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ABSTRACT
Cyber-Physical systems (CPS), containing discrete behaviors of the cyber and continuous be-
haviors of the physical, have gained wide applications in many fields. Since CPS subsume the
intersection of cyber systems and physical processes, the traditional modeling languages which
merely include discrete variables are no longer applicable to CPS. Accordingly, a shared variable
language called CPSLsc was proposed to specify CPS. In this paper, we elaborate the algebraic
semantics for this language, so that every program of CPSLsc can be converted into a unified
form called guarded choice form and the sequentialization of parallel programs is achieved. Ad-
ditionally, we formalize the algebraic semantics in the rewriting engine Real-Time Maude. With
the algebraic laws constructed, for every program specified with CPSLsc , we can simulate its
execution step by step. Furthermore, automatic transformation and execution are attained. As
a consequence, if the program and its initial data state are provided, the corresponding trace
of data states during execution can be generated. In the light of the generated trace, automatic
verification can be carried out as well.

1. Introduction
Cyber-Physical systems (CPS) are multidimensional complex systems that integrate discrete behaviors and contin-

uous behaviors. In CPS, computer programs can influence physical behaviors, and vice versa. CPS has covered a wide
range of application areas, including healthcare equipment, intelligent traffic control and environmental monitoring,
etc.

Meanwhile, the interaction between the cyber and the physical makes the traditional modeling languages defined
for purely discrete systems unsuitable for CPS. Therefore, some specification languages are proposed to describe and
model CPS, such as Hybrid CSP [1], HRML [2] and so on. We proposed a language whose parallel mechanism
is based on shared variables in our previous work [3], and we name it CPSLsc (Cyber-Physical Systems Modeling
Language with Shared-Variable Concurrency) in this paper. As for this shared variable language, we proposed its
formal semantics [4], developed its proof system [5], and presented an implementation of the transformation from this
language to the automata in SpaceEx [6, 7].

This paper extends our work published at ICECCS 2022 [4]. In our previous work, we introduced five types of
guarded choices and explored the algebraic semantics of our language. Our previous work [4] mainly focuses on
the theoretical view of the algebraic semantics. Now, compared with the previous work, we elaborate the algebraic
semantics and apply the algebraic semantics into practice. This paper aims to carry out the simulation and verification
of CPS from the view of formal semantics, particularly the algebraic semantics. The main contributions of this paper
are presented in Figure 1.

• From Theoretical View: We elaborate the algebraic semantics by redefining the guarded component and
guarded choice of continuous behaviors. With the updated definitions, we propose the algebraic semantics.
Then, based on the proposed semantics, every program described by CPSLsc can be transformed into the unified
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form (i.e., guarded choice form), and parallel programs with discrete and continuous behaviors can be sequen-
tialized consequently.

• From Practical View: We add the mechanization of the algebraic semantics in the rewriting engine Real-
Time Maude [8, 9], simulation and verification of CPS can be conducted accordingly. Additionally, to better
understand the usage of the semantics and its implementation in Maude, we employ the program of a battery
management system (BMS) as a case study in this paper.

Figure 1: Technology roadmap

More specifically, in this paper, the updated forms of guarded component and guarded choice for continuous be-
haviors consider the continuous behavior as a whole rather than splitting it. The new form is on the one hand closer to
the continuous nature of continuous behaviors, and on the other hand, has a more concise form of expression. Based on
the updated guarded components and guarded choices, the elaborated algebraic semantics is presented. Subsequently,
any program in CPSLsc can be expressed as the guarded choice form. Actually, the core of the guarded choice form
in our algebraic semantics is deriving the first action from the program. Therefore, for a given program (sequential or
parallel), we can get the first action of the program step by step, that is, sequentialization is achieved.

Then, we consider how to apply the proposed formal semantics to simulation and verification. Program properties
can be expressed as algebraic laws (equations usually), which can be verified using the formalized semantics. As
mentioned in [10], “Algebra is well-suited for direct use by engineers in symbolic calculation of parameters and the
structure of an optimal design. Algebraic proof by term rewriting is a most promising way in which computers can
assist in the process of reliable design.” As a result, this paper aims to build a bridge between the algebraic semantics
and its applications (i.e., simulation and verification) through term rewriting.

Real-Time Maude [8, 9] is the extension of the rewriting engine Maude [11], its theoretical basis is rewriting
logic [12], and it supports formal specification, simulation and analysis of real-time and hybrid systems. Therefore, we
implement the proposed algebraic laws and then conduct simulation and verification in Real-Time Maude. Through
the mechanical implementation, for the input program attached with its initial state, Maude can automatically convert
the program to the guarded choice form and then execute it. The final result returned by Maude is a trace of data states.
These data states are recorded during the execution of the program, and they reflect the execution of the program.
Moreover, inspired by the definition of “Monitor” in the runtime verification [13] and the gist of our algebraic semantics
(i.e., obtaining the first action of a given program), we conduct the verification in Maude from a “trace” perspective.

The rest of this paper is organized as follows. In Section 2, we recall the syntax of CPSLsc and sketch the rewriting
engine Real-Time Maude. Based on the introduction of algebraic guards, guarded components and guarded choices,
the algebraic semantics of CPSLsc is explored in Section 3. Section 4 is about the mechanical implementation of
algebraic semantics in Real-Time Maude. The case study of a battery management system is carried out in Section 5.
Related work is discussed in Section 6. Finally, we conclude our work and propose some future work in Section 7.
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Table 1
Syntax of CPSLsc

Process P , P ′ ∶∶= S (Sequential Process)
| P ∥ P ′ (Parallel Composition)

Sequential process S, S ′ ∶∶= Db (Discrete Behavior)
| Cb (Continuous Behavior)
| S;S ′ (Sequential Composition)
| if b then S else S ′ (Conditional Construct)
| while b do S (Iteration Construct)

Discrete Behavior Db ∶∶= x ∶= e | @gd
Continuous Behavior Cb ∶∶= R(v, v̇) until g
Guard Condition g ∶∶= gd | gc | gd ∨ gc | gd ∧ gc
Discrete Guard gd ∶∶= true | x = e | x < e | x > e | gd ∨ gd | gd ∧ gd | ¬gd
Continuous Guard gc ∶∶= true | v = e | v < e | v > e | gc ∨ gc | gc ∧ gc | ¬gc

2. Background
In this section, we first recall the syntax of CPSLsc . Then, the rewriting engine Real-Time Maude is introduced

briefly.
2.1. Syntax

The syntax of CPSLsc is summarized in Table 1. It was proposed in our previous work [3], and we elaborated it
by detailing the guard conditions of the continuous behaviors in [4]. Here, x and v stand for discrete and continuous
variables respectively. e is an expression that contains discrete or continuous variables. b represents a Boolean con-
dition. In CPSLsc , a process includes discrete behaviors Db, continuous behaviors Cb and several compositions and
constructs of them.

• Db: There are two discrete behaviors in CPSLsc , i.e., discrete assignment and discrete event guard.
– x ∶= e is a discrete assignment. It is an atomic action. Through this assignment, the expression e is
evaluated and the value gained is assigned to the discrete variable x.

– @gd is a discrete event guard. gd is a discrete guard. @gd is triggered if gd is satisfied. Otherwise, the
process waits for the environment to trigger gd.

• Cb: To describe the continuous behaviors in CPS, we introduce differential relation in CPSLsc .
– R(v, v̇) until g portrays the continuous behaviors. R(v, v̇) is a differential relation which defines the dy-
namics of the continuous variable v. The continuous variable v evolves as the differential relation specifies
until the guard condition g is triggered. InCPSLsc , four kinds of guard condition g are allowed, i.e., discrete
guard gd, continuous guard gc, mixed guards gd ∧ gc and gd ∨ gc.

• Sequential Process: A sequential process can be comprised of the above commands.
– S;S′ is sequential composition. If the process S terminates successfully, the process S′ is executed.
– if b then S else S′ is a conditional construct. If the Boolean condition b is true, then S is executed.

Otherwise, S′ is executed.
– while b do S is an iteration construct. S keeps running repeatedly until the Boolean condition b does not
hold.

• Parallel Composition: Additionally, a process can also be in the form of parallel composition.
– P ∥ P ′ is parallel composition. It indicates P executes in parallel with P ′. The parallel mechanism of our
language is based on shared variables. In CPSLsc , parallel composition occurs only at the outmost level,
i.e., (P ||Q); (P ′

||Q′) is illegal.
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2.2. Real-Time Maude
Maude [11] is based on rewriting logic [12], and Real-Time Maude [8, 9] is the extension of Maude. Real-Time

Maude is a language and tool which supports formal specification, simulation and analysis of real-time and hybrid
systems.

First, we briefly introduce the syntax of Maude. Maude includes two kinds of modules: functional modules and
system modules. We apply the keywords fmod - endfm to define a functional module, and the basic data types (i.e.,
sorts, operators, variables and equations) of a system can be declared in it. A system module is declared with the
keyword mod - endm, and it can also contain rewrite rules which are defined to specify the dynamic part of a system.
Here, we only list the syntax that appears in this paper.

• sort and sorts: sort is used to declare one sort, or we can use sorts to declare many sorts. A sort A can be
defined as a subsort of a sort B by subsort A < B.

• op: An operator is declared with the keyword op in the form of op f : s1 ... sn -> s [Operator
Attributes]. The operators can have some equational attributes, such as id (the operator has a certain identity
element), assoc (the operator is associative) and comm (the operator is commutative). Moreover, the ctor
attribute means that the operator is defined as a constructor which is used to build data elements and has no
computational meaning. Also, precedence values can be equipped with operator declarations, where a lower
value indicates a tighter binding.

• var and vars: Variables in Maude are defined with the keyword var with the sort following behind the name.
• eq and ceq: Unconditional equations and conditional equations are declared using the keywords eq and ceq.
• rl and crl: The keywords rl and crl are introduced to declare unconditional rewrite rules and conditional

rewrite rules.
Different from the modules in the ordinary Maude, Real-Time Maude declares a data sort Time to specify the time

domain and all modules are declared as timed modules with the keyword tmod - endtm. Further, timed module
automatically imports the sorts System and GlobalSystem and the operator {_} as a skeleton time domain. For the
rewrite rules, Real-Time Maude includes two types of rules.

• Instantaneous rewrite rules: They stand for ordinary rewrite rules used to model instantaneous behaviors, and
we assume they take zero time.

• Tick rewrite rules: To model the elapse of time in a real-time system, tick rewrite rules are introduced to Real-
Time Maude. It has the form of rl [l]:{t} => {t’} in time � or crl [l]:{t} => {t’} in time �
if cond. The former is unconditional, and the latter is conditional. � is a term of sort Time representing the
duration of the tick rewrite rule, t and t’ can be considered as the initial and terminal value respectively.

3. Algebraic Semantics
In this section, we investigate the algebraic semantics of CPSLsc . First, we gently introduce notations of algebraic

guards, guarded components and guarded choices defined to support our expansion laws. Based on them, we pro-
pose algebraic laws for basic statements and parallel composition respectively. Finally, we conclude the usage of the
proposed algebraic semantics.
3.1. Notation

To support the parallel expansion laws, algebraic guards, guarded components and guarded choices are introduced.
3.1.1. Algebraic guards

According to the syntax of CPSLsc , there are three kinds of basic behaviors, including discrete assignment, discrete
event guard and continuous behavior. Hence, we set three types of algebraic guards, and the algebraic guards can be
seen as the first action of a given program.

• Assignment guard: b&@(x ∶= e), where b is a Boolean condition
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• Event guard: EvtG(@(gd))

• Continuous behavior (cb) guard: CbG(Cb), where Cb is a continuous behavior
Note that we set cb guard as the form ofCbG(Cb) instead ofCb1 in our previous work [4]. Previously, we formalize

the cb guard by splitting Cb into several parts, and the behavior of Cb is the sequential composition of these parts.
Now, we consider Cb as a whole, i.e., Cb is supposed to evaluate until its boundary g is reached. The elaborated
form is not only closer to the continuous nature of continuous behaviors, but also provides more concise form of
expression. Based on this change, the subsequent guarded component and guarded choices regarding Cb are also
elaborated correspondingly.
3.1.2. Guarded components

Then, ℎ→ P is a guarded component if ℎ is an algebraic guard and P stands for the successive process. Following
the above definitions of algebraic guards, there are three types of guarded components.

• Assignment guarded component: b&@(x ∶= e) → P

• Event guarded component: EvtG(@(gd)) → P

• Continuous behavior (cb) guarded component: CbG(Cb) → P

3.1.3. Guarded choices
Further, []{ℎ1 → P1, ..., ℎn → Pn} is a guarded choice if every element in {ℎ1 → P1, ..., ℎn → Pn} is a guarded

component. Here, []{ℎ1 → P1, ..., ℎn → Pn} is another written form of []ℎ1 → P1[]...[]ℎn → Pn. Based on the
introduced guarded components, we propose five types of guarded choices as below. The first three contain a set of
one type of guarded components and the last two are hybrid guarded choices.

• Assignment guarded choice: []i∈I{bi&@(xi ∶= ei) → Pi}It contains a set of assignment guarded components. If bi is satisfied, xi ∶= ei can be executed and then the
corresponding program Pi will be performed. Moreover, the Boolean conditions {b1, ...., bn} of the assignment
guard components should satisfy ∨i∈Ibi = true. This restriction is to ensure that at least one assignment can be
executed. This understanding is similar to the if-else statement in the traditional languages.

• Event guarded choice: []i∈I{EvtG(@(gdi)) → Pi}It is composed of several event guarded components, and it waits for any guards to be triggered. If @(gdi) istriggered, the following program Pi will be executed. It is worth noting that we set this guarded choice is urgent,which means that if the current data state satisfies gdi, then EvtG(@(gdi)) will be scheduled immediately.
• Cb guarded choice: []{CbG(Cb) → P }

It contains cb guarded component. Cb can be executed, indicating that the continuous behavior is performing
and its subsequent behavior is described as the program P .

• Event&assignment hybrid guarded choice: []i∈I{EvtG(@(gdi)) → Pi} ⊳ []j∈J{bj&@(xj ∶= ej) → Qj}It is composed of event guarded components and assignment guarded components. If bj is true, xj ∶= ej can beselected to execute and thenQj will be executed. Meanwhile, the system is waiting for the event guard@(gdi) tobe triggered. If the current state meets @(gdi), the following program Pi will be executed. Likewise, to ensure
the immediate trigger of @(gdj), EvtG(@(gdj)) is considered to have a higher priority than the assignment
guards. We adopt the operator ⊳ to explicate the precedence, where the left side of ⊳ (i.e., event guards) takes
precedence over the right side (i.e., assignment guards).

• Event&cb hybrid guarded choice: []i∈I{EvtG(@(gdi)) → Pi} ⊳ []{CbG(Cb) → Q}
It is composed of event guarded components and cb guarded component. The event guard @(gdi) is waitingto be triggered, and if it can be triggered at present, Pi will be executed. Additionally, the continuous behavior
Cb is performing if none of the guards can be triggered now, that is, event guards have higher priority than cb
guards. Similarly, the priority is explicated by the operator ⊳.
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Table 2
Parallel composition of guard choices

Assignment Event Cb Event&Assignment Event&Cb
Assignment (par-1-1) (par-1-2) (par-1-3) (par-1-4) (par-1-5)

Event (par-2-2) (par-2-3) (par-2-4) (par-2-5)
Cb (par-3-3) (par-3-4) (par-3-5)

Event&Assignment (par-4-4) (par-4-5)
Event&Cb (par-5-5)

Whereas, considering that an assignment is instantaneous and a continuous behavior is not, if an assignment
guarded component and a continuous behavior guarded component appear in the same set of a guarded choice, the
continuous behavior Cb will never have a chance to be scheduled first. Thus, there is no assignment & cb hybrid
guarded choice.
3.2. Algebraic laws

In this subsection, according to the above guarded components and guarded choices, we now present the algebraic
laws for CPSLsc . Through these algebraic laws, we can transform every program of CPSLsc into the guarded choice
form, and the parallel programs with discrete and continuous behaviors can be sequentialized consequently.
3.2.1. Algebraic laws for basic statements

First, we study the laws for basic statements as below. These laws aim to transform programs into the guarded
choice form. Here, " represents an empty program, and skip stands for a special assignment x ∶= x.

• (assign-1) x ∶= e = []{true&@(x ∶= e) → "}

• (guard-1) @(gd) = []{EvtG(@(gd)) → "}

• (cb-1) R(v, v̇) until g = []{CbG(R(v, v̇) until g) → "}

• (cond-1) if b then P else Q = []{b&@(skip) → P }[][]{¬b&@(skip) → Q}

• (iter-1) while b do P = []{b&@(skip) → (P ;while b do P )}[][]{¬b&@(skip) → "}

• (seq-1) (P ;Q);R = P ; (Q;R)

• (seq-2) If P = []{g1 → P1, ..., gn → Pn}, then P ;Q = []{g1 → (P1;Q), ..., gn → (Pn;Q)}.
3.2.2. Algebraic laws for parallel composition

Then, we look into the algebraic laws for parallel composition. As summarized in (par-0-1) and (par-0-2), parallel
composition is symmetric and associative. (par-0-3) indicates if one of the parallel components is an empty program
", then the whole parallel composition is left with its partner P .

• (par-0-1) P ∥ Q = Q ∥ P

• (par-0-2) (P ∥ Q) ∥ R = P ∥ (Q ∥ R)

• (par-0-3) P ∥ " = P

As mentioned previously, through the above laws for basic statements, programs in CPSLsc can be translated
into the guarded choice form. Thus, for the algebraic laws for parallel composition, we only need to study the parallel
composition of their guarded choices. There are five types of guarded choices, and there should be 25 parallel expansion
laws. As shown in Table 2, we only need to list 15 laws thanks to the symmetry of the parallel composition.

We propose the parallel expansion laws of CPSLsc in Table 3. The detailed explanations of these algebraic laws
are listed below.
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Table 3
Algebraic laws for parallel composition
(par) P Q P ∥ Q

par-1-1 []i∈I{bi&@(xi ∶= ei) → Pi} []j∈J {bj&@(xj ∶= ej ) → Qj}
[]i∈I{bi&@(xi ∶= ei) → (Pi ∥ Q)}
[][]j∈J {bj&@(xj ∶= ej ) → (P ∥ Qj )}

par-1-2 []i∈I{bi&@(xi ∶= ei) → Pi} []j∈J {EvtG(@(�j )) → Qj}
[]j∈J {EvtG(@(�j )) → (P ∥ Qj )}
⊳[]i∈I{bi&@(xi ∶= ei) → (Pi ∥ Q)}

par-1-3 []i∈I{bi&@(xi ∶= ei) → Pi} []{CbG(Cb) → S} []i∈I{bi&@(xi ∶= ei) → (Pi ∥ Q)}

par-1-4 []i∈I{bi&@(xi ∶= ei) → Pi}
[]k∈K{EvtG(@(�k)) → Tk}
⊳[]j∈J {bj&@(xj ∶= ej ) → Sj}

[]k∈K{EvtG(@(�k)) → (P ∥ Tk)}
⊳[]i∈I{bi&@(xi ∶= ei) → (Pi ∥ Q)}
[][]j∈J {bj&@(xj ∶= ej ) → (P ∥ Sj )}

par-1-5 []i∈I{bi&@(xi ∶= ei) → Pi}
[]j∈J {EvtG(@(�j )) → Sj}
⊳[]{CbG(Cb) → T }

[]j∈J {EvtG(@(�j )) → (P ∥ Sj )}
⊳[]i∈I{bi&@(xi ∶= ei) → (Pi ∥ Q)}

par-2-2 []i∈I{EvtG(@(�i)) → Pi} []j∈J {EvtG(@(�j )) → Qj}
[]i∈I{EvtG(@(�i)) → (Pi ∥ Q)}
[][]j∈J {EvtG(@(�j )) → (P ∥ Qj )}

par-2-3 []i∈I{EvtG(@(�i)) → Pi} []{CbG(Cb) → S} []i∈I{EvtG(@(�i)) → (Pi ∥ Q)}
⊳[]{CbG(Cb) → (P ∥ S)}

par-2-4 []i∈I{EvtG(@(�i)) → Pi}
[]k∈K{EvtG(@(�k)) → Tk}
⊳[]j∈J {bj&@(xj ∶= ej ) → Sj}

[]i∈I{EvtG(@(�i)) → (Pi ∥ Q)}
[][]k∈K{EvtG(@(�k)) → (P ∥ Tk)}
⊳[]j∈J {bj&@(xj ∶= ej ) → (P ∥ Sj )}

par-2-5 []i∈I{EvtG(@(�i)) → Pi}
[]j∈J {EvtG(@(�j )) → Sj}
⊳[]{CbG(Cb) → T }

[]i∈I{EvtG(@(�i)) → (Pi ∥ Q)}
[][]j∈J {EvtG(@(�j )) → (P ∥ Sj )}
⊳[]{CbG(Cb) → (P ∥ T )}

par-3-3 []{CbG(Cbs) → S} []{CbG(Cbt) → T } []{CbG(Cbst) → ((Re(Cbst, Cbs);S)||(Re(Cbst, Cbt); T ))}

par-3-4 []{CbG(Cb) → N} []k∈K{EvtG(@(�k)) → Tk}
⊳[]j∈J {bj&@(xj ∶= ej ) → Sj}

[]k∈K{EvtG(@(�k)) → (P ∥ Tk)}
⊳[]j∈J {bj&@(xj ∶= ej ) → (P ∥ Sj )}

par-3-5 []{CbG(Cbs) → N} []j∈J {EvtG(@(�j )) → Sj}
⊳[]{CbG(Cbt) → T }

[]j∈J {EvtG(@(�j )) → (P ∥ Sj )}
⊳[]{CbG(Cbst) → ((Re(Cbst, Cbs);N)||(Re(Cbst, Cbt); T ))}

par-4-4 []j∈J {EvtG(@(�j )) → Tj}
⊳[]i∈I{bi&@(xi ∶= ei) → Si}

[]n∈N{EvtG(@(�n)) → Rn}
⊳[]k∈K{bk&@(xk ∶= ek) →Mk}

[]j∈J {EvtG(@(�j )) → (Tj ∥ Q)}
[][]n∈N{EvtG(@(�n)) → (P ∥ Rn)}
⊳[]i∈I{bi&@(xi ∶= ei)) → (Si ∥ Q)}
[][]k∈K{bk&@(xk ∶= ek)) → (P ∥Mk)}

par-4-5 []j∈J {EvtG(@(�j )) → Tj}
⊳[]i∈I{bi&@(xi ∶= ei) → Si}

[]k∈K{EvtG(@(�k)) →Mk}
⊳[]{CbG(Cb) → N}

[]j∈J {EvtG(@(�j )) → (Tj ∥ Q)}
[][]k∈K{EvtG(@(�k)) → (P ∥Mk)}
⊳[]i∈I{bi&@(xi ∶= ei) → (Si ∥ Q)}

par-5-5 []i∈I{EvtG(@(�i)) →Mi}
⊳[]{CbG(Cbs) → S}

[]j∈J {EvtG(@(�j )) → Nj}
⊳[]{CbG(Cbt) → T }

[]i∈I{EvtG(@(�i)) → (Mi ∥ Q)}
[][]j∈J {EvtG(@(�j )) → (P ∥ Nj )}
⊳[]{CbG(Cbst) → ((Re(Cbst, Cbs);S)||(Re(Cbst, Cbt); T ))}

• (par-1-1) expresses that if both of the parallel components are assignment guarded choices, then any assignment
guard can be scheduled first, and the following behavior after this selected assignment guard is the parallel
composition of the subsequent process after this selected guard and another parallel part.

• (par-1-2) portrays the parallel composition of assignment guarded choice and event guarded choice. The sched-
ule rule is that the assignment guard can be scheduled, and it also allows the event guard to be scheduled if this
event guard is triggered. For the whole parallel process, if the assignment guard is scheduled, the subsequent
behavior is the parallel composition of the following behavior of this assignment guard and another parallel part.
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On the other hand, if the event guard can be triggered, the rest is the parallel composition of the process after the
selected event guard and another parallel part. As introduced before, to ensure the immediate trigger of @(�j),
EvtG(@(�j)) is considered to have a higher priority than the assignment guards.

• (par-1-3) reflects the parallel composition of assignment guarded choice and cb guarded choice. Since the
assignment guard is instantaneous, it can be scheduled at once. Further, cb guard is a continuous behavior that
may perform for a while. For the whole parallel process, if an assignment guard is scheduled, the subsequent
behavior is the parallel composition of the following process after this assignment guard and another parallel part.
In general, the instantaneous assignment is considered to be executed first when we sequentialize the parallel
composition of assignment and continuous behaviors.

• (par-2-2) stands for the situation where both parallel parts are the event guarded choices. Event guard is set
to a higher priority than other guards, meaning that once the guard condition gd holds, the event guard can be
triggered immediately. Similar to (par-1-1), the parallel composition of event guarded choices is defined in an
interleaving way. Any event guard can be scheduled first, and the order of triggering does not affect the final
result.

• (par-2-3) exhibits the parallel composition of event guarded choice and cb guarded choice. Similar to (par-1-
3), for the whole process, if an event guard is triggered, the subsequent behavior is the parallel composition of
the rest after this event guard and another parallel part. However, for the event guard, which is different from
the assignment, the guard may be waiting to be triggered. Then, in this condition, the continuous behavior will
perform and the subsequent behavior of the whole process is the parallel composition of the remaining process
after this cb guard and another parallel part.

• (par-3-3) demonstrates the condition where both of the parallel parts are cb guarded choices. The schedule
rule permits both of the cb guards (i.e., CbG(Cbst)) to perform, and the subsequent behavior is the parallel
composition of the remaining continuous behaviors and their successive processes (i.e., (Re(Cbst, Cbs);S) ∥
(Re(Cbst, Cbt); T )).

– Cbst: Since the dynamic of a continuous variable can be defined by one and only one relation in a mo-
ment, we assume that Cbs and Cbt have no continuous shared variables. Cbst is a conjunction of the
two dynamics, i.e., the two different continuous behaviors can perform as their corresponding differen-
tial relations defined at the same time. If Cbs =df R1(s, ṡ) until gs and Cbt =df R2(t, ṫ) until gt, then
Cbst =df R((s, t), (ṡ, ṫ)) until (gs ∨ gt). Here, R merges R1 and R2, which indicates Cbst is extended to
contain multiple continuous variables.

– Re(Cbst, Cbs) and Re(Cbst, Cbt): They stand for the remaining continuous behavior of Cbs and Cbt afterexecuting the previous guard CbG(Cbst). After executing CbG(Cbst), it implies that gs∨gt is true. There-fore, there are three possible scenarios, and based on them, we give the definitions ofRe(Cbst, Cbs);S and
Re(Cbst, Cbt); T .

∗ If gs = true ∧ gt = true, then Re(Cbst, Cbs);S = S and Re(Cbst, Cbt); T = T .
∗ If gs = true ∧ gt = false, then Re(Cbst, Cbs);S = S and Re(Cbst, Cbt); T = Cbt; T .
∗ If gs = false ∧ gt = true, then Re(Cbst, Cbs);S = Cbs;S and Re(Cbst, Cbt); T = T .

We take the following program as an example to explain this rule intuitively. In this example, we assume that
the initial values of both s and t are 0.

[]{CbG(ṡ = 1 until s ⩾ 2) → x ∶= 1} ∥ []{CbG(ṫ = 2 until t ⩾ 2) → y ∶= 1}

= []

⎧

⎪

⎪

⎨

⎪

⎪

⎩

CbG((ṡ = 1 ∧ ṫ = 2) until (s ⩾ 2 ∨ t ⩾ 2)) →
⎛

⎜

⎜

⎜

⎝

( Re((ṡ = 1 ∧ ṫ = 2) until (s ⩾ 2 ∨ t ⩾ 2), ṡ = 1 until s ⩾ 2) ; x ∶= 1)
||

( Re((ṡ = 1 ∧ ṫ = 2) until (s ⩾ 2 ∨ t ⩾ 2), ṫ = 2 until t ⩾ 2) ; y ∶= 1)

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭
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CbG((ṡ = 1 ∧ ṫ = 2) until (s ⩾ 2 ∨ t ⩾ 2)) represents that s and t are evolving as their respective differential
relations specify. After 1 time unit, s is equal to 1 and t is equal to 2. t ⩾ 2 is satisfied, so the continuous
behavior of t terminates. Therefore, the conjunction of the dynamics of s and t also terminates. At this time,
Re((ṡ = 1 ∧ ṫ = 2) until (s ⩾ 2 ∨ t ⩾ 2), ṫ = 2 until t ⩾ 2); y ∶= 1 is equal to y ∶= 1. Since the continuous
behavior of s is not finished, Re((ṡ = 1 ∧ ṫ = 2) until (s ⩾ 2 ∨ t ⩾ 2), ṡ = 1 until s ⩾ 2); x ∶= 1 is equal to
ṡ = 1 until s ⩾ 2; x ∶= 1 and the current value of s is 1.

• Algebraic laws for the parallel compositions that contain hybrid guarded choice can be derived from the above
algebraic laws.
For example, (par-1-4) represents the parallel composition of assignment guarded choice and event&assignment
hybrid guarded choice. Based on (par-1-1) and (par-1-2), the schedule rule is that the assignment guard from
any parallel part can be scheduled. Also, the schedule rule allows the event guard to be selected if the event
guard can be triggered.
In a similar way, the algebraic laws for the remaining parallel compositions containing hybrid guarded choices
can be obtained, so we omit the details here.

3.3. Usage of algebraic semantics
Theorem 1. Every program of CPSLsc can be transformed into the guarded choice form through the proposed alge-
braic semantics.

PROOF. We prove this by structural induction. For basic statements that do not contain parallel composition, they can
be converted into the guarded choice form through the algebraic laws in Section 3.2.1. For the parallel composition, by
induction, the parallel components can be transformed into the guarded choice forms. Then, as enumerated in Table 2
in Section 3.2.2, the guarded choice form of the parallel composition can be derived. Therefore, every program of
CPSLsc can be translated into the guarded choice form according to the proposed algebraic semantics. □

Based on the algebraic semantics, parallel composition of CPSLsc can be sequentialized. To realize the sequen-
tialization, as mentioned above, we can get the guarded choice form of parallel composition. If the result still contains
∥, then we can continue applying algebraic laws to obtain further parallel expansion results until all notations of ∥ are
eliminated. To better understand this theorem, an example is given to show the process of eliminating the notation ∥
in the parallel composition. Considering the parallel composition P ∥ Q, where

P =df x ∶= 1;@(x > 1)
Q =df x ∶= 2; v̇ = 1 until (v ⩾ 2)

First, we transform the parallel components P and Q into the guarded choice form. Using (assign-1) and (seq-2),
we have:

P = []{true&@(x ∶= 1) → @(x > 1)} (1)
Q = []{true&@(x ∶= 2) → v̇ = 1 until (v ⩾ 2)} (2)

Since P and Q are both assignment guarded choices, based on (par-1-1), we have:
P ∥ Q = []{true&@(x ∶= 1) → @(x > 1) ∥ Q } (3)

[][]{true&@(x ∶= 2) → P ∥ v̇ = 1 until (v ⩾ 2) } (4)
The result of P ∥ Q has two branches, and they both have the notation ∥. Thus, we continue to convert them step

by step. We first focus on the parallel composition in formula (3), and apply algebraic laws to @(x > 1) ∥ Q. With
(guard-1), we have:

@(x > 1) = []{EvtG(@(x > 1)) → "} (5)
Because @(x > 1) is an event guarded choice and Q is an assignment guarded choice, using (par-1-2), (par-0-1)

and (par-0-3), we have:
@(x > 1) ∥ Q = []{EvtG(@(x > 1)) → " ∥ Q} (6)
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⊳ []{true&@(x ∶= 2) → @(x > 1) ∥ v̇ = 1 until (v ⩾ 2)} (7)
= []{EvtG(@(x > 1)) → Q} (8)
⊳ []{true&@(x ∶= 2) → @(x > 1) ∥ v̇ = 1 until (v ⩾ 2) } (9)

The result after expansion still has ∥, and we keep transform @(x > 1) ∥ v̇ = 1 until (v ⩾ 2) similarly. Using
(cb-1), we have:

v̇ = 1 until (v ⩾ 2) = []{CbG(v̇ = 1 until (v ⩾ 2)) → "} (10)
Then, applying (par-2-3) and (par-0-3), we have:
@(x > 1) ∥ v̇ = 1 until (v ⩾ 2) = []{EvtG(@(x > 1)) → " ∥ v̇ = 1 until (v ⩾ 2)} (11)

⊳ []{CbG(v̇ = 1 until (v ⩾ 2)) → @(x > 1) ∥ "} (12)
= []{EvtG(@(x > 1)) → v̇ = 1 until (v ⩾ 2)} (13)
⊳ []{CbG(v̇ = 1 until (v ⩾ 2)) → @(x > 1)} (14)

Therefore, according to the proposed algebraic laws, the formula (3) in P ∥ Q is equivalent to the following guarded
choice form.

(3) = []

⎧

⎪

⎨

⎪

⎩

true&@(x ∶= 1) →
⎛

⎜

⎜

⎝

[]{EvtG(@(x > 1)) → Q}

⊳[]
{

true&@(x ∶= 2) →
(

[]{EvtG(@(x > 1)) → v̇ = 1 until (v ⩾ 2)}
⊳[]{CbG(v̇ = 1 until (v ⩾ 2)) → @(x > 1)}

) }

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

Likewise, the formula (4) in P ∥ Q can be expanded, and here we omit the details. Then, we can obtain the final
expansion form of P ∥ Q without ∥, and the sequentialization is realized.

4. Mechanizing Algebraic Laws in Maude
In this section, we apply the rewriting engine Real-Time Maude to implement the algebraic semantics. We first

define the programs, guarded components and guarded choices of CPSLsc in Section 4.1. Then, in Section 4.2, we in-
troduce an operator called GCF to derive the guarded choice form from the program. Moreover, considering the specific
execution depends on the specific data state, we adopt an operator called EXE to realize the execution of the program
in Section 4.3. Finally, to bring out the automatic simulation and verification, operators named autoTransExe and
trVerify are defined in Section 4.4 and Section 4.5.
4.1. Implementation of programs and guarded choices

In this subsection, we formalize the programs and guarded choices of CPSLsc using the Real-Time Maude. For
preparation, we first give the basic sorts of our formalization, including variable Var, expression Exp, Boolean expres-
sion Boolexp, guard condition Guard and program Program. Besides, to mechanize the guarded choices, we define
sorts of algebraic guards algGuard, guarded components guardedComp and guarded choices guardedChoice.

More specifically, DVar and CVar stand for discrete variables and continuous variables respectively, and they are
subsorts of Var. Exp represents an expression that is evaluated and assigned to discrete variables in the assignment.
Boolexp appears in the conditional construct and iteration construct. For guard condition Guard, it has two subsorts
(i.e., Gd and Gc). Here, we only list the declaration and the relation of these sorts.

1 sorts Var Exp Boolexp Guard Program .
2 sorts algGuard guardedComp guardedChoice .
3
4 ---Variable
5 sorts DVar CVar .
6 subsorts DVar CVar < Var .
7
8 ---Guard Condition
9 sorts Gd Gc .
10 subsorts Gd Gc < Guard .
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4.1.1. Program
After introducing the above basic definitions, we implement the program of CPSLsc as below. We define three

sorts as the basic statements (i.e., Assignment, Event and Cb), and they are subsorts of Program. It is worthy of
noting that we use the form of R(v ’= r) until g to describe the continuous behaviors in Maude. Here, v is the
continuous variable described currently, r stands for the rate of evolution, and g is the guard condition.

We formalize these basic statements and composition of them through operators op in Maude, and we set different
precedence values and gathering patterns for them. For example, the definition in Line 13 indicates that the parallel
composition of two programs is still a program, and it satisfies the commutative and associative attributes.

1 sorts Assignment Event Cb .
2 subsorts Assignment Event Cb < Program .
3
4 ---Basic Statement
5 op _:=_ : DVar Exp -> Assignment [ctor prec 1] .
6 op @‘(_‘) : Gd -> Event [ctor prec 1] .
7 op R‘(_’=_‘) until_ : CVar Rat Guard -> Cb [ctor prec 1] .
8
9 ---Composition
10 op _;_ : Program Program -> Program [ctor assoc prec 2] .
11 op if_then_else_ : Boolexp Program Program -> Program [ctor prec 2] .
12 op while_do_ : Boolexp Program -> Program [ctor prec 2] .
13 op _||_ : Program Program -> Program [ctor assoc comm prec 2] .

4.1.2. Guarded choice
As explained before, ℎ → P is a guarded component if ℎ is an algebraic guard. Therefore, we first construct

three types of algebraic guards (i.e., assignGuard, gdGuard and cbGuard). Based on them, we implement three
guarded components of CPSLsc , including assignGComp, eventGComp and cbGComp. Next, we give the mechanical
definitions of guarded choices in Maude as below. It is worth noting that, for the sake of convenience in mechanization,
we consistently use [] instead of ⊳ defined in Section 3.1.3. To ensure the priority of event guards, the corresponding
rule is defined in Section 4.3.4.

1 ---Algebraic Guard
2 sorts assignGuard eventGuard cbGuard .
3 subsorts assignGuard eventGuard cbGuard < algGuard .
4 op _&@_ : Bool Assignment -> assignGuard [ctor] .
5 op EvtG ‘(_‘) : Event -> eventGuard [ctor] .
6 op CbG ‘(_‘) : Cb -> cbGuard [ctor] .
7
8 ---Guarded Component
9 sorts assignGComp eventGComp cbGComp .
10 subsorts assignGComp eventGComp cbGComp < guardedComp .
11 op _->_ : assignGuard Program -> assignGComp [ctor] .
12 op _->_ : eventGuard Program -> eventGComp [ctor] .
13 op _->_ : cbGuard Program -> cbGComp [ctor] .
14
15 ---Guarded Choice
16 sorts assignGC eventGC cbGC .
17 subsorts assignGC eventGC cbGC < guardedChoice .
18 op ‘[‘]‘{_‘} : assignGComp -> assignGC [ctor] .
19 op ‘[‘]‘{_‘} : eventGComp -> eventGC [ctor] .
20 op ‘[‘]‘{_‘} : cbGComp -> cbGC [ctor] .
21 op _‘[‘]_ : guardedChoice guardedChoice -> guardedChoice [ctor comm assoc] .

4.2. Derivation of guarded choice form from programs
In this subsection, we adopt the operator GCF to transform CPSLsc into the guarded choice form.
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4.2.1. Basic statements
According to the proposed algebraic laws, we first study the laws for basic statements. Here, E stands for an empty

program. asg, evt and cbeh denote the variables of the sort Assignment, Event and Cb respectively. checkb is
used to check whether the Boolean expression bexp is true or not at a corresponding data state, and ∼checkb is the
negation of checkb.

1 op GCF ‘(_‘) : Program -> guardedChoice [ctor] .
2
3 ---Baisc Statement
4 eq GCF(asg) = []{ true &@(asg) -> E} .
5 eq GCF(evt) = []{ EvtG(evt) -> E} .
6 eq GCF(cbeh) = []{ CbG(cbeh) -> E} .
7
8 ---Sequential Composition
9 eq GCF(P ; Q) = GCF(P) ; Q .
10 eq []{alg -> P} ; Q = []{ alg -> (P ; Q)} .
11 eq ([]{ alg -> P} [] gch) ; Q = ([]{ alg -> P} ; Q)[]( gch ; Q) .
12
13 ---Conditional and Iteration Constructs
14 eq GCF(if bexp then P else Q) = []{ checkb(bexp)&@(skip)-> P}
15 [][]{(~ checkb(bexp))&@(skip)-> Q} .
16 eq GCF(while bexp do P) = []{ checkb(bexp)&@(skip)-> (P ; while bexp do P)}
17 [][]{(~ checkb(bexp))&@(skip)-> E} .

4.2.2. Parallel composition
Then, we look into algebraic laws of the parallel composition for guarded choices. As analyzed previously, we

formalized 15 expansion laws in Maude. Here, we only list some of them as examples, the remaining mechanization
can be found in Appendix A.1. These mechanized definitions are consistent with their theoretical definitions. We
apply the pattern match as a condition in these equations to determine what types of guarded choices of the parallel
components (i.e., P andQ) are, and then decide the guarded choice form of the parallel composition of P andQ. More
specifically, the key symbol ∶= compares a pattern on the left-hand side with the right-hand side, and if they match,
returns true.

1 ---(par -1-1)
2 ceq GCF(P || Q) = par1(asggc1 ,Q)[]par1(asggc2 ,P)
3 if asggc1 := GCF(P) /\ asggc2 := GCF(Q) .
4
5 ---par1: One is Assginment Guarded Choice
6 op par1 ‘(_‘,_‘) : assignGC Program -> assignGC .
7 eq par1 ([]{b &@ (asg)-> P’},Q) = []{b &@ (asg) ->(P’ || Q)} .
8 eq par1 ([]{ asgg1 -> P’}[] asggc2 ,Q) = par1 ([]{ asgg1 -> P’},Q)[]par1(asggc2 ,Q) .

We take (par-1-1) as an example. As shown in Line 2, it implies that if P and Q are both assignment guarded
choices, then their parallel composition is also an assignment guarded choice. In the above formalization, we apply the
operators par ∗ to compute the components of parallel expansions of two processes. The process which has not been
scheduled will be added as a parameter to the computation, so that the remaining process after the corresponding guard
of the parallel expansion can be computed. The complete definition of par ∗ is presented in Appendix A.2. Here, par1
is used to compute the components of parallel composition where one process is an assignment guarded choice.

Next, we present the formalization of (par-3-3). As mentioned in Section 3.2.2, both of the cb guarded choices
have the chance to perform. InMaude, we use par33 to explain the case where both parallel components are cb guarded
choices. Here, Merge stands for the conjunction of the two dynamics and Re denotes the remaining continuous behavior
after the previous conjunction. The mechanization is consistent with the previous definition in Section 3.2.2.

1 ---(par -3-3)
2 ceq GCF(P || Q) = par33(cbgc1 ,cbgc2) if cbgc1 := GCF(P) /\ cbgc2 := GCF(Q) .
3

R. Li, H. Zhu and R. Banach: Preprint submitted to Elsevier Page 12 of 25



An Algebraic Approach to Simulation and Verification for CPS

4 ---par33: Both are Cb Guarded Choices
5 op par33 ‘(_‘,_‘) : cbGC cbGC -> cbGC .
6 eq par33 ([]{ cbg1 ->S},[]{ cbg2 -> T}) =[]{ Merge(cbg1 , cbg2)->
7 ((Re(Merge(cbg1 ,cbg2),cbg1); S)||(Re(Merge(cbg1 ,cbg2),cbg2); T))} .
8
9 ---Definitionn of Merge and Re
10 op Merge ‘(_‘,_‘) : cbGuard cbGuard -> cbGuard [ctor comm] .
11 op Re ‘(_‘,_‘) : cbGuard cbGuard -> Program [ctor] .
12 eq Merge(CbG(R(s ’= m) until g1),CbG(R(t ’= n) until g2))
13 = CbG(R((s , t) ’= (m , n)) until (g1 \/ g2)) .

4.3. Execution of programs with the guarded choice form
In this subsection, after gaining the guarded choice form from the program, we now explore how to execute pro-

grams with the guarded choice form in Maude.
Considering that the specific execution of the program depends on the specific data state, to record the data state, we

first introduce a sort Statev. Statev is defined to record one variable’s data state. We assume there are five variables
in this paper, and construct a tuple like [x <- m,y <- n,z <- g,u <- k,v <-l] to record their values. This form
of tuple constitutes a trace (defined as the sort Trace), and concatenation can be realized through the operator ˆ. We
define the sort State which is the subsort of the whole system System to represent the current execution state. We
construct a Trace combined with a Program as a State. The current data state is stored in Trace, while Program
represents the programs that have not been executed yet. Additionally, when the program finishes execution, there are
no programs to be executed later. Hence, we define Trace as the subsort of State.

Then, we introduce an operator EXE to realize the transformation from the program with the guarded choice form
to the data state, i.e., executing the program in one step. EXE(pre:GCF(P)) denotes the execution of the program P
under the current trace pre. Note that the program P here is the guarded choice form. pre is a trace which contains a
sequence of data states, and the last tuple of pre stands for the current data state.

In a nutshell, algebraic semantics is used to decide execution order (getting the first action), especially in realizing
the sequentialization of parallel composition through the transformed guarded choice form. Then, based on guarded
choice form, the transition of these first actions follow the operational semantics proposed in [7] which is appended in
Appendix B.

1 sorts Statev Trace State .
2 subsort Trace < State .
3 subsort State < System .
4 op _:_ : Trace Program -> State .
5
6 ---Definition of Trace
7 op _<-_ : Var Rat -> Statev [ctor] .
8 op ‘[_‘,_‘,_‘,_‘,_‘] : Statev Statev Statev Statev Statev -> Trace [ctor] .
9 op _^_ : Trace Trace -> Trace [ctor assoc] .
10
11 op EXE ‘(_:_‘) : Trace guardedChoice -> State [ctor] .

4.3.1. Assignment guarded choice
For the assignment guarded choice, only when the Boolean condition b of the guarded choice is true, the assign-

ment can be executed. Here, last(pre) is defined to get the last snapshot of the trace pre. The operator assign is
defined to calculate and record the result of the assignment. Thus, after executing the assignment guarded choice, the
result will be added to the tail of pre. Otherwise, the program terminates at the current trace pre.

1 crl EXE(pre :[]{b &@ (asg)-> P}) => (pre ^ assign(last(pre) : asg)): P
2 if b == true .
3 crl EXE(pre :[]{b &@ (asg)-> P}) => pre if b == false .
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4.3.2. Event guarded choice
For the event guarded choice, once the previous state can trigger the guard (i.e., check(gd1,last(pre)) ==

true), this guarded choice is executed. Then, the trace pre keeps unchanged, and the program tends to P. Otherwise,
the program waits for the environment to trigger the guard. wait is declared as a special state, representing the event
guard cannot be triggered at present and it waits for the environment to trigger.

1 crl EXE(pre :[]{ EvtG(@(gd1))-> P}) => pre : P if check(gd1 ,last(pre)) == true .
2 crl EXE(pre :[]{ EvtG(@(gd1))-> P}) => pre ^ wait
3 if check(gd1 ,last(pre)) == false .

4.3.3. Cb guarded choice
For the continuous behavior guarded choice, the operator evolve is used to implement the procedure of evolution

in Maude. Before evolving, as presented in Line 2, we first obtain the initial value of the continuous variable v through
getv(pre:v). After getting the initial value, the continuous behavior starts to evolve as the differential relation
specifies. The tick rewrite rule in Line 4 describes the evolution process. checkR(pre,t0,gv) is applied to check
whether the current data state can trigger gv. If gv has not been triggered (i.e., checkR(pre,t0:gv) == false), v
changes by the rate r per time unit. Here, as mentioned in Section 2, td stands for the duration, t0 and t0+(r*td)
indicates the initial and terminal value of v. Once gv is triggered (i.e., checkR(pre,t0:gv) == true), the value of
the continuous variable is recorded through the operator record.

1 ---Evolve
2 rl EXE(pre :[]{ CbG(R(v ’= r) until gv)-> P}) =>
3 (pre ^ evolve(R(v ’= r) until gv)[getv(pre : v)]) : P .
4 crl {(pre ^ evolve(R(v ’= r) until gv)[t0]) : P} =>
5 {(pre ^ evolve(R(v ’= r) until gv)[t0 + (r * td)]) : P} in time td
6 if checkR(pre ,t0 : gv) == false [nonexec] .
7
8 ---Record Values
9 ceq pre ^ evolve(R(v ’= r) until gv)[t0] =
10 pre ^ (record(last(pre) : evolve(R(v ’= r) until gv)[t0]))
11 if checkR(pre ,t0 : gv) == true .

Based on the above formalization, then we mechanize the parallel composition of two continuous behaviors. As
listed in (par-3-3) of Table 3, we need to describe the evolution of the conjunction of two dynamics. We first implement
the initiation of evolution (i.e., get the initial value of continuous variables) as listed in Line 2-4.

Then, we adopt the tick rewrite rules to define the evolution process. Line 5-8 describes that both continuous
behaviors can perform as their differential relation specifies, i.e., u and v increase by the rate r1 and r2 per time unit
respectively.

After evolving, once one of the continuous behaviors terminates, we record the terminal values of the continuous
variables using the operator record.

Finally, the mechanical implementation ofRe in Maude is given. Re(CbG(cbuv), CbG(cbu)) stands for the remain-
ing continuous behavior of cbu after the conjunction of cbuv. According to the termination order of cbu and cbv, wegive the equations of Re. The first one denotes that both continuous behaviors terminate at the same time. The second
one implies that the continuous behavior of u terminates first, while the last one means the continuous behavior of v
terminates earlier than the behavior regarding u.

1 ---Evolution of the conjunction of two dynamics
2 rl EXE(pre :[]{ CbG(R(u,v ’= r1,r2) until (gu \/ gv))-> P}) =>
3 (pre ^ evolve(R(u,v ’= r1,r2) until (gu \/ gv))
4 [getv(last(pre): u),getv(last(pre): v)]) : P .
5 crl {(pre ^ evolve(R(u,v ’= r1 ,r2) until (gu \/ gv))[t0,t1]) : P} =>
6 {(pre ^ evolve(R(u,v ’= r1 ,r2) until (gu \/ gv))
7 [t0 + (r1 * td) , t1 + (r2 * td)]) : P} in time td
8 if checkR(pre ,t0 : gu) == false /\ checkR(pre , t1 : gv) == false [nonexec] .
9
10 ---Record values
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11 ceq pre ^ evolve(R(u,v ’= r1 ,r2) until (gu \/ gv))[t0,t1] = pre ^
12 (record(last(pre) : evolve(R(u,v ’= r1 ,r2) until (gu \/ gv))[t0,t1]))
13 if (checkR(pre ,t0 : gu ) == true) \/ (checkR(pre ,t1 : gv ) == true) .
14
15 ----Definition of Re
16 ----R(u) and R(v) both terminate
17 ceq EXE(pre : GCF((Re(CbG(R(u,v ’= r1,r2)until(gu \/ gv)),CbG(R(u ’= r1)until

gu)); P)||(Re(CbG(R(u,v ’= r1 ,r2)until(gu \/ gv)),CbG(R(v ’= r2)until gv));
Q))) = EXE(pre : GCF(P || Q))

18 if checkR(pre ,getv(pre : u) : gu) == true /\
19 checkR(pre ,getv(pre : v) : gv) == true .
20 ----R(v) continues and R(u) terminates
21 ceq EXE(pre : GCF((Re(CbG(R(u,v ’= r1,r2)until(gu \/ gv)),CbG(R(u ’= r1)until

gu)); P)||(Re(CbG(R(u,v ’= r1 ,r2)until(gu \/ gv)),CbG(R(v ’= r2)until gv));
Q))) = EXE(pre : GCF(P ||(R(v ’= r2 )until gv ; Q)))

22 if checkR(pre ,getv(pre : u) : gu) == true /\
23 checkR(pre ,getv(pre : v) : gv) == false .
24 ----R(u) continues and R(v) terminates
25 ceq EXE(pre : GCF((Re(CbG(R(u,v ’= r1,r2)until(gu \/ gv)),CbG(R(u ’= r1)until

gu)); P)||(Re(CbG(R(u,v ’= r1 ,r2)until(gu \/ gv)),CbG(R(v ’= r2)until gv));
Q))) = EXE(pre : GCF((R(u ’= r1)until gu ; P)|| Q))

26 if checkR(pre ,getv(pre : u) : gu) == false /\
27 checkR(pre ,getv(pre : v) : gv) == true .

4.3.4. Auxiliary rules and equations
After giving the execution for the above commands, we can easily execute the compositional commands through

the algebraic laws. However, to complete the execution of CPSLsc , we also need to add the following rules. They can
transform checkb(bexp) to ckbexp(bexp, last(pre)) in conditional construct and iteration construct, so that
whether the Boolean expression bexp is satisfied under the current data state last(pre) can be determined.

1 rl EXE(pre : []{ checkb(bexp) &@ (skip) -> P}) =>
2 EXE(pre : []{ ckbexp(bexp ,last(pre)) &@ (skip) -> P}) .
3 rl EXE(pre : []{~ checkb(bexp) &@ (skip) -> P}) =>
4 EXE(pre : []{( not ckbexp(bexp ,last(pre))) &@ (skip) -> P}) .

Additionally, considering that there are several execution orders under the parallel composition, we add the operator
∨ to formalize these situations where the whole program can execute the guarded choice either gcℎ1 or gcℎ2.

1 op _\/_ : State State -> State [ctor comm assoc] .
2 rl EXE(pre : gch1[]gch2) => EXE(pre : gch1) \/ EXE(pre : gch2) .

In Section 3.1.3, we set event guarded choice as an urgent guarded choice. In Maude, to ensure the priority of
scheduling, a rewrite rule is defined where nualg stands for assignGuard and cbGuard.

1 crl EXE(pre : []{ EvtG(@(gd1))-> P}) \/ EXE(pre : []{ nualg -> Q})
2 => pre : P if check(gd1 ,last(pre)) == true .

The equations below are used for reduction. If one branch of the execution result is waitwhile another can continue
to execute, then the branch of wait is reduced.

1 op wait : -> State [ctor] .
2 eq (pre ^ wait) \/ (pre ^ pre ’) = pre ^ pre ’ .
3 eq (pre ^ pre ’ ^ wait) \/ (pre ^ wait) = pre ^ pre ’ ^ wait .

To get a better understanding of the previous formalization of EXE(pre :[]EvtG(@(gd1))-> P) and the reduction
for wait, we consider the program x ∶= 2 ∥ @(x > 1) and the initial state is [x<-0]. By applying the rewrite
commands GCF and EXE, we can obtain the final execution result. As illustrated in Figure 2, the detailed steps are as
follows.
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Step 1

Step 2

Step 3

Step 4

Figure 2: Execution of x ∶= 2 ∥ @(x > 1)

• Step 1: Through rewriting GCF, the guarded choice form of x ∶= 2 ∥ @(x > 1) is obtained. The result shows
it is an event&assignment hybrid guarded choice.

• Step 2: Combining with the initial state [x<-0] and applying the operator EXE, the program executes one
step. The result consists of two branches, which represent the execution of assignment guarded choice and event
guarded choice respectively. The former has @(x > 1) to be executed subsequently, while the latter enters the
wait state.

• Step 3: We continue to employ the rewriting commands GCF and EXE for the previous branch and obtain the
execution result [x<-0]ˆ[x<-2].

• Step 4: Finally, we can get the final execution result due to the reduction equation.
4.4. Automatic transformation and execution

Although the program can be simulated by the above commands step by step, it is obvious that this manual approach
is laborious. Therefore, in this subsection, we introduce an operator autoTransExe to automate the transformation
from the program to its guarded choice form and then realize the automatic execution. Here, pre - last(pre) stands
for the rest after deleting the last data state of pre. Due to the automatic transformation and execution, for a given
program and its initial data state, Maude can return a trace of data states generated during the execution of the program.
As a result, the automatic simulation is achieved.

1 op autoTransExe ‘(_:_‘) : Trace Program -> State .
2 rl autoTransExe(pre : P) => EXE(pre : GCF(P)) .
3 crl pre : P => (pre - last(pre)) ^ autoTransExe(last(pre) : P)
4 if [x <- m,y <- n,z <- g,u <- k,v <- l] := last(pre) .

4.5. Verification from a trace view
In essence, the core of transformation from the program to the guarded choice form is to obtain the first action

of the given program. As a consequence, the sequentialization of parallel programs is accomplished. Then, with the
adhered initial data state, the program can execute step by step and generate the corresponding trace which comprises
data states during its runtime.
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This idea coincides with the nature of runtime verification which allows checking whether a run of a system meets
or violates a given property [13]. In the runtime verification, the checking is typically performed using a monitor which
reads a finite trace and yields a certain verdict. Inspired by this, we follow the concept of online monitor [13] and carry
out our verification through a similar but invisible monitor which is responsible for checking the current execution of
a system. Before verifying programs, we first declare a new sort Prop representing the property to be verified. In this
paper, as defined in the operator Exist, only the reachability property is described.

1 sort Prop .
2 op Exist ‘(_‘) : Boolexp -> Prop [ctor] .
3 op verify ‘(_‘,_‘) : Prop State -> Bool [ctor] .
4 ceq verify(Exist(bexp),pre) = true if ckbexp(bexp , pre) == true .
5 ceq verify(Exist(bexp),pre) = false if ckbexp(bexp , pre) == false .

Now, similar to the previous codes of autoTransExe, we present the operator trVerify with its rewrite rules
and equations to conduct verification. FirstExistence and NoExistence are two special states. FirstExistence
denotes the data state that first causes the property sp to be satisfied, and NoExistence implies no data state meets
sp. As formalized in Line 3-6, if the current state cannot meet sp, the program continues to execute and the invis-
ible monitor continues to check whether the newly added data state can satisfy sp. Once verify(sp,last(pre))
equals to true, the procedure of verification terminates and returns the current data state following with a notation
FirstExistence. Otherwise, when the program terminates and none of the data states during its runtime meets sp,
we set the final result as NoExistence.

1 ---Definition of trVerify
2 op trVerify ‘(_^_‘) : State Prop -> State [ctor] .
3 crl trVerify ((pre : P) ^ sp) => EXE(pre : GCF(P)) ^ sp
4 if verify(sp ,last(pre)) == false .
5 crl (pre : P) ^ sp => trVerify ((last(pre) : P) ^ sp)
6 if [x <- m,y <- n,z <- g,u <- k,v <- l] := last(pre) .
7
8 ---Yield verdict
9 ops FirstExistence NoExistence : -> State [ctor] .
10 ceq pre ^ sp = NoExistence if verify(sp,last(pre)) == false .
11 ceq trVerify ((pre : P)^ sp) = pre ^ FirstExistence
12 if verify(sp ,last(pre)) == true .

5. Case Study
In this section, we present a case study of Battery Management System (BMS) to showcase the simulation and

verification in Real-Time Maude. BMS is abstracted from the real-world problem and it is easy to understand, in this
paper, BMS is chosen as an example to illustrate the applicability of our proposed approach.

We first give the BMS program to demonstrate the syntax of CPSLsc . Then, we enter the program in the terminal
of Maude and analyze the results obtained from simulation and verification. Finally, a discussion about the approach
and limitation is provided.
5.1. Overview of BMS

BMS is an important component of the electric vehicle power battery system. We employ the process of heat
management in BMS as a case study. For simplicity, we assume that the battery works properly if its temperature is
between 80 and 90. When the vehicle is moving and the temperature does not exceed 100, the temperature increases
linearly at the rate of 1. The controller of BMS will cool down the battery if the temperature is equal to or greater than
90. Also, the temperature decreases linearly at the rate of 2 when the controller is cooling and the temperature does
not reach 0. If the temperature is equal to or less than 80, the controller will stop cooling. The detailed program of
BMS is presented below.

BMS =df Ctrl ∥ T emp;
Ctrl =df while DT < 10 do
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⎧

⎪

⎨

⎪

⎩

u̇ = 1 until u ⩾ DT + 1;
if (v ⩾ 90) then coolon ∶= 1; else skip;
if (v ⩽ 80) then coolon ∶= 0; else skip;
DT ∶= u;

⎫

⎪

⎬

⎪

⎭

caron ∶= 0;
T emp =df while DT < 10 do

⎧

⎪

⎨

⎪

⎩

@(caron = 1);
if (coolon == 0) then v̇ = 1 until ((coolon = 1 ∨ caron = 0) ∨ v ⩾ 100);

else v̇ = −2 until ((coolon = 0 ∨ caron = 0) ∨ v ⩽ 0);

⎫

⎪

⎬

⎪

⎭

There are twomain parts of BMS. Ctrl is the process that monitors and controls the temperature through the discrete
variables caron and coolon. Temp describes the evolution of temperature, and affects the process Ctrl through
the continuous variable v. Here, caron represents the switch of the car. When caron=0, we assume all behaviors
terminate. coolon stands for the switch of cooling, BMS starts to cool down the battery if coolon=1. The continuous
variable v records the value of the temperature. The continuous variable u and the discrete variables DT are auxiliary
variables defined to record time.
5.2. Simulation and Verification

In this subsection, we simulate and verify the program of BMS through the rewrite commands in Maude. Based on
the formalization in Section 4, we set the initial data state and the program BMS below.

• Initial state (initS): [DT <- 0,caron <- 1,coolon <- 0,u <- 0,v <- 89]

• Program (BMSP): (while DT < 10 do(R(u ’= 1) until (u >= (DT + 1)) ; if v >= 90 then coolon
:= 1 else skip ; if v <= 80 then coolon := 0 else skip ; DT := u); caron := 0) || (while
DT < 10 do (@(caron = 1); if coolon == 0 then R(v ’= 1)until((coolon = 1 \/ caron = 0)
v >= 100)else R(v ’= -2)until((coolon = 0 \/ caron = 0) \/ v <= 0)))

5.2.1. Simulation
To demonstrate the decomposition and reduction of the parallel program BMS, we can get the guarded choice form

of BMS with the following command, and the parameter here is BMSP we defined above.
(rew GCF(BMSP) .)

The result is obtained below.
[]{cℎeckb(DT < 10)&@skip → Ctrl ∥ (Pt; T emp)}[][]{∼ cℎeckb(DT < 10)&@skip → Ctrl}
[][]{cℎeckb(DT < 10)&@skip → (Pc ;Ctrl) ∥ T emp}[][]{∼ cℎeckb(DT < 10)&@skip→ caron ∶= 0 ∥ T emp},
Here, Pt and Pc stand for the loop body of T emp and Ctrl. The detailed result is shown in Figure 3. For the parallel
program BMS, the beginning of both the parallel components T emp and Ctrl is a loop. According to the algebraic
law (iter-1), they can be transformed into the form of assignment guarded choices. Then, the guarded choice form of
BMS is also an assignment guarded choice and it conforms with the algebraic law (par-1-1).

Further, using the timed rewrite command below, we can execute the guard choice (i.e., the program executes one
step).

(trew EXE(initS : GCF(BMS)) with no time limit .)

As presented in Figure 4, The first half of the result indicates that Temp executes “at first”, while the rest implies that
Ctrl performs “before” Tempwhen the parallel composition is sequentialized. Here, although the parallel components
actually execute simultaneously, “at first” and “before” stand for the order we recorded in the trace when we sequen-
tialize the parallel programs. Following these steps, simulation of the execution of the program is gained manually.

Then, we feed the parallel program combined with its initial data state in Maude. By means of the following
command, Maude returns a trace of the data state.

(trew autoTransExe(initS : BMSP) with no time limit .)

As shown in Figure 5, The trace is generated during the execution, and we can find that the evolution of variables in
BMS meets our expectations, i.e., automatic simulation is achieved.
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Ctrl || Pt;Temp

caron:=0 || Temp

Ctrl

Pc;Ctrl || Temp

 

Figure 3: Getting guarded choice form in Maude

Ctrl || Pt;Temp

Pc;Ctrl || Temp

 

Figure 4: Executing the guarded choice form in Maude

5.2.2. Verification
We verify whether the temperature of the battery is guaranteed to be controlled within safe limits (i.e., v is never

lower than 80 and higher than 90) through the following two commands.
(trew trVerify(initS : BMSP ^ Exist(v < 80)) with no time limit .)

(trew trVerify(initS : BMSP ^ Exist(v > 90)) with no time limit .)

The returned results shown in Figure 6(a) and Figure 6(b), we can draw a conclusion that the temperature cannot exceed
the safe range when the controller of BMS works.

Moreover, we also check whether the system can reach the state where v ⩽ 88 with the following command.
(trew trVerify(initS : BMSP ^ Exist(v <= 88)) with no time limit .)

As presented in Figure 6(c), the returned result indicates that v will drop to 88 during the run of the system. The
returned result contains a data state, which is the state when v is less than or equal to 88 for the first time. It can be
found that the result returned by the verification is consistent with the simulation result in Figure 5.
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Figure 5: Automatic transformation and execution in Maude

5.3. Discussion
5.3.1. Approach

As our case study shows, for any cyber-physical systems specified in CPSLsc , if the initial state and the program
are provided, its automatic simulation and verification can be conducted in Maude. Specifically, according to the form
we defined in Maude, we can carry out simulation and verification by rewriting commands with the provided initial
state init, program P and property sp as parameters. For any program defined using CPSLsc ,

• GCF(P) converts the program P into the guarded choice form.
• EXE(init:GCF(P)) executes one step of the program P in the current data state init.
• autoTransExe(init:P) simulates the execution of the program P in the current data state init and returns a

trace of data states generated during the execution.
• trVerify(init:P ^ sp) checks whether the property sp is satisfied during the execution.

5.3.2. Limitation
In this paper, we only use BMS as an example to illustrate the applicability of our proposed approach, and we only

focus on the verification of reachability. There are two main limitations of the current approach.
On the one hand, it is not yet possible to analyze complex and large-scale systems. Although this approach can

theoretically simulate and verify any systems, the potential state explosion caused by parallel composition (due to the
numerous branches it creates) must be addressed. To bridge this gap, the current approach should be supplemented
with reduction techniques.

On the other hand, the current approach can only be used to verify reachability. Since there are more complex
properties in real CPS, we need to investigate how to verify more complex and general temporal properties.
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(a) Checking Exist(v ⩽ 80)

(b) Checking Exist(v ⩾ 90)

(c) Checking Exist(v ⩽ 88)

Figure 6: Verification Results in Maude

6. Related Work
Recently, as a new form of engineering systems, Cyber-Physical systems (CPS) have gained wide adoption in

many fields. However, since CPS are tangled with discrete behaviors of the computer and continuous behaviors of
the physical, the behavior of them is complex to formalize. Thus, a number of calculus and languages have been
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proposed to specify CPS. As an extension of Communicating Sequential Process (CSP) allowing continuous dynamics,
Hybrid Communicating Sequential Process (HCSP) [1] was proposed by introducing differential equations to model
continuous behaviors and communication interruptions in hybrid systems, and many researches have been carried
out around it [14, 15, 16, 17]. He et al. developed a hybrid relational modeling language (HRML) [2] which supports
complex combinations of both testing and signal reaction behaviors to model hybrid systems. The means of interaction
in HCSP and other process algebras is communication, and communication is structured as a pair of channel and
message [1]. Different from the mechanism of them, we proposed a language to specify CPS [3], elaborated its syntax
in [4], and we name it CPSLsc in this paper. CPSLsc supports parallel composition, and its interaction is based on
shared variables. Particularly, in the syntax of continuous behavior R(v, v̇) until g, the interaction between the cyber
and the physical is achieved through the guard condition g which contains shared variables. In our previous works, we
have done a series of research on this language. We proposed its denotational semantics and algebraic semantics [4],
developed its proof system [5] based on denotational semantics and extended Hoare triples [18]. Further, we also
implemented the transformation from our language to automata in SpaceEx [6, 7]. In this paper, we continue to dive
into the semantics of CPSLsc . Additionally, simulation and verification based on the proposed semantics are conducted
as well.

For a proposed language, on the one hand, a primary concern is giving its formal semantics. With symbols and
formulas from a mathematical view, formal semantics can precisely define and interpret the semantics of programming
languages. As for defining formal semantics, Hoare and He developed Unifying Theories of Programming (UTP)
approach [10], and it has been applied in the formalization of the semantics of various languages [19, 20, 21, 22]. In
the UTP approach, three different mathematical models are often used to represent a theory of programming, namely,
the operational [23], the denotational [24], and the algebraic [25] approaches. Each of these representations has its
distinctive advantages for theories of programming. In our previous work [4], we presented the denotational semantics
and algebraic semantics for CPSLsc . Since the algebraic semantics is well suited in symbolic calculation of parameters
and structures of an optimal design, we focus on the algebraic semantics and elaborate it in this paper based on our
previous work.

On the other hand, from an application point of view, formalization and verification for CPS is also worthy of
exploration. Banach et al. extended Event-B [26] to Hybrid Event-B [27, 28] which takes account of continuous
behaviors, so that CPS can be conducted via B method. Platzer et al. developed a theorem prover called KeYmaera
X [29] to verify CPS models. Hybrid automata [30] can also be employed to model and verify CPS, such as formal-
ization and verification conducted via model checkers Uppaal [31, 32] and SpaceEx [33, 34]. In this paper, we apply
the rewrite engine Real-Time Maude [8, 9] to mechanize the algebraic semantics of CPSLsc and then implement the
simulation and verification for CPS. Real-Time Maude has been widely used in the verification of CPS. James et al.
carried out a series of verification for the European Rail Traffic Management System [35, 36] using Real-Time Maude.
Meanwhile, as mentioned in [10], “Algebraic proof by term rewriting is a most promising way in which computers can
assist in the process of reliable design.” Considering that the theoretical basis of Maude lies in rewriting logic [12] and
rewriting logic is suitable for giving executable semantics, it matches the gist of our algebraic semantics. Therefore,
in this paper, we employ Real-Time Maude to establish the link between algebraic semantics and its application (i.e.,
simulation and verification). Slightly different from the existing work, our work focuses on the bridge between the
algebraic semantics and the corresponding simulation and verification, rather than just verifying properties over CPS.
This paper is devoted to exploring the feasibility of simulating and verifying CPS from an algebraic approach, and
gives a simple example to showcase its usage.

7. Conclusion and Future Work
In this paper, we have taken the perspective of algebraic semantics to explore an algebraic approach to simulation

and verification for Cyber-Physical systems. For this shared variable language proposed to specify CPS, we first
elaborated its algebraic semantics, so that programs of CPSLsc can be translated into a unified form called guarded
choice form. Moreover, it also indicates that a parallel program can be sequentialized through our algebraic laws.

On this basis, we employed the rewriting engine Real-Time Maude to implement the algebraic laws. Through the
mechanization, we can conduct simulation and verification for Cyber-Physical systems with an algebraic approach
from a fresh view. To demonstrate the usage of our algebraic semantics and the mechanical implementation in Maude,
a battery management system is provided as a case study in this paper.

In the future, we will conduct research from two aspects. Theoretically, we will dive into the semantics linking
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theory [10] of CPSLsc in tools of formal methods such as Coq [37]. Practically, based on algebraic semantics and
combined with reduction techniques, more complex simulation and verification of CPS involving more complicated
properties and larger scale systems will be explored.
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A. Implementation in Maude
A.1. Mechanization of GCF(P||Q)

The following equations are parallel expansion laws implemented in Maude.
1 ---(par -1-1), (par -1-2), (par -1-3), (par -1-4), (par -1-5)
2 ceq GCF(P || Q) = par1(asggc1 ,Q)[]par1(asggc2 ,P)
3 if asggc1 := GCF(P) /\ asggc2 := GCF(Q) .
4 ceq GCF(P || Q) = par1(asggc1 ,Q)[]par2(evtgc2 ,P)
5 if asggc1 := GCF(P) /\ evtgc2 := GCF(Q) .
6 ceq GCF(P || Q) = par1(asggc1 ,Q)
7 if asggc1 := GCF(P) /\ cbgc2 := GCF(Q) .
8 ceq GCF(P || Q) = par1(asggc1 ,Q)[]par1(asggc2 ,P)[]par2(evtgc2 ,P)
9 if asggc1 := GCF(P) /\ evtgc2 [] asggc2 := GCF(Q) .
10 ceq GCF(P || Q) = par1(asggc1 ,Q)[]par2(evtgc2 ,P)
11 if asggc1 := GCF(P) /\ evtgc2 [] cbgc2 := GCF(Q) .
12
13 ---(par -2-2), (par -2-3), (par -2-4), (par -2-5)
14 ceq GCF(P || Q) = par2(evtgc1 ,Q)[]par2(evtgc2 ,P)
15 if evtgc1 := GCF(P) /\ evtgc2 := GCF(Q) .
16 ceq GCF(P || Q) = par2(evtgc1 ,Q)[]par3(cbgc2 ,P)
17 if evtgc1 := GCF(P) /\ cbgc2 := GCF(Q) .
18 ceq GCF(P || Q) = par1(asggc2 ,P)[]par2(evtgc1 ,Q)[]par2(evtgc2 ,P)
19 if evtgc1 := GCF(P) /\ evtgc2 [] asggc2 := GCF(Q) .
20 ceq GCF(P || Q) = par2(evtgc1 ,Q)[]par2(evtgc2 ,P)[]par3(cbgc2 ,P)
21 if evtgc1 := GCF(P) /\ evtgc2 [] cbgc2 := GCF(Q) .
22
23 ---(par -3-3), (par -3-4), (par -3-5)
24 ceq GCF(P || Q) = par33(cbgc1 ,cbgc2)
25 if cbgc1 := GCF(P) /\ cbgc2 := GCF(Q) .
26 ceq GCF(P || Q) = par1(asggc2 ,P)[]par2(evtgc2 ,P)
27 if cbgc1 := GCF(P) /\ evtgc2 [] asggc2 := GCF(Q) .
28 ceq GCF(P || Q) = par2(evtgc2 ,P)[] par33(cbgc1 ,cbgc2)
29 if cbgc1 := GCF(P) /\ evtgc2 [] cbgc2 := GCF(Q) .
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A.2. Mechanization of par*
par2 and par3 are used to compute the components of parallel composition where one process is an event guarded

choice and a cb guarded choice respectively.
1 ---par2: One is Event Guarded Choice
2 eq par2 ([]{ EvtG(evt)-> P’},Q) = []{ EvtG(evt)->(P’ || Q)} .
3 eq par2 ([]{ evtg1 -> P’}[] evtgc2 ,Q) = par2 ([]{ evtg1 -> P’},Q)[]par2(evtgc2 ,Q) .
4
5 ---par3: One is Cb Guarded Choice
6 eq par3 ([]{ CbG(cbeh)-> P’},Q) = []{ CbG(cbeh)->(P’ || Q)} .
7 eq par3 ([]{ cbg1 -> P’}[] cbgc2 ,Q) = par3 ([]{ cbg1 -> P’},Q)[]par3(cbgc2 ,Q) .

B. Operational Semantics

• Discrete Assignment: ⟨x ∶= e, � ⋅ now = t⟩
D=0
←←←←←←←←←←←←←←←←←←→ ⟨�, �[e∕x] ⋅ now = t⟩

This rule portrays that if the assignment terminates, then the expression e is evaluated and the value gained is
assigned to the variable x. Here, �[e∕x] is the same as � except that the value of x is now associated with the
value of e. Here, D = 0 represents assignment is an instantaneous transition.

• Discrete Event Guard: If � ⊨ gd, then ⟨@gd, � ⋅ now = t⟩
D=0
←←←←←←←←←←←←←←←←←←→ ⟨�, � ⋅ now = t⟩.

This rule illustrates that @gd terminates, if gd is satisfied at the initial state �. Similarly, D = 0 indicates this
transition costs no time. Otherwise, the rule does not allow us to derive any transition.

• Continuous Evolution:

– (CE-Evolve): If ∀time ∈ [t, t +D) ∙ ( v(time), � ⊨ ¬g), then
⟨R(v, v̇) until g, � ⋅ now = t⟩

D>0
←←←←←←←←←←←←←←←←←←→ ⟨R(v, v̇) until g, � ⋅ now = t +D⟩.

– (CE-Term): If v(t), � ⊨ g, then ⟨R(v, v̇) until g, � ⋅ now = t⟩
D=0
←←←←←←←←←←←←←←←←←←→ ⟨�, � ⋅ now = t⟩.

(CE-Evolve) explains that the continuous behavior evolves for D time units according to R(v, v̇) if g is not
triggered within this period. After this transition, now is updated with t + D. Here, v(t), � ⊨ ¬g means that
the current values of continuous variables (recorded as v(t)) and discrete variables (recorded in �) invalidate g.
(CE-Term) describes the termination of the continuous behavior, and we treat it as instantaneous.
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