow TI 3 which is further decomposed into Engine SP 3,
FuelFlow TItSP Left 4, FuelFlow TItSP Right 4. SupplyEngine is decomposed into the events shown inside these machines.
The greater verbosity of this approach compared with Fig. 9 is evident.
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8. Further Refinement and Partitioning

As the development process progresses, the models created get tend to get bigger unless active mea-
sures are taken to avoid this. We anticipated this above by including new detail in new machines, on the
understanding that the multi-machine version of Hybrid Event-B has been expressly designed to make
this both possible and equivalent to a large monolithic refinement step. Taking a large monolithic ma-
chine and breaking it up into an equivalent collection of smaller machines can be called partition in
space.

As a counterpart to this though, we also want to consider partition in time. This is a phenomenon
akin to decomposing a sequential program into its individual steps, except that it applies to pliant events.
The possibility arises rather naturally, since the behaviour of physical equipment is usually governed by
local laws, which act largely independently of the context. For example the behaviour of a resistor is
given by Ohm’s Law, which can be stated independently of the circuit in which the resistor is located.
Such a ‘global’ description can be contrasted with a description of behaviour in particular episodes of
time, when the current has some particular value, etc. The latter can be seen as a refinement of the
former. (Additionally, it is unlikely that any useful safety invariant can be proved on the basis of Ohm’s
Law alone, whereas with the addition of more detailed application specific constraints, useful safety
invariants may become provable.)

A major objective of this paper is to discuss the tradeoffs between partition in space and partition in
time in the context of our case study. The partitioning we already did separated the mode events from
the pliant events, and for the sake of keeping the modelling within a reasonable size for a paper of this
kind, we continue to respect this partitioning in the remainder of this work. Additionally, we only have
one nontrivial pliant event to contend with in a separate machine, which is a good starting point, and
makes our task manageable. We consider the pros and cons of partitioning in space first followed by
partitioning in time, and then the converse, partitioning in time first followed by partitioning in space.

Fig. 9 and Fig. 10 give an illustration of the structure of the two developments, highlighting the plaint
events which embody the crucial features that arise, eliminating clutter. Machines are drawn in boxes,
with the pliant events within them in smaller boxes. Thick lines show how machines are partitioned,
while thinner lines show the event partitions that are subordinate to the machine partitioning. The two
developments are discussed in more detail in the following sections.

9. Partitioning in Space First, then Time

Our case study is a bit unusual in that we defined the behaviour of the fuel flow in the pipework via
an explicit case analysis rather than a single universally applicable physical law such as Ohm’s Law. This
meant that we already had to decompose all the behaviours to a lower level of abstraction than would
naturally occur in a design process that worked top down. Nevertheless, what we have will serve well
enough to illustrate our argument.

In this section we partition in space first, then time. Regarding partition in space, at the opposite ex-
treme of combining everything into a single machine, is having every single physical component (which
approximately amounts to each individual variable in our description) in a machine of its own. How-
ever, a more reasonable partition would split the system into an engine machine (focusing on engine
quantities), and left and right tank machines (focusing on the respective pumps and valves).

Since we are keeping the structure of the external control of the system unchanged, the mode events
in the Pilot and Controller machines remain unchanged. This means that the partition in space has only
to focus on the single pliant event SupplyEngine, since we can rely on the preemption mechanism to
schedule the different cases of SupplyEngine, once we have connected all the machines together in the
right way.
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PROJECT FuelPump Prj SP 3
REFINES FuelPump Prj 2

INTERFACES
Central IF 1
FuelFlow SP IF 3

MACHINES
Pilot 1
Controller 1
Engine SP 3
PumpL SP 3
PumpR SP 3

SYNCH(PumpOFF) . . . . . .
END

INTERFACE FuelFlow SP IF 3
PLIANT flrdE

INVARIANTS
flrdE ∈ R ∧ flrdE ∈ {0} ∪ [ERTMIN . . .ERTMAX]

INITIALISATION
BEGIN

flrdE := 0
END

END

MACHINE Engine SP 3
DECOMPOSES FuelFlow 2
CONNECTS FuelFlow SP IF 3
EVENTS

Engine
DECOMPOSES SupplyEngine
STATUS pliant
ANY

flrCH
E , cL!, cR!, cL2R,E!, cL2R,R!, cR2L,E!, cR2L,L!

WHERE
flrCH

E ∈ R ∧
flrCH

E ∈ {0} ∪ [ERTMIN . . .ERTMAX] ∧
COMPLY

flrdE = flrCH
E ∧

{cL!, cR!, cL2R,E!, cL2R,R!, cR2L,E!, cR2L,L!} ⊂
R ∧
{cL!, cR!, cL2R,E!, cL2R,R!, cR2L,E!, cR2L,L!} ⊂
(0 . . . 1) ∧

cL! + cR! = 1 ∧ |cL!− cR! |< H ∧
cL2R,E!+cL2R,R! = 1 ∧ cL2R,E!/cL2R,R! < H ∧
cR2L,E! + cR2L,L! = 1 ∧ cR2L,E!/cR2L,L! < H

END
END

MACHINE PumpL SP 3
DECOMPOSES FuelFlow 2
CONNECTS FuelFlow SP IF 3
READS Central IF 1
PLIANT flrdL, flrL, flrfbL, flrL2R

INVARIANTS
flrdL ∈ R ∧ flrdL ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrL ∈ R ∧ flrL ∈ {0} ∪ [RPRTMIN . . .RPRTMAX]
flrfbL ∈ R ∧ flrfbL ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrL2R ∈ R ∧ flrL2R ∈ {0} ∪ [PRTMIN . . .PRTMAX]

EVENTS
INITIALISATION

BEGIN
flrdL, flrL, flrfbL, flrL2R := 0, 0, 0, 0

END
PumpLeft

DECOMPOSES SupplyEngine
STATUS pliant
ANY cL?, cL2R,E?, cL2R,R?
WHERE cL?, cL2R,E?, cL2R,R? ∈ R,R,R
COMPLY
[pumpctrl = OFF ∨
(pumpctrl = RIGHT ∧
(rebalctrl = OFF ∨ rebalctrl = L2R))
⇒

flrdL = flrfbL = flrL = flrL2R = 0] ∧
[pumpctrl = LEFT ∧
(rebalctrl = OFF ∨ rebalctrl = R2L)
⇒

flrdL = flrdE ∧ flrL2R = 0 ∧
flrL = flrdL + flrfbL] ∧

[pumpctrl = BOTH ∧ rebalctrl = OFF ⇒
flrdL = cL? flrdE ∧ flrL2R = 0 ∧
flrL = flrdL + flrfbL] ∧

[pumpctrl = BOTH ∧ rebalctrl = L2R⇒
flrdL = cL? cL2R,E? flrdE ∧
flrL2R = cL? cL2R,R? flrL ∧
flrL = flrdL + flrL2R + flrfbL] ∧

[pumpctrl = BOTH ∧ rebalctrl = R2L⇒
flrdL = (cL? + cR? cR2L,L?) flrdE ∧
flrL2R = 0 ∧ flrL = flrdL + flrfbL]

END
END

Figure 11: Level SP 3 Hybrid Event-B model of the fuel delivery system. Decomposition in space, then time: the space step.
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PROJECT FuelPump Prj SPtTI 4
REFINES FuelPump Prj SP 3

INTERFACES
Central IF 1
FuelFlow SP IF 3

MACHINES
Pilot 1
Controller 1
Engine SP 3
PumpL SPtTI 4
PumpR SPtTI 4

SYNCH(PumpOFF
REFINES PumpOFF)
Pilot 1.PumpOFF S,
Controller 1.PumpOFF S
PumpL SPtTI 4.ModeSkip S
PumpR SPtTI 4.ModeSkip S

END
. . . . . .

END

MACHINE PumpL SPtTI 4
REFINES PumpL SP 3
CONNECTS FuelFlow SP IF 3
READS Central IF 1
PLIANT flrdL, flrL, flrfbL, flrL2R

INVARIANTS
flrdL ∈ R ∧ flrdL ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrL ∈ R ∧ flrL ∈ {0} ∪ [RPRTMIN . . .RPRTMAX]
flrfbL ∈ R ∧ flrfbL ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrL2R ∈ R ∧ flrL2R ∈ {0} ∪ [PRTMIN . . .PRTMAX]

EVENTS
INITIALISATION

REFINES INITIALISATION
BEGIN

flrdL, flrL, flrfbL, flrL2R := 0, 0, 0, 0
END

ModeSkip S
STATUS convergent
BEGIN

skip
END

. . . . . .

. . . . . .
PumpLeft OFFany RIGHToff RIGHTl2r

REFINES PumpLeft
STATUS pliant
ANY cL?, cL2R,E?, cL2R,R?
WHERE cL?, cL2R,E?, cL2R,R? ∈ R,R,R ∧
(pumpctrl = OFF ∧

rebalctrl ∈ {OFF,L2R,R2L}) ∨
(pumpctrl = RIGHT ∧

rebalctrl ∈ {OFF,L2R})
COMPLY

flrdL = flrfbL = flrL = flrL2R = 0
END

PumpLeft BOTHoff
. . . pumpctrl = BOTH ∧ rebalctrl = OFF

COMPLY
flrdL = cL? flrdE ∧ flrL2R = 0 ∧
flrL = flrdL + flrfbL

END
PumpLeft LEFToff LEFTr2l

. . . pumpctrl = LEFT ∧
rebalctrl ∈ {OFF,R2L}

COMPLY
flrdL = flrdE ∧ flrL2R = 0 ∧
flrL = flrdL + flrfbL

END
PumpLeft BOTHl2r

. . . pumpctrl = BOTH ∧ rebalctrl = L2R
COMPLY

flrdL = cL? cL2R,E? flrdE ∧
flrL2R = cL? cL2R,R? flrL ∧
flrL = flrdL + flrL2R + flrfbL

END
PumpLeft BOTHr2l

. . . pumpctrl = BOTH ∧ rebalctrl = R2L
COMPLY

flrdL = (cL? + cR? cR2L,L?) flrdE ∧
flrL2R = 0 ∧ flrL = flrdL + flrfbL

END
END

Figure 12: Level SPtTI 4 Hybrid Event-B model of the fuel delivery system. Decomposition in space, then time: the time step
after the space step.
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Fig. 11 shows the space decomposition step of the current design approach. Named the SP 3
level (for space (first) level 3), the FuelPump Prj SP 3 project shows the retained level 1 compo-
nents, and introduces new machines Engine SP 3, PumpL SP 3, PumpR SP 3, and a new interface
FuelFlow SP IF 3. The latter just holds the variable flrdE delivered to the engine, since that is the only
variable that must be visible to all three machines. The remaining flow variables are the concern of one
or other of the pumps alone, so may be assigned to the relevant pump machine. The two pump machines,
PumpL SP 3 and PumpR SP 3, each connect to the FuelFlow SP IF 3 interface, but need only READ
the Central IF 1 since there are no new invariants involving the variables in Central IF 1 to take into
account.

An interesting point concerns how the decomposed system handles the collection of constraints such
as cL + cR = 1 from the WHERE clause of SupplyEngine in FuelFlow 2. In a single machine, these
are simply constraints imposed on a number of locally declared quantities, thus uncontroversial. In the
decomposed case, they involve a coupling between values that are now held in separate machines. Here,
we use the I/O paradigm of Hybrid Event-B to allow one machine (in this case, the engine machine,
Engine SP 3, for symmetry) to regard them as output quantities, cL! and cR!, and the other machines
involved, PumpL SP 3 and PumpR SP 3 to see them as input quantities, cL? and cR?. The Hybrid Event-
B I/O paradigm regards such variables as bound within the concurrent execution of the pliant events in all
three component machines,5 and thus the I/O becomes an instantaneous private communication stream
between a single writer and two readers. Since the details of the communication mechanism are invisible
to all other machines (because of the bound variable semantics), the communication is equivalent to a
continuous assignment as in the parent event.

One casualty of the decomposition being performed is the clause flrdE = flrdL + flrdR from the
SupplyEngine event in the FuelPump Prj 2 project. With a more complicated variable sharing strategy,
this could have been included, but in order to save space, we pursued a variable sharing strategy that made
this impossible. Still, we have not lost anything, since the fact in question is a consequence of other facts
in the development, specifically of (the modified presentation of) cL + cR = 1 and its bretheren.

Regarding the pump behaviours in the pliant event SupplyEngine of Fig. 8, the various behaviours
of the two pumps become separated in the decomposition. There are five of them per pump, and they
are shown in the pliant event PumpLeft of PumpL SP 3. Observe that because of the low level case
analysis in the parent event SupplyEngine, the different individual pump behaviours in SupplyEngine
had to be aggregated into the cases of PumpLeft. In a top down development in which natural physical
laws predominated in the pliant behaviours, this kind of need to aggregate would be less pronounced.
The right pump, PumpRight in machine PumpR SP 3 is a mirror image of the left pump case, and is not
shown in Fig. 11.

As in the undecomposed version of SupplyEngine, when the machines ran, the relevant cases from
each pliant event would be selected, moment by moment, according to the external demand and control
settings. In the case of Fig. 8, the SupplyEngine event is always enabled, and is restarted according
to the correct case, after every mode event preemption at runtime. In the partitioned case, the same
thing happens, but the mode event occurrences are synchronised across the component machines, and
the selection of the correct cases in the pump pliant events takes place independently in each component
machine.

Fig. 12 shows what happens when we follow the partition in space by a partition in time. The project
is FuelPump Prj SPtTI 4 (space then time, level 4). The main thing that happens is that the single pliant
event in each level 3 component machine gets split into its five cases, each now becoming an event in its

5The DECOMPOSES keyword relating the component events to their parent event SupplyEngine, guarantees that all the
needed events will indeed execute concurrently.
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own right. To ensure the right event gets scheduled only at the right time, each of the new events has to
have its own guard, constructed from the enabling clause in the parent event. Additionally, each event
has to have its own name, and these are also constructed from the enabling conditions in the parent event.
Thus PumpLeft OFFany RIGHToff RIGHTl2r, the pump inactive case, is named after the clauses of its
guard: pumpctrl = OFF (and rebalctrl irrelevant) or pumpctrl = RIGHT ∧ rebalctrl ∈ {OFF,L2R}.

Being events in their own right, each now needs a fully fledged appropriate header. This makes
their description very verbose compared with the earlier version. We show in full only the header for
PumpLeft OFFany RIGHToff RIGHTl2r. As well as the guard that we have mentioned, the header
needs to declare its refining event, its status, and the local input variables needed for the relevant c ?
values. For the other four events, we indicate only the guard terms, the rest of the header being identical.

Since there are now separate pliant events in the each of the two pump machines (rather than a single
pliant event reacting over time to changing conditions in each machine), their occurrences need to be
interleaved with suitable mode event occurrences. For this purpose a mode event ModeSkip S has been
introduced into the PumpL SPtTI 4 machine with a similar event in for the right pump. As is easily seen,
these events just skip, but they help ensure that the scheduling rules in Sections 3.1 and 3.2 are obeyed.
To ensure they are obeyed, their occurrences must be synchronised with the pilot’s commands, so the
earlier synchronisations are enlarged to include occurrences of the two pump machines’ ModeSkip S
events. Fig. 12 just shows the enlarged PumpOFF synchronisation.

10. Partitioning in Time First, then Space

In this section we consider the alternative approach: partitioning in time first, followed by parti-
tioning in space. We start again with Fig. 8, and decompose it a different way. Fig. 13 shows the time
decomposition. The project is now FuelPump Prj TI 3 (time (first) level 3). The general idea follows the
pattern described in the last step of the space-then-time approach, but this time there is only one machine
and a single plaint event. Thus, the most notable effect that can be seen is the increased verbosity due to
the replicated headers of all the constituent events. Since no decomposition in space has taken place yet,
the full header of the FuelFlow 2 machine’s SupplyEngine event is replicated (with the only variation
being the enabledness guard) in all the individual events of the decomposed machine. Again, we only
indicate the enabledness guard in each event to save space. Even then, the larger bodies of the decom-
posed events mean that there was not enough room to show the last two events, SupplyEngine BOTHr2l
and SupplyEngine LEFTr2l, in the figure. They are mirror images of the SupplyEngine BOTHl2r and
SupplyEngine RIGHTl2r events just above. As before, because we now have separate pliant events, we
need a synchronised skip mode event to interleave them, but only one, since there is still only one ma-
chine involved in the decomposition. This affects the synchronisations in the FuelPump Prj TI 3 project
in the expected way.

Doing the partition in space now, Fig. 14 shows the result, which is as expected. The many individual
events of the FuelPump Prj TI 3 project’s FuelFlow TI 3 machine get split into their left pump and right
pump parts. Fig. 14 shows only the left pump machine and its events. Given the number of events in the
FuelFlow TI 3 machine, and given that we strove to make both approaches as compatible as possible, it
is not surprising that the number of events in a pump machine derived in the time-then-space approach
exceeds the number derived in the space-then-time approach. Clearly the space-then-time approach is to
be preferred for the sake of economy. We comment further below.

11. The Approaches Compared, and a General Strategy

The mischievous reader might well complain at this point that the number of events in a pump
machine derived in the time-then-space approach does not really exceed the number derived in the space-
then-time approach, at least not if we had neglected to aggregate the pump behaviours in the space step
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PROJECT FuelPump Prj TI 3
REFINES FuelPump Prj 2

INTERFACES
Central IF 1

MACHINES
Pilot 1
Controller 1
FuelFlow TI 3

. . . . . .

. . . . . .
SYNCH(PumpOFF

REFINES PumpOFF)
Pilot 1.PumpOFF S,
Controller 1.PumpOFF S
FuelFlow TI 3.ModeSkip S

END
. . . . . .

END

MACHINE FuelFlow TI 3
REFINES FuelFlow 2
READS Central IF 1
PLIANT flrdE, flrdL, flrdR, flrL, flrR, flrfbL, flrfbR,

flrL2R, flrR2L

INVARIANTS
flrdE ∈ R ∧ flrdE ∈ {0} ∪ [ERTMIN . . .ERTMAX]
flrdL ∈ R ∧ flrdL ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrdR ∈ R ∧ flrdR ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrL ∈ R ∧ flrL ∈ {0} ∪ [RPRTMIN . . .RPRTMAX]
flrR ∈ R ∧ flrR ∈ {0} ∪ [RPRTMIN . . .RPRTMAX]
flrfbL ∈ R ∧ flrfbL ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrfbR ∈ R ∧ flrfbR ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrL2R ∈ R ∧ flrL2R ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrR2L ∈ R ∧ flrR2L ∈ {0} ∪ [PRTMIN . . .PRTMAX]

EVENTS
INITIALISATION

REFINES INITIALISATION
BEGIN

flrdE, flrdL, flrdR, flrL, flrR, flrfbL, flrfbR,
flrL2R, flrR2L := 0, 0, 0, 0, 0, 0, 0, 0, 0

END
ModeSkip S

STATUS convergent
BEGIN skip END

SupplyEngine OFFany
REFINES SupplyEngine
STATUS pliant
ANY flrCH

E , cL, cR, cL2R,E, cL2R,R, cR2L,E, cR2L,L

WHERE
flrCH

E ∈ R ∧
flrCH

E ∈ {0} ∪ [ERTMIN . . .ERTMAX] ∧
{cL, cR, cL2R,E, cL2R,R, cR2L,E, cR2L,L} ⊂ R ∧
{cL, cR, cL2R,E, cL2R,R, cR2L,E, cR2L,L} ⊂
(0 . . . 1) ∧

cL + cR = 1 ∧ |cL − cR |< H ∧
cL2R,E + cL2R,R = 1 ∧ cL2R,E/cL2R,R < H ∧
cR2L,E + cR2L,L = 1 ∧ cR2L,E/cR2L,L < H ∧
pumpctrl = OFF

COMPLY
flrdE = flrCH

E ∧ flrdE = flrdL + flrdR ∧
flrdL = flrfbL = flrL = flrL2R = 0 ∧
flrdR = flrfbR = flrR = flrR2L = 0

END
. . . . . .

. . . . . .
SupplyEngine BOTHoff

. . . pumpctrl = BOTH ∧ rebalctrl = OFF
COMPLY

flrdE = flrCH
E ∧ flrdE = flrdL + flrdR ∧

flrdL = cL flrdE ∧ flrdR = cR flrdE ∧
flrL = flrdL + flrfbL ∧ flrR = flrdR + flrfbR ∧
flrL2R = 0 ∧ flrR2L = 0

END
SupplyEngine LEFToff

. . . pumpctrl = LEFT ∧ rebalctrl = OFF
COMPLY

flrdE = flrCH
E ∧ flrdE = flrdL + flrdR ∧

flrdL = flrdE ∧ flrL = flrdL + flrfbL ∧
flrdR = flrfbR = flrR = flrR2L = 0 ∧
flrL2R = 0

END
SupplyEngine RIGHToff

. . . pumpctrl = RIGHT ∧ rebalctrl = OFF
COMPLY

flrdE = flrCH
E ∧ flrdE = flrdL + flrdR ∧

flrdL = flrfbL = flrL = flrL2R = 0 ∧
flrdR = flrdE ∧ flrR = flrdR + flrfbR ∧
flrR2L = 0

END
SupplyEngine BOTHl2r

. . . pumpctrl = BOTH ∧ rebalctrl = L2R
COMPLY

flrdE = flrCH
E ∧ flrdE = flrdL + flrdR ∧

flrdL = cL cL2R,E flrdE ∧
flrdR = (cR + cL cL2R,R) flrdE ∧
flrL2R = cL cL2R,R flrL ∧ flrR2L = 0 ∧
flrL = flrdL + flrL2R + flrfbL ∧
flrR = flrdR + flrfbR

END
SupplyEngine RIGHTl2r

. . . pumpctrl = RIGHT ∧ rebalctrl = L2R
COMPLY

flrdE = flrCH
E ∧ flrdE = flrdL + flrdR ∧

flrdL = flrfbL = flrL = flrL2R = 0 ∧
flrdR = flrdE ∧ flrR = flrdR + flrfbR ∧
flrR2L = 0

END
SupplyEngine BOTHr2l . . . . . .
SupplyEngine LEFTr2l . . . . . .

END

Figure 13: Level TI 3 Hybrid Event-B model of the fuel delivery system. Decomposition in time then space: the time step.27



PROJECT FuelPump Prj TItSP 4
REFINES FuelPump Prj TI 3

INTERFACES
Central IF 1
FuelFlow SP IF 3

MACHINES
Pilot 1
Controller 1
Engine SP 3
FuelFlow TItSP Left 4
FuelFlow TItSP Right 4

. . . . . .

. . . . . .
SYNCH(PumpOFF

REFINES PumpOFF)
Pilot 1.PumpOFF S,
Controller 1.PumpOFF S
FuelFlow TItSP Left 4.ModeSkip S
FuelFlow TItSP Right 4.ModeSkip S

END
. . . . . .

END

MACHINE FuelFlow TItSP Left 4
DECOMPOSES FuelFlow TI 3
CONNECTS FuelFlow SP IF 3
READS Central IF 1
PLIANT flrdL, flrL, flrfbL, flrL2R

INVARIANTS
flrdL ∈ R ∧ flrdL ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrL ∈ R ∧ flrL ∈ {0} ∪ [RPRTMIN . . .RPRTMAX]
flrfbL ∈ R ∧ flrfbL ∈ {0} ∪ [PRTMIN . . .PRTMAX]
flrL2R ∈ R ∧ flrL2R ∈ {0} ∪ [PRTMIN . . .PRTMAX]

EVENTS
INITIALISATION

REFINES INITIALISATION
BEGIN

flrdL, flrL, flrfbL, flrL2R := 0, 0, 0, 0
END

ModeSkip S
STATUS convergent
BEGIN skip END

SupplyEngine OFFany Left
DECOMPOSES SupplyEngine OFFany
STATUS pliant
ANY cL?, cL2R,E?, cL2R,R?
WHERE

cL?, cL2R,E?, cL2R,R? ∈ R,R,R ∧
pumpctrl = OFF

COMPLY
flrdL = flrfbL = flrL = flrL2R = 0

END
SupplyEngine BOTHoff Left

. . . pumpctrl = BOTH ∧ rebalctrl = OFF
COMPLY

flrdL = cL flrdE ∧ flrL = flrdL + flrfbL ∧
flrL2R = 0

END
. . . . . .

. . . . . .
SupplyEngine LEFToff Left

. . . pumpctrl = LEFT ∧ rebalctrl = OFF
COMPLY

flrdL = flrdE ∧ flrL = flrdL + flrfbL ∧
flrL2R = 0

END
SupplyEngine RIGHToff Left

. . . pumpctrl = RIGHT ∧ rebalctrl = OFF
COMPLY

flrdL = flrfbL = flrL = flrL2R = 0
END

SupplyEngine BOTHl2r Left
. . . pumpctrl = BOTH ∧ rebalctrl = L2R

COMPLY
flrdL = cL cL2R,E flrdE ∧
flrL2R = cL cL2R,R flrL ∧
flrL = flrdL + flrL2R + flrfbL

END
SupplyEngine RIGHTl2r Left

. . . pumpctrl = RIGHT ∧ rebalctrl = L2R
COMPLY

flrdL = flrfbL = flrL = flrL2R = 0
END

SupplyEngine BOTHr2l Left . . . . . .
SupplyEngine LEFTr2l Left . . . . . .

END

Figure 14: Level TItSP 4 Hybrid Event-B model of the fuel delivery system. Decomposition in time then space: the space step
following the time step.
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of the space-then-time approach, machine PumpL SP 3, event PumpLeft. Indeed this is true. Without
the aggregation, and given the intentional compatibility of the two approaches, we would have arrived at
exactly the same result, modulo renaming. What has our comparison achieved then?

The answer depends on a range of factors. The main one would appear to be the extent to which, in a
top down development strategy, pliant behaviours are most naturally given in terms of universal physical
laws (e.g. the Ohm’s Law example give earlier), or whether they arise via a more detailed case analysis.
In the former case, the kind of aggregation we encountered would not naturally be needed, since the more
detailed descriptions of the pliant behaviour would not have been given yet at an early enough stage of
development. In the latter case, some aggregation might well be needed, if the system was described via
cases.

Nevertheless, even in our example development, if we wished to aggregate at the last stage of the
time-then-space approach, to eliminate the redundancy of pump events which had semantically identi-
cal bodies (this being in order to achieve the same granularity of description as in the space-then-time
approach), the task would be rendered more difficult because the preceding time decomposition intro-
duced naming conventions for the various events that obscured their essential identity. This is a general
phenomenon that would be present in any such development, and indicates that the space-then-time ap-
proach offers some technical advantages, especially when it is to be supported by mechanisation, for
which inferring the needed semantic identity could prove challenging. In general, it is preferable to
avoid the potential combinatorial explosion that the generation of redundant events would create event if
the identity detection problem could be overcome by mechanisation.

Therefore, building on the insights gained in earlier Hybrid Event-B development case studies and
enhancing them with the lessons learned here, we can recommend a Hybrid Event-B development strat-
egy as follows.

• Start by developing the mode view of the system. Use a default pliant event such a PliTrue to
ensure correct semantics. Restrict refinements to mode events only, until it becomes appropriate
to introduce nontrivial pliant behaviour.

• Introduce additional decomposition and synchronisation into the system model as needed, to per-
mit each self-contained piece of physical apparatus to be contained in a machine of its own.

• Introduce the required nontrivial pliant behaviours into the various machines of the system, profit-
ing from the decomposition to avoid the risk of combinatorial explosion in the pliant events.

• Continue to refine until the desired level of detail has been achieved.

The above constitutes the culmination of our deliberations about the optimal approach to the use of the
structuring facilities of Hybrid Event-B.

12. The Fuel System Revisited

We are now in a position to comment on the fuel system case study in the light of the enriched de-
composition framework of Section 5. Firstly, it is clear that the elaboration of mode event decomposition
in Section 5 makes no impact, since during the decomposition steps, the relevant machines only had triv-
ial mode events. However, the decomposition of pliant events in the case study conforms to the scheme
described in Section 5, in the following manner.

Firstly, the loss of flrdE = flrdL +flrdR noted in Section 9 is covered by the approach in Section 5. As
argued in Section 9, the conjunction of the COMPLY clauses in the events that the decomposition step
produced is equivalent to the originating COMPLY clause.
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Secondly, in each machine that is decomposed in space, the comply clauses of the pliant event(s)
in question can easily be manipulated into the form

∧
i Ai ⇒ Bi, where the Ai are mutually exclusive

and the Bi are also mutually exclusive. Taking into account all the mutual exclusivity properties of
all the various events, and also the model invariants that hold, implies that the form

∧
i Ai ⇒ Bi can

be rewritten to
⊕

i Ai ∧ Bi, which is the form required for the POs (5) and (6) to be applicable. The
detailed discussion of the case study in earlier sections now allows us to conclude that the decompositions
performed can be justified on formal grounds according to the scheme described above.

13. Related Work

Hybrid Event-B is similar to a number of hybrid systems formulations in the literature. These
have been studied intensively for many years, and the literature by now is large. Some of the earliest
work includes [39, 6, 7, 32, 37], followed shortly afterwards by works such as [38, 27, 28, 49] and
[30, 43, 25, 11]. Slightly later formulations include [37, 21, 33, 34, 24, 8, 23, 26]. Particular note-
worthy is [22], which surveys a large number of these formulations and the tools that support them. A
more contemporary overview of many of these approaches is [45]. A large body of work has appeared
in the International Conference on Hybrid Systems: Computation and Control series of international
conferences, and nowadays we have the CPS Week major annual meeting.

These aside, closest to our approach is the KeYmaera tool described in [41] which also bases its
reasoning on properties of symbolic representations of hybrid systems. While the KeYmaera tool accepts
relatively arbitrary programs of discrete and continuous transitions, and reasons about them using an
appropriate dynamic logic, the Hybrid Event-B approach is focused on safety properties, and its suite of
proof obligations is designed to inhibit (as far as possible) the writing of models which are unphysical.
(For example successive instantaneous transitions taking place at the same time point are prevented.)

Most approaches to hybrid and cyberphysical systems can be located in a spectrum that ranges from
simulation to verification. Simulation is the easiest and most comprehensive approach since it is based on
widely applicable algorithms, while verification suffers from the fact that any language that is expressive
enough to encompass a significant portion of hybrid behaviour is highly undecidable. Since decidability
is highly prized in the verification community, verification based approaches pay the price by severely
curtailing expressivity. Even then, the needed decision procedures often have high complexity, adding
yet more difficulties.

For approaches more heavily slanted towards simulation, their semantics can be problematic. While
the discrete side of the approach is invariably captured precisely enough, the side of the formalism
that deals with the continuous side is often treated in much less depth. The standard texts [5, 36] give
some indication of this. Typically the continuous semantics is either: precise but severely curtailed in
expressivity; or is more encompassing regarding the admitted continuous behaviour but significantly
less precise regarding its foundations — in extreme cases delegating all aspects of continuous behaviour
to, e.g., the semantics of a simulation tool.6 This puts effective and dependable reasoning about the
behaviours that can be described out of reach.

The extent to which any of these characteristics is present in any given formalism varies widely, of
course. Our own approach for Hybrid Event-B attempts to bypass some of these difficulties by advocating
a top down methodology. By starting with simple models, and designing the properties that they should
satisfy along with them (rather than trying to discover those post hoc), and enriching both along the
way to the final system, the aim is to keep the tractability of all aspects of design and verification much

6In fact, the behaviour of commercial simulation tools for physical modelling is often highly customer-driven, and makes
no real contact with any foundational semantic concerns [40].
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higher than if one was confronted with the final system outright — without any clues as to its underlying
structure or design motivations.

14. Conclusions

In this paper we started by outlining a simplified fuel supply system for a small aircraft. This is
a system which contains a preponderance of physical apparatus, which was useful in that it provided
a good vehicle for the issues that we wanted discuss, specifically the manipulation of nontrivial pliant
behaviour through refinement and decomposition. We gave an overview of the essential elements of
Hybrid Event-B [18, 19], including what is critical for multi-machine developments, and extended the
decomposition approach of [19] to give greater flexibility in practice, which we used later. Then we
started to develop the system according to the strategy of attending to the mode event structure first,
a strategy that has already proved useful previously. We developed the system to the point where the
pliant behaviour of the pump system needed to be brought into the models. We did this in a manner that
allowed for fairly straightforward modelling, so as not to obscure the structural issues that were the main
focus of our attention here, and that allowed for straightforward manual confirmation of the verification
conditions.

Our modelling was based on a case analysis of the pliant behaviour, which had the merit of bringing
into the model all the detail needed later, at a relatively early stage of the work. This set the scene for an
exploration of decomposition approaches referred to as partition in space and partition in time, illustrated
for the principal events affected in Fig. 9 and Fig. 10. We pursued the two alternative orders of partition
in order to elucidate their pros and cons. After exploring these, we came up with a standardised general
strategy for doing developments of such complex systems in Hybrid Event-B, which we described in
Section 11. This offers concrete recommendations for making best use of the technical devices made
available in the Hybrid Event-B formalism, particularly in the multi-machine case. Again, in this part
of the work, the aim was to keep the verification task to a minimum, easily confirmed by inspection, by
requiring the pliant behaviour to only satisfy simple implicit conditions.

Aside from the beneficial structural insights just indicated, the case study work in this paper consti-
tutes a significant exercise in use of the multi-machine facilities of Hybrid Event-B within the confines
of a single self-contained account, being neither too big to describe in reasonable detail nor too small
to be uninterestingly trivial, nor too challenging to verify by inspection. This confirms the utility and
appropriateness of the framework.
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[21] Bender, K. and Broy, M. and Péter, I. and Pretschner, A. and Stauner, T., Model Based Development
of Hybrid Systems: Specification, Simulation, Test Case Generation, in: Modelling, Analysis, and
Design of Hybrid Systems, volume 279, Springer, LNCIS, 2002, pp. 37–51.

[22] L. Carloni, R. Passerone, A. Pinto, A. Sangiovanni-Vincentelli, Languages and Tools for Hybrid
Systems Design, Foundations and Trends in Electronic Design Automation 1 (2006) 1–193.

[23] A. Cimatti, M. Roveri, Requirements Validation for Hybrid Systems, in: Proc. CAV-09, volume
5643, Springer, LNCS, 2009, pp. 188–203.

[24] E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, M. Theobald, Verification of Hybrid Sys-
tems Based on Counterexample-Guided Abstraction Refinement, in: Proc. TACAS-03, volume
2619, Springer, LNCS, 2003, pp. 192–207.

32
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