Abstract Diagrams and an Opfibration Account of
Typed Graph Transformation

R. Banach
Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.
banach@cs.man.ac.uk

A. Corradini
Dipartimento di Informatica, Universita di Pisa, Corso Italia 40, Pisa, Italy.
andrea@di.unipi.it

Abstract: The “in the large” properties of typed graph transformation systems in the double
pushout framework and a double pullback variation of it, are reexamined. Preceding accounts
utilising a fixed choice of pullbacks (whether adopted directly or via partial morphisms) are seen
to be excessively sensitive to the precise graphs involved for comfort. A theory of abstract
diagrams is developed, that allows the smooth formulation of an abstract version of the theory.
Graph transformation steps appear as a split opfibration over abstract type change. The category
of graph grammars, the category of graph transition systems, and the category of graph derivation
systems emerge as opfibrations over abstract type change. Weakening the level of abstraction to
the extent used to preserve event identity in event based treatments of graph transformation
phenomena, makes the transformation steps opfibration unsplit, and weakens certain adjunctions.
All the properties of interest are combined in a single triple category.

Key Words: Graph grammars, typed graph transformations, DPO and DPB graph
transformations, opfibrations.

1 Introduction

In Corradini et al. (1996b), a categorical account of typed double pushout (DPO) rewrit-
ing was given by constructing mappings from arrawaf the category of type graphs

and concrete spans, to functors between categories of (in turn) grammars, transition sys-
tems, and derivation systems typed over the domain and codomairbskentially the

same idea will work for the single pushout approach (Léwe (1991), Léwe (1993)) by
reinterpreting the span used in a double pushout rule (or direct derivation step) as a par-
tial morphism (see Ribeiro (1996) who also uses partial morphism spans for retyping).
In Ehrig et al. (1997), Heckel et al. (1997), a similar treatment was presented for a dou-
ble pullback rewriting construction, essentially intended as a “looser” version of the
double pushout construction rather than an independent construction (and in particular
not to be confused with work of Bauderon on rewriting via pullbacks, see eg. Bauderon
(1995)). The close relationship of Heckel et al.'s work to the traditional DPO construc-
tion relies crucially on the injectivity of the arrows in a DPO rule (or direct derivation
step) in the two formulations being considered. In the former work the composition of
concrete spans in the category of type graphs arises from a fixed choice of pullbacks;
and the steps from categories of grammars to categories of transition systems and deri-
vation systems are made via free constructions. In the latter the same effect for the cat-

egory of type graphs is achieved by considering only partial morphisms of type graphs,
a ruse which effectively forces a specific choice of pullbacks since one of the arrows of
a span that is a concrete partial morphism must be a concrete inclusion; and the steps
from categories of grammars to categories of transition systems and derivation systems
are made via a Kleisli construction and a co-free construction. In fact partial morphism
retyping and the use of the Kleisli construction in this manner arose in Heckel et al.
(1996).

One notices two related things in these approaches. The first is that because a fixed
choice of pullbacks is needed to enable the composition of two concrete spans to be a
third concrete span, the action of the functors constructed subsequently is extremely
fussy about the concrete graphs involved. Eg. when one graph grammar is the functorial
image of another, changing the start graph in the target to an isomorphic graph will not

do; the start graph has to be precisely the one given by the functor, and the grammar
with the other start graph is not related to the source. The second thing is that the axi-
oms imposed on the choice of pullbacks in order that the various constructions work

smoothly, are just like those required for the splitting of a split opfibration.

This suggests that the functors corresponding to the araawsntioned above, indeed

glue together to form an indexed category corresponding to a split opfibration. And fur-
thermore that there is an underlying opfibration behind the constructions which is not
split, so that the fussiness regarding specific graphs may well be attributable to having
forced a splitting where there was no naturally arising one. The same train of thought
prompts the search for a more abstract formulation of these phenomena, avoiding the
irksome details mentioned. In this paper we re-engineer the central material of the key
papers refered to in the first paragraph above, resisting the temptation to force a fixed
choice of pullbacks (by whatever means). By developing a suitable theory of abstract
diagrams, we do even better, finding that at a suitable level of abstraction, the splitness
of relevant opfibrations emerges without effort. All of this is in contrast to the way split
opfibrations are used for graph rewriting in Banach (1993, 1994, 1995).

In more detail, the rest of this paper is as follows. In Section 2 we recall the basic con-
cepts we need on graphs, double pushout and double pullback rewriting, and the prob-
lems created by a naive approach to abstraction for graphs. We recall the essentials of
standard isomorphisms as a means of building more appropriate equivalences on
graphs. Section 3 reviews some categorical tools, including opfibrations, wreath prod-
ucts, feeble functors and weak adjunctions. Section 4, the technical core of the paper,
develops a theory of abstract diagrams which are characterised as functor categories of
concrete diagrams, and explores their properties. This includes incorporating the con-
sequences of standard isomorphisms and leads to the notion of kinded abstract dia-
grams, in which the permitted isomorphisms between the concrete diagrams in an
abstract diagram vary from vertex to vertex in the shape graph. Futher development of
this theory culminates in the notion of interface-diagram category, a kind of category in
which both objects and arrows are abstract diagrams of appropriately compatible
shapes. These ideas turn out to be very close to those of internal category theory, except
that pushout based composition techniques are used rather than pullback based ones.
The former are more appropriate for our graph transformation applications. Inter-

face-diagram categories are the central concepts using which the remainder of the no-
tions in the paper are formalised.

In Section 5 these ideas are applied to spans and span morphisms. Their properties are
gathered in a double interface-diagram categbhyGr-Sp]. In Section 6 the notion of

typing and type change is added f2-Gr-Sp], culminating in the triple interface-dia-

gram category[D-Gr-Sp. Gr-Sp], which encapsulates all that is subsequently needed.
The properties of[D-Gr-Sp. Gr-Sp] constitute the technical apex of the paper. In par-
ticular [D-Gr-Sp. Gr-Sp] is a split opfibration over type change. How these structures
relate to graph transformation steps is described in Section 7.

Section 8 formalises the notion of graph grammar using these techniques. Graph gram-
mars form an opfibration over type change. In Section 9 this state of affairs is general-
ised to graph transition systems, which are related to graph grammars via a fogetful
functor and its left adjoint. A similar relationship pertains to graph derivation systems
vis. avis. transition systems, this forming the topic of Section 10. In Section 11 we con-
sider various weakenings of the theory hitherto presented. We see that lowering the lev-
el of abstractness by having fewer concrete diagrams comprise an abstract one, makes
the split opfibrations unsplit, and makes the left adjoints into weak left adjoints. For-
getting further the internal structure of abstract diagrams, yields a treatment in terms of
equivalence classes, recovering a more conventional perspective on the situation. Sec-
tion 12 concludes.

2 Graphs, Graph Transformations, and the Abstraction Problem

In this section we motivate what follows by presenting the essential elements of con-
crete graphs, concrete graph transformations, and the problems raised by trying to lift
the level of abstraction. We also present the notion of abstract graphs.

2.1 Concrete Graphs and Concrete Graph Transformations

Definition 2.1.1 A concrete grapl@ is a tuple E, V, s, t, Ig ,l\)) whereE andV are (fi-
nite) sets of edges and vertices respectivgly, E —~ V map each edge to its source and
target respectively, arld : E - Qg, Iy, : V - Qy map edges and vertices to their labels
drawn from the edge and vertex label alphaltsO,,

In fact the vertex and edge labels form a kind of typing system, classifying vertices and
edges in a rather crude manner, and below we will be concerned with a more sophisti-
cated kind of type system, where types are themselves graphs. All that we say subse-
guently will carry through unaltered irrespective of whether labels are present or not,
and readers may prefer to forget about the labels altogether.

Definition 2.1.2 A concrete graph morphish: G - G’ is a pair of functions
fe:E - E,fy:V - V such that Fig. 1 below commutes in the obvious way.

Where necessary, we will systematically use primes, or subscripts identifying the graph
(eg.lyg) on the various components, when several graphs are being discussed at once,
to disambiguate as above. This gives us the cateGomgf concrete graphs and mor-
phisms with obvious identities and composition of morphisms.

Fig. 1

In the classical double pushout (DPO) approach to graph rewriting (Ehrig (1979)) a pro-
duction is defined as a concrete monic span{ K - R) in the category of graphs,
where graphg&, RandK are called the left hand side, the right hand side and the inter-
face, respectively. Given a graghand an occurrence a&f in G, i.e. a morphisng :

L - G, there is a direct derivation froi@ to a derived grapH if the diagram of Fig. 2

can be constructed in such a way that both squares are push@itsThis means that
there is a grapiD, the pushout complement bfandg, and morphismsl andl* such

that the left square is a pushout. (The nontrivial conditions for the existence of such a
pushout complement (@I, which has all pushouts) are presented in Ehrig (1979).) In-
tuitively, the context grapb is obtained by removing fror® all items that are in the
image ofg but not in the image off o I. MoreoverH is obtained as the pushout iof
andd, which glues together the context graph and the right hand side over the common
interfaceK.

Recently Heckel et al. (1997) have introduced a variant of the double pushout approach
by considering “double pullback (DPB) transitions”. Given a production as above,
there is a DPB transition froi@ to H if a diagram like Fig. 2 can be constructed, where
both squares are pullbacks. This provides a true generalization of DPO derivations, be-
cause the injectivity of productions guarantees that a DPO diagram is also a DPB. Very
informally, a DPB transition using a productiprcan be understood as a trasformation
from graphG to H where at least the effects prescribedddyave been performed, but
possibly more. For a precise analsysis of the meaning of DPB transitions we refer to
Heckel et al. (1997). For our purposes, we just want to stress that the formal framework
we are introducing (originally conceived for the DPO approach only) can also accom-
modate the theory of DPB rewriting without additional effort. For the sake of uniform-
ity, we will allow ourselves to call DPB transitions “direct derivations” as well.

Definition 2.1.3 A concrete production is a pair of monic arrolvsK - L,r:K - R
in Gr which we often write ad.(~ K - R) when the rest can be understood.

In applications it is sometimes useful to let the right hand amro¢ — Rbe not monic.
However none of the theory that follows is invalidated in such a case, so we will not
mention this more liberal possibility further in this paper.

Definition 2.1.4 Given a productionl{ -« K - R), a graphG, and an occurrence of
the left hand side iiG (which is just a morphisny : L — G of Gr), a direct derivation

of H from G in the double pushout (DPO), respectively double pullback (DPB), ap-
proach to graph rewriting is a diagram like Fig. 2, in which both squares are pushouts,
respectively pullbacks, ifr. N.B. The application conditions of which we spoke are
simply those necessary to ensure that give — L andg: L — G, the two pushouts

or pullbacks indeed exist [@r. See loc. cit.

I r

L K R
g d h
G * D = H

Fig. 2

Remark 2.1.5 In a commuting square which is a pushout or pullbadiinike LKDG

in Fig. 2, therl is monic iff I* is monic. In these circumstances, the only difference be-
tween the two possibilities is that for a pushout, the morphigrasd|* are epic (i.e.

onto). Thus the DPO case becomes a special case of the DPB case, and for this reason
we will consider them together below. Starting with the DPB case will usually be sim-
pler, and then we will check that the additional assumption of surjectivity behaves well

in the construction in question.

A graph grammar in this classical theory is usually defined as a collection of produc-
tions plus a start graph, and a graph derivation for a grammar, is a sequence of adjacent
direct derivation steps using productions of the grammar, starting from the start graph,
and remembering the productions used and all the other Fig. 2 data, for each derivation
step in the sequence.

One of the things we wish to do in this paper, aside from introducing the typing of
graphs and their transformations, is to raise the level of abstraction from individual con-
crete graphs and concrete graph morphisms as in Fig. 2. A strategy which suggests it-
self naturally is to form equivalence classes of graphs and of morphisms and to proceed
from there. Unfortunately this is easier said than done. An example due to Corradini
et al. (1994a,b), taking place Bet (which we can regard as a category of unlabelled
discrete graphs), illustrates the problem.

Example 2.1.6 LetS; ={1, 2} and S, ={1, 2, 3}. Considerthe mapk: S; - S, and

0,9 :S - S illustrated in Fig. 3. Now in a naive construction of abstract sets and
abstract maps between them, the abstract set containgsaveetd be all sets equipo-
lent toS, and the abstract map containing a nsafs; —» S, would be the collection of
allmapst: Ty — T, such that there are isomorphisppsS; — Ty andj,: S, » Tosuch
thats= j2‘1 otojg. InFig. 3 we claim thag andg’ would be in the same isomorphism
class because if we takeas the map {1- 3, 21- 1, 31- 2} and takej, as the map
{11 2,21- 1} theng = j2‘1 o ¢ o ji. Now the composition of two abstract maps

would be the abstract map containing at least all composites of respective concrete maps
which are directly composable. So in the examglo,fandg’ o fwould be in the same
abstract map. Howeveg,o fis monic whileg' o fis not, so this is impossible because
monicity is invariant under isomorphism.

1
2 2
f /
3 9
S S S

Fig. 3

The reason why we get this unpleasant phenomenon is clear. When we form the com-
posite, we have “forgotten” that we have to relgt@ndg' by j; andj, in this particular
instance, because the formation of equivalence classes does not remember this informa-
tion. The technique of standard graphs and isomorphisms addresses this problem.

2.2 Standard Isomorphisms and Abstract Graphs and Morphisms

Definition 2.2.1 A choice of standard isomorphisms@t assigns to each pair of iso-
morphic graph&, andG,, a standard isomorphisa{G,, G,) such that:

1) oG G)=idg
(2) 9(Gy Gy) 0 0(Gy, Gy) =0(Gy, Gy)
(3) 0(Gp Gy =0(Gy, G

If we disallow all isomorphisms other than standard ones, the problems of Example
2.1.6 disappear becaugeandj, are not standard by (1) above; hercandg’ fall into
different classes.

Definition 2.2.2 We can construct a choice of standard isomorphisi@s by:

(1) Choosing one grapb(G) from each isomorphism clas&] of graphs isomor-
phic toG to be standard,

(2) Foreachs in [G], choosing one isomorphisa(a(G), G') to be standard (with
0(0(G), G') chosen to be g, if G' = 0(G)),

(3) ForallGy, Gy in [G], settingo(G4, G,) = 0(a(G), Gy) o a(o(G), Gl)‘l.

For the sequel we assume fixed some choice of standard isomorphi€fisThe col-

lection of standard graphs and all morphisms between them forms a skeleton category
Grof Gr. As shown in Corradini et al. (19944&fX is isomorphic to the categof{rT]

whose objects are isomorphism classes of concrete graphs up to standard isomorphism
called abstract graphs and writt&l]and whose arrows are equivalence classes of con-
crete morphisms under the relation that relgte& — Handg : G' - H'iff g=0(G/,

HY ™ o g o o(G, H), called abstract morphisms and writt@ G — HC The use of
standard isomorphisms only in this relation means that there is a bijection between con-
crete arrowg): G - Hin [g: G » HOJand ordered pair§, H taken fromGCandH
Identities are the equivalence classes of concrete identities, and composition of arrows
[0: G - HOandh : H - KOs given by composing the concrete arrows in the two re-
spective classes in the only possible way using the standard isomorphisms, which forms
another equivalence cldss

3 Some Categorical Tools

In this section we review some categorical techniques which will be needed later.

3.1 Opfibrations

LetP : E - B be afunctor from the subject categdryto the basd3. Supposé (e, :
Eg - E1) =bg: By —» By. The arrowey : Eg — E; is opcartesian foBg andby, iff for
every arrowey; : Eg - Epand anyb; : B; — B, such thaP(ey;: Ey » Ey) =by 0 by:
By — B,, we have a uniqué: E; — E, such thaky; =6 o ggandP(8) =b;. See Fig. 4.
An opfibration is a functoP : E - B, such that for every pailg, b: P(E) - B), there
is an opcartesian arrow f&randb. A particular choice of opcartesian arrefE, b) for
each pairE, b) is called an opcleavageof the opfibration.

In general, writindy=b: By — B4, any arbitrary choice of opcleavage induces a functor
Fee by : P H(Bo) — P(By) whereP ~Y(B)) (i = 0, 1) is the subcategory & overB;.
This works byF,_ p)(Eg) = codk(E, b)) andFy_ (e: Eg -~ E) =8 codk(Eg, b))
— codK(E,, b) o €) where@ is the unique arrow promised by the universal property.
In general, there are natural isomorphisms betwedh 14@)) andFy_ i4:8 . B), and
also betWGelFK(_’ b1obn) andFK(_’ b1) @) FK(—, bo)- If K(E, id: P(E) — P(E)) = IdE for all

1. Note that foundationally speaking, the definitioi®fCis suspect. Since the collection

of concrete graphs isomorphic to any given one forms a proper class, so does the collection
of concrete arrows in any isomorphism class of arrows between any two abstract graphs.
Now we are in trouble since the homset between any two objects in a category (eg. two ab-
stract graphs ifGrl) must be a set, and a set cannot have proper classes as members. We
will not worry unduly about this, since we never usembershipf these large collections

in any way that could cause us problems — and we wish to avoid obfuscating the technical
account with details that do not add materially to the essence of the algebraic story we tell;
this is similar to the way that applied mathematics typically ignores the precision of rigor-
ous analysis. Perhaps the only formulations of what we do that are truly free from founda-
tional defects, are (1) a formulation in terms of Grothendieck’s Universes, where proper
classes can in effect be chosen small enough, (2) a formulation exclusively in terms of the
previously selected skeleton.

Fig. 4

E, andk(E, by o bg) = k(codK(E, b)), by) o K(E, by) for all relevantE, by, by, we say
that the opfibration is split and the opcleavage is a splitting.

For split opfibrations (with a specified splitting) we have the theorem of Grothendieck
which states that they correspond exactly to funckorsB — Cat. The functorsP :

E - BandF:B - Cat determine each other. Fromwe reconstruck up to isomor-
phism by the Grothendieck construction, which bul@®, F), the Grothendieck cat-
egory ofB andF. The objects of5(B, F) are €, By) for Eyin F(Bp) for By an object

of B, and the arrows d&(B, F) are €, : F(bg)(Eg) - E1, bg) : (Eo, Bg) — (Eq, By) for

bg : By — By an arrow ofB; with composition of €, : F(bg)(Eg) - Ey, bg) : (Eg, Bg) —

(Ey, By) and €, : F(by)(E1) - Ep, by) : (E1, By) — (Ep, By) being given by €, o
F(by)(ey) : Fby © bo)(Eg) — Ep, by 0 bp) = (Eg Bo) — (Ey, Bo); and with obvious iden-
tities.

Fig. 5 shows how the components of the Grothendieck category relate to one another,
the picture on the right showing the constituent parts of an arrds(Bf F), with other
related data shown dashed. Note in particular that such an arrow consists of two parts,
a change of base arrdwy and an in-fibre morphisre;. For an accessible introduction

to opfibrations, and further key references, see Barr and Wells (1990).

We have spelled these things out here in fair detail because towards the end of the paper
we will have some need for opfibratioRs E — B which are not split, so there will not

be a handy functdr : B . Cat to conveniently visualise the inverse relationship. Nev-
ertheless we will be dealing with subject categofiesvhich arise most naturally by
making what is in effect a nondeterministic brute force analogue of the Grothendieck
construction. More specifically we identify a projection, calPjy: E; — B say, and
prove that all arrows ik are opcartesian. We then typically enriéh: E; - Btoa
projectionP : E - B by “adjoining in-fibre morphisms”, showing that the properties

of an opfibration continue to hold — the fibres are evideRtly\(b) for b an object of

B. This amounts to showing thEt: E — B is an opfibration directly from the defini-

tion because it has “enough strong opcartesian morphisms” in the terminology of Gray
(1966), Grothendieck (1961). This in turn is equivalent to constructing an opfibration
via a pseudofunctdrp : B - Cat which chooses a cleavage that is not necessarily a
splitting, by making an arbitrary choice of opcartesian arrow for e&ch)(pair. Our

more direct approach avoids the distraction of making such a choice, only for it to be
disregarded later, and allows proofs to be ported from the split to the nonsplit case.

3.2 Wreath Products

A wreath product is a special case of the dual construction, i.e. of a fibratiorC et
a category. LePth: B - Cat be a functor, taking arrowlsy : By — Bj to functors
Pth(by) : Pth(Bp) — Pth(B;). Now letF : B°P _, Cat be a contravariant functor, taking
objectsBy to the functor categorie®th(Bp), C], and taking arrows : By — B4 to con-
travariant functor§(bg) : [Pth(B;), C] - [Pth(Byp), C]. The functord-(by) take a func-
tor H : Pth(B;) - C in [Pth(B,), C] to the functorH o F(bg) : Pth(By) — C in
[Pth(Byp), C] in the expected manner.

Becausd- is a functor intaCat we can use the (contravariant version of the) Grothend-
ieck construction to build the Grothendieck categor3@indF, called the wreath prod-

uct of B andC and writtenB wrPth C. The objects oB wrPth C are pairs By, Hp) with

By an object ofB andH, a functor in Pth(By), C]. The arrows o8 wrPth C are pairs

(b, Ny) : (Bg, Hy) - (By, Hy), wherebg : By - By is an arrow ofB andn; : Hy -

H, o F(bp) is a natural transformation. Composition of arrowg, (1) : (Bg, Hg) —

(By, Hy) and b1, np) : (By, Hy) — (B, Hy) is given by by, np) © (b, ny) = (by © by,
F(bo)(ny) © ny) : By, Hp) — (By, Hy). There is an evident projectidh: BwrPth C -,

B given by forgetting the second component of objects and arrows. For more details
see again Barr and Wells (1990).

3.3 Feeble Functors and Weak Adjunctions

The slightly less well known material of this subsection is adapted from Krishnan
(1981), Kainen (1971). A feeble functbr: A — B maps objects of to objects ofB

as usual, but maps arroWsa — b of A to nonempty sets of arrows BfviaF(f: a -

b) O homg(F(a), F(b)), such that if andg are composable, thér(g) o F(f) O F(gof)
where the composition symbol has been overloaded in the obvious way. (We will also

Eq
€
E EO ---------------- B F(bO)(EO)
3
Cat % B By by B,

Fig. 5

need the possibility that these “hom sets” are classes, ankF timaips arrows into suit-
able subclasses.) Given two feeble funcler& : A - B, a left-natural transformation
n:F - G maps each objectin A to a non-empty set of arrowga) 0 homg(F(a),

G(a)) such that for each arrofv a — bof A, n(b) o F(f) O G(f) o n(a). If the direction

of the inclusion is reversed we have a right-natural transformation. A transformation
that is simultaneously left-natural and right-natural between two feeble functors is
called a natural transformation.

Feeble functors are used in weak adjunctions which we now describd- L&t B
be a feeble functor ar@ : B - A be a (normal) functor. Theh is a weak left adjoint
of G iff there exists a natural transformatian homg(F x Id(B)) - homy(Id(A) x G)
and a left-natural transformation : homp (Id(A) x G) — homg(F x 1d(B)), such that
N o M= Lnomad(A) x) @ndm © N LhonuF x 14(B))- Here both hom(—, —) notations
are being viewed as functofP x B - Setcp, whereSetg is the category of sets and
cofull relations between them. Equivalent conditions are given by the following.

LetG: B — A be afunctor. Then among the conditions below we havé&l(1R) O
(3)0 (1) and (1)0 (2% 0 (3%) O (1%).

(1) There is a feeble functér: A - B which is a weak left adjoint tG.

(1*) In addition to (i), if (n, m) define the weak adjunction thém is an object ofA
Oh O homg(F(a), F(a)) On(a, F(@) OG(h) o k=k) O (h= idra))-

(2) Thereis afeeble functdr : A - B and a natural transformation: Id(A) - G
o F, and for every objed of B a non-empty set(b) 0 homg(F oG(b), b) such
that: (a),G(v(b)) © n(G(b)) = idg), and (b), for every objea of A (f O ho-
ma(a G(a)) Dh Ov(b) o F(f)) O (G(h) o n(a) =f).

(2*) In addition to (ii), (c), for every objeca of A (h O homg(F(a), F(a)) D G(h) o
n@=n@)) 0 (h=idrg)).

(3) Every object of A has a universal arrow(: a — G(by), by) in the sense that

for every objecb of B and eveny : a — G(b) there is a (not necessarily unique)
arrowg : b, — b such thafs(g) o u=f.

(3% In addition to (iii),(h:b - bOG() cu=u) O (h=idy).

Below, when we need to establish a weak left adjunction, we will use condition (3),
which is just the normal thing one would do aside from checking uniqueness. Alsoitis
easy to see that if we strengthlerto be a (normal) functor and the adjunction to be not
weak in (1), or insist on uniqueness in (3), or the appropriate strengthening of (2), then
we recover some of the conventional characterisations of adjunctions, and furthermore
the provisions of the starred clauses hold automatically. Evidently there is a dual theory
for weak right adjoints which we do not give in detail.

4 Concrete and Abstract Diagrams

We now build a theory of diagrams, both concrete and abstract, in a form designed for
later convenience. L& be the category of directed graphs, obtained by forgetting the
labelling functions irlGr. We allow classes instead of (finite) sets of vertices and edges
in a directed graph if necessary.

10

4.1 Concrete and Abstract Diagrams in an Arbitrary Category

Definition 4.1.1 Letp be a directed grapl be a category, ang: u — UC be a graph
morphism fromy to the underlying graph df. Theny s a concrete diagram of shape
pinC. LetPth: B - Cat be the functor that sends directed graphs to their path cate-
gories, which is left adjoint tdJ. Then the standard free construction extegpds

u — UCto afunctory: p — C from the path categony of u to C. If in addition, for

all pairs of objectsng, my in p, for all paths €y, ... , g) from mg to my in p, if the in-
ternal compositiony(g,) o ... © y(g;)) in C always yields the same arrdw y(mp) —
y(my), then the diagram is a commuting concrete diagram of ghape

Henceforth we will only consider commuting diagrams, and will therefore drop the ad-
jective “commuting”.

Definition 4.1.2 [y, C]is the functor category with objects given by concrete diagrams
of shapeu, and arrows given by concrete diagram morphisms, which are natural trans-
formationsn :y - &in [y, C].

Note that this construction characterises the (commuting) concrete diagréhesia
wreath product, namely &wrPth C, with © : B°P _. Cat being the relevant contravar-
iant change of shape functor, sendngy — pto ©(a) : [, C] - [v, C]. For conven-
ience below, rather than usit® we will refer to®, where® : Pth(B)°P _. Cat takes
a =Pth(@) :v » ptoO(a) : [u, C] - [v, C]. We clearly have th@® = O o Pth.

Definition 4.1.3 An abstract diagrar (of shapeu in C) is a subcategory ofJ, C]
such that for any two objectsandd in D, there is at least one arraw: y - 3in D,
and all theC arrows that make up suchld arrow (i.e. natural transformatiom) are
isomorphisms.

Definition 4.1.4 An abstract diagrar® of shapeu is maximal iff (y is a concrete di-
agram ofD andn :y - & is a concrete diagram morphism such that all Gharrows
that make um are isomorphismsd (n:y - dis a concrete diagram morphismiih).

Definition 4.1.5 A morphismc: Dy - D; of abstract diagrams (of shapen C) is
simply a functor fronrDg to D, (where bothDy andD; are considered simply as cat-
egories in their own right). A morphism: Dy - D is mediated by a famil of ar-
rows of C iff there is a functiory : (Vert(u) x Obj(Dg)) — Arr(C), whose range ig,
that maps pairsi, y) to arrows of such that:

(1) For any fixed concrete diagrayof Dy, the collection of the((my, y) forms a
concrete diagram morphism froyro c(y).

(2) For any fixed concrete diagram morphismy — & of Dy, the collection of the
X(mg, y) andx(mg, 8) forms a morphism of concrete diagram morphisms from
n:y-odtoc(n:y - d):c(y) - c(d), naturally.

Thus while an arbitrary morphism of abstract diagrams merely associates concrete dia-
grams and morphisms between them in a natural manner, a morphism of abstract dia-
grams mediated by a family of arrows@imust be sensitive to any internal structure of
objects captured by the structureCof

For convenience we will also alloyto have as domain (Ve x Ind(Obj(Do))) where
Ind is an index set (or class) for the object®gfbelow.

11

Clearly the change of shape action@fextends naturally to a change of shape action
on abstract diagrams.

4.2 Operations on Concrete and Abstract Diagrams

In this section we discuss how operations that arise naturally on concrete diagrams ex-
tend equally naturally to abstract ones. We start with subdiagrams.

Definition 4.2.1 Leta :v — U be a monic morphism of directed graphs. This defines
a particular subobject qf. This extends naturally via the actionth to a particular
subobjectr : v - p. Letybe a concrete diagram of shapen C. Then the natural
action of@ yields a concrete subdiagradrof shapev of the concrete diagramin C.

Definition 4.2.2 Leta :v - W be a subobject of the path category objectLet D,
be an abstract diagram of shgpe C. Then the natural action @ yields an abstract
subdiagranD; of shapev of the abstract diagrafd in C, where the morphism from
D, to Dy is mediated by a family of identities. Clearlylif, is maximal and nonempty,
thenD; is maximal too.

Where appropriate, we can regard the process of obtaining the (concrete or abstract)
subdiagram as a kind of garbage collection. Now for the pasting of diagrams, a kind of
pushout.

Definition 4.2.3 Leta:p —» pandB:p — v be morphisms of directed graphs. Then
we can form the directed graph pushaut v — ulgv, B': 4 — ubyv. This extends
naturally via the action oPth to the pushoutt’ : v - HOpv, B 1 p — pbpv of path
category morphisms:p - pandf:p - v. Letyandd be concrete dlagrams of shape
1 andv respectively irC. Suppose for all verticesy and arrowse : mg — my in p we
have thayoa(mg) = doB(mg) andyoa(e: my - my) = dofB(e: my — my); then we say
thatyandd are compatible. We define the concrete diagyangd : ppv — C, of shape
HUpv, provided it is a commuting diagram, byl ,8(mg) = y(mg) if My is in y, and

Y pd(mp) = &(my) if mpis inv; andyll d(e: mg - my) =y(e: mg - my) if eisiny,
andyl 8(e: my — my) =d(e: my — my) if eisinv, which is consistent. We cajll;d
the pasting of ando alongp, and say that andd are a compatible consistent pair.

Note the requirement thgit] ;6 commutes; the pushout of shape graphs may create new
pairs of paths with the same origin and destination vertices in the result, creating in turn
fresh equations that must be satisfied by the arrowis gf.

Definition 4.2.4 Leta':v — ulgv, B’ g - plyv be the pushout of path category
morphismsa : p — pandB:p - v, andD and[g be abstract diagrams of shape
andv respectively irC. We define the abstract dlagraB@,D D as the family of past-
ings alongp, of all compatible consistent pairs of concrete diagrgrandd from D
andD, respectively, these being the objectddf1,D;. If ny:y -~ y andny: & - &
are morphisms i)y and D, respectivelyy andd are compatible consistent,andd
are compatible consistent, angl andn, agree as natural transformations gn.e.
ny(a(m)) = ny(B(m)) for each vertexmin p, thenn [yn, 1 yilpd — Y 0" defined in the
obvious way, is a morphism @1,D;. We call Dy Dl the pastlng oDgandD,
alongp. Clearly ifDy andD; are maximal, theBq, E)l is maximal too.

In the above, the case of most interest to us will be wheamd3 are monic.

12

The final construction that we will deal with here is the local pullback (whiatisa

dual to pasting). For this recall that in a pullback construction we start with a diagram
of shape; - *y — *,, and end with a commuting square (with some universal proper-
ties), except that the object at the new vertex is only fixed up to isomorphism. From our
perspective, we can say that we start with a concrete diagram, and finish with a (non
maximal) abstract diagram, where the only non identity isomorphisms between con-
crete representatives in the abstract diagram are at the new vertex. The following local
pullback construction thus makes sense principally for abstract diagrams.

Definition 4.2.5 Let D be an abstract diagram of shgpi C, where we assume that
C has all pullbacks. Suppose there is a monic morphiwmes; - ¢, — *,top. Let
¢+ be a fresh vertex not occurring jnand letv be the shape, — ¢ — ¢, Letp® =
HOov be the shape obtained by pastwngp 4, via the common subshagpe= (*;)
and morphismst : p - pandf: p — v; wherea(e;) =1(;) andf(s;) = id(s;) fori =1,
2. Then the abstract diagrady of shapeu® in C is given as follows. Leybe a con-
crete diagram iDg; thenyol is a pair of coterminal arrows oveg — ¢y « *,. Leté,
:C - yol(sy) and&y : ¢ - yoli(e,) be some specific pullback §o1. Then we defing,
to be the concrete diagram of shggein C given by:y(mp) = y(mp) andy(e: my -
my) =y(e: my - my) for verticesmy and edge® : my - myiny; andy.(¢) =, y(*1
— #)=&:C - you(*y), Y(* - *2) =&;:cC - yol(s,) for the remainder. Theb,
contains as objects, all such concrete diagrgmtor all possible pullbackg;,, &,. If
Y andd are two such objects, arising from objeg@ndd in D, with natural transfor-
mationn 1y — 9, then there is a natural transformatigyy : y. — 04 given by extending
n with the unique (by pullback properties) isomorphism froto d which makes 4
natural.

Note thatD, above isuniquebecause of the maximality inherent in its definition. This
is unlike the construction of normal pullbacks where the resulting diagram is up to iso-
morphisms of the added object. This feature will produce tangible consequences later.

Note also that the above construction generalises to limits of larger subdiagrams than
coterminal arrow pairs, and there is an obvious dual construction for colimits. However
the local pullback case is the only one we need below. Note how the pasting and local
limit constructions act at different levels of abstraction.

4.3 Automorphisms and Kinded Abstract Diagrams

Since we will ultimately be interested in applying our theory of abstract diagrams to the
case wher€ is Gr, we now examine the consequences of objedsthiaving nontrivial
automorphisms. The same problems that we have noticed already regarding equiva-
lence classes of objects and arrows, reappear here, so we adopt the same machinery.

We thus assume chosen a skeleton subcatdgbof C, leading to a choice of standard
isomorphismss(—, -) between objects. AlsiCwill be the category of abstratob-

jects and arrows, consisting of equivalence classes up to standard isomorphi€ms, of
objects and arrows.

Let Kind ={id, std, iso}. We will use Kind as a label set for shape vertices, thus for an
abstract diagram of shapethere will be a mapkind, from its vertices tdind, and we
will speak of shapes and vertices of kind such and such.

13

Definition 4.3.1 Let D be an abstract diagram of kinded shap¢henD conforms to
its kind iff for each vertexry in p:

(1) kindimg) =id - for each arrown:y - &in D, the component of the natural
transformatiom at the vertexmy is an identity inC, i.e.n(mp) : y(mg) — (M)
= idy(mg).

(2) kindimg) =std < for each arrown:y - &in D, the component of the natural
transformatiom at the vertexm is a standard isomorphism @ i.e. n(my) :

y(mg) — d(mg) = a(y(mg), 8(mp)),

() kind(my) =iso = for each arrown:y - din D, the component of the natural
transformatiom at the vertexm, is an arbitrary isomorphism i@, i.e. n(my) :
y(mg) — &(my) is an arbitrary iso.

If D conforms to its kind then we also say that all its natural transformatiorys— &

conform to the kinds o). From now on we assume that all abstract diagrams conform
to their kinds, and we will simply speak of kinded abstract diagrams.

Definition 4.3.2 Let D be a kinded abstract diagram. ThBnis maximal iff (yis a
concrete diagram dD andn: y — dis a concrete diagram morphism conforming to the
kinds ofD) 0O (n:y - &is a concrete diagram morphismbn).

Clearly, in the presence of kinds, the change of shape acti®reatends naturally to a
change of shape action on kinded abstract diagrams, provided the change of shape mor-
phismsa : v — p are kind-non-increasing in the partial ordeg std < iso. Also in the
presence of kinds, the subdiagram operation requires kind-non-increasingness in order
to be well defined. In the presence of kinds, the pasting operation is well defined if the
image ofp in DODle is kinded with the infimum of the kinds af(p) andf3(p). Fi-

nally, in the local pullback construction, the fresh vertex always acquireg&ind

The notion of maximal kinded abstract diagrams, particularly that of kinded abstract di-
agrams entirely of kingtd, raises the question of the relationship between these and the
concrete diagrams one can construct in the catedliy To answer this, and related
questions, we note first that &Liis isomorphic taCK, standard isomorphisms &0

are just identities; so there is no distiction between abstract diagraifiSemtirely of

kind std and those entirely of kind. Now Fig. 6 provides a route map between the pos-
sibilities of interest. The left column depicts concrete diagrams, the middle column de-
picts abstract diagrams conveniently related to concrete ones, and the right column
depicts general abstract diagrams. The top two rows show the situatiGndod the
bottom row shows the situation f@{we do not bother with the situation f6K). The
connections between the various possibilities are described by families of functors
Oy~ relating categories of diagrams of shapef various kinds. For the rest of this
discussion we will suppress mentioniafand for abstract diagrams, which we will as-
sume maximal, we will restrict to the subcategories in which all abstract diagram mor-
phisms are mediated by families of arrow£of

We recall that an object ¢f£[is an equivalence class of objectslbEontaining in par-
ticular a unique skeleton object fro, and that an arrow df (s an equivalence class

of arrows ofC in bijective correspondence with ordered pairs of representatives from its
domain and codomain objects. We start with the relationship between concrete dia-

14

Concrete Abstract

Oide | eid

“

[CO

Fig. 6

grams inC, and concrete diagrams(ifiC] This is an easy extrapolation of the situation
studied in detail fofsr in Corradini et al. (1994a). ThlEﬁ]"]Dtakes a concrete diagram

yin C to the concrete diagrag¥in [CL for which the objects and arrows pére mem-

bers of the equivalence classes which constitute the objects and arrgiv<Cafnverse-

ly DME"D' sends d@COdiagramy™to the concrete diagramin C, for which the objects

are the skeleton objects drawn from the equivalence class objegtsanfd the arrows

are the unique arrows between the skeleton objects drawn from the arrow equivalence
classes of 0;*"and0*"* constitute an equivalence of categories.

Proceeding to the top row of Fig. 6, we have the isomorphism between concrete dia-
grams inC and abstract diagrams entirely of kimdin C, given by functors’.]l]'id and

Dﬁd"- This is essentially the correspondence between an item and the singleton class
containing it. A similar situation prevails on the bottom row between concrete diagrams
in [COand abstract diagrams entirely of kindor std in [C0) given by functors

O and 0= That these are isomorphisms, follows readily from the only pos-
sible action on mediated morphisms of abstract diagrams ofdkind

We next discuss the middle column of Fig. 6. The object map of the fuﬁ@‘ﬁfd
takes a maximal abstract diagrddnof kind std, to the singleton containing the unique
concrete diagram i consisting of skeleton objects and arrows between them. The

15

arrow map of the functorl§*' takes a morphisra: Dy — Dy, to the morphismf} :
{y} - {3} where:yis the unique concrete diagramlby, consisting of skeleton objects
and arrows between therdjs the corresponding one [B4; andf is the natural trans-
formation given by taking the family & arrows that mediate, selecting the subfamily
X that forms the natural transformationyatind postcomposingwith the unique fam-
ily of standard isomorphisms that takes the codomajnto®.

Conversely the object map of the feeble fundﬂéﬁ"ﬁd takes a singleton containing an
individual concrete diagraw) to the abstract diagrald, consisting of the class of con-
crete diagrams related {oby families of standard isomorphisms. The arrow map of
0, takes a morphismf} : { y} - {3} between singletons, mediated by a single nat-
ural transformatiom, and sends it to the class of mediated morphisms determined as fol-
lows. Let¢ be a function that maps eagl), a natural transformation gfformed by
standard isomorphisms, to a natural transformagipof 6 formed by standard isomor-
phisms. Such a function determines a morphi@mDo - D of abstract diagrams of
kind std, by mapping each concrete diagranDg viaxg o f o xy‘l. The collection of

all such morphisms for all possible choicespoidetermines the arrow map @ff”srd.

The above makeg)**"! and "' into a weak equivalence of categories, weakness
being in the sense thﬁl:;'ld'SId is a weak left adjoint ta]§'®'%. The above also fixes the
properties of the paif]; " and [J§'* by requiring that the upper triangle in Fig. 6
commutes in the expected way. This means ﬂwl:a%‘d is feeble and a weak left adjoint
to (319",

Moving down, the object map of the functﬁﬁ‘dﬂwtakes an abstract diagrab of
kind std in C to the singleton containing the concrete diaggsmCFormed by: select-
ing for each vertexny in the shape, the isomorphism class of concrete object€ afp

to standard isomorphisms, occurring abawgin the concrete diagrams &; and se-
lecting for each edge : my - my in the shapay, the isomorphism class of concrete
arrows ofC up to standard isomorphisms, occurring abewe the concrete diagrams
of D. The arrow map of the functﬁtdﬂumtakes amorphisra: Dy - D; of abstract
diagrams of kindstd, and sends it to the morphismff{} : { y} - {&} between single-
tons containing andg, the images oD andD;, as follows. Let §,} be the family of
arrows mediating at the object” of D consisting of skeletof objects only (and ar-
rows between them), and Ié},] be the collection of isomorphism classes up to standard
isomorphisms of f,}. These are arrows iflCforming a natural transformation gf
We write {[f],}: { v} - {&}for the natural extension of], to an action on the singleton
{v} containingy.

Conversely the object map of the feeble funcEﬂﬁﬂd':btd takes each singleton containing

a concrete diagramin [COwhose objects and arrows are isomorphism classésbt
jects and arrows up to standard isomorphisms, and maps it to the abstract didgram
consisting of the class of concrete diagram§ imhich can be constructed by: selecting
for each vertexng in the shapgl, an element of the equivalence class which is the object
of yabove it; and for each edge my — m, in the shapg, selecting the unique element
with appropriate domain and codomain, from the equivalence class abowe The
arrow map oﬂ]E“Ebtd takes a morphism {[} : { y} - {8} between singletons, medi-
ated by a single natural transformatidh [consisting of isomorphism classes®fr-

16

rows up to standard isomorphisms, containing in particular the collecfigrafl of
whose domains and codomains are skeleton objects, and maps it as follovisaridet
A be the unique concrete diagramslg andD; all of whose objects are skeleton ob-
jects. Letd be a function that maps eagh, a natural transformation &f formed by
standard isomorphisms, ¥@ a natural transformation @ formed by standard isomor-
phisms. Such a function determines a morphi@mDo - D of abstract diagrams of
kind std, by mapping each concrete diagranDgviax, o f o Xr_l- The collection of
all such morphisms for all possible choicegpofietermines the arrow map ff“m“d.

As above {851 and§® ™ form a weak equivalence of categories, witff"5 be-

ing a weak left adjoint tdﬂj‘d'ﬁ“@ Requiring that the lower triangle in Fig. 6 commutes
also fixes the properties of the paig*“"“and 08 with 0~ being a weak left
adjoint to[}j8-*% We can also see that the rectangle in the left and middle columns of
Fig. 6 commutes as we would expect.

We turn to the rectangle in the lower right part of Fig. 6. We observe first the following
fact. Suppose it we have arrows: x - y, f': X - y, and standard isomorphisms
o(x, X):x » X,a(y,y):y - Yy, making a commuting square. Lk, X) : X - X be

any isomorphism fronx to X'. In general there will not be an isomorphisity, y') :

y - ¥ makingf, f', t(x, X), t(y, ¥) commute. However we will assume subsequently
thatC has enough isomorphisms, in the sense that su¢i &) can always be found,
though it may not be unique. For examPlehas enough isomorphisms.

Now the object map of the feeble func@§'®s° sends an abstract diagrdd¥® entire-

ly of kind std to the abstract diagral's® having the same objects, but this time entirely

of kindiso. Viewed as a categorl)'s® has merely acquired more arrows in this process,
namely the natural transformations between its concrete diagrams, incorporating at
least one nonstandard isomorphism. The arrow map of the feeble fllgté1® sends

a mediated morphisieft® : D*® . D;3to the class of extensions o1 which cover

all the additional natural transformations too. Such extensions will exist by our obser-
vation above, but in general they will not be unique.

The object map of the functdz 5% likewise sends an abstract diagr&i$° entirely

of kind iso to the abstract diagraf@' having the same objects, but this time entirely
of kind std. As a categoryD's° is mapped to the subcategddj' having only standard
isomorphism natural transformations as arrows. The arrow m#f@)ftd sends a me-
diated morphisng's® : D's° -, D4'*° to the mediated morphis#t : D9 —, D;std
determined as follows. Ldt be the concrete diagram [2y° consisting entirely of
skeleton graphs and morphisms between thedy's¢ will contain this since it is max-
imal.) Letx be the collection of arrows that mediates the morphisfif atl". Let
n:T - ybe anarrow D, and letx, be the corresponding collection of mediating
arrows aty. Suppose : I — yis mapped by's° to the concrete diagram isomorphism
co(n: T - y):C%O() - c°(y). Lety, be the collection of isomorphisms such that
Xn © €'°(n) is a concrete diagram morphism consisting entirely of standard isomor-
phisms. Thery,, © ¢*°(n) is a morphism oD% mediated by, © Xy- For eachyin
Dy’ we replace its subfamily of mediating arrows by the subfarxjj:o Xy SO deter-
mined. By the properties of standard isomorphisms, all other morphisngs- & in

17

D"t are mapped to morphisms B%;5 which compose properly. This gives the mor-
phismcst® : DSt _, D,std,

The functorsiisotgnd lsetidtare similar. The object map of the feeble functor
0,1855eBmaps the objects via identities — the objects (ufi tostd) being singletons
containing concrete diagrams built out of objects and arrows which are equivalence
classes of objects and arrows up to standard isomorphisms. Ug $ostd, abstract
diagrams inCChave only the identity automorphism; however ugtothey in general
acquire nontrivial automorphisms. The arrow map of the feeble fufigfér'=c-takes
amorphism {f],} : { ¥} - {J} between singletons, mediated by a single natural trans-
formation], consisting of isomorphism classes@farrows up to standard isomor-
phisms, containing in particular the collectiof} all of whose domains and
codomains are skeleton objects, and maps it as follows!I” laetdA be as constructed

in the discussion otﬂuﬁmstd. Then each nontrivial automorphismyp{respectivelyd)

has a unique representative fofrespectivelyd). Moreover, each nontrivial automor-
phismar of ' maps viaf, to a nontrivial automorphisra, of A, in general in many
ways. The equivalence classes up to standard isomorphisms, of the objects and arrows
of ap, yield an automorphism d§ which gives a possible action af4-""on the ar-

row {[f],}. The collection of all such possibilities determines the arrow map of
DUHUDEEOﬁ

The functorDEoDﬁHDcould not be simpler. The action on objects is the identity. On
arrows, it is just the restriction to identity automorphisms only, of the action of arrows
{Ifh}:{y} - {d} between singletons.

As we had before, the functor paif$s°, 0js°i¢ and 0 j-Hso] 0 otiilgive weak
equivalences of categories, in the sense [thpétso is a weak left adjoint tdﬂl'f“'d and
0, 85selis a weak left adjoint ta S0t

Finally we considef] {570 and(5>%°% The functors>%° behaves like the func-

tor Dj‘dﬂumexcept that diagram morphisms must include also the nontrivial automor-
phisms. Each such nontrivial automorphism of a concrete representative of an abstract
diagram of kindso in [CC]is simply mapped to the collection of equivalence classes up

to standard isomorphisms in the expected way. Likewise, the feeble flE‘ETEPSO

behaves Iike‘ﬂuHucbtd except that again nontrivial automorphisms must be taken into ac-
count. These are mapped just like all the other arrows between abstract diagrams of
kindiso in [CO

Unsurprisingly the functorg]{5°1s° ands°°"form a weak equivalence of catego-
ries with[J;{5°41° being a weak left adjoint tG5o-1c"!

The small circles next to arrow heads in Fig. 6 indicate the functors in the above discus-
sion which are feeble. It is worth summarising that the feeblene@?\j‘ﬁfso and of
0,i8etis due to the nonunique way that arbitrary nonstandard isomorphisms trans-
late along arbitrary morphisms, while the feebleness of all the other functors in the dis-
course is attributable to the many different mediated morphisms of abstract diagrams
which map, under equivalence up to standard isomorphisms, to the same morphism of
skeleton concrete diagrams (say).

18

The preceding discussion described the situation when all vertices in the shape of an ab-
stract diagram are of the same kind. The facts of the matter for diagrams where the kind
varies from vertex to vertex, may be determined by easy extrapolations of the above.
Below we will routinely encode the kinds of the vertices of an abstract diagram by the
following convention: unadorned vertices imply that the kinadjsvertices in angle
brackets imply that the kind isd; and vertices in square brackets imply that the kind is
iso. ThusA « BO- [C] is a notation for an abstract diagram whé&eccurs up to
identity, B occurs up to standard isomorphisms, &dccurs up to arbitrary isomor-
phisms. The final possibility which will be of practical interest, namely concrete dia-
grams over the abstract categd@®yf] we will write using superscripted angle brackets
thusA™ -~ BT, CT

4.4 Sufficiently Monic Kinded Abstract Diagrams

Monicity of arrows has a significant effect on the properties of abstract diagrams whose
shapes have vertices of kird.

Definition 4.4.1 Let D be a maximal abstract diagram of shapie C. Suppose for
each vertexmg in Y, of kind iso, there is a vertexn of kind std or id, and an edgey :
my — My such that for each concrete diagrgin D, the arrow ofy abovee, is monic.
ThenDy is sufficiently monic.

Clearly the quantification ovetis somewhat spurious, since if one concrete diagram in
D has a monic arrow abowg then they all do. Note also that since we spokg cdther
thany, mere accessibility ip of a kindstd orid vertex from any kindso vertex will do.

Lemma 4.4.2 Let D be a sufficiently monic maximal abstract diagram of shaje
C. Then between any concrete diagraggandy; in D, there is a unique natural trans-
formationn : yp - v;.

Proof. Letey: my — my be an edge gft with kind(mg) = iso andkind(my) O {std, id},
and such that any arrow oveg in a concrete diagram & is monic. Letyy andy; be
concrete diagrams dd, f : Ay — A; be an arrow ofyy overey, andg : By — B; be an
arrow ofy; overey. Sincekind(my) O {std, id}, there is a unique isomorphism 6f 1 :
A, - By, forming part of any natural transformation yy — y; in D. Letngandn; be
two such natural transformations, andugt Aq - Bgandu, : Ay — Bg be the respec-
tive isomorphisms af;. Then we know thaf) © ug =T o f =g o v4, and by monicity
of g, Ug=U4. Because we can derive the same for evagpf kindiso in p, we conclude
that there is a unique: yg - y;inD. ©

Let us define the standardisatipf of a shapgl, as the shape obtained by reassigning
the kind of any kindso vertices inu to std.

Lemma 4.4.3 Let D be a sufficiently monic maximal abstract diagram of shae
C, and letustd be the standardisation pf Let |AU(C,)| be the size of the automorphism
group of aC object over vertexn; in any concrete diagram &. ThenD consists of
Mm [AUtCpy)| individual abstract diagrams of shap#, wherem; ranges over kingo
vertices ofu.

Proof. An easy consequence of Lemma 4.42.

19

4.5 Kinded Abstract Diagram Morphisms and Opfibrations

Of special interest to us are concrete and abstract diagram morphisms arising from a
particular species of opfibration.

Definition 4.5.1 LetQ be a subcategory @ andP : Q - B be an opfibration. Leb:
By — By be an arrow in the base, aygl: p - P‘l(Bo) be a concrete diagram in the
fibre aboveBj. Letx be a choice of arrowg(mg) : yo(mg) — Qq, opcartesian for
(Yo(mg), b), one for each vertexyin p. Then the diagrang : p — P ~(B,) is given by:

(1) mapping each vertax, of p to the codomaii®,, of the arrowy(m) : yo(mg) —
Q1 chosen fomy by x; thusQ =y;(mg),

(2) mapping each edg® : my — My’ to the unique arrom; : Q; - Q' such that
Ny © X(mMg) = X(my) © ng, where:ng : yo(mg) — Yo(Mg') is the arrow thagy :
My — Mg’ Maps to undeyy; X(Mp) : Yo(Mp) — Q1 andx(my) : Yo(mg') — Q" are
the opcartesian arrows chosenfigyandmy’ by x; and uniqueness follows from
the opcartesian property g{my'); thusn; : Q1 - Q7' =nq : yi(mg) - vi(my);
and the construction extends in the obvious way to paths in

Thaty; is a diagram is easy to see, as is the fact ghatduces a diagram morphism
CiYo - Y1-

Definition 4.5.2 LetQ be a subcategory & containing all isomorphisms between any
two of its objects, and I6? : Q — B be an opfibration. Leb: By — By be an arrow in
the base and IdD be an abstract diagram of shgpan the fibreP ‘1(80) aboveBy, by
which we mean thaD, is a subcategory ofy, C] such that all the objects and arrows
of Dy (which are concrete diagrams and diagram morphisn€3) iare concrete dia-
grams and diagram morphisms Hh‘l(Bo). Let x be a choice of arrowg(mg, A) :
Yor(Mg) — Qq, opcartesian fory ,(mp), b), one for each vertery, of each concrete
diagramyy , in D (whereh indexes the objects @), satisfying the following condi-
tions for each vertemy in p:

(1) kindimp) =id < for each concrete diagram morphisgy » : Yo — Yo in Do,
we have thag(mg, A) = x(mg, A'), i.e. idg; © X(Mp, A) = X(mp, A') © idym(mo),
whereng (M) : Yoa(Mo) — Yo (M) = idy, (m) is the identity atyp y(mo)
which is the component of the concrete diagram morphrigin(mp) : Yo \(Mp)
- Yo(mg) atmy, andny y(mp) : Q1 — Qq = idg, is the identity aE;.

(2) kindmp) =std for each concrete diagram morphisig, \' : Yo — Yo In
Do, we have thak(mp, A) : Yoa(mp) — Q1 andx(m, A') : Yoa(mp) — Qq’ are
such thato(Qy, Q1) © X(Mg, A) = X(Mg, ') © (Yo x(Mo), Yo (M), where
Mo (Mo) = Yo (M) ~ Yor(Mp) = A(Yoa(Mo), Yo (M) is the standard isomor-
phism which is the component of the concrete diagram morphigim, (M) :
Yoa(Mo) = Yo (Mp) atmg, andny (M) : Q1 - Q1 =(Qq, Q1) is the stand-
ard isomorphism fron@, to Q;'.

(38) kindmp) =iso = for each concrete diagram morphisig »' : Yop — Yon in
Do, we have thak(mp, A) : Yoa(mp) — Q1 andx(mp, A') : Yoa(mp) — Qy’ are
such thatt(Qy, Q1) © X(mg, A) = X(Mg, A') © T(Yo (M), Yo (M), where
Mo (Mo) 2 Yoa(Mo) — Yo (Mp) = T(Yoa(Mo), Yox (M) is an arbitrary isomor-

20

phism which is the component of the concrete diagram morphigim, (M) :

Yoa(mg) — Yo (Mg) atmg, andny » (M) : Q1 — Q' =1(Qy, Q7') is an arbitrary
isomorphism fromQ, to Q,'.

Itis clear that for any concrete diagrag, in Dy, the choice of(my, A) ranging over
the verticesn, of |, provides a concrete diagram, and a concrete diagram morphism
Cx : Yox — Y1) as per Definition 4.5.1. Itis equally clear that conditions (1)-(3) guar-
antee that natural transformationg,) : Yo — Yo, between the concrete diagrams
Yo, in Dg are mapped to natural transformations of the same jnd : y1) — Y1
between the concrete diagrams,, thus producing an abstract diagréd which con-
forms to its kind, and an epic abstract diagram morphisi®, — D, which is medi-
ated by the family of arrowg(my, A), with mg ranging over vertices qf andA ranging
over objects oD,

For the above to be well defined, we should check that the conditions (1)-(3) are actually
feasible. Clearly condition (1) offers no problems. Neither does condition (3), since
we can choose thg(my, A) arbitrarily, safe in the knowledge that yf ,(mp) and

Yo (M) are isomorphic, then for any isomorphis(yg) (Mp), Yo x'(Mg)) we will always

be able to find the unique isomorphisit®;, Q;') that solves the equation, becal}e
contains all isomorphisms fro@, to Q;'. Condition (2) requires a little more thought.
Suppose there is ary in p of kind std. Then we choose arbitrarily one objég,« in

D, to act as reference point @ is nonempty, otherwise there is nothing to prove).
We know that for allyy) in Do, o(Moax (M), Yo (Mp)) is the unique arrow between
these two graphs (D, indeed contains an arrow frofiy ax 1o Yo). We takex (my,

A*) & yoax(mg) — Qq as fixed. Now ifx(my, A') satisfies the equation in condition (2)
then all well and good; we sgt(mg, A') = x(mg, A'). If not, then we will haver(Qy,

Q1) © X(mg, A*) = X(mp, A") © a(g\+(Mp), Yo (M) for some nonstandard isomor-
phismt(Qq, Q1'). In this case we will have(Qq, Q') = a(Q4', Q1) © 1(Qq, Q") for
some unique automorphisafQ,’, Q") of Q;'. We can now replace the choice of arrow
X(mg, A) by X'(mg, A") =a(Q4', Q") © X(mg, '), an equally acceptable possibility since
opcartesian arrows are unique only up to isomorphism. Doing the same X6gales

us a choice’ of opcartesian arrows such that condition (2) is indeed satisfied.

Let ®(b, x,,) name the construction on (concrete and) abstract diagrams just described,
where the shape jsandD is understood.

Proposition 4.5.3 Let Dy be an abstract diagram of shapeand leta : v — u be a
kind non increasing shape graph morphism. ¥an index of a concrete diagrayy,

in Dy, andng a vertex ofv, letx,, be defined by, (ng, A) = Xu(a(ng), A) (which gives a
choice of opcartesian arrows for the induced abstract diagrgm©(a)(Dg)). Then
®(b, Xv) © O(a) =06(a) o P(b, x,,) as functors from the category of abstract diagrams
of shapeu to the arrow category of the category of abstract diagrams of ghape

The proof is obvious once one notices teaactly the samé&amily of opcartesian ar-

rows is determined by both(b, x,,) © ©(ar) ando(a) © ®(b, x,,). Clearly the construc-

tion is natural ina, but demanding naturality ibtoo, amounts to splitting the opfibra-
tionP: Q - B.

21

Note that there is a special case of the theory of Definitions 4.5.1-2 in which we impose
the additional constraint on all concrete diagrantisaty, (mg) = ya(my) O X(mg, A) =
X(myg, A). We will not describe it in detail.

4.6 Arrow Abstract Diagrams and Interface-Diagram Categories

In this section we describe a construction for diagrams which is in many ways analo-
gous to the arrow category construction for ordinary categories. Using it enables us to
construct diagrams and categories over larger and larger shapes.

Definition 4.6.1 Letu be a shape graph. Thep s the shape graph given by:
Vertices: {({m, 0), (m, 1)| m O Vert()}

Edges: {€,0): (M 0) - (M,0)]e:m - m OEdg{)} O
{(,1):(Mm 1) - (M, 1)|]e:m - m OEdg{)} O
{(m, 01) : f, 0) - (m, 1)| m O Vert()}

If uis kinded, then 24 acquires kinds in the obvious way. The path category jpi<.
2.
Definition 4.6.2 Lety be a concrete diagram of shapen Cand letn:y - dbe a

concrete diagram morphism. Tharefines a concrete diagranmy®f shape 21 in C
as follows:

2.y((m, 0)) =y(m)
2.y(m, 1)) =5(m)

2Y((e,0): M, 0) » (M, 0)) =y(e:m - m)
2y¥((e, 1) : M, 1) » (m, 1)) =5(e:m - m)
2.y((m, 01) : n, 0) ~ (m, 1)) =n(y(m)) : (M) - 3(m)

We call 2y the arrow concrete diagram inducedrby

Definition 4.6.3 Letc: Dy - D4 be a morphism of maximal (kinded) abstract dia-
grams of shapg, mediated by a family of arrows, with associated functiog. Lety

be a concrete diagram B¥, andx(m, y) : y - c(y), with mranging over Veri{), be the
concrete diagram morphism winduced byc. Then according to Definition 4.6.2,
X(m,y) 1y - c(y) defines a concrete diagranyg.the arrow concrete diagram induced
by x, of shape 21

Let [2x,] denote the maximal abstract diagram (conforming to the kindsjgfcn-
taining 2x,. We call [2x,] the arrow abstract diagram induceddy

Lemma 4.6.4 The definition of [%,] is not affected by the specific choiceyof
Proof. By the naturality o€ and of the structure of abstract diagrams in genéral.

The arrow concrete/abstract diagram construction gives us a versatile tool for construct-
ing interface-diagram categories, next.

Definition 4.6.5 An interface-diagram category is given by the following data:

(1) Two (kinded) shapeg, andp, and two monic shape morphismg: p - U (that
preserve kinds).

22

(2) Acollection of concrete (resp. maximal (kinded) abstract) diagf@bpsf shape
p, and a collection of nonempty concrete (resp. maximal (kinded) abstract) dia-
gramsAIT of shapaql.

(3) For eachA in Arr, two concrete (resp. maximal (kinded) abstract) subdiagrams
induced bys andt, s(A) andt(A), both to be found i®bj.

(4) For eactO in Obj, an element ig of Arr.

() Afunction¥, which givenAgandA, in ArrandO in Obj, and a pastind\g0,A,
alongp via t(Ag) = O = s(A;) of Ag andA,, returns anA;0A in AIT with
S(A10A) = s(Ag) andt(A;0Ap) =t(A;); and such that the usual identity and as-
sociativity laws hold namely:

(i) ForeachO in Obj, s(idg) = O =t(idg).
(i) ForeachAin AT, A o idgay = A = idya) © A.
(lll) For all Al’ A2, A3 in Arr, (Al O A2) O A3 = Al O (Az O A3)

If we are using concrete diagrams, we refer to a concrete interface-diagram category,
while if we use abstract diagrams, we refer to an abstract interface-diagram category.

In an interface-diagram category the arrows are concrete (resp. maximal (kinded) ab-
stract) diagrams, and the objects are subdiagrams, the interfaces, along which two ar-
rows may be combined bB¥, hence the name. Note that were we considering all con-
crete (resp. maximal (kinded) abstract) diagrams as coexisting within one categorical
structure (eg. a Grothendieck category over change of base arrows), Definition 4.6.5
would be almost the definition of an internal category particularised to the case of dia-
grams, except that we choose to use pushouts (via pasting) rather than pullbacks as is
more conventional.

Proposition 4.6.6 Lety* be a shape graph, and (éiw be the family of all arrow con-
crete diagrams induced by concrete diagram morphisms between concrete diagrams of
shapeu*. ThenCzlw is an interface-diagram category as follows:

(1) Thep andp of the interface-diagram category ar@gi2andu* respectivelys:
p - Misthe subgraph of shape of 2.u* given by the 0-indexed vertices(0)
and the edges between them, likewisgp — M is the subgraph of shape of
2.u* given by the 1-indexed vertices and edges.

(2) Obj consists of concrete diagrams of shapeArr consists of the elements of
Copre-

(3) ForeactAin Arr, s(A) andt(A) are the subdiagrams of element£ef. select-
ed by the shape morphismandt via Definition 4.2.2.

(4) For eactD in Obj, idg in Arr is the concrete diagram of shap@2induced by
identity morphisms on concrete diagrams of shape

(5) GivenAg=yandA; =3in Arr andO in Obj, and a pastind\,[,A; alongp via
t(Ag) =0 =s(Aq) of AgandA, W takes the pastingo[,A; and returns the con-

crete subdiagram of shape 31* constructed as follows (note that this is a sub-
diagram construction as per Definition 4.2.1):

23

yo((m, 0)) =y((m, 0))
yo((m, 1)) =5((m, 1))
¥d((e, 0) : (M, 0) - (', 0)) =y((e, 0) : (m, 0) - (', 0))
yo((e, 1) : (M, 1) - (', 1)) =3((e, 1) : (m, 1) ~ (M, 1))
yd((m, 01) : fn, 0) - (M, 1)) =3((m, 01) : fn, 0) ~ (M, 1)) ©
y((m, 01) : fn, 0) ~ (m, 1))
and extending naturally to the path categopy 2.
Proof. Easy.©
Definition 4.6.7 Cz_w is the concrete interface-diagram category generatgel. by

Proposition 4.6.8 Let y* be a shape graph, and @1{2-11*] be the family of all arrow
abstract diagrams induced by abstract diagram morphisms between maximal (kinded)
abstract diagrams of shape ThenC[zm is an interface-diagram category as follows:

(1) Thep andp of the interface-diagram category ar@gei2andp* respectivelys:
p - pisthe subgraph of shape of 2.u* given by the 0-indexed vertices 0)
and the edges between them, likewisgp - p is the subgraph of shape of
2 u* given by the 1-indexed vertices and edges.

(2) Obj consists of maximal (kinded) abstract diagrams of shapdrr consists of
the elements dfp, -

(3) ForeachA in Arr, s(A) andt(A) are the subdiagrams of element<(gf . se-
lected by the shape morphissiandt via Definition 4.2.2.

(4) For eaclO in Obj, idg in Arr is the maximal abstract diagram of shapg*2n-
duced by identity morphisms on abstract diagrams of glrape

(5) GivenAgandA, in Arr andQ in Obj, and a pastind\o,A; alongp via t(Ag)
=0=5(Ay) of AgandA,, ¥ takes the pastingoJ,A; and returns the maximal
abstract subdiagram of shapg2given by taking all concrete diagramd of
shape 31 (and appropriate isomorphisms between them), constructed as in
clause (5) of Definition 4.6.6, from pastings ;0 in A0 pAl of compatible con-
sistent concrete diagrarggindd from Ag andA respectively. (Note that this is
a subdiagram construction as per Definition 4.2.2).

Proof. Easy.©
Definition 4.6.9 C[ZM is the abstract interface-diagram category generatge. by

The above results will provide powerful tools for the constructions we wish to make be-
low. Note the close analogy that has arisen between operations on concrete and abstract
diagrams.

5 Abstract Spans and Other Abstract Diagrams irGr

We now apply the preceding to the case wHgigGr, and in particular to spans. Spans,

i.e. coinitial pairs of arrows, arise in the algebraic theory of graph rewriting from two
independent sources. Firstly, graph productions are defined in the algebraic, double
pushout approach (Ehrig (1979)) as spans in the category of graphs. Secondly, in the

24

(Al (B] [C]

[A] [B] [C]
Fig. 7

definition of typed graph grammar morphisms in Corradini et al. (1996b), spans are
used to relate the type graph components of grammars.

We fix the shape digraph for spans tobe- ¢ — *, which we calln.
Until further notice, the kinds of all vertices will ze.

For the rest of the paper, we will frequently suppress names of arrows when they are not
crucial to the discourse or can be infered.

Definition 5.1 An abstract span is an abstract diagram of the fokin{ [B] - [C],
i.e. an abstract diagram of shapwith all kindsiso.

Definition 5.2 The categoryJp] is the interface-diagram category generated by

[Sp] is the category of abstract span morphisms. When we need to be explicit, we can
write a morphism of3p] using the notation
([Al ~ [B] - [C]) -[ab.c]-> ([A] ~ [B] - [C])

where -p,b,c]-> is a notationford: A - A,b:B - B, c: C - C'), three concrete
graph morphisms representing the abstract diagram morphism Abm [B] - [C]

to [A] « [B'] — [C]which generates the arrow abstract diagram that is the morphism
of [Sp] in question. Fig. 7 illustrates.

The local pullback construction of Definition 4.2.5 permits us to build another inter-
face-diagram category from abstract spans.

Definition 5.3 The category®r-Sp]is the interface-diagram category given by the fol-
lowing data:

(1) Thep andp of the[Gr-Sp] aren ande respectivelys: p - pis {* I- *;} while
tg — H|S{‘ |— ‘2}.

(2) Objis [Gr], graphs up to arbitrary isomorphisnitr is the object class ofj],
i.e. abstract spans.

(3) ForeactA=][A] - [B] - [C]in Art, s(A) andt(A) are the subdiagrama] and
[C] respectively.

(4) Foreachf]in Obj, idja in Arris [A] « [A] — [A] where the arrows are (iso-
morphism images of) identities @n

25

(5) GivenAg=[A] ~ [B] - [C] andA; =[C] « [D] - [E]in Arrand [C] in Obyj,
and a pastind\oU,A; alongp viat(Ag) = [C] = s(Aq) of AgandA,, W takes the
pastingAg,A; and returns the maximal abstract subdiagrafy(oA)ipp)n
of shape given by the following procedure:
() Form the local pullback offf] - [C] « [D] inside AgU,A;, yielding
[B] — [M] - [D] inside a bigger abstract diagrafy(1,A)p
(i) Let morphisma fromn to the shape of{o[1,Aq),p be given by:
{'1 |- ’1(0), ¢ - ¢, ®s |—> ‘2(1)}
where the (0) and (1) subscripts indicate the component of the pasting,
and with the obvious extension to edges.

(i) Let ((Ag0pADipp)y be the subdiagram yielded by
Proposition 5.4 [Gr-Sp] is a category.
Proof. Easy, by pullback properties)

The two methods of composition involving spans can be brought together in a single
structure.

Definition 5.5 A double interface-diagram category is a double category which is an
interface-diagram category with respect to both horizontal and vertical composition. A
double interface-diagram category is concrete or abstract according to whether the dia-
grams it is built out of are concrete or abstract.

For double categories see eg. Ehresmann (1963), Palmquist (1970), Bastiani and Ehres-
mann (1974); a tutorial treatment also appears in Gadducci and Montanari (1995).

Definition 5.6 The abstract double interface-diagram categbhy3r-Sp] has as dou-
ble cells abstract diagrams of the shape in Fig. 7, i.e. morphisn&bf As before we
write such cells aa = (([A] < [B] - [C]) -[ab,c]-> ([A] < [B] - [C])). Vertical
composition, of double cella = (([A] ~ [B] - [C]) -[ab,c]-> ([A] ~ [B] - [C])
anda = (([A'] < [B] - [C] -[a,b',c]-> ([A"] < [B"] - [C"])) is the composition of
[Sp], giving the double cell(},a) = (([A] « [B] - [C]) -[a.a,b".b,c’.c]-> ([A"] ~ [B"]

- [C"])). Horizontal composition}, of double cellsa= (([A] ~ [B] - [C]) -[a,b,c]->
(AT < [B] - [C]) andb = (([C] —~ [D] - [E]) -[cdel-> ([C] - [D] - [E])is
given by: pastinga andb along [C] — [C'], making two instances of the composition
of [Gr-Sp] (at primed and unprimed levels respectively), pasting in the abstract mor-
phism M] - [M'] noting that M] - [M'] is uniquely given by pullback properties and
the requirements of pasting; thus obtaining the double aglb) = (([A] ~ [M] - [E])
-lamel-> ([A] ~ [M] - [E]).

Proposition 5.7 [D-Gr-Sp] is an abstract double interface-diagram category.
Proof. Easy, if tedious, by pullback properties.
It is relatively easy if tedious to see that the standard interchange law for double cate-

gories a0,a)g,(bOb") = (@4b)L,(a'ib") holds.
The vertical arrows oflD-Gr-Sp] are abstract diagrams of shapé [[A'], i.e. abstract

graph morphisms, while the horizontal arrows Bf-(r-Sp] are the familiar abstract
spansp] « [B] - [C]. Objects of D-Gr-Sp] are graphs up to isomorphism]f The

26

identities of horizontal arrows are double cells whose vertical arrows are isomorphisms,
while identities of vertical arrows are double cells whose horizontal arrows are isomor-
phisms. ldentities of objects are double cells with both horizontal and vertical arrows
isomorphisms. These aspects will shortly prove useful.

6 The Opfibration [P]: [Gr *.Gr-Sp] - [Gr-Sp] and Others

A typed graph over a (type) graphG is simply an object of the comma category
(GriTG), i.e., a graph morphisi® — TG. As explained in the introduction, various
works (Corradini et al. (1996b), Ribeiro (1996), Heckel et. al (1997)) address, with var-
ious techniques, the issue of relating graphs typed over different graphs. By exploiting
an opfibrational framework, we propose a solution that aims at the greatest generality.
In this section we shall construct an opfibration which will later enable us to have for
each abstract type graph@], a fibre including all abstract graphs typed ovE@], and

where morphisms between abstract type graphs are abstract spans. The opfibrational
framework allows us to keep the natural non-determinism of this situation. Since this
section sets up technical results needed later, we will avoid refering to “typing” etc.,
prefering a more neutral terminology.

Definition 6.1 The categoryGr.Gr-Sp] is a horizontal subcategory ob-Gr-Sp],
(i.e. its objects are abstract graph morphisKjs$ [A], and its arrows are abstract span
morphisms), such that two additional properties hold for every arrow

(X ~ [Y] - [2]) -[ab.c]-> ([A] ~ [B] - [C]): (X] - [A]) ~ ([Z] - [C])
of [Gr.Gr-Sp] namely that:
(1) The left squarXYBAof each concrete diagram in the arrow is a pullback.

(2) The right arrowy — Z of the source abstract span of each concrete diagram in
the arrow is an isomorphism.

We write the second property &&= Z, and as a matter of convention we adopt the no-
tation

(Xl ~ [Y]= [2]) -[ab.c]-> ([A] ~ [B] ~ [C]))
to signify that both properties hold of the abstract span morphism in question.
Lemma 6.2 [GriGr-Sp] is an abstract interface-diagram category.

Proof. We just have to check that both additional properties hold for the composition
inherited from D-Gr-Sp]. For the first consider Fig. 8.

For any concrete diagram in the abstract compo¥if#)WandBCDM are pullbacks

by construction, andCDU s a pullback by hypothesis. Hen¥& CDUWis a pullback.

But thenYBCDMWis a pullback because the concrete diagram commutes. But then
sinceBCDM is a pullback, so mustBMWhbe, by pullback properties. Finally since
XABYis a pullback by hypothesis, the combinati&¥ABMWis a pullback, and this
gives the first property.

The second property is obvious from Fig. 8; the pullback of two “= " spans is an-
other such spano

27

[X] [v] [Z]

[Z]

[Al (Bl [C]

Fig. 9

Consider now the shape graph which has vertices {0, 1, 2} and edges {1- O,
11— 2,21~ *}. The related shape grapit.n has vertices {0, 1, 2, «;, ¢, *,} and
edges{li- 0,11 2,21- *, ¢ |» ¢, ¢ |> 5, 01> ¢, 11 ¢,* |5 ;1. The path
categories arg* andn*:n. The grapm*.n is like 2 with an extra vertex and dif-
ferent names. Fig. 9 illustrates an abstract diagram of sffape

As above we consider a special case of abstract diagrams of ghapgein which the
two properties stated in Definition 6.1 hold for the squé¥BAand the arrowy — Z
We will write abstract diagrams possessing these two properties as:

(X - M= 1[4 - [Z]) -[abcc]-> (Al ~ [B] - [C])
wherec: Z - Z' andc' : Z - C are representative arrows over-2* andx |- ¢, re-
spectively.

As before, we will build an abstract interface-diagram category with such diagrams as
arrows, but first we need a construction that will enable us to define the composition
functionW for them.

Construction 6.3 Let ([X] < [Y]=[Z] - [Z]) -[ab,c,c']»> ([A] ~ [B] - [C]) and
(Z] - [U]1=[V] = [V'])-[c.d.€.e']>(C] - [D] - [E]) be two abstract diagrams
of shapen* . n with the required properties, pasted alo@{ [- [C]. The abstract dia-

X V] = @ <— v

M -

(A B~ *p) [E]

Fig. 8

28

gram (X] — W= [V] - [V']) -[amg.e€']-> ([A] — [M] - [E]) of shapen*.n is
formed as follows (see Fig. 10).

1)

(2)

3)

(4)

(5)

(6)

Form the local pullback of4] - [Z] and [Z'] ~ [U'] giving [Z] ~ [U] and

[U] - [U], the latter with representative: U - U'.

Form the local pullback of] — [U'] and [U'] = [V'] giving [U] = [V] and

[V] - [V1], the latter with representaties V - V'

Form the local pullback ofY] = [Z] and [Z] ~ [U] giving [Y] ~ [W] and

(W] = [U].

Form the local pullback off] - [C] and [C] ~ [D] giving [D] ~ [M] and

(B] - [M].

Paste in\V] - [M], the unique (by pullback properties) abstract morphism that
makes the result commute.

Take the obvious subdiagram of shagien of Fig. 10 which yields the required
X « M= [V] - [V']) -[ame.e€']> ([A] ~ [M] - [E]).

Lemma 6.4 The abstract diagram built in Construction 6.X](- [W] = [V] - [V"])
-lame.e€'l-> ([A] « [M] - [E]), has the two properties of Definition 6.1.

Proof. Itis sufficient to note that sinc8CDU' is a pullback by hypothesis, a@@ U'U
is a pullback by construction, the#CDU is a pullback. Now the proof of Lemma 6.2
can be used unaltered®

Definition 6.5 The category®r *: Gr-Sp] is the abstract interface-diagram category
whose objects are abstract graph morphisdis{ [A], and whose arrows are abstract
diagrams (K] — [Y] = [Z] - [Z]) -[ab.c.c]-> ([A] ~ [B] - [C]) : ([X] - [A]) -
([Z] - [C]) of shapen*.n with [Y] = [Z] an abstract isomorphism. Composition is
according to théP implicit in Construction 6.2. Identities are arrows wit] [~ [Y]

= [Z] - [Z] all isomorphisms andy] — [B] — [C] also all isomorphisms.

_____________ [Vv'l =====\
[X] [Y] == [2] e T U] e V]
(2] < [U] ——V]
V'
A (o > (o) (€]

Fig. 10

29

Lemma 6.6 [Gr *,Gr-Sp] is an abstract interface-diagram category.

Proof. The detailed components making up Definition 4.6.4 are easy to check. The
only nontrivial part is associativity, which requires a somewhat tedious calculation us-
ing pullback properties©

We now come to the first main results of this section.
Theorem 6.7 The projectionR] : [Gr.Gr-Sp] - [Gr-Sp] that takes
((IX] < [YI=[2]) -[abe]-> (Al < [B] - [C]): ([X] - [A]) - ([Z] - [C])

to ([A] « [B] - [C]): [A] - [C]is a split opfibration, where all arrows dB[: Gr-Sp]
are opcartesian and belong to the splitting.

Proof. We easily see thd is a functor, so we need to check the conditions for opcar-
tesian arrows and the splitting. See Fig. 11.

—[V]

=l
M ———=1[D]

—

(A (6] ‘/[C] —

Fig. 11

To check the conditions for opcartesian arrows we paste the abstract diagkdnas ([
[Y] = [2]) -[ab,c]-> ([Al ~ [B] - [C]) and ([X] ~ [W] = [V]) -[ame]-> ([A] - [M]

- [E]) along [X] - [A], knowing that (A] — [M] - [E]) is the composition of @] —

[B] - [C]) and ([C] < [D] - [E]). This gives the solid part of Fig. 11. We need to
show that we can paste in the abstract diagrath { [U] = [V]) -[c,d,€]-> ([C] ~ [D]

- [E]), i.e. the dashed part of Fig. 11, in the appropriate way.

Since for any concrete representat¥éBYis a pullback by hypothesis avil - X —
AandW - M - B - AcloseX - A — B, we can paste in a uniqu&\] - [Y] by
pullback properties. Next we form the local pullback gf [- [C] ~ [D], giving [Z]
~ [U] - [D]. Since for any concrete representatvé~ Y -~ B - CandW - M -
D - CcloseB - C — D, we can paste in a uniquéf - [U] by pullback properties,
though we don't yet know it is an abstract isomorphism as illustrated.

Now XABYis a pullback as noted previously, ak&AMWis another, by hypothesis. So
YBMWis a pullback by pullback properties. Combining this with the pullbsié&CD
givesYBCDMWas a pullback, and tho&ZCDUW s a pullback. Sinc@CDUis a pull-
back by construction, we conclude thatYZUis a pullback by pullback properties.

30

This enables us to conclude that sin¥ 4= [Z] is an abstract isomorphism\] =
[U] must also be one. Henc®] = [V] is an abstract isomorphism as required. We
see that we have pasted iZ][~ [U] = [V]) -[c,d,€]-> ([C] < [D] - [E]) as needed.

We now present the opcleavage that gives a splitting. Given an ohj@ct([A]) of
[Gr. Gr-Sp], projecting down to the domain of an arrowA[[— [B] - [C]): [A] - [C]
of [Gr-Sp], we definex(([X] - [A]), ([A] ~ [B] - [C])) to be

(Xl < [YI=[Y]) -[ab.c]-> ([Al ~ [B] - [C]): ([X] - [AD) - (Y] - [C])
where [Y] comes from the local pullback oK] — [A] < [B]and [Y] = [Y] is the iden-
tity abstract isomorphism. That all arrows &itf: Gr-Sp] belong to the splitting follows
from the uniqueness of the local pullback construction noted above, and from the fact

that if [Y] = [Z] is an abstract isomorphism thef] = [Z] is just the same thing a¥]
= [Y]. We are done®©

Theorem 6.8 The projectionR.] : [Gr *.Gr-Sp] — [Gr-Sp] that takes
((X] = M= [Z] - [Z]) -[abcc]-> ([Al - [B] - [C]):
(X - [A) - (2] - [C])
to [A] — [B] - [C]:[A] - [C]is a split opfibration, where all arrows dBf * 1 Gr-Sp]
for which [Z] - [Z]is an abstract isomorphism are opcartesian and belong to the split-
ting.

Proof. This a marginally more elaborate version of the preceding. Againitis clear that
[P«]is a functor so we just need to check the opfibration condition and the splitting. See
Fig. 12.

U1

[Z] -

(A (6] ‘/[C] —

Fig. 12

31

For this we paste the abstract diagram§ (F [Y] = [Z] = [Z]) -[ab,c.c']> ([A] <

[B] - [C]) and (X] ~ [W] = [V] - [V"']) -[ame"€']> ([A] ~ [M] - [E]) along

[X] - [A], knowing that (A] ~ [M] - [E]) is the composition of @] — [B] - [C])

and ([C] ~ [D] - [E]), giving the solid part of Fig. 12. We need to paste in the abstract
diagram ('] < [U]1=[V] - [V'] -[c.d,e€]> ([C] < [D] - [E]), such thate” =

€ o e, and the relevanfyr *, Gr-Sp] composition properties hold.

The argument goes as per the previous theorem until the point that the local pullback of
[Z] - [C] < [D]is built. Here instead, the local pullback &' - [C] ~ [D] is
formed, followed by the local pullback oZ] = [Z] ~ [U']. Since] = [Z]is an
abstract isomorphism, the additional structure propagates through the rest of the proof
without difficulty and we leave the details to the reader.

For the splitting, we define(([X] - [A]), ([A] < [B] - [C])) to be

(X < [YI = [Y] = [Y]) -[ab,id,c]-> ([A] ~ [B] - [C]):
(X - [A) - (Y] - [C])
where [Y] is the local pullback ofX] - [A] — [B] as before. That this works, and that
all [Gr *, Gr-Sp] arrows with [Z] - [Z'] an abstract isomorphism are included, is for
the reasons quoted in the previous proof. We are done.

We see that modulo an extra mention of abstract isomorphi¥ps:[[Y], [Gr. Gr-Sp]

is the opcartesian subcategory &f[*: Gr-Sp]. So we have created the second opfi-
bration by identifying first the opcartesian arrows, and then enhancing this to include
further in-fibre arrows (the arrow&] - [Z], “in-fibre” implying that there is a mor-
phism [Z] - [Z] - [C]), and showing that this preserved the opcartesian properties.
This is an example of our nondeterministic analogue of the Grothendieck construction.

Consider the fibre inGr * : Gr-Sp] above an object4] of [Gr-Sp]. It consists of objects

[X] - [A] and of those Gr * . Gr-Sp] arrows that project down to identities 0A][in
[Gr-Sp]. Such arrows look like (K] — [X]=[X] - [X7]) -[xxidx]-> ([A] < [A] -

[AD) : ([X] - [A]D) - ([X] - [A]). There is clearly an isomorphism between these fi-
bres and the abstract interface-diagram comma categofi¥b: [R]) with objects

[X] - [A] and arrows K] - [X]suchthatK] - [X] - [A] commutes in the expected
way. Via this isomorphism, we can use the results of Section 4.5 to claim that whenever
we have a concrete diagram i3] [A]), and we choose an opcartesian arrow of
[Gr *. Gr-Sp] for each object in the diagram such that there is a common asrofv
[Gr-Sp] to which they all project, then this yields a concrete diagram morphism that is
opcartesian for all morphisms of the diagram which project to extensidns of

We make all this more precise in the following manner. For convenience we wil use
as a variable that ranges over the verticg® , *, of n. Let (2n).n be the shape graph
given by:

Vertices: {(@,),j)|# Of{ey, ¢,25}, i 0{0,1},j0{0, 1, 2}}

Edges: {((&,i),]), (#',1"),1)) | (#,1) 1> (#',1") an edge of B,
i0{0,1,2}} O
{(((%,1),]), ((#,1),j+1)) | (#,1) a vertex of A,
i j+10{0, 1, 2%}

32

and let (2n).n be its path category. Likewise let 2+%rand let (2n).n* be the shape
graph given by:
Vertices: {(@®,i),]) | % O{*q,¢,°5}, 10{0,1},j0O{0, 1, 2,*}}

Edges: {((&.i).)), ((#",1"),))) [(%,]) I~ (#',i") an edge of B,
jd{o,1,2,+}} O

{(((#,1),]), (#,1),j+1)) | (#, 1) a vertex of A,
jj+10{0, 1, 2,*}}

with path category (8).n*. Let (2n).n:n be the shape graph given by:
Vertices: Vert((27).n) O Vert(n)

Edges: Edg('(z_]ﬁ).n) O Edg@) O
{((%,0),)) 1> #"[(, #) 0{(0, *1), (1,4), (2,*2)},
& [{ey, 0,51 0{0 1}}

with path category (8).ntn. Finally let (2n).n*:n be the shape graph given by:
Vertices: Vert((2q).n*) O Vert(n)
Edges: Edg((@).n:n) O{((#,1),*) 1> <z [# O{*y, ¢, 2} i 0{0, 1}}

with path category (2).n*:n. Fig. 13 shows (the essentials of) an abstract diagram of

shape (21).n*1n. We will demand that the analogues of the properties of Definition
6.1 hold for such abstract diagrams, namely that:

(1) Ifany square in any concrete diagram of the abstract diagram has an arrow over
¢ |- ¢4, then itis a pullback.

(2) Any arrow over (&, i), 1) - ((#, i), 2) for some, i, in any concrete diagram
of the abstract diagram, is an isomorphism.

We introduce the following notation for the abstract diagram in Fig. 13:

(X < [Yol ~ [Za]) -[XoYoZal-> ([X0] < [Yo] - [Z0])) — [A]) -[ABG=
(X « [Ya] ~ [Zo]) -[Xay220]> ([X7] [Y7] — [Z57])) — [C]) -
(((X2] < [Y2] = [Z2]) -Ix2 Y2 2] ([X27] [Y27] ~ [Z27))) — [C])

33

where for brevity we may omit the middle row aside from “->". For an abstract diagram
of shape (27).ntn we omit “->” and the last row. Note that mention of theyzshaped
subdiagram projecting td@] is merely suppressed for brevity.

Definition 6.9 A triple interface-diagram category is a triple category which is an in-
terface-diagram category with respect to horizontal, vertical and perpendicular compo-
sition. A triple interface-diagram category is concrete or abstract according to whether
the diagrams it is built out of are concrete or abstract.

Now we introduce a triple category that will play a key role in the rest of the paper. The
triple category adds a perpendicular dimension (i.e. the change of bage8a]) to
the double categonyJ-Gr-Sp].

Definition 6.10 The triple category[D-Gr-Sp. Gr-Sp] has as triple cells abstract dia-
grams of shape (8).n:n. These may be combined using vertical, horizontal and per-
pendicular compositiori, [, [}, respectively. Vertical composition yields:

{(((Xl < [Yal - [Zo]) -[%0Yozal- ([Xo] <« [Yo1 = [Z0])) - [A]) -[ABG=
(X2 < Y2 - [Z]) -[X2Y2. 2] ([X2] < [Y21 - [Z2])) - [CD} O,
{(((IX0] < [Yol = [ZoD %Yo .20 1> (X0] < [Yo 1 - [Z07]) - [A]) -[ABg=>
(BT < [Y2] = [Z2]) -[%27 Y2z 1> ([X27] < [Y2] - [Z7]) - [CD)} =
{((M Xl < [Yal = [Zo]) -[%0"X0.Yo YoZo -zol-> ([Xo] « [Yo 1 - [Z971)) — [A))
-[ABJ=>
(Xl < [Y2] = [Z2]) [%0y2 Y222 2] ([X27] < [Y2] - [Z27]) - [C])}

Horizontal composition yields:

{((CVal « [Wal - [Xol) -[vowoXol-> ([Vo1 < [WoT ~ [Xo])) — [Al) -[ABG=
(V2] < Wal ~ [Xo]) -[vawoxol-> ([V2T] < [Wo] - [X5T])) — [C])} [h

{(([Xa] < [Yol ~ [ZdD) -[x0YoZl-> ([X0] < [Yol ~ [Zo])) ~ [A]) -[ABQ=>
(X2l < [Y2] - [Z2]) -D2y2zl-> ([X2] < [Y2] ~ [£7]) ~ [C])} =

{((CVal < [Val - [Zo]) -[VotioZol-> ([Vo] < [UgT — [Z0]) ~ [A]) -1ABG=
(V2] < [Ua] - [Z]) -[vaupz]-> ([V2] < [U2] - [227]) ~ [C]}

whereUg is a pullback oiVy - X5 ~ Yg etc. Perpendicular composition yields:

{((((Xal < [Yol - [ZoD) -X0Yoz0l-> ([Xo] < [Yo] ~ [Z0])) ~ [A]) -[ABg=
(X2l < [Ya] - [Zo]) -[X2y2.20]> ([X] < [Y2] - [Z27])) - [CD)} O
{(([Xa] < [Ya] = [Za]) -[X2¥2,20]> (X1 ~ [Y2] - [Z27])) - [C]) -[cDE=
(((Xa] < [Yal = [Za]) -[XaYarzal-> ([X4] < [Y4] = [247])) - [ED} =
{(((Xal < [Yol - [Zo]) -X0Yoz0l-> ([Xo] < [Yo] ~ [Z0])) ~ [A]) -[AME]=
(((Xal < [Yal = [Za]) -[Xayarzal-> ([X4] < [Y4] - [Z4]) - [ED}
whereM is a pullback oB - C — D.

(Horizontal-vertical) double cells are double cells BEGr-Sp)] over an abstract graph,

eg. (Xol - [Yal ~ [Zo]) [X0Yo.zdl> (X < [YoT - [Z6T)) — [Al); we do not de-
scribe the other two kinds of double cell here. Vertical arrows are abstract graph mor-
phisms over an abstract graph, el(E [X]) : ([X] = [A]) - ([X] - [A]); horizontal
arrows are abstract spans over an abstract graph)@g-([Y] - [Z]) : ([X] - [A]) -

([Z1 - [A]); perpendicular arrows are essentially arrowsGr.[Gr-Sp], i.e. abstract
changes of base of abstract graphs over an abstract graph,dg—~(([Y] = [Z])

34

-[ab,cl-> ([A] < [B] = [C]): ([X] - [A]D) - ([Z] - [C]). And by now it is clear that

the objects are just abstract graphs over an abstract graph, i.e. abstract graph mor-
phisms, eg.] - [A]).

Proposition 6.11 [D-Gr-Sp. Gr-Sp] is a triple interface-diagram category.

Proof. This is tedious if straightforward to show. There are three sets of identity and
associativity laws, and their degenerate cases. Furthermore there are 12 terms involving

different ways of assembling 8 smaller triple cells into a single large triple cell such that
every distinct pair yields an interchange law (the collection of which we do not ist).

Definition 6.12 The triple category[D-Gr-Sp* . Gr-Sp] has as triple cells abstract di-
agrams of shape (@).n*:n. As for [D-Gr-Sp. Gr-Sp], these may be combined using
vertical, horizontal and perpendicular compositign/4, [, respectively.

We do not go into details. These are essentially given by replaging> by -...]=>-
everywhere in the above.

Proposition 6.11 [D-Gr-Sp*:Gr-Sp] is a triple interface-diagram category.

The main results of this section are the following two theorems. These are to be under-
stood as asserting a unique factorising triple cell (i.e. double cell morpRigmijig. 4
whereey andey; in the figure are themselves triple cells that projedigendb, o by
respectively.

Theorem 6.12 The projectionRp. g..gp] : [D-Gr-Sp. Gr-Sp] - [Gr-Sp] that takes
(%ol < [Yal ~ [Za]) -DX0Yozl-> ([Xo] ~ [Yo - [Z9]) ~ [A]) -[ABG=>

(X2l < [Yal - [Za]) -[X2¥2.20]> (X [Y2] - [Z27]) —~ [C])
to ([A] < [B] - [C]) : [A] - [C] is a split opfibration, where all triple cells of
[D-Gr-Sp. Gr-Sp] are opcartesian and belong to the splitting.
Theorem 6.13 The projection Pp.g.gp+] : [D-Gr-Sp*: Gr-Sp] - [Gr-Sp] that takes
(%ol ~ [Yol - [Zq]) -[X0YoZol-> (X1 ~ [YoT - [Zg]) — [A]) -[ABQ=>->

((XT < Y21 = [Z]) -[%2' Y2 21> ([X7] ~ [Y2"] - [227])) - [C])
to ([A] < [B] - [C]) : [A] - [C] is a split opfibration, where all triple cells of
[D-Gr-Sp* . Gr-Sp] with all arrows over (&, i), 2) I- ((#, i), *) abstract isomorphisms
are opcartesian and belong to the splitting.
The proofs of these results simply adapt Theorems 6.7 and 6.8.
Remark 6.14 Note that we can think off)-Gr-Sp: Gr-Sp] as being presented in two
ways, hamely:
(1) Asgiven, i.e as a collection of triple cells of a certain shape possessing certain

properties.

(2) As a collection of triple cells given by choosing a double cell, a base span, and
opcartesian arrows over the span for all objects in the double cell.

Sections 4.5 and 4.6 convince us that these amount to the same thing. However for
[D-Gr-Sp*. Gr-Sp] we only have option (1). Given a choice of opcartesian arrexvs
tended by in-fibre morphisnier each object in a double cell does not allow us to con-
clude that they generate a double cell morphism.

35

7 Abstract Graph Rewriting

At this point it behoves us to reward the patient reader with some insight as to where the
preceding lengthy technical deliberations are leading us. Consider Fig. 13. It shows an
abstract double square typed over an abstract graplwiich is then transported
through a change of type, expressed by the abstract #jpan [B] - [C]. The double

square is intended to represent the result of an abstract graph transformation step such
as an abstract typed version of Fig. 2. Only a few details prevent us from declaring this
correspondence immediately.

We recall first that the productions used in graph transformation have both arrows mon-
ic. Secondly we remember that the double square ought to be two pushouts or two pull-
backs. We need some lemmas.

Lemma 7.1 InFig. 13, in the squarky XyYgYy supposeg — Yo, Xg < Yy are mon-
ic. Then inX;"X;Y1Y;™ (notillustrated)X; « Yy, X;~ < Y;™ are monic.

Proof. Consider the cub¥y ™ XgYoYg X1 "X1Y1Y1". The perpendicular arrow§ — X,
Xo < X7, Yo « Y1, Yo < Y17, (notillustrated) are constructed via the opfibration of
Theorem 6.7, yielding unique arrow§™ « Xq, X1 « Y1, Y17 « Y1, X" < Y77, such
that the four squares of the cube o¥er B are all easily shown to be pullbacks. Now
the monicity ofX; « Yy, X;” < Y;" is routine. ©

Lemma 7.2 InFig. 13, letXg XoYgYo be a pullback. TheX;"X;Y,Y; is a pullback.

Proof. By remarks in the preceding proof the cukgXyYgYy X1 X1 Y1Y,” commutes.
Bearing in mind that all arrows in the cube are oriented towaglswe just have to
show that forany - Xy, Q - Y thatcloseX; — X;"andY;™ - X;7, thereis a unique
Q - Yqthat factorQ — X;, Q - Y;". Butthisis an easy exercise in pullback proper-
ties. ©

Recalling now that ir5r, a commuting square with two monic parallel arrows is a
pushout iff it is a pullback and the two arrows with the same codomain are jointly sur-
jective, we have the following.

Lemma 7.3 In Fig. 13, letXy XgYoYy be a pushout witly — Yy, Xg~ — Yy~ monic.
ThenX;"X,Y1Y;™ is a pushout witiX; « Yq, X;™ « Y;” monic.

Proof. By the preceding two lemmas we quickly deduce %, Y,Y,™ is a pullback
with X; « Y1, X" « Y7{"monic. We just need to check joint surjectivity f — X;~
~ Y;". Thus for a contradiction suppose there is an item (vertex or edgedf X;,
not in the ranges ak; — X;~ « Y;". It must map byXg" « X;" to an itemqy” in the
ranges oKy — Xy~ « Yg which are jointly surjective; let us say itis in i - Xg).
So there is an itemg in Xg which maps undeXy — Xg~ to the sameyy” as itemq;” of
Xi” maps to undeXy™ — X;". But this means that there must be at least one ggin
X1 which maps tayg underXy — X; and tog;” underX; - X;~, contradicting our sup-
position, otherwis&y XgX1X;™ would not be a pullback. We are dorie.

With these results to hand we can fine-tune the opfibrations constructed earlier so that
they indeed act as required, secure in the knowledge that the opcartesian triple cells pre-
serve the requisite additional properties.

36

Thus we have the triple categof{Gr-MSp. Gr-Sp], in which the double cell domain
and codomain of a triple cell (over a type change morphism) are morphisms of monic
spans, and its associated categ@yQr-MSp*: Gr-Sp].

Furthermore, within [D-Gr-MSp. Gr-Sp] we can specialise to the triple subcategory
[D-Gr-MSp-bpPB. Gr-Sp], in which the double cell domain and codomain of a triple
cell are morphisms of monic spans which are furthermore pairs of pullbacks. This has
the associated categofp{Gr-MSp-ppPs* . Gr-Sp].

And going even further, we can identify withifDfGr-MSp-bpB. Gr-Sp] the triple
subcategoryD-Gr-MSp-bpPo. Gr-Sp] in which the double cell domain and codomain

of a triple cell are morphisms of monic spans which are pairs of pushouts, this having
the associated categop{Gr-MSp-bppc+ . Gr-Sp].

To avoid repetition, we will deal with both the pullback and pushout situations using the
notations D-Gr-MSp-bp#. Gr-Sp] and [D-Gr-MSp-Dp#* . Gr-Sp].

Note that one convenient byproduct of phrasing derivation steps in terms of the triple
categories[D-Gr-MSp-Dp#* 1 Gr-Sp] is that, from the interchange laws for triple cate-
gories, there immediately follow a vast number of commutativity properties relating
horizontal composition, vertical composition, and change of type for derivation steps.
The orthogonality of these three aspects of graph transformation in the presence of in-
jective productions would be hard to present otherwise without compiling an exhaustive
list. Furthermore we have as expected the opfibration properties.

Theorem 7.4 The projection Pp.g.vsp-ppd : [D-Gr-MSp-Dp#. Gr-Sp] - [Gr-Sp]is
a split opfibration, where all arrows oBJ-Gr-MSp-Dp#: Gr-Sp] are opcartesian and
belong to the splitting.

Theorem 7.5 The projection Pp_g.msp-ops+] : [D-Gr-MSp-Dp#+ 1 Gr-Sp] - [Gr-Sp]

is an opfibration, where all arrows dDFGr-MSp-pp#* . Gr-Sp] with with all arrows

over (@, i), 2) - ((%, i), *) abstract isomorphisms are opcartesian and belong to the
splitting.

With all this in hand, we can present our formal theory of type change in graph trans-
formation.

8 The Category of Typed Graph Grammars

For the purposes of typed graph rewriting theory, we consider abstract gfa|ghpéd

over an abstract type grapf@], or putting it another way abstract graph morphisms
[G] - [TG]. Changing the base type is done by means of an arbitrary abstract span eg.
([TGy < [TG] - [TGY]) : [TGy] — [TGy]. Therefore the results of the previous sec-
tions are applicable, and show us how the various entities and activities involved in
graph transformation, transform under such a change of typing at an abstract level.

Definition 8.1 The category of abstract typed graph grammé&a(ra] has the fol-
lowing constituents.

Objects: (rGl, [G], P, M) where:
[T@] is an abstract type graph,
[G] is an abstract start graph typed ovVEF],

37

i.e. an abstract graph morphis@][- [TG],

P is a set of production names,

1. P — HArr([D-Gr-MSp: Gr-Sp)) is a map fronP to
horizontal arrows of[D-Gr-MSp. Gr-Sp],
i.e. abstract typed monic spans, typed oVé]|

Arrows: ([TGy] « [TGy] - [TGy), 1) :
([TGql, [yl Po.) ~ ([TG,], [Gy], P, Th)
which is shorthand for a collection of arrows.
Firstly: an arrow of Gr-Sp], ([TGO] < [TG{] - [TG)) : [TGy] - [TG),
Secondly: an arrow ofJr: Gr-Sp],
(([Go] [GJl = [G,)) (9091, 92]'> (TGol « [TG{] - [TG)]):
[Gd ~ [TGd)) = ([GJ — [TGA),
WhICh projects undei[] to the first arrow,
Thirdly: an arrow ofSet, f : Py — P, i.e. a map,
Fourthly: for allp O Py a horizontal-perpendicular double cell of
[D-Gr-MSp. Gr- §

(o)) - [TGo]) {TGTG TG ([Tu(f(p)] ~ [TGy))
which projects undeP[D_Gr_Sp] to the first arrow.

Composition: (TG,] < [TGal — [TG4l, @) © ((TGy] < [TGy] — [TG,],) =
([TG < [TGy] - [TGy, g © f) where TG,] arises from
the composition of(r-Sp].

Identities: (TG] « [TG] - [TG], idp) : ([TG], [C], P, M) — ([TG], [G], P,),
where the arrows inlG] — [TG - [TG] are allisomorphisms.

Theorem 8.2 The projectionRgacral : [GraGra] — [Gr-Sp] such that

[PGraGra](([TG] [G], P, M) =[TG] and
[Peracral((TGol < [TGy] - [TGy), f)) = ([TGy] « [TGy] - [TGy))

is an opfibration, in which the arrowsTiGy] « [TG] - [TG,,) : (TG, [Gql, Po
) — ([TGy], [G4], Py,) such that is an iso irSet are opcartesian.

Proof. Let ([TGq] ~ [TGy] - [TGy], is0) : GGy - GG, be a putative opcartesian ar-
row, and suppose we have an arrolv@p] « [TGy] - [TGy], 9) : GGy - GG, whose
projection is an extension of (5] < [TGy] - [TGy]) by ([TGy] « [TGy] - [TGy)).
We have to find a unique TGy] ~ [TG3] - [TG4), ') : GG, -» GG, such that
GGO — GGZ — GG4 faCtOfSGGO - GG4

Luckily all of the hard work has already been done in Section 6. Firstly, the component
([TGy] « [TG3] - [TGyY)) : [TG)] - [TG,] is immediate. Secondly, the component
([G2] « [G4l = [G4)) -[92.93.94]> ([TG2l [TG3] - [TGY)) : ([G2l ~ [TG]) —

([G4] - [TGy)) arises uniquely sinceP}] : [GriGr-Sp] - [Gr-Sp] is an opfibration

and its opcartesian arrows agree with the start graph component of opcartesian arrows
of [GraGra]. Thirdly, the fact thaiso: Py — P, is an isomorphism means that the re-
quiremeny’ o iso=gfixesg' uniquely. Fourthly, for each O P,, we use the restriction

of Theorem 6.12 to horizontal arrows to find a uniqueg(p)] — [TG;]) -[TG,TG;TG,=>

([(Mu(@P)] - [TG4) : ((Me(P)] ~ [TGA]) ~ ((Mu(@(P))] - [TG4)). ©

38

Note that this opfibration is not split due to the absence of any canonical isomorphisms
in Set, but only for that reason. A choice of standard isomorphismSétyiras with the
corresponding construction f&t, would enable a splitting to be constructed.

As for constructions in preceding sections there is another category of graph grammars
[GraGra*], which in its arrows, uses the morphisms o&[*: Gr-Sp] and
[D-Gr-MSp* . Gr-Sp] in its second and fourth components respectively. The details are
so similar to those forGraGra] that we do not quote them in full. We merely set out

the opfibration theorem for completeness.

Theorem 8.3 The projectionRgagra+] : [GraGra*] — [Gr-Sp] such that

[Pcracra+)([TG], [C], P, M) = [TG] and

[PGraraI(([TGl « [TG] — [TGyl,) = ([TGyl « [TGy] — [TGy])
is an opfibration, in which the arrowsT(Gy] — [TG;] - [TG,l, f) : ((TGy), [Gql, Po
) - ([TGyl, [G,l, Py, T) such thaf is an iso inSet and all arrows over &, i), 2) I-
((%, 1), *) abstract isomorphisms, are opcartesian.

9 The Category of Transition Systems

In the sequel the abstract start graf} pf a graph grammar will just be a passenger;
we quietly carry it around to save having to have a fresh bunch of definitions for every-
thing. Also we rely purely on the fact that morphisms of monic abstract spans compose
well so that we use the symbol # to denote that we are dealing simultaneously with DPB
and DPO rewriting.

Graph transition systems are enriched graph grammars which include all the result
spans of direct derivation steps by their productions and such that the set of production
names supports a partial actibivy HvDCell([D-Gr-MSp-ppr#+ . Gr-Sp]), the (hori-
zontal-vertical) double cells of}-Gr-MSp-Dp#* . Gr-Sp]. For notational compact-
ness, we will write these double cells in future using a notation bikgl},ds], refering

to their alternative interpretation as abstract span morphisms, this in turn legitimising
the use of dom and cod in the next definition.

Definition 9.1 An abstract typed graph transition system is a quintugi&|[[G], P,
m, /) where ([TG], [G], P, ™) is an abstract typed graph grammar, dnd® x HVD-
Cell([D-Gr-MSp-Dp#* . Gr-Sp]) +- P satisfies:

(1) If dom([dy,dy,dg]) = [1(p)] thenp/[dy,dy,ds] is defined andri(p/[dy,dy,da])] =
cod([dy,ds,ds)),

) pllideyl = P,
(3) (p/[dy,dp,da])/[d',d'2,d' 3] = p/[d'.0y,d 2.0, 3.0g].

Definition 9.2 The categoryEraTS#] of abstract graph transition systems has as ob-
jects abstract graph transition systems, and as morphi3igg|(l- [TG;] - [TG,],) :

([TGO]; [GO]! PO! T[O! /O) - ([TGz]! [GZL P21 T[21 /2)1 Where ([I—GO] - [TG]J - [TGZ]!
f) is a morphism of the underlying abstract graph grammar, and such that fopgiach
Po and eachdg;,dg2,dp3l With pg/[dgs,d02,003] defined, we have adp;,d5,,dp4] With

[f(Po)/[d21,022,0>2]] defined andf{pg/[dgy,do2.doa])] = [f(Po)/[da1,022.024]]-

39

Obviously there is a forgetful functolJ#] : [GraTS#] — [GraGra] which just ignores
/. We now give the construction that will provide a left adjoint functob]]

Definition 9.3 Let GG = ([TG], [G], P, m) be an abstract graph grammar. Then the
abstract graph transition syste@TS#] = ([TG], [G], PP, u, /) is given by:

(1) PP={(p, [t.to.t3]) | p O P, and [y,t,,t3] is a horizontal-vertical double cell of
[D-Gr-MSp-bpP#. Gr-Sp] with dom(fty,to,ts]) = [T(p)]},

(2) [(p, [ty.t2t3]))] = cod([ty b t3]),

(3) If [o(p, [ty,txta]))] = dom([dy,dy,dg]) then @, [ty,t,ts])/[dy,d0,05] is defined,
equals p, [dl.tl,dz.tz,dg.t:g]), and thus flT[((p, [tl,tz,t:g])/[dl,dz,d?,])] = COd([dl.tl,
d.t5,d3.t3]).

It is obvious that GTS#] is an abstract graph transition system.

Theorem 9.4 The forgetful functor U#] : [GraTS#] — [GraGra] has a left adjoint

[TS#] : [GraGra] - [GraTS#] where the functor[S#](GG) = GTS# is given by Def-

inition 9.3 for objects, and is given for arrows by:

[TSHI(([TGql « [TGy] - [TGy, f) : GGy — GGy) is the unique morphism
((TGY] « [TGy] - [TGy], gp) : GTSHy — GTSH, in [GraTS#] such that
for all pin Py, gp((p, [id[rpy])) = (F(P), [id[rt(p)y;])

Proof. Define the universal arrow: GG - [U#]([TS#](GG) = GTS#) for an abstract

graph gramma6G = ([TG), [G], P,) by:
u:GG - [U#(GTSH) = ([TG] ~ [TG] - [TG], in)

where (TG] — [TG] - [TG)) is an identity in [Gr-Sp], andin(p) = (p, [idp]). Given

amorphisnf: GG - [U#|(TT) = ([TGy] « [TGy] - [TGy], fp) into the forgetful im-

age of some abstract transition systé&fj we must show that there is a unique mor-

phismg : [TS#](GG) - TT such thaf = [U#](g) o u. See Fig. 14.

f
GG — = [U#(TD TT
u [U#1(g) g

[U#(GTS#) [TS#|(GG) = GTS#

Fig. 14

Let g be the unique morphismTGg] « [TG] - [TGyl, Op) : GTS# — TT such that
forall pin P, gp((p, [id[mpy])) = (f(p)/[id[mf(p))]]). Thatg exists can be seen as follows.
Firstly, we can make the triangle in Fig. 14, restrictitd#](g) to the imageu(GG),
commute. This we do just by settint#](9)((p. [id[rgpy D)) = f(p) for all pin P. Sec-
ondly, we extend this uniquely to all J#]|(GTS#) as follows. For all typed abstract

40

monic spanstgrs#((p, [dy,dp,d3])), we choose the unique typed abstract monic span
(X1 < [Y] - [2]) - [TGy]) over [TG,] arising from the split opfibrationF[D_Gr_sp],
such thatfigrsu((p. [dy,02.0a])) -[TG5TG,T6= (([X] [Y] - [Z]) — [TG,])) is a hor-
izontal-perpendicular double cell, this being consistent with the choice already made.
Now [dy,dy,d3] : Tig7s4((P, [id[rpy])) — TieTsu(P, [d1,d0,03])) is atyped abstract mon-

ic span morphism, therefore the split opfibrati&b[Gr_sp] enables us to find a unique
[tl,tz,tg] . nTT(f(p)/[ld[T[(f(p))]]) - (([X] — [Y_l — [Z]) — [TGQ]), enabling us to simul-
taneously deduce that [— [Y] - [Z]) - [TG,]) is a typed production of J#](TT).
This gives U#1(g) : [U#1(GTSD) - [U#|(TT). We now setgp((p, [dy,d5,d3])) =
(f(E)/[id gy D)/ Tt total = gp((Ps [idmpyD)/[tatats]. Itis clear that all the required
equations hold so that we hage [TS#](GG) - TT. (So in the end we accomplish the
whole thing in the reverse order to what one might expé>.)

The above construction of the uniggevas rather drawn out — we could simply have
invoked FD_G,_Sp] directly and left it at that — the slower more detailed presentation
was for convenience later, in Section 11. Now Definition 9.2, which describes how the
extra structure in an abstract graph transition system behaves under morphisms, makes
the following expected statement evident.

Theorem 9.5 The obvious projectionAg 14 : [GraTS#] - [Gr-Sp] is an opfibra-
tion, where all arrows [[Gy] « [TGy] - [TGy], f) : (TG, [Gql, Po T, /o) — (TG,

[G,], Py, ™, /5) such thaf is an iso irSet are opcartesian.

At this point the reader will be expecting the usual * version of the preceding results,
but he will be disappointed. Although there is an opfibration result which we quote
shortly, the adjoint construction fails. The reason is the point alluded to at the end of
Section 6, namely that whereas a diagram extended by a bunch of opcartesian arrows
can generate a diagram morphism as in Section 4.5, extending by a bunch of opcartesian
arrows themselves extended by in-fibre morphisms, in general will not do so. Viewing
the structure of the productions in an abstract graph transition system as a “large dia-
gram”, shows that the construction g@fin Theorem 9.4 would not go through in the
more general case. This breakdown also explains why we have been careful to present
separately results including and not including in-fibre aspects hitherto.

Now taking the definition of GraTS#*], the category of abstract graph transition sys-
tems whose morphisms use the morphism&f | Gr-Sp] and [D-Gr-MSp*. Gr-Sp],
for granted, we have the following.

Theorem 9.6 The obvious projectionHga7su+] : [GraTS#* — [Gr-Sp] is an opfi-
bration, where all arrows T(Gy] « [TGy] - [TGyl, f) : ((TGgl, [Gql, Po, T, /o) —
([TG,l, [G,], P,, T, I5) such thaf is an iso inSet and all arrows over &, i), 2) - ((%,
i), *) abstract isomorphisms, are opcartesian.

10 The Category of Derivation Systems

Now we can further enrich our transition systems, with an opergtiohhorizontal
composition on production names, inherited from the corresponding property of

[D-Gr-MSp. Gr-Sp].

41

Definition 10.1 An abstract graph derivation system is a sextupl&[[[G], P, T, /,
;) where (TG, [G], P, 11, /) is an abstract graph transition system, and® x P +. P
satisfies:

(1) Ifm(p)=[A] < [B] - [C]andT(q) =[C] ~ [D] - [E] thenp,q is defined and
m(p,;q) = [A] — [M] - [E], whereM is a pullback oB -~ C — D

(2) If(p)=[A] ~ [B] - [C]thenP contains gy With T(p;) = [A] ~ [A] - [A],
an identity name such thax, p = p, and also a similar identity nanpgg) with
T(pc)) = [C] < [C] - [C] andp;pj) =P

(3) , is associative

(4) 1 both (9, 6)/([s1.52.80] Chlta.toutal) and @/[sy,52.56]); @[ty tats]) are defined
then 6; a)/([sy.52.831 Chlty.tatal) = (P/[s1,52,53]) ; (Tt total)
Definition 10.2 The category GraDS#] of abstract graph derivation systems has as
objects abstract graph derivation systems, and as morphis@g (- [TG;] - [TG)],
f): (TGl [Gol, Po To, /0, 30) ~ (TG, [Gol, Py, T, /, 52), where (TGl « [TGy]
- [TGy], f) is a morphism between the underlying abstract transition systems, such that
for each identity nampy 4 in Py, f(p4)) is an identity name, and for eaghy @) pair de-
fined for, o, we have(p, o) = f(p), »f(Q).

As in Section 9 there is a forgetful functov§] : [GraDS#] — [GraTS#] which just
ignores, . We now give the construction that will provide a left adjoint functoife].

Definition 10.3 Let [GTS#] = ([TG], [G], P, 11, /) be an abstract graph transition sys-
tem. Then the abstract graph transition syst@®§#] = ((TG|, [G], PP, 10, /pp ; pp)

is given by firstly, constructin@PP, Tuut, /ppp and; ppp as the smallest sets satisfying
the following properties:

(1) (p)isin PPPfor pin P, andmouy(p)) = 1(p); and whenevep/[d;,d,,d5] is de-
fined, (0)/pppld,da.d3] = (p/[dy,dz,dg]), (and To((p)/ppeldy dp,dg]) = cod(
[d1,d,d3]))

(2) (pap) and @ycp) are inPPP for eachp in P with 1(p) = [A] ~ [B] - [C], and
m((ppay) = [Al ~ [Al - [AlandTmm((p))) = [C] [C] ~ [C] both identity
abstract spans, andui((pja)), ppe(P)) = TITL(P)) = TUTY(P), ppR(P(c))); and

whenever p] = dom([d]), (pjap)/ppA d.d.d] = (Peod@): (@NATITY (Peodq)) =
cod([d.d,d))), and similarly for fyc;)

(3) (p,g) isinPPPfor p, gin PPPsuch thattutip) = [A] — [B] - [C] andTuuip)
=[C] < [D] - [E]; (p, 9) = p; pppd, andTuw((p, q)) is given via the local pull-
back of rru(p) and root(g); and whenevep/ppps1,5,,83], d/ppHty s ta] and
[s1,5,al Chita,to.t3] are defined, g, a)/pppS1,5,S3] Chlts,to.ts] is defined and
T0m((p, Q) ppr{S1,52,831 Chlta ta:tal) = cod(fy,S,S3] ity o ta])

And then secondly, lettingP, Tut, /pp and; pp be given by taking®PPR, T, /pppand

;ppp modulo the Composition |aV\p([d1,d2,d3])/ppp[d'l,d'z,d'3] = p/ppp[d'l.dl,dlz.dz,

d'3.d3] and identity Iawp/pppidn(p) = p, and the associative law ({pppB); pppC) =

(A, ppr(B, pppC)) and identity lawspix)); ppe(P) = () = (0); pPR(P[C))-

Itis clear that GDS#] is an abstract graph derivation system.

42

Note that as our constructions are based on propertidS-&1-MSp: Gr-Sp], the in-
terchange laws ofGraDS#] contained within the span-transition lemma of Corradini
et al. (1996b), derive directly from those of the subcategod@<5r-MSp-DpP#.
Gr-Sp].

Theorem 10.4 The forgetful functor V#] : [GraDS#] - [GraTS#] has a left adjoint
[DS#] : [GraTS#] — [GraDS#] where DS#](GTS#) = GDS# is given by Definition
6.3 for objects, with the unique extension for arrows.

Proof. Define the universal arrow : GTS# - [V#]|([DS#|(GTS#) = GDS#) for a
concrete transition syste@TS# = ([TG], [G], P, , /) by

v:DG - [V#(GDSH) = ([TQ] - [TC] - [TC], in)

where (TG] — [TG] - [TQ)) is an identity in [Gr-Sp], andin(p) = (p). Given a mor-
phismf: GTS# - [V#](TT) = (TGy] ~ [TGy] - [TGy], fp) into the forgetful image
of some derivation systeriT, we must show there is a unique morphigm[DS#](
GTSH#) — TT such thaf = [V#](g) o v.

Letgbe given by (TGy] ~ [TGy] - [TG;], gp) : GDS# — TT such that for alpin P,
gp((p)) = fp(p), extending by, to the whole ofGDS#. It is clear that the required prop-
erties hold.©

Finally we have:

Theorem 10.5 The obvious projectionHg,psa : [GraDS#] — [Gr-Sp] is an opfi-

bration, where all arrows {[Gg] « [TGy] - [TGy], f) : ((TGql, [Gql, Po, o, /0, 10 —
(TG, [G,], Py, T, /5, ;) such thaf is an iso irSet are opcartesian.

11 Weakened Approaches

The preceding sections presented what was undeniably the simplest and most appealing
treatment of its subject matter known to the authors thus far. By adhering to the greatest
level of abstraction possible for graphs, spans, and morphisms of these under various
operations, all the irritations of other approaches were neatly sidestepped. In particular,
maximal abstraction, when properly expressed, makes various operations deterministic
which in a less abstract setting would not be so, and this avoids a number of ungainly
constructions designed to overcome this difficulty.

In this section we discuss the relationship between our treatment and what is obtained,
both when one takes a less abstract perspective within our own technical context, and/or
also when the more traditional technical route to abstraction is utilised, namely equiva-
lence classes.

Essentially there are two areas that merit discussion, largely orthogonal to one another.
The first concerns the entities to be manipulated and the purpose of the manipulation.
The second is the technical strategy used for the manipulation. For the first area we
have:

(A) Graphs as entities to be rewritten, and spans as productions and as transitions/
derivations.

(B) Graphs as type information, and spans as the mechanism for type change.

43

These are largely independent aspects. For the technical strategy area we have two es-
sentially independent considerations to think about. The first concerns the level of ab-
straction at various vertices, giving:

1. Abstraction up taso at all vertices of all diagrams; the abstract variant.

2. Abstraction up tatd at selected vertices, and standard isomorphisms; the stand-
ard variant.

3. Abstraction up tal at selected vertices; the individual variant.

4. Abstraction up taetd at all vertices, and standard isomorphisms; the fully stand-
ard variant.

5. Concrete diagram techniques based on abstract objects and arrows.
More or less independently we have:

(i) Abstract diagram techniques, including in particular interface-diagram categori-
cal techniques.

(i) Pseudoabstract diagram techniques (see below), or equivalence classes.

As is clear, we have used strategy 1.(i) to formulate both aspects (A) and (B) in this pa-
per. Inthe rest of this section we will see that by forgetting various aspects of the theory,
we obtain alternative accounts of the phenomena discussed, corresponding to other pos-
sible strategies. Of course where there is some forgetting going on, there is always a
left adjoint lurking nearby, and we comment briefly on this at the end. To simplify what
follows, we will continue to treat (A) and (B) together, and to stick to strand (i) until
further notice.

Now for strategy 2.(i), let us consider using graphs up to standard isomorphisms as the
entities to be rewritten and as type information. More specifically, we take abstract
graphs to be abstract diagrams of kiatlover a one vertex shape graph, iBL Since

span composition figures at both horizontal composition level and at type change level,
spans must still be abstract diagrams kinded&S{ [B] - [C0), and span morphisms
must be the evident generalisation, i.e. abstract diagramsli&e«{ [B] - [CO
-[a,[b],c3 (A0~ [B'] - [@'Din an evident notation. In general, because certain iso-
morphisms are no longer available to us, two concrete diagrams, which differ only by
the use of such a forbidden isomorphism at one vertex say, may no longer both be ob-
jects within the same abstract diagram. Our abstract diagrams thus become smaller.

Looking to other key elements of the theory, we must replace the categbr{s(-Sp]

by a categoryGr. Gr-Spfwhich relates typed graphs upsia, (XO- [A[Jto other such
typed graphs[YO- [C[]via diagrams with kindstd andiso like ((XO« [Y] = YD)
-[@,[b],c3® ([AD- [B] —» [CO). Note that [f] and [YUrefer to the same collection of
graphs but with different permitted internal structure. The vital category that describes
how type change affects transition sted3; Gr-MSp. Gr-Spy, is replaced by the cate-
gory (D-Gr-MSp. Gr-Sprj which relates typed abstract monic span morphism double
cells like ((XO< [Y] - ZO-&X,[y],z2 (X O [Y] - D) - [ADto similar such
cells, by the evident type change operation, which we writexasce=> for brevity.

44

The details of this strategy 2.(i) variant are much like those of the 1.(i) variant with two
crucial differences. The firstis that the shrinkage of abstract diagrams in general, forces
a loss of splitting in the analogous opfibration theorems, since there is no longer a ca-
nonical choice of opcartesian arrow, given a base category arrow and an object over its
source. Specifically, Theorems 6.7, 6.8, 6.12, 6.13, 7.4, 7.5, still hold, but without the
claims of a splitting. The second is that the left adjointin Theorem 9.4 becomes a weak
left adjoint. This is easy to see from the structure of the proof which exploited the split
opfibration of Theorem 6.12. A modified proof can be modelled on the given proof
(which is why it was presented that way); but instead of having for egsfs.((p.
[dq,d,,d3])) a canonical abstract monic sparX|[— [Y] - [Z]) - [TG,]) as described,

we would have for eachigrsy((p, [d,[d5],d30) as it would be, a number of possible
((XO< [Y] - ZO - OG0, obtained through different choices of opcartesian arrows
for Tigsu((p, [dq,[d5],d30) and the TG0~ [TG] - OG0 base arrow. The totality

of these would make up the class of arrows for the requisite feeble functor.

Next, for strategy 3.(i), we use individual concrete graphs as as the entities to be rewrit-
ten and as type information. Since span composition figures just as much in this variant
as in the others, spans must be abstract diagrams with RindgB] - C, and span
morphisms appear thud (- [B] - C) -a,[b],c-> (A" « [B] - C')in a selfexplanatory
notation. Our theory becomes affected by three connected things.

The first thing is a dramatic fragmentation phenomenon. For example, two graph gram-
mars with isomorphic but non-identical start graphs, and identical in all other respects,
must be considered as distinct entities. This is deeply unsatisfying in a theory of graph
transformation. The same phenomenon touches other aspects of the theory. Thus the
category (. Gr-Sp] must be replaced b§r. Gr-Sp which relates individual concrete
typed graphX - Ato typed graph¥ - C via diagrams kinded asX(— [Y] =)
-a,[b],c> (A < [B] - C)), where [Y] is the isomorphism class of graph Likewise
[D-Gr-MSp. Gr-Sp] is replaced by the categofy-Gr-MSp. Gr-Sp which relates
typed monic span morphism double cells{((¢ [Y] - 2) -x,[y],z> (X" < [Y] - Z2))

- A) to similar such cells by the analogous type change operation writtexigas=>

for short.

The second thing is the cardinality explosion associated with this fragmentation. Since
the isomorphism class of a graph is indeed a proper class, we see the consequences in
the theory of graph transformation. As well as a proper class of graph grammars with
isomorphic but non-identical start graphs, and identical in all other respects etc. etc., we
have to recognise that the production name component of a graph grammar must itself
become a proper class in general. This is forced on us by the transition system construc-
tion, which requires a separate production nafe,,[d,],ds) for each span morphism
(dq.[d5],dg) with & given domain. Since these constitute a proper class because part of
the morphism is concrete, the requirement for proper classes of production names fol-
lows immediately — even when we restrict attention to graph grammars that are other-
wise completely finitistic. This too is deeply unsatisfying, and the only way of avoiding

it is by some global choice mechanism, that suppligé(d;,[d,],ds) for only some
(dq,[d5],dg), carefully specified.

45

The third thing, a consequence of the preceding two, is the nondeterminism that arises
whenever the result of some operation is allowed to be any one graph out of an isomor-
phism class, and there is no a priori way of forcing the choice. This nondeterminism is
noteworthy, but by no means as undesirable a feature as the other two. Its consequences
are familiar from variant 2.(i), namely the loss of splitting in the split opfibrations of the
same theorems as were quoted for variant 2.(i), and the weakening of the left adjoint in
Theorem 9.4 to a weak left adjoint. Note that whereas in variant 2.(i) there was no am-
biguity about the target of putative splitting arrows, there merely being more than one
such arrow to consider in general, in the present case, because of the greater fragmen-
tation, there is ambiguity even about the target, each distinct isomorphic graph provid-
ing a distinct target. So the failure of splitting is more dramatic.

Similar remarks apply to the weakening of the left adjoint. Instead of having for each
Tigs:((p, [d1,05,d3])) @ canonical abstract monic sparX{[— [Y] - [Z]) - [TG,]) as
described, we would have for ea rsx((p, (d1,[do],d3))) as it would be, a myriad pos-
sible (X < [Y] - 2) - TGy), differing amongst themselves in their choice of isomor-
phic variants ofX andZ. The totality of these would make up the class of arrows for
the requisite feeble functor. This outlines the main features of the individual variant.

The fully standard variant, 4.(i), where we take all vertices of all diagrams to be of kind
std, is a little different in character. We run into the difficulty that horizontal composi-
tion of spans is doggedly only up to arbitrary, not standard, isomorphisms. Therefore
we cannot take a span as a single abstract diagham [BO- [CC] but must take the
collection of such, indexed by the group of automorphismB atcording to Lemma
4.4.3. This we can write d&\0- {(B[J - [C[io indicate that several abstract diagrams

of kind std are being considered simultaneously. Of course this can be viewed as noth-
ing more than a mild repackaging of the 3.(i) variant, done by discarding just those con-
crete diagram morphisms that use isomorphism8 débrbidden by the kindstd
retriction, so we do not go into detail.

Now consider the fact that throughout the whole of Sections 8-10 we never made seri-
ous use of the concrete diagram morphisms inside an abstract diagram. If we take an
abstract diagram and forget all the concrete diagram morphisms between its objects, we
get a discrete functor category. We call this a pseudoabstract diagram. An equivalent
way of viewing a pseudoabstract diagram is as just an equivalence class of concrete di-
agrams, the elements of which are related by the claim aéxtrstencef (one or more)
suitable natural transformations (rather than these natural transformations being part of
the data defining the entity, as is the case for abstract diagrams). It will not take the
reader long to realise that we could redo the whole of Sections 8-10, for variants 1-4
described above, using an easily imagined theory of interface-pseudoabstract-diagram
categories (or its equivalent, a theory of pasting etc. of appropriate equivalence classes).
This gives us strand (ii) in the overall scheme outlined above. We note that in strand (ii)
there is almost no difference between variants 3 and 4, since a variant 3 description will
be based on a collection of equivalence classes, while the corresponding variant 4 de-
scription will be based on its union.

This discussion brings us to the final variant of the theory, variant 5, using concrete di-
agrams built out of abstract objects and arrows. There is not much to say here due to

46

the comprehensive exposition of relationships between such concrete diagrams and
their abstract counterparts in Section 4.3. The most direct route to this variant is via the
4.(i) variant, which is cast in terms of abstract diagrams completely of &indSuch
abstract diagrams (and also collections of them, as required), are readily turned into
concrete diagrams built out of abstract objects and abstract arrows using the functors
Dﬁtd" for various shapeg. Thus for example, typed graphs become concrete arrows
(GT- TGN : [GUO- [TGL Spans on the other hand, because of the necessity for hori-
zontal composition, must remain collections of concrete spans which we can write by
analogy with variant 4.(i) asA® —~ {BT - CT: [AO- [CO Similarly for the remain-

ing aspects of the theory. This completes the taxonomy of alternative variants of our
theory.

Of the variants discussed, the ones featuring graphs &tp o various ways, allow us
connect the present theory to that in eg. Corradini et al. (1994a,b,c, 1996a,b). In partic-
ular, isomorphisms up texd are required to properly distinguish individual events
through concurrent executions of graph grammars.

Finally we point out that given that we have generated all our variants by forgetting
some aspects of the original theory, and these aspects (specifically, the diagram mor-
phisms in question) were characterised by the canonical property of maximality, there
will be left adjoints to the forgetful functors that simply reinstate the forgotten structure.
The workings of these left adjoints will be quite straightforward, so we do not pause to
elaborate the details.

12 Conclusions

In the preceding sections we set up a general framework for reasoning about how typed
diagrams of different kinds behave under change of typing, where the change of typing
is controlled by a span, and the crucial observation turned out to be that the behaviour
of diagrams is exactly captured by an opfibration over the type change category. Dif-
ferent graph rewriting phenomena were then reduced almost entirely to choosing the
right kind of diagram to work with to describe the situation in question. We were able
to define a notion of graph grammar, and then via appropriate free constructions, to ob-
tain notions of transition and derivation system that captured various ways of manipu-
lating the grammar data algebraically. Much of this work can be seen as extending the
double category nature dD-Gr-Sp] to the triple categoried)-Gr-MSp- bp# Gr-Spy,

and thence to the richer situation in which production names are present and must be-
have properly. Provided we adhered to the maximum level of abstraction, everything
went smoothly. Alternative treatments, somewhat more in the spirit of existing work,
emerged in the preceding section by a process of forgetting various concrete diagram
morphisms. The one message that emerges clearly from this work is that in examining
guestions of abstractness where the subject matter is categorical, functor categories pro-
vide the most convincing approach, and treatments involving equivalence classes can
be smoothly recovered from them post hoc.

47

13 Acknowledgements

The work reported here was initiated while the first author was on leave at the Computer
Science Department of the University of Pisa. The hospitality of that department, and
the financial support of the British Council, the Consiglio Nazionale delle Ricerche, and
the Staff Exchange Scheme of the European Commission’s ERASMUS programme are
gratefully acknowledged. The second author is partly supported by the EC TMR Net-
work GETGRATS (General Theory of Graph Transformation Systems), and by the EC
Fixed Contribution Contract No. EBRFMBICT960840.

References

Banach R. (1993); A Fibration Semantics for Extended Term Graph Rewritn@erm Graph
Rewriting: Theory and Practice. Sleep, Plasmeijer, van Eekelen (eds.), 91-100, John Wi-
ley.

Banach R. (1994); Term Graph Rewriting and Garbage Collection Using Opfibrations. Theor.
Comp. Scil3129-94.

Banach R. (1995); DPO Rewriting and Abstract Semantics via OpfibrafimnBroc. SEGRA-
GRA-95, Corradini, Montanari (eds.), ENTCS Elsevier,http://www.elsevi-
er.nl/locate/entcs/volume2.html . Extended version: University of
Manchester Dept. of Computer Science Technical Report UMCS 9648-1,
tp://www.cs.man.ac.uk/csonly/cstechrep/Ab-
stracts/lUMCS-96-8-1.html

Bastiani A., Ehresmann C. (1974); Multiple Functors I: Limits Relative to Double Categories.
Cabhiers de Topologie et Géométrie Differentielle545-621.

Barr M., Wells C. (1990); Category Theory for Computing Science. (1 ed.), Prentice-Hall.

Bauderon M. (1995); Parallel Rewriting of Graphs Through the Pullback AppraacRroc.
SEGRAGRA-95, Corradini, Montanari (eds.), ENTQEIsevier,http://lwww.el-
sevier.nl/locate/entcs/volume2.html

Corradini A., Ehrig H., Léwe M., Montanari U., Rossi F. (1994a); Note on Standard Representa-
tions of Graphs and Graph Derivationia: Graph Transformations in Computer Science.
Schneider, Ehrig (eds.), L.N.C.57/6104-118.

Corradini A., Ehrig H., Léwe M., Montanari U., Rossi F. (1994b); Abstract Graph Derivations in
the Double Pushout Approadhn: Graph Transformations in Computer Science. Schnei-
der, Ehrig (eds.), L.N.C.S.7686-103.

Corradini A., Ehrig H., Léwe M., Montanari U., Rossi F. (1994c); An Event Structure Semantics
for Safe Graph Grammarm: Proc. I.F.I.P. Working Conference PROCOMET-94, Old-
erog (ed.), 423-446.

Corradini A., Ehrig H., Léwe M., Montanari U., Rossi F. (1996a); An Event Structure Semantics
for Graph Grammars with Parallel Productioims.Proc. Fifth International Workshop on
Graph Grammars and their Application to Computer Science 1994, Williamsburg U.S.A.,
Cuny, Ehrig, Engels, Rozenberg (eds.), L.N.G#&.3240-256.

Corradini A., Ehrig H., Léwe M., Montanari U., Padberg J. (1996b); The Category of Typed
Graph Grammars and its Adjunctions with Categories of Derivation$roc. Fifth In-
ternational Workshop on Graph Grammars and their Application to Computer Science
1994, Williamsburg U.S.A., Cuny, Ehrig, Engels, Rozenberg (eds.), L.NID&56-74.

Corradini A., Montanari U., Rossi F., Ehrig H., Heckel R., Léwe M., (1997); Algebraic Ap-
proaches to Graph Transformation Part I: Basic Concepts and Double Pushout Approach.

48

in: Handbook of Graph Grammars and Computing by Graph Transformation. Rozenberg
(ed.), 163-245.

Ehresmann C. (1963); Catégories Doubles et Catégories Structurées. C. R. Acad. S@5Paris,
1198-1201.

Ehrig H., Pfender M., Schneider H. J. (1973); Graph Grammars: an Algebraic Apphodetoc.
I.E.E.E. Conference on Automata and Switching Theory, 167-180.

Ehrig H. (1979); Introduction to the Algebraic Theory of Graph Grammars (A survey).
L.N.C.S.731-69, Springer, Berlin.

Ehrig H. (1987); A Tutorial Introduction to the Algebraic Approach of Graph Gramniars.
Third International Workshop on Graph Grammars, L.N.Q%L3-14, Springer, Berlin.

Ehrig H., Heckel R., Taentzer G., Engels G. (1997); A View-Oriented Approach to System Mod-
elling Using Graph Transformatiosybmitted

Gadducci F., Montanari U. (1995); Enriched Categories as Models of Computation. Proc. 3rd
Italian Conference on Theoretical Computer Science, Ravello.

Gray J.W. (1966); Fibered and Cofibered Categoired?roc. La Jolla Conference on Categor-
ical Algebra, Eilenberg et al. (eds.), 21-83, Springer, Berlin.

Grothendieck A. (1961); Catégories Fibrés et Descente, Seminaire de Géométrie Algébrique de
I'Institut des Haute€tudes Scientifiques Parialso in L.N.M. 224 145-194, Springer,
Berlin.

Heckel R., Corradini A., Ehrig H., Lowe M. (1996); Horizontal and Vertical Structuring of Typed
Graph Transformation Systems. Math. Struct. Comp.656i13-648.

Heckel R., Corradini A., Ehrig H., Padberg J., Wolter U. (1997); Coalgebraic Loose Semantics
as Specification Frame for Graph Transformation Systems. Draft. Applied Categorical
Structures special issue on the Dagstuhl Seminar 9637 on Graph Transformations in Com-
puter Sciencesubmitted

Kainen P. (1971); Weak Adjoint Functors. Math122 1-9.
Krishnan V. (1981); An Introduction to Category Theory. North-Holland.

Léwe M. (1991); Extended Algebraic Graph Transformation. Doctoral thesis, Fachbereich Infor-
matik, Technical University Berlin.

Léwe M. (1993); Algebraic Approach to Single Pushout Graph Transformation. Theor. Comp.
Sci.109181-224.

Palmquist P. (1970); The Double Category of Adjoint Squareskeports of the Midwest Cate-
gory Seminar V, Gray, MacLane (eds.), LNIG5 123-153, Springer.

Ribeiro L. (1996); Parallel Composition and Unfolding Semantics of Graph Grammars. Thesis
Dr.-Ing. Technical University of Berlin.

49

	Abstract Diagrams and an Opfibration Account of Typed Graph Transformation
	R. Banach Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K. banach@cs.man....
	A. Corradini Dipartimento di Informatica, Università di Pisa, Corso Italia 40, Pisa, Italy. andre...
	Abstract: The “in the large” properties of typed graph transformation systems in the double pusho...
	Key Words: Graph grammars, typed graph transformations, DPO and DPB graph transformations, opfibr...
	1 Introduction
	2 Graphs, Graph Transformations, and the Abstraction Problem
	2.1 Concrete Graphs and Concrete Graph Transformations
	2.2 Standard Isomorphisms and Abstract Graphs and Morphisms

	3 Some Categorical Tools
	3.1 Opfibrations
	3.2 Wreath Products
	3.3 Feeble Functors and Weak Adjunctions

	4 Concrete and Abstract Diagrams
	4.1 Concrete and Abstract Diagrams in an Arbitrary Category
	4.2 Operations on Concrete and Abstract Diagrams
	4.3 Automorphisms and Kinded Abstract Diagrams
	4.4 Sufficiently Monic Kinded Abstract Diagrams
	4.5 Kinded Abstract Diagram Morphisms and Opfibrations
	4.6 Arrow Abstract Diagrams and Interface-Diagram Categories

	5 Abstract Spans and Other Abstract Diagrams in Gr
	6 The Opfibration [P] : [Gr *ØGr-Sp] Æ [Gr-Sp] and Others
	7 Abstract Graph Rewriting
	8 The Category of Typed Graph Grammars
	9 The Category of Transition Systems
	10 The Category of Derivation Systems
	11 Weakened Approaches
	12 Conclusions
	13 Acknowledgements
	References

