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Abstract—In real hybrid and cyberphysical systems, noise
is a constant accompaniment to (and distraction from) the
deterministic behaviour that is ideally desired. Nevertheless, most
formalisms for such systems restrict to the deterministic realm.
This also includes Hybrid Event-B, an extension of Event-B
that caters for continuous behaviour as first class citizen. The
incorporation of stochastic behaviour into Hybrid Event-B is
investigated. Some essential elements of this enhancement are
discussed, and a small case study is explored.

I. INTRODUCTION

In today’s ever-increasing interaction between digital devices
and the physical world, formalisms are needed to express the
more complex behaviours that this allows. Furthermore, these
days, it is no longer sufficient to focus on isolated systems,
as it is more and more the case that families of such systems
are coupled together using communication networks, and can
thus influence each others’ working. So today Cyber-Physical
Systems [1], [2], [3], [4] are the primary focus of attention.
These new kinds of system throw up novel challenges in terms
of design technique, as it is proving more and more difficult
to ignore the continuous characteristics in their behaviours.

As soon as one contemplates including continuous be-
haviour in an essential way in the modelling of hybrid and
cyber-physical systems, the problem of noise rears its head.
And it does so in a manner that is qualitatively different to the
role of noise in purely discrete systems. In discrete systems,
the discrete state values are represented (physically) by well
separated physical configurations of the implementation; it is
the role of the designers of the implementation platform to
ensure that this is so. Hence, although there is always some
noise in any implementation, in a discrete system, its role
by the definition of what we mean by a discrete system is
sufficiently insignificant that it can be neglected.

By contrast, continuous behaviour proceeds by ‘infinitesi-
mally small steps’ (a slogan that must be taken with a pinch
of salt in the context of normal engineering descriptions). No
matter how small the intrusion of noise into such a continuous
process, in principle, the infinitesimally small increments of
continuous behaviour become small enough that the noise
fluctuations are not negligible in comparison with them. That
said, it may nevertheless be the case that the macroscopic
consequences of noise can be neglected in specific cases. Our
point though, is that this is not true a priori, but must be
established on a case by case basis.

Our focus in this paper is to explore the impact of these
observations on the popular discretely based B-Method mod-
elling and verification framework [5], [6]. Increasingly, appli-
cations of the B-Method’s more modern incarnation, Event-B
[6], involve continuous behaviour in some form, leading to
the impingement of the issues mentioned on the development
activity.

Hybrid Event-B [7] has been introduced to bring continuous
capabilities to the traditionally based discrete Event-B, in order
to address some of the challenges referred to. For applications
of this formalism see [8], [9], [10]. As described in the next
section, traditional discrete Event-B events serve as the ‘mode
events’ that interleave the ‘pliant events’ of Hybrid Event-B.
The latter express the continuously varying behaviour of a
hybrid formalism that includes both kinds of event. In this
manner, a rigorous link can be made between continuous and
discrete update, as needed in contemporary applications.

In [7], and in the applications of Hybrid Event-B to date,
continuous behaviour is idealised and noise-free, and so is re-
stricted to situations in which such a perspective is legitimate.
In this paper we contemplate extending the framework of [7]
to allow noise to occur as a first class citizen.

In the kinds of scenario that the Hybrid Event-B formalism
is most useful for, as exemplified by the kinds of automotive
and similar applications in [8], [9], [10], the mode transitions
are (almost) all brought about by stimuli from the environment,
such as specific user actions. Accordingly, in this initial study,
mode transitions remain deterministic, outside the stochastic
domain, and we confine the stochastic aspects of our work
to noise processes acting during the pliant transitions, even
though there is no theoretical necessity for such a restriction.

The rest of the paper is as follows. Section II gives a brief
description of non-stochastic Hybrid Event-B that is sufficient
for the remainder. Section III introduces the stochastic per-
spective, and with that background, the impact on the Hybrid
Event-B is described. Section IV covers a small case study.
Section V concludes.

II. AN OUTLINE OF CONVENTIONAL HYBRID EVENT-B

In this section we give an overview of conventional, i.e. non-
stochastic, Hybrid Event-B. In Fig. 1 we see a bare bones
Hybrid Event-B machine, HyEvBMch. To save space later, we
also include in the syntactic template of Fig. 1, those additional
elements necessitated by the incorporation of the stochastic



MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x, y
STOCHASTIC zI , zS
VARIABLES u
WHITE W
INVARIANTS

x, y ∈ R,R
u ∈ N
P[ψI(zI)] ≤ . . .
E[ψS(zS)] ≤ . . .

. . . . . .

. . . . . .
EVENTS

INITIALISATION
STATUS ordinary
WHEN

t = 0
THEN

clk := 1
x, y, u := x0, y0, u0
zI := µ[zI,0]
zS := U[0 . . . 1]

END
. . . . . .

. . . . . .
MoEv

STATUS ordinary
ANY i?, l, o!
WHERE grd(x, y, u, i?, l, t, clk)
THEN

x, y, u, clk, o! :| BApred(x, y, u,
i?, l, o!, t, clk, x′, y′, u′, clk′)

END
. . . . . .

. . . . . .
PliEv

STATUS pliant
INIT iv(x, y, t, clk)
WHERE grd(u)
ANY i?, l, o!
COMPLY

BDApred(x, y, u, i?, l, o!, t, clk)
SOLVE

D x = φ(x, y, u, i?, l, o!, t, clk)
y, o! := E(x, u, i?, l, t, clk)
I zI = φI(zI . . .) + σI(zI . . .)W
S zS = φS(zS . . .) + σS(zS . . .)W

END
END

Fig. 1. A schematic Hybrid Event-B machine, including stochastic elements.

dimension. However, in this section, we just skip over them,
and return to discuss them more thoroughly in Section III-B.

HyEvBMch starts with declarations of time and of a clock. In
Hybrid Event-B time is a first class citizen in that all variables
are functions of time, whether explicitly or implicitly. However
time is special, being read-only, never being assigned, since
time cannot be controlled by any human-designed engineering
process. Clocks allow a bit more flexibility, since they are
assumed to increase their value at the same rate that time
does by default, but may be (re)set during mode events (see
below).

(Non-stochastic) variables are of two kinds. There are mode
variables (like u, declared as usual) which take their values
in discrete sets and change their values via discontinuous
assignment in mode events. There are also pliant variables
(such as x, y), declared in the PLIANT clause, which usually
take their values in topologically dense sets (normally R) and
which are allowed to change continuously, such change being
specified via pliant events (see below).

Next are the invariants. These resemble invariants in discrete
Event-B, in that the types of the variables are asserted to be
the sets from which the variables’ values at any given moment
of time are drawn. More complex invariants are similarly
predicates that are required to hold at all moments of time
during a run.

Then we get to the events. The INITIALISATION has a
guard that synchronises time with the start of any run, while
all other variables are assigned their initial values in the usual
way. As hinted above, in Hybrid Event-B, there are two kinds
of event: mode events and pliant events.

Mode events are direct analogues of events in discrete
Event-B. They can assign all machine variables (except time
itself). In the schematic MoEv of Fig. 1, we see three pa-
rameters i?, l, o!, (an input, a local parameter, and an output
respectively), and a guard grd which can depend on all
the machine variables. We also see the generic after-value
assignment specified by the before-after predicate BApred,
which can specify how the after-values of all variables (except
time, inputs and locals) are to be determined. (Stochastic
variables can also figure in mode events, in the same way as
non-stochastic variables, though we have not mentioned them
directly in MoEv.)

Pliant events specify the continuous evolution of the (non-

stochastic, for the discussion of this section) pliant variables
over an interval of time. The schematic pliant event PliEv
of Fig. 1 shows the structure. There are two guards: there is
iv, for specifying enabling conditions on the pliant variables,
clocks, and time; and there is grd, for specifying enabling
conditions on the mode variables. The separation between the
two is motivated by considerations connected with refinement.

The body of a pliant event contains three parameters i?, l, o!,
(once more an input, a local parameter, and an output respec-
tively) which are functions of time, defined over the duration
of the pliant event. The behaviour of the event is defined by the
COMPLY and SOLVE clauses. The SOLVE clause specifies
behaviour fairly directly. For example the behaviour of pliant
variable y and output o! is given by a direct assignment to the
(time dependent) value of the expression E(. . .). Alternatively,
the behaviour of pliant variable x is given by the solution of the
first order ordinary differential equation (ODE) D x = φ(. . .),
where D indicates differentiation with respect to time. (In fact
the sematics of the y, o! = E case is given in terms of the ODE
D y,D o! = D E, so that x, y and o! satisfy the same regularity
properties.) The remaining lines of the SOLVE clause refer
to stochastic variables. We postpone discussion of these to
Section III.

The COMPLY clause can be used to express any additional
constraints that are required to hold during the pliant event
via its before-during-and-after predicate BDApred. Typically,
constraints on the permitted range of values for the pliant
variables, and similar restrictions, can be placed here.

The COMPLY clause has another purpose. When specifying
at an abstract level, we do not necessarily want to be concerned
with all the details of the dynamics — it is often sufficient
to require some global constraints to hold which express the
needed safety properties of the system. The COMPLY clauses
of the machine’s pliant events can house such constraints
directly, leaving it to lower level refinements to add the
necessary details of the dynamics.

The semantics of (the non-stochastic part of) a Hybrid
Event-B machine is as follows. It consists of a set of system
traces, each of which is a collection of functions of time, ex-
pressing the value of each machine variable over the duration
of a system run. (In the case of HyEvBMch, in a given system
trace, there would be functions for non-stochastic variables
clk, x, y, u, each defined over the duration of the run.)



Time is modelled as an interval T of the reals. A run starts
at some initial moment of time, t0 say, and lasts either for a
finite time, or indefinitely. The duration of the run T , breaks
up into a succession of left-closed right-open subintervals:
T = [t0 . . . t1), [t1 . . . t2), [t2 . . . t3), . . .. The idea is that mode
events (with their discontinuous updates) take place at the
isolated times corresponding to the common endpoints of these
subintervals ti, and in between, the mode variables are constant
and the pliant events stipulate continuous change in the pliant
variables.

Although pliant variables change continuously (except per-
haps at the ti), continuity alone still allows for a wide range
of mathematically pathological behaviours. To eliminate these,
we make the following restrictions and recommendations
which apply individually to every subinterval [ti . . . ti+1):

I Zeno: there is a constant δZeno, such that for all i needed,
ti+1 − ti ≥ δZeno. N. B. Since Zeno behaviour is a global
property, its prohibition cannot be enforced statically
without knowing the global reachability relation.

II Limits: for every variable x, and for every time t ∈ T ,
the left limit limδ→0 x(t− δ) written

−→
x(t) and right limit

limδ→0 x(t + δ), written
←−
x(t) (with δ > 0) exist, and for

every t, x(t) =
←−
x(t). [N. B. At the endpoint(s) of T , any

missing limit is defined to equal its counterpart.]
III Differentiability: The behaviour of every pliant variable

x in the interval [ti . . . ti+1) is given by the solution of a
well posed initial value problem D xs = φ(xs . . .) (where
xs is a relevant tuple of pliant variables and D is the
time derivative). “Well posed” means that φ(xs . . .) has
Lipschitz constants which are uniformly bounded over
[ti . . . ti+1) bounding its variation with respect to xs, and
that φ(xs . . .) is measurable in t.

Regarding the above, the Zeno condition is certainly a sen-
sible restriction to demand of any acceptable system, but in
general, its truth or falsehood can depend on the system’s full
reachability relation, and is thus very frequently undecidable,
so I is a recommendation rather than a condition that can be
imposed statically.

The stipulation on limits, with the left limit value at a time
ti being not necessarily the same as the right limit at ti, makes
for an easy interpretation of mode events that happen at ti. For
such mode events, the before-values are interpreted as the left
limit values, and the after-values are interpreted as the right
limit values. In fact, the right continuity we stipulate in II
places our behaviours in the space càdlàg (French: “continue
à droite, limite à gauche”). This space is of prime interest for
stochastic calculus, of which more in Section III, but for now
this is just a happy coincidence, and the limits issue could
quite easily be handled in different ways within the confines
of the non-stochastic formalism.

The differentiability condition guarantees that from a spe-
cific starting point, ti say, there is a maximal right open
interval, specified by tMAX say, such that a solution to the
ODE system exists in [ti . . . tMAX), and such that the solution
is absolutely continuous [11], [12]. Within this interval, we
seek the earliest time ti+1 at which a mode event becomes

enabled, and this time becomes the preemption point beyond
which the solution to the ODE system is abandoned, and the
next solution is sought after the completion of the mode event.

In this manner, assuming that the INITIALISATION event
has achieved a suitable intial assignment to variables, a system
run is well formed, and thus belongs to the semantics of the
machine, provided that at runtime:

• Every enabled mode transition is feasible, i.e. has an after-
state, and on its completion enables a pliant transition (but
does not enable any mode transition).
• Every enabled pliant transition is feasible, i.e. has a time-
indexed family of after-states, and EITHER:

(i) During the run of the pliant transition a mode tran-
sition becomes enabled. It preempts the pliant transi-
tion, defining its end. ORELSE

(ii) During the run of the pliant transition it becomes
infeasible: finite termination. ORELSE

(iii) The pliant transition continues indefinitely: nontermi-
nation.

Thus in a well formed run mode events alternate with pliant
events. The last event (if there is one) is a pliant event (whose
duration may be finite or infinite).

N. B. Many formalisms for hybrid systems permit a succes-
sion of mode events to execute before the next pliant event
runs (to use our terminology). We avoid this for a number of
reasons. Firstly, it spoils the simple picture that at each time,
each variable has a unique value, and the runtime semantics
of a variable is a straightforward function of time. Secondly,
it avoids having to define the final value of a succession of
mode events via a fixpoint calculation. Thirdly, and perhaps
most importantly, it maintains the discrete Event-B picture in
which events are (implicilty) seen as taking place at isolated
points of real time, insofar as Event-B behaviours are seen
as relating to the real world. We regard the overturning of
such unstated assumptions as particularly dangerous in an
engineering context — c.f. the Mars Lander incident, in
which the U.S. and European teams interpreted measurements
according to different units, without anyone ever thinking to
check which units were actually intended.

III. ADDING STOCHASTIC BEHAVIOUR TO HYBRID
EVENT-B

Adding a stochastic dimension to the conventional discrete
transition systems used for the majority of computing for-
malisms and applications has been intensively studied over
many years. From the large literature we just cite the popular
PRISM tool [13], and monograph [14]. Increasingly, other
formalisms are also adding probabilistic aspects to their func-
tionality, e.g. [15].

As noted in the Introduction, in this paper, we do not
examine this aspect in our extension of Hybrid Event-B,
since our primary focus is on applications where the mode



transitions happen to be non-stochastic.1 Rather, we restrict
our investigation to the inclusion of noise in the continuous
behaviours interleaving between individual discrete transitions.
This is the realm of stochastic calculus.

Stochastic calculus also has a long pedigree and a consid-
erable literature. Once a subject that was confined to math-
ematical probabilists and theoretical physicists, the discipline
underwent an explosion of interest when a stochastic calculus
approach led to the discovery of the Black-Scholes equation.
This equation, which won its discoverers the Nobel Prize for
Economics in 1997, proved to be the key to a principled way
to price financial derivatives.2 The huge importance of the
financial industry did the rest.

The enormous interest in stochastic calculus continues to
this day. Now, there is a bewildering variety of books on
stochastic calculus, and many earlier treatments of probability
have been expanded to include the topic in order to tap into
the huge popularity that stochastic calculus currently enjoys,
especially when it is slanted towards financial applications.
From the voluminous literature, we cite only [16], [17], [18],
[19], [20].

A. Some Stochastic Calculus Essentials

We start on familiar territory. Using conventional mathematical
notation, a first order ordinary differential equation can be
written in the following form:

dX
dt

= φ(t,X) (1)

where dX
dt is the conventional derivative of X (with respect to,

as it happens, time), and φ is well enough behaved. Then, the
usual global results follow (e.g. uniqueness of the solution,
and its continuity (also with respect to parameter variation)).
Now, we want to amplify this picture to include a noise term
that can affect the solution:

dX
dt

= φ(t,X) + “noise” (2)

The question now arises, how to interpret the noise term.
To cut a long story short, an interpretation of noise as
mathematically formal white noise is possible. Unfortunately,
mathematical white noise is discontinuous and of unbounded
variation everywhere. The prospects of doing relatively normal
calculations with such an object disappear. If you sweat the
mathematics hard enough, the white noise idea can be made
to work, but the white noise process has to be constructed
as a probability measure on the space of tempered distribu-
tions. This is conceptually very exotic, even by the extremely
generous standards of conventional stochastic calculus.

Instead, the usual approach is to proceed as follows. We
observe that, in general, when we integrate some ‘function’, it
becomes less irregular — typically, a discontinuous function

1This is just for convenience in this study. There would be no reason to
insist on it in principle.

2Actually, only Scholes and Merton (who also worked on the problem) got
the Nobel Prize. Black died in 1995, so was ineligible to receive it.

becomes continuous, a continuous function becomes differen-
tiable, etc. If we thus consider the ‘integral’ of the white noise
process, we are able to put aside the distributional machinery,
and confine attention to more conventional probabilistic tech-
niques. The formulation (2) is transmuted to:

dX = φ(t,X)dt + σ(t,X)dW (3)

In (3), which is really a shorthand for an easier to define
integral equation relating a finite increment of X to a finite
increment of φ combined with a finite increment of noise,

X(tH)− X(tL) =
∫ tH

tL
φ(t,X)dt +

∫ tH

tL
σ(t,X)dW (4)

W is a standard Wiener process (also known as Brownian
motion), a mathematically tractable ‘integral’ of the formal
white noise mentioned above.

The Wiener process is of unbounded variation and nondif-
ferentiable (almost) everywhere, but may, with some care, be
constructed to be continuous. This encourages the possibility
of integrating it, as (4) would suggest.

Unfortunately, defining the integral of W (and especially
of σW) brings surprises. Although W is continuous, when
σ depends nontrivially on W (as (4) suggests is permis-
sible), W varies so violently that the choice of sample
point tθj in a Riemann-Stiltjes approximation to the integral,∑tH

tL σ(tθj ,X(tθj))W(tj+1 − W(tj), where tj ≤ tθj ≤ tj+1,
makes a macroscopic difference to the answer as the limit
(tj+1 − tj) → 0 is taken. The leftmost choice, tθj = tj, yields
the Itô integral, while the midpoint choice, tθj = (tj + tj+1)/2,
yields the Stratonovich integral, these being the two most
commonly used, out of an infinity of possible (and different)
definitions.

For the stochastic differential equations that thus arise, with
mild constraints on φ and σ, existence and uniqueness of
solutions can be proved in a suitable sense. In fact the same
conditions we imposed in Section II will do, i.e. measurability
in time and the Lipschitz property in state variables. The
only difference is that the solutions that are thus guaranteed
are merely continuous in time (instead of being absolutely
continuous). This is due to the violence of the fluctuations in
W, and corresponds to the fact that despite being ‘integrals
of (3)’ these solutions are not, in any conventional sense,
differentiable anywhere. In fact the approximation process by
which the solutions are constructed, converges only in the L2

sense, rather different to the pointwise convergence for normal
differential equations.

In the context of normal differential equations, the general
existence and uniqueness theorems that apply, promise far
more solutions than can ever be calculated by analytical
techniques. In the same manner, the general existence and
uniqueness theorems for stochastic differential equations also
promise immeasurably more than calculation can deliver.
Ironically, this simplifies the task for automated approaches
based on calculation, since there is simply a lot less that
can be calculated. (Correspondingly, there is greater emphasis



on simulation based approaches to stochastic calculus, the
techniques for which have been highly developed.)

Mostly, the stochastic differential equations that yield to
analytic calculation are similar to restricted cases of analyti-
cally solvable ordinary differential equations. For instance, a
class of scalar equations in linear form can be solved by a
variation of parameters technique. The possibilities become
even more restricted when scalars become vectors, and as
multiple sources of noise are allowed.

The range of possibilities for closed form solutions is
enlarged somewhat by permitting changes of variables. If we
know a solution X(t) to (3), and we have a function:

Y(t) = g(t,X(t)) (5)

then Y is a solution of:

dY =
∂g
∂t

dt +
∂g
∂x

dX +
1
2
∂2g
∂x2

(dX)2 (6)

where (dX)2 is calculated by squaring (3), and then simplify-
ing using the rules:

(dt)2 = (dt)(dW) = (dW)(dt) = 0 (7)

(dW)2 = dt (8)

provided the various derivatives of g exist in the usual sense.
The system (6)-(8) constitutes what is known as the Itô
formula, and is applicable when stochastic integrals are under-
stood in the Itô sense. When stochastic integrals are understood
in the Stratonovich sense (i.e. a Stratonovich interpretation is
imposed on the integral in (4)), the rather disquietening second
order term in (6) is removed and we get a more normal chain
rule. We will see a small example of these things in our case
study below.

It might appear improbable that a framework constructed via
mathematical contortions as extreme as those just described
should have any relevance to applications in the real world.
The fact is, however, that it does. The principal reason for this
is that the idealised stochastic processes that the mathematics
creates have independent increments on disjoint time intervals.
And whereas such exotic properties as nondifferentiability
everywhere have little relevance to physical applications, in
practice such details make little difference on macroscopic
timescales. By contrast, the independence on disjoint time
intervals is a good reflection of the properties of physical noise,
dramatically enhancing the utility of these models.

B. Stochastic Hybrid Event-B

The discussion of Section III-A can be restated in the follow-
ing manner. While we remain in the realm of normal differ-
ential equations, all of whose ingredients are continuous in all
variables, the terms appearing in such a differential equation
stand for themselves. In other words, they represent directly
(i.e. are merely notations for) elements of the mathematical
semantic domain; and the equality between the left and right
hand sides of such a differential equation denotes the literal
identity of the same real function represented by the notations
appearing on either side of it.

However, when we contemplate extending the idea of a
differential equation to increasingly irregular behaviours, then
the procedures by which we give rigorous meaning to what
we intuitively wish to understand by the notational elements
of a differential equation become increasingly complex and
unituitive. In other words, the differential equation itself be-
comes a syntax, for which the procedures referred to give the
semantics.3

As with almost all nontrivial constructions in real analysis,
the procedures that we are referring to, define the desired
semantics in the sense of Platonic mathematics — i.e. non-
constructive arguments are fully utilised when needed in the
construction of the desired limits. And as we noted, the pro-
portion of instances of such arguments that can be instantiated
in symbolic calculations is rather small.

Again referring to conventional mathematical discourse,
much is inferred from the context, and the notations for
differential equations are modified as much or as little as
is necessary to make the discourse as a whole unabiguous.
For instance, when both Itô and Stratonovich integrals are
mentioned in the discourse, the notation

∫ tH
tL
σ(t,X) ◦ dW is

often used for the latter to distinguish them.
In the case of a formal notation like the extension of Hybrid

Event-B that we are contemplating, we need to be precise
enough about such notational matters that we become sure
that the underlying formal system implementing the semantics
(in a tool, for example) does the right thing. Moreover, when
we have a situation in which there is a possible choice in
the matter of semantics, and that that choice is of relevance to
users of the formal notation (such as in the case just mentioned
of the choice between Itô and Stratonovich semantics for
SDEs), then the notation must be rich enough that the desired
semantics can be indicated unabiguously through the syntax.

We return to the schematic syntax of Fig. 1 to fill in the
discussion of the elements passed over in Section II. The first
item omitted from Section II is the ‘STOCHASTIC zI , zS’ dec-
laration. This declares zI and zS to be stochastic variables, with
sample space constructed from R. The latter point precludes
the need to declare their type in the INVARIANTS clauses.

The next item of omitted syntax occurs in the decla-
ration ‘WHITE W’. This is a reference to Wiener noise,
the distribution (essentially a time parameterised Gaussian)
that independent increments of standardised Wiener noise are
assumed to obey. The fact that we say ‘WHITE’ instead of
‘WIENER’ will be explained shortly. While we are discussing
this, it is as well to mention that Wiener noise is not the only
kind that is considered in stochastic calculus. Although we
confine our treatment here to the Wiener case, there are also
other distributions that are used in appropriate circumstances,
such as the Cauchy distributions and the Lévy distributions.

3As an example, when we loosen the requirement on the right hand side
of an ordinary differential equation to mere measurability in time (rather
than actual continuity) –as we do in Section II– the solutions generated are
guaranteed to have a derivative only almost everywhere; i.e. the equality
between the left and right hand sides of the differential equation holds only
up to a set of measure zero, and on this set of measure zero the left hand
side of the differential equation is meaningless.



(These share, along with the Gaussian distribution, needed
self-similarity properties.) For extensions of Hybrid Event-B
beyond what we consider here, we could introduce additional
declarations ‘CAUCHY C’ or ‘LEVY L’ to name them.

The next items of omitted syntax occur in the INVARI-
ANTS clauses. The declaration P[ψI(zI)] ≤ . . . states that the
probability of ψI(zI) is always less than some unspecified ex-
pression. Likewise E[ψS(zS)] ≤ . . . states that the expectation
value of ψS(zS) is always less than some similarly unspecified
expression. The symbols P and E economise on the need to
write out the definitions that specify these quantities in detail.
Further symbols denoting other probabilistic quantities could
be introduced in a similar fashion if needed. Note that it is
unlikely that a stochastic variable like zI or zS will occur ‘raw’
(i.e. outside the context of some statistic such as an expectation
or a probability estimate), in an invariant. If the sample space
of a stochastic variable were bounded, then a property like
z ≤ BOUND would be provable (rather trivially, by definition).
However the Wiener noise we focus on is unbounded, so
useful finite properties only arise through the use of summative
statistics such as expectations.

The next omitted syntactic items occur in the
INITIALISATION event, after the initialisations of the
non-stochastic variables. The line ‘zI := µ[zI,0]’ indicates
that the initial distribution of the stochastic variable zI is
a single point mass distribution centred at zI,0. The line
‘zS := U[0 . . . 1]’ indicates that the stochastic variable zS

is initially distributed uniformly over the interval [0 . . . 1].
names for other common distributions may be introduced
in a similar way. Also, more complex expressions for intial
distributions can be written using lambda notation, for
instance: (λ s•Prob(s)) where s ranges over the sample space
(which is always R).

The next pieces of omitted syntax occur in the SOLVE
clause of the PliEv event. After the lines that define the
behaviour of the deterministic variables, x, y, o!, there are two
lines that stipulate how the stochastic variables zI and zS

evolve. To save clutter, we eliminate the differentials from a
representation like (3), giving a syntax closer to (2), although
the content is always treated as though it was like (3).

Thus the line ‘I zI = φI(zI . . .) + σI(zI . . .)W’ defines the
behaviour of zI via an Itô stochastic differential equation.
So: ‘I’ indicates Itô; ‘φI’ (i.e. the terms not involving W
multiplicatively) are the deterministic (or drift) components
of the equation; and ‘σIW’ (i.e. the terms involving W multi-
plicatively) denote the noise terms. The lack of differentials in
the notation make the equation resemble (2), so it is possibly
less confusing syntactically to refer to W as white noise via
the earlier declaration ‘WHITE’. However, since W is only a
name (i.e. it is just an individual symbol labelling the noise
terms), there is no barrier to interpreting the information in
the equation ‘I zI = . . .’ as though it were in the standard
differential form (3), in which case reading W as ‘Wiener’
would make sense. Having the same initial letter for both
names is convenient.

An important point to note is that deterministic equations,

like D x = . . . must not feature raw stochastic variables. Any
expression featuring a stochastic variable is itself a random
variable, with a distribution over the same sample space.
However, statistics like expectations remove this variability
(even if expectations are viewed as (constant) random variables
in probability theory), so the inclusion of terms like E[zI ] in
the right hand side of D x = . . . would be permissible.

A related observation is that the BDAPred predicate that
can occur in a pliant event like PliEv would be subject to
the same restrictions regarding stochastic variables as arose
in the context of invariants, so that raw stochastic variables
would not be expected to occur. Unlike invariants though, the
contents of BDAPred could contain time-varying properties.

Turning to the line ‘S zS = φS(zS . . .) + σS(zS . . .)W’, it is
analogous to the Itô case. It simply stipulates, via the symbol
‘S’, that the stochastic differential equation is to be interpreted
according to Stratonovich semantics. Otherwise, things are as
previously.

As noted before, there are also other cases of stochastic
differential equations which are not covered in the preceding
account. However, they will require syntactic devices very
similar to those we have described, so their omission here
is not serious from the point of view of designing the overall
shape of the extended Hybrid Event-B formalism.

IV. A SIMPLE CASE STUDY

Fig. 2. A recent
buffer collision in
the UK.

In this section we present a simple case
study to illustrate the preceding techniques.
Our case study is based on a toy train stop-
ping application. Adhesion of the train to
the track is a serious problem for the man-
agement of railways. Automated systems
for calculating the train’s position from on-
board instrumentation can be thrown awry
by slippage between the wheels and the
track. Also, trains approach station plat-

forms extremely slowly, in order that uncertainties in the
behaviour of the braking system do not cause the train to
overshooot, especially if there is a risk of hitting a buffer.
(See Fig. 2 for an extreme case of overrun, contributed to by
brake failure.)

Here, we model the uncertainty of braking by adding a noise
term to the desired ideal deceleration equation of motion. The
ideal, deterministic braking law is thus:

dV = −a dt (9)

in which V is the current velocity, and a is the (constant)
deceleration. The braking law has been written in differential
form, ready for what is to follow.

We add a noise term to get:

dV = −a dt + σVdW (10)

In (10) the deterministic part is still −a, but there is also the
noise term σVdW. The noise term is multiplicative (i.e the
noise term dW is multiplied by the dependent variable V),



MACHINE TrainBrakingMch
TIME t
STOCHASTIC V
VARIABLES mode
WHITE W
INVARIANTS

mode ∈ {GO, STOP}
. . . . . .

. . . . . .
EVENTS

INITIALISATION
STATUS ordinary
WHEN

t = 0
THEN

mode := GO
V := µ[V0]

END
. . . . . .

. . . . . .
Brake

STATUS pliant
WHERE mode = GO
SOLVE

I V = −a + σVW
END

. . . . . .

. . . . . .
Stop

STATUS ordinary
WHEN V = 0
THEN

mode := STOP
END

Stationary
STATUS pliant
WHEN mode = STOP
COMPLY skip
END

END

Fig. 3. A Stochastic Hybrid Event-B machine for simple train braking.

since we would not expect the train velocity to be subject to
braking uncertainty once it had stopped.

Fig. 3 shows a complete Stochastic Hybrid Event-B machine
for depicting this situation. The modelling starts at the moment
the braking is about to start, with time synchronised to 0, and
the velocity V presumed to be known exactly, thus initialised
to a point mass distribution centred on the starting velocity V0.
The INITIALISATION event enables the braking pliant event
Brake, via the setting of the mode variable to GO. During
Brake, the velocity is subject to the stochastic law (10), written
in the formal Stochastic Hybrid Event-B notation as I V =
−a + σVW, indicating moreover, that we intend to interpret
the noise in the Itô sense.

Once the noisy braking process has reduced the velocity
to zero, the Stop event fires, sets the mode variable to STOP,
and thus disables Brake. The new value of mode enables the
Stationary pliant event, which, in simply specifying COMPLY
skip, affirms that the dynamics has terminated and that the
system has reached its final state.

We turn to the solution of this system. One way of approach-
ing this is to use variation of parameters, mentioned earlier.
For this, we can regard (10) as a homogeneous linear equation,
dV = σVdW, to which an inhomogeneous term, −a dt has
been added. The homogeneous equation has the solution:

V0(t) = e−
1
2σ

2t+σW(t) (11)

This may be verified as follows. First, we notice that the
differential of the exponent is − 1

2σ
2dt + σdW(t). Second, we

notice that when we apply Itô’s formula (6)-(8) to g(t, x) ≡ ex,
replacing its argument x with the exponent in (11), then the
derivative comes out as:

dV0 =
∂g
∂t

dt +
∂g
∂x

dV0 +
1
2
∂2g
∂x2

(dV0)2

= 0 + e[...][−1
2
σ2dt + σdW(t)] +

1
2

e[...][−1
2
σ2dt + σdW(t)]2

= e[...][−1
2
σ2dt + σdW(t) +

1
2
(0 + 0 + σ2dt)]

= σV0(t)dW(t) (12)

where, in the penultimate line of (12), we have used Itô’s
formula to eliminate negligible higher order differentials, and
replace (dW)2 with dt, to get the result desired.

To solve (10) fully, we now set V(t) ≡ V0(t)Z(t) and follow
the variation of parameters recipe. In general, we would need
to consider that Z(t) is itself a stochastic process, and act
accordingly, but it turns out that in this case all the stochastic
behaviour is already catered for in V0(t), so Z(t) turns out to
be deterministic. Thus:

dV = V0dZ + ZdV0

= e[...]dZ + ZσV0(t)dW

= −adt + σV0(t)ZdW (13)

so that

e[...]dZ = −a dt (14)

At this point, separation of variables can be applied to yield
the complete solution:

V(t) = e−
1
2σ

2t+σW(t)
{

V0 − a
∫ t

0

e( 1
2σ

2s−σW(s))ds
}

(15)

The preceding illustrates some of the black magic of stochastic
calculus. Usually, the trickiest aspect is knowing when one can
safely apply ‘normal calculus rules’, and when it is unsafe to
do so. For instance, (15) cannot be reduced further, since it
contains a sample path W(t) of Wiener noise, in a way that
cannot be simplified any more.

In many physical applications, the Stratonovich integral
provides a more convincing model of the underlying process,
since it can be derived as a limit of smooth approximations to
Wiener noise, a tactic which seems eminently plausible in the
context of modelling physical processes. Taking this approach
above would eliminate all the 1

2σ
2 terms.

Since (15) depends on an explicit Wiener sample path, it is
not easy to deduce anything specific from it. For instance, one
cannot display how its value varies with the sample path since
the space of sample paths is infinite dimensional. Reducing
the detail considered offers more promise of progress. Thus,
attempting to calculate statistics like the mean or variance of
the distribution gives a better idea of what (15) actually means.

Working out statistics such as the mean and variance of (15)
over Wiener paths W(t) is technically nontrivial. Of even more
interest though, are random variables that quantify the time
taken for the velocity to drop to zero, i.e. for the train to stop,
and beyond that, the time integral of V(t) over this period.
The former (without intending any irony) is a ‘stopping time’



in the terminology of stochastic processes. Calculating such
quantities is technically even more demanding than merely
calculating means, and often, a safe estimate based on (say)
twice the variance will be adequate in practice. For lack of
space, we defer the pursuit of these technicalities to another
place.

Nevertheless, we point out that once some route to esti-
mating quantities like the stopping time has been determined,
then the relevant quantities can be reformulated as invariants
of the system model. In this way, the calculational excursions
involved in pursuing them can be brought back to connect with
familiar notions, namely invariants in Hybrid Event-B. In the
case of our toy model, such an invariant might state that ‘with
probability X, the distance travelled during the braking episode
is less than Y’.

V. CONCLUSIONS

In the preceding sections we have reviewed conventional
Hybrid Event-B, and we then embarked on a brief excursion
into some of the salient features of stochastic calculus, in order
to inform the design of a suitable extension of Hybrid Event-B
that would include modelling capabilities based on it. In the
event, the modification to Hybrid Event-B proved to be fairly
mild, due in part to the prior design of the semantics of Hybrid
Event-B having been done in a way that made the extension
straightforward. Still, relatively straightforward though the ex-
tension was, it nevertheless necessitated a significant review of
stochastic calculus issues in order to justify that the proposed
extension should indeed be as it was described.

Related to the impact on the Hybrid Event-B formalism, is
the impact on any tool that supports it. Here, we can again
argue that the impact will be mild. The reason for this is
that, as we argued above, those cases of stochastic differential
equations that can be addressed using symbolic means, can
be solved by deploying the same family of techniques that
support the continuous portion of conventional Hybrid Event-
B. It merely needs to be signaled to an implementation that
a particular equation in the SOLVE clause is a stochastic
differential equation, with the noise terms it contains suitably
declared beforehand, and the implementation will be able to
organise the appropriate calculations. In this manner we hope
to be able to include support for straightforward stochastic
calculus early in the development of tool support for Hybrid
Event-B. We illustrated our formalism with a simple case study
based on the uncertainties of a toy train stopping application.

One thing we deliberately omitted from the treatment of
this paper is the more familiar style of probabilistic reasoning
associated with discrete events. Although we were concerned
with deterministic external control, via the mode events asso-
ciated with predictable behaviour, the more stochastic aspect
certainly comes to the fore when we consider failure modes
and the overall dependability of systems composed of not
wholly reliable components. Such an integrated treatment
requires a deeper excursion into stochastic calculus, engaging
with the more complex Lévy processes. This is another aspect
that we defer for investigation elsewhere.
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