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Abstract: The awkwardnes of ‘up to isomorphism’ diagrammatic constructions is recalled, and
one repost, via skeleton categories and standard isomorphisms, is reviewed. An alternative ap-
proach is introduced, which defines abstract diagrams as natural isomorphism classes of concrete
diagrams, and is related to the previous one. Maximal abstract diagrams yield canonical diagram-
matic constructions, where only ‘up to isomorphism’ constructions were available previously.

1 Introduction

The fact that in conventional diagrammatic reasoning in category theory, most construc-
tions only yield an answer ‘up to isomorphism’, is something that people have learnt to
live with, rather than something that is held to be intrinsically good. The wealth of co-
herence results that are generated as a consequence of needing to reconcile the outputs
of different instances of essentially the same construction, which differ only in the order

in which some component operations are performed, is the tangible mathematical re-
sponse to the phenomenon. Nevertheless despite these, the feeling that a neater han-
dling of these matters would be nice, is hard to stifle. Aside from aesthetics, ambiguity
up to isomorphism is more troublesome when the outputs of diagrammatic construc-
tions are used as a semantic vehicle for some purpose. Cases in point arise when the
entities in play are fundamentally graph theoretical (eg. [Rozenberg (1997), Ehrig et al.
(1999)]), whereupon the ambiguity can make desired semantic manipulations problem-
atic. This paper offers a new way to tackle these issues.

‘Up to isomorphism’ signals the necessity to exercise choice. We avoid this need by
trading choice for closure, which is an old trick. By this means we come up with a no-
tion of ‘abstract diagram’ in contrast to the conventional notion of ‘concrete diagram’.
Previous approaches have defined ‘abstract diagrams’ out of equivalence classes of ob-
jects and arrows of the category of interest, but this does not fully succeed due to the
need to refer implicitly or explicitly to a skeleton of the underlying category and which
therefore comes down to a choice again (of the skeleton). In our approach, an abstract
diagram is a functor category of some or all of the relevant concrete diagrams. It turns
out that these functor categories have properties that bear comparison to what is done
with conventional diagrams. The price to be paid for this is that (depending on founda-
tions) one has to deal with large categories almost immediately. One further conse-
quence is that the framework of abstract diagrams does not obviate the need to reason
at the concrete level, basically because the diagrams that figure in a conventional deri-
vation do not fully encode the derivation, but only some aspects of it. Abstract diagrams
provide a way of displaying the results in a neater way; so there is no case of something
for nothing, which is reassuring.



The strategy just outlined differs from most of the existing approaches for dealing with
choice in categorical constructions. These do not so much seek to avoid it as look for
ways of making it more canonically. Largely, one feels, this is prompted by the desire
to avoid troubling foundational issues. Our alternative approach is based on purely
functorial constructions, and of all constructions that might be considered foundation-
ally suspect, purely functorial ones are the least suspect of all. Accordingly, our foun-
dational basis is to tacitly employ universes, i.e. formally ‘everything is a “set™.
(Despite this, we are unable to resist using the phraseology of ‘equivalence classes’ and
‘isomorphism classes’, since ‘equivalence set’ and ‘isomorphism set’ just sound

wrong.)

The rest of this paper is as follows. Section 2 revisits the familiar problems with fac-
toring a category through isomorphisms in the context of the category of graphs, and
reviews the familiar solution via standard isomorphisms. Section 3 recalls the definition
of the category of diagrams, and extrapolates this to a construction of abstract diagrams
using functor categories, yielding a category of abstract diagRiag(C), and show-

ing that maximal abstract diagrams are unique. Section 4 noteADia(C) has too

many morphisms, and constructs a fresh category of abstract diagrams that has fewer of
them,MADiag(C). These two sections are the key sections of the paper. Section 5 re-
lates the functor category approach to abstract diagrams, to the work using standard iso-
morphisms, and may be mostly skipped on a first reading. Section 6 shows how
diagrammatic constructions can be recast in a canonical way using abstract diagrams:
they become inclusion morphisms MADiag(C). The treatment of products is de-
scribed in detail, and some other examples are noted briefly. Section 7 briefly outlines
some prospective uses of abstract diagrams in semantic theory. Section 8 discusses the
relationship of our theory to earlier work, particularly to Makkai’'s anafunctors [Makkai
(1996)], and revisits some foundational issues. Section 9 concludes, after which there
is an appendix which reviews feeble functors which are used in Section 5.

2 The Abstraction Problem

In this section we briefly cover some necessary technical preliminaries on graphs, and
introduce the abstraction problem for diagrams which motivates the constructions in the
main part of the paper.

Definition 2.1 A graphG is a tuple E, V, s, t) whereE andV are sets of edges and
vertices, and, t: E - V are two set functions that send each edge to its source and tar-
get vertex respectively. A graph morphismG - G' is a pair of mapsg: E - E,

fy:V - V such thafyos=s ofg andfy ot =t ofg. This gives us the categofyr of
(concrete) graphs and morphisms with obvious identities and composition of mor-
phisms. We will also refer t&r by the namé; using the nam&r when we are inter-
ested in isomorphism classes of various kinds, and uSiagien we need individual
shape graphs in the discussion of diagrams. The convention of having laothGr

in principle also yields the opportunity to make the two categories of different sizes in
a foundationally different treatment.

In Cat, the functorU that forgets arrow composition, yields from a categbryhe un-
derlying grapHJC of C.



Fig. 1 A counterexample to simple equivalence classes up to isomorphism.

One thing that has been contemplated@r(and for similar categories whose objects
generally admit nontrivial automorphisms), is to raise the level of abstraction from in-
dividual graphs and graph morphisms to more abstract notions, particularly since such
categories seldom admit canonical choices for representatives of the isomorphism
classes of their objects. This is the abstraction problem, and an obvious strategy which
suggests itself is to form isomorphism classes of graphs and of morphisms and to pro-
ceed from there. Unfortunately this is easier said than done. A familiar exanfggé in
(which we can regard as a category of discrete graphs and thus a subcateGoyy of
illustrates the problem.

Example 2.2 LetS; ={1, 2} and S, ={1, 2, 3}. Consider the map. S; - S, andg,

g:S, - S of Fig. 1. In anaive construction of abstract sets and abstract maps between
them, the abstract set containg aSetould be all sets equipolent & and the abstract
map containing a map: S; — S, would be the collection of all mags T; — T, such

that there are isomorphisms: S; — T; andj, : S, - T, such thas=j, totoj;. In

Fig. 1 we claim thag andg’ would be in the same isomorphism class because if we take
jp asthe map {I- 3, 21~ 1, 31— 2} and takej, as the map {l- 2, 21~ 1} then
indeedg = j2‘1o g oj;. Now the composition of two abstract maps would be the ab-
stract map containing at least all composites of respective individual maps which are
directly composable. So in the exampio f andg' of would be in the same abstract
map. Howevergo fis monic whileg' of is not, so this is impossible because monicity

is invariant under isomorphism.

The reason why we get this unpleasant phenomenon is clear. When we form the com-
posite, we have ‘forgotten’ that we have to relgtendg’ by j; andj, in this particular
instance, because the formation of equivalence classes does not remember this informa-
tion. The technique of standard graphs and isomorphisms addresses this problem.

Definition 2.3 A choice of standard isomorphisms@T assigns to each pair of iso-
morphic graph$&, andG,, a standard isomorphisa{G,,G,) such that:



1) o(G,G)=idg
(2)  0(Gy,G3)00(G1,Gp) =0(Gy,Ga)
(8)  0(GGy) =0(Gy,GY ™

If we disallow all isomorphisms other than standard ones, the problems of Example 2.2
disappear becauggandj, are not standard by (1) above; hemycandg' fall into dif-
ferent equivalence classes.

Definition 2.4 We can construct a choice of standard isomorphisntias follows:

(1) We choose one grapi(G) from each isomorphism clas€] of graphs isomor-
phic toG to be standard.

(2) Foreachs' in [G], we choose one isomorphisofo(G),G') to be standard (with
0(0(G),G') chosen to be jgg, if G' = 0(G)).

(3) ForallGy, Gyin [G], we setd(Gy,G,) = 0(0(G),G,) o O'(O'(G),Gl)_l.

For the sequel we assume fixed some choice of standard isomorphi€ihsTine col-

lection of standard graphs and all morphisms between them forms a skeleton category
GrK of Gr. Itis not too hard to see th&rX is isomorphic to the categoffsr [ whose
objects are isomorphism classes of concrete graphs up to standard isomorphism called
(in this approach) abstract graphs and writf&a) and whose arrows are equivalence
classes of concrete morphisms under the relation that rgJatés- Handg' : G' - H’

iff g= cr(G’,H')‘1 og o0(G,H), called abstract morphisms and written: G — HO

The use of only standard isomorphisms in this relation means that there is a bijection
between concrete arrows G - Hin [g: G - H[Jand ordered pairG, H taken from
[GCandHL Identities are the equivalence classes of concrete identities, and composi-
tion of arrowslg : G — HOandh: H - KOs given by composing the concrete arrows

in the two respective classes in the only possible way using the standard isomorphisms,
which forms another equivalence class.

3  Concrete and Abstract Diagrams in an Arbitrary Category

In this section we abandon the approach of the last few paragraphs and embark on a
fresh tack.

Definition 3.1 Let u be a graph, i.e. an object 5f let C be any category, and Igt:

U — UC be a graph morphism fromto the underlying graph &. Thenyis a concrete
prediagram of shapein C. LetPth:S - Cat be the functor that sends graphs to their
path categories, which is left adjointth Then the standard free construction extends
y:u - UCtoafunctory: p — C from the path categony of uto C. We cally a plain
concrete diagram of shapen C.

Thus far plain concrete diagrams do not have to commute. yLgt — C be a plain
concrete diagram, and suppose that for two paghs (.. , e and €, ..., €%) in
the internal compositiong(ely) o ... oy(el)) and (%) o ... oy(€?y)) yield the same
arrowf : y(mg) — y(my) in C. Then we say that the two paths commutg.inlJsually
(', ..., e} and €, ... , €4) have a common starting poir, and a common end-
pointmy, in Y, but this is not strictly necessary.



Note that the extent to which a diagram needs to commute depends on the use to which
it is being put. Take as an example, an equaliser diagram: the two parallel arrows con-
templated at the start don’t need to be equal; however when when they are prepended
with the equaliser arrow, the compositions must be equal.

Definition 3.2 Lety: p — C be a plain concrete diagram of shapi C, and letd,, y

be a set of pairs of paths |n If for all pairs in6,,,, the internal compositions under
yield equal arrows o€, then we say is By, y-commutmg We writed,, ,-commuting
diagrams using the notatiop:(u — C, 8 wy) andrefertothemas a concrete diagrams.

Definition 3.3 We write [u1,C] for the functor category whose objects are plain concrete
diagrams of shape, and whose arrows are plain concrete diagram morphisms, i.e. nat-
ural transformations : y — 8. We write [u,C]q for the enriched category whose objects
are concrete diagrams of shgpeand whose arrows are commutativity nondecreasing
natural transformations, i.e. natural transformationg — & such thaf,,, U 6, 5

From now on all concrete diagrams not explicitly stated to be plain are assumed to have
a commutativity specificatioy, , and to beﬂlJ y-commuting. Since we do not want to

be restricted to just one shape, we mtrodl]leg(C) the category of concrete diagrams

in C over arbitrary shapes.

Definition 3.4 In Diag(C) the objects are concrete diagram€iaver arbitrary shapes
(v:u - C,8,,), and the arrows are pair§,¢) : (y: p - C,8,,) - (5:v - C, 8, ),
such thatr ; u - vis achange of shape, i.e. an arI’OV\Pdllﬁ(S) E is a natural transfor-
mation fromy: u -~ Ctodoa: p - C, andBy, O 8, 5 holds, wheredy,, , is the
image of the pairs of paths B), , undera. Vlewed another way is a collection ofC
arrows such thatoa = & oy holds in the expected way. We say that the morphisms of
Diag(C) are mediated by the collections Gfarrows&. The composition of§,q) :
(yip—C.Byy) ~@:v-Cogand(,p):(3:v-CB ~ (e:A - C,8,)is
(a(Q) ok, Boa) (y:n-C,0 wy) = (1A - C, B) ¢), wherea(() is the action ofx on

Z andOBoa(u)‘y a 9)\,8 holds.

This lays the foundation for the ensuing definitions.

Definition 3.5 A plain abstract diagram (of shapgu in C) is a connected subcategory
of [u,C] all of whose arrows are natural isomorphisms. We wiite D - [u,C] for

the inclusion functor. An abstract diagrdoh(of shapeu in C) is a plain abstract dia-
gramD together with a commutativity specificatiéi) p shared by all the concrete di-
agramsirD, i.e. itis a subcategory ofifC]g. For abstract diagrams we use the notation
(1p: D - [1,C], 8, p) to reveal the various components.

Definition 3.6 An abstract diagrar of shapeu is maximal iff it is nonempty and for
every objecy : 4 — C of D and natural isomorphism: y — &in [u,C], nis an arrow
of D.

An abstract diagrarb is a subdiagram of an abstract diagrBn(both of shapey) iff
Do is a subcategory of the categddy, (and8,, 5, =8, p,). Trivial to prove, but of key
importance is the following.

Proposition 3.7 Every abstract diagram is a subdiagram of a unique maximal abstract
diagram (MAD).



As a consequence, the more concepts we can reformulate in terms of abstract diagrams,
the more results are liable to come out uniquely, rather than ‘up to isomorphism’.

Definition 3.8 A morphismc : Dy - D; of abstract diagrams (of shapen C) is a
functor from the underlying plain abstract diagrédg to the underlying plain abstract
diagramD; (where bothDy andD; are considered simply as categories in their own
right), such tha6, p, [0 6, p, holds. This gives rise to the category of abstract diagrams
of shapeu in C, denotedAbs(u,C). If c: Dy — D arises as a natural transformation
between the inclusion functorg( : Dg — [11,C], 8, p) and (p, : D; - [1,C], 8,p,)

we say that is mediated by the family of arrows of the natural transformation, which
we denote by...

Given a mediated morphism: Dy - D, as above, IeE(y) denote the element &,

at concrete diagram wherey is an object oD. Sincey: p - Cis itself a functor,

=(y) isitself a natural transformation, i.e. a family of arra#gy)(m) in C, one for each
objectmof u (or vertexmof ). Thus while an arbitrary morphism of abstract diagrams
merely associates concrete diagrams and morphisms between them in a natural manner,
a mediated morphism of abstract diagrams must be sensitive to any internal structure of
objects captured by the structureCof

For an example le€ beGr. Then an arbitrary morphism: Dy — D; of abstract dia-
grams associates concrete diagrgmg — Gr and natural isomorphisnmg :y — Yy in
Dy with concrete diagramg : p — Gr and natural isomorphismg : 3 - & in Dy,
such that(idy) = idgy), andc(ng 1 y - Y) = c(ng) : c(y) - c(y), and compositions of
them behave well, (an@|, o, U 6, p,). So each concrete gra@y = y(m) occurring at
a vertexm of shapeu in diagramy in Dy, is mapped td5; = c(y)(m) in D4, and each
concrete graph morphisiy : Gg — Gy =y(€) : y(m) - y(m') above edge: m — m
of pin Dy, is mapped to a corresponding concrete graph morplisnG; —» Gy’ =
c(Ep) : c(Gg) - c(Gg') = c(y)(e) : c(y)(m) — c(y)(m') above the same edge m - m
of c(u) in D4. And the mapping of the natural isomorphism&gfunderc respects this
additional structure.

However ifcis mediated, not only does all this have to hold, but each associatieg of
atmof y(u) in Dy with G; atmof c(y)(p) in D, arises via an actual concrete graph mor-
phism=¢(y)(m) =f, n: Go — Gy, such that thesk, , preserve all the other structures.

Just as we wanted to change shape with concrete diagrams, we also want to do so with
abstract ones.

Definition 3.9 In ADiag(C) the objects are abstract diagramsCirover arbitrary
shapes egif, Dy - [1,C], 8,,0,), €ach with its owrB,, p , and the arrows are pairs
(c,0): (ipy: Do — [W,C], 8,p) — (ip,: D1 — [v,C], 8yp,), such that :  — vis a
change of shape,: Dy - a(D,) is a functor (though not necessarily a natural trans-
formation) between the inclusion functors, : Dy - [u,C] and Loy : @(D9) -
[voa,C], and8qy) p, 0 8, p,. Herea(Dy) is the plain abstract diagram obtained by
precomposing each plain concrete diaglam — Cin D, with a. Moreover ifc arises

as a natural transformation fromg, to 1 (p,), then it is mediated by a family of arrows,
denoted by, each arrow being itself a family of individularrows. The composi-
tion of the two arrowsd,a) : (ip, : Dg - [W,C], 8,p,) — (ip,: D1 - [v,C], 8, p,) and



(d.B): (ip,: Dy - [v,C], 8, p,) = (ip,: Dy ~ [A,C], By p,) is the arrow given by the
data @(d)oc,Boa): (ip,: Do — [1,Cl, 8 p,) — (ip,: D2 — [A,C], 8) p,), wherea(d)
is the action ofd on a(D,), and6g, ()0, U 6ap, holds. If both ¢,a) and @,pB) are
mediated, then the composition is mediatedsyg) © =, in a notation whose interpre-
tation should be obvious.

For the remainder of this paper we will focus exclusively on mediated morphisms since
these cover all the cases that arise in practice.

4 Morphism Overload and the CategoryMADiag(C)

The categoryADiag(C) has the kind of objects we want, but its arrows are far too fine-
grained. If ¢,a) : Dy —» Dy is an arrow, it is sufficient to change the value of the functor

c at just one objecy of D to get a different arrow. The next section explores this in
detail when relating the main thread of the paper to the standard isomorphism approach
of Section 2. We want a less sensitive notion of arrow between abstract diagrams, which
we manufacture via the following route.

Definition 4.1 Leta :u — v be a shape graph morphism. Lgf be the shape graph
constructed as follows:

Vertices: Vo, U Vi, where:
Vou ={(m0)|mOV,}
Viy = {m1)[mOVy}

Edges: Eyy U Epy UEgyy, where:
Eou ={(e0): MO0) - (M,0)[e:m - m' T Ey}
Eiy={e1):Mm1) - (Mm,1)|e:m-mOE}
Eory = {(mm,01) : ,0) ~ (M, 1)[mOV,, m =ay,(m)}

There are obvous injectioms: 4 -~ nandi:v - n. We say thah, is an arrow-shape
fromyutov that represents. (N.B. This representation is imperfect since the edge map
of a is not representated yet.)

Definition 4.2 Let Sg be the category whose objects are thosg ahd whose arrows
are pairsfi,,0g) : U — v whereny is the arrow-shape of a morphism: u — v and

ag is the edge map component@f The identities arerfy,idg) : 4 — U, wherenjq
consists of two copies qf joined by the obvious family of edges, and the composition
of (Ng,0p) * 4 — v and f1g,Be) : v —~ Alis given by fig, 4,80 0g) 1 U — A.

Since the composition ofi,ag) 1 U — vand @ig,Bg) 1V -~ Ain Sgis defined in terms
of the composition of the underlying shape graph morphigraadp, it clearly associ-
ates on the nose, because the compositianarid3 does so. This definition is equiv-
alent to a more convoluted one, that decompa@geandng into their constituent parts,
and assemblags , 4 out of them directly (see the proof of Proposition 4.2). Similar ob-
servations hold for the constructions in the subsequent definitions.

Further, we note that the only nontrivial information suppliedotgyin (ny,ag) is the
disambiguation of how edges o(E,,) are to be mapped if there are parallel edges in
the range ofug in T(E,), in order to faithfully represert. In many simple cases of
course, there are no parallel edges in the rangdrof(E,) andag is redundant.



Proposition 4.3 There is an isomorphism between the categSrasdSg.

Proof. The objects are identical so the only issue is to consider the arrows. Ftom

Sg the construction ofi{y,ag) froma : 4 — v gives a unique result. Conversely, given
(Ng,QE) 1 U - Vv, the vertices of, are tagged O or 1, its edges are tagged O or 1 or are
triples (m,n", 01) for O-taggedan and 1-taggedn'; the (n,m’,01) triples yield the graph

of a total function on the O-tagged vertices, angdrespects this function. From this
information, the shape graphsandyv are easy to recover, as is the unique shape graph
morphisma : 4 - v. Itis clear that these maps extend to functors in the right ay.

The preceding constructions lift féth-arrow-shapes, and corresponding path cate-
gories. Moreover Proposition 4.3 now allows us to rework some of the previous section
in a different way.

Definition 4.4 The categorpiag(C) is given by the following data. Its objects are con-
crete diagrams i€ over arbitrary shapeg(u — C, By,y)- Its arrows arise as follows.
Let € a):(y:n - C,8,,) - (B:v - C, 85 bean arrow oDiag(C). Letny be the
arrow-shape that representswith injectionsg : 4 —» n andzt : v - n and edge map
ag. Define the arrow-diagrang : ny — C, B..5,) as the concrete diagram@which
agrees witty ona(p), with d ona(v), and with onEgy ;. In more detail:

Eav((M0)) =w/(m) form0 Vu
&ae((e,0)) =yg(e) forel Ep

Eav((m 1)) =3d,(m) formOV,
&ae((e 1)) =3g(e) foreOE,

Eae((ma(m),01)) =&(m) : w(m) - d(a(m) formOV,
The commutativity specificatiod, s is equal tdg ) ¢, U 67(v)¢, U 6q. Whichis the
image off, , undero, together with the image &, 5 undert, together witht,_ which

represents the pairs of commuting paths that arisg,ifrom the edge mapg and the
requirement fog to be a natural transformation:

((m,a(m), 01) : ¢,0) - (a(m'),1)) o (€ 0): (MmO0) -~ (m,0)) =

((@ge),1) : @(m),1) - (a(m),1)) o (Mma(m), 01) : ,0) - (a(m),1))
Each such arrow-diagrarf{: ny - C, B..,) IS an arrow ofDiag(C) with domain and
codomain y: p. -C6e,)andp:v - C 6\, 5). Identities aregjq : nig —~ C, 8,5,
whereB,, s = 85, Ed D B (), E.d O e,dE And the composition off : ny - C, enu,Za)
wheref Newba — eo-(u)z e-[(v)z and ( r]B — C Gn Z )Whereenﬁ ZB O'(V).Zﬁ
0 8z, U Ope Is given by (O(Z)OE)Boa ‘Npoa — G, 9 Npoa(@(Q) 0&)poa) WHETE

Ongec (@) 0 E)poa = o), @(@)0 8o B Or(r).(@(@) 0 E)poa ) Opeoae @Nd whereg, , o, de-
picts the commuting paths:

((m,Boa(m),01) : @,0) — (Boa(m),1)) o (€0): (MmO0) - (M,0)) =
((Becag(e),1) : Boa(m),1) - (Boa(m),1))o
((mBoa(m),01) : M0) » (Boa(m),1))
Proposition 4.5 There is anisomorphism between the categditag)(C) andDiag (C).

Proof. The objects are identical so we turn to the arrows. Fiiag(C) to Diag(C) the
construction described gives a unique result. Conversely, given an &gow§ — C,



Bna.c.) Of Diag(C), an arrow oiDiag(C) is easy to recover as follows. Firstly we extract
the domain, codomain and vertex map of the shape graph morphigm- v from the
objects inng, and the arrows of length oneiy, as in Proposition 4.3. The, ¢ is
decomposed into the part containedifu), the part contained in(v), and the remain-
der 6., which connect®(l) andt(v). The edge mapg is now easy to recover from
84 anda is obtained. The mediating arrows of the natural transforméiare now
read off as the arrows @f;, above therfy,nf,01) edges ofy4. Itis clear that these maps
extend to functors in the right waw

So far we have done little other than to acquire complexity, trading one picture of the
category of concrete diagrams and their morphisms, for another perhaps slightly clum-
sier one. The payoff comes at the abstract level, when the various individual arrow-di-
agrams&, :ny - C, .80 Of Diag(C) which differ only by natural isomorphisms, are
absorbed into a single maximally abstract diagram representing them all, overcoming
thereby the proliferation of finegrained arrows?ddiag(C).

Definition 4.6 The categoryADiag(C) is given by the following data. Its objects are
maximal abstract diagrams (hover arbitrary shapes : Dy - [1,Cl, B0, The
arrows arise as follows. Let: 4 - v be a change of shape, leg(: Dy - [1,C], 011,00
and (p, : D; - [v,C], 6, p,) be two objects oMADiag(C), and lety : u — C andd:

v - C be plain concrete diagrams Dy andD;. Let €, :ny — C, B..¢,) D an ar-
row-diagram inDiag(C) from (y: u - C,8,)to @:v - C, 8, 5), where8,,, = 8, p,
and6, 5 =8, p,. Let (IEE : EEu - [N Cl, 61..e.) be the maximal abstract diagtram
that containsg, : ng - (o B8 Then (Ezq : EEQ - [Ng.Cl, 6 a,Ezu) is an abstract
arrow-diagram and an arrow ®ADiag (C); moreover allMADiag(C) arrows arise this
way. We note that any two arrow-diagramdliag(C) that are related by a natural iso-
morphism lead to the same abstract arrow-diagramAtfiag (C). The identity arrows
are (g, Eg, — [Nia,Cl, 61.:,,) the MADs containing the identity arrows bfag(C).

For the composition o#ADiag (C) arrows, let (g, : Eg, — [Ng,Cl, 8, ¢,) from (ip, :

Do ~ [1,C], 8,p) 10 (1p, : D1 ~ [v,C], 8, p)), be oneVlADiag (C) arrow, and let it con-
tain the concret®iag(C) arrow-diagram; : ng — C, 8 ¢) from (y: pu - C,8,,) to
(6:v - C, 8,5, whered, , =6, 5, and6, 5 =6, p,. Let (IEZB By - [r]B,C], Bne.2p)

from (ip,: Dy - [v,C], 8, p)) to (ip,: Dy — [A,C], 8 p,) be a'secontADiag (C) arrow,
containing the concretBiag(C) arrow-diagram G:ng - C, O, from@:v - C,
By5)to €A - C,8),), whereb, 5= 86, p and6, . =6, p,. Then the composition of
the twoMADiag (C) arrows mentioned, is the maximal abstract diagram containing the
composition of the two concrefgiag(C) arrow-diagrams mentioned. Thus it is the ab-
stract arrow-diagram containingo((¢) ©&)goq : Npoa — C, engou,(a(Z)oE)goq)’ and is
denoted e, gy, Ea@o 8500 ~ [Moa:Cl Ongeu Eaonp.o)” WNETEOnguq @@ Dpea

= NpoaEa@odpen’

Note that maximality guarantees that there is an abundant choice of concrete arrow-di-
agrams 4 and{g that compose on the nose insige andi By We can always pick two
arbitrary arrow-diagrams irpEE(x andlEZ , and can then apply a natural isomorphism to
one or the other so that they compose properly, while remaining wggiandl Ep and
producing the same composite arromADiag (C). The easy lemmas which show that
this is so will be omitted.



Proposition 4.7 There is a functor fromiag(C) to MADiag(C).

Proof. Itis sufficient to observe that the construction of Definition 4.6 is functofial.
We now have our goal, which can be summarised in the following theorem.
Theorem 4.8 There is a functavAbs : Diag(C) — MADiag(C).

Proof. MAbs is given by composing the funct®@iag(C) — Diag(C) from Proposition
4.4 with the functobiag(C) — MADiag(C) in Proposition 4.7.©

The truth of Theorem 4.8 should be contrasted with the fact that there is no naturally
arising functorial route froniag(C) to MADiag(C) via ADiag(C) due to the enormous
nondeterminism in mapping concrdiag(C) arrows toADiag(C) arrows. This is de-

spite the existence of a functor froADiag(C) to MADiag (C) that maps objects to their
maximal closure, and maps arrows to the maximal abstract arrow-diagrams constructed
by picking the value of aADiag(C) arrow at a concrete diagram of its domain and then
proceeding as in Definition 4.4 and Definition 4.6, (since for a fiRdaiag(C) arrow,

all such choices will lead to the samaDiag(C) arrow).

Nevertheless it should not be thought tAdDiag(C) is a pointless diversion. Its con-
struction via routine functorial reasoning and the existence of a functorAbiag(C)
to MADiag (C) bolsters the defence against (especially) foundational assaults.

5  Automorphisms and Kinded Abstract Diagrams

In this section we examine the consequences of obje€aving nontrivial automor-
phisms, in order to relate the standard isomorphism approach to the concepts of Section
3. This entails examinindDiag(C) in more detail. The part after Notation 5.3 may be
skipped on a first reading.

We assume chosen a skeleton subcateGérpf C, leading to a choice of standard iso-
morphismso(—-) between objects. Als@ Cwill be the category of abstraCtobjects
and arrows, consisting of equivalence classes up to standard isomorphi§habjetts
and arrows.

LetKind be {id < std < iso}, partially ordered as shown. We will usénd as a label set
for shape vertices, thus for an abstract diagram of shdipere will be a magkind, from
its vertices tKind, and we will speak of shapes and vertices of kind such and such.

Definition 5.1 Let(ip:D - [u,C], 8,,,p) be a abstract diagram of kinded shapéhen
D conforms to its kind (i.e. is a kinded abstract diagrams (or KAD)) iff for each vertex
min p:

(1) kind(m) =id iff for each natural isomorphism:y - &in D, the component of
natmis an identity irC, i.e.n(m) : y(m) - 3(m) = idy(mys

(2)  kind(m) =std iff for each natural isomorphism:y - &in D, the component of
natmis a standard isomorphism Gy i.e.n(m) : y(m) - &(m) = a(y(m),3(m)),

(3)  kind(m) =iso iff for each natural isomorphism:y — 3in D, the component of
natmis an arbitrary isomorphism @@, i.e.n(m) : y(m) — &(m) is an arbitrary iso.
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Obviously every shape gives rise to a family of kinded shapes, kinded in all possible
ways, and each giving rise to KADs of the appropriate kinds. The abstract diagrams of
Sections 3 and 4 can be viewed as KADs with shapes entirely obkind

Definition 5.2 AKAD (1:D - [u,C], 8,,,p0) of shapeu is maximal iff for every object
y: i - Cof D and natural isomorphism: y — &in [u,C] of the appropriate kindh is
an arrow ofD.

Notation 5.3 In figures below, we will encode the kinds of the vertices of an abstract
diagram by the following convention: unadorned vertices imply that the Kitaig ver-

tices in angle brackets imply that the kindsis; and vertices in square brackets imply
that the kind igso. ThusA — B[ [C] is a MAD (with various details suppressed) in
which A occurs up to identity3 occurs up to standard isomorphisms, &dccurs up

to arbitrary isomorphisms. To forestall possible confusion, concrete diagrams in the
category(C Owill be indicated thusA™ — BT , C™

When we contemplate incorporating change of shape into the theory, we can both
change the geometry, i.e. the underlying elemenSs afd the kinds of related vertices.

Definition 5.4 A change of shape morphism: p - v between kinded shapgsand

v is strict atm in p iff kind,(m) = kind,(a(m)); it is lenient atm in p iff kind,(m) <
kind,(a(m)); itis coercive amin piff kind,(m) = kind,(a(m)). Itis strict, lenient, coer-
cive, iff it is strict, lenient, coercive, at athin u. Itis said to be general if it is not any
of strict, lenient, coercive.

For each object: D - [1,C], 8, p) of ADiag(C) there is a least attribution of kinds
to the verticesn of p arising from an examination of the isomorphisms ofhebjects
abovem in the concrete diagrams &. Any greater kinding of1 gives rise also to a
valid KAD.

Definition 5.5 The categoryADiag ¥(C) has as objects all valid KADs and as arrows
all ADiag(C) morphisms between them. (Sé\diag(C) morphism is a morphism be-
tween two KADs iff it is a morphism between the same objects with kinds forgotten).

Now if kind, : i - Kind andkind, : v - Kind are two kinded shapes, aod p - v is

a change of shape, we can factothroughpOwherepOis p but with kind map given

by kind,m) = kind,(a(m)). So any kinded change of shape p - v factors asx =
aloay, wherea, : i — plis an identity on the shape but can change the kinds, and
all: uO - v is a strict change of shape morphism. This enables us to separate study of
change of geometry from change of the kind map.

Given this canonical factorisation, we now study the effects of change of the kind map
with a fixed geometry1. For good measure, we include the concrete diagrams with val-
ues in bothC and for those with values if€ [] (the category of abstra€tobjectsC [

and abstradf arrows[d : C - DCup to standard isomorphism).

Fig. 2 provides a route map between various possibilities of interest. The left column
depicts concrete diagrams, the middle column depicts abstract diagrams conveniently
related to concrete ones, and the right column depicts unrestricted abstract diagrams.
The top two rows show the situation f6f and the bottom row shows the situation for

the related categofi [(given the latter, we do not bother separately with the situation
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Fig. 2 A roadmap of concrete and kinded abstract diagrams.

for CK). The rest of this section surveys fairly tersely the connections between the var-
ious possibilities that can be constructed canonically. These are described by (some-
times feeble) functorsl "~ relating the categories of kinded diagrams and their
morphisms (most of which are subcategoried\@iag (C)). (Many more such func-

tors arise by composition of the ones illustrated, and by applying nonidentity natural
isomorphisms, where appropriate, to the domain or codomain objects Gfithéunc-

tors1) For the rest of this discussion we will suppress mentigmas$ much as possible,

we will assume all abstract diagrams are maximal regarding their kinds, and we will ig-
nore the commutativity data ADiag(C) morphisms, which thus becomeD,, - Dj.

Note first that asC [is isomorphic taC X, standard isomorphisms it Care just iden-
tities; so there is no distiction between abstract diagranfi® ifentirely of kindstd and
those entirely of kindd. This explains the middle element of the bottom row of Fig. 2.

We recall that an object & Cs an equivalence class of objectdofontaining in par-
ticular a unique skeleton object fro6¥, and that an arrow ofC Cis an equivalence

1. The latter often proves to be equivalent to a change of choice of skeleton.
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class of arrows o€ in bijective correspondence with ordered pairs of representatives
from its domain and codomain objects. We start with the relationship between concrete
diagrams inC, and concrete diagrams ift [J ThusDL]'EDtakes a concrete diagrayn

in C to the concrete diagrag¥in [T [Jsuch that the objects and arrows/afre members

of the equivalence classes which constitute the objects and arroWs @onversely

DED sends daC [(diagramy™to the concrete diagragin C, for which the objects are

the skeleton objects drawn from the equivalence class objegts afid the arrows are

the unique arrows between the skeleton objects drawn from the arrow equivalence class-
es ofy™ DL]'E'Dand DED' constitute an equivalence of categories.

Proceeding to the top row of Fig. 2, we have the isomorphism between concrete dia-
grams inC and abstract diagrams entirely of kircin C, given by functorS]i]'id and

Dl‘f". This is essentially the correspondence between an item and the singleton con-
taining it. A similar situation prevails on the bottom row between concrete diagrams in
[€ Cand abstract diagrams entirely of kiar std in [C Cgiven by functors]*~"~and
0,855 That these are isomorphisms, follows readily from the only possible action on
mediated morphisms of abstract diagrams of kind

We next discuss the middle column of Fig. 2. The object map of the fut36r

takes a maximal abstract diagrdohof kind std, to the singleton containing the unique
concrete diagram i) consisting of skeleton objects and arrows between them. The
arrow map of the functorl$'*' takes a morphisne : Dy — Dj, to the morphism
Xo=dy) ={f}: {y} - {8} where:yis the unique concrete diagramy, consisting of
skeleton objects and arrows between thérs the corresponding one ID4; andf is

the natural transformatiogio =.(y) given by the natural transformatiaiy(y) (takingy

to its target inD,) postcomposed with the unique family of standard isomorphijgms
that takes the target &(y) to d.

Conversely the object map of the feeble fundf@?vs‘d takes a singleton containing an
individual concrete diagram to the abstract diagrafd, consisting of the set of con-
crete diagrams related toby families of standard isomorphisms. The arrow map of
0,35 takes a morphismf} : { y} — {3} between singletons, mediated by a single nat-
ural transformatiotfi, and sends it to the set of mediated morphisms determined as fol-
lows. Let¢ be a function that maps eagf) a natural transformation gfconsisting of
standard isomorphisms, to a natural transformagigof & consisting of standard iso-
morphisms. Such afunction determines a morphi@nDo - D of abstract diagrams

of kind std, by mapping each concrete diagranDg via xs o f o Xy_l. The collection

of all such morphisms for all possible choicesdofdetermines the arrow map of
[idsstd
"

The above makeg)s" and 05" into a weak equivalence of categories, weakness
being in the sense thEtk‘f"Std is a weak left adjoint ta]". The above also fixes the
properties of the paiﬂu'StGI and Dj‘d" by requiring that the upper triangle in Fig. 2
commutes in the expected way. This means [thﬁd is feeble and a weak left adjoint
to g,

Moving down, the object map of the functaist®®5takes an abstract diagrabh of
kind std in C to the singleton containing the concrete diagnam [C Cformed as fol-
lows. We select for each verter in the shapeu, the isomorphism class of concrete
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objects ofC up to standard isomorphisms, occurring abovie the concrete diagrams
of D; we select for each edge my — my in the shape, the isomorphism class of con-
crete arrows of up to standard isomorphisms, occurring abewe the concrete dia-
grams ofD. The arrow map of the functﬁ'td'm’Dtakes amorphism : Dy - D of
abstract diagrams of kingd, and sends it to the morphismE(MN(M)G}: { v} - {3}
between singletons containiggnds, the images oD andD4, as follows. LeE(I)
be the natural transformaticgy, at the object” of Dy wherel consists exclusively of
skeleton objects and arrows (i@ objects and arrows only). LEE(M)(m), be the
collection of isomorphism classes up to standard isomorphisms of the arréy@ ¢f
asmranges over the vertices pf These are arrows i [(forming a natural transfor-
mation ofy. We write {{E,(M) (M)} : {y} - {&} for the natural extension of
E(M (ML}, to an action on the singletog}{containingy.

Conversely the object map of the feeble funcigh-"¢ takes each singleton containing

a concrete diagrayin [C Owhose objects and arrows are isomorphism classéobt

jects and arrows up to standard isomorphisms, and maps it to the abstract didgram
consisting of the set of concrete diagram€ which can be constructed as follows. We
select for each vertaxin the shapgt, an element of the equivalence class which is the
object ofy above it; and for each edge mg -~ my in the shapgt, we select from the
equivalence class aboeén y, the unique element with the just chosen domain and co-
domain objects. The arrow map ﬂf}“mﬁd takes a morphism{Lj} : { y} - {d} be-
tween singletons, mediated by a single natural transformdfiginconsisting of
isomorphism classes €farrows up to standard isomorphisms, containing in particular
the collection §,;} all of whose domains and codomains are skeleton objects, and maps
it as follows. Letl andA be the unique concrete diagramddg andD; all of whose
objects and arrows are skeleton objects and arrows¢ beta function that maps each
Xr. a natural transformation df formed by standard isomorphisms, g a natural
transformation ofA formed by standard isomorphisms. Such a function determines a
morphismcg, : Dy — D of abstract diagrams of kineld, by mapping each concrete
diagram inDg via x5 ofox % The collection of all such morphisms for all possible
choices ofp, determines the arrow map Gft-t.

As above {95 andgt®form a weak equivalence of categories, witff"5 be-

ing a weak left adjoint t@ﬁ*td'm’g Requiring that the lower triangle in Fig. 2 commutes
also fixes the properties of the paig*“"and 0= with O~ being a weak left
adjoint tolJj¥-*5 We can also see that the rectangle in the left and middle columns of
Fig. 2 commutes as we would expect.

We turn to the rectangle in the lower right part of Fig. 2. We observe first the following
fact. Suppose il we have arrows: x — y, f': X - y', and standard isomorphisms
o(x,x):x - X,0(y,y) :y - Yy, making a commuting square. Lgx,X):x - X be

any isomorphism fronx to X'. In general there will not be an isomorphiaty,y’) :

y - ¥ makingf, ', T(x,x), T(y,y') commute. However we will assume subsequently
thatC has enough isomorphisms, in the sense that suép %) can always be found,
though it may not be unique. For examp#é andGr have enough isomorphisms.

Now the object map of the feeble functg§'®'s® sends an abstract diagrddi' entire-
ly of kind std to the abstract diagraf's® having the same objects, but this time entirely
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ofkindiso. Viewed as a categorld’s® has merely acquired more arrows in this process,
namely the natural transformations between its concrete diagrams, incorporating at
least one nonstandard isomorphism. The arrow map of the feeble fmﬁ%’?" sends

a mediated morphisret® : D¢ . D5 to the set of extensions af'® which cover

all the additional natural transformations too. Such extensions will exist by our obser-
vation above, but in general they will not be unique.

The object map of the functarF°=' likewise sends an abstract diagr&i° entirely

of kind iso to the abstract diagraf®s' having the same objects, but this time entirely
of kindstd. As a categoryD'° is mapped to the subcategddf' having only standard
isomorphism natural transformations as arrows. The arrow m;‘f&f“’ sends a me-
diated morphisng*® : Dys° - D;/*° to the mediated morphisef : DSt¢ —, D;s
determined as follows. Ldt be the concrete diagram [Dy° consisting exclusively

of skeleton graphs and morphisms between theBlys will contain this since it is
maximal.) Let=uso(I") be the natural transformation that mediates the morphi¥nat

. Letn:T - ybeanarrow D™, and let=s(y) be the corresponding natural trans-
formation aty. Supposen: T - yis mapped by's° to the concrete diagram isomor-
phismcs°(n) : ¢°(") - ¢'s°(y). Let ., be the collection of isomorphisms such that
xmociso(n) is a concrete diagram morphism consisting entirely of standard isomor-
phisms. Therg,,,0c's°(n) is a morphism ofD ;5 mediated by=gs.(") at and

Xm© Zaso(Y) aty. For eachyin Dy we replace its subfamily of mediating arrows by
the subfamilyx,© =qso(y) S0 determined. By the properties of standard isomorphisms,
all other morphisms :y — &in Dy are mapped to morphisms B9 which com-
pose properly. This gives the morphist : Dg%¢ . Dt

The functorsT8-1eHand 05" are similar. The object map of the feeble functor
0,185 5eBmaps the objects via identities — the objects (upi tostd) being singletons
containing concrete diagrams built out of objects and arrows which are equivalence
classes of objects and arrows up to standard isomorphisms. Ugp #ostd, abstract
diagrams irflCChave only the identity automorphism; however uptothey in general
acquire nontrivial automorphisms. The arrow map of the feeble fufigfér'>c"takes

a morphism {361} : { v} - {0} between singletons, mediated by a single natural trans-
formation ir}, consisting of isomorphism classes@farrows up to standard isomor-
phisms, containing in particular the collectiofi§ all of whose domains and
codomains are skeleton objects, and maps it as followsl” BetdA consist exclusively

of skeleton objects and arrows, as in the discussioﬁl%‘f:b‘d. Then each nontrivial
automorphism of (respectivelyd) has a unique representative forespectivelyp).
Moreover, each nontrivial automorphisap of I maps viaf,,, to a nontrivial automor-
phisma, of A, in general in many ways. The equivalence classes up to standard iso-
morphisms, of the objects and arrowsagf yield an automorphism @ which gives a
possible action of]{""°"on the arrow {f3}. The collection of all such possibilities
determines the arrow map EH%OQ

The functor(J{%°-"could not be simpler. The action on objects is the identity. On
arrows, it is just the restriction to identity automorphisms only, of the action of arrows
{@G}: {y} - {8} between singletons.
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As we had before, the functor paifgs°, (s and [ jd-Fisot) 0 Botlidlgive weak
equivalences of categories, in the sense Eﬂﬁ(‘fw is a weak left adjoint tdﬂL'fo"d and
DE“DE‘SODis a weak left adjoint tu']som”?

Finally we considef] j5°-s0 and[s50% The functords>%° behaves like the func-

tor Dj‘d'ﬁumexcept that diagram morphisms must include also the nontrivial automor-
phisms. Each such nontrivial automorphism of a concrete representative of an abstract
diagram of kindso in [T CJis simply mapped to the collection of equivalence classes up

to standard isomorphisms in the expected way. Likewise, the feeble f Birso

behaves Iike?-ﬂuﬁmstd except that again nontrivial automorphisms must be taken into ac-
count. These are mapped just like all the other arrows between abstract diagrams of
kind iso in [C O

Unsurprisingly the functorg (50450 and s> %0 form a weak equivalence of catego-
ries with ;50410 being a weak left adjoint tG,5°: 0"

Fig. 2 summarises all of the above by distinguishing the feeble functors from the rest
with a small circle. Itis worth noting that the feeblenesg}§*is° and of 0 j8-%tjs

due to the nonunique way that arbitrary nonstandard isomorphisms translate along ar-
bitrary morphisms, while the feebleness of the other functors is attributable to the many
different mediated morphisms of abstract diagrams which map, under equivalence up
to standard isomorphisms, to the same morphism of skeleton concrete diagrams. Of
course all of this detail gets swept away when one move#tiag (C). Also the pre-
ceding discussion described the situation when all vertices in the shape of an abstract
diagram are of the same kind. In diagrams where the kind varies from vertex to vertex,
the facts of the matter may be determined by an easy extrapolation.

6  Maximality, and the Uniqueness of Diagrammatic
Constructions

Diagrammatic reasoning is typically used in category theory in two principal ways. In
the first, a diagram displays one or more equalities between compositions of arrows
whose existence is already assured. In such cases there is no ambiguity about the rela-
tionships that are being stated.

In the second, a diagram displays one or more equalities between compositions of ar-
rows whose existence is claimed. In the such cases, because the existence claim can
typically only be made up to isomorphism, the reasoning is more complicated. There
is aninitial phase in which an explicit construction is given that solves the problem, usu-
ally in a canonical way, and this is followed by a second phase in which the universality
of the solution up to isomorphism is demonstrated. The latter involves reasoning about
a more complicated diagram and showing that a certain arrow is an iso. We reconsider
this activity in the light of abstract diagrams. First though, a word about shapes.

Most diagrammatic reasoning takes place without mentioning shapes. It is assumed
that the context provides enough clues to render superfluous the explicit definition of
the shape and its relation to the substance of the diagram, which usually arises via the
implicit geometrical or textual relationships between the diagram and other information
appearing on the same page. Thus there is a commonly agreed if unstated shape for
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each diagram that enters into a particular discourse. The shape, fixed for the duration
(though negotiable via isomorphisms of the shape graph, a fact that also excuses the
very specific shapes chosen for arrow-diagrams in Section 4), plays the same role in di-
agrammatic reasoning that natural language plays in most other activities, i.e. the pro-
vision of a common framework within which the discourse takes place. If the shape has
nontrivial symmetries that the context fails to disambiguate sufficiently, and considera-
tions that break the symmetry enter late into the discourse, the protagonists of the dis-
course may get a surprise, just as can happen with natural language. Despite the risks,
we conform to this standard practice to avoid verbosity below.

We now examine a simple example, the construction of products in a category which
supports them. So I€&have products. The procedure is illustrated in Fig. 3, and begins
with two objectsA andB (Fig. 3.(a)), for which we build a product obje& B together

with its projections tA andB (Fig. 3.(b)), which enjoy the familiar universal factorisa-
tion properties (Fig. 3.(c)). Finally we show that any objexB)' enjoying the same
factorisation properties is isomorphicAeB in C (Fig. 3.(d)).

A A A A

AxB /aA[B (AXB)'é/éA/EB
B B B B
@) (b) © (d)

Fig. 3 Products.

All of Figs. 3.(a)-3.(d) can be viewed just as individual concrete diagrams with obvious
shapes. However there is an alternative perspective as follows. Fig. 3.(a) is a concrete
diagram that describes the initial situation, while Fig. 3.(b) depicts the result of the con-
struction and is another concrete diagram. Figs. 3.(a) and 3.(b) are the domain and co-
domain of an obvious arrow dDiag(C) based on the inclusion of the shape of (a) into
that of (b), thus partially characterising the product construction as a fariyagf(C)
morphisms parameterised ByandB, viz. Prod(A,B) : (A B) - (A —« AxB - B),

where for convenience we have suppressed the stabiaggC) morphism notations.

In a variation on this theme, we note that there are also inclusions which we can suc-
cinctly indicate by 3.(a)- 3.(c) — 3.(b). This is aDiag(C) cospan which provides a
more detailed picture of the product construction. Note however that this still fails to
describe some of the vital aspects of the construction, such as the universal quantifica-
tion overZ or the unigueness of the arr@&v— AxB. Still, this is no worse than what

is conveyed by the diagrams in conventional discussions of the product.
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Fig. 3.(d) can be regarded as a concrete diagram describing the isomorphism invariance
of the product of course, but it is much more in the spirit of this paper to see it as two
constituent concrete diagrams of the kinded abstract diagram[AxB] - B (using
Notation 5.3), which is up-to-identity & andB and up-to-arbitrary-isomorphisms at
AxB. This KAD captures succinctly all the possible concrete products obtainable from
A andB.

Moreover noting thaf objects which are isomorphic 8andB share the same family

of products a#\ andB themselves, means that there is a more abstract formulation of
the product, this time iMADiag (C), which casts it as a family of inclusion morphis%ns
parameterised byy] and [B], viz. AProd([A],[B]) : ([A] [B]) - ([A] — [AxB] - [B]).

And the MADiag (C) formulation is available even if the the concrete version had not
been defined aBiag(C) morphisms (for example by permitting choice for the intro-
duced objecAxB and attendant arrows) — though ifig defined using morphisms,
then the functoMAbs carries the concrete formulation into the abstract one. Clearly
this is much neater than seeking an abstract formulation via the cat@gmyhere the
choice of standard isomorphisms would have intruded unavoidably.

The MADiag (C) family of inclusion morphism#\Prod([A],[B]) expresses via abstract
diagrams and abstract arrow-diagrams, the notion that up to isomorphism, the product
yields a unique outcome. We now generalise this to a methodological statement, which
in the notation of Section 5, can be tritely expressed as saying that to pass from the usual
version of a construction to tHeADiag (C) version, it is sufficient to merely ‘put square
brackets round everything'.

Definition 6.1 A concrete canonical categorical construction (with values)iis an
argument that establishes the existence of a famiDiaf)(C) inclusion morphisms pa-
rameterised by somBiag(C) objects and arrows sa; ... A,. Thus it can be ex-
pressed a€onst(A; ... Ay : Yo(A1 ... Ay - Yi(Ag ... Ay, whereyy is the premiss
concrete diagram and is the result concrete diagram.

The ‘canonical’ qualification here excludes those cases in which the choice of objects
and arrows newly introduced during the construction does not depend functionally on
the parameters, leading to no unique choicg @ ... Ay).

Definition 6.2 An abstract categorical construction (with value€)ris an argument
that establishes the existence of a familyiDiag (C) inclusion morphisms parameter-
ised by someé/ADiag (C) objects and arrows sap[] ... [A]l. Thus it can be expressed
asAConsti[Aq] ... [A4]) : DoAY --- [A) - D1([A] --- [A4]), whereDyis the prem-
iss abstract diagram ah, is the result abstract diagram.

Note that there is no need for a ‘canonical’ qualification here.

Proposition 6.3 For every concrete canonical categorical construction there is a cor-
responding abstract construction given by mapping the concrete inclusion morphisms
ConstA; ... A,) to the abstract inclusion morphisrfA€onsti([A] ... [A,]) via MAbs.

Proof. See Theorem 4.82

2. An MADiag (C) inclusion morphism is an abstract arrow-diagram fashioned from a concrete in-
clusion arrow-diagram idiag(C), itself fashioned from a concrete inclusiorDiag(C).
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The preceding ideas have wide application and we now look at some more examples.
Firstly adjunctions. One way of constructing an adjunctierd U is to build a univer-

sal arrow for each obje@. In Fig. 4 this is characterised by an inclusion from (a) to
(b), and thevADiag (C) version just puts square brackets round everything in Fig. 4.

A UFA A—"A _ Uma

(@) (b)
Fig. 4 Adjunctions.

Another example, the construction of a cartesian closure, can be characterised by the
inclusion of A andB in (a) of Fig. 5 into (b). The new elements, i.A[{ B) and the
product ancevalarrows, are usually constructed canonically, but only actually needed
up to concrete isomorphisms, leading to a KAD version with all of Fig. 5 exaeptd

B ‘square bracketed’, as well as a fully abstract versiotAmiag (C) with everything
‘square bracketed’ including andB.

(A0 B)
B (AD B)xA —&val_ g
A A
@) b

Fig. 5 Cartesian Closure.

A different kind of example arises in the well known Snake Lemma, illustrated by the
inclusion of (a) into (b) in Fig. 6. Although the concrete construction is just of an arrow
between existing objects, and is thus not ambiguous, the details of the construction in-
volve building a number of additional objects and arrows (not shown), warethar-
acterised only up to isomorphism. Thus despite appearances, the abstract versions of
the construction are more determined than the concrete one.

Our last example is the construction of ends [Mac Lane (1971)]. This corresponds to
the inclusion of (a) into (b) in Fig. 7, whe@: X °Px X - Cis a bifunctor and for any

E' satisfying the same suite of propertieashere is a unique arroe: E' - Eetc. It

is clear that the abstract verison of this specifi§sipiquely, and thus that the construc-
tion is analogous to the construction of products or to the CCC construction.

Note that in all of these examples the properties of the abstract diagram were obtained
by first considering the properties of the usual concrete construction (i.e. no ‘something
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A— B —=C A— B —=C
A— B — C A— B — C

@) (b)
Fig. 6 The Snake Lemma.

for nothing”) — in essence we have a fresh way of viewing the conventional answers,
one which eg. legitimises the overwhelming temptation to speakeproduct’ or the
CCC arrow object’ when given a pair of (isomorphism classes of) objects.

7  Maximal Abstract Diagrams and Semantics

In this section we briefly indicate some of the possibilities in semantics opened up by
abstract diagrams.

In the first example we recall that CCCs provide a semantics for the simply typed lamb-
da calculus (STLC), (see [Barendregt (1984)] for the untyped lambda calculus and
[Jacobs (1998)] for the typed variant). This is well known, so we do not revisit all the
details save to note that the types of the STLC constitute the objects of a CCC and
equivalence classes of terms constitute the arrows. Since there are many other CCCs
than this one, there are also many other semantic models, and any functor from the
standard CCC to such a potential alternative model will yield a semantics. Whether
such a potential alternative model is interesting is at least partly determined by how ca-
nonical the constituents are. The availability of abstract diagrams now opens up the
possibility that some candidate CCCs, viewed as unattractive because their objects and
arrows were not canonical, now acquire more attractive abstract counterparts because
their abstract objects and arrows can be viewed as abstract diagrams. We could mention
CCCs of diagrams themselves, eg. built on the basis of constructions detailed in Ch. 6
of [Barr and Wells (1999)]. For a suggestion as to why such models might be of interest,
see the last paragraph in this section.
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Fig. 7 Ends.

20



A second area we briefly discuss concerns graph transformation by the application of
graph rewrite rules, an area where the ambiguities caused by nontrivial graph automor-
phisms are particularly keenly felt. There are many different ways to design graph re-
writing systems; we focus on the technique studied at length in [Rozenberg (1997)] and
[Ehrig et al. (1999)]. The basic idea is that rules are spansk - Rin Gr. A redex

for such a rule is a diagram like Fig. 8.(a), in which there is a graph morphismlfrom

to the object graple, and the application of the rule succeeds when we can construct
the diagram in Fig. 8.(b), i.e. a span morphism, in which the two squares are both
pushouts ifGr. Such a setup can describe many operational aspects of computational
situations quite cleanly. The point is that since there are no canonical representatives
for arbitrary graphs, irritating ambiguities up to isomorphism proliferate at all stages of
the theory. This certainly becomes a nuisance when one wishes to study more abstract
aspects of the operational semantics. In [Rozenberg (1997), Ehrig et al. (1999)] there
are solutions to such questions constructed via concrete diagraf(iiwith their re-

liance on some skeleton categ@y<. However the deployment of MADs gives an ap-
proach that is easier, more elegant, and independent of any choices (of skeleton). Itis
clear that there is Biag(Gr) inclusion from (a) to (b) in Fig. 8 (wheb andH are con-
structed canonically, as they usually are), so that abstract rewrites can be simply defined
by ‘putting square brackets round everything in Fig. 8, thus gettinfAbiag (Gr) in-
clusion. This gives the starting point for a clean reworking of the theory, which will be
explored elsewhere.
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Fig. 8 Graph Transformation.

One final observation which we do not follow up in this paper is the following. The
mathematical study of semantics naturally emphasises convincing abstract models, usu-
ally characterised by canonical properties. The practical business of semantics, the im-
plementation of languages on a computer, is unavoidably characterised by pragmatic
aspects, such as the choice of specific memory locations etc. Abstract diagrams give us
the possibility of bringing the two spheres closer than is usually found, by allowing the
development of abstractions that are in effect isomorphism classes of implementations.
This is an idea that will be developed in other publications.

8 Relationship to Other Work

To the author’s knowledge, the concept of abstract diagram presented here has not been
given before, but some related ideas have appeared in the literature. Rather close is the
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work on anafunctors in [Makkai (1996)]. X andA are categories, then an anafunctor

F: X - AisaclasgF |together with maps : |F| - Ob(X) andt : |F| - Ob(A) such

that iff : o(x) — o(y) is an arrow ofX, then there is an arrowy ((f) 1 1(x) - T(y) in A
Moreover the correspondente. F, \(f) (parameterised by they) must behave ‘func-
torially’. Thus idyx) must correspond B, y(idg(x)) = idy(y), and the composition df.

o(x) - o(y) andg : o(y) — o(2) must correspond to the composition ef ,(f) and
Fy,A9). (As a consequence, evelfy (idg=g(y)) cOrresponds to an isomorphism of
1(X).)

For an anafunctok : X - A, if there is a bijection between elementi |F | and the
collection of pairs ¢(x),1(x)), then up to foundational niceties, and regardiigs a
shape category, it is easy enough to see khabrresponds to an abstract diagram,
namely to a subcategory ok[A]. Fixing a(X), the elements can be seen as labelling

the various objects oA isomorphic tot(x). If there is no bijection as described, then

the anafunctor contains more data, i.e. the elememtgF | act as names for the asso-
ciated pairs@(x),t(x)). Assuming for simplicity the correspondence between anafunc-
tors and abstract diagrams, Makkai’'s saturated anafunctors now correspond to our
maximal abstract diagrams. We restrict for the rest of this section to this saturated/max-
imal case, the one also of most interest to Makkai.

On this assumption we immediately notice that since we constructed abstract diagrams
using purely functorial techniques, many of the naturality properties of anafunctors
proved directly in [Makkai (1996)] follow immediately in the abstract diagram formu-
lation.

Let us now reconsider products in the two schemes. Makkai's canonical product can be
expressed in our kinded notation as the abstract diagram{AxB] - B, asymmetric
between inputs and outputs as regards our kinds. Our more symmetrical canonical
product A] — [AxB] - [B] does not appear in [Makkai (1996)], though if the abstract
diagram P of shape « is regarded as an anafunétorr — A, then such a formulation

can be recovered without great effort, modulo considerations of size.

We close this discussion with some comments on foundational issues which we admit-
tedly neglect in this paper. Our constructions of abstract diagrams have been informed
(albeit indirectly) by the Grothendieck Constructipincluding situations which in a
Godel-Bernays formulation would be large. We regard this as innocuous, since given a
suitable choice of skeleton f&, the abstract diagram categories become equivalent to
locally small ones, as the feeble functors of Section 5 bear witness. This is comparable
to a similar remark in [Makkai (1996)], and is about as innocent a use of large categories
as one might wish for.

A further litmus test of propriety consists of examining our use of equality during the
course of the abstract diagram constructions. In the influential [Bénabou (1985)], the
author rails quite energetically against the undisciplined use of equality in category the-
ory. Inour paper, the only place equality was used nontrivially was in the consideration
of diagram commutativity, which we can always restrict to locally small situations by

3. Itis primarily this fact that supports the assertion in the Introduction, that our constructions are
purely functorial.
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insisting that shapes are suitably small. Aside from that we used identity of domain and
codomain objects of concrete arrow-diagrams during the composition of abstract ar-
row-diagrams. Bénabou does not disparage use of identities and this is something we
regard as innocuous.

9 Conclusions

In the previous sections, having motivated the search for a more workable notion of ab-
stract diagram than has been available hitherto, we defined abstract diagrams via functor
categories. This conception turned out to be useful in giving diagrams a canonical char-
acter, furthermore one that was obtained in the simplest conceivable manner: ‘Just put
square brackets round everything in the corresponding concrete diagram’. In this sense,
the advocated course of action for somethiing like the product construction say, was a
little different to that occurring in Makkai's reappraisal of products via anafunctors,
though Makkai's anafunctors offer an approach that yields similar results to abstract di-
agrams in many respects. Beyond this, the more uniform perspective afforded by ab-
stract diagrams suggests their adoption for various semantic purposes for which use of
the analogous concrete diagrams is much less attractive due to their non-canonical na-
ture. These aspects in particular merit further exploration.

Acknowledgements

Itis a pleasure to thank Peter Aczel and Harold Simmons for comments on this paper.
Thanks are also due to Peter Johnstone for comments on earlier work from which this
paper arose. Mostly, thanks are due to Andrea Corradini for collaboration on the earlier
work, without which, the developments reported here would not have been thought of.

Appendix: Feeble Functors and Weak Adjunctions

The material of this part is adapted from [Krishnan (1981)] and [Kainen (1971)]. Afee-
ble functorF : A - B maps objects of\ to objects ofB as usual, but maps arrows

a - bof A to nonempty sets of arrows BfviaF (f: a - b) 0 homg (F(a), F (b)), such

that if f andg are composable, thdn(g) o F (f) O F (g o f) with the obvious overloading

of the composition symbol. Given two feeble functérsG : A - B, a left-natural
transformatiom : F — G maps each objeetin A to a non-empty set of arrowga) O
homg (F (a),G(a)) such that for each arrofu a — b of A, n(b) o F(f) 0 G(f)on(a). If

the direction of the inclusion is reversed we have a right-natural transformation. A
transformation between two feeble functors that is both left-natural and right-natural is
called a natural transformation.

Feeble functors are used in weak adjunctions which we now describd- 1At B
be a feeble functor ari@ : B — A be a (normal) functor. Theh is a weak left adjoint
of G iff there exists a natural transformation homg (F x1d(B)) - homy (1d(A)xG)
and a left-natural transformation : homp (Id(A)xG) - homg(F x1d(B)), such that
NO M= lhom,1d(A)xG) @1dMO N LyonF x1d(B)): Here both hom(—, —) notations are
being viewed as functo&°PxB - Setcr, whereSet is the category of sets and cof-
ull relations between them. Equivalent conditions are given by the following.
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Theorem A.1 LetG:B - Abe afunctor. Then among the conditions below we have
@1)O 20 )0 () and (IMO (29 O (3*) T (1%).

(1) There is a feeble functér: A — B which is a weak left adjoint tG.
(1*) In addition to (1), if (1, m) define the weak adjunction thepa is an object ofA
Oh O homg(F(@),F (@) On(a F(a) 0G(h)yok=k)O (h= idr (e )-

(2) There is a feeble functdr : A — B and a natural transformation: Id(A) —
G oF, and for every objedt of B a non-empty set(b) 0 homg (F oG(b),b) such
that: (a),G(v(b)) on(G(b)) = idg ), and (b), for every objeca of A (f O
homp(a,G(@)) DhOv(b)oF(f)) O (G(h)on(a) =f).

(2*) Inaddition to (2), for every objea of A (h 0 homg (F(a),F (a)) DG (h)on(a)
=n(@ )0 (h=idrg)).

(3) Everyobjectaof A has a universal arrom( a — G(by),by) in the sense that for

every object of B and everyf : a - G(b) there is a (not necessarily unique)
arrowg : b, — bsuch thats(g)ou =f.

(3% Inadditionto (3)(h:b - bOG(h)ou=u)O (h=idy).
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