Formalisation, Abstraction and Refinement
of Bond Graphs

Richard Banachl [0000—0002—0243—9434] and John Baugh2 [0000—0002—4999—7505]

! Department of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
2 Department of Civil, Construction and Environmental Engineering,
North Carolina State University, Raleigh, North Carolina 27695-7908, U.S.A.
richard.banach@manchester.ac.uk Jjwb@ncsu.edu

Abstract. Bond graphs represent the structure and functionality of mechatronic
systems from a power flow perspective. Unfortunately, presentations of bond
graphs are replete with ambiguity, significantly impeding understanding. A for-
malisation of the essentials of bond graphs is given, together with a formalisation
of bond graph transformation, which can directly express abstraction and refine-
ment of bond graphs.

Keywords: Bond Graph - Formalisation - Abstraction - Refinement.

1 Introduction

Bond graphs were introduced in the work of Paynter in 1959 [8, 9]. These days the most
authoritative presentation is [6]. From the large related literature we can cite [3, 6, 7].

Even the best presentations, though, are replete with ambiguity, often arising from
a non-standard use of language, that leaves the reader who is more used to conventional
parlance in engineering terminology, feeling insecure and confused. The topic is thus
ripe for a reappraisal using the mathematical tools that bring precision to concepts in
computer science. This paper introduces such a reformulation. For lack of space, only
the essentials are covered, and the writing is rather terse. A fuller treatment is in [2].

The rest of the paper is as follows. Section 2 outlines the kind of physical theories
that bond graphs are used for. Section 3 covers the essentials of bond graph structure.
Section 4 shepherds the details in Section 3 to form the category BGPatt, which we
discuss briefly. Section 5 covers the essentials of bond graph transformation, relating
this to BGPatt. Section 6 shows how transformations can be used for abstraction and
refinement of bond graphs. Section 7 concludes.

2 C(lassical Physical Theories for Classical Engineering

Bond graphs target the classical regime of physical theories well established at the end
of the 19th century, and the engineering done using those theories. The usual remit of
these includes mechanical, rotational, electrical, hydraulic, and thermal domains.

2 R. Banach and J. Baugh

Somewhat remarkably, the physical theories underpinning all these domains share
a large degree of similarity, a fact exploited in the creation of the bond graph formal-
ism. In this paper, for brevity, we briefly indicate the relevance to the mechanical and
electrical domains. We axiomatise the common framework as follows.

[PT.1] A system consists of interconnected devices, and operates within an environ-
ment from which it is separated by a notional boundary. A system can input or output
energy from the environment through specific devices. Aside from this, the system is
assumed to be isolated from the environment.

[PT.2] The classical physics relevant to bond graphs is captured, in general, by a
system of second order ordinary differential equations (ODE) of the form:

?(¢",q,q9) =e (1
Of most interest is the case where @ is a linear constant coefficients (LCC) ODE:

2
L%—FR%—FK(JZS)
The system (1) or (2) concerns the behaviour of one (or more) generalised displace-
ment(s), referred to as gendis with typical symbol g (mech: displacement; elec: charge).
The gendis time derivative ¢’ is called the flow, with typical symbol f (mech: velocity;
elec: current). The gendis second time derivative ¢” is called the generalised acceler-
ation genacc, with typical symbol a (mech: acceleration; elec: induction). These all
occur in the LHS of (1)-(2).

On the RHS of (1)-(2) is the effort, typical symbol e (mech: force; elec: voltage).
The time integral (over a given time interval T") of the effort fT e dt is called the gen-
eralised momentum genmom (accumulated over time 1), with typical symbol p. The
time derivative of the effort is normally of no interest.

[PT.3] Of particular importance among the variables mentioned is the product of
effort and flow, because e x f is power, i.c., the rate at which energy is processed.
The transfer and processing of power is crucial for the majority of engineered systems.
According to [PT.1], energy can only enter or exit a system through specific kinds of
device. Therefore, all other devices conserve energy within the system.

[PT.4] Engineered systems are made by connecting relatively simple devices. We
describe the most important ones now. Of particular utility are devices which are special
cases of (2) that keep only one of the LHS terms.

Dissipator: R-device (mech: dashpot; elec: resistor) Rf=e 3)
Compliant: C-device (mech: spring; elec: capacitor) Kqg=e (@]
Inertor: L-device (mech: mass; elec: inductor) La=c¢ (®)]

A dissipator is a device that can output energy into the environment in the form of
heat. Compliants and inertors are devices that store energy. Specifically, the power they
receive is accumulated within the device as stored energy, to be released back into the
rest of the system later.

Sources input power to/from the system of interest in predefined ways.

Effort source: SE-device (mech: force; elec: voltage) e=®p(t) 6)

Formalisation, Abstraction and Refinement of Bond Graphs 3

Flow source: SF-device (mech: velocity; elec: current) f=op(t) @)

Note that the power input and output to/from each of these cases is not determined by
equations (6)-(7) alone (since the other variable is not specified), but by the behaviour
of the rest of the system that they are connected to.

All the above devices are connected to the rest of the system via a single power
connection, i.e., there is only one effort variable and one flow variable. Transformers
and gyrators are devices that are connected to two power connections (two efforts and
two flows), and allow non-trivial tradeoffs between the effort and the flow in the two
connections.

Transformer: TR-device (mech: lever; elec: transformer)

e = h€2 and h fl = f2 (8)
Gyrator: GY-device (mech: gyroscope; elec: transducer)
e1=gfz and gfi=e)

Junctions are devices that distribute power among several power connections 1...n
(each with its own effort and flow), while neither storing nor dissipating energy. Aside
from transformers and gyrators just discussed, the only remaining cases that arise are
the common effort and common flow cases.

Common effort: E-device

(mech: common force; elec: common voltage, Kirchoff’s Current Law)
egr=ey=...=e, and fi+fot+fzs+...+fn=0 (10)

Common flow: F-device

(mech: common velocity; elec: common current, Kirchoff’s Voltage Law)
e1r+estes+...+e,=0 and fi=fo=...=fn (11)

Noting that n is not fixed, E and F devices for different n are different devices.

[PT.5] From the bond graph perspective, the individual power connections to a de-
vice are conceptualised as power ports, through which power flows into or out of the de-
vice. Dissipators, compliants and inertors are therefore one port devices. Power sources
are also one port devices. Transformers and gyrators are two port devices, while junc-
tions are three (or more) port devices. For each category of device, all of its ports are
individually labelled.

[PT.6] Since power is the product of an effort variable and a flow variable, each port
is associated with an (effort, flow) variable pair whose values at any point in time define
the power flowing through it.

[PT.7] All the variables involved in the description of a system are typed using a
consistent system of dimensions and units. It is assumed that this typing is sufficiently
finegrained that variables from different physical domains cannot have the same type.
We do not have space to elaborate details, but since the only property of dimensions and
units that we use is whether two instances are the same or not, it is sufficient to assume
aset DT x UT of (dimension, unit) terms, that type the variables we need.

[PT.8] We refer to the elements of a system using a hierarchical naming convention.
Thus, if Z-devices have ports p, then Z.p names the p ports of Z-devices. And if the

4 R. Banach and J. Baugh

effort variables of those ports are called e, then Z.p.e names those effort variables.
Analogously, Z.p. f would name the flow variables corresponding to Z.p.e. Z.p.e.DU
names the dimensions and units of Z.p.e, while Z.p.f.DU names the dimensions and
units of Z.p. f.

[PT.9] For every (effort, flow) variable pair in a system (belonging to a port p of de-
vice Z say), for example (Z.p.e, Z.p. f), there is a directional indication (determined by
the physics of the device in question and the equations used to quantify its behaviour).
This indicates whether the power given by the product Z.p.exZ.p.f is flowing into or
outof the port when the value of the product is positive.

For the devices spoken of in [PT.4], there is a standard assignment of in/out indica-
tors to its ports. Thus, for R, C, L devices, the standard assignment to their single port
is in. For SE, SF devices, the standard assignment to their single port is out. For TR,
GY devices, the standard assignment is in for one port and out for the other, depicting
positive power flowing through the device. For the E and F devices, we standardise on
a symmetric in assignment to all the ports.

3 Bond Graph Basics

Bond graphs are graphs which codify the physical considerations listed above.

[UNDGR] An undirected graph is a pair (V, E) where V' is a set of vertices,
and E is a set of edges. There is a map ends : E — P(V), where (Vedg € E o
card(ends(edg)) = 2) holds, identifying the pair of distinct elements of V' that any
edge edg connects. When necessary, we identify the individual ends of an edge edg,
where ends(edg) = {a, b} using (a, edg) and (b, edg). If ends(edg) = {a, b}, then we
say that edg is incident on @ and b.

Our formulation of conventional power level bond graphs (DPLBGs, directed power
level bond graphs) starts with PLBGs, which are undirected labelled graphs. It is impor-
tant in the following to remember that the mathematical details are intended to follow,
as closely as reasonable, the constraints that apply in the physical world. This prevents
many appealing ways of formulating things mathematically from being applied, be-
cause they naturally force aspects of the model to be free, and decoupled from one
another, whereas in the physical world, such freedom is not possible. PLBGs are as-
sembled out of the following ingredients. Fig. 1 illustrates the process.

[PLBG.1] There is an alphabet VL = BVL U CVL of vertex labels, with basic
vertex labels BVL = {R, C,L,SE,SF, TR, GY, E, F}, and user defined labels CV L.

[PLBG.2] There is an alphabet PL of port labels and a map lab2pts : VL —
P(PL), which maps each vertex element label to a set of port labels. (Below, we just
say port, instead of port label, for brevity).

[PLBG.3] There are partial maps labpt2effDU , labpt2floDU : VL X PL+DT x
UT mapping each (vertex label, port) pair to the dimensions and units (not elaborated
here) of the (forthcoming) effort and flow variables, and satisfying:

(lab, pt) € dom(labpt2effDU) < pt € lab2pts(lab) (12)
(lab, pt) € dom(labpt2floDU) < pt € lab2pts(lab) (13)

Formalisation, Abstraction and Refinement of Bond Graphs 5

(a) R (b) R.R (¢) Ririn
(d) vr.R (e) vr.RR (f) vr.RRin
(g) vrRR.e (h) vr.RRf (1) vr.RR.e =R Xvr.RRf

)} V — L R —_—— C
ve: C

(k) se : SE ve : E vr: R
vl:L

Fig. 1. Stages in bond graph construction: (a) a vertex label (for a dissipator); (b) adding a port;
(c) adding a directional indicator; (d)-(f) assigning attributes (a)-(c) to a vertex vr; (g) vr’s effort
variable; (h) vr’s flow variable; (i) vr’s constitutive equation; (j) a simple elecrtical circuit em-
bodying a dissipator (among other components); (k) a bond graph of the circuit in (j). Dimensions
and units are not shown.

[PLBG.4] There is an alphabet ZO = {in, out} of standard directional indicators,
and a partial map labpt2stdio : VL x PL -+ ZO satisfying:

(lab, pt) € dom(labpt2stdio) < pt € lab2pts(lab) (14)

The above clauses capture properties of PLBGs that are common to all vertices sharing
the same label. Other properties are defined per vertex. PLBGs can now be constructed.

[PLBG.5] A power level bond graph PLBG is based on an undirected graph BG =
(V, E) as in [UNDGRY], together with additional machinery as follows.

[PLBG.6] There is a map ver2lab : V' — VL, assigning each vertex a label.

When map ver2lab is composed with lab2pts, yielding map ver2pts = ver2labg
lab2pts : V' — P(PL), each vertex acquires a set of port labels.

When map ver2lab, with a choice of port, is composed with maps labpt2effDU and
labpt2floDU, yielding maps verpt2effDU = ver2lab x Id glabpt2effDU : V x PL -+
DT x UT and verpt2floDU = ver2lab x Id glabpt2floDU : V- x PL + DT x UT,
each (vertex, port) pair acquires dimensions and units for its effort and flow variables.

When map ver2lab, with a choice of port, is composed with map labpt2stdio,
yielding partial map verpt2stdio = ver2lab x Idglabpt2io : V x PL + ZO, each
(vertex, port) pair acquires its standard directional indicator.

[PLBG.7] In practice, and especially for E, F devices, directional indicators are
often assigned per (vertex, port) pair rather than generically per (vertex label, port).

6 R. Banach and J. Baugh

Thus there is a partial map verpt2io : V x PL + ZO satisfying
(ver, pt) € dom(verpt2io) < pt € ver2pts(ver) (15)

and verpt2io(ver, pt) may, or may not, be the same as verpt2stdio(ver, pt).

There is a partial injective map verpt2eff : V x PL - PV giving each (vertex,
port) pair (ver, pt) where pt € ver2pts(ver), an effort variable with dimensions and
units verpt2effDU(ver, pt). Similarly, verpt2flo : V' x PL — PV gives each (ver, pt)
a flow variable with dimensions and units verpt2floDU(ver, pt). Also, we must have
ran(verpt2eff) Nran(verpt2flo) = &. These variables are referred to by extending the
hierarchical convention of [PT.8]. Thus v.Z.pt.e refers to vertex v, with label Z, having
port pt, and so v.Z.pt.e is the relevant effort variable, etc.

There is a map ver2defs : V' — physdefs, which yields, for each vertex ver, a set of
constitutive equations and/or other properties, that define the physical behaviour of the
device corresponding to the vertex ver. The free variables of the properties in ver2defs
satisfy:

FV (ver2defs(ver)) C U (verpt2eff (ver, pt) U verpt2flo(ver, pt))
pt € ver2pt(ver)

(16)

Additionally, the properties in ver2defs(ver) can depend on generic parameters (from
a set PP say), so there is a map ver2pars : V' — PP which satisfies:

ver2pars(ver) = Pars(ver2defs(ver)) (17)

Additionally, the properties in ver2defs(ver) can depend on some bound variables.
When necessary, we refer to such variables using BV (ver2defs(ver)).

[PLBG.8] There is a bijection Eend2verpt : V x E - V x PL, from edge ends
in BG, to port occurrences:

(ver, edg) € dom(Eend2verpt) < edg is incident on ver (18)

(ver, pt) € ran(Eend2verpt) < pt € ver2pts(ver) (19)

(Vver e ver € ends(edgy) A ver € ends(edgs) A edgy # edga =
Eend2verpt(ver, edg;) # Eend2verpt(ver, edgs)) (20)

For each edge edg € E, where ends(edg) = {a, b}, the effort and flow variables at
the ends of edg, have the same dimensions and units:

verpt2effDU(Eend2verpt(a, edg)) = verpt2effDU(Eend2verpt(b, edg)) (21)
verpt2floDU(Eend2verpt(a, edg)) = verpt2floDU(Eend2verpt(b, edg)) (22)

[PLBG.9] There is a map edge2dir : £ — physdir, where physdir is a set of
equalities and antiequalities between effort and flow variables, and such that for all
edges edg € E (where ends(edg) = {a, b}):

verpt2io(Eend2verpt(a, edg)) # verpt2io(Eend2verpt(b, edg)) =

Formalisation, Abstraction and Refinement of Bond Graphs 7

edge2dir(edyg) = {
verpt2eff (Eend2verpt(a, edg)) = verpt2eff (Eend2verpt (b, edy)),
verpt2flo(Eend2verpt(a, edg)) = verpt2flo(Eend2verpt(b,edg)) } (23)

and

verpt2io(Eend2verpt(a, edg)) = verpt2io(Eend2verpt(b, edg)) =
edge2dir(edyg) = {
verpt2eff (Eend2verpt(a, edg)) = — verpt2eff (Eend2verpt(b, edg)),
verpt2flo(Eend2verpt(a, edg)) = verpt2flo(Eend2verpt(b,edg)) } (24)

or, the same with the minus sign between the flow variables

The dynamics specified by a PLBG is the family of solutions to the collection of con-
straints specified by ver2defs (and ver2pars, edge2dir).

[PLBG.10] A PLBG is a DPLBG (directed PLBG, as in the literature) iff for each
edg € E, only case (23) is relevant. In such cases, edges become harpoons (half-
arrows), showing the direction of positive power flow. In any case, the edges are called
bonds.

A consequence of a unidirectional convention for variables along edges is that it
permits the use of directed (rather than undirected) graphs as the underlying formalism.
Although this makes the handling of edge ends a little easier, the impediments to bottom
up bond graph construction that it imposes dissuaded us from following this approach.

4 The Category of Bond Graph Patterns BGPatt

The formulation of abstract bond graphs in Section 3 was extremely operational. In this
section we show how these details may be shepherded into a structure within which we
can discern a category, BGPatt, of bond graph patterns and morphisms. The extent to
which this can be used as a basis for bond graph transformation will be discussed at the
end of this section and in the next. We start with a familiar caveat on graph isomorphism.

[GRISO] Combinatorial graphs (e.g.bond graphs) have vertices and edges. The
vertices and edges, in themselves, have no properties save their own identity, unless
endowed with properties using, e.g., maps, such as appear in [PLBG.6]-[PLBG.10].
Starting with a graph G, and then manipulating it in different ways, may result in tech-
nically non-identical graphs, even when the intention is to arrive at ‘the same’ result.
The different results will be isomorphic, though not identical. Writing the needed iso-
morphisms explicitly gets very tedious, so we will use the phrase ‘the same’ below, to
indicate that we are suppressing these details. Similar observations apply to ‘a copy’ of
part of the RHS of a transformation rule during rule application.

[BGP.1] A vertex label Any is introduced. It is a one port label, with an anonymous
port ‘—’.

Any does not correspond to any physical device, but serves to label the vertex at
the end of an edge at the periphery of a pattern (defined below) that is to be matched to
a vertex (of a bond graph which is to be transformed).

8 R. Banach and J. Baugh

Since Any-labelled vertices do not correspond to physical devices, they do not
need all the attributes of normal vertices. They just need attributes for dimensions and
units, and directional indication. These are given by extending the domains of the maps
verpt2effDU, verpt2floDU, verpt2io, as needed, to the Any-labelled vertices.

[BGP.2] A pattern is a bond graph that contains zero or more Any-labelled vertices
(along with their reduced set of attributes, as given in [BGP.1]).

Thus a bond graph is always a pattern, but a pattern is not a bond graph (i.e. a PLBG
or a DPLBG) if it has one or more Any-labelled vertices.

[BGPatt.OBJ] The objects of the category BGPatt are the patterns of [BGP.2].

Let P be a pattern. We define Anysp to be the set of all Any-labelled vertices of
P, and nonAnysp to be the set of all vertices of P other than Any-labelled vertices.
We define AAsp to be the set of all edges of P between two Anysp vertices, NAsp
to be the set of all edges of P between a nonAnysp vertex and an Anysp vertex, and
NNsp to be the set of all edges of P between two nonAnysp vertices.

[BGP.3] Let A and B be patterns. We use A and B subscripts to label the individual
technical ingredients from Section 3 belonging to A and B. A matching m of A to B,
written m : A — B consists of: a map my : V4 — Vg on vertices; and an injective
map mg : E4 — Ep on edges. From m g, a further injective map menqs on edge ends
is derived. These are all required to satisfy injective and homomorphic conditions:

ME, Mends are 1-1, my need not be 1-1 25)
ends(edg) = {a,b} = ends(mg(edg)) = {mvy(a), my(b)} (26)
edg is incident on a = Mmepnds(a, edg) = (my (a), mg(edg)) (27)

The injectivity on edges reflects the fact that physical devices have fixed numbers of
connections, which each need to be connected to something for the device to function.

We further require that the bond graph properties of nonAnys 4 vertices and edges
of A are mirrored in B (i.e., labels, definitions (which we assume to include identity of
free variables and parameters), ports (and their effort and flow variables, their dimen-
sions and units, and their directional indicators)):

ver2lab(a) # Any =

[ver2lab 4 (a) = ver2labg(my (a))] A (28)
[ver2defs 4 (a) = ver2defsg(my (a)] A (29)
[ver2pts4(a)) = ver2ptsg(my (a)) | A (30)
[pt € ver2pts 4 (a) =
[verpt2effDU 4 (a, pt) = verpt2effDU z(my (a), pt) | A 31)
[verpt2eff 4 (a, pt) = verpt2eff g(my (a), pt) | A (32)
[verpt2floDU 4 (a, pt) = verpt2floDU z(my (a),pt) | A (33)
[verpt2flo 4 (a, pt) = verpt2flog(my (a), pt) | A (34)
[

verpt2io 4 (a, pt) = verpt2iog(my(a),pt)]] (35)

Formalisation, Abstraction and Refinement of Bond Graphs 9

We also require that the bond graph properties of Anys 4 vertices and edges of A are
mirrored in B in line with their reduced attributes:

ver2lab(a) = Any =

[verpt2effDU 4 (a, —) = verpt2effDU z(my (a), pt) | A (36)
[verpt2floDU 4 (a, —) = verpt2floDU g (my (a), pt) | A (37)
[verpt2io 4 (a, —) = verpt2iog(my (a), pt)] (38)

where: edyg is incident on a, and Eend2verpt(my (a), mg(edg)) = (mv (a), pt)
[BGPatt.MOR] The morphisms of the category BGPatt are the matchings of [BGP.3].
Theorem 1. BGPatt is a category, as claimed.

Proof sketch: The morphisms of BGPatt are conventional homomorphisms of la-
belled graphs, but restricted in a number of ways. In particular, edges and edge ends
are mapped injectively. This means that only Anys vertices may map many-1 (pro-
vided their edge ends map to distinct edge ends of the target). The various labelling
attributes of vertices map identically for nonAnys vertices, and for Anys vertices the
much smaller set of labelling attributes that matter, also map identically. So morphisms
are injective in all respects save the Anys vertex map.

Isomorphisms can thus be bijective homomorphisms of labelled graphs that pre-
serve all the attributes, with obvious identities. Since morphisms are constructed from
functions (on vertices and edges (and their ends)) and equalities of attributes, associa-
tivity follows immediately. a

We observe that a large number of the conditions (25)-(38) are actually independent
from one another. This creates scope for defining many minor variants on the notion
of morphism, by removing one or more of these conditions, provided that none of the
conditions which remain, are dependent on the removed ones. Every such variant gives
rise to a different category, even if they all share the same objects.

We further observe that while BGPatt is a category of concrete graphs, we can
easily create an analogous category of abstract graphs by taking its objects as those of
BGPatt, up to isomorphism (where the isomorphisms are understood to be those of
BGPatt), with the analogous adaptation of the morphisms.

4.1 Commentary

Having covered the essentials of the BGPatt category above, we reflect on the ‘design
choices’ made, with an eye to using these insights in the construction of a notion of rule
based bond graph transformation in the next section.

In particular, the high degree of injectivity demanded of the morphisms deserves
comment. It arises from the strong coupling between a vertex’s label and its permitted
set of edges, via the functional dependence of the number and characteristics of the
ports associated with that label. Such strong constraints are needed because the vertices
represent actual physical devices and the edges represent actual physical connections.
Physical devices cannot acquire new physical connections or lose existing ones on a

10 R. Banach and J. Baugh

whim, which would be possible if there were no coupling. This coupling between a
vertex and its permitted set of edges (via its label) is in stark contrast to the usual
situation in graph transformation formalisms, in which the properties of the two are
decoupled, this being exploited during transformation. We see the impact of this below.

S Bond Graph Transformation

In practice, bond graphs are often simplified, transformed, or rewritten, in various ways.
In the existing literature, this activity is always described informally. In this section, we
address the transformation of bond graphs from a more formal perspective, benefiting
from the categorical formulation of the previous section.

5.1 Rule Based Bond Graph Transformation

In Section 3, [PLBG.1]-[PLBG.10] provided the mechanics for constructing bond
graphs. This was achieved using maps that took each vertex to its various components,
e.g. label, ports, etc. In this section, bond graphs are transformed by applying transfor-
mation rules, which are templates for how an actual bond graph may be changed in the
region of a matching of the rule to a match, or redex. This draws on the machinery of
BGPatt from Section 4.

Rule based graph transformation has an extensive literature. The procedure we will
describe is adapted from the so-called double pushout and single pushout constructions
comprehensively presented in [4] and [5] and in work cited therein, as well as in more
recent publications. However, our approach will be considerably simpler, so we will
not need most of the machinery discussed there. Partly, this is because we can work
at a lower level of abstract technically, and partly it is because there are fundamental
obstacles to applying the standard approaches verbatim in this application domain. We
axiomatise what we need as follows.

[BGTR.1] A bond graph transformation rule (L, p, R) (rule for short) is given,
firstly, by a pair of patterns L and R, where L is called the left hand side (LHS) and R
is called the right hand side (RHS). Secondly, there is a bijection p : Anys; —» Anyspg,
for which (36)-(38) hold (in which the matching m is p and the port pt is the anonymous
port of py (a), as needed).

Lemma 1. Let (L, p, R) be a rule. Then:

1. p extends to a bijection between edge ends incident on Anys vertices.

2. Forevery AAsy, edge in L, either there is a unique AAsg edge (where the respec-
tive ends correspond via p), or there are two NAsp edges (where the Anys; and
Anys p ends correspond via p).

3. Forevery AAsg edge in R, either there is a unique AAsy, edge (where the respec-
tive ends correspond via p), or there are two NAsy, edges (where the Anys; and
Anys p ends correspond via p).

4. There is a bijection between the Anys; vertices (and their incident edges/ends)
that are not in the scope of either 1 or 2, and the Anys p, vertices (and their incident
edges/ends) that are not in the scope of either 1 or 2.

Formalisation, Abstraction and Refinement of Bond Graphs 11

Proof: This is a straightforward consequence of the bijective nature of p, and of the
fact that Anys vertices have a single edge end, extending p to a bijection between Anys
edge ends. The rest follows from the fact that each edge has exactly two ends. a

[BGTR.2] Let (L, p, R) be arule. Let G be a bond graph, and m : L — G be a
matching. The application of the rule (L, p, R) at the matching m is the result of the
following steps:

1. Remove from G, all mg(FEL) edges, and all my (nonAnys;) vertices. This cre-
ates D (which will not be a valid bond graph, since, in general, it will have ports
(belonging to my (Anys;) vertices) that do not correspond to edge ends in D).

2. Addto D:

(a) acopy? of the vertices in nonAnys p;

(b) acopy of the edges in R;

(c) If edgC is the copy of an edge edg of R, and if edg has edge end (v, edg) in
R, let (vC, edgC) be the edge end corresponding to (v, edg) where:
(i) if v € nonAnysg then vC is its copy;
(i) if v € Anysp then vC = my (p~1(v)).

Call the resulting graph H.

3. Endow H with all the needed attributes to make it a PLBG (labels, ports, variables,
definitions, directional indicators) by: (a) retaining the existing attributes inherited
via m(L) for D; (b) replicating the attributes from the edges and nonAnysp ver-
tices to their copies in H.

Below, to shortcut the rather inconvenient language of 2.(c), we will say that ‘the NAsy,
edges have their nonAnys; end redirected’ (to their destinations in R), and ‘the NAsy,
matched edges have their nonAnys;, matched end redirected’ (to their destinations in
H), or similar language.

Note that, by Lemma 1, the ‘other end’ of an AAsy, edge is also an Anys;, incident
edge. Therefore, unless such an edge is mapped by p to a similar A Asp edge, such an
edge is redirected to two edges in R, which is reflected in H. Analogously, two NAs;,
edges may both be redirected to the same AAspy edge, similarly reflected in H.

Remark We observe that the rule application described in [BGTR.2] definitely does not
fall under the canonical framework of the double pushout approach (despite superficial
appearances), since the entity D created in step 1 is not an object of BGPatt. There
are two relatively self-evident reactions to this state of affairs. (1) Simply accept things
as they are, namely, accept that in this case, stepping out of the category BGPatt is
necessary in order to define the required transformations. (2) Attempt to modify the
definition of BGPatt so that it can accommodate the intermediate entities D, thereby
placing the construction back in the legitimate double pushout approach.

Neither option is entirely satisfactory. (1) has the evident defect that it steps out-
side the clean categorical framework of the double pushout approach. Nevertheless, as
argued in Section 4.1, the category it uses, BGPatt, captures the right properties for

2 When we say ‘copy’ of some graph theoretic concept, e.g., a set of vertices or a set of edges,
we mean a distinct set of the same cardinality as the original, and endowed with attributes
equivalent to the original, c.f. [GRISO]. In its turn, ‘distinct’ means having no element in
common with any similar entity in the discourse.

12 R. Banach and J. Baugh

the given application domain. (2) has the merit of remaining within the double pushout
approach. But, in breaking the link between a vertex label with its set of ports on the
one hand, and the set of edges incident on a vertex carrying that label on the other hand
—as must happen if D is to be a legitimate category object— we fatally undermine the
suitability of such a category to capture the properties needed in the application domain.

Another possibility suggests itself: (3) Attempt to modify the actual definition of
graph transformation, by involving another category besides BGPatt (e.g. a modifica-
tion of BGPatt as envisaged in (2)), thus arriving at a more complex, and novel, kind of
transformation formalism. This is certainly possible, e.g. an approach via opfibrations
[1], but this is well beyond the scope of the present paper.

Proposition 1. The rule application described in [BGTR.2] yields a legitimate PLBG
H.

Proof sketch: By Lemma 1, p extends to a bijection between Anys; incident edge ends
and Anys p incident edge ends. This can be composed at the L side with the injective
Mends and on the R side with the bijection between the corresponding Anys incident
edge ends and their copies in H. So there is a bijection between the images of the
Anys incident edge ends and the images of the Anysp, incident edge ends. Since the
rest of H is either pre-existing bond graph structure in D, or a copy of bond graph
structure in R, the correctness of the combinatorial graph structure of I follows.

It remains to check that the dimensions, units, and directional indicators at the two
ends of an edge in the PLBG H match suitably. They will do so in the part of D not
affected by the removal of L. They will also do so in pattern R, a copy of which is added
to D. This leaves the redirection mechanism to be checked. However, the constraints on
matching, i.e. (36)-(38), and the analogues of those constraints demanded of p, ensure
that like is replaced with like during the redirection, so that the needed properties hold.

The only remaining issue is the possible non-injectivity of my . However, all the
properties we need are properties of edge ends, not of vertices, so the location of the
edge ends is not germane, and any non-injectivity of my does not affect them. a

Beyond the preceding, there is evidently a matching m® : R — H, together with a
bijection g : my (Anys;) — mk (Anys), with similar properties to p.

The bijectivity of p implies that for every rule (L, p, R), there is an inverse rule
(R,p~', L). And existence of the matching m® implies that for every application of
(L,p, R) to G using m to yield H, to which R can be matched using m?~, there is an
application of (R, p~!, L) to H using m® to yield G, to which L can be matched using
m.

[SOUND] The rule application described in [BGTR.2] for (L, p, R) and m is sound
iff the family of solutions to the PLBG H, restricted to the variables at the ports of
my, (Anysg), is contained in the family of solutions to the PLBG G, restricted to the
variables at the ports of my (Anys;).

[COMP] The rule application described in [BGTR.2] for (L, p, R) and m is com-
plete iff the family of solutions to the PLBG G, restricted to the variables at the ports
of my (Anys;), is contained in the family of solutions to the PLBG Hrestricted to the
variables at the ports of m¥, (Anysp).

Formalisation, Abstraction and Refinement of Bond Graphs 13

fedg(l‘ fed 1
\1 E/_\gb EV E> .\] /

S =

Fig. 2. A rule that shrinks a pattern whose nonAnys form a two vertex connected E-graph. The
e vertices are the Any-labelled vertices, with obvious bijection p.

[UPATH] A path in an undirected graph is a sequence of vertices, such that each
consecutive pair is the pair of edge ends of an edge. If needed, the edges in question can
be included in the path data.

[UCONN] A graph or pattern is connected iff for any two vertices, there is a path
between them.

[E-GR F-GR EF-GR] A pattern is an E-graph iff all its nonAnys vertices are E-
labelled. Similarly for an F-graph. A pattern is an EF-graph iff each nonAnys vertex
is either E-labelled, or F-labelled.

Theorem 2. Let (L, p, R) be a rule in which L is a connected E-graph, and R is an
E-graph with a single nonAnys vertex. Then any application of (L, p, R) is sound and
complete. If L is not connected, then application is complete, but not necessarily sound.
Similarly if L is an F-graph.

Proof: We consider the special case in which L is an E-graph with two nonAnys
vertices a, b, with one or more edges {edg; ...edgy} connecting them. See Fig. 2.
Suppose a is connected to Any-labelled vertices {a; .. .a,} via suitable edges, and b
is connected to Any-labelled vertices {b; ... b} via suitable edges. Then a will have
flow variables { feage - .. fedgg s fay - fa,} atits ports connected to its edges, and b
will have flow variables { feagr - - fedg;; s Joy - - - fo, } atits ports connected to its edges.

Assuming the standard directional indicators for E-devices, i.e., in, the behaviours
at the two vertices matched to a, b in an application of (L, p, R) will be a copy of:

~fedgt — - — Fedgs = fay + - + fa (39)
_fedgf = fedgll’ (40)
_fedg,‘i = fedgz (41)
7fedgll’7"'7fedglbc:fb1+"'+fbb (42)

Substituting (40)-(41) into (39), and adding the result to (42), yields:

O=fo,+ .-+ fa. +fo.+- -+ fo, (43)

This, together with the constant effort condition, specifies the behaviour of G at the
ports matched to the Any ports of L. But the same conditions result from replacing the
vertices matched to a, b with a single vertex x say, and redirecting all edges incident on

14 R. Banach and J. Baugh

——X:E— I:> — o

Fig. 3. A rule that shortcuts a single two port E-vertex.

the images of a, b to x. But this is what application of the rule (L, p, R) achieves. So
application of (L, p, R) is complete.

But the procedure described can be reversed by considering the inverse rule (R, p~1, L).
If R is the LHS, its single nonAnys vertex imposes a condition like (43). The flow vari-
ables in the right of (43) can then be partitioned into two sets, corresponding to the two
nonAnys vertices of L, and the incident edges can be redirected to these two vertices.
Since the two vertices are connected by one or more edges in L, corresponding edges
are created in the result PLBG, and a system of equations like (39)-(42) results, leading
to soundness of application of (L, p, R).

If L is a connected E-graph with more than two nonAnys vertices, then the edges
between them can be contracted one at a time following the above procedure, except
that some of the {fa, ... fa. , fo, - - [, } flow variables will typically belong to ports
to other nonAnys vertices, rather than to Anys vertices exclusively. This does not un-
dermine the argument. The soundness and completeness properties of successive steps
compose to give soundness and completeness for the application of (L, p, R) in its en-
tirety.

If L is not connected, then following the above procedure will, at some point, fuse
two vertices which are not connected by any edge. We will then have analogues of (39)
and (42) (with O on the left), but none of (40)-(41). Absent { feagg - - - feage » edgt - - - fedgz 1,
(39) and (42) imply (43), but not vice versa, leading to the failure of soundness. a

Corollary 1. Let (L,p, R) be a rule where L has two Any-labelled vertices and a
single E-labelled vertex, connected together by two edges, and where R has two Any-
labelled vertices only, and a single edge connecting them, i.e. a single AAsg edge.

a2
fl[—(el+e2) —(e1+e2)u' E—(e1+62)
elifl X/fl —(f14/2) | ~(e1+e2)
62 I:> .—ele:E el m:F 2 W:Ee—zo
—(ﬂ+f2> QT SR~ (42 (f1ap2)
elA e2(f2

ﬂl —(el+e2)

Fig. 4. A rule that optimises a shape that arises in bond graph construction from schematics.

Formalisation, Abstraction and Refinement of Bond Graphs 15

d:D
ﬂ@ —(el+e2)) 2
u: E

—~(f14+f2) | —(e1+e2)
e mF—2 e
—(f142) (ﬂ+f2)
—(fl+2) =(f14/2)

se: SE r:R

Fig. 5. An application of the rule in Fig. 4.

Then any application of (L,p, R) is sound and complete. Similarly if L has a single
F-labelled vertex.

Proof: Fig. 3 illustrates. This follows via a straightforward simplification of the previ-
ous arguments. O

Fig. 4 shows a rule (L, p, R) that simplifies a bond graph structure that can easily arise
from the systematic construction of bond graphs from schematics. Only the values of
the efforts and flows have been shown on the bonds, from which the bijection p can be
easily inferred. For specific application, the rule needs to be completed with directional
indicators, and appropriate (anti)equalities on the port effort and flow variables. Fig. 5
shows an application of the rule to a bond graph containing a two port device D. Sound-
ness and completeness follow from applying the distributive law in various ways to a
formula of the shape (a + b)(c + d). Fig. 6 shows a more elaborate version of the same
rule. These two examples have evident duals in which the roles of E-labelled vertices
and F-labelled vertices are interchanged.

In various works in the bond graph literature there are ad hoc discussions of similar
bond graph transformation rules (as we would term them) that can be safely applied

—(el+ea)/f\“ /—(—ea+e2)/ﬂ
—(el+e)/ﬂ\ /:;He,,)/fz
“V Y’ﬂ —<—ea+e2>V \E-Eb“”’ﬂ

~(fl+12) | ~(e1+€2)

—(ﬂ+f2) \ / —(ﬂ+f2)
2
elif2 7 el el e Lo

e: : E—2 o
(el+e)/]‘2/ \ ep+e2)lf2 —(142) =(f14/2) =(fl+2) —(f1+2)
- b o\ (=

Fig. 6. A more elaborate version of the rule in Fig. 4.

16 R. Banach and J. Baugh

to simplify bond graphs, when they have been arrived at by some systematic process
starting from a schematic (which usually generates some redundancy). In [3] there is a
more comprehensive list of such transformations. Reformulated as above, all of them
can be proved sound and complete straightforwardly.

5.2 Bond Graph Transformation Confluence

When a number of rules are available for transforming a structure, e.g. a graph G, and
more than one of their LHSs matches (G, a question of some interest is whether ‘the
same’ result will be produced if the rules are applied in one sequence or in a different
sequence — or, speaking more technically, whether the set of rules is confluent. The
following is an easy result guaranteeing confluence.

Theorem 3. Let function labels(X) return the set of labels of the vertex set X. Let R =
{Rly = (L1,p1,R1),...,Rly, = (Ln,pn, Rn)} be a set of bond graph transformation
rules, and let G be a bond graph. Then the application of R to G is confluent if:

1. forall1 <i<n,an AAs edge does not occur as a subgraph of any L; or R;;
2. foreveryl < i < j < n, we have thatlabels(nonAnys(L;))Nlabels(nonAnys(L;))
= O.

Fig. 7 compactly shows two rules, RI1 and RI2, and a bond graph G. Rule RI[1’s LHS
is shown, and the two dotted arrows indicate that vertex (labelled) A1 is to be redirected
to the lower Any vertex, and vertex A2 is to be redirected to the upper Any vertex, so
that the RHS of RI1 is just a single AAs edge. Rule RI2 is similar, but redirecting B1
and B2 to the Any vertices. If RI1 is applied to G, bond graph H; results which is a
single bond between B1 and B2. There is a unique homomorphism from the LHS of
RI2 to Hy, but not a matching, because the edge map is not injective; both edges of
the LHS of RI2 have to map to the single edge in H;. If we apply RI2 first, we get Ho
which is a single bond between A1 and A2, and we get no matching of RI1’s LHS to it.
Clearly there is no way of bringing H; and H, together with the rules we have.

The reasoning above was based on graph structure alone. This, unfortunately, is
not enough to show the confluence of the system of rules discussed in Theorem 2 and
Corollary 1 (including the analogues for F-labelled vertices). There is too much over-
lap between the labels occurring in the rules. To get confluence, we need to appeal,
additionally, to the effort and flow constraints. With some work we can deduce:

Theorem 4. The collection of rules discussed in Theorem 2 and Corollary 1, along
with their F-labelled analogues, is confluent and normalising.

Al'ﬁ. Al B1 -V,_ “'._Bl
A 2
A2——— A2 B2 B2
RIl G RI2

Fig.7. An example showing the difficulties that arise when AAs edges are allowed to be either
in, or created by, rule patterns.

Formalisation, Abstraction and Refinement of Bond Graphs 17

ne:R(elR) nw:L(elL) n: L(rotL) eIV rorte
I:> elC —ic MM e “roto ©
(elVx—elVr)lelC (elVr—elVi)lelC rot® | (rotti—rottx) @R elL.
elVx ,. g elVi g GY(T) rotti .. p _rottx T,rotL)
elC elC rot® rot®

Fig. 8. An example abstraction, replacing the detail of an ideal but low level motor/dynamo with
a high level abstract motor/dynamo device which conceals the details of its internal operation.

6 Bond Graph Abstraction and Refinement

The machinery we have developed for transforming bond graphs serves well for for-
mally expressing hierarchy and abstraction. Parts of a large, low level bond graph can
be formally abstracted by transformation to yield a smaller, more compact (and thus
more perspicuous) one. Conversely, the reverse of the same process can formally ex-
pand a high level, abstract bond graph, refining it to a lower level of abstraction. The
ingredient of our formalism, thus far unused, that enables us to do this effectively, is the
user level device label.

We illustrate the process with a small idealised electric motor/generator example,
adapted from [6]. Fig. 8 shows the details of an abstraction rule (L,p, R). On the
left, the upward pointing harpoons in L show the positive power flow into the dissi-
pator (electrical resistor) ne, with value elR, the positive power flow into the inertor
(electrical inductance) nw with value elL, and the positive power flow into the in-
ertor (rotational flywheel) n with value rotL. When the horizontal bonds are turned
into right pointing harpoons, the bond graph becomes that of an ideal DC electrical
motor, taking in power from the left (via external voltage e/Vz and external current
elC), with the voltage drop elVz — elVi accounted for by the power absorbed by ne
and nw. The remaining internal power elVi x elC' goes into the gyrator g, which has
transduction coefficient T'. This outputs rotational power rot7i X rotTw, according to
elVi = T x rottw and T x elC' = rotri. There is a further loss of power due to
the drop in torque rot7Ti — rotTx caused by the flywheel, which finally results in rota-
tional power rotTx X rotTw being output via the driveshaft. When the direction of the
horizontal harpoons is reversed, the pattern can be reinterpreted as an ideal electrical
dynamo powered from the right via the driveshaft. Formally, in L, all the port variables
corresponding to the bond values shown in L are free, as are the parameters elR, elL,
T, rotL, and the equations that govern the behaviour of the devices e, ne, nw, g, n

In the RHS of the rule R, we see a single nonAnys vertex md labelled with device
M/D. The understanding would be that M/D is a user-introduced label for abstract ideal
motors/dynamos in a given application context. The properties of M/D conceal and
absorb the details of vertices e, ne, nw, g, n. This is done by aggregating the equations
that govern the behaviour of the devices e, ne, nw, g, n, and existentially quantifying
all their port variables, leaving the port variables corresponding to elVz, elC, rotrz,
rotw free. Note that the parameters elR, elL, T', rotL, now become parameters of M/D.

If, inside the quantified formula for the behaviour of an abstract device like M/D,
the bound variables can be eliminated by some manipulation, then behaviour of M/D

18 R. Banach and J. Baugh

will be given by equations in only the free port variables corresponding to elVz, elC,
rotTx, rotTw (and the parameters elR, elL, T, rotL). Usually though, this will not be
possible.

Expressing a large complex system in terms of such high level components can
bring convenience and perspicuity. Since our rules are reversible, the inverse process,
refinement, is equally straightforward: we simply reverse the roles of L and R, and
replace a high level abstraction with a more detailed implementation.

7 Conclusions

In the preceding sections we have presented, rather tersely, the essential elements of a
formalisation of bond graphs. We covered the ingredients of the physical theories that
are in scope, and the graphical structures that capture their interrelationships in a precise
manner. Given these basics, the category BGPatt could be formulated, and given that,
the long history of graph transformation frameworks provided ample inspiration for
formulating a suitable rule based framework for bond graph transformation. This could
be immediately leveraged to give a methodology for abstraction and refinement of bond
graphs.

One topic not touched on above, is the ‘causality’ concept of bond graphs. More
than the topics we covered, this suffers from an extraordinary level of imprecision and
ambiguity in the conventional bond graph literature, overwhelmingly attributable to
lack of precision in the use of language. It will be disentangled and formalised in [2].

References

1. Banach, R.: Term Graph Rewriting and Garbage Collection Using Opfibrations. Theor. Comp.
Sci. 131, 29-94 (1994)

2. Banach, R., Baugh, J.: Bond Graphs: An Abstract Formulation (2023), in preparation.

Borutzky, W.: Bond Graph Methodology. Springer (2010)

4. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Lowe, M.: Alegbraic Ap-
proaches to Graph Transformation, Part I: Basic Concepts and Double Pushout Approach. In:
Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation
(3 vols.). vol. 1, pp. 163-245. World Scientific (1997)

5. Ehrig, H., Heckel, R., Korff, M., Lowe, M., Ribeiro, L., Wagner, A., Corradini, A.: Alegbraic
Approaches to Graph Transformation, Part II: Single Pushout Approach and Comparison with
Double Pushout Approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Com-
puting by Graph Transformation (3 vols.). vol. 1, pp. 247-312. World Scientific (1997)

6. Karnopp, D., Margolis, D., Rosenberg, R.: System Dynamics: Modeling, Simulation, and
Control of Mechatronic Systems. Wiley, Sth edn. (2012)

7. Kypuros, J.: Dynamics and Control with Bond Graph Modeling. CRC (2013)

Paynter, H.: Analysis and Design of Engineering Systems. MIT Press (1961)

9. Paynter, H.: An Epistemic Prehistory of Bond Graphs. Elsevier (1992)

hed

o

