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Abstract. Bond graphs represent the structure and functionality of mechatronic
systems from a power flow perspective. Unfortunately, presentations of bond
graphs are replete with ambiguity, significantly impeding understanding. We ex-
tend the formalisation in preceding work to address the phenomenon of ‘causal-
ity’, intended to help formulate solution strategies for bond graphs, but usually
presented in such vague terms that the claims made are easily shown to be false.
We show that ‘causality’ only works as advertised in the simplest cases, where it
mimics the mathematical definition of bond graph semantics. Counterexamples
severely limit the applicability of the notion.
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1 Introduction

Bond graphs were introduced in the work of Paynter in 1959 [16, 17]. These days the
most authoritative presentation is [12]. From the large related literature we cite [4, 12,
14, 7, 18].

Even the best presentations, though, are replete with ambiguity, often arising from
a non-standard use of language that leaves the reader who is more used to conventional
parlance in physical and engineering terminology feeling insecure and confused. In [3]
we introduced a formalisation of bond graphs, allowing results to be presented with pre-
cision, and we discussed bond graph transformation, abstraction and refinement in that
framework. In the present paper, we use the same framework to tackle so-called bond
graph ‘causality’. This has nothing to do with the normal physical notion of causality.
Instead it is a game (in the formal mathematical sense of the word), for decorating a
bond graph (usually in a locally progressive manner). The aim of this game is that its
outcomes provide insight into how the equations of bond graph semantics (which are
indeed equations, and thus undirected) may be transformed into a more algorithmically
directed system, which can be used to actually solve for the behaviour of the system
that the bond graph represents.

The bottom line is that the game only works in the most simple of cases, and then
it just follows the semantics, interpreted in the simplest possible way. When the game
doesn’t work out that way, it indicates that something more sophisticated is needed,
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though it gives little clue about what might be needed, without deeper (and often ad
hoc) analysis. For such cases, more powerful generic techniques have been available
for quite some time, and so, the case for the continued adherence to the ‘causality’
notion, with the enthusiasm seen in the textbook literature, is severely weakened.

The rest of this paper is as follows. Sections 2 and 3 recapitulate, tersely, the es-
sentials of bond graphs as presented in [3]. Section 4 constructs bond graph ‘causality’,
which we prefer to call dependency. Section 5 attempts to use the dependency notion to
construct solutions to bond graph systems, but instead comes up with many counterex-
amples that show that the original idea doesn’t work out. Lack of space forces many de-
tails to be omitted here. Section 6 presents two key theorems that explain why the ‘nice’
examples succeed, but the others don’t. Section 7 indicates much more mathematically
robust ways of approaching the solving of bond graphs, and Section 8 concludes.

2 Classical Physical Theories for Classical Engineering

We tersely summarise the physical theories of [3].
[PT.1] A system consists of interconnected devices, and operates within an environ-

ment from which it is separated by a notional boundary. A system can input or output
energy from the environment through specific devices. Aside from this, the system is
assumed to be isolated from the environment.

[PT.2] The classical physics relevant to bond graphs is captured, in general, by a
system of second order ordinary differential equations (ODE) of the form:

Φ(q′′, q′, q) = e (1)

Of most interest is the case where Φ is a linear constant coefficients (LCC) ODE:

L
d2q

dt2
+R

dq
dt

+K q = e (2)

The system (1) or (2) concerns the behaviour of one (or more) generalised displace-
ment(s), referred to as gendis with typical symbol q (mech: displacement; elec: charge).
The gendis time derivative q′ is called the flow, with typical symbol f (mech: velocity;
elec: current). The gendis second time derivative q′′ is called the generalised accel-
eration genacc, with typical symbol a (mech: acceleration; elec: induction). These all
occur in the LHS of (1)-(2). On the RHS of (1)-(2) is the effort, typical symbol e (mech:
force; elec: voltage).

[PT.3] Of particular importance among the variables mentioned is the product of
effort and flow, because e × f is power, i.e., the rate at which energy is processed.
The transfer and processing of power is crucial for the majority of engineered systems.
According to [PT.1], energy can only enter or exit a system through specific kinds of
device. Therefore, all other devices conserve energy within the system.

[PT.4] Engineered systems are made by connecting relatively simple devices.

Dissipator: R-device (mech: dashpot; elec: resistor) Rf = e (3)
Compliant: C-device (mech: spring; elec: capacitor) K q = e (4)
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Inertor: L-device (mech: mass; elec: inductor) La = e (5)

A dissipator is a device that can output energy into the environment in the form of
heat. Compliants and inertors are devices that store energy. Specifically, the power they
receive is accumulated within the device as stored energy, to be released back into the
rest of the system later.

Sources input power to/from the system of interest in predefined ways.

Effort source: SE-device (mech: force; elec: voltage) e = ΦE(t) (6)
Flow source: SF-device (mech: velocity; elec: current) f = ΦF (t) (7)

Note that the power input and output to/from each of these cases is not determined by
equations (6)-(7) alone (since the other variable is not specified), but by the behaviour
of the rest of the system that they are connected to.

Transformers and gyrators are devices that are connected to two power connections
(two efforts and two flows), and allow non-trivial tradeoffs between the effort and the
flow in the two connections.

Transformer: TR-device (mech: lever; elec: transformer)
e1 = h e2 and h f1 = f2 (8)

Gyrator: GY-device (mech: gyroscope; elec: transducer)
e1 = g f2 and g f1 = e2 (9)

Junctions are devices that distribute power among several power connections 1 . . . n
(each with its own effort and flow), while neither storing nor dissipating energy. Aside
from transformers and gyrators just discussed, the only remaining cases that arise are
the common effort and common flow cases.

Common effort: E-device
(mech: common force; elec: common voltage, Kirchoff’s Current Law)

e1 = e2 = . . . = en and f1 + f2 + f3 + . . .+ fn = 0 (10)
Common flow: F-device
(mech: common velocity; elec: common current, Kirchoff’s Voltage Law)

e1 + e2 + e3 + . . .+ en = 0 and f1 = f2 = . . . = fn (11)

Noting that n is not fixed, E and F devices for different n are different devices.
[PT.5] From the bond graph perspective, the individual power connections to a de-

vice are conceptualised as power ports, through which power flows into or out of the de-
vice. Dissipators, compliants and inertors are therefore one port devices. Power sources
are also one port devices. Transformers and gyrators are two port devices, while junc-
tions are three (or more) port devices. For each category of device, all of its ports are
individually labelled.

[PT.6] Since power is the product of an effort variable and a flow variable, each port
is associated with an (effort, flow) variable pair whose values at any point in time define
the power flowing through it.
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[PT.7] All the variables involved in the description of a system are typed using a
consistent system of dimensions and units. It is assumed that this typing is sufficiently
finegrained that variables from different physical domains cannot have the same type.
We do not have space to elaborate details, but since the only property of dimensions and
units that we use is whether two instances are the same or not, it is sufficient to assume
a set DT × UT of (dimension, unit) terms, that type the variables we need.

[PT.8] We refer to the elements of a system using a hierarchical naming convention.
Thus, if Z-devices have ports p, then Z.p names the p ports of Z-devices. And if the
effort variables of those ports are called e, then Z.p.e names those effort variables.
Analogously, Z.p.f would name the flow variables corresponding to Z.p.e. Z.p.e.DU
names the dimensions and units of Z.p.e, while Z.p.f .DU names the dimensions and
units of Z.p.f .

[PT.9] For every (effort, flow) variable pair in a system (belonging to a port p of de-
vice Z say), for example (Z.p.e, Z.p.f ), there is a directional indication (determined by
the physics of the device in question and the equations used to quantify its behaviour).
This indicates whether the power given by the product Z.p.e×Z.p.f is flowing into or
outof the port when the value of the product is positive.

For the devices spoken of in [PT.4], there is a standard assignment of in/out indica-
tors to its ports. Thus, for R, C, L devices, the standard assignment to their single port
is in. For SE, SF devices, the standard assignment to their single port is out. For TR,
GY devices, the standard assignment is in for one port and out for the other, depicting
positive power flowing through the device. For the E and F devices, we standardise on
a symmetric in assignment to all the ports.

3 Bond Graph Basics

Bond graphs are graphs which codify the physical considerations listed above.
[UNDGR] An undirected graph is a pair (V,E) where V is a set of vertices,

and E is a set of edges. There is a map ends : E → P(V ), where (∀edg ∈ E •
card(ends(edg)) = 2) holds, identifying the pair of distinct elements of V that any
edge edg connects. When necessary, we identify the individual ends of an edge edg,
where ends(edg) = {a, b} using (a, edg) and (b, edg). If ends(edg) = {a, b}, then we
say that edg is incident on a and b.

Our formulation of conventional power level bond graphs (DPLBGs, directed power
level bond graphs) starts with PLBGs, which are undirected labelled graphs. PLBGs are
assembled out of the following ingredients. Fig. 1 illustrates the process.

[PLBG.1] There is an alphabet VL = BVL ∪ CVL of vertex labels, with basic
vertex labels BVL = {R,C,L,SE,SF,TR,GY,E,F}, and user defined labels CVL.

[PLBG.2] There is an alphabet PL of port labels and a map lab2pts : VL →
P(PL), which maps each vertex element label to a set of port labels. (Below, we just
say port, instead of port label, for brevity).

[PLBG.3] There are partial maps labpt2effDU , labpt2floDU : VL×PL 7→DT ×
UT mapping each (vertex label, port) pair to the dimensions and units (not elaborated
here) of the (forthcoming) effort and flow variables. Details are formalised in [3].
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d: D
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Fig. 1: Stages in bond graph construction: (a) a vertex label (for a dissipator); (b) adding
a port; (c) adding a directional indicator; (d)-(f) assigning attributes (a)-(c) to a vertex
vr; (g) vr’s effort variable; (h) vr’s flow variable; (i) vr’s constitutive equation; (j) a
simple elecrtical circuit embodying a dissipator (among other components); (k) a bond
graph of the circuit in (j). Dimensions and units are not shown.

[PLBG.4] There is an alphabet IO = {in,out} of standard directional indicators,
and a partial map labpt2stdio : VL × PL 7→ IO. Details are formalised in [3].

The above clauses capture properties of PLBGs that are common to all vertices
sharing the same label. Other properties are defined per vertex. PLBGs can now be
constructed.

[PLBG.5] A power level bond graph PLBG is based on an undirected graph BG =
(V,E) as in [UNDGR], together with additional machinery as follows.

[PLBG.6] There is a map ver2lab : V → VL, assigning each vertex a label.
When map ver2lab is composed with lab2pts, yielding map ver2pts = ver2lab o

9

lab2pts : V → P(PL), each vertex acquires a set of port labels.
When map ver2lab, with a choice of port, is composed with maps labpt2effDU and

labpt2floDU, yielding maps verpt2effDU = ver2lab×Id o
9 labpt2effDU : V ×PL 7→

DT × UT and verpt2floDU = ver2lab× Id o
9 labpt2floDU : V ×PL 7→ DT × UT ,

each (vertex, port) pair acquires dimensions and units for its effort and flow variables.
When map ver2lab, with a choice of port, is composed with map labpt2stdio,

yielding partial map verpt2stdio = ver2lab × Id o
9 labpt2io : V × PL 7→ IO, each

(vertex, port) pair acquires its standard directional indicator.
[PLBG.7] In practice, and especially for E, F devices, directional indicators are

often assigned per (vertex, port) pair rather than generically per (vertex label, port).
Thus there is a partial map verpt2io : V × PL 7→ IO, and verpt2io(ver, pt) may, or
may not, be the same as verpt2stdio(ver, pt). Details are formalised in [3].



6 R. Banach and J. Baugh

There is a partial injective map verpt2eff : V × PL 7↣ PV giving each (vertex,
port) pair (ver, pt) where pt ∈ ver2pts(ver), an effort variable with dimensions and
units verpt2effDU(ver, pt). Similarly, verpt2flo : V ×PL 7↣PV gives each (ver, pt)
a flow variable with dimensions and units verpt2floDU(ver, pt). Also, we must have
ran(verpt2eff)∩ ran(verpt2flo) = ∅. These variables are referred to by extending the
hierarchical convention of [PT.8]. Thus v.Z.pt.e refers to vertex v, with label Z, having
port pt, and so v.Z.pt.e is the relevant effort variable, etc.

There is a map ver2defs : V → physdefs, which yields, for each vertex ver,
a set of constitutive equations and/or other properties, that define the physical be-
haviour of the device corresponding to the vertex ver. Additionally, the properties
in ver2defs(ver) can depend on generic parameters (from a set PP say), so there
is a map ver2pars : V → PP . Additionally, the properties in ver2defs(ver) can
depend on some bound variables. When necessary, we refer to such variables using
BV(ver2defs(ver)). Details are formalised in [3].

[PLBG.8] There is a bijection Eend2verpt : V × E 7↣ V × PL, from edge ends
in BG, to port occurrences, and for each edge edg ∈ E, where ends(edg) = {a, b},
the effort and flow variables at the ends of edg, have the same dimensions and units.
Details are formalised in [3].

[PLBG.9] There is a map edge2dir : E → physdir, where physdir is a set of
equalities and antiequalities between effort and flow variables, recording whether the
power flow conventions of the two devices at the ends of each edge are compatible or
not, and if not, adjusting suitably. Details are formalised in [3].

[SEMANTICS] The dynamics specified by a PLBG is the family of solutions to
the collection of constraints specified by ver2defs (and ver2pars, edge2dir).

[PLBG.10] A PLBG is a DPLBG (directed PLBG, as in the literature) iff for each
edg ∈ E, the power flow conventions are compatible. In such cases, edges become
harpoons (half-arrows), showing the direction of positive power flow. In any case, the
edges are called bonds.

A consequence of a unidirectional convention for variables along edges is that it
permits the use of directed (rather than undirected) graphs as the underlying formalism.
Although this makes the handling of edge ends a little easier, the impediments to bottom
up bond graph construction that it imposes dissuaded us from following this approach.

4 Bond Graph ‘Causality’ / Dependency, and its Assignment

In the bond graph literature the word/s ‘causality’/‘causal’ appear a lot. It is a most
unfortunate choice of terminology, and the quotes we use indicate our dissatisfaction.

In the context of physical systems, the concept of causality has a well understood
meaning. It is connected with the idea that certain physical phenomena or situations
force others to be the case. We do not have the space to discuss how this works properly,
but briefly, the ‘motive force’ that causes a physical state of affairs to persist, or that
causes one physical state of affairs to change to another, is primarily thermodynamic.
In the physical context (and physical systems of a particular kind, are after all, what
bond graphs are for), the firmly based concept of causality is a topic for discussion in
thermodynamics and statistical physics.
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(a) A fragment of a PDG.
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(b) One possible CDG.

Fig. 2: A PDG fragment and CDG option for Fig. 1.

By contrast, bond graph ‘causality’ is much more concerned with strategies for solv-
ing the system of equations that a bond graph defines. Worse, the connection between
it and the necessities of actually solving these equation systems is tenuous, often to the
point of invisibility. In this paper we prefer the word ‘dependency’, and in this section,
we construct dependency, postponing thought about how it might be used till later.

Fig. 2a shows a fragment of a pre-dependency graph (PDG), for the bond graph
of Fig. 1. Dependency concerns the variables of the bond graph, thus is easiest to depict
using different, directed graphs, that follow the structure of the underlying bond graph.
The idea is that the variable at the head of the arc depends (in some way not yet speci-
fied) on the variable at the tail of the arc. Since arcs are included in both directions for
each variable, no commitment has yet been made as to what depends on what; thus it
is a ‘pre-’ graph, indicated by making the arcs dashed. The ≈≈≈ label refers to the (anti-)
equalities between device variables at the two ends of a bond. The iiiii indicates that if the
effort variable C.e depends on the flow variable C.f , then iiiiintegration of C.f is needed
(according to the constitutive equation (4)). If dependency is the other way round, then
dd ifferentiation of C.e is needed (again by (4)). Algebraic dependency (for dissipators)
is indicated by aaa.

In a PDG, any two variables that are connected by an arc, are connected by two
arcs, one in each direction, representing potential for, but indifference to, dependency
between them. The indifference is removed in a candidate dependency graph (CDG),
in which, for each such pair, one arc is deleted provided: (1) for each bond, the surviving
arcs for effort and flow variables are oppositely directed; (2) the surviving arc for any
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physical device is co-aligned with the effort and flow arcs on the bond that joins it to
the rest of the bond graph. Fig. 2b shows a (somewhat perversely chosen) CDG for the
Fig. 1 example. Solid arcs indicate commitment to a choice. All variables are shown
in full detail. The only things missing are the device arcs for the E junction (all efforts
strongly connected, similarly for flows) which would massively clutter the figure.

Note that we have not said what dependency means. The rest of this paper shows
that this is not an easy question to answer.

Since all bond arcs come in oppositely directed pairs, any CDG can be represented
more efficiently, by decorating the bonds. We use decorations ▶,▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷,>>>>>>>>>>>>>>>>>>>>>>>>>>>, which always
point in the direction of the effort arcs of the underlying CDG, and work as follows.
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…
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R  E SE

C1

C2

R  F

(b)(a)

SE

C1

C2

R  F

(c)

(b)(a)
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L

R  E SE
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L

R  F

SF

SE
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Fig. 3: A DBG for the
example in Fig. 1.

Firstly, the decorations are determined by the devices at
the ends of a bond, so there can be clashes. These are resolved
by ▶ overriding▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷ overriding>>>>>>>>>>>>>>>>>>>>>>>>>>>, as needed. Then: SE has ▶
on its bond, pointing away from it; SF has ▶ on its bond,
pointing towards it; E has one bond with▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷ pointing towards
it (the dominant bond) and all other bonds (the dependent
bonds) have >>>>>>>>>>>>>>>>>>>>>>>>>>> pointing away from it; F has one bond with
▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷▷ pointing away from it (the dominant bond) and all other
bonds (the dependent bonds) have>>>>>>>>>>>>>>>>>>>>>>>>>>> pointing towards it; TR
has>>>>>>>>>>>>>>>>>>>>>>>>>>> on its bonds, one towards and one away from it; GY has
>>>>>>>>>>>>>>>>>>>>>>>>>>> on its bonds, either both towards or both away from it; L,
C, R, can have any decoration on their bond, but L prefers towards and C prefers away
from (and R is indifferent). A CDG whose dependencies conform to the restrictions on
direction implicit in the preceding is called a normal dependency graph (NDG), and
a bond graph that encodes these dependency decorations on its bonds in the manner
just described is called a dependency bond graph (DBG). It is clear that the CDG in
Fig. 2b breaks all the rules that we have been imposing for an NDG. Fig. 3 shows the
(only possible) DBG corresponding to Fig. 1. To make Fig. 2b into an NDG, we would
have to reverse all the dependency arcs shown in the figure.

The DBG definition just defined specifies how the DBG decorations should look.
The traditional bond graph literature (e.g. [4, 12, 14, 7, 18]) presents what is termed a se-
quential ‘causality’ assignment procedure (SCAP) to achieve an acceptable decoration.
In reality, this is a greedy algorithm executing a rule based system involving priorities
for the assignment, that features, potentially, a lot of concurrency that is implicit in the
original formulation. Fig. 4 summarises the rule based form.

It is clear that Fig. 4 is a greedy algorithm that depends on making choices at various
points, and thus, for bond graphs with highly tangled junction structures, can involve a
superpolynomial number of choice configurations to try, in order to determine whether
a DBG set of decorations for a bond graph exists. In [15] the authors undertake a more
incisive analysis, which shows that the job can be done in polynomial time.

5 Dependency Bond Graph Solution Strategies and Problems

The basic hypothesis of the traditional ‘causality’ approach of the bond graph literature,
is that by decorating the bond graph with suitable markings, a strategy can be developed
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Fig. 4: Traditional Dependency Assignment Procedure
Input: An undecorated bond graph
Output: A fully decorated bond graph, or abort

Pri := 1
Assign DBF decorations in order of priority Pri ;

If inconsistency found at any point Then abort Fi
1. Assign to all SE and SF bonds ; Pri := 2
2. Assign to all E and F not fully assigned but with already assigned dominant bond ; Pri := 3
3. Assign to some L or C able to take its preferred direction ;

If successful Then Pri := 2 Else Pri := 4 Fi
4. Assign to some R, E, F, TR, GY arbitrarily (but consistent with its definition) ; Pri := 2

that reduces the solution of system behaviour to a set of oriented explicit ODEs and/or
assignments, involving a minimal set of variables.

It has to be said that the hypothesis fails, and the stated objective is unachievable.

The rule based process outlined in Fig. 4 was the main step of the first attempt to achieve
the stated goal, and on benign examples it succeeds. But it was soon noticed that it
does not succeed on all bond graphs. The rather extensive literature on the potential
foundations of bond graphs that was produced in the ’70s, ’80s and ’90s (surveyed
comprehensively in [4]) does not result in establishing a procedure that always produces
the desired outcome. Despite this, all the standard texts unfailingly discuss ‘causality’
in terms that raise no qualms about the relevance and validity of the notion, or about
what caveats might need to hold for its validity.

The first thing to do is to show how the ideal outcome fails, which happens in many
ways. Let us assume, for now, that dependency means that once the thing at the tail of
a dependency arc is ‘known’, the thing at the head becomes ‘knowable’ too. To start
with, we consider Fig. 2b, which is out of scope really, since it breaks all the rules. The
most ‘known’ thing there is SE.f , since it depends on nothing else. But it is not known,
since only SE.e is defined for an effort source, so we have to guess the SE.f value.
Once guessed, we would have to guess how that flow is partitioned between L, C, R.
Once guessed, we would solve algebraically for R, differentiate for L, integrate for C.
Miraculously, we would come up with the same effort in each case at E, which agreed
with the predefined value of SE.e. Of course it is crazy to try to solve the system this
way, but it is not logically inconsistent, being simply an angelically derived solution.
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Fig. 5: A DBG for Fig. 1
with F instead of E.

Within the rules is Fig. 3, which reverses the dependen-
cies. Now we start with the truly known SE.e, shared via E
to each of L, C, R. This is integrated to solve for L, differen-
tiated for C, scaled for R. Thus, sticking to the rules is some
help here as the solution process is deterministic. There is
one niggle though. While integration is used for L, in line
with L’s preferred dependency, differentiation is used for C,
in line with C’s unpreferred dependency. While this is no
problem mathematically, differentiation is highly deprecated
in engineering terms as it generates jolts and spikes in vari-
ables’ behaviours. The ‘wrong’ dependency for C heralds



10 R. Banach and J. Baugh

this kind of issue, but we see that merely having a DBG for Fig. 1 does not guarantee
the desired explicit ODE solution.

Fig. 5 replaces E with F in Fig. 1. This makes things more complicated. There are
now three DBGs for Fig. 5 depending on which bond of F is chosen dominant. What
is shown is the one that gives both L and C their preferred dependency. The traditional
solution approach to more complex examples is tracking back, to derive the ODEs that
solve the system. We start with the variable of an L or C that would appear in the LHS
of an explicit ODE, equate it to the other side of the constitutive equation, and succes-
sively substitute for the variable there using the equations of the junction structure until
source or physical variables are encountered. In optimised tracking back we do not
stop at dissipators, but, recognising that their constitutive equations are linear algebraic,
continue through those as if they were junctions. This causes layer switching, changing
focus between efforts and flows, recognising that junction structures only couple efforts
to efforts and flows to flows (GYs also layer switch).

Tracking back from C.e to C.f and then through the equality layer of F leads to
L.f and to C.e′ = 1

C L.f . Tracking back from L.f to L.e and then through the sum
layer of F is more complicated as it branches out to R, C and SE. Eventually we derive
L.f ′ = 1

L (SE.e − C.e − RL.f). We have a coupled pair of first order ODEs, just as
promised by traditional ‘causality’. Solving them does however require the derivative
of SE.e — C is ‘too close’ to an effort source for any jolt (e.g. switching on a constant
non-zero effort) to be smoothed out by the system.
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Fig. 6: Dissipators,
composed in parallel.

A surprising number of examples of awkward behaviour
in bond graphs do not require the involvement of inertors or
compliants — dissipators are quite capable of generating them
without help. Fig. 6 shows a simple example of several dissi-
pators connected to an effort source via a common effort junc-
tion. Using electrical language, we have resistors, composed
in parallel. If we track back from the flow of the i’th dissipa-
tor, we get: Ri.f ×Ri = IiRi = V = Ri.e = E.ei = E.e0 =
SE.e, where E.e0 is the effort variable of E on the bond to
SE. The choice of flow variable to track back from was crucial to arriving at the known
variable of SE rather than the unknown one. Assuming the natural current orientations
for the dependent variable SE.f , given by: SE.f = E.f0 =

∑n
i=1 Ri.f quickly leads to

the familiar law R−1 =
∑n

i=1 R
−1
i , where R is the effective resistance of the parallel

composition. Note that paying attention to the source unknown variable is indispens-
able for this derivation. Surprisingly, it is often stated in the bond graph literature that
the unknown variables of sources are of no interest at all.
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Fig. 7: Dissipators,
composed in series.

Fig. 7 is the series counterpart of Fig. 6, i.e. several dissipa-
tors connected to an effort source via a common flow junction.
In electrical language, we have resistors in series. The most
immediate thing we notice is that the obvious symmetry of the
physical system has been destroyed, in the bond graph rep-
resentation, by the DBG dependency decorations. The most
sensible arrangement would have been to have the dominant
bond of F pointing towards SE. But since the decoration on
the SE bond must be away from SE, and the F junction must



The ‘Causality’ Quagmire for Formalised Bond Graphs 11

  F2

  F1 R1(R1)

R2(R2)

  E

SE1

e2/ f2

ee/ f2

ee/ f1

e1/ f1 eR1/ f1

eR2 / f2

ee/ ff
R(R)

SE2

  E1

  E3

  E2

z
e;fE1

the rest of the
bond graph

R

e;R.f

  E

  E3

  E2

z

e1; fE1the rest of the
bond graph A

R1(R1)

e1;R1.f

the rest of the
bond graph B

e2; fE2

R2(R2)

e2;R2.f

FESE
SE.e;SE.f

X(X)
SE.e;X.f X.e;X.f

GY(g)

F

SE.e ; fEGY eGYF;X.f

EFSE
SE.e;SE.f

X(X)
eFE;SE.f X.e;X.f

GY(g)

eFGY ;SE.f X.e;X.f

Fig. 8: A DBG showing tracking back to both known and unknown source variables.

have a dominant bond pointing outwards, one dissipator must acquire the dominant
decoration of the F junction, and Rn has been chosen randomly. From a computational
perspective, although the effort is assumed known from SE, the unique value of the flow
shared by the whole system has to be derived by aggregating the relevant constitutive
equations for the dissipators. The source of the difficulty is that, in the sum layer of a
junction, even if the value on the dominant bond is known precisely, this only supplies
partial information to the dependent bonds.

In more detail, tracking the dependencies back to the source from the flow on the
n’th dissipator via its effort, we find: Rn.e = SE.e−

∑n−1
i=1 Ri.e. Rearranging, we get:

SE.e =
∑n

i=1 Ri.e =
∑n

i=1 Ri.f ×Ri = SE.f ×
∑n

i=1 Ri. After this, the value of the
SE flow, and the familiar law for series composition R =

∑n
i=1 Ri, can be derived. For

i ̸= n, the DBG dependencies point in the opposite direction, but we have little option
but to pursue the same calculational route. Similar issues arise if we replace parallel
or series compositions of dissipators with compositions of inertors or of compliants,
except that we have some integration or differentiation to do.

Fig. 8 shows an example in which the tracking back ansatz leads to both known and
unknown variables of sources appearing as inhomogeneous terms in the differential
equations that are generated. It is a given, though invariably unstated in the bond graph
literature, that when we derive the requirement that a source variable is needed for the
value of some physical variable, i.e. it appears as an inhomogeneous term in an explicit
ODE for the variable, it is the known variable that appears and not the unknown one.
But bond graphs do not guarantee that that is necessarily the case.

In Fig. 8, the first gyrator equation is SE.e = g X.f , which coincides with tracking
back from variable X.f to known source SE.e. Tracking back from X.e however, re-
quires both gyrator equations and leads to X.e = SE.e(1− 1

g ) + g SE.f , in which both
known SE.e and unknown SE.f appear.

What happens next depends on what X is. If X is a dissipator, then X.e = XX.f =
X
g SE.e, solving for the physical device by simple algebra. If X is a compliant, we have

X.e′ = 1
C X.f = X

g SE.e so we just have to integrate SE.e to solve for the physical
device. But if X is an inertor, we get:

X.f ′ = 1
LX.e = 1

L

(
SE.e(1− 1

g ) + g SE.f
)

(12)

which cannot be solved immediately, given the unknown SE.f . This has to be recon-
ciled with the first gyrator equation SE.e = g X.f , which yields SE.e′ = g X.f ′. X.f ′

can now be eliminated to solve for SE.f algebraically. What we have is a simple exam-
ple of a non-trivial differential algebraic system.
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Fig. 9: A simple DBG showing dependency capture.

In some of the bond graph literature, tracking back can be interpreted as uncritically
following the dependency decorations when there is a choice (in the equality layer of a
junction). Fig. 9 shows the inherent risks. If we track the effort variable back from dissi-
pator Rx, we encounter E2, and following the dependency decorations, E1, E3, E2, and
so on indefinitely — a case of dependency capture. This is particularly bad considering
that the E1-E2-E3 triangle can be reduced to a single E junction, using the bond graph
transformation theory of [3], which eliminates the endless tracking back loop, and does
not change the physical behaviour of the system. Moreover, if we consider the E1-E2-
E3 triangle as the base of a tetrahedron, adding another E junction as apex, connected to
the base in the obvious way, we cannot even assign consistent NDG/DBG decorations
to the resulting bond graph. This shows that existence and properties of dependency as-
signments are not invariant under bond graph transformations that are correct according
to the standard correctness notion.

Fig. 10 shows a problem inherent in naively tracking back from physical variables
on an individual basis. There are two dissipators, R1 and R2, both joined to an E junc-
tion, which is also joined to two further portions of the bond graph. The E junction is
assumed to be a cut vertex of the graph. Tracking back from R1 may choose to go into
‘the rest of the bond graph A’. This forces the equality of the two occurrences of e1
shown. Tracking back from R2 may choose to go into ‘the rest of the bond graph B’.
This forces the equality of the two occurrences of e2 shown. But the tracking back pro-
cess itself does not force e1 = e2, which is required by the semantics, and will not be
detected if the two tracking back instances terminate in A and B respectively. So naive
tracking back can easily be unsound.

It is therefore important to supplement naive tracking back with a policy that en-
sures that all equalities implied by junction equality layer semantics are taken care of.
The easiest way of ensuring this is to nominate a distinguished bond of each junction
that is always tracked back through at each tracking back instance involving that junc-
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Fig. 10: A bond graph for which naive tracking back yields an incorrect solution.



The ‘Causality’ Quagmire for Formalised Bond Graphs 13  F2

  F1 R1(R1)

R2(R2)

  E

SE1

e2/ f2

ee/ f2

ee/ f1

e1/ f1 eR1/ f1

eR2 / f2

ee/ ff
R(R)

SE2

  E1

  E3

  E2

z
e;fE1

the rest of the
bond graph

R

e;R.f

  E

  E3

  E2

z

e1; fE1the rest of the
bond graph A

R1(R1)

e1;R1.f

the rest of the
bond graph B

e2; fE2

R2(R2)

e2;R2.f

FESE
SE.e;SE.f

X(X)
SE.e;X.f X.e;X.f

GY(g)

F

SE.e ; fEGY eGYF;X.f

EFSE
SE.e;SE.f

X(X)
eFE;SE.f X.e;X.f

GY(g)

eFGY ;SE.f X.e;X.f

Fig. 11: An example for which tracking back yields equations different from those of
the original bond graph, and following dominant bonds leads to nontermination.

tion’s equality layer, and also insisting that all bonds of each junction get involved in
equality layer tracking back. The obvious candidate for the distinguished bond role is
the junction’s dominant bond.

Fig. 11 shows an example, involving the earlier E1-E2-E3 triangle, in which the
preceding considerations have some impact. Naive tracking back of efforts from R may
explore ‘the rest of the bond graph’ and terminate there, and thereby miss catching some
of the effort equalities of E1, and thereby those of E2 and E3. Exploring flows reaches
further into the triangle and reveals that an unconstrained flow of arbitrary value may
circulate round the triangle, but the details of the solution can differ from the standard
semantics of the system.

On the other hand, if we follow the dominant bond tracking back policy, we get
stuck in the triangle. Altogether, we have a choice between either bad semantics or
nontermination.

6 Two Key Theorems

The preceding examples indicate that traditional bond graph ‘causality’ and the tracking
back processes it is associated with are highly questionable notions, and placing naive
faith in them is misplaced as far as the derivation of solutions to system behaviour is
concerned. Nevertheless, the examples treated in the standard texts referred to in the
Introduction seem to work well enough under this approach. This is a phenomenon that
begs an explanation. In this section we present two theorems that go a long way to
explaining the apparent dichotomy.

Theorem 1. Let BG be a bond graph endowed with DBG dependency decorations.
Suppose given a tracking back process for BG that always uses the dominant bond
at junction equality layers. Then, for every physical device X for which tracking back
encounters no gyrators:

1. If e is the effort variable of X and e is connected either to an E junction via a
dependent bond of E, or to an F junction via the dominant bond of F, then the
tracking back procedure tracks back only through bonds whose DBG dependency
decorations point towards e.

2. If f is the flow variable of X and f is connected either to an F junction via a
dependent bond of F, or to an E junction via the dominant bond of E, then the
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tracking back procedure tracks back only through bonds whose DBG dependency
decorations point away from f .

In both of these cases, the bond mentioned may have one or more transformers inter-
posed without affecting the result.

Theorem 1 highlights the essential reason why, under the right conditions, knowing
something about a variable of device X permits knowledge about distant parts of the
bond graph that might be of interest. This can be the only justification for entertain-
ing notions like dependency decorations and the rules for their allocation — otherwise
they serve no purpose. Theorem 2 embellishes Theorem 1 with additional contextual
conditions that enable its use in deriving solution strategies for actual bond graphs.

Theorem 2. Let BG be a bond graph endowed with DBG dependency decorations.
Assume given a choice of core variables, consisting of one variable for every inertor
or compliant, each with integral dependency. Assume each is tracked back through the
device’s constitutive equation and then through the equations of the bond graph, in an
optimised and terminating process, until inertor or compliant or source variables are
reached. Then, the process yields a set of explicit ODEs for the system, each of the form
v′ = Θi(vs). The solution to these is semantically complete at peripheral variables, but
need not be semantically sound at peripheral variables without the addition of algebraic
equations.

The structure of the proof of Theorem 1 reveals that the case analysis depends on: (1)
whether an effort or a flow variable is being tracked; (2) whether the bond in question
is dominant or not; (3) whether the bond is connected to an E junction or an F junction.
So there are eight cases. Unfortunately, as we have seen, the theorem handles only
four of them, leaving another four unconsidered. So the theorem far from exhausts the
situations that are expressible using bond graphs, even when attention is restricted to
bond graphs describing systems that are ‘natural’ from an engineering point of view. For
bond graphs featuring these alternative cases, any connection with DBG dependency
markings may appear tenuous indeed, and to a large extent, the plethora of awkward
examples seen earlier can be seen to be rooted in these four cases.

In effect, Theorem 1 says that the nomenclature of ‘following the causality’, seen
in the literature, is justified in the cases that the theorem handles, as it shows that the
DBG decoration tree that is rooted at a physical device’s variable, coincides with the
parse tree that the bond graph’s equations demand when discovering what expression
the value of the relevant variable depends on, mathematically.

When tracking back enters the equality layer of a junction via a dependent bond
bdep and exits via the dominant bond bdom, the traditional literature sometimes attempts
to explain this by saying that the exit is via bdom because ‘bdep is caused by bdom’.
Similar remarks can be seen when the sum layer is entered via the dominant bond and
exited via all the dependent bonds. The limited remit of Theorem 1, and the impact of
the preceding theory and counterexamples, show just how potentially unhelpful such
phraseology can be.

We observe that the vast majority of textbook examples have tree shaped bond
graphs, with a unique source device, and a tracking back process that overwhelmingly
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uses the dominant bond wherever possible at equality layer variables. Moreover, gyra-
tors are typically cut points of the bond graph, even in cases that are not tree shaped as a
whole. So the conditions of Theorems 1 and 2 are often naturally fulfilled, thus leading
to the good behaviour seen for ‘natural’, integral dependency examples. This all addi-
tionally aligns with the fact that some of the counterexamples explored earlier contained
loops, which, in bond graphs, are always an indication that caution is required.

7 Robust Solution Strategies for Bond Graphs

The most straightforward (and negative) interpretation of the previous section is that
dependency bond graphs (so called ‘causal bond graphs’) are a deeply questionable
notion intrinsically,2 and are of little use in determining system solution strategies in
the general case. We observed that the traditional derivation of systems of equations of
the typical form desired for solving bond graph systems was a surprisingly deterministic
process, with any possible role for dependency decorations being confined to the choice
element of tracking back at equality layers. In this section we briefly overview a sys-
tem solution strategy approach that does not depend on dependency decorations at all,
but rather treats the constituent equations of bond graphs that the standard semantics in
[SEMANTICS] is defined with respect to, at face value, resulting in a system of differ-
ential algebraic equations (DAEs). It is worth observing that in general, no completely
satisfactory strategy for arbitrary DAE systems is known. The following are standard
references: [13, 11, 9, 10, 5, 8], of which [13] is the most pertinent for our purposes.

The approaches we outline can be applied to the raw bond graph equations given
by the device definitions. This generates a large number of trivial linear equations. We
can optimise to an extent, by substituting physical device variables into the junction
structure as far as possible, taking care to preserve correctness by using unification
rather than tracking back from individual variables. If the bond graph is tree structured,
this will eliminate all junction variables. If not, residual junction variables will remain.

Like ODEs, DAEs can be classified into general systems, linear systems, and LCC
systems. Less like ODEs, non-CC linear systems are much harder than LCC ones. The
best treatment known to us of all the DAE cases is [13].

LCC DAE Systems The general structure studied in the LCC case is of the form
Ex′ = Ax + b, where x is the vector of variables of interest, x′ is the vector of its
derivatives, E and A are matrices, and b is an inhomogeneous vector term. Evidently
this covers all the LCC bond graph cases we have covered. The focus is then on the
matrix pencil M ≡ (λE −A). The general approach reduces the pencil to Kronecker
canonical form via matrix equivalence arguments, which covers all the singular cases.
Of more interest practically is when E and A are square, whereupon, if det(M)(λ) ̸≡ 0
the pencil is regular, and the Jordan normal form of (A−λ0E)−1E, where λ0 is a value
that makes the determinant nonzero, enables the pencil to be brought into Weierstrass
canonical form. This form neatly decomposes the original system into a conventional
inhomogeneous ODE problem, and the application of successive powers of a nilpotent
operator to correspondingly higher derivatives of an inhomogeneous term, with the in-
homogeneities derived from the arbitrary (but sufficiently smooth) b. The nilpotency of

2 We are by no means the first to say it; see e.g. [6], cited in [4].
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the operator guarantees that the series has only a finite number of terms. It is the nilpo-
tent part of the solution that brings in, for example, the derivative required of SE.e in
the discussion of Fig. 5 above. It is clear that even in the regular LCC case, somewhat
nontrivial mathematics is needed to handle all the exceptional circumstances that can
be thrown up, and that our discourse on bond graphs had no difficulty in displaying.

In the case of Fig. 5 just mentioned, if SE.e is a step function that switches on a non-
zero effort at t = 0, then b above is non-smooth, and, strictly speaking, we are outside
the theory just described. Fortunately, there is a fairly straightforward extension of the
smooth theory to generalised functions of a restricted form (piecewise smooth enough
functions embellished with finite order derivatives of impulses at the join points (which
themselves have no accumulations)). This enables such cases to be handled properly.

Linear Non-CC (LNCC) DAE Systems The equivalence classes that yield the clas-
sification used in the LCC case are based on conventional matrix similarity notions.
Unfortunately, if coefficients are not constant, linear combination does not commute
with differentiation. So the classification for LNCC cases is much more complicated
than for LCC, as [13] shows (in stark contrast to pure ODE systems).

Nonlinear (NL) DAE Systems Aside from special cases that can be solved analyt-
ically, and that can always be created by reverse engineering the prospective solution,
the only approach that is generally applicable for NL DAEs is numerical. The best
known incarnation of this is the backward differentiation formula approach. In this, the
derivative of the solution vector x′ at time n+1 is approximated by a linear expression
in x(n + 1),x(n) . . .x(n − k). The DAE system then yields a system of non-linear
algebraic equations in x(n+ 1),x(n) . . .x(n− k), which is solved using a non-linear
approach such as the Newton-Raphson method, and the time index is incremented. For
much more on approaches to the NL case see [1, 8], as well as [13] and elsewhere.

8 Conclusions

In the preceding sections we recalled, rather briefly, the essentials of formalised bond
graphs, as per [3] (which made precise the more straightforward elements of bond
graphs, as well as their rule based transformation). We then dived into the much murkier
world of bond graph dependency (eschewing the highly misleading ‘causality’ word).
Counterexamples proved ludicrously easy to find — once one overcame the inclination
to accept the vague assertions regarding dependency’s utility for solution derivation
found in the bond graph textbook literature. This occupied a couple of sections above.

Nevertheless, the examples of bond graph ‘causality’ found in the bond graph text-
book literature do seem to work. Why? In Section 6 we provided the answer. There
is a case analysis for which half the cases assure ‘nice behaviour’ and the other half
don’t. By and large, the nice cases explain the nice textbook examples, and the other
cases account for the plethora of trivially simple counterexamples we presented. To the
best of our knowledge, no comparable result about ‘causality’ exists in the literature.
We followed this by briefly covering mathematical approaches that deal robustly and
reliably with the kind of equation systems that bond graphs generate. For lack of space,
the whole of this paper is rather terse. A better illustrated and more detailed account of
everything we have discussed is anticipated in [2].
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A Two Proofs

Proof of Theorem 1: To start with, we assume no transformer is encountered during
tracking back (as well as no gyrator). For case 1 of the theorem, if e is connected to
an E junction via a dependent bond bX of E, then the DBG dependency decoration on
bX points towards X, thus towards e. Because BG has DBG decorations, the dominant
bond, bE of E points the same way, and the tracking back strategy selects it as the bond
to track back along. The device at the other end of bE is either a peripheral device, in
which case we are done, or another E junction for which bE is a dependent bond, or an
F junction, for which bE is the dominant bond, pointing away from F.

If it is an E junction with bE a dependent bond, the argument just given repeats. If
it is an F junction with bE the dominant bond, then all other bonds of F are dependent
bonds, and have DBG dependency decorations pointing towards F, and thus towards X
again. The branching in the tracking back process that takes place at F is therefore all
along dependent bonds. Let bF be such a dependent bond of F. The device at the other
end of bF is either a peripheral device, in which case we are done, or another F junction
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for which bF is the dominant bond, or another E junction, for which bF is a dependent
bond, pointing away from the E junction. The latter two cases have been dealt with
already, so the arguments now repeat as often as needed until the entire parse tree that
SeekDependencyExp(e) visits has been treated.

If, instead, e is connected to an F junction via a dominant bond of F, then the
argument is as in the preceding paragraph, so need not be repeated. The argument for
case 2 of the theorem is dual.

The general case chooses to interpose one or more transformers into one or more
of the bonds processed during tracking back. For a given bond b, say there are n trans-
formers. The process replaces b and its DBG dependency decoration, by n + 1 bonds,
b0, b1, . . . bn interleaving the n transformers, each having a DBG dependency decora-
tion in the same direction as the one on b. Each one at the extreme ends of the sequence,
b0 and bn, may become a dominant bond if the junction it attaches to demands it ac-
cording to its direction. We are done. ⊓⊔

Proof of Theorem 2: It is assumed that each intertor or compliant has integral depen-
dency. In that case, the derivative of its core variable v is proportional to its comple-
mentary variable, and the tracking back from the complementary variable is covered by
one of the four cases of Theorem 1.

So tracking back from an intertor or compliant variable v will align with the de-
pendency markings until one of four situations is encountered. (1) A source or drain
is encountered. Then, because the tracking back aligns with the dependency markings,
and the DBG dependency markings point away from an SE or DE device and towards
an SF or DF device, the variable encountered will be the effort variable for an SE or
DE and will be the flow variable for an SF or DF, i.e. it is the known variable that is en-
countered, which will then appear as a conventional inhomogeneous term in the RHS(s)
of relevant explicit ODE(s). (2) A core variable w of an intertor or compliant device is
encountered. This terminates that branch of the tracking back process. Variable w is the
LHS variable of the ODE for that device, and so w will occur in the RHS of the explicit
ODE equation for v. (3) A dissipator is encountered. This would terminate that branch
of an unoptimised process, but an optimised process continues via the complementary
layer. This reverses the direction of tracking of the DBG markings, but since the con-
tinuation happens in the complementary layer, it simply interchanges the clause 1 and
clause 2 cases of Theorem 1, and tracking back again becomes aligned with the DBG
markings. (4) A gyrator is encountered. This is similar to the dissipator case except that
continuation is along the other bond of the gyrator, rather than reversing back along the
same bond after the layer switch. Since each instance of tracking back from a core vari-
able terminates by assumption, one of the four cases discussed applies for each tracking
back path in the parse tree of v. Since the derived ODEs are clearly satisfied by any be-
haviour of the system described by BG, we have semantic completeness. But, and not
least because the statement of the theorem is applicable to pure dissipator bond graphs,
we do not necessarily have semantic soundness without considering further algebraic
equations (even if we disregard unknown variables of sources). We are done. ⊓⊔


