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Abstract Diagrams

R. Banach
Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk

Abstract: The awkwardnes of ‘up to isomorphism’ diagrammatic constructions is recalled,
one repost, via skeleton categories and standard isomorphisms, is reviewed. An alternati
proach is introduced, which defines abstract diagrams as natural isomorphism classes of co
diagrams, and is related to the previous one. Maximal abstract diagrams yield canonical dia
matic constructions, where only ‘up to isomorphism’ constructions were available previous

1 Introduction

The fact that in conventional diagrammatic reasoning in category theory, most cons
tions only yield an answer ‘up to isomorphism’, is something that people have lear
live with, rather than something that is held to be intrinsically good. The wealth of
herence results that are generated as a consequence of needing to reconcile the
of different instances of essentially the same construction, which differ only in the o
in which some component operations are performed, is the tangible mathematic
sponse to the phenomenon. Nevertheless despite these, the feeling that a neat
dling of these matters would be nice, is hard to stifle. Aside from aesthetics, ambig
up to isomorphism is more troublesome when the outputs of diagrammatic cons
tions are used as a semantic vehicle for some purpose. Cases in point arise wh
entities in play are fundamentally graph theoretical (eg. [Rozenberg (1997), Ehrig
(1999)]), whereupon the ambiguity can make desired semantic manipulations prob
atic.  This paper offers a new way to tackle these issues.

‘Up to isomorphism’ signals the necessity to exercise choice. We avoid this nee
trading choice for closure, which is an old trick. By this means we come up with a
tion of ‘abstract diagram’ in contrast to the conventional notion of ‘concrete diagra
Previous approaches have defined ‘abstract diagrams’ out of equivalence classes
jects and arrows of the category of interest, but this does not fully succeed due t
need to refer implicitly or explicitly to a skeleton of the underlying category and wh
therefore comes down to a choice again (of the skeleton). In our approach, an ab
diagram is a functor category of some or all of the relevant concrete diagrams. It t
out that these functor categories have properties that bear comparison to what is
with conventional diagrams. The price to be paid for this is that (depending on fou
tions) one has to deal with large categories almost immediately. One further co
quence is that the framework of abstract diagrams does not obviate the need to r
at the concrete level, basically because the diagrams that figure in a conventiona
vation do not fully encode the derivation, but only some aspects of it. Abstract diagr
provide a way of displaying the results in a neater way; so there is no case of some
for nothing, which is reassuring.
1
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The strategy just outlined differs from most of the existing approaches for dealing
choice in categorical constructions. These do not so much seek to avoid it as loo
ways of making it more canonically. Largely, one feels, this is prompted by the de
to avoid troubling foundational issues. Our alternative approach is based on pu
functorial constructions, and of all constructions that might be considered founda
ally suspect, purely functorial ones are the least suspect of all. Accordingly, our fo
dational basis is to tacitly employ universes, i.e. formally ‘everything is a “set
(Despite this, we are unable to resist using the phraseology of ‘equivalence classe
‘isomorphism classes’, since ‘equivalence set’ and ‘isomorphism set’ just so
wrong.)

The rest of this paper is as follows. Section 2 revisits the familiar problems with
toring a category through isomorphisms in the context of the category of graphs,
reviews the familiar solution via standard isomorphisms. Section 3 recalls the defin
of the category of diagrams, and extrapolates this to a construction of abstract diag
using functor categories, yielding a category of abstract diagramsADiag(C), and show-
ing that maximal abstract diagrams are unique. Section 4 notes thatADiag(C) has too
many morphisms, and constructs a fresh category of abstract diagrams that has fe
them,MADiag (C). These two sections are the key sections of the paper. Section 5
lates the functor category approach to abstract diagrams, to the work using standa
morphisms, and may be mostly skipped on a first reading. Section 6 shows
diagrammatic constructions can be recast in a canonical way using abstract diag
they become inclusion morphisms inMADiag (C). The treatment of products is de
scribed in detail, and some other examples are noted briefly. Section 7 briefly out
some prospective uses of abstract diagrams in semantic theory. Section 8 discuss
relationship of our theory to earlier work, particularly to Makkai’s anafunctors [Makk
(1996)], and revisits some foundational issues. Section 9 concludes, after which
is an appendix which reviews feeble functors which are used in Section 5.

2 The Abstraction Problem

In this section we briefly cover some necessary technical preliminaries on graphs
introduce the abstraction problem for diagrams which motivates the constructions i
main part of the paper.

Definition 2.1 A graphG is a tuple (E, V, s, t) whereE andV are sets of edges and
vertices, ands, t : E → V are two set functions that send each edge to its source and
get vertex respectively. A graph morphismf : G → G′ is a pair of mapsfE : E → E′,
fV : V → V′ such thatfV s = s′ fE andfV t = t′ fE. This gives us the categoryGr of
(concrete) graphs and morphisms with obvious identities and composition of m
phisms. We will also refer toGr by the nameS; using the nameGr when we are inter-
ested in isomorphism classes of various kinds, and usingS when we need individual
shape graphs in the discussion of diagrams. The convention of having bothS andGr
in principle also yields the opportunity to make the two categories of different size
a foundationally different treatment.

In Cat, the functorU that forgets arrow composition, yields from a categoryC, the un-
derlying graphUC of C.
2



s
in-
such
hism
hich
pro-

f

een

ke

b-
are

t
y

com-

forma-
m.
One thing that has been contemplated forGr (and for similar categories whose object
generally admit nontrivial automorphisms), is to raise the level of abstraction from
dividual graphs and graph morphisms to more abstract notions, particularly since
categories seldom admit canonical choices for representatives of the isomorp
classes of their objects. This is the abstraction problem, and an obvious strategy w
suggests itself is to form isomorphism classes of graphs and of morphisms and to
ceed from there. Unfortunately this is easier said than done. A familiar example inSet
(which we can regard as a category of discrete graphs and thus a subcategory oGr),
illustrates the problem.

Example 2.2 Let S1 = {1, 2} and S2 = {1, 2, 3}. Consider the mapsf : S1 → S2 andg,
g′ : S2 → S1 of Fig. 1. In a naive construction of abstract sets and abstract maps betw
them, the abstract set containg a setSwould be all sets equipolent toS, and the abstract
map containing a maps : S1 → S2 would be the collection of all mapst : T1 → T2 such
that there are isomorphismsj1 : S1 → T1 andj2 : S2 → T2 such thats = j2

–1 t j1. In
Fig. 1 we claim thatg andg′ would be in the same isomorphism class because if we ta
j1 as the map {1|→ 3, 2 |→ 1, 3 |→ 2} and takej2 as the map {1|→ 2, 2 |→ 1} then
indeedg = j2

–1 g′ j1. Now the composition of two abstract maps would be the a
stract map containing at least all composites of respective individual maps which
directly composable. So in the example,g f andg′ f would be in the same abstrac
map. However,g f is monic whileg′ f is not, so this is impossible because monicit
is invariant under isomorphism.

The reason why we get this unpleasant phenomenon is clear. When we form the
posite, we have ‘forgotten’ that we have to relateg andg′ by j1 andj2 in this particular
instance, because the formation of equivalence classes does not remember this in
tion.  The technique of standard graphs and isomorphisms addresses this proble

Definition 2.3 A choice of standard isomorphisms inGr assigns to each pair of iso-
morphic graphsG1 andG2, a standard isomorphismσ(G1,G2) such that:

Fig. 1  A counterexample to simple equivalence classes up to isomorphism.
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(1) σ(G,G) = idG

(2) σ(G2,G3) σ(G1,G2) = σ(G1,G3)

(3) σ(G2,G1) = σ(G1,G2)
–1

If we disallow all isomorphisms other than standard ones, the problems of Exampl
disappear becausej1 andj2 are not standard by (1) above; henceg andg′ fall into dif-
ferent equivalence classes.

Definition 2.4 We can construct a choice of standard isomorphisms inGr as follows:

(1) We choose one graphσ(G) from each isomorphism class [G] of graphs isomor-
phic toG to be standard.

(2) For eachG′ in [G], we choose one isomorphismσ(σ(G),G′) to be standard (with
σ(σ(G),G′) chosen to be idσ(G) if G′ = σ(G)).

(3) For allG1, G2 in [G], we setσ(G1,G2) = σ(σ(G),G2) σ(σ(G),G1)
–1.

For the sequel we assume fixed some choice of standard isomorphisms inGr. The col-
lection of standard graphs and all morphisms between them forms a skeleton cat
GrK of Gr. It is not too hard to see thatGrK is isomorphic to the category〈Gr〉, whose
objects are isomorphism classes of concrete graphs up to standard isomorphism
(in this approach) abstract graphs and written〈G〉, and whose arrows are equivalenc
classes of concrete morphisms under the relation that relatesg : G → H andg′ : G′ → H′
iff g = σ(G′,H′)–1 g′ σ(G,H), called abstract morphisms and written〈g : G → H〉.
The use of only standard isomorphisms in this relation means that there is a bije
between concrete arrowsg : G → H in 〈g : G → H〉, and ordered pairsG, H taken from
〈G〉 and〈H〉. Identities are the equivalence classes of concrete identities, and com
tion of arrows〈g : G → H〉 and〈h : H → K〉 is given by composing the concrete arrow
in the two respective classes in the only possible way using the standard isomorph
which forms another equivalence class.

3 Concrete and Abstract Diagrams in an Arbitrary Category

In this section we abandon the approach of the last few paragraphs and embark
fresh tack.

Definition 3.1 Let µ be a graph, i.e. an object ofS, let C be any category, and letγ :
µ → UC be a graph morphism fromµ to the underlying graph ofC. Thenγ is a concrete
prediagram of shapeµ in C. Let Pth : S → Cat be the functor that sends graphs to the
path categories, which is left adjoint toU. Then the standard free construction exten
γ : µ → UC to a functorγ : µ → C from the path categoryµ of µ to C. We callγ a plain
concrete diagram of shapeµ in C.

Thus far plain concrete diagrams do not have to commute. Letγ : µ → C be a plain
concrete diagram, and suppose that for two paths (e1

1, … , e1
k) and (e2

1, … , e2
l) in µ,

the internal compositions (γ(e1
k) … γ(e1

1)) and (γ(e2
l) … γ(e2

1)) yield the same
arrow f : γ(m0) → γ(m1) in C. Then we say that the two paths commute inγ. Usually
(e1

1, … , e1
k) and (e2

1, … , e2
l) have a common starting pointm0, and a common end-

pointm1, in µ, but this is not strictly necessary.
4
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Note that the extent to which a diagram needs to commute depends on the use to
it is being put. Take as an example, an equaliser diagram: the two parallel arrows
templated at the start don’t need to be equal; however when when they are prepe
with the equaliser arrow, the compositions must be equal.

Definition 3.2 Let γ : µ → C be a plain concrete diagram of shapeµ in C, and letθµ,γ
be a set of pairs of paths inµ. If for all pairs inθµ,γ, the internal compositions underγ
yield equal arrows ofC, then we sayγ is θµ,γ-commuting. We writeθµ,γ-commuting
diagrams using the notation (γ : µ → C, θµ,γ), and refer to them as a concrete diagrams

Definition 3.3 We write [µ,C] for the functor category whose objects are plain concre
diagrams of shapeµ, and whose arrows are plain concrete diagram morphisms, i.e.
ural transformationsn : γ → δ. We write [µ,C]θ for the enriched category whose object
are concrete diagrams of shapeµ, and whose arrows are commutativity nondecreasi
natural transformations, i.e. natural transformationsn : γ → δ such thatθµ,γ ⊆ θµ,δ.

From now on all concrete diagrams not explicitly stated to be plain are assumed to
a commutativity specificationθµ,γ and to beθµ,γ-commuting. Since we do not want to
be restricted to just one shape, we introduceDiag(C) the category of concrete diagram
in C over arbitrary shapes.

Definition 3.4 In Diag(C) the objects are concrete diagrams inC over arbitrary shapes
(γ : µ → C, θµ,γ), and the arrows are pairs (ξ,α) : (γ : µ → C, θµ,γ) → (δ : ν → C, θν,δ),
such thatα : µ → ν is a change of shape, i.e. an arrow ofPth(S), ξ is a natural transfor-
mation fromγ : µ → C to δ α : µ → C, andθα(µ),γ ⊆ θν,δ holds, whereθα(µ),γ is the
image of the pairs of paths inθµ,γ underα. Viewed another way,ξ is a collection ofC
arrows such thatδ α = ξ γ holds in the expected way. We say that the morphisms
Diag(C) are mediated by the collections ofC arrowsξ. The composition of (ξ,α) :
(γ : µ → C, θµ,γ) → (δ : ν → C, θν,δ) and (ζ,β) : (δ : ν → C, θν,δ) → (ε : λ → C, θλ,ε) is
(α(ζ) ξ,β α) : (γ : µ → C, θµ,γ) → (ε : λ → C, θλ,ε), whereα(ζ) is the action ofα on
ζ, andθβ α(µ),γ ⊆ θλ,ε holds.

This lays the foundation for the ensuing definitions.

Definition 3.5 A plain abstract diagramD (of shapeµ in C) is a connected subcategory
of [µ,C] all of whose arrows are natural isomorphisms. We writeιD : D → [µ,C] for
the inclusion functor. An abstract diagramD (of shapeµ in C) is a plain abstract dia-
gramD together with a commutativity specificationθµ,D shared by all the concrete di-
agrams inD, i.e. it is a subcategory of [µ,C]θ. For abstract diagrams we use the notatio
(ιD : D → [µ,C], θµ,D) to reveal the various components.

Definition 3.6 An abstract diagramD of shapeµ is maximal iff it is nonempty and for
every objectγ : µ → C of D and natural isomorphismn : γ → δ in [µ,C], n is an arrow
of D.

An abstract diagramD0 is a subdiagram of an abstract diagramD1 (both of shapeµ) iff
D0 is a subcategory of the categoryD1, (andθµ,D0

= θµ,D1
). Trivial to prove, but of key

importance is the following.

Proposition 3.7 Every abstract diagram is a subdiagram of a unique maximal abst
diagram (MAD).
5
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As a consequence, the more concepts we can reformulate in terms of abstract diag
the more results are liable to come out uniquely, rather than ‘up to isomorphism’.

Definition 3.8 A morphismc : D0 → D1 of abstract diagrams (of shapeµ in C) is a
functor from the underlying plain abstract diagramD0 to the underlying plain abstract
diagramD1 (where bothD0 andD1 are considered simply as categories in their ow
right), such thatθµ,D0

⊆ θµ,D1
holds. This gives rise to the category of abstract diagra

of shapeµ in C, denotedAbs(µ,C). If c : D0 → D1 arises as a natural transformatio
between the inclusion functors (ιD0

: D0 → [µ,C], θµ,D0
) and (ιD1

: D1 → [µ,C], θµ,D1
)

we say thatc is mediated by the family of arrows of the natural transformation, whi
we denote byΞc.

Given a mediated morphismc : D0 → D1 as above, letΞc(γ) denote the element ofΞc
at concrete diagramγ, whereγ is an object ofD0. Sinceγ : µ → C is itself a functor,
Ξc(γ) is itself a natural transformation, i.e. a family of arrowsΞc(γ)(m) in C, one for each
objectmof µ (or vertexmof µ). Thus while an arbitrary morphism of abstract diagram
merely associates concrete diagrams and morphisms between them in a natural m
a mediated morphism of abstract diagrams must be sensitive to any internal struct
objects captured by the structure ofC.

For an example letC beGr. Then an arbitrary morphismc : D0 → D1 of abstract dia-
grams associates concrete diagramsγ : µ → Gr and natural isomorphismsn0 : γ → γ′ in
D0 with concrete diagramsδ : µ → Gr and natural isomorphismsn1 : δ → δ′ in D1,
such thatc(idγ) = idc(γ), andc(n0 : γ → γ′) = c(n0) : c(γ) → c(γ′), and compositions of
them behave well, (andθµ,D0

⊆ θµ,D1
). So each concrete graphG0 = γ(m) occurring at

a vertexm of shapeµ in diagramγ in D0, is mapped toG1 = c(γ)(m) in D1, and each
concrete graph morphismE0 : G0 → G0′ = γ(e) : γ(m) → γ(m′) above edgee : m → m′
of µ in D0, is mapped to a corresponding concrete graph morphismE1 : G1 → G1′ =
c(E0) : c(G0) → c(G0′) = c(γ)(e) : c(γ)(m) → c(γ)(m′) above the same edgee : m → m′
of c(µ) in D1. And the mapping of the natural isomorphisms ofD0 underc respects this
additional structure.

However ifc is mediated, not only does all this have to hold, but each association oG0
atmof γ(µ) in D0 with G1 atmof c(γ)(µ) in D1 arises via an actual concrete graph mo
phismΞc(γ)(m) = fγ,m : G0 → G1, such that thesefγ,m preserve all the other structures.

Just as we wanted to change shape with concrete diagrams, we also want to do s
abstract ones.

Definition 3.9 In ADiag(C) the objects are abstract diagrams inC over arbitrary
shapes eg. (ιD0

: D0 → [µ,C], θµ,D0
), each with its ownθµ,D0

, and the arrows are pairs
(c,α) : (ιD0

: D0 → [µ,C], θµ,D0
) → (ιD1

: D1 → [ν,C], θν,D1
), such thatα : µ → ν is a

change of shape,c : D0 → α(D1) is a functor (though not necessarily a natural tran
formation) between the inclusion functorsιD0

: D0 → [µ,C] and ια(D1) : α(D1) →
[ν α,C], andθα(µ),D0

⊆ θν,D1
. Hereα(D1) is the plain abstract diagram obtained b

precomposing each plain concrete diagramδ : ν → C in D1 with α. Moreover ifc arises
as a natural transformation fromιD0

to ια(D1), then it is mediated by a family of arrows
denoted byΞc, each arrow being itself a family of individualC arrows. The composi-
tion of the two arrows (c,α) : (ιD0

: D0 → [µ,C], θµ,D0
) → (ιD1

: D1 → [ν,C], θν,D1
) and
6
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(d,β) : (ιD1
: D1 → [ν,C], θν,D1

) → (ιD2
: D2 → [λ,C], θλ,D2

) is the arrow given by the
data (α(d) c,β α) : (ιD0

: D0 → [µ,C], θµ,D0
) → (ιD2

: D2 → [λ,C], θλ,D2
), whereα(d)

is the action ofd on α(D1), andθβ α(µ),D0
⊆ θλ,D1

holds. If both (c,α) and (d,β) are
mediated, then the composition is mediated byΞα(d) Ξc, in a notation whose interpre-
tation should be obvious.

For the remainder of this paper we will focus exclusively on mediated morphisms s
these cover all the cases that arise in practice.

4 Morphism Overload and the CategoryMADiag (C )

The categoryADiag(C) has the kind of objects we want, but its arrows are far too fin
grained. If (c,α) : D0 → D1 is an arrow, it is sufficient to change the value of the funct
c at just one objectγ of D0 to get a different arrow. The next section explores this
detail when relating the main thread of the paper to the standard isomorphism app
of Section 2. We want a less sensitive notion of arrow between abstract diagrams, w
we manufacture via the following route.

Definition 4.1 Let α : µ → ν be a shape graph morphism. Letηα be the shape graph
constructed as follows:

Vertices: V0,µ ∪ V1,ν  where:
V0,µ = {(m,0) | m ∈ Vµ}
V1,ν =  {(m,1) | m ∈ Vν}

Edges: E0,µ ∪ E1,ν ∪ E01,µ  where:
E0,µ = {(e,0) : (m,0) → (m′,0) | e : m → m′ ∈ Eµ}
E1,ν = {(e,1) : (m,1) → (m′,1) | e : m → m′ ∈ Eν}
E01,µ = {(m,m′,01) : (m,0) → (m′,1) | m ∈ Vµ, m′ = αVµ(m)}

There are obvous injectionsσ : µ → η andτ : ν → η. We say thatηα is an arrow-shape
from µ to ν that representsα. (N.B. This representation is imperfect since the edge m
of α is not representated yet.)

Definition 4.2 Let SE be the category whose objects are those ofS and whose arrows
are pairs (ηα,αE) : µ → ν whereηα is the arrow-shape of a morphismα : µ → ν and
αE is the edge map component ofα. The identities are (ηid, idE) : µ → µ, whereηid
consists of two copies ofµ joined by the obvious family of edges, and the compositio
of (ηα,αE) : µ → ν and (ηβ,βE) : ν → λ is given by (ηβ α,βE αE) : µ → λ.

Since the composition of (ηα,αE) : µ → ν and (ηβ,βE) : ν → λ in SE is defined in terms
of the composition of the underlying shape graph morphismsα andβ, it clearly associ-
ates on the nose, because the composition ofα andβ does so. This definition is equiv-
alent to a more convoluted one, that decomposesηα andηβ into their constituent parts,
and assemblesηβ α out of them directly (see the proof of Proposition 4.2). Similar o
servations hold for the constructions in the subsequent definitions.

Further, we note that the only nontrivial information supplied byαE in (ηα,αE) is the
disambiguation of how edges inσ(Eµ) are to be mapped if there are parallel edges
the range ofαE in τ(Eν), in order to faithfully representα. In many simple cases of
course, there are no parallel edges in the range ofα in τ(Eν) andαE is redundant.
7
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Proposition 4.3   There is an isomorphism between the categoriesS andSE.

Proof. The objects are identical so the only issue is to consider the arrows. FromS to
SE the construction of (ηα,αE) from α : µ → ν gives a unique result. Conversely, give
(ηα,αE) : µ → ν, the vertices ofηα are tagged 0 or 1, its edges are tagged 0 or 1 or
triples (m,m′,01) for 0-taggedmand 1-taggedm′; the (m,m′,01) triples yield the graph
of a total function on the 0-tagged vertices, andαE respects this function. From this
information, the shape graphsµ andν are easy to recover, as is the unique shape gra
morphismα : µ → ν. It is clear that these maps extend to functors in the right way.

The preceding constructions lift toPth-arrow-shapesηα and corresponding path cate
gories. Moreover Proposition 4.3 now allows us to rework some of the previous sec
in a different way.

Definition 4.4 The categoryDiag(C) is given by the following data. Its objects are con
crete diagrams inC over arbitrary shapes (γ : µ → C, θµ,γ). Its arrows arise as follows.
Let (ξ,α) : (γ : µ → C, θµ,γ) → (δ : ν → C, θν,δ) be an arrow ofDiag(C). Let ηα be the
arrow-shape that representsα, with injectionsσ : µ → η andτ : ν → η and edge map
αE. Define the arrow-diagram (ξα : ηα → C, θηα,ξα) as the concrete diagram inC which
agrees withγ onσ(µ), with δ onσ(ν), and withξ onE01,µ.  In more detail:

ξαV((m,0)) =γV(m)  for m ∈ Vµ
ξαE((e,0)) =γE(e)  for e ∈ Eµ

ξαV((m,1)) =δV(m)  for m ∈ Vν
ξαE((e,1)) =δE(e)  for e ∈ Eν

ξαE((m,α(m),01)) =ξ(m) : γV(m) → δV(α(m))  for m ∈ Vµ

The commutativity specificationθηα,ξα is equal toθσ(µ),ξα ∪ θτ(ν),ξα ∪ θαE
, which is the

image ofθµ,γ underσ, together with the image ofθν,δ underτ, together withθαE
which

represents the pairs of commuting paths that arise inηα from the edge mapαE and the
requirement forξ to be a natural transformation:

((m′,α(m′), 01) : (m′,0) → (α(m′),1))  ((e,0) : (m,0) → (m′,0)) =
((αE(e),1) : (α(m),1) → (α(m′),1))  ((m,α(m), 01) : (m,0) → (α(m),1))

Each such arrow-diagram (ξα : ηα → C, θηα,ξα) is an arrow ofDiag(C) with domain and
codomain (γ : µ → C, θµ,γ) and (δ : ν → C, θν,δ). Identities are (ξid : ηid → C, θηid,ξid

)
whereθηid,ξid

= θσ(µ),ξid
∪ θτ(µ),ξid

∪ θidE
. And the composition of (ξα : ηα → C, θηα,ξα)

whereθηα,ξα = θσ(µ),ξα ∪ θτ(ν),ξα ∪ θαE
and (ζβ : ηβ → C, θηβ,ζβ) whereθηβ,ζβ = θσ(ν),ζβ

∪ θτ(λ),ζβ ∪ θβE
is given by ((α(ζ) ξ)β α : ηβ α → C, θηβ α,(α(ζ) ξ)β α) where

θηβ α,(α(ζ) ξ)β α = θσ(ν),(α(ζ) ξ)β α ∪ θτ(λ),(α(ζ) ξ)β α ∪ θβE αE
and whereθβE αE

de-
picts the commuting paths:

((m′,β α(m′),01) : (m′,0) → (β α(m′),1))  ((e,0) : (m,0) → (m′,0)) =
((βE αE(e),1) : (β α(m),1) → (β α(m′),1))

((m,β α(m),01) : (m,0) → (β α(m),1))

Proposition 4.5 There is an isomorphism between the categoriesDiag(C) andDiag(C).

Proof. The objects are identical so we turn to the arrows. FromDiag(C) to Diag(C) the
construction described gives a unique result. Conversely, given an arrow (ξα : ηα → C,
8
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θηα,ξα) of Diag(C), an arrow ofDiag(C) is easy to recover as follows. Firstly we extrac
the domain, codomain and vertex map of the shape graph morphismα : µ → ν from the
objects inηα, and the arrows of length one inηα, as in Proposition 4.3. Thenθηα,ξα is
decomposed into the part contained inσ(µ), the part contained inτ(ν), and the remain-
derθαE

, which connectsσ(µ) andτ(ν). The edge mapαE is now easy to recover from
θαE

andα is obtained. The mediating arrows of the natural transformationξ are now
read off as the arrows ofξα above the (m,m′,01) edges ofηα. It is clear that these maps
extend to functors in the right way.

So far we have done little other than to acquire complexity, trading one picture of
category of concrete diagrams and their morphisms, for another perhaps slightly c
sier one. The payoff comes at the abstract level, when the various individual arrow
agrams (ξα : ηα → C, θηα,ξα) of Diag(C) which differ only by natural isomorphisms, are
absorbed into a single maximally abstract diagram representing them all, overco
thereby the proliferation of finegrained arrows ofADiag(C).

Definition 4.6 The categoryMADiag (C) is given by the following data. Its objects are
maximal abstract diagrams inC over arbitrary shapes (ιD0

: D0 → [µ,C], θµ,D0
). The

arrows arise as follows. Letα : µ → ν be a change of shape, let (ιD0
: D0 → [µ,C], θµ,D0

)
and (ιD1

: D1 → [ν,C], θν,D1
) be two objects ofMADiag (C), and letγ : µ → C andδ :

ν → C be plain concrete diagrams inD0 andD1. Let (ξα : ηα → C, θηα,ξα) be an ar-
row-diagram inDiag(C) from (γ : µ → C, θµ,γ) to (δ : ν → C, θν,δ), whereθµ,γ = θµ,D0

andθν,δ = θν,D1
. Let (ιEξα

: Eξα → [ηα,C], θηα,Eξα
) be the maximal abstract diagtram

that contains (ξα : ηα → C, θηα,ξα). Then (ιEξα
: Eξα → [ηα,C], θηα,Eξα

) is an abstract
arrow-diagram and an arrow ofMADiag (C); moreover allMADiag (C) arrows arise this
way. We note that any two arrow-diagrams inDiag(C) that are related by a natural iso
morphism lead to the same abstract arrow-diagram ofMADiag (C). The identity arrows
are (ιEξid

: Eξid
→ [ηid,C], θηid,Eξid

), the MADs containing the identity arrows ofDiag(C).

For the composition ofMADiag (C) arrows, let (ιEξα
: Eξα → [ηα,C], θηα,ξα) from (ιD0

:
D0 → [µ,C], θµ,D0

) to (ιD1
: D1 → [ν,C], θν,D1

), be oneMADiag (C) arrow, and let it con-
tain the concreteDiag(C) arrow-diagram (ξα : ηα → C, θηα,ξα) from (γ : µ → C, θµ,γ) to
(δ : ν → C, θν,δ), whereθµ,γ = θµ,D0

andθν,δ = θν,D1
. Let (ιEζβ

: Eζβ → [ηβ,C], θηβ,ζβ)
from (ιD1

: D1 → [ν,C], θν,D1
) to (ιD2

: D2 → [λ,C], θλ,D2
) be a secondMADiag (C) arrow,

containing the concreteDiag(C) arrow-diagram (ζβ : ηβ → C, θηβ,ζβ) from (δ : ν → C,
θν,δ) to (ε : λ → C, θλ,ε), whereθν,δ = θν,D1

andθλ,ε = θλ,D2
. Then the composition of

the twoMADiag (C) arrows mentioned, is the maximal abstract diagram containing
composition of the two concreteDiag(C) arrow-diagrams mentioned. Thus it is the ab
stract arrow-diagram containing ((α(ζ) ξ)β α : ηβ α → C, θηβ α,(α(ζ) ξ)β α), and is
denoted (ιE(α(ζ) ξ)β α

: E(α(ζ) ξ)β α → [ηβ α,C], θηβ α,E(α(ζ) ξ)β α
), whereθηβ α,(α(ζ) ξ)β α

= θηβ α,E(α(ζ) ξ)β α
.

Note that maximality guarantees that there is an abundant choice of concrete arro
agramsξα andζβ that compose on the nose insideιEξα

andιEζβ
. We can always pick two

arbitrary arrow-diagrams inιEξα
andιEζβ

, and can then apply a natural isomorphism
one or the other so that they compose properly, while remaining withinιEξα

andιEζβ
and

producing the same composite arrow ofMADiag (C). The easy lemmas which show tha
this is so will be omitted.
9
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Proposition 4.7   There is a functor fromDiag(C) to MADiag (C).

Proof. It is sufficient to observe that the construction of Definition 4.6 is functorial.

We now have our goal, which can be summarised in the following theorem.

Theorem 4.8   There is a functorMAbs  : Diag(C) → MADiag (C).

Proof. MAbs is given by composing the functorDiag(C) → Diag(C) from Proposition
4.4 with the functorDiag(C) → MADiag (C) in Proposition 4.7.

The truth of Theorem 4.8 should be contrasted with the fact that there is no natu
arising functorial route fromDiag(C) to MADiag (C) via ADiag(C) due to the enormous
nondeterminism in mapping concreteDiag(C) arrows toADiag(C) arrows. This is de-
spite the existence of a functor fromADiag(C) to MADiag (C) that maps objects to their
maximal closure, and maps arrows to the maximal abstract arrow-diagrams constr
by picking the value of anADiag(C) arrow at a concrete diagram of its domain and the
proceeding as in Definition 4.4 and Definition 4.6, (since for a fixedADiag(C) arrow,
all such choices will lead to the sameMADiag (C) arrow).

Nevertheless it should not be thought thatADiag(C) is a pointless diversion. Its con-
struction via routine functorial reasoning and the existence of a functor fromADiag(C)
to MADiag (C) bolsters the defence against (especially) foundational assaults.

5 Automorphisms and Kinded Abstract Diagrams

In this section we examine the consequences of objects inC having nontrivial automor-
phisms, in order to relate the standard isomorphism approach to the concepts of S
3. This entails examiningADiag(C) in more detail. The part after Notation 5.3 may b
skipped on a first reading.

We assume chosen a skeleton subcategoryC K of C, leading to a choice of standard iso
morphismsσ(–,–) between objects. Also〈C 〉 will be the category of abstractC objects
and arrows, consisting of equivalence classes up to standard isomorphisms, ofC objects
and arrows.

Let Kind be {id ≤ std ≤ iso}, partially ordered as shown. We will useKind as a label set
for shape vertices, thus for an abstract diagram of shapeµ there will be a map,kind, from
its vertices toKind, and we will speak of shapes and vertices of kind such and suc

Definition 5.1 Let (ιD : D → [µ,C], θµ,D) be a abstract diagram of kinded shapeµ, then
D conforms to its kind (i.e. is a kinded abstract diagrams (or KAD)) iff for each ver
m in µ:

(1) kind(m) = id iff for each natural isomorphismn : γ → δ in D, the component of
n atm is an identity inC, i.e.n(m) : γ(m) → δ(m) = idγ(m),

(2) kind(m) = std iff for each natural isomorphismn : γ → δ in D, the component of
n atm is a standard isomorphism inC, i.e.n(m) : γ(m) → δ(m) = σ(γ(m),δ(m)),

(3) kind(m) = iso iff for each natural isomorphismn : γ → δ in D, the component of
natmis an arbitrary isomorphism inC, i.e.n(m) : γ(m) → δ(m) is an arbitrary iso.
10
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Obviously every shape gives rise to a family of kinded shapes, kinded in all poss
ways, and each giving rise to KADs of the appropriate kinds. The abstract diagram
Sections 3 and 4 can be viewed as KADs with shapes entirely of kindiso.

Definition 5.2 A KAD ( ιD : D → [µ,C], θµ,D) of shapeµ is maximal iff for every object
γ : µ → C of D and natural isomorphismn : γ → δ in [µ,C] of the appropriate kind,n is
an arrow ofD.

Notation 5.3 In figures below, we will encode the kinds of the vertices of an abstr
diagram by the following convention: unadorned vertices imply that the kind isid; ver-
tices in angle brackets imply that the kind isstd; and vertices in square brackets impl
that the kind isiso. ThusA ← 〈B〉 → [C] is a MAD (with various details suppressed) in
which A occurs up to identity,B occurs up to standard isomorphisms, andC occurs up
to arbitrary isomorphisms. To forestall possible confusion, concrete diagrams in
category〈C 〉 will be indicated thus:A〈〉 ← B〈〉 → C〈〉.

When we contemplate incorporating change of shape into the theory, we can
change the geometry, i.e. the underlying elements ofS, and the kinds of related vertices.

Definition 5.4 A change of shape morphismα : µ → ν between kinded shapesµ and
ν is strict atm in µ iff kindµ(m) = kindν(α(m)); it is lenient atm in µ iff kindµ(m) ≤
kindν(α(m)); it is coercive atm in µ iff kindµ(m) ≥ kindν(α(m)). It is strict, lenient, coer-
cive, iff it is strict, lenient, coercive, at allm in µ. It is said to be general if it is not any
of strict, lenient, coercive.

For each object (ιD : D → [µ,C], θµ,D) of ADiag(C) there is a least attribution of kinds
to the verticesmof µ arising from an examination of the isomorphisms of theC objects
abovem in the concrete diagrams ofD. Any greater kinding ofµ gives rise also to a
valid KAD.

Definition 5.5 The categoryADiag k(C) has as objects all valid KADs and as arrow
all ADiag(C) morphisms between them. (So aADiag(C) morphism is a morphism be-
tween two KADs iff it is a morphism between the same objects with kinds forgotten

Now if kindµ : µ → Kind andkindν : ν → Kind are two kinded shapes, andα : µ → ν is
a change of shape, we can factorα throughµ∗ whereµ∗ is µ but with kind map given
by kindµ∗(m) = kindµ(α(m)). So any kinded change of shapeα : µ → ν factors asα =
α∗ αµ, whereαµ : µ → µ∗ is an identity on the shape but can change the kinds, a
α∗ : µ∗ → ν is a strict change of shape morphism. This enables us to separate stu
change of geometry from change of the kind map.

Given this canonical factorisation, we now study the effects of change of the kind
with a fixed geometryµ. For good measure, we include the concrete diagrams with v
ues in bothC and for those with values in〈C 〉, (the category of abstractC objects〈C 〉
and abstractC arrows〈f : C → D〉 up to standard isomorphism).

Fig. 2 provides a route map between various possibilities of interest. The left col
depicts concrete diagrams, the middle column depicts abstract diagrams conven
related to concrete ones, and the right column depicts unrestricted abstract diag
The top two rows show the situation forC, and the bottom row shows the situation fo
the related category〈C 〉 (given the latter, we do not bother separately with the situati
11
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ious possibilities that can be constructed canonically. These are described by (s
times feeble) functorsℑµ

–,– relating the categories of kinded diagrams and the
morphisms (most of which are subcategories ofADiag k(C)). (Many more such func-
tors arise by composition of the ones illustrated, and by applying nonidentity nat
isomorphisms, where appropriate, to the domain or codomain objects of theℑµ

–,– func-
tors.1) For the rest of this discussion we will suppress mention ofµ as much as possible,
we will assume all abstract diagrams are maximal regarding their kinds, and we wi
nore the commutativity data inADiag(C) morphisms, which thus becomec : D0 → D1.

Note first that as〈C 〉 is isomorphic toC K, standard isomorphisms in〈C 〉 are just iden-
tities; so there is no distiction between abstract diagrams in〈C 〉 entirely of kindstd and
those entirely of kindid. This explains the middle element of the bottom row of Fig. 2.

We recall that an object of〈C 〉 is an equivalence class of objects ofC containing in par-
ticular a unique skeleton object fromC K, and that an arrow of〈C 〉 is an equivalence

1. The latter often proves to be equivalent to a change of choice of skeleton.

Concrete Abstract

C

〈C 〉

conc

conc

id

std

id = std

ℑµ
•,idℑµ

id,•

iso

iso

ℑµ
〈id〉,〈iso〉ℑµ

〈iso〉,〈id〉

ℑµ
std,isoℑµ

iso,std

ℑµ
std,•

ℑµ
•,std

ℑµ
〈•〉,〈id〉ℑµ

〈id〉,〈•〉

ℑµ
〈•〉,std

ℑµ
std,〈•〉

ℑµ
std,id

ℑµ
id,std

ℑµ
〈iso〉,iso

ℑµ
iso,〈iso〉

ℑµ
〈id〉,std

ℑµ
std,〈id〉

Fig. 2  A roadmap of concrete and kinded abstract diagrams.

ℑµ
〈•〉,•

ℑµ
•,〈•〉 °

°
°

°

°

°

°
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class of arrows ofC in bijective correspondence with ordered pairs of representati
from its domain and codomain objects. We start with the relationship between con
diagrams inC, and concrete diagrams in〈C 〉. Thusℑµ

•,〈•〉 takes a concrete diagramγ
in C to the concrete diagramγ〈〉 in 〈C 〉, such that the objects and arrows ofγ are members
of the equivalence classes which constitute the objects and arrows ofγ〈〉. Conversely
ℑµ

〈•〉,• sends a〈C 〉 diagramγ〈〉 to the concrete diagramγ in C, for which the objects are
the skeleton objects drawn from the equivalence class objects ofγ〈〉, and the arrows are
the unique arrows between the skeleton objects drawn from the arrow equivalence
es ofγ〈〉. ℑµ

•,〈•〉 andℑµ
〈•〉,• constitute an equivalence of categories.

Proceeding to the top row of Fig. 2, we have the isomorphism between concrete
grams inC and abstract diagrams entirely of kindid in C, given by functorsℑµ

•,id and
ℑµ

id,•. This is essentially the correspondence between an item and the singleton
taining it. A similar situation prevails on the bottom row between concrete diagram
〈C 〉 and abstract diagrams entirely of kindid or std in 〈C 〉, given by functorsℑµ

〈•〉,〈id〉 and
ℑµ

〈id〉,〈•〉. That these are isomorphisms, follows readily from the only possible action
mediated morphisms of abstract diagrams of kindid.

We next discuss the middle column of Fig. 2. The object map of the functorℑµ
std,id

takes a maximal abstract diagramD of kind std, to the singleton containing the unique
concrete diagram inD consisting of skeleton objects and arrows between them. T
arrow map of the functorℑµ

std,id takes a morphismc : D0 → D1, to the morphism
χ Ξc(γ) = { f} : { γ} → { δ} where:γ is the unique concrete diagram inD0 consisting of
skeleton objects and arrows between them;δ is the corresponding one inD1; andf is
the natural transformationχ Ξc(γ) given by the natural transformationΞc(γ) (takingγ
to its target inD1) postcomposed with the unique family of standard isomorphismχ
that takes the target ofΞc(γ) to δ.

Conversely the object map of the feeble functorℑµ
id,std takes a singleton containing an

individual concrete diagramγ, to the abstract diagramD0 consisting of the set of con-
crete diagrams related toγ by families of standard isomorphisms. The arrow map
ℑµ

id,std takes a morphism {f} : { γ} → { δ} between singletons, mediated by a single na
ural transformationf, and sends it to the set of mediated morphisms determined as
lows. Letϕ be a function that maps eachχγ, a natural transformation ofγ consisting of
standard isomorphisms, to a natural transformationχδ of δ consisting of standard iso-
morphisms. Such a function determines a morphismcϕ : D0 → D1 of abstract diagrams
of kind std, by mapping each concrete diagram inD0 via χδ f χγ

–1. The collection
of all such morphisms for all possible choices ofϕ, determines the arrow map of
ℑµ

id,std.

The above makesℑµ
id,std andℑµ

std,id into a weak equivalence of categories, weakne
being in the sense thatℑµ

id,std is a weak left adjoint toℑµ
std,id. The above also fixes the

properties of the pairℑµ
•,std andℑµ

std,• by requiring that the upper triangle in Fig. 2
commutes in the expected way. This means thatℑµ

•,std is feeble and a weak left adjoint
to ℑµ

std,•.

Moving down, the object map of the functorℑµ
std,〈id〉 takes an abstract diagramD of

kind std in C to the singleton containing the concrete diagramγ in 〈C 〉 formed as fol-
lows. We select for each vertexm in the shapeµ, the isomorphism class of concrete
13
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objects ofC up to standard isomorphisms, occurring abovem in the concrete diagrams
of D; we select for each edgee : m0 → m1 in the shapeµ, the isomorphism class of con-
crete arrows ofC up to standard isomorphisms, occurring abovee in the concrete dia-
grams ofD. The arrow map of the functorℑµ

std,〈id〉 takes a morphismc : D0 → D1 of
abstract diagrams of kindstd, and sends it to the morphism {〈Ξc(Γ)(m)〉m} : { γ} → { δ}
between singletons containingγ andδ, the images ofD0 andD1, as follows. LetΞc(Γ)
be the natural transformationΞc at the objectΓ of D0 whereΓ consists exclusively of
skeleton objects and arrows (i.e.C K objects and arrows only). Let〈Ξc(Γ)(m)〉m be the
collection of isomorphism classes up to standard isomorphisms of the arrows ofΞc(Γ)
asm ranges over the vertices ofµ. These are arrows in〈C 〉 forming a natural transfor-
mation of γ. We write {〈Ξc(Γ)(m)〉m} : { γ} → { δ} for the natural extension of
〈Ξc(Γ)(m)〉m to an action on the singleton {γ} containingγ.

Conversely the object map of the feeble functorℑµ
〈id〉,std takes each singleton containing

a concrete diagramγ in 〈C 〉 whose objects and arrows are isomorphism classes ofC ob-
jects and arrows up to standard isomorphisms, and maps it to the abstract diagraD0
consisting of the set of concrete diagrams inC which can be constructed as follows. W
select for each vertexm in the shapeµ, an element of the equivalence class which is t
object ofγ above it; and for each edgee : m0 → m1 in the shapeµ, we select from the
equivalence class abovee in γ, the unique element with the just chosen domain and c
domain objects. The arrow map ofℑµ

〈id〉,std takes a morphism {〈f〉m} : { γ} → { δ} be-
tween singletons, mediated by a single natural transformation〈f 〉m consisting of
isomorphism classes ofC arrows up to standard isomorphisms, containing in particu
the collection {fm} all of whose domains and codomains are skeleton objects, and m
it as follows. LetΓ and∆ be the unique concrete diagrams inD0 andD1 all of whose
objects and arrows are skeleton objects and arrows. Letϕ be a function that maps each
χΓ, a natural transformation ofΓ formed by standard isomorphisms, toχ∆ a natural
transformation of∆ formed by standard isomorphisms. Such a function determine
morphismcϕ : D0 → D1 of abstract diagrams of kindstd, by mapping each concrete
diagram inD0 via χ∆ f χΓ

–1. The collection of all such morphisms for all possibl
choices ofϕ, determines the arrow map ofℑµ

〈id〉,std.

As aboveℑµ
〈id〉,std andℑµ

std,〈id〉 form a weak equivalence of categories, withℑµ
〈id〉,std be-

ing a weak left adjoint toℑµ
std,〈id〉. Requiring that the lower triangle in Fig. 2 commute

also fixes the properties of the pairℑµ
〈•〉,〈id〉 andℑµ

〈id〉,〈•〉, with ℑµ
〈•〉,〈id〉 being a weak left

adjoint toℑµ
〈id〉,〈•〉. We can also see that the rectangle in the left and middle column

Fig. 2 commutes as we would expect.

We turn to the rectangle in the lower right part of Fig. 2. We observe first the follow
fact. Suppose inC we have arrowsf : x → y, f ′ : x′ → y′, and standard isomorphisms
σ(x,x′) : x → x′, σ(y,y′) : y → y′, making a commuting square. Letτ(x,x′) : x → x′ be
any isomorphism fromx to x′. In general there will not be an isomorphismτ(y,y′) :
y → y′ making f, f ′, τ(x,x′), τ(y,y′) commute. However we will assume subsequent
thatC has enough isomorphisms, in the sense that such aτ(y, y′) can always be found,
though it may not be unique.  For exampleSet andGr have enough isomorphisms.

Now the object map of the feeble functorℑµ
std,iso sends an abstract diagramDstd entire-

ly of kind std to the abstract diagramDiso having the same objects, but this time entire
14



s,
ng at

ser-

ly

-
-
t
or-

y
s,

r

ence

s-

iso-

n
ws
of kind iso. Viewed as a category,Diso has merely acquired more arrows in this proces
namely the natural transformations between its concrete diagrams, incorporati
least one nonstandard isomorphism. The arrow map of the feeble functorℑµ

std,iso sends
a mediated morphismcstd : D0

std → D1
std to the set of extensions ofcstd which cover

all the additional natural transformations too. Such extensions will exist by our ob
vation above, but in general they will not be unique.

The object map of the functorℑµ
iso,std likewise sends an abstract diagramDiso entirely

of kind iso to the abstract diagramDstd having the same objects, but this time entire
of kind std. As a category,Diso is mapped to the subcategoryDstd having only standard
isomorphism natural transformations as arrows. The arrow map ofℑµ

iso,std sends a me-
diated morphismciso : D0

iso → D1
iso to the mediated morphismcstd : D0

std → D1
std

determined as follows. LetΓ be the concrete diagram inD0
iso consisting exclusively

of skeleton graphs and morphisms between them. (D0
iso will contain this since it is

maximal.) LetΞciso(Γ) be the natural transformation that mediates the morphismciso at
Γ. Letn : Γ → γ be an arrow inD0

std, and letΞciso(γ) be the corresponding natural trans
formation atγ. Supposen : Γ → γ is mapped byciso to the concrete diagram isomor
phismciso(n) : ciso(Γ) → ciso(γ). Let χm be the collection of isomorphisms such tha
χm ciso(n) is a concrete diagram morphism consisting entirely of standard isom
phisms. Thenχm ciso(n) is a morphism ofD1

std mediated byΞciso(Γ) at Γ and
χm Ξciso(γ) at γ. For eachγ in D0

iso we replace its subfamily of mediating arrows b
the subfamilyχm Ξciso(γ) so determined. By the properties of standard isomorphism
all other morphismsn : γ → δ in D0

std are mapped to morphisms ofD1
std which com-

pose properly.  This gives the morphismcstd : D0
std → D1

std.

The functorsℑµ
〈id〉,〈iso〉 andℑµ

〈iso〉,〈id〉 are similar. The object map of the feeble functo
ℑµ

〈id〉,〈iso〉 maps the objects via identities — the objects (up toid = std) being singletons
containing concrete diagrams built out of objects and arrows which are equival
classes ofC objects and arrows up to standard isomorphisms. Up toid = std, abstract
diagrams in〈C〉 have only the identity automorphism; however up toiso, they in general
acquire nontrivial automorphisms. The arrow map of the feeble functorℑµ

〈id〉,〈iso〉 takes
a morphism {〈f〉m} : { γ} → { δ} between singletons, mediated by a single natural tran
formation〈f〉m consisting of isomorphism classes ofC arrows up to standard isomor-
phisms, containing in particular the collection {fm} all of whose domains and
codomains are skeleton objects, and maps it as follows. LetΓ and∆ consist exclusively
of skeleton objects and arrows, as in the discussion ofℑµ

〈id〉,std. Then each nontrivial
automorphism ofγ (respectivelyδ) has a unique representative forΓ (respectively∆).
Moreover, each nontrivial automorphismaΓ of Γ maps viafm to a nontrivial automor-
phisma∆ of ∆, in general in many ways. The equivalence classes up to standard
morphisms, of the objects and arrows ofa∆, yield an automorphism ofδ which gives a
possible action ofℑµ

〈id〉,〈iso〉 on the arrow {〈f〉m}. The collection of all such possibilities
determines the arrow map ofℑµ

〈id〉,〈iso〉.

The functorℑµ
〈iso〉,〈id〉 could not be simpler. The action on objects is the identity. O

arrows, it is just the restriction to identity automorphisms only, of the action of arro
{ 〈f〉m} : { γ} → {δ} between singletons.
15
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As we had before, the functor pairsℑµ
id,iso, ℑµ

iso,id andℑµ
〈id〉,〈iso〉, ℑµ

〈iso〉,〈id〉 give weak
equivalences of categories, in the sense thatℑµ

id,iso is a weak left adjoint toℑµ
iso,id and

ℑµ
〈id〉,〈iso〉 is a weak left adjoint toℑµ

〈iso〉,〈id〉.

Finally we considerℑµ
〈iso〉,iso andℑµ

iso,〈iso〉. The functorℑµ
iso,〈iso〉 behaves like the func-

tor ℑµ
std,〈id〉 except that diagram morphisms must include also the nontrivial autom

phisms. Each such nontrivial automorphism of a concrete representative of an ab
diagram of kindiso in 〈C 〉, is simply mapped to the collection of equivalence classes
to standard isomorphisms in the expected way. Likewise, the feeble functorℑµ

〈iso〉,iso

behaves likeℑµ
〈id〉,std except that again nontrivial automorphisms must be taken into

count. These are mapped just like all the other arrows between abstract diagra
kind iso in 〈C 〉.

Unsurprisingly the functorsℑµ
〈iso〉,iso andℑµ

iso,〈iso〉 form a weak equivalence of catego
ries withℑµ

〈iso〉,iso being a weak left adjoint toℑµ
iso,〈iso〉.

Fig. 2 summarises all of the above by distinguishing the feeble functors from the
with a small circle. It is worth noting that the feebleness ofℑµ

std,iso and ofℑµ
〈id〉,〈iso〉 is

due to the nonunique way that arbitrary nonstandard isomorphisms translate alon
bitrary morphisms, while the feebleness of the other functors is attributable to the m
different mediated morphisms of abstract diagrams which map, under equivalenc
to standard isomorphisms, to the same morphism of skeleton concrete diagram
course all of this detail gets swept away when one moves toMADiag (C). Also the pre-
ceding discussion described the situation when all vertices in the shape of an ab
diagram are of the same kind. In diagrams where the kind varies from vertex to ve
the facts of the matter may be determined by an easy extrapolation.

6 Maximality, and the Uniqueness of Diagrammatic
Constructions

Diagrammatic reasoning is typically used in category theory in two principal ways
the first, a diagram displays one or more equalities between compositions of ar
whose existence is already assured. In such cases there is no ambiguity about th
tionships that are being stated.

In the second, a diagram displays one or more equalities between compositions
rows whose existence is claimed. In the such cases, because the existence cla
typically only be made up to isomorphism, the reasoning is more complicated. T
is an initial phase in which an explicit construction is given that solves the problem,
ally in a canonical way, and this is followed by a second phase in which the univers
of the solution up to isomorphism is demonstrated. The latter involves reasoning a
a more complicated diagram and showing that a certain arrow is an iso. We recon
this activity in the light of abstract diagrams.  First though, a word about shapes.

Most diagrammatic reasoning takes place without mentioning shapes. It is assu
that the context provides enough clues to render superfluous the explicit definitio
the shape and its relation to the substance of the diagram, which usually arises v
implicit geometrical or textual relationships between the diagram and other informa
appearing on the same page. Thus there is a commonly agreed if unstated sha
16
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each diagram that enters into a particular discourse. The shape, fixed for the du
(though negotiable via isomorphisms of the shape graph, a fact that also excuse
very specific shapes chosen for arrow-diagrams in Section 4), plays the same role
agrammatic reasoning that natural language plays in most other activities, i.e. the
vision of a common framework within which the discourse takes place. If the shape
nontrivial symmetries that the context fails to disambiguate sufficiently, and consid
tions that break the symmetry enter late into the discourse, the protagonists of th
course may get a surprise, just as can happen with natural language. Despite the
we conform to this standard practice to avoid verbosity below.

We now examine a simple example, the construction of products in a category w
supports them. So letC have products. The procedure is illustrated in Fig. 3, and beg
with two objectsA andB (Fig. 3.(a)), for which we build a product objectA×B together
with its projections toA andB (Fig. 3.(b)), which enjoy the familiar universal factorisa
tion properties (Fig. 3.(c)). Finally we show that any object (A×B)′ enjoying the same
factorisation properties is isomorphic toA×B in C (Fig. 3.(d)).

All of Figs. 3.(a)-3.(d) can be viewed just as individual concrete diagrams with obvi
shapes. However there is an alternative perspective as follows. Fig. 3.(a) is a con
diagram that describes the initial situation, while Fig. 3.(b) depicts the result of the
struction and is another concrete diagram. Figs. 3.(a) and 3.(b) are the domain an
domain of an obvious arrow ofDiag(C) based on the inclusion of the shape of (a) in
that of (b), thus partially characterising the product construction as a family ofDiag(C)
morphisms parameterised byA andB, viz. Prod(A,B) : (A B) → (A ← A×B → B),
where for convenience we have suppressed the standardDiag(C) morphism notations.

In a variation on this theme, we note that there are also inclusions which we can
cinctly indicate by 3.(a)→ 3.(c) ← 3.(b). This is aDiag(C) cospan which provides a
more detailed picture of the product construction. Note however that this still fail
describe some of the vital aspects of the construction, such as the universal quan
tion overZ or the uniqueness of the arrowZ → A×B. Still, this is no worse than what
is conveyed by the diagrams in conventional discussions of the product.

Z

Fig. 3  Products.

A

B

(a)

A

B

(b)

A×B

A

B

(c)

A×B (A×B)′

A

B

(d)

A×B
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Fig. 3.(d) can be regarded as a concrete diagram describing the isomorphism inva
of the product of course, but it is much more in the spirit of this paper to see it as
constituent concrete diagrams of the kinded abstract diagramA ← [A×B] → B (using
Notation 5.3), which is up-to-identity atA andB and up-to-arbitrary-isomorphisms a
A×B. This KAD captures succinctly all the possible concrete products obtainable f
A andB.

Moreover noting thatC objects which are isomorphic toA andB share the same family
of products asA andB themselves, means that there is a more abstract formulatio
the product, this time inMADiag (C), which casts it as a family of inclusion morphisms2

parameterised by [A] and [B], viz. AProd([A],[B]) : ([A] [B]) → ([A] ← [A×B] → [B]).
And theMADiag (C) formulation is available even if the the concrete version had n
been defined asDiag(C) morphisms (for example by permitting choice for the intro
duced objectA×B and attendant arrows) — though if itis defined using morphisms,
then the functorMAbs carries the concrete formulation into the abstract one. Clea
this is much neater than seeking an abstract formulation via the category〈C 〉, where the
choice of standard isomorphisms would have intruded unavoidably.

The MADiag (C) family of inclusion morphismsAProd([A],[B]) expresses via abstrac
diagrams and abstract arrow-diagrams, the notion that up to isomorphism, the pr
yields a unique outcome. We now generalise this to a methodological statement, w
in the notation of Section 5, can be tritely expressed as saying that to pass from the
version of a construction to theMADiag (C) version, it is sufficient to merely ‘put square
brackets round everything’.

Definition 6.1 A concrete canonical categorical construction (with values inC) is an
argument that establishes the existence of a family ofDiag(C) inclusion morphisms pa-
rameterised by someDiag(C) objects and arrows sayA1 … An. Thus it can be ex-
pressed asConstr(A1 … An) : γ0(A1 … An) → γ1(A1 … An), whereγ0 is the premiss
concrete diagram andγ1 is the result concrete diagram.

The ‘canonical’ qualification here excludes those cases in which the choice of ob
and arrows newly introduced during the construction does not depend functionall
the parameters, leading to no unique choice ofγ1(A1 … An).

Definition 6.2 An abstract categorical construction (with values inC) is an argument
that establishes the existence of a family ofMADiag (C) inclusion morphisms parameter
ised by someMADiag (C) objects and arrows say [A1] … [An]. Thus it can be expressed
asAConstr([A1] … [An]) : D0([A1] … [An]) → D1([A1] … [An]), whereD0 is the prem-
iss abstract diagram andD1 is the result abstract diagram.

Note that there is no need for a ‘canonical’ qualification here.

Proposition 6.3 For every concrete canonical categorical construction there is a
responding abstract construction given by mapping the concrete inclusion morph
Constr(A1 … An) to the abstract inclusion morphismsAConstr([A1] … [An]) via MAbs .

Proof.  See Theorem 4.8.

2. An MADiag (C) inclusion morphism is an abstract arrow-diagram fashioned from a concrete
clusion arrow-diagram inDiag(C), itself fashioned from a concrete inclusion inDiag(C).
18
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The preceding ideas have wide application and we now look at some more exam
Firstly adjunctions. One way of constructing an adjunctionF —| U is to build a univer-
sal arrow for each objectA. In Fig. 4 this is characterised by an inclusion from (a)
(b), and theMADiag (C) version just puts square brackets round everything in Fig. 4

Another example, the construction of a cartesian closure, can be characterised b
inclusion ofA andB in (a) of Fig. 5 into (b). The new elements, i.e. (A⇒B) and the
product andevalarrows, are usually constructed canonically, but only actually nee
up to concrete isomorphisms, leading to a KAD version with all of Fig. 5 exceptA and
B ‘square bracketed’, as well as a fully abstract version inMADiag (C) with everything
‘square bracketed’ includingA andB.

A different kind of example arises in the well known Snake Lemma, illustrated by
inclusion of (a) into (b) in Fig. 6. Although the concrete construction is just of an arr
between existing objects, and is thus not ambiguous, the details of the constructio
volve building a number of additional objects and arrows (not shown), whucharechar-
acterised only up to isomorphism. Thus despite appearances, the abstract versi
the construction are more determined than the concrete one.

Our last example is the construction of ends [Mac Lane (1971)]. This correspond
the inclusion of (a) into (b) in Fig. 7, whereS: X op × X → C is a bifunctor and for any
E′ satisfying the same suite of properties asE, there is a unique arrowe : E′ → E etc. It
is clear that the abstract verison of this specifies [E] uniquely, and thus that the construc
tion is analogous to the construction of products or to the CCC construction.

Note that in all of these examples the properties of the abstract diagram were obt
by first considering the properties of the usual concrete construction (i.e. no ‘some

Fig. 4  Adjunctions.

A UFA

(a)

ηA
A UFA

(b)

Fig. 5  Cartesian Closure.

eval

A

(A⇒B)

B(A⇒B)×A

A

B

(a) (b)
19



ers,

p by

mb-
and
the
and

CCCs
the

ther
ca-

p the
ts and
cause
ention
Ch. 6
rest,
for nothing’) — in essence we have a fresh way of viewing the conventional answ
one which eg. legitimises the overwhelming temptation to speak of ‘theproduct’ or ‘the
CCC arrow object’ when given a pair of (isomorphism classes of) objects.

7 Maximal Abstract Diagrams and Semantics

In this section we briefly indicate some of the possibilities in semantics opened u
abstract diagrams.

In the first example we recall that CCCs provide a semantics for the simply typed la
da calculus (STLC), (see [Barendregt (1984)] for the untyped lambda calculus
[Jacobs (1998)] for the typed variant). This is well known, so we do not revisit all
details save to note that the types of the STLC constitute the objects of a CCC
equivalence classes of terms constitute the arrows. Since there are many other
than this one, there are also many other semantic models, and any functor from
standard CCC to such a potential alternative model will yield a semantics. Whe
such a potential alternative model is interesting is at least partly determined by how
nonical the constituents are. The availability of abstract diagrams now opens u
possibility that some candidate CCCs, viewed as unattractive because their objec
arrows were not canonical, now acquire more attractive abstract counterparts be
their abstract objects and arrows can be viewed as abstract diagrams. We could m
CCCs of diagrams themselves, eg. built on the basis of constructions detailed in
of [Barr and Wells (1999)]. For a suggestion as to why such models might be of inte
see the last paragraph in this section.

Fig. 6  The Snake Lemma.

A B

(a) (b)

C

A′ B′ C′

A B C

A′ B′ C′

Fig. 7  Ends.

E

S(B,B)

(a) (b)

S(C,C)

S(B,C)

S(B,B)

S(C,C)

S(B,C)
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A second area we briefly discuss concerns graph transformation by the applicati
graph rewrite rules, an area where the ambiguities caused by nontrivial graph auto
phisms are particularly keenly felt. There are many different ways to design grap
writing systems; we focus on the technique studied at length in [Rozenberg (1997)
[Ehrig et al. (1999)]. The basic idea is that rules are spansL ← K → R in Gr. A redex
for such a rule is a diagram like Fig. 8.(a), in which there is a graph morphism froL
to the object graphG, and the application of the rule succeeds when we can const
the diagram in Fig. 8.(b), i.e. a span morphism, in which the two squares are
pushouts inGr. Such a setup can describe many operational aspects of computat
situations quite cleanly. The point is that since there are no canonical representa
for arbitrary graphs, irritating ambiguities up to isomorphism proliferate at all stage
the theory. This certainly becomes a nuisance when one wishes to study more ab
aspects of the operational semantics. In [Rozenberg (1997), Ehrig et al. (1999)]
are solutions to such questions constructed via concrete diagrams in〈Gr 〉, with their re-
liance on some skeleton categoryGrK. However the deployment of MADs gives an ap
proach that is easier, more elegant, and independent of any choices (of skeleton)
clear that there is aDiag(Gr) inclusion from (a) to (b) in Fig. 8 (whenD andH are con-
structed canonically, as they usually are), so that abstract rewrites can be simply de
by ‘putting square brackets round everything in Fig. 8’, thus getting anMADiag (Gr) in-
clusion. This gives the starting point for a clean reworking of the theory, which will
explored elsewhere.

One final observation which we do not follow up in this paper is the following. T
mathematical study of semantics naturally emphasises convincing abstract models
ally characterised by canonical properties. The practical business of semantics, th
plementation of languages on a computer, is unavoidably characterised by prag
aspects, such as the choice of specific memory locations etc. Abstract diagrams g
the possibility of bringing the two spheres closer than is usually found, by allowing
development of abstractions that are in effect isomorphism classes of implementa
This is an idea that will be developed in other publications.

8 Relationship to Other Work

To the author’s knowledge, the concept of abstract diagram presented here has no
given before, but some related ideas have appeared in the literature. Rather close

Fig. 8  Graph Transformation.

(a) (b)

L RK L RK

G HDG
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work on anafunctors in [Makkai (1996)]. IfX andA are categories, then an anafuncto
F : X → A is a class|F | together with mapsσ : |F | → Ob(X) andτ : |F | → Ob(A) such
that if f : σ(x) → σ(y) is an arrow ofX, then there is an arrowFx,y(f) : τ(x) → τ(y) in A.
Moreover the correspondencef |→ Fx,y(f) (parameterised by thex,y) must behave ‘func-
torially’. Thus idσ(x) must correspond toFx,x(idσ(x)) = idτ(x), and the composition off :
σ(x) → σ(y) andg : σ(y) → σ(z) must correspond to the composition ofFx,y(f) and
Fy,z(g). (As a consequence, everyFx,y(idσ(x)=σ(y)) corresponds to an isomorphism o
τ(x).)

For an anafunctorF : X → A, if there is a bijection between elementsx in |F | and the
collection of pairs (σ(x),τ(x)), then up to foundational niceties, and regardingX as a
shape category, it is easy enough to see thatF corresponds to an abstract diagram
namely to a subcategory of [X,A]. Fixing σ(x), the elementsx can be seen as labelling
the various objects ofA isomorphic toτ(x). If there is no bijection as described, the
the anafunctor contains more data, i.e. the elementsx in |F | act as names for the asso
ciated pairs (σ(x),τ(x)). Assuming for simplicity the correspondence between anafu
tors and abstract diagrams, Makkai’s saturated anafunctors now correspond t
maximal abstract diagrams. We restrict for the rest of this section to this saturated/
imal case, the one also of most interest to Makkai.

On this assumption we immediately notice that since we constructed abstract diag
using purely functorial techniques, many of the naturality properties of anafunc
proved directly in [Makkai (1996)] follow immediately in the abstract diagram form
lation.

Let us now reconsider products in the two schemes. Makkai’s canonical product ca
expressed in our kinded notation as the abstract diagramA ← [A×B] → B, asymmetric
between inputs and outputs as regards our kinds. Our more symmetrical cano
product [A] ← [A×B] → [B] does not appear in [Makkai (1996)], though if the abstra
diagram [A] of shape • is regarded as an anafunctorF : • → A, then such a formulation
can be recovered without great effort, modulo considerations of size.

We close this discussion with some comments on foundational issues which we a
tedly neglect in this paper. Our constructions of abstract diagrams have been info
(albeit indirectly) by the Grothendieck Construction3, including situations which in a
Gödel-Bernays formulation would be large. We regard this as innocuous, since giv
suitable choice of skeleton forC, the abstract diagram categories become equivalen
locally small ones, as the feeble functors of Section 5 bear witness. This is compa
to a similar remark in [Makkai (1996)], and is about as innocent a use of large categ
as one might wish for.

A further litmus test of propriety consists of examining our use of equality during
course of the abstract diagram constructions. In the influential [Bénabou (1985)]
author rails quite energetically against the undisciplined use of equality in category
ory. In our paper, the only place equality was used nontrivially was in the considera
of diagram commutativity, which we can always restrict to locally small situations

3. It is primarily this fact that supports the assertion in the Introduction, that our construction
purely functorial.
22



and
t ar-
g we

f ab-
nctor

char-
st put
ense,
as a
rs,
t di-

y ab-
se of
al na-

aper.
this
rlier

t of.

ee-

. A
al is

-

insisting that shapes are suitably small. Aside from that we used identity of domain
codomain objects of concrete arrow-diagrams during the composition of abstrac
row-diagrams. Bénabou does not disparage use of identities and this is somethin
regard as innocuous.

9 Conclusions

In the previous sections, having motivated the search for a more workable notion o
stract diagram than has been available hitherto, we defined abstract diagrams via fu
categories. This conception turned out to be useful in giving diagrams a canonical
acter, furthermore one that was obtained in the simplest conceivable manner: ‘Ju
square brackets round everything in the corresponding concrete diagram’. In this s
the advocated course of action for somethiing like the product construction say, w
little different to that occurring in Makkai’s reappraisal of products via anafuncto
though Makkai’s anafunctors offer an approach that yields similar results to abstrac
agrams in many respects. Beyond this, the more uniform perspective afforded b
stract diagrams suggests their adoption for various semantic purposes for which u
the analogous concrete diagrams is much less attractive due to their non-canonic
ture.  These aspects in particular merit further exploration.

Acknowledgements

It is a pleasure to thank Peter Aczel and Harold Simmons for comments on this p
Thanks are also due to Peter Johnstone for comments on earlier work from which
paper arose. Mostly, thanks are due to Andrea Corradini for collaboration on the ea
work, without which, the developments reported here would not have been though

Appendix: Feeble Functors and Weak Adjunctions

The material of this part is adapted from [Krishnan (1981)] and [Kainen (1971)]. A f
ble functorF : A → B maps objects ofA to objects ofB as usual, but maps arrowsf :
a → b of A to nonempty sets of arrows ofB via F(f : a → b) ⊆ homB(F(a),F(b)), such
that if f andg are composable, thenF(g) F(f) ⊆ F(g f) with the obvious overloading
of the composition symbol. Given two feeble functorsF, G : A → B, a left-natural
transformationη : F → G maps each objecta in A to a non-empty set of arrowsη(a) ⊆
homB(F(a),G(a)) such that for each arrowf : a → b of A, η(b) F(f) ⊇ G(f) η(a). If
the direction of the inclusion is reversed we have a right-natural transformation
transformation between two feeble functors that is both left-natural and right-natur
called a natural transformation.

Feeble functors are used in weak adjunctions which we now describe. LetF : A → B
be a feeble functor andG : B → A be a (normal) functor. ThenF is a weak left adjoint
of G iff there exists a natural transformationn : homB(F ×Id(B)) → homA(Id(A)×G)
and a left-natural transformationm : homA(Id(A)×G) → homB(F ×Id(B)), such that
n m= 1homA(Id(A)×G) andm n⊇ 1homB(F ×Id(B)). Here both hom–(–, –) notations are
being viewed as functorsAop×B → SetCF, whereSetCF is the category of sets and cof
ull relations between them.  Equivalent conditions are given by the following.
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Theorem A.1 Let G : B → A be a functor. Then among the conditions below we ha
(1) ⇒ (2) ⇒ (3) ⇒ (1) and (1*)⇒ (2*) ⇒ (3*) ⇒ (1*).

(1) There is a feeble functorF : A → B which is a weak left adjoint toG.

(1*) In addition to (1), if (n,m) define the weak adjunction then:( a is an object ofA
∧ h ∈ homB(F(a),F(a)) ∧ n(a,F(a)) ∧ G(h) k = k ) ⇒ ( h = idF(a) ).

(2) There is a feeble functorF : A → B and a natural transformationη : Id(A) →
G F, and for every objectbof B a non-empty setν(b) ⊆ homB(F G(b),b) such
that: (a),G (ν(b)) η(G (b)) = idG(b), and (b), for every objecta of A ( f ∈
homA(a,G(a)) ∧ h ∈ ν(b) F(f) ) ⇒ ( G(h) η(a) = f ).

(2*) In addition to (2), for every objecta of A ( h ∈ homB(F(a),F(a)) ∧ G(h) η(a)
= η(a) ) ⇒ ( h = idF(a) ).

(3) Every objecta of A has a universal arrow (u : a → G(ba),ba) in the sense that for
every objectb of B and everyf : a → G(b) there is a (not necessarily unique
arrowg : ba → b such thatG(g) u = f.

(3*) In addition to (3),( h : b → b ∧ G(h) u = u ) ⇒ ( h = idb ).
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