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Abstract: The “in the large” properties of typed graph transformation systems in the dou
pushout framework and a double pullback variation of it, are reexamined. Preceding acc
utilising a fixed choice of pullbacks (whether adopted directly or via partial morphisms) are s
to be excessively sensitive to the precise graphs involved for comfort. A theory of abs
diagrams is developed, that allows the smooth formulation of an abstract version of the th
Graph transformation steps appear as a split opfibration over abstract type change. The ca
of graph grammars, the category of graph transition systems, and the category of graph deri
systems emerge as opfibrations over abstract type change. Weakening the level of abstrac
the extent used to preserve event identity in event based treatments of graph transform
phenomena, makes the transformation steps opfibration unsplit, and weakens certain adjun
All the properties of interest are combined in a single triple category.

Key Words: Graph grammars, typed graph transformations, DPO and DPB gra
transformations, opfibrations.

1 Introduction

In Corradini et al. (1996b), a categorical account of typed double pushout (DPO) rew
ing was given by constructing mappings from arrowsa of the category of type graphs
and concrete spans, to functors between categories of (in turn) grammars, transitio
tems, and derivation systems typed over the domain and codomain ofa. Essentially the
same idea will work for the single pushout approach (Löwe (1991), Löwe (1993))
reinterpreting the span used in a double pushout rule (or direct derivation step) as a
tial morphism (see Ribeiro (1996) who also uses partial morphism spans for retyp
In Ehrig et al. (1997), Heckel et al. (1997), a similar treatment was presented for a
ble pullback rewriting construction, essentially intended as a “looser” version of
double pushout construction rather than an independent construction (and in part
not to be confused with work of Bauderon on rewriting via pullbacks, see eg. Baude
(1995)). The close relationship of Heckel et al.’s work to the traditional DPO constr
tion relies crucially on the injectivity of the arrows in a DPO rule (or direct derivatio
step) in the two formulations being considered. In the former work the compositio
concrete spans in the category of type graphs arises from a fixed choice of pullb
and the steps from categories of grammars to categories of transition systems and
vation systems are made via free constructions. In the latter the same effect for th
1
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egory of type graphs is achieved by considering only partial morphisms of type gra
a ruse which effectively forces a specific choice of pullbacks since one of the arrow
a span that is a concrete partial morphism must be a concrete inclusion; and the
from categories of grammars to categories of transition systems and derivation sys
are made via a Kleisli construction and a co-free construction. In fact partial morph
retyping and the use of the Kleisli construction in this manner arose in Heckel e
(1996) .

One notices two related things in these approaches. The first is that because a
choice of pullbacks is needed to enable the composition of two concrete spans to
third concrete span, the action of the functors constructed subsequently is extre
fussy about the concrete graphs involved. Eg. when one graph grammar is the func
image of another, changing the start graph in the target to an isomorphic graph wil
do; the start graph has to be precisely the one given by the functor, and the gram
with the other start graph is not related to the source. The second thing is that the
oms imposed on the choice of pullbacks in order that the various constructions w
smoothly, are just like those required for the splitting of a split opfibration.

This suggests that the functors corresponding to the arrowsa mentioned above, indeed
glue together to form an indexed category corresponding to a split opfibration. And
thermore that there is an underlying opfibration behind the constructions which is
split, so that the fussiness regarding specific graphs may well be attributable to ha
forced a splitting where there was no naturally arising one. The same train of tho
prompts the search for a more abstract formulation of these phenomena, avoidin
irksome details mentioned. In this paper we re-engineer the central material of the
papers refered to in the first paragraph above, resisting the temptation to force a
choice of pullbacks (by whatever means). By developing a suitable theory of abs
diagrams, we do even better, finding that at a suitable level of abstraction, the spli
of relevant opfibrations emerges without effort. All of this is in contrast to the way s
opfibrations are used for graph rewriting in Banach (1993, 1994, 1995).

In more detail, the rest of this paper is as follows. In Section 2 we recall the basic
cepts we need on graphs, double pushout and double pullback rewriting, and the
lems created by a naive approach to abstraction for graphs. We recall the essent
standard isomorphisms as a means of building more appropriate equivalence
graphs. Section 3 reviews some categorical tools, including opfibrations, wreath p
ucts, feeble functors and weak adjunctions. Section 4, the technical core of the p
develops a theory of abstract diagrams which are characterised as functor catego
concrete diagrams, and explores their properties. This includes incorporating the
sequences of standard isomorphisms and leads to the notion of kinded abstrac
grams, in which the permitted isomorphisms between the concrete diagrams
abstract diagram vary from vertex to vertex in the shape graph. Futher developme
this theory culminates in the notion of interface-diagram category, a kind of catego
which both objects and arrows are abstract diagrams of appropriately compa
shapes. These ideas turn out to be very close to those of internal category theory, e
that pushout based composition techniques are used rather than pullback based
The former are more appropriate for our graph transformation applications. In
2
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face-diagram categories are the central concepts using which the remainder of th
tions in the paper are formalised.

In Section 5 these ideas are applied to spans and span morphisms. Their propert
gathered in a double interface-diagram category [D-Gr-Sp]. In Section 6 the notion of
typing and type change is added to [D-Gr-Sp], culminating in the triple interface-dia-
gram category [D-Gr-Sp↓Gr-Sp], which encapsulates all that is subsequently need
The properties of [D-Gr-Sp↓Gr-Sp] constitute the technical apex of the paper. In pa
ticular [D-Gr-Sp↓Gr-Sp] is a split opfibration over type change. How these structur
relate to graph transformation steps is described in Section 7.

Section 8 formalises the notion of graph grammar using these techniques. Graph g
mars form an opfibration over type change. In Section 9 this state of affairs is gen
ised to graph transition systems, which are related to graph grammars via a fog
functor and its left adjoint. A similar relationship pertains to graph derivation syste
vis. a vis. transition systems, this forming the topic of Section 10. In Section 11 we c
sider various weakenings of the theory hitherto presented. We see that lowering th
el of abstractness by having fewer concrete diagrams comprise an abstract one,
the split opfibrations unsplit, and makes the left adjoints into weak left adjoints. F
getting further the internal structure of abstract diagrams, yields a treatment in term
equivalence classes, recovering a more conventional perspective on the situation.
tion 12 concludes.

2 Graphs, Graph Transformations, and the Abstraction Problem

In this section we motivate what follows by presenting the essential elements of
crete graphs, concrete graph transformations, and the problems raised by trying
the level of abstraction.  We also present the notion of abstract graphs.

2.1 Concrete Graphs and Concrete Graph Transformations

Definition 2.1.1 A concrete graphG is a tuple (E, V, s, t, lE ,lV) whereE andV are (fi-
nite) sets of edges and vertices respectively,s, t : E → V map each edge to its source an
target respectively, andlE : E → ΩE, lV : V → ΩV map edges and vertices to their labe
drawn from the edge and vertex label alphabetsΩE, ΩV.

In fact the vertex and edge labels form a kind of typing system, classifying vertices
edges in a rather crude manner, and below we will be concerned with a more sop
cated kind of type system, where types are themselves graphs. All that we say s
quently will carry through unaltered irrespective of whether labels are present or
and readers may prefer to forget about the labels altogether.

Definition 2.1.2 A concrete graph morphismf : G → G′ is a pair of functions
fE : E → E′, fV : V → V′ such that Fig. 1 below commutes in the obvious way.

Where necessary, we will systematically use primes, or subscripts identifying the g
(eg.lV,G) on the various components, when several graphs are being discussed at
to disambiguate as above. This gives us the categoryGr of concrete graphs and mor-
phisms with obvious identities and composition of morphisms.
3
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In the classical double pushout (DPO) approach to graph rewriting (Ehrig (1979)) a
duction is defined as a concrete monic span (L ← K → R) in the category of graphs,
where graphsL, RandK are called the left hand side, the right hand side and the int
face, respectively. Given a graphG and an occurrence ofL in G, i.e. a morphismg :
L → G, there is a direct derivation fromG to a derived graphH if the diagram of Fig. 2
can be constructed in such a way that both squares are pushouts inGr. This means that
there is a graphD, the pushout complement ofl andg, and morphismsd and l* such
that the left square is a pushout. (The nontrivial conditions for the existence of su
pushout complement (inGr, which has all pushouts) are presented in Ehrig (1979).)
tuitively, the context graphD is obtained by removing fromG all items that are in the
image ofg but not in the image ofg l. MoreoverH is obtained as the pushout ofr
andd, which glues together the context graph and the right hand side over the com
interfaceK.

Recently Heckel et al. (1997) have introduced a variant of the double pushout appr
by considering “double pullback (DPB) transitions”. Given a production as abo
there is a DPB transition fromG to H if a diagram like Fig. 2 can be constructed, wher
both squares are pullbacks. This provides a true generalization of DPO derivations
cause the injectivity of productions guarantees that a DPO diagram is also a DPB.
informally, a DPB transition using a productionp can be understood as a trasformatio
from graphG to H where at least the effects prescribed byp have been performed, but
possibly more. For a precise analsysis of the meaning of DPB transitions we ref
Heckel et al. (1997). For our purposes, we just want to stress that the formal frame
we are introducing (originally conceived for the DPO approach only) can also acc
modate the theory of DPB rewriting without additional effort. For the sake of unifor
ity, we will allow ourselves to call DPB transitions “direct derivations” as well.

Definition 2.1.3 A concrete production is a pair of monic arrowsl : K → L , r : K → R
in Gr which we often write as (L ← K → R) when the rest can be understood.

In applications it is sometimes useful to let the right hand arrowr : K → Rbe not monic.
However none of the theory that follows is invalidated in such a case, so we will
mention this more liberal possibility further in this paper.

Definition 2.1.4 Given a production (L ← K → R), a graphG, and an occurrence of
the left hand side inG (which is just a morphismg : L → G of Gr), a direct derivation

E V

E′ V′

ΩVΩE

s

t

s′

t′

lV′

lVlE

lE′

fE fV

Fig. 1
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of H from G in the double pushout (DPO), respectively double pullback (DPB), a
proach to graph rewriting is a diagram like Fig. 2, in which both squares are pusho
respectively pullbacks, inGr. N.B. The application conditions of which we spoke ar
simply those necessary to ensure that givenl : K → L andg : L → G, the two pushouts
or pullbacks indeed exist inGr.  See loc. cit.

Remark 2.1.5 In a commuting square which is a pushout or pullback inGr like LKDG
in Fig. 2, thenl is monic iff l* is monic. In these circumstances, the only difference b
tween the two possibilities is that for a pushout, the morphismsg andl* are epic (i.e.
onto). Thus the DPO case becomes a special case of the DPB case, and for this
we will consider them together below. Starting with the DPB case will usually be s
pler, and then we will check that the additional assumption of surjectivity behaves
in the construction in question.

A graph grammar in this classical theory is usually defined as a collection of prod
tions plus a start graph, and a graph derivation for a grammar, is a sequence of ad
direct derivation steps using productions of the grammar, starting from the start gr
and remembering the productions used and all the other Fig. 2 data, for each deriv
step in the sequence.

One of the things we wish to do in this paper, aside from introducing the typing
graphs and their transformations, is to raise the level of abstraction from individual c
crete graphs and concrete graph morphisms as in Fig. 2. A strategy which sugge
self naturally is to form equivalence classes of graphs and of morphisms and to pro
from there. Unfortunately this is easier said than done. An example due to Corra
et al. (1994a,b), taking place inSet (which we can regard as a category of unlabelle
discrete graphs), illustrates the problem.

Example 2.1.6 Let S1 = {1, 2} and S2 = {1, 2, 3}. Consider the mapsf : S1 → S2 and
g, g′ : S2 → S1 illustrated in Fig. 3. Now in a naive construction of abstract sets a
abstract maps between them, the abstract set containg a setSwould be all sets equipo-
lent toS, and the abstract map containing a maps : S1 → S2 would be the collection of
all mapst : T1 → T2 such that there are isomorphismsj1 : S1 → T1 andj2 : S2 → T2 such
thats= j2

–1 t j1. In Fig. 3 we claim thatg andg′ would be in the same isomorphism
class because if we takej1 as the map {1|→ 3, 2 |→ 1, 3 |→ 2} and takej2 as the map
{1 |→ 2, 2 |→ 1} then g = j2

–1 g′ j1. Now the composition of two abstract map

K RL

G D H

l r

r*l*

hdg

Fig. 2
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would be the abstract map containing at least all composites of respective concrete
which are directly composable. So in the example,g f andg′ f would be in the same
abstract map. However,g f is monic whileg′ f is not, so this is impossible becaus
monicity is invariant under isomorphism.

The reason why we get this unpleasant phenomenon is clear. When we form the
posite, we have “forgotten” that we have to relateg andg′ by j1 andj2 in this particular
instance, because the formation of equivalence classes does not remember this in
tion.  The technique of standard graphs and isomorphisms addresses this proble

2.2 Standard Isomorphisms and Abstract Graphs and Morphisms

Definition 2.2.1 A choice of standard isomorphisms inGr assigns to each pair of iso-
morphic graphsG1 andG2, a standard isomorphismσ(G1, G2) such that:

(1) σ(G, G) = idG

(2) σ(G2, G3) σ(G1, G2) = σ(G1, G3)

(3) σ(G2, G1) = σ(G1, G2)
–1

If we disallow all isomorphisms other than standard ones, the problems of Exam
2.1.6 disappear becausej1 andj2 are not standard by (1) above; henceg andg′ fall into
different classes.

Definition 2.2.2   We can construct a choice of standard isomorphisms inGr by:

(1) Choosing one graphσ(G) from each isomorphism class [G] of graphs isomor-
phic toG to be standard,

(2) For eachG′ in [G], choosing one isomorphismσ(σ(G), G′) to be standard (with
σ(σ(G), G′) chosen to be idσ(G) if G′ = σ(G)),

(3) For allG1, G2 in [G], settingσ(G1, G2) = σ(σ(G), G2) σ(σ(G), G1)
–1.

Fig. 3
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For the sequel we assume fixed some choice of standard isomorphisms inGr. The col-
lection of standard graphs and all morphisms between them forms a skeleton cat
GrK of Gr. As shown in Corradini et al. (1994a),GrK is isomorphic to the category〈Gr〉,
whose objects are isomorphism classes of concrete graphs up to standard isomor
called abstract graphs and written〈G〉, and whose arrows are equivalence classes of co
crete morphisms under the relation that relatesg : G → H andg′ : G′ → H′ iff g = σ(G′,
H′)–1 g′ σ(G, H), called abstract morphisms and written〈g : G → H〉. The use of
standard isomorphisms only in this relation means that there is a bijection between
crete arrowsg : G → H in 〈g : G → H〉, and ordered pairsG, H taken from〈G〉 and〈H〉.
Identities are the equivalence classes of concrete identities, and composition of a
〈g : G → H〉 and〈h : H → K〉 is given by composing the concrete arrows in the two r
spective classes in the only possible way using the standard isomorphisms, which f
another equivalence class1.

3 Some Categorical Tools

In this section we review some categorical techniques which will be needed later.

3.1 Opfibrations

Let P : E → B be a functor from the subject categoryE to the baseB. SupposeP(e0 :
E0 → E1) = b0 : B0 → B1. The arrowe0 : E0 → E1 is opcartesian forB0 andb0, iff for
every arrowe01 : E0 → E2 and anyb1 : B1 → B2 such thatP(e01 : E0 → E2) = b1 b0 :
B0 → B2, we have a uniqueθ : E1 → E2 such thate01= θ e0 andP(θ) = b1. See Fig. 4.
An opfibration is a functorP : E → B, such that for every pair (E, b : P(E) → B), there
is an opcartesian arrow forE andb. A particular choice of opcartesian arrowκ(E, b) for
each pair (E, b) is called an opcleavageκ of the opfibration.

In general, writingb = b : B0 → B1, any arbitrary choice of opcleavage induces a funct
Fκ(–, b) : P –1(B0) → P –1(B1) whereP –1(Bi) (i = 0, 1) is the subcategory ofE overBi.
This works byFκ(–, b)(E0) = cod(κ(E, b)) andFκ(–, b)(e : E0 → E1) = θ : cod(κ(E0, b))
→ cod(κ(E1, b) e) whereθ is the unique arrow promised by the universal proper
In general, there are natural isomorphisms between Id(P –1(B)) andFκ(–, id : B → B), and
also betweenFκ(–, b1 b0) andFκ(–, b1) Fκ(–, b0). If κ(E, id : P(E) → P(E)) = idE for all

1. Note that foundationally speaking, the definition of〈Gr〉 is suspect. Since the collection
of concrete graphs isomorphic to any given one forms a proper class, so does the colle
of concrete arrows in any isomorphism class of arrows between any two abstract gra
Now we are in trouble since the homset between any two objects in a category (eg. two
stract graphs in〈Gr〉) must be a set, and a set cannot have proper classes as members.
will not worry unduly about this, since we never usemembershipof these large collections
in any way that could cause us problems — and we wish to avoid obfuscating the techn
account with details that do not add materially to the essence of the algebraic story we
this is similar to the way that applied mathematics typically ignores the precision of rigo
ous analysis. Perhaps the only formulations of what we do that are truly free from foun
tional defects, are (1) a formulation in terms of Grothendieck’s Universes, where pro
classes can in effect be chosen small enough, (2) a formulation exclusively in terms of
previously selected skeleton.
7
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E, andκ(E, b1 b0) = κ(cod(κ(E, b0)), b1) κ(E, b0) for all relevantE, b0, b1, we say
that the opfibration is split and the opcleavage is a splitting.

For split opfibrations (with a specified splitting) we have the theorem of Grothendi
which states that they correspond exactly to functorsF : B → Cat. The functorsP :
E → B andF : B → Cat determine each other. FromF we reconstructE up to isomor-
phism by the Grothendieck construction, which buildsG(B, F), the Grothendieck cat-
egory ofB andF. The objects ofG(B, F) are (E0, B0) for E0 in F(B0) for B0 an object
of B, and the arrows ofG(B, F) are (e1 : F(b0)(E0) → E1, b0) : (E0, B0) → (E1, B1) for
b0 : B0 → B1 an arrow ofB; with composition of (e1 : F(b0)(E0) → E1, b0) : (E0, B0) →
(E1, B1) and (e2 : F(b1)(E1) → E2, b1) : (E1, B1) → (E2, B2) being given by (e2
F(b1)(e1) : F(b1 b0)(E0) → E2, b1 b0) : (E0, B0) → (E2, B2); and with obvious iden-
tities.

Fig. 5 shows how the components of the Grothendieck category relate to one ano
the picture on the right showing the constituent parts of an arrow ofG(B, F), with other
related data shown dashed. Note in particular that such an arrow consists of two
a change of base arrowb0 and an in-fibre morphisme1. For an accessible introduction
to opfibrations, and further key references, see Barr and Wells (1990).

We have spelled these things out here in fair detail because towards the end of the
we will have some need for opfibrationsP : E → B which are not split, so there will not
be a handy functorF : B → Cat to conveniently visualise the inverse relationship. Ne
ertheless we will be dealing with subject categoriesE which arise most naturally by
making what is in effect a nondeterministic brute force analogue of the Grothend
construction. More specifically we identify a projection, call itP0 : E0 → B say, and
prove that all arrows inE0 are opcartesian. We then typically enrichP0 : E0 → B to a
projectionP : E → B by “adjoining in-fibre morphisms”, showing that the propertie
of an opfibration continue to hold — the fibres are evidentlyP –1(b) for b an object of
B. This amounts to showing thatP : E → B is an opfibration directly from the defini-
tion because it has “enough strong opcartesian morphisms” in the terminology of G
(1966), Grothendieck (1961). This in turn is equivalent to constructing an opfibra
via a pseudofunctorFP : B → Cat which chooses a cleavage that is not necessaril
splitting, by making an arbitrary choice of opcartesian arrow for each (E, b) pair. Our

Fig. 4

B0 B1 B2

E0 E1

E2

b0 b1

e0

e01

θ

P P P
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more direct approach avoids the distraction of making such a choice, only for it to
disregarded later, and allows proofs to be ported from the split to the nonsplit cas

3.2 Wreath Products

A wreath product is a special case of the dual construction, i.e. of a fibration. LetC be
a category. LetPth : B → Cat be a functor, taking arrowsb0 : B0 → B1 to functors
Pth(b0) : Pth(B0) → Pth(B1). Now letF : Bop → Cat be a contravariant functor, taking
objectsB0 to the functor categories [Pth(B0), C], and taking arrowsb0 : B0 → B1 to con-
travariant functorsF(b0) : [Pth(B1), C] → [Pth(B0), C]. The functorsF(b0) take a func-
tor H : Pth(B1) → C in [Pth(B1), C] to the functorH F(b0) : Pth(B0) → C in
[Pth(B0), C] in the expected manner.

BecauseF is a functor intoCat we can use the (contravariant version of the) Grothen
ieck construction to build the Grothendieck category ofB andF, called the wreath prod-
uct ofB andC and writtenB wrPth C. The objects ofB wrPth C are pairs (B0, H0) with
B0 an object ofB andH0 a functor in [Pth(B0), C]. The arrows ofB wrPth C are pairs
(b0, n1) : (B0, H0) → (B1, H1), whereb0 : B0 → B1 is an arrow ofB andn1 : H0 →
H1 F(b0) is a natural transformation. Composition of arrows (b0, n1) : (B0, H0) →
(B1, H1) and (b1, n2) : (B1, H1) → (B2, H2) is given by (b1, n2) (b0, n1) = (b1 b0,
F(b0)(n2) n1) : (B0, H0) → (B2, H2). There is an evident projectionP : B wrPth C →
B given by forgetting the second component of objects and arrows. For more de
see again Barr and Wells (1990).

3.3 Feeble Functors and Weak Adjunctions

The slightly less well known material of this subsection is adapted from Krishn
(1981), Kainen (1971). A feeble functorF : A → B maps objects ofA to objects ofB
as usual, but maps arrowsf : a → b of A to nonempty sets of arrows ofB via F(f : a →
b) ⊆ homB(F(a), F(b)), such that iff andg are composable, thenF(g) F(f) ⊆ F(g f)
where the composition symbol has been overloaded in the obvious way. (We will

Fig. 5

B0 B1

E0

E1

b0

P

E

B

F(b0)(E0)

Cat F

e1
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need the possibility that these “hom sets” are classes, and thatF maps arrows into suit-
able subclasses.) Given two feeble functorsF, G : A → B, a left-natural transformation
η : F → G maps each objecta in A to a non-empty set of arrowsη(a) ⊆ homB(F(a),
G(a)) such that for each arrowf : a → b of A, η(b) F(f) ⊇ G(f) η(a). If the direction
of the inclusion is reversed we have a right-natural transformation. A transforma
that is simultaneously left-natural and right-natural between two feeble functor
called a natural transformation.

Feeble functors are used in weak adjunctions which we now describe. LetF : A → B
be a feeble functor andG : B → A be a (normal) functor. ThenF is a weak left adjoint
of G iff there exists a natural transformationn : homB(F × Id(B)) → homA(Id(A) × G)
and a left-natural transformationm : homA(Id(A) × G) → homB(F × Id(B)), such that
n m= 1homA(Id(A) × G) andm n⊇ 1homB(F × Id(B)). Here both hom–(–, –) notations
are being viewed as functorsAop × B → SetCF, whereSetCF is the category of sets and
cofull relations between them.  Equivalent conditions are given by the following.

Let G : B → A be a functor. Then among the conditions below we have (1)⇒ (2) ⇒
(3) ⇒ (1) and (1*)⇒ (2*) ⇒ (3*) ⇒ (1*).

(1) There is a feeble functorF : A → B which is a weak left adjoint toG.

(1*) In addition to (i), if (n, m) define the weak adjunction then( a is an object ofA
∧ h ∈ homB(F(a), F(a)) ∧ n(a, F(a)) ∧ G(h) k = k ) ⇒ ( h = idF(a) ).

(2) There is a feeble functorF : A → B and a natural transformationη : Id(A) → G
F, and for every objectb of B a non-empty setν(b) ⊆ homB(F G(b), b) such

that: (a),G(ν(b)) η(G(b)) = idG(b), and (b), for every objecta of A ( f ∈ ho-
mA(a, G(a)) ∧ h ∈ ν(b) F(f) ) ⇒ ( G(h) η(a) = f ).

(2*) In addition to (ii), (c), for every objecta of A ( h ∈ homB(F(a), F(a)) ∧ G(h)
η(a) = η(a) ) ⇒ ( h = idF(a) ).

(3) Every objecta of A has a universal arrow (u : a → G(ba), ba) in the sense that
for every objectb of B and everyf : a → G(b) there is a (not necessarily unique
arrowg : ba → b such thatG(g) u = f.

(3*) In addition to (iii),( h : b → b ∧ G(h) u = u ) ⇒ ( h = idb ).

Below, when we need to establish a weak left adjunction, we will use condition
which is just the normal thing one would do aside from checking uniqueness. Also
easy to see that if we strengthenF to be a (normal) functor and the adjunction to be n
weak in (1), or insist on uniqueness in (3), or the appropriate strengthening of (2),
we recover some of the conventional characterisations of adjunctions, and further
the provisions of the starred clauses hold automatically. Evidently there is a dual th
for weak right adjoints which we do not give in detail.

4 Concrete and Abstract Diagrams

We now build a theory of diagrams, both concrete and abstract, in a form designe
later convenience. LetB be the category of directed graphs, obtained by forgetting t
labelling functions inGr. We allow classes instead of (finite) sets of vertices and edg
in a directed graph if necessary.
10
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4.1 Concrete and Abstract Diagrams in an Arbitrary Category

Definition 4.1.1 Let µ be a directed graph,C be a category, andγ : µ → UC be a graph
morphism fromµ to the underlying graph ofC. Thenγ is a concrete diagram of shape
µ in C. Let Pth : B → Cat be the functor that sends directed graphs to their path ca
gories, which is left adjoint toU. Then the standard free construction extendsγ :
µ → UC to a functorγ : µ → C from the path categoryµ of µ to C. If in addition, for
all pairs of objectsm0, m1 in µ, for all paths (e1, … , ek) from m0 to m1 in µ, if the in-
ternal composition (γ(ek) … γ(e1)) in C always yields the same arrowf : γ(m0) →
γ(m1), then the diagram is a commuting concrete diagram of shapeµ.

Henceforth we will only consider commuting diagrams, and will therefore drop the
jective “commuting”.

Definition 4.1.2 [µ, C] is the functor category with objects given by concrete diagram
of shapeµ, and arrows given by concrete diagram morphisms, which are natural tr
formationsn : γ → δ in [µ, C].

Note that this construction characterises the (commuting) concrete diagrams inC as a
wreath product, namely asB wrPth C, with Θ : Bop → Cat being the relevant contravar-
iant change of shape functor, sendingα : ν → µ to Θ(α) : [µ, C] → [ν, C]. For conven-
ience below, rather than usingΘ, we will refer toΘ, whereΘ : Pth(B)op → Cat takes
α = Pth(α) : ν → µ to Θ(α) : [µ, C] → [ν, C].  We clearly have thatΘ = Θ Pth.

Definition 4.1.3 An abstract diagramD (of shapeµ in C) is a subcategory of [µ, C]
such that for any two objectsγ andδ in D, there is at least one arrown : γ → δ in D,
and all theC arrows that make up such aD arrow (i.e. natural transformation)n, are
isomorphisms.

Definition 4.1.4 An abstract diagramD of shapeµ is maximal iff ( γ is a concrete di-
agram ofD andn : γ → δ is a concrete diagram morphism such that all theC arrows
that make upnare isomorphisms) ⇒ ( n : γ → δ is a concrete diagram morphism inD ).

Definition 4.1.5 A morphismc : D0 → D1 of abstract diagrams (of shapeµ in C) is
simply a functor fromD0 to D1 (where bothD0 andD1 are considered simply as cat
egories in their own right). A morphismc : D0 → D1 is mediated by a familyΞ of ar-
rows ofC iff there is a functionχ : (Vert(µ) × Obj(D0)) → Arr(C), whose range isΞ,
that maps pairs (m0, γ) to arrows ofC such that:

(1) For any fixed concrete diagramγ of D0, the collection of theχ(m0, γ) forms a
concrete diagram morphism fromγ to c(γ).

(2) For any fixed concrete diagram morphismn : γ → δ of D0, the collection of the
χ(m0, γ) andχ(m0, δ) forms a morphism of concrete diagram morphisms fro
n : γ → δ to c(n : γ → δ) : c(γ) → c(δ), naturally.

Thus while an arbitrary morphism of abstract diagrams merely associates concret
grams and morphisms between them in a natural manner, a morphism of abstrac
grams mediated by a family of arrows ofC must be sensitive to any internal structure o
objects captured by the structure ofC.

For convenience we will also allowχ to have as domain (Vert(µ) × Ind(Obj(D0))) where
Ind is an index set (or class) for the objects ofD0 below.
11
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Clearly the change of shape action ofΘ extends naturally to a change of shape actio
on abstract diagrams.

4.2 Operations on Concrete and Abstract Diagrams

In this section we discuss how operations that arise naturally on concrete diagram
tend equally naturally to abstract ones.  We start with subdiagrams.

Definition 4.2.1 Let α : ν → µ be a monic morphism of directed graphs. This defin
a particular subobject ofµ. This extends naturally via the action ofPth to a particular
subobjectα : ν → µ. Let γ be a concrete diagram of shapeµ in C. Then the natural
action ofΘ yields a concrete subdiagramδ of shapeν of the concrete diagramγ in C.

Definition 4.2.2 Let α : ν → µ be a subobject of the path category objectµ. Let D0
be an abstract diagram of shapeµ in C. Then the natural action ofΘ yields an abstract
subdiagramD1 of shapeν of the abstract diagramD0 in C, where the morphism from
D1 to D0 is mediated by a family of identities. Clearly ifD0 is maximal and nonempty,
thenD1 is maximal too.

Where appropriate, we can regard the process of obtaining the (concrete or abs
subdiagram as a kind of garbage collection. Now for the pasting of diagrams, a kin
pushout.

Definition 4.2.3 Let α : ρ → µ andβ : ρ → ν be morphisms of directed graphs. The
we can form the directed graph pushoutα′ : ν → µ⊕ρν, β′ : µ → µ⊕ρν. This extends
naturally via the action ofPth to the pushoutα′ : ν → µ⊕ρν, β′ : µ → µ⊕ρν of path
category morphismsα : ρ → µ andβ : ρ → ν. Letγ andδ be concrete diagrams of shap
µ andν respectively inC. Suppose for all verticesm0 and arrowse : m0 → m1 in ρ we
have thatγ α(m0) = δ β(m0) andγ α(e : m0 → m1) = δ β(e : m0 → m1); then we say
thatγ andδ are compatible. We define the concrete diagramγ⊕ρδ : µ⊕ρν → C, of shape
µ⊕ρν, provided it is a commuting diagram, by:γ⊕ρδ(m0) = γ(m0) if m0 is in µ, and
γ⊕ρδ(m0) = δ(m0) if m0 is in ν; andγ⊕ρδ(e : m0 → m1) = γ(e : m0 → m1) if e is in µ,
andγ⊕ρδ(e : m0 → m1) = δ(e : m0 → m1) if e is in ν, which is consistent. We callγ⊕ρδ
the pasting ofγ andδ alongρ, and say thatγ andδ are a compatible consistent pair.

Note the requirement thatγ⊕ρδ commutes; the pushout of shape graphs may create n
pairs of paths with the same origin and destination vertices in the result, creating in
fresh equations that must be satisfied by the arrows ofγ⊕ρδ.

Definition 4.2.4 Let α′ : ν → µ⊕ρν, β′ : µ → µ⊕ρν be the pushout of path category
morphismsα : ρ → µ andβ : ρ → ν, andD0 andD1 be abstract diagrams of shapeµ
andν respectively inC. We define the abstract diagramD0⊕ρD1 as the family of past-
ings alongρ, of all compatible consistent pairs of concrete diagramsγ andδ from D0
andD1 respectively, these being the objects ofD0⊕ρD1. If n1 : γ → γ′ andn2 : δ → δ′
are morphisms inD0 andD1 respectively,γ andδ are compatible consistent,γ′ andδ′
are compatible consistent, andn1 andn2 agree as natural transformations onρ, i.e.
n1(α(m)) = n2(β(m)) for each vertexm in ρ, thenn1⊕ρn2 : γ⊕ρδ → γ′⊕ρδ′ defined in the
obvious way, is a morphism ofD0⊕ρD1. We callD0⊕ρD1 the pasting ofD0 andD1
alongρ.  Clearly ifD0 andD1 are maximal, thenD0⊕ρD1 is maximal too.

In the above, the case of most interest to us will be whenα andβ are monic.
12
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The final construction that we will deal with here is the local pullback (which isnot a
dual to pasting). For this recall that in a pullback construction we start with a diag
of shape•1 → •0 ← •2, and end with a commuting square (with some universal prop
ties), except that the object at the new vertex is only fixed up to isomorphism. From
perspective, we can say that we start with a concrete diagram, and finish with a
maximal) abstract diagram, where the only non identity isomorphisms between
crete representatives in the abstract diagram are at the new vertex. The following
pullback construction thus makes sense principally for abstract diagrams.

Definition 4.2.5 Let D0 be an abstract diagram of shapeµ in C, where we assume that
C has all pullbacks. Suppose there is a monic morphismι from •1 → •0 ← •2 to µ. Let
♦ be a fresh vertex not occurring inµ and letν be the shape•1 ← ♦ → •2. Let µ♦ =
µ⊕ρν be the shape obtained by pastingν to µ, via the common subshapeρ = (•1 •2)
and morphismsα : ρ → µ andβ : ρ → ν; whereα(•i) = ι(•i) andβ(•i) = id(•i) for i = 1,
2. Then the abstract diagramD1 of shapeµ♦ in C is given as follows. Letγ be a con-
crete diagram inD0; thenγ ι is a pair of coterminal arrows over•1 → •0 ← •2. Let ξ2
: c → γ ι(•1) andξ1 : c → γ ι(•2) be some specific pullback ofγ ι. Then we defineγc
to be the concrete diagram of shapeµ♦ in C given by:γc(m0) = γ(m0) andγc(e : m0 →
m1) = γ(e : m0 → m1) for verticesm0 and edgese : m0 → m1 in γ; andγc(♦) = c, γc(•1
← ♦) = ξ2 : c → γ ι(•1), γc(♦ → •2) = ξ1 : c → γ ι(•2) for the remainder. ThenD1
contains as objects, all such concrete diagramsγc, for all possible pullbacksξ1, ξ2. If
γc andδd are two such objects, arising from objectsγ andδ in D0, with natural transfor-
mationn : γ → δ, then there is a natural transformationnc,d : γc → δd given by extending
n with the unique (by pullback properties) isomorphism fromc to d which makesnc,d
natural.

Note thatD1 above isuniquebecause of the maximality inherent in its definition. Thi
is unlike the construction of normal pullbacks where the resulting diagram is up to
morphisms of the added object. This feature will produce tangible consequences l

Note also that the above construction generalises to limits of larger subdiagrams
coterminal arrow pairs, and there is an obvious dual construction for colimits. Howe
the local pullback case is the only one we need below. Note how the pasting and
limit constructions act at different levels of abstraction.

4.3 Automorphisms and Kinded Abstract Diagrams

Since we will ultimately be interested in applying our theory of abstract diagrams to
case whereC is Gr, we now examine the consequences of objects inC having nontrivial
automorphisms. The same problems that we have noticed already regarding eq
lence classes of objects and arrows, reappear here, so we adopt the same mach

We thus assume chosen a skeleton subcategoryCK of C, leading to a choice of standard
isomorphismsσ(–, –) between objects. Also〈C〉 will be the category of abstractC ob-
jects and arrows, consisting of equivalence classes up to standard isomorphismsC
objects and arrows.

Let Kind = { id, std, iso}. We will use Kind as a label set for shape vertices, thus for a
abstract diagram of shapeµ there will be a map,kind, from its vertices toKind, and we
will speak of shapes and vertices of kind such and such.
13
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Definition 4.3.1 Let D be an abstract diagram of kinded shapeµ, thenD conforms to
its kind iff for each vertexm0 in µ:

(1) kind(m0) = id ⇔ for each arrown : γ → δ in D, the component of the natural
transformationn at the vertexm0 is an identity inC, i.e.n(m0) : γ(m0) → δ(m0)
= idγ(m0),

(2) kind(m0) = std ⇔ for each arrown : γ → δ in D, the component of the natural
transformationn at the vertexm0 is a standard isomorphism inC, i.e. n(m0) :
γ(m0) → δ(m0) = σ(γ(m0), δ(m0)),

(3) kind(m0) = iso ⇔ for each arrown : γ → δ in D, the component of the natural
transformationn at the vertexm0 is an arbitrary isomorphism inC, i.e. n(m0) :
γ(m0) → δ(m0) is an arbitrary iso.

If D conforms to its kind then we also say that all its natural transformationsn : γ → δ
conform to the kinds ofD. From now on we assume that all abstract diagrams confo
to their kinds, and we will simply speak of kinded abstract diagrams.

Definition 4.3.2 Let D be a kinded abstract diagram. ThenD is maximal iff ( γ is a
concrete diagram ofD andn : γ → δ is a concrete diagram morphism conforming to th
kinds ofD ) ⇒ ( n : γ → δ is a concrete diagram morphism inD ).

Clearly, in the presence of kinds, the change of shape action ofΘ extends naturally to a
change of shape action on kinded abstract diagrams, provided the change of shap
phismsα : ν → µ are kind-non-increasing in the partial orderid ≤ std ≤ iso. Also in the
presence of kinds, the subdiagram operation requires kind-non-increasingness in
to be well defined. In the presence of kinds, the pasting operation is well defined i
image ofρ in D0⊕ρD1 is kinded with the infimum of the kinds ofα(ρ) andβ(ρ). Fi-
nally, in the local pullback construction, the fresh vertex always acquires kindiso.

The notion of maximal kinded abstract diagrams, particularly that of kinded abstrac
agrams entirely of kindstd, raises the question of the relationship between these and
concrete diagrams one can construct in the category〈C〉. To answer this, and related
questions, we note first that as〈C〉 is isomorphic toCK, standard isomorphisms in〈C〉
are just identities; so there is no distiction between abstract diagrams in〈C〉 entirely of
kind std and those entirely of kindid. Now Fig. 6 provides a route map between the po
sibilities of interest. The left column depicts concrete diagrams, the middle column
picts abstract diagrams conveniently related to concrete ones, and the right co
depicts general abstract diagrams. The top two rows show the situation forC, and the
bottom row shows the situation for〈C〉 (we do not bother with the situation forCK). The
connections between the various possibilities are described by families of func
ℑµ

–,– relating categories of diagrams of shapeµ of various kinds. For the rest of this
discussion we will suppress mention ofµ, and for abstract diagrams, which we will as
sume maximal, we will restrict to the subcategories in which all abstract diagram m
phisms are mediated by families of arrows ofC.

We recall that an object of〈C〉 is an equivalence class of objects ofC containing in par-
ticular a unique skeleton object fromCK, and that an arrow of〈C〉 is an equivalence class
of arrows ofC in bijective correspondence with ordered pairs of representatives from
domain and codomain objects. We start with the relationship between concrete
14
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grams inC, and concrete diagrams in〈C〉. This is an easy extrapolation of the situatio
studied in detail forGr in Corradini et al. (1994a). Thusℑµ

•,〈•〉 takes a concrete diagram
γ in C to the concrete diagramγ〈〉 in 〈C〉, for which the objects and arrows ofγ are mem-
bers of the equivalence classes which constitute the objects and arrows ofγ〈〉. Converse-
ly ℑµ

〈•〉,• sends a〈C〉 diagramγ〈〉 to the concrete diagramγ in C, for which the objects
are the skeleton objects drawn from the equivalence class objects ofγ〈〉, and the arrows
are the unique arrows between the skeleton objects drawn from the arrow equiva
classes ofγ〈〉. ℑµ

•,〈•〉 andℑµ
〈•〉,• constitute an equivalence of categories.

Proceeding to the top row of Fig. 6, we have the isomorphism between concrete
grams inC and abstract diagrams entirely of kindid in C, given by functorsℑµ

•,id and
ℑµ

id,•. This is essentially the correspondence between an item and the singleton
containing it. A similar situation prevails on the bottom row between concrete diagra
in 〈C〉 and abstract diagrams entirely of kindid or std in 〈C〉, given by functors
ℑµ

〈•〉,〈id〉 andℑµ
〈id〉,〈•〉. That these are isomorphisms, follows readily from the only po

sible action on mediated morphisms of abstract diagrams of kindid.

We next discuss the middle column of Fig. 6. The object map of the functorℑµ
std,id

takes a maximal abstract diagramD of kind std, to the singleton containing the unique
concrete diagram inD consisting of skeleton objects and arrows between them. T

Concrete Abstract

C

〈C〉

conc

conc

id

std

id = std

ℑµ
•,idℑµ

id,•

iso

iso

ℑµ
〈id〉,〈iso〉ℑµ

〈iso〉,〈id〉

ℑµ
std,isoℑµ

iso,std

ℑµ
std,•

ℑµ
•,std

ℑµ
〈•〉,〈id〉ℑµ

〈id〉,〈•〉

ℑµ
〈•〉,std

ℑµ
std,〈•〉

ℑµ
std,id

ℑµ
id,std

ℑµ
〈iso〉,iso

ℑµ
iso,〈iso〉

ℑµ
〈id〉,std

ℑµ
std,〈id〉

Fig. 6

ℑµ
〈•〉,•

ℑµ
•,〈•〉 °

°
°

°

°

°

°
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arrow map of the functorℑµ
std,id takes a morphismc : D0 → D1, to the morphism {f} :

{ γ} → { δ} where:γ is the unique concrete diagram inD0 consisting of skeleton objects
and arrows between them;δ is the corresponding one inD1; andf is the natural trans-
formation given by taking the family ofC arrows that mediatec, selecting the subfamily
χ that forms the natural transformation atγ, and postcomposingχ with the unique fam-
ily of standard isomorphisms that takes the codomain ofχ to δ.

Conversely the object map of the feeble functorℑµ
id,std takes a singleton containing an

individual concrete diagramγ, to the abstract diagramD0 consisting of the class of con-
crete diagrams related toγ by families of standard isomorphisms. The arrow map
ℑµ

id,std takes a morphism {f} : { γ} → { δ} between singletons, mediated by a single na
ural transformationf, and sends it to the class of mediated morphisms determined as
lows. Letϕ be a function that maps eachχγ, a natural transformation ofγ formed by
standard isomorphisms, to a natural transformationχδ of δ formed by standard isomor-
phisms. Such a function determines a morphismcϕ : D0 → D1 of abstract diagrams of
kind std, by mapping each concrete diagram inD0 via χδ f χγ

–1. The collection of
all such morphisms for all possible choices ofϕ, determines the arrow map ofℑµ

id,std.

The above makesℑµ
id,std andℑµ

std,id into a weak equivalence of categories, weakne
being in the sense thatℑµ

id,std is a weak left adjoint toℑµ
std,id. The above also fixes the

properties of the pairℑµ
•,std andℑµ

std,• by requiring that the upper triangle in Fig. 6
commutes in the expected way. This means thatℑµ

•,std is feeble and a weak left adjoint
to ℑµ

std,•.

Moving down, the object map of the functorℑµ
std,〈id〉 takes an abstract diagramD of

kind std in C to the singleton containing the concrete diagramγ in 〈C〉 formed by: select-
ing for each vertexm0 in the shapeµ, the isomorphism class of concrete objects ofC up
to standard isomorphisms, occurring abovem0 in the concrete diagrams ofD; and se-
lecting for each edgee : m0 → m1 in the shapeµ, the isomorphism class of concrete
arrows ofC up to standard isomorphisms, occurring abovee in the concrete diagrams
of D. The arrow map of the functorℑµ

std,〈id〉 takes a morphismc : D0 → D1 of abstract
diagrams of kindstd, and sends it to the morphism {[f]λ} : { γ} → { δ} between single-
tons containingγ andδ, the images ofD0 andD1, as follows. Let {fλ} be the family of
arrows mediatingc at the objectΓ of D0 consisting of skeletonC objects only (and ar-
rows between them), and let [f]λ be the collection of isomorphism classes up to standa
isomorphisms of {fλ}. These are arrows in〈C〉 forming a natural transformation ofγ.
We write {[f]λ} : { γ} → { δ} for the natural extension of [f]λ to an action on the singleton
{ γ} containingγ.

Conversely the object map of the feeble functorℑµ
〈id〉,std takes each singleton containing

a concrete diagramγ in 〈C〉 whose objects and arrows are isomorphism classes ofC ob-
jects and arrows up to standard isomorphisms, and maps it to the abstract diagraD0
consisting of the class of concrete diagrams inC which can be constructed by: selectin
for each vertexm0 in the shapeµ, an element of the equivalence class which is the obje
of γ above it; and for each edgee : m0 → m1 in the shapeµ, selecting the unique elemen
with appropriate domain and codomain, from the equivalence class abovee in γ. The
arrow map ofℑµ

〈id〉,std takes a morphism {[f]λ} : { γ} → { δ} between singletons, medi-
ated by a single natural transformation [f]λ consisting of isomorphism classes ofC ar-
16
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rows up to standard isomorphisms, containing in particular the collection {fλ} all of
whose domains and codomains are skeleton objects, and maps it as follows. LetΓ and
∆ be the unique concrete diagrams inD0 andD1 all of whose objects are skeleton ob
jects. Letϕ be a function that maps eachχΓ, a natural transformation ofΓ formed by
standard isomorphisms, toχ∆ a natural transformation of∆ formed by standard isomor-
phisms. Such a function determines a morphismcϕ : D0 → D1 of abstract diagrams of
kind std, by mapping each concrete diagram inD0 via χ∆ f χΓ

–1. The collection of
all such morphisms for all possible choices ofϕ, determines the arrow map ofℑµ

〈id〉,std.

As aboveℑµ
〈id〉,std andℑµ

std,〈id〉 form a weak equivalence of categories, withℑµ
〈id〉,std be-

ing a weak left adjoint toℑµ
std,〈id〉. Requiring that the lower triangle in Fig. 6 commute

also fixes the properties of the pairℑµ
〈•〉,〈id〉 andℑµ

〈id〉,〈•〉, with ℑµ
〈•〉,〈id〉 being a weak left

adjoint toℑµ
〈id〉,〈•〉. We can also see that the rectangle in the left and middle column

Fig. 6 commutes as we would expect.

We turn to the rectangle in the lower right part of Fig. 6. We observe first the follow
fact. Suppose inC we have arrowsf : x → y, f ′ : x′ → y′, and standard isomorphisms
σ(x, x′) : x → x′, σ(y, y′) : y → y′, making a commuting square. Letτ(x, x′) : x → x′ be
any isomorphism fromx to x′. In general there will not be an isomorphismτ(y, y′) :
y → y′ makingf, f ′, τ(x, x′), τ(y, y′) commute. However we will assume subsequent
thatC has enough isomorphisms, in the sense that such aτ(y, y′) can always be found,
though it may not be unique.  For exampleGr has enough isomorphisms.

Now the object map of the feeble functorℑµ
std,iso sends an abstract diagramDstd entire-

ly of kind std to the abstract diagramDiso having the same objects, but this time entirel
of kind iso. Viewed as a category,Diso has merely acquired more arrows in this proces
namely the natural transformations between its concrete diagrams, incorporati
least one nonstandard isomorphism. The arrow map of the feeble functorℑµ

std,iso sends
a mediated morphismcstd : D0

std → D1
std to the class of extensions ofcstd which cover

all the additional natural transformations too. Such extensions will exist by our ob
vation above, but in general they will not be unique.

The object map of the functorℑµ
iso,std likewise sends an abstract diagramDiso entirely

of kind iso to the abstract diagramDstd having the same objects, but this time entirel
of kind std. As a category,Diso is mapped to the subcategoryDstd having only standard
isomorphism natural transformations as arrows. The arrow map ofℑµ

iso,std sends a me-
diated morphismciso : D0

iso → D1
iso to the mediated morphismcstd : D0

std → D1
std

determined as follows. LetΓ be the concrete diagram inD0
iso consisting entirely of

skeleton graphs and morphisms between them. (D0
iso will contain this since it is max-

imal.) Let χΓ be the collection ofC arrows that mediates the morphismciso at Γ. Let
n : Γ → γ be an arrow inD0

std, and letχγ be the corresponding collection of mediatin
arrows atγ. Supposen : Γ → γ is mapped byciso to the concrete diagram isomorphism
ciso(n : Γ → γ) : ciso(Γ) → ciso(γ). Let χn be the collection of isomorphisms such tha
χn ciso(n) is a concrete diagram morphism consisting entirely of standard isom
phisms. Thenχn ciso(n) is a morphism ofD1

std mediated byχn χγ. For eachγ in
D0

iso we replace its subfamily of mediating arrows by the subfamilyχn χγ so deter-
mined. By the properties of standard isomorphisms, all other morphismsn : γ → δ in
17
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D0
std are mapped to morphisms ofD1

std which compose properly. This gives the mor
phismcstd : D0

std → D1
std.

The functorsℑµ
〈id〉,〈iso〉 andℑµ

〈iso〉,〈id〉 are similar. The object map of the feeble functo
ℑµ

〈id〉,〈iso〉 maps the objects via identities — the objects (up toid = std) being singletons
containing concrete diagrams built out of objects and arrows which are equivale
classes ofC objects and arrows up to standard isomorphisms. Up toid = std, abstract
diagrams in〈C〉 have only the identity automorphism; however up toiso, they in general
acquire nontrivial automorphisms. The arrow map of the feeble functorℑµ

〈id〉,〈iso〉 takes
a morphism {[f]λ} : { γ} → { δ} between singletons, mediated by a single natural tran
formation [f]λ consisting of isomorphism classes ofC arrows up to standard isomor-
phisms, containing in particular the collection {fλ} all of whose domains and
codomains are skeleton objects, and maps it as follows. LetΓ and∆ be as constructed
in the discussion ofℑµ

〈id〉,std. Then each nontrivial automorphism ofγ (respectivelyδ)
has a unique representative forΓ (respectively∆). Moreover, each nontrivial automor-
phismaΓ of Γ maps viafλ to a nontrivial automorphisma∆ of ∆, in general in many
ways. The equivalence classes up to standard isomorphisms, of the objects and a
of a∆, yield an automorphism ofδ which gives a possible action ofℑµ

〈id〉,〈iso〉 on the ar-
row {[ f]λ}. The collection of all such possibilities determines the arrow map
ℑµ

〈id〉,〈iso〉.

The functorℑµ
〈iso〉,〈id〉 could not be simpler. The action on objects is the identity. O

arrows, it is just the restriction to identity automorphisms only, of the action of arro
{[ f]λ} : { γ} → {δ} between singletons.

As we had before, the functor pairsℑµ
id,iso, ℑµ

iso,id andℑµ
〈id〉,〈iso〉, ℑµ

〈iso〉,〈id〉 give weak
equivalences of categories, in the sense thatℑµ

id,iso is a weak left adjoint toℑµ
iso,id and

ℑµ
〈id〉,〈iso〉 is a weak left adjoint toℑµ

〈iso〉,〈id〉.

Finally we considerℑµ
〈iso〉,iso andℑµ

iso,〈iso〉. The functorℑµ
iso,〈iso〉 behaves like the func-

tor ℑµ
std,〈id〉 except that diagram morphisms must include also the nontrivial autom

phisms. Each such nontrivial automorphism of a concrete representative of an ab
diagram of kindiso in 〈C〉, is simply mapped to the collection of equivalence classes
to standard isomorphisms in the expected way. Likewise, the feeble functorℑµ

〈iso〉,iso

behaves likeℑµ
〈id〉,std except that again nontrivial automorphisms must be taken into

count. These are mapped just like all the other arrows between abstract diagra
kind iso in 〈C〉.

Unsurprisingly the functorsℑµ
〈iso〉,iso andℑµ

iso,〈iso〉 form a weak equivalence of catego
ries withℑµ

〈iso〉,iso being a weak left adjoint toℑµ
iso,〈iso〉.

The small circles next to arrow heads in Fig. 6 indicate the functors in the above dis
sion which are feeble. It is worth summarising that the feebleness ofℑµ

std,iso and of
ℑµ

〈id〉,〈iso〉 is due to the nonunique way that arbitrary nonstandard isomorphisms tr
late along arbitrary morphisms, while the feebleness of all the other functors in the
course is attributable to the many different mediated morphisms of abstract diag
which map, under equivalence up to standard isomorphisms, to the same morphi
skeleton concrete diagrams (say).
18
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The preceding discussion described the situation when all vertices in the shape of a
stract diagram are of the same kind. The facts of the matter for diagrams where the
varies from vertex to vertex, may be determined by easy extrapolations of the ab
Below we will routinely encode the kinds of the vertices of an abstract diagram by
following convention: unadorned vertices imply that the kind isid; vertices in angle
brackets imply that the kind isstd; and vertices in square brackets imply that the kind
iso. ThusA ← 〈B〉 → [C] is a notation for an abstract diagram whereA occurs up to
identity, B occurs up to standard isomorphisms, andC occurs up to arbitrary isomor-
phisms. The final possibility which will be of practical interest, namely concrete d
grams over the abstract category〈C〉, we will write using superscripted angle bracket
thusA〈〉 ← B〈〉 → C〈〉.

4.4 Sufficiently Monic Kinded Abstract Diagrams

Monicity of arrows has a significant effect on the properties of abstract diagrams wh
shapes have vertices of kindiso.

Definition 4.4.1 Let D be a maximal abstract diagram of shapeµ in C. Suppose for
each vertexm0 in µ, of kind iso, there is a vertexm1 of kind std or id, and an edgee0 :
m0 → m1 such that for each concrete diagramγ in D, the arrow ofγ abovee0 is monic.
ThenD0 is sufficiently monic.

Clearly the quantification overγ is somewhat spurious, since if one concrete diagram
D has a monic arrow abovee0 then they all do. Note also that since we spoke ofµ rather
thanµ, mere accessibility inµ of a kindstd or id vertex from any kindiso vertex will do.

Lemma 4.4.2 Let D be a sufficiently monic maximal abstract diagram of shapeµ in
C. Then between any concrete diagramsγ0 andγ1 in D, there is a unique natural trans
formationn : γ0 → γ1.

Proof. Let e0 : m0 → m1 be an edge ofµ with kind(m0) = iso andkind(m1) ∈ { std, id},
and such that any arrow overe0 in a concrete diagram ofD is monic. Letγ0 andγ1 be
concrete diagrams ofD, f : A0 → A1 be an arrow ofγ0 overe0, andg : B0 → B1 be an
arrow ofγ1 overe0. Sincekind(m1) ∈ { std, id}, there is a unique isomorphism ofC, τ :
A1 → B1, forming part of any natural transformationn : γ0 → γ1 in D. Let n0 andn1 be
two such natural transformations, and letυ0 : A0 → B0 andυ1 : A0 → B0 be the respec-
tive isomorphisms atA0. Then we know thatg υ0 = τ f = g υ1, and by monicity
of g, υ0 = υ1. Because we can derive the same for everym0 of kind iso in µ, we conclude
that there is a uniquen : γ0 → γ1 in D.

Let us define the standardisationµstd of a shapeµ, as the shape obtained by reassignin
the kind of any kindiso vertices inµ to std.

Lemma 4.4.3 Let D be a sufficiently monic maximal abstract diagram of shapeµ in
C, and letµstd be the standardisation ofµ. Let |Aut(Cmi

)| be the size of the automorphism
group of aC object over vertexmi in any concrete diagram ofD. ThenD consists of
∏mi

|Aut(Cmi
)| individual abstract diagrams of shapeµstd, wheremi ranges over kindiso

vertices ofµ.

Proof.  An easy consequence of Lemma 4.4.2.
19
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4.5 Kinded Abstract Diagram Morphisms and Opfibrations

Of special interest to us are concrete and abstract diagram morphisms arising fr
particular species of opfibration.

Definition 4.5.1 Let Q be a subcategory ofC andP : Q → B be an opfibration. Letb :
B0 → B1 be an arrow in the base, andγ0 : µ → P –1(B0) be a concrete diagram in the
fibre aboveB0. Let χ be a choice of arrowsχ(m0) : γ0(m0) → Q1, opcartesian for
(γ0(m0), b), one for each vertexm0 in µ. Then the diagramγ1 : µ → P –1(B1) is given by:

(1) mapping each vertexm0 of µ to the codomainQ1, of the arrowχ(m0) : γ0(m0) →
Q1 chosen form0 by χ; thusQ1 = γ1(m0),

(2) mapping each edgee0 : m0 → m0′ to the unique arrown1 : Q1 → Q1′ such that
n1 χ(m0) = χ(m0′) n0, where:n0 : γ0(m0) → γ0(m0′) is the arrow thate0 :
m0 → m0′ maps to underγ0; χ(m0) : γ0(m0) → Q1 andχ(m0′) : γ0(m0′) → Q1′ are
the opcartesian arrows chosen form0 andm0′ by χ; and uniqueness follows from
the opcartesian property ofχ(m0′); thusn1 : Q1 → Q1′ = n1 : γ1(m0) → γ1(m0′);
and the construction extends in the obvious way to paths inµ.

That γ1 is a diagram is easy to see, as is the fact thatχ induces a diagram morphism
c : γ0 → γ1.

Definition 4.5.2 Let Q be a subcategory ofC containing all isomorphisms between an
two of its objects, and letP : Q → B be an opfibration. Letb : B0 → B1 be an arrow in
the base and letD0 be an abstract diagram of shapeµ in the fibreP –1(B0) aboveB0, by
which we mean thatD0 is a subcategory of [µ, C] such that all the objects and arrows
of D0 (which are concrete diagrams and diagram morphisms inC) are concrete dia-
grams and diagram morphisms inP –1(B0). Let χ be a choice of arrowsχ(m0, λ) :
γ0,λ(m0) → Q1, opcartesian for (γ0,λ(m0), b), one for each vertexm0 of each concrete
diagramγ0,λ in D0 (whereλ indexes the objects ofD0), satisfying the following condi-
tions for each vertexm0 in µ:

(1) kind(m0) = id ⇔ for each concrete diagram morphismn0,λ,λ′ : γ0,λ → γ0,λ′ in D0,
we have thatχ(m0, λ) = χ(m0, λ′), i.e. idE1

χ(m0, λ) = χ(m0, λ′) idγ0,λ(m0)
,

wheren0,λ,λ′(m0) : γ0,λ(m0) → γ0,λ′(m0) = idγ0,λ(m0) is the identity atγ0,λ(m0)
which is the component of the concrete diagram morphismn0,λ,λ′(m0) : γ0,λ(m0)
→ γ0,λ′(m0) atm0, andn1,λ,λ′(m0) : Q1 → Q1 = idE1

 is the identity atE1.

(2) kind(m0) = std ⇔ for each concrete diagram morphismn0,λ,λ′ : γ0,λ → γ0,λ′ in
D0, we have thatχ(m0, λ) : γ0,λ(m0) → Q1 andχ(m0, λ′) : γ0,λ(m0) → Q1′ are
such thatσ(Q1, Q1′) χ(m0, λ) = χ(m0, λ′) σ(γ0,λ(m0), γ0,λ′(m0)), where
n0,λ,λ′(m0) : γ0,λ(m0) → γ0,λ′(m0) = σ(γ0,λ(m0), γ0,λ′(m0)) is the standard isomor-
phism which is the component of the concrete diagram morphismn0,λ,λ′(m0) :
γ0,λ(m0) → γ0,λ′(m0) atm0, andn1,λ,λ′(m0) : Q1 → Q1′ = σ(Q1, Q1′) is the stand-
ard isomorphism fromQ1 to Q1′.

(3) kind(m0) = iso ⇔ for each concrete diagram morphismn0,λ,λ′ : γ0,λ → γ0,λ′ in
D0, we have thatχ(m0, λ) : γ0,λ(m0) → Q1 andχ(m0, λ′) : γ0,λ(m0) → Q1′ are
such thatτ(Q1, Q1′) χ(m0, λ) = χ(m0, λ′) τ(γ0,λ(m0), γ0,λ′(m0)), where
n0,λ,λ′(m0) : γ0,λ(m0) → γ0,λ′(m0) = τ(γ0,λ(m0), γ0,λ′(m0)) is an arbitrary isomor-
20
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phism which is the component of the concrete diagram morphismn0,λ,λ′(m0) :
γ0,λ(m0) → γ0,λ′(m0) atm0, andn1,λ,λ′(m0) : Q1 → Q1′ = τ(Q1, Q1′) is an arbitrary
isomorphism fromQ1 to Q1′.

It is clear that for any concrete diagramγ0,λ in D0, the choice ofχ(m0, λ) ranging over
the verticesm0 of µ, provides a concrete diagramγ1,λ and a concrete diagram morphism
cλ : γ0,λ → γ1,λ as per Definition 4.5.1. It is equally clear that conditions (1)-(3) gua
antee that natural transformationsn0,λ,λ′ : γ0,λ → γ0,λ′ between the concrete diagram
γ0,λ in D0 are mapped to natural transformations of the same kindn1,λ,λ′ : γ1,λ → γ1,λ′
between the concrete diagramsγ1,λ, thus producing an abstract diagramD1 which con-
forms to its kind, and an epic abstract diagram morphismc : D0 → D1, which is medi-
ated by the family of arrowsχ(m0, λ), with m0 ranging over vertices ofµ andλ ranging
over objects ofD0.

For the above to be well defined, we should check that the conditions (1)-(3) are act
feasible. Clearly condition (1) offers no problems. Neither does condition (3), si
we can choose theχ(m0, λ) arbitrarily, safe in the knowledge that ifγ0,λ(m0) and
γ0,λ′(m0) are isomorphic, then for any isomorphismτ(γ0,λ(m0), γ0,λ′(m0)) we will always
be able to find the unique isomorphismτ(Q1, Q1′) that solves the equation, becauseQ
contains all isomorphisms fromQ1 to Q1′. Condition (2) requires a little more thought
Suppose there is anm0 in µ of kind std. Then we choose arbitrarily one objectΓ0,λ* in
D0 to act as reference point (ifD0 is nonempty, otherwise there is nothing to prove
We know that for allγ0,λ′ in D0, σ(Γ0,λ*(m0), γ0,λ′(m0)) is the unique arrow between
these two graphs (ifD0 indeed contains an arrow fromΓ0,λ* to γ0,λ′). We takeχ(m0,
λ*) : γ0,λ*(m0) → Q1 as fixed. Now ifχ(m0, λ′) satisfies the equation in condition (2
then all well and good; we setχ′(m0, λ′) = χ(m0, λ′). If not, then we will haveτ(Q1,
Q1′) χ(m0, λ*) = χ(m0, λ′) σ(Γ0,λ*(m0), γ0,λ′(m0)) for some nonstandard isomor-
phismτ(Q1, Q1′). In this case we will haveσ(Q1, Q1′) = a(Q1′, Q1′) τ(Q1, Q1′) for
some unique automorphisma(Q1′, Q1′) of Q1′. We can now replace the choice of arrow
χ(m0, λ′) by χ′(m0, λ′) = a(Q1′, Q1′) χ(m0, λ′), an equally acceptable possibility since
opcartesian arrows are unique only up to isomorphism. Doing the same for allλ′ gives
us a choiceχ′ of opcartesian arrows such that condition (2) is indeed satisfied.

Let Φ(b, χµ) name the construction on (concrete and) abstract diagrams just descr
where the shape isµ andD0 is understood.

Proposition 4.5.3 Let D0 be an abstract diagram of shapeµ, and letα : ν → µ be a
kind non increasing shape graph morphism. Forλ an index of a concrete diagramγ0,λ
in D0, andn0 a vertex ofν, let χν be defined byχν(n0, λ) = χµ(α(n0), λ) (which gives a
choice of opcartesian arrows for the induced abstract diagramE0 = Θ(α)(D0)). Then
Φ(b, χν) Θ(α) = Θ(α) Φ(b, χµ) as functors from the category of abstract diagram
of shapeµ to the arrow category of the category of abstract diagrams of shapeν.

The proof is obvious once one notices thatexactly the samefamily of opcartesian ar-
rows is determined by bothΦ(b, χν) Θ(α) andΘ(α) Φ(b, χµ). Clearly the construc-
tion is natural inα, but demanding naturality inb too, amounts to splitting the opfibra-
tion P : Q → B.
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Note that there is a special case of the theory of Definitions 4.5.1-2 in which we imp
the additional constraint on all concrete diagramsγ thatγλ(m0) = γλ(m1) ⇒ χ(m0, λ) =
χ(m1, λ).  We will not describe it in detail.

4.6 Arrow Abstract Diagrams and Interface-Diagram Categories

In this section we describe a construction for diagrams which is in many ways an
gous to the arrow category construction for ordinary categories. Using it enables
construct diagrams and categories over larger and larger shapes.

Definition 4.6.1   Letµ be a shape graph.  Then 2.µ is the shape graph given by:

Vertices: {(m, 0), (m, 1) | m ∈ Vert(µ)}

Edges: {(e, 0) : (m, 0) → (m′, 0) | e : m → m′ ∈ Edg(µ)} ∪
{( e, 1) : (m, 1) → (m′, 1) | e : m → m′ ∈ Edg(µ)} ∪
{( m, 01) : (m, 0) → (m, 1) | m ∈ Vert(µ)}

If µ is kinded, then 2.µ acquires kinds in the obvious way. The path category of 2.µ is
2.µ.

Definition 4.6.2 Let γ be a concrete diagram of shapeµ in C and letn : γ → δ be a
concrete diagram morphism. Thenn defines a concrete diagram 2.γ of shape 2.µ in C
as follows:

2.γ((m, 0)) =γ(m)
2.γ((m, 1)) =δ(m)

2.γ((e, 0) : (m, 0) → (m′, 0)) =γ(e : m → m′)
2.γ((e, 1) : (m, 1) → (m′, 1)) =δ(e : m → m′)
2.γ((m, 01) : (m, 0) → (m, 1)) =n(γ(m)) : γ(m) → δ(m)

We call 2.γ the arrow concrete diagram induced byn.

Definition 4.6.3 Let c : D0 → D1 be a morphism of maximal (kinded) abstract dia
grams of shapeµ, mediated by a family of arrowsΞ, with associated functionχ. Let γ
be a concrete diagram ofD0 andχ(m, γ) : γ → c(γ), with m ranging over Vert(µ), be the
concrete diagram morphism atγ induced byc. Then according to Definition 4.6.2,
χ(m, γ) : γ → c(γ) defines a concrete diagram 2.χγ, the arrow concrete diagram induced
by χ, of shape 2.µ.

Let [2.χγ] denote the maximal abstract diagram (conforming to the kinds of 2.µ) con-
taining 2.χγ.  We call [2.χγ] the arrow abstract diagram induced byc.

Lemma 4.6.4   The definition of [2.χγ] is not affected by the specific choice ofγ.

Proof.  By the naturality ofc and of the structure of abstract diagrams in general.

The arrow concrete/abstract diagram construction gives us a versatile tool for cons
ing interface-diagram categories, next.

Definition 4.6.5   An interface-diagram category is given by the following data:

(1) Two (kinded) shapes,µ andρ, and two monic shape morphismss, t : ρ → µ (that
preserve kinds).
22
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(2) A collection of concrete (resp. maximal (kinded) abstract) diagramsObj of shape
ρ, and a collection of nonempty concrete (resp. maximal (kinded) abstract)
gramsArr of shapeµ.

(3) For eachA in Arr, two concrete (resp. maximal (kinded) abstract) subdiagra
induced bys andt, s(A) andt(A), both to be found inObj.

(4) For eachO in Obj, an element idO of Arr.
(5) A functionΨ, which givenA0 andA1 in Arr andO in Obj, and a pastingA0⊕ρA1

alongρ via t(A0) = O = s(A1) of A0 andA1, returns anA1 A0 in Arr with
s(A1 A0) = s(A0) andt(A1 A0) = t(A1); and such that the usual identity and as
sociativity laws hold namely:

(i) For eachO in Obj, s(idO) = O = t(idO).

(ii) For eachA in Arr, A  ids(A) = A = idt(A) A.

(iii) For all A1, A2, A3 in Arr, (A1 A2) A3 = A1  (A2 A3).

If we are using concrete diagrams, we refer to a concrete interface-diagram cate
while if we use abstract diagrams, we refer to an abstract interface-diagram categ

In an interface-diagram category the arrows are concrete (resp. maximal (kinded
stract) diagrams, and the objects are subdiagrams, the interfaces, along which tw
rows may be combined byΨ, hence the name. Note that were we considering all co
crete (resp. maximal (kinded) abstract) diagrams as coexisting within one catego
structure (eg. a Grothendieck category over change of base arrows), Definition
would be almost the definition of an internal category particularised to the case of
grams, except that we choose to use pushouts (via pasting) rather than pullbacks
more conventional.

Proposition 4.6.6 Let µ* be a shape graph, and letC2.µ* be the family of all arrow con-
crete diagrams induced by concrete diagram morphisms between concrete diagra
shapeµ* .  ThenC2.µ* is an interface-diagram category as follows:

(1) Theµ andρ of the interface-diagram category are 2.µ* andµ* respectively;s :
ρ → µ is the subgraph of shapeµ* of 2.µ* given by the 0-indexed vertices (m, 0)
and the edges between them, likewiset : ρ → µ is the subgraph of shapeµ* of
2.µ*  given by the 1-indexed vertices and edges.

(2) Obj consists of concrete diagrams of shapeµ* ; Arr consists of the elements of
C2.µ*.

(3) For eachA in Arr, s(A) andt(A) are the subdiagrams of elements ofC2.µ* select-
ed by the shape morphismss andt via Definition 4.2.2.

(4) For eachO in Obj, idO in Arr is the concrete diagram of shape 2.µ* induced by
identity morphisms on concrete diagrams of shapeµ* .

(5) GivenA0 = γ andA1 = δ in Arr andO in Obj, and a pastingA0⊕ρA1 alongρ via
t(A0) = O = s(A1) of A0 andA1, Ψ takes the pastingA0⊕ρA1 and returns the con-
crete subdiagramγδ of shape 2.µ* constructed as follows (note that this is a sub
diagram construction as per Definition 4.2.1):
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γδ((m, 0)) =γ((m, 0))
γδ((m, 1)) =δ((m, 1))

γδ((e, 0) : (m, 0) → (m′, 0)) =γ((e, 0) : (m, 0) → (m′, 0))
γδ((e, 1) : (m, 1) → (m′, 1)) =δ((e, 1) : (m, 1) → (m′, 1))
γδ((m, 01) : (m, 0) → (m, 1)) =δ((m, 01) : (m, 0) → (m, 1))
                                                  γ((m, 01) : (m, 0) → (m, 1))

and extending naturally to the path category 2.µ* .

Proof.  Easy.

Definition 4.6.7 C2.µ* is the concrete interface-diagram category generated byµ* .

Proposition 4.6.8 Let µ* be a shape graph, and letC[2.µ* ] be the family of all arrow
abstract diagrams induced by abstract diagram morphisms between maximal (kin
abstract diagrams of shapeµ* . ThenC[2.µ* ] is an interface-diagram category as follows:

(1) Theµ andρ of the interface-diagram category are 2.µ* andµ* respectively;s :
ρ → µ is the subgraph of shapeµ* of 2.µ* given by the 0-indexed vertices (m, 0)
and the edges between them, likewiset : ρ → µ is the subgraph of shapeµ* of
2.µ*  given by the 1-indexed vertices and edges.

(2) Obj consists of maximal (kinded) abstract diagrams of shapeµ* ; Arr consists of
the elements ofC[2.µ* ].

(3) For eachA in Arr, s(A) andt(A) are the subdiagrams of elements ofC[2.µ* ] se-
lected by the shape morphismss andt via Definition 4.2.2.

(4) For eachO in Obj, idO in Arr is the maximal abstract diagram of shape 2.µ* in-
duced by identity morphisms on abstract diagrams of shapeµ* .

(5) GivenA0 andA1 in Arr andO in Obj, and a pastingA0⊕ρA1 alongρ via t(A0)
= O = s(A1) of A0 andA1, Ψ takes the pastingA0⊕ρA1 and returns the maximal
abstract subdiagram of shape 2.µ* given by taking all concrete diagramsγδ of
shape 2.µ* (and appropriate isomorphisms between them), constructed a
clause (5) of Definition 4.6.6, from pastingsγ⊕ρδ in A0⊕ρA1 of compatible con-
sistent concrete diagramsγ andδ from A0 andA1 respectively. (Note that this is
a subdiagram construction as per Definition 4.2.2).

Proof.  Easy.

Definition 4.6.9 C[2.µ* ] is the abstract interface-diagram category generated byµ* .

The above results will provide powerful tools for the constructions we wish to make
low. Note the close analogy that has arisen between operations on concrete and a
diagrams.

5 Abstract Spans and Other Abstract Diagrams inGr
We now apply the preceding to the case whereC is Gr, and in particular to spans. Spans
i.e. coinitial pairs of arrows, arise in the algebraic theory of graph rewriting from t
independent sources. Firstly, graph productions are defined in the algebraic, do
pushout approach (Ehrig (1979)) as spans in the category of graphs. Secondly,
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definition of typed graph grammar morphisms in Corradini et al. (1996b), spans
used to relate the type graph components of grammars.

We fix the shape digraph for spans to be•1 ← ♦ → •2 which we callη.

Until further notice, the kinds of all vertices will beiso.

For the rest of the paper, we will frequently suppress names of arrows when they ar
crucial to the discourse or can be infered.

Definition 5.1 An abstract span is an abstract diagram of the form [A] ← [B] → [C],
i.e. an abstract diagram of shapeη with all kindsiso.

Definition 5.2   The category [Sp] is the interface-diagram category generated byη.

[Sp] is the category of abstract span morphisms. When we need to be explicit, we
write a morphism of [Sp] using the notation

([A] ← [B] → [C]) -[a,b,c]-› ([A′] ← [B′] → [C′])

where -[a,b,c]-› is a notation for (a : A → A′, b : B → B′, c : C → C′), three concrete
graph morphisms representing the abstract diagram morphism from [A] ← [B] → [C]
to [A′] ← [B′] → [C′] which generates the arrow abstract diagram that is the morph
of [Sp] in question.  Fig. 7 illustrates.

The local pullback construction of Definition 4.2.5 permits us to build another int
face-diagram category from abstract spans.

Definition 5.3 The category [Gr-Sp] is the interface-diagram category given by the fo
lowing data:

(1) Theµ andρ of the[Gr-Sp] areη and• respectively;s : ρ → µ is {• |→ •1} while
t : ρ → µ is {• |→ •2}.

(2) Obj is [Gr], graphs up to arbitrary isomorphisms;Arr is the object class of [Sp],
i.e. abstract spans.

(3) For eachA = [A] ← [B] → [C] in Arr, s(A) andt(A) are the subdiagrams [A] and
[C] respectively.

(4) For each [A] in Obj , id[A] in Arr is [A] ← [A] → [A] where the arrows are (iso-
morphism images of) identities onA.

[B] [C][A]

Fig. 7

[B′] [C′][A′]
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(5) GivenA0 = [A] ← [B] → [C] andA1 = [C] ← [D] → [E] in Arr and [C] in Obj,
and a pastingA0⊕ρA1 alongρ via t(A0) = [C] = s(A1) of A0 andA1, Ψ takes the
pastingA0⊕ρA1 and returns the maximal abstract subdiagram ((A0⊕ρA1)lpb)η
of shapeη given by the following procedure:

(i) Form the local pullback of [B] → [C] ← [D] inside A0⊕ρA1, yielding
[B] ← [M] → [D] inside a bigger abstract diagram (A0⊕ρA1)lpb.

(ii) Let morphismα from η to the shape of (A0⊕ρA1)lpb be given by:

{ •1 |→ •1(0), ♦ |→ ♦, •2 |→ •2(1)}

where the (0) and (1) subscripts indicate the component of the past
and with the obvious extension to edges.

(iii) Let ((A0⊕ρA1)lpb)η be the subdiagram yielded byα.

Proposition 5.4   [Gr-Sp] is a category.

Proof.  Easy, by pullback properties.

The two methods of composition involving spans can be brought together in a si
structure.

Definition 5.5 A double interface-diagram category is a double category which is
interface-diagram category with respect to both horizontal and vertical composition
double interface-diagram category is concrete or abstract according to whether th
grams it is built out of are concrete or abstract.

For double categories see eg. Ehresmann (1963), Palmquist (1970), Bastiani and E
mann (1974); a tutorial treatment also appears in Gadducci and Montanari (1995

Definition 5.6 The abstract double interface-diagram category [D-Gr-Sp] has as dou-
ble cells abstract diagrams of the shape in Fig. 7, i.e. morphisms of [Sp]. As before we
write such cells asa = (([A] ← [B] → [C]) -[a,b,c]-› ([A′] ← [B′] → [C′])). Vertical
composition∗v of double cellsa = (([A] ← [B] → [C]) -[a,b,c]-› ([A′] ← [B′] → [C′]))
anda′ = (([A′] ← [B′] → [C′]) -[a′,b′,c′]-› ([A′′] ← [B′′] → [C′′])) is the composition of
[Sp], giving the double cell (a∗va′) = (([A] ← [B] → [C]) -[a′.a,b′.b,c′.c]-› ([A′′] ← [B′′]
→ [C′′])). Horizontal composition∗h of double cellsa = (([A] ← [B] → [C]) -[a,b,c]-›
([A′] ← [B′] → [C′])) andb = (([C] ← [D] → [E]) -[c,d,e]-› ([C′] ← [D′] → [E′])) is
given by: pastinga andb along [C] → [C′], making two instances of the composition
of [Gr-Sp] (at primed and unprimed levels respectively), pasting in the abstract m
phism [M] → [M′] noting that [M] → [M′] is uniquely given by pullback properties and
the requirements of pasting; thus obtaining the double cell (a∗hb) = (([A] ← [M] → [E])
-[a,m,e]-› ([A′] ← [M′] → [E′])).
Proposition 5.7   [D-Gr-Sp] is an abstract double interface-diagram category.

Proof.  Easy, if tedious, by pullback properties.

It is relatively easy if tedious to see that the standard interchange law for double c
gories (a∗va′)∗h(b∗vb′) = (a∗hb)∗v(a′∗hb′) holds.

The vertical arrows of [D-Gr-Sp] are abstract diagrams of shape [A] → [A′], i.e. abstract
graph morphisms, while the horizontal arrows of [D-Gr-Sp] are the familiar abstract
spans [A] ← [B] → [C]. Objects of [D-Gr-Sp] are graphs up to isomorphism [A]. The
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identities of horizontal arrows are double cells whose vertical arrows are isomorphi
while identities of vertical arrows are double cells whose horizontal arrows are isom
phisms. Identities of objects are double cells with both horizontal and vertical arr
isomorphisms.  These aspects will shortly prove useful.

6 The Opfibration [P ] : [Gr *↓Gr-Sp] → [Gr-Sp] and Others

A typed graph over a (type) graphTG is simply an object of the comma categor
(Gr↓TG), i.e., a graph morphismG → TG. As explained in the introduction, various
works (Corradini et al. (1996b), Ribeiro (1996), Heckel et. al (1997)) address, with
ious techniques, the issue of relating graphs typed over different graphs. By explo
an opfibrational framework, we propose a solution that aims at the greatest gener
In this section we shall construct an opfibration which will later enable us to have
each abstract type graph [TG], a fibre including all abstract graphs typed over [TG], and
where morphisms between abstract type graphs are abstract spans. The opfibra
framework allows us to keep the natural non-determinism of this situation. Since
section sets up technical results needed later, we will avoid refering to “typing” e
prefering a more neutral terminology.

Definition 6.1 The category [Gr↓Gr-Sp] is a horizontal subcategory of [D-Gr-Sp],
(i.e. its objects are abstract graph morphisms [X] → [A], and its arrows are abstract spa
morphisms), such that two additional properties hold for every arrow

(([X] ← [Y] → [Z]) -[a,b,c]-› ([A] ← [B] → [C])) : ([X] → [A]) → ([Z] → [C])

of [Gr↓Gr-Sp] namely that:

(1) The left squareXYBA of each concrete diagram in the arrow is a pullback.

(2) The right arrowY → Z of the source abstract span of each concrete diagram
the arrow is an isomorphism.

We write the second property asY== Z, and as a matter of convention we adopt the n
tation

(([X] ← [Y] == [Z]) -[a,b,c]-› ([A] ← [B] → [C]))

to signify that both properties hold of the abstract span morphism in question.

Lemma 6.2   [Gr↓Gr-Sp] is an abstract interface-diagram category.

Proof. We just have to check that both additional properties hold for the composi
inherited from [D-Gr-Sp].  For the first consider Fig. 8.

For any concrete diagram in the abstract composite,YZUWandBCDM are pullbacks
by construction, andZCDU is a pullback by hypothesis. HenceYZCDUWis a pullback.
But thenYBCDMWis a pullback because the concrete diagram commutes. But t
sinceBCDM is a pullback, so mustYBMWbe, by pullback properties. Finally since
XABYis a pullback by hypothesis, the combinationXABMWis a pullback, and this
gives the first property.

The second property is obvious from Fig. 8; the pullback of two “← == ” spans is an-
other such span.
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Consider now the shape graphη* which has vertices {0, 1, 2,* } and edges {1|→ 0,
1 |→ 2, 2 |→ * }. The related shape graphη*↓η has vertices {0, 1, 2,* , •1, ♦, •2} and
edges {1|→ 0, 1 |→ 2, 2 |→ * , ♦ |→ •1, ♦ |→ •2, 0 |→ •1, 1 |→ ♦, * |→ •2}. The path
categories areη* and η*↓η. The graphη*↓η is like 2.η with an extra vertex and dif-
ferent names.  Fig. 9 illustrates an abstract diagram of shapeη*↓η.

As above we consider a special case of abstract diagrams of shapeη*↓η, in which the
two properties stated in Definition 6.1 hold for the squareXYBAand the arrowY → Z.
We will write abstract diagrams possessing these two properties as:

([X] ← [Y] == [Z] → [Z′]) -[a,b,c,c′]-› ([A] ← [B] → [C])

wherec : Z → Z′ andc′ : Z′ → C are representative arrows over 2|→ * and* |→ •2 re-
spectively.

As before, we will build an abstract interface-diagram category with such diagram
arrows, but first we need a construction that will enable us to define the compos
functionΨ for them.

Construction 6.3 Let ([X] ← [Y] == [Z] → [Z′]) -[a,b,c,c′]-› ([A] ← [B] → [C]) and
([Z′] ← [U′] == [V′] → [V′′]) -[c′,d′,e′,e′′]-› ([C] ← [D] → [E]) be two abstract diagrams
of shapeη*↓η with the required properties, pasted along [Z′] → [C]. The abstract dia-

[X]

[A]

[Y]

[B] [C]

[Z]

Fig. 8

[D] [E]

[U] [V]

[M]

[W]

[X]

[A]

[Y]

[B] [C]

[Z]

Fig. 9

[Z′]
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gram ([X] ← [W] == [V] → [V′′]) -[a,m,e′.e,e′′]-› ([A] ← [M] → [E]) of shapeη*↓η is
formed as follows (see Fig. 10).

(1) Form the local pullback of [Z] → [Z′] and [Z′] ← [U′] giving [Z] ← [U] and
[U] → [U′], the latter with representatived : U → U′.

(2) Form the local pullback of [U] → [U′] and [U′] == [V′] giving [U] == [V] and
[V] → [V′], the latter with representativee : V → V′.

(3) Form the local pullback of [Y] == [Z] and [Z] ← [U] giving [Y] ← [W] and
[W] == [U].

(4) Form the local pullback of [B] → [C] and [C] ← [D] giving [D] ← [M] and
[B] → [M].

(5) Paste in [W] → [M], the unique (by pullback properties) abstract morphism th
makes the result commute.

(6) Take the obvious subdiagram of shapeη*↓η of Fig. 10 which yields the required
([X] ← [W] == [V] → [V′′]) -[a,m,e′.e,e′′]-› ([A] ← [M] → [E]).

Lemma 6.4 The abstract diagram built in Construction 6.3, ([X] ← [W] == [V] → [V′′])
-[a,m,e′.e,e′′]-› ([A] ← [M] → [E]), has the two properties of Definition 6.1.

Proof. It is sufficient to note that sinceZ′CDU′ is a pullback by hypothesis, andZZ′U′U
is a pullback by construction, thenZCDU is a pullback. Now the proof of Lemma 6.2
can be used unaltered.

Definition 6.5 The category [Gr *↓Gr-Sp] is the abstract interface-diagram categor
whose objects are abstract graph morphisms [X] → [A], and whose arrows are abstrac
diagrams (([X] ← [Y] == [Z] → [Z′]) -[a,b,c,c′]-› ([A] ← [B] → [C])) : ([X] → [A]) →
([Z′] → [C]) of shapeη*↓η with [Y] == [Z] an abstract isomorphism. Composition i
according to theΨ implicit in Construction 6.2. Identities are arrows with [X] ← [Y]
== [Z] → [Z′] all isomorphisms and [A] ← [B] → [C] also all isomorphisms.

[X]

[A]

[Y]

[B] [C]

[Z]

Fig. 10

[Z′] [U′] [V′]

[V′′]

[D] [E]

[U] [V]

[M]

[W]
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Lemma 6.6   [Gr *↓Gr-Sp] is an abstract interface-diagram category.

Proof. The detailed components making up Definition 4.6.4 are easy to check.
only nontrivial part is associativity, which requires a somewhat tedious calculation
ing pullback properties.

We now come to the first main results of this section.

Theorem 6.7   The projection [P ] : [Gr↓Gr-Sp] → [Gr-Sp] that takes

(([X] ← [Y] == [Z]) -[a,b,c]-› ([A] ← [B] → [C])) : ([X] → [A]) → ([Z] → [C])

to ([A] ← [B] → [C]) : [A] → [C] is a split opfibration, where all arrows of [Gr↓Gr-Sp]
are opcartesian and belong to the splitting.

Proof. We easily see thatP is a functor, so we need to check the conditions for opca
tesian arrows and the splitting.  See Fig. 11.

To check the conditions for opcartesian arrows we paste the abstract diagrams ([X] ←
[Y] == [Z]) -[a,b,c]-› ([A] ← [B] → [C]) and ([X] ← [W] == [V]) -[a,m,e]-› ([A] ← [M]
→ [E]) along [X] → [A], knowing that ([A] ← [M] → [E]) is the composition of ([A] ←
[B] → [C]) and ([C] ← [D] → [E]). This gives the solid part of Fig. 11. We need to
show that we can paste in the abstract diagram ([Z] ← [U] == [V]) -[c,d,e]-› ([C] ← [D]
→ [E]), i.e. the dashed part of Fig. 11, in the appropriate way.

Since for any concrete representative,XABYis a pullback by hypothesis andW→ X →
A andW → M → B → A closeX → A ← B, we can paste in a unique [W] → [Y] by
pullback properties. Next we form the local pullback of [Z] → [C] ← [D], giving [Z]
← [U] → [D]. Since for any concrete representative,W→ Y→ B → C andW→ M →
D → C closeB → C ← D, we can paste in a unique [W] → [U] by pullback properties,
though we don’t yet know it is an abstract isomorphism as illustrated.

Now XABYis a pullback as noted previously, andXAMWis another, by hypothesis. So
YBMWis a pullback by pullback properties. Combining this with the pullbackMBCD
givesYBCDMWas a pullback, and thusYZCDUWis a pullback. SinceZCDU is a pull-
back by construction, we conclude thatWYZUis a pullback by pullback properties.

[X]

[A]

[Y]

[B] [C]

[Z]

Fig. 11

[D]

[E]

[U]

[V]

[M]

[W]
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This enables us to conclude that since [Y] == [Z] is an abstract isomorphism, [W] ==
[U] must also be one. Hence [U] == [V] is an abstract isomorphism as required. W
see that we have pasted in ([Z] ← [U] == [V]) -[c,d,e]-› ([C] ← [D] → [E]) as needed.

We now present the opcleavage that gives a splitting. Given an object ([X] → [A]) of
[Gr↓Gr-Sp], projecting down to the domain of an arrow ([A] ← [B] → [C]) : [A] → [C]
of [Gr-Sp], we defineκ(([X] → [A]), ([A] ← [B] → [C])) to be

(([X] ← [Y] == [Y]) -[a,b,c]-› ([A] ← [B] → [C])) : ([X] → [A]) → ([Y] → [C])

where [Y] comes from the local pullback of [X] → [A] ← [B] and [Y] == [Y] is the iden-
tity abstract isomorphism. That all arrows of [Gr↓Gr-Sp] belong to the splitting follows
from the uniqueness of the local pullback construction noted above, and from the
that if [Y] == [Z] is an abstract isomorphism then [Y] == [Z] is just the same thing as [Y]
== [Y].  We are done.

Theorem 6.8   The projection [P* ] : [Gr *↓Gr-Sp] → [Gr-Sp] that takes

(([X] ← [Y] == [Z] → [Z′]) -[a,b,c,c′]-› ([A] ← [B] → [C])) :
([X] → [A]) → ([Z′] → [C])

to [A] ← [B] → [C] : [A] → [C] is a split opfibration, where all arrows of [Gr *↓Gr-Sp]
for which [Z] → [Z′] is an abstract isomorphism are opcartesian and belong to the s
ting.

Proof. This a marginally more elaborate version of the preceding. Again it is clear
[P* ] is a functor so we just need to check the opfibration condition and the splitting.
Fig. 12.

[X]

[A]

[Y]

[B] [C]

[Z]

Fig. 12

[D]

[E]

[U]

[V]

[M]

[W]

[Z′]

[U′]

[V′]

[V′′]
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For this we paste the abstract diagrams ([X] ← [Y] == [Z] == [Z′]) -[a,b,c,c′]-› ([A] ←
[B] → [C]) and ([X] ← [W] == [V] → [V′′]) -[a,m,ẽ ,e′′]-› ([A] ← [M] → [E]) along
[X] → [A], knowing that ([A] ← [M] → [E]) is the composition of ([A] ← [B] → [C])
and ([C] ← [D] → [E]), giving the solid part of Fig. 12. We need to paste in the abstra
diagram ([Z′] ← [U′] == [V′] → [V′′]) -[c,d,e,e′]-› ([C] ← [D] → [E]), such thatẽ =
e′ e, and the relevant [Gr *↓Gr-Sp] composition properties hold.

The argument goes as per the previous theorem until the point that the local pullba
[Z] → [C] ← [D] is built. Here instead, the local pullback of [Z′] → [C] ← [D] is
formed, followed by the local pullback of [Z] == [Z′] ← [U′]. Since [Z] == [Z′] is an
abstract isomorphism, the additional structure propagates through the rest of the
without difficulty and we leave the details to the reader.

For the splitting, we defineκ(([X] → [A]), ([A] ← [B] → [C])) to be

(([X] ← [Y] == [Y] == [Y]) -[a,b,id,c]-› ([A] ← [B] → [C])) :
([X] → [A]) → ([Y] → [C])

where [Y] is the local pullback of [X] → [A] ← [B] as before. That this works, and tha
all [Gr *↓Gr-Sp] arrows with [Z] → [Z′] an abstract isomorphism are included, is fo
the reasons quoted in the previous proof.  We are done.

We see that modulo an extra mention of abstract isomorphisms [Y] == [Y], [Gr↓Gr-Sp]
is the opcartesian subcategory of [Gr *↓Gr-Sp]. So we have created the second opfi
bration by identifying first the opcartesian arrows, and then enhancing this to inc
further in-fibre arrows (the arrows [Z] → [Z′], “in-fibre” implying that there is a mor-
phism [Z] → [Z′] → [C]), and showing that this preserved the opcartesian propert
This is an example of our nondeterministic analogue of the Grothendieck construct

Consider the fibre in [Gr *↓Gr-Sp] above an object [A] of [Gr-Sp]. It consists of objects
[X] → [A] and of those [Gr *↓Gr-Sp] arrows that project down to identities on [A] in
[Gr-Sp]. Such arrows look like (([X] ← [X] == [X] → [X′] ) -[x,x,id,x′]-› ([A] ← [A] →
[A])) : ([X] → [A]) → ([X′] → [A]). There is clearly an isomorphism between these
bres and the abstract interface-diagram comma categories ([Gr]↓[A]) with objects
[X] → [A] and arrows [X] → [X′] such that [X] → [X′] → [A] commutes in the expected
way. Via this isomorphism, we can use the results of Section 4.5 to claim that when
we have a concrete diagram in ([Gr]↓[A]), and we choose an opcartesian arrow o
[Gr *↓Gr-Sp] for each object in the diagram such that there is a common arrowb of
[Gr-Sp] to which they all project, then this yields a concrete diagram morphism tha
opcartesian for all morphisms of the diagram which project to extensions ofb.

We make all this more precise in the following manner. For convenience we will us♣
as a variable that ranges over the vertices•1, ♦, •2 of η. Let (2.η).η be the shape graph
given by:

Vertices: {((♣, i), j) | ♣ ∈ {•1, ♦, •2}, i ∈ {0, 1}, j ∈ {0, 1, 2}}

Edges: {(((♣, i), j), ((♣′, i′), j)) | (♣, i) |→ (♣′, i′) an edge of 2.η,
  j ∈ {0, 1, 2}} ∪

{((( ♣, i), j), ((♣, i), j+1)) | (♣, i) a vertex of 2.η,
    j, j+1 ∈ {0, 1, 2}}
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and let (2.η).η be its path category. Likewise let 2+1 =* , and let (2.η).η* be the shape
graph given by:

Vertices: {((♣, i), j) | ♣ ∈ {•1, ♦, •2}, i ∈ {0, 1}, j ∈ {0, 1, 2,* }}

Edges: {(((♣, i), j), ((♣′, i′), j)) | (♣, i) |→ (♣′, i′) an edge of 2.η,
  j ∈ {0, 1, 2,* }} ∪

{((( ♣, i), j), ((♣, i), j+1)) | (♣, i) a vertex of 2.η,
    j, j+1 ∈ {0, 1, 2,* }}

with path category (2.η).η*.  Let (2.η).η↓η be the shape graph given by:

Vertices: Vert((2.η).η) ∪ Vert(η)

Edges: Edg((2.η).η) ∪ Edg(η) ∪
{(( ♣, i), j) |→ ♣′ | (j, ♣′) ∈ {(0, •1), (1,♦), (2,•2)},

 ♣ ∈ {•1, ♦, •2}, i ∈ {0, 1}}

with path category (2.η).η↓η.  Finally let (2.η).η*↓η be the shape graph given by:

Vertices: Vert((2.η).η*) ∪ Vert(η)

Edges: Edg((2.η).η↓η) ∪ {(( ♣, i), * ) |→ •2 | ♣ ∈ { •1, ♦, •2}, i ∈ {0, 1}}

with path category (2.η).η*↓η. Fig. 13 shows (the essentials of) an abstract diagram
shape (2.η).η*↓η. We will demand that the analogues of the properties of Definiti
6.1 hold for such abstract diagrams, namely that:

(1) If any square in any concrete diagram of the abstract diagram has an arrow
♦ |→ •1, then it is a pullback.

(2) Any arrow over ((♣, i), 1) |→ ((♣, i), 2) for some♣, i, in any concrete diagram
of the abstract diagram, is an isomorphism.

We introduce the following notation for the abstract diagram in Fig. 13:

((([X0] ← [Y0] → [Z0]) -[x0,y0,z0]-› ([X0˜] ← [Y0˜] → [Z0˜])) → [A]) -[ABC]=›
((([X2] ← [Y2] → [Z2]) -[x2,y2,z2]-› ([X2˜] ← [Y2˜] → [Z2˜])) → [C]) -›
((([X2′] ← [Y2′] → [Z2′]) -[x2′,y2′,z2′]-› ([X2′˜] ← [Y2′˜] → [Z2′˜])) → [C])

Fig. 13

[X0]

[A] [B] [C]

[Y0]
[Z0]

[X0˜]
[Y0˜]

[Z0˜]

[X2]
[Y2]

[Z2]

[X2˜]
[Y2˜]

[Z2˜]

[X′]
[Y′]

[Z′]

[X′˜]
[Y′˜]

[Z′˜]
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where for brevity we may omit the middle row aside from “-›”. For an abstract diagr
of shape (2.η).η↓η we omit “-›” and the last row. Note that mention of the 2.η-shaped
subdiagram projecting to [B] is merely suppressed for brevity.

Definition 6.9 A triple interface-diagram category is a triple category which is an i
terface-diagram category with respect to horizontal, vertical and perpendicular com
sition. A triple interface-diagram category is concrete or abstract according to whe
the diagrams it is built out of are concrete or abstract.

Now we introduce a triple category that will play a key role in the rest of the paper. T
triple category adds a perpendicular dimension (i.e. the change of base via [Gr-Sp]) to
the double category [D-Gr-Sp].

Definition 6.10 The triple category [D-Gr-Sp↓Gr-Sp] has as triple cells abstract dia-
grams of shape (2.η).η↓η. These may be combined using vertical, horizontal and p
pendicular composition,∗v, ∗h, ∗p respectively.  Vertical composition yields:

{((([ X0] ← [Y0] → [Z0]) -[x0,y0,z0]-› ([X0˜] ← [Y0˜] → [Z0˜])) → [A]) -[ABC]=›
  ((([X2] ← [Y2] → [Z2]) -[x2,y2,z2]-› ([X2˜] ← [Y2˜] → [Z2˜])) → [C])}   ∗v
{((([ X0˜] ← [Y0˜] → [Z0˜]) -[x0˜,y0˜,z0˜]-› ([X0˜˜] ← [Y0˜˜] → [Z0˜˜])) → [A]) -[ABC]=›
  ((([X2˜] ← [Y2˜] → [Z2˜]) -[x2˜,y2˜,z2˜]-› ([X2˜˜] ← [Y2˜˜] → [Z2˜˜])) → [C])}  =
{((([ X0] ← [Y0] → [Z0]) -[x0˜.x0,y0˜.y0,z0˜.z0]-› ([X0˜˜] ← [Y0˜˜] → [Z0˜˜])) → [A])

-[ABC]=›
  ((([X2] ← [Y2] → [Z2]) -[x2˜.x2,y2˜.y2,z2˜.z2]-› ([X2˜˜] ← [Y2˜˜] → [Z2˜˜])) → [C])}

Horizontal composition yields:

{((([ V0] ← [W0] → [X0]) -[v0,w0,x0]-› ([V0˜] ← [W0˜] → [X0˜])) → [A]) -[ABC]=›
  ((([V2] ← [W2] → [X2]) -[v2,w2,x2]-› ([V2˜] ← [W2˜] → [X2˜])) → [C])} ∗h
{((([ X0] ← [Y0] → [Z0]) -[x0,y0,z0]-› ([X0˜] ← [Y0˜] → [Z0˜])) → [A]) -[ABC]=›
  ((([X2] ← [Y2] → [Z2]) -[x2,y2,z2]-› ([X2˜] ← [Y2˜] → [Z2˜])) → [C])}  =
{((([ V0] ← [U0] → [Z0]) -[v0,u0,z0]-› ([V0˜] ← [U0˜] → [Z0˜])) → [A]) -[ABC]=›
  ((([V2] ← [U2] → [Z2]) -[v2,u2,z2]-› ([V2˜] ← [U2˜] → [Z2˜])) → [C])}

whereU0 is a pullback ofW0 → X0 ← Y0 etc.  Perpendicular composition yields:

{((([ X0] ← [Y0] → [Z0]) -[x0,y0,z0]-› ([X0˜] ← [Y0˜] → [Z0˜])) → [A]) -[ABC]=›
  ((([X2] ← [Y2] → [Z2]) -[x2,y2,z2]-› ([X2˜] ← [Y2˜] → [Z2˜])) → [C])} ∗p
{((([ X2] ← [Y2] → [Z2]) -[x2,y2,z2]-› ([X2˜] ← [Y2˜] → [Z2˜])) → [C]) -[CDE]=›
  ((([X4] ← [Y4] → [Z4]) -[x4,y4,z4]-› ([X4˜] ← [Y4˜] → [Z4˜])) → [E])}  =
{((([ X0] ← [Y0] → [Z0]) -[x0,y0,z0]-› ([X0˜] ← [Y0˜] → [Z0˜])) → [A]) -[AME]=›
  ((([X4] ← [Y4] → [Z4]) -[x4,y4,z4]-› ([X4˜] ← [Y4˜] → [Z4˜])) → [E])}

whereM is a pullback ofB → C ← D.

(Horizontal-vertical) double cells are double cells of [D-Gr-Sp] over an abstract graph,
eg. ((([X0] ← [Y0] → [Z0]) -[x0,y0,z0]-› ([X0˜] ← [Y0˜] → [Z0˜])) → [A]); we do not de-
scribe the other two kinds of double cell here. Vertical arrows are abstract graph
phisms over an abstract graph, eg. ([X] → [X˜]) : ([X] → [A]) → ([X˜] → [A]); horizontal
arrows are abstract spans over an abstract graph, eg. ([X] ← [Y] → [Z]) : ([X] → [A]) →
([Z] → [A]); perpendicular arrows are essentially arrows of [Gr↓Gr-Sp], i.e. abstract
changes of base of abstract graphs over an abstract graph, eg. (([X] ← [Y] == [Z])
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-[a,b,c]-› ([A] ← [B] → [C])) : ([X] → [A]) → ([Z] → [C]). And by now it is clear that
the objects are just abstract graphs over an abstract graph, i.e. abstract graph
phisms, eg. ([X] → [A]).

Proposition 6.11   [D-Gr-Sp↓Gr-Sp] is a triple interface-diagram category.

Proof. This is tedious if straightforward to show. There are three sets of identity
associativity laws, and their degenerate cases. Furthermore there are 12 terms inv
different ways of assembling 8 smaller triple cells into a single large triple cell such
every distinct pair yields an interchange law (the collection of which we do not list).

Definition 6.12 The triple category [D-Gr-Sp*↓Gr-Sp] has as triple cells abstract di-
agrams of shape (2.η).η*↓η. As for [D-Gr-Sp↓Gr-Sp], these may be combined using
vertical, horizontal and perpendicular composition,∗v, ∗h, ∗p respectively.

We do not go into details. These are essentially given by replacing -[…]=› by -[…]=›-›
everywhere in the above.

Proposition 6.11   [D-Gr-Sp*↓Gr-Sp] is a triple interface-diagram category.

The main results of this section are the following two theorems. These are to be un
stood as asserting a unique factorising triple cell (i.e. double cell morphism)θ in Fig. 4
wheree0 ande01 in the figure are themselves triple cells that project tob0 andb1 b0
respectively.

Theorem 6.12   The projection [PD-Gr-Sp] : [D-Gr-Sp↓Gr-Sp] → [Gr-Sp] that takes

((([X0] ← [Y0] → [Z0]) -[x0,y0,z0]-› ([X0˜] ← [Y0˜] → [Z0˜])) → [A]) -[ABC]=›
  ((([X2] ← [Y2] → [Z2]) -[x2,y2,z2]-› ([X2˜] ← [Y2˜] → [Z2˜])) → [C])

to ([A] ← [B] → [C]) : [A] → [C] is a split opfibration, where all triple cells of
[D-Gr-Sp↓Gr-Sp] are opcartesian and belong to the splitting.

Theorem 6.13 The projection [PD-Gr-Sp* ] : [D-Gr-Sp*↓Gr-Sp] → [Gr-Sp] that takes

((([X0] ← [Y0] → [Z0]) -[x0,y0,z0]-› ([X0˜] ← [Y0˜] → [Z0˜])) → [A]) -[ABC]=›-›
  ((([X2′] ← [Y2′] → [Z2′]) -[x2′,y2′,z2′]-› ([X2′˜] ← [Y2′˜] → [Z2′˜])) → [C])

to ([A] ← [B] → [C]) : [A] → [C] is a split opfibration, where all triple cells of
[D-Gr-Sp*↓Gr-Sp] with all arrows over ((♣, i), 2) |→ ((♣, i), * ) abstract isomorphisms
are opcartesian and belong to the splitting.

The proofs of these results simply adapt Theorems 6.7 and 6.8.

Remark 6.14 Note that we can think of [D-Gr-Sp↓Gr-Sp] as being presented in two
ways, namely:

(1) As given, i.e as a collection of triple cells of a certain shape possessing ce
properties.

(2) As a collection of triple cells given by choosing a double cell, a base span,
opcartesian arrows over the span for all objects in the double cell.

Sections 4.5 and 4.6 convince us that these amount to the same thing. Howev
[D-Gr-Sp*↓Gr-Sp] we only have option (1). Given a choice of opcartesian arrowsex-
tended by in-fibre morphismsfor each object in a double cell does not allow us to co
clude that they generate a double cell morphism.
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7 Abstract Graph Rewriting

At this point it behoves us to reward the patient reader with some insight as to wher
preceding lengthy technical deliberations are leading us. Consider Fig. 13. It show
abstract double square typed over an abstract graph [A] which is then transported
through a change of type, expressed by the abstract span [A] ← [B] → [C]. The double
square is intended to represent the result of an abstract graph transformation step
as an abstract typed version of Fig. 2. Only a few details prevent us from declaring
correspondence immediately.

We recall first that the productions used in graph transformation have both arrows m
ic. Secondly we remember that the double square ought to be two pushouts or two
backs.  We need some lemmas.

Lemma 7.1 In Fig. 13, in the squareX0˜X0Y0Y0˜ supposeX0 ← Y0, X0˜ ← Y0˜ are mon-
ic.  Then inX1˜X1Y1Y1˜ (not illustrated)X1 ← Y1, X1˜ ← Y1˜ are monic.

Proof. Consider the cubeX0˜X0Y0Y0˜X1˜X1Y1Y1˜. The perpendicular arrowsX0 ← X1,
X0˜ ← X1˜, Y0 ← Y1, Y0˜ ← Y1˜, (not illustrated) are constructed via the opfibration o
Theorem 6.7, yielding unique arrowsX1˜ ← X1, X1 ← Y1, Y1˜ ← Y1, X1˜ ← Y1˜, such
that the four squares of the cube overA ← B are all easily shown to be pullbacks. Now
the monicity ofX1 ← Y1, X1˜ ← Y1˜ is routine.

Lemma 7.2 In Fig. 13, letX0˜X0Y0Y0˜ be a pullback. ThenX1˜X1Y1Y1˜ is a pullback.

Proof. By remarks in the preceding proof the cubeX0˜X0Y0Y0˜X1˜X1Y1Y1˜ commutes.
Bearing in mind that all arrows in the cube are oriented towardsX0˜, we just have to
show that for anyQ → X1, Q → Y1˜ that closeX1 → X1˜ andY1˜ → X1˜, there is a unique
Q → Y1 that factorsQ → X1, Q → Y1˜. But this is an easy exercise in pullback prope
ties.

Recalling now that inGr, a commuting square with two monic parallel arrows is
pushout iff it is a pullback and the two arrows with the same codomain are jointly s
jective, we have the following.

Lemma 7.3 In Fig. 13, letX0˜X0Y0Y0˜ be a pushout withX0 ← Y0, X0˜ ← Y0˜ monic.
ThenX1˜X1Y1Y1˜ is a pushout withX1 ← Y1, X1˜ ← Y1˜ monic.

Proof. By the preceding two lemmas we quickly deduce thatX1˜X1Y1Y1˜ is a pullback
with X1 ← Y1, X1˜ ← Y1˜ monic. We just need to check joint surjectivity ofX1 → X1˜
← Y1˜. Thus for a contradiction suppose there is an item (vertex or edge),q1˜ of X1˜,
not in the ranges ofX1 → X1˜ ← Y1˜. It must map byX0˜ ← X1˜ to an itemq0˜ in the
ranges ofX0 → X0˜ ← Y0˜ which are jointly surjective; let us say it is in rng(X0 → X0˜).
So there is an itemq0 in X0 which maps underX0 → X0˜ to the sameq0˜ as itemq1˜ of
X1˜ maps to underX0˜ ← X1˜. But this means that there must be at least one itemq1 in
X1 which maps toq0 underX0 ← X1 and toq1˜ underX1 → X1˜, contradicting our sup-
position, otherwiseX0˜X0X1X1˜ would not be a pullback.  We are done.

With these results to hand we can fine-tune the opfibrations constructed earlier so
they indeed act as required, secure in the knowledge that the opcartesian triple cell
serve the requisite additional properties.
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Thus we have the triple category [D-Gr-MSp↓Gr-Sp], in which the double cell domain
and codomain of a triple cell (over a type change morphism) are morphisms of m
spans, and its associated category [D-Gr-MSp*↓Gr-Sp].

Furthermore, within [D-Gr-MSp↓Gr-Sp] we can specialise to the triple subcategor
[D-Gr-MSp-DPB↓Gr-Sp], in which the double cell domain and codomain of a tripl
cell are morphisms of monic spans which are furthermore pairs of pullbacks. This
the associated category [D-Gr-MSp-DPB*↓Gr-Sp].

And going even further, we can identify within [D-Gr-MSp-DPB↓Gr-Sp] the triple
subcategory [D-Gr-MSp-DPO↓Gr-Sp] in which the double cell domain and codomain
of a triple cell are morphisms of monic spans which are pairs of pushouts, this ha
the associated category [D-Gr-MSp-DPO*↓Gr-Sp].

To avoid repetition, we will deal with both the pullback and pushout situations using
notations [D-Gr-MSp-DP#↓Gr-Sp] and [D-Gr-MSp-DP#*↓Gr-Sp].

Note that one convenient byproduct of phrasing derivation steps in terms of the t
categories [D-Gr-MSp-DP#*↓Gr-Sp] is that, from the interchange laws for triple cate
gories, there immediately follow a vast number of commutativity properties relat
horizontal composition, vertical composition, and change of type for derivation ste
The orthogonality of these three aspects of graph transformation in the presence
jective productions would be hard to present otherwise without compiling an exhau
list.  Furthermore we have as expected the opfibration properties.

Theorem 7.4 The projection [PD-Gr-MSp-DP#] : [D-Gr-MSp-DP#↓Gr-Sp] → [Gr-Sp] is
a split opfibration, where all arrows of [D-Gr-MSp-DP#↓Gr-Sp] are opcartesian and
belong to the splitting.

Theorem 7.5 The projection [PD-Gr-MSp-DP#* ] : [D-Gr-MSp-DP#*↓Gr-Sp] → [Gr-Sp]
is an opfibration, where all arrows of [D-Gr-MSp-DP#*↓Gr-Sp] with with all arrows
over ((♣, i), 2) |→ ((♣, i), * ) abstract isomorphisms are opcartesian and belong to
splitting.

With all this in hand, we can present our formal theory of type change in graph tra
formation.

8 The Category of Typed Graph Grammars

For the purposes of typed graph rewriting theory, we consider abstract graphs [G] typed
over an abstract type graph [TG], or putting it another way abstract graph morphism
[G] → [TG]. Changing the base type is done by means of an arbitrary abstract spa
([TG0] ← [TG1] → [TG2]) : [TG0] → [TG2]. Therefore the results of the previous sec
tions are applicable, and show us how the various entities and activities involve
graph transformation, transform under such a change of typing at an abstract lev

Definition 8.1 The category of abstract typed graph grammars [GraGra] has the fol-
lowing constituents.

Objects: ([TG], [G], P, π)  where:
[TG] is an abstract type graph,
[G] is an abstract start graph typed over [TG],
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i.e. an abstract graph morphism [G] → [TG],
P is a set of production names,
π : P → HArr([D-Gr-MSp↓Gr-Sp]) is a map fromP to

horizontal arrows of [D-Gr-MSp↓Gr-Sp],
i.e. abstract typed monic spans, typed over [TG].

Arrows: ([TG0] ← [TG1] → [TG2], f) :
([TG0], [G0], P0, π0) → ([TG2], [G2], P2, π2)

which is shorthand for a collection of arrows.
Firstly: an arrow of [Gr-Sp], ([TG0] ← [TG1] → [TG2]) : [TG0] → [TG2],
Secondly: an arrow of [Gr↓Gr-Sp],

(([G0] ← [G2] == [G2]) -[g0,g1,g2]-› ([TG0] ← [TG1] → [TG2])) :
([G0] → [TG0]) → ([G2] → [TG2]),

which projects under [P ] to the first arrow,
Thirdly: an arrow ofSet, f : P0 → P2 i.e. a map,
Fourthly: for allp ∈ P0 a horizontal-perpendicular double cell of

[D-Gr-MSp↓Gr-Sp],
([π0(p)] → [TG0]) -[TG0TG1TG2]=› ([π2(f(p))] → [TG2])

which projects under [PD-Gr-Sp] to the first arrow.

Composition: ([TG2] ← [TG3] → [TG4], g) ([TG0] ← [TG1] → [TG2], f) =
([TG0] ← [TG2′] → [TG4], g f) where [TG2′] arises from
the composition of [Gr-Sp].

Identities: ([TG] ← [TG] → [TG], idP) : ([TG], [G], P, π) → ([TG], [G], P, π),
where the arrows in [TG] ← [TG] → [TG] are all isomorphisms.

Theorem 8.2   The projection [PGraGra] : [GraGra] → [Gr-Sp] such that

[PGraGra](([TG], [G], P, π)) = [TG]  and
[PGraGra](([TG0] ← [TG1] → [TG2], f)) = ([TG0] ← [TG1] → [TG2])

is an opfibration, in which the arrows ([TG0] ← [TG1] → [TG2], f) : ([TG0], [G0], P0,
π0) → ([TG2], [G2], P2, π2) such thatf is an iso inSet are opcartesian.

Proof. Let ([TG0] ← [TG1] → [TG2], iso) : GG0 → GG2 be a putative opcartesian ar
row, and suppose we have an arrow ([TG0] ← [TG2′] → [TG4], g) : GG0 → GG4 whose
projection is an extension of ([TG0] ← [TG1] → [TG2]) by ([TG2] ← [TG3] → [TG4]).
We have to find a unique ([TG2] ← [TG3] → [TG4], g′) : GG2 → GG4 such that
GG0 → GG2 → GG4 factorsGG0 → GG4.

Luckily all of the hard work has already been done in Section 6. Firstly, the compon
([TG2] ← [TG3] → [TG4]) : [TG2] → [TG4] is immediate. Secondly, the componen
(([G2] ← [G4] == [G4]) -[g2,g3,g4]-› ([TG2] ← [TG3] → [TG4])) : ([G2] → [TG2]) →
([G4] → [TG4]) arises uniquely since [P∅] : [Gr↓Gr-Sp] → [Gr-Sp] is an opfibration
and its opcartesian arrows agree with the start graph component of opcartesian a
of [GraGra]. Thirdly, the fact thatiso : P0 → P2 is an isomorphism means that the re
quirementg′ iso= gfixesg′ uniquely. Fourthly, for eachp ∈ P2, we use the restriction
of Theorem 6.12 to horizontal arrows to find a unique (([π2(p)] → [TG2]) -[TG2TG3TG4]=›
([π4(g′(p))] → [TG4])) : ([π2(p)] → [TG2]) → ([π4(g′(p))] → [TG4]).
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Note that this opfibration is not split due to the absence of any canonical isomorph
in Set, but only for that reason. A choice of standard isomorphisms forSet, as with the
corresponding construction forGr, would enable a splitting to be constructed.

As for constructions in preceding sections there is another category of graph gram
[GraGra*], which in its arrows, uses the morphisms of [Gr* ↓Gr-Sp] and
[D-Gr-MSp*↓Gr-Sp] in its second and fourth components respectively. The details
so similar to those for [GraGra] that we do not quote them in full. We merely set ou
the opfibration theorem for completeness.

Theorem 8.3   The projection [PGraGra* ] : [GraGra*] → [Gr-Sp] such that

[PGraGra* ](([TG], [G], P, π)) = [TG]  and
[PGraGra* ](([TG0] ← [TG1] → [TG2], f)) = ([TG0] ← [TG1] → [TG2])

is an opfibration, in which the arrows ([TG0] ← [TG1] → [TG2], f) : ([TG0], [G0], P0,
π0) → ([TG2], [G2], P2, π2) such thatf is an iso inSet and all arrows over ((♣, i), 2) |→
((♣, i), * ) abstract isomorphisms, are opcartesian.

9 The Category of Transition Systems

In the sequel the abstract start graph [G] of a graph grammar will just be a passenge
we quietly carry it around to save having to have a fresh bunch of definitions for ev
thing. Also we rely purely on the fact that morphisms of monic abstract spans comp
well so that we use the symbol # to denote that we are dealing simultaneously with
and DPO rewriting.

Graph transition systems are enriched graph grammars which include all the r
spans of direct derivation steps by their productions and such that the set of produ
names supports a partial action/ by HVDCell([D-Gr-MSp-DP#*↓Gr-Sp]), the (hori-
zontal-vertical) double cells of [D-Gr-MSp-DP#*↓Gr-Sp]. For notational compact-
ness, we will write these double cells in future using a notation like [d1,d2,d3], refering
to their alternative interpretation as abstract span morphisms, this in turn legitimi
the use of dom and cod in the next definition.

Definition 9.1 An abstract typed graph transition system is a quintuple ([TG], [G], P,
π, /) where ([TG], [G], P, π) is an abstract typed graph grammar, and/ : P × HVD-
Cell([D-Gr-MSp-DP#*↓Gr-Sp]) +→ P satisfies:

(1) If dom([d1,d2,d3]) = [π(p)] thenp/[d1,d2,d3] is defined and [π(p/[d1,d2,d3])] =
cod([d1,d2,d3]),

(2) p/[id[π(p)]] = p,

(3) (p/[d1,d2,d3])/[d′1,d′2,d′3] = p/[d′1.d1,d′2.d2,d′3.d3].

Definition 9.2 The category [GraTS#] of abstract graph transition systems has as o
jects abstract graph transition systems, and as morphisms ([TG0] ← [TG1] → [TG2], f) :
([TG0], [G0], P0, π0, /0) → ([TG2], [G2], P2, π2, /2), where ([TG0] ← [TG1] → [TG2],
f) is a morphism of the underlying abstract graph grammar, and such that for eachp0 in
P0 and each [d01,d02,d03] with p0/[d01,d02,d03] defined, we have a [d21,d22,d23] with
[f(p0)/[d21,d22,d23]] defined and [f(p0/[d01,d02,d03])] = [ f(p0)/[d21,d22,d23]].
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Obviously there is a forgetful functor [U#] : [GraTS#] → [GraGra] which just ignores
/.  We now give the construction that will provide a left adjoint functor to [U#].

Definition 9.3 Let GG = ([TG], [G], P, π) be an abstract graph grammar. Then th
abstract graph transition system [GTS#] = ([TG], [G], PP, ππ, /) is given by:

(1) PP = {(p, [t1,t2,t3]) | p ∈ P, and [t1,t2,t3] is a horizontal-vertical double cell of
[D-Gr-MSp-DP#↓Gr-Sp] with dom([t1,t2,t3]) = [π(p)]},

(2) [ππ((p, [t1,t2,t3]))] = cod([t1,t2,t3]),

(3) If [ππ((p, [t1,t2,t3]))] = dom([d1,d2,d3]) then (p, [t1,t2,t3])/[d1,d2,d3] is defined,
equals (p, [d1.t1,d2.t2,d3.t3]), and thus [ππ((p, [t1,t2,t3])/[d1,d2,d3])] = cod([d1.t1,
d2.t2,d3.t3]).

It is obvious that [GTS#] is an abstract graph transition system.

Theorem 9.4 The forgetful functor [U#] : [GraTS#] → [GraGra] has a left adjoint
[TS#] : [GraGra] → [GraTS#] where the functor [TS#](GG) = GTS# is given by Def-
inition 9.3 for objects, and is given for arrows by:

[TS#](([TG0] ← [TG1] → [TG2], f) : GG0 → GG2) is the unique morphism
([TG0] ← [TG1] → [TG2], gP) : GTS#0 → GTS#2 in [GraTS#] such that
for all p in P0, gP((p, [id[π(p)]])) = (f(p), [id[π(f(p))]])

Proof. Define the universal arrowu : GG → [U#]([TS#](GG) = GTS#) for an abstract
graph grammarGG = ([TG], [G], P, π) by:

u : GG → [U#](GTS#) = ([TG] ← [TG] → [TG], in)

where ([TG] ← [TG] → [TG]) is an identity in [Gr-Sp], andin(p) = (p, [id[π(p)]]). Given
a morphismf : GG → [U#](TT) = ([TG0] ← [TG1] → [TG2], fP) into the forgetful im-
age of some abstract transition systemTT, we must show that there is a unique mor
phismg : [TS#](GG) → TT such thatf = [U#](g) u.  See Fig. 14.

Let g be the unique morphism ([TG0] ← [TG1] → [TG2], gP) : GTS# → TT such that
for all p in P, gP((p, [id[π(p)]])) = (f(p)/[id[π(f(p))]]). Thatg exists can be seen as follows
Firstly, we can make the triangle in Fig. 14, restricting [U#](g) to the imageu(GG),
commute. This we do just by setting [U#](g)((p, [id[π(p)]]))) = f(p) for all p in P. Sec-
ondly, we extend this uniquely to all of [U#](GTS#) as follows. For all typed abstract

GG [U#](TT)
f

[U#](GTS#)

u [U#](g)

TT

[TS#](GG) = GTS#

g

Fig. 14
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monic spansπGTS#((p, [d1,d2,d3])), we choose the unique typed abstract monic sp
(([X] ← [Y] → [Z]) → [TG2]) over [TG2] arising from the split opfibration [PD-Gr-Sp],
such that (πGTS#((p, [d1,d2,d3])) -[TG0TG1TG2]=› (([X] ← [Y] → [Z]) → [TG2])) is a hor-
izontal-perpendicular double cell, this being consistent with the choice already m
Now [d1,d2,d3] : πGTS#((p, [id[π(p)]])) → πGTS#((p, [d1,d2,d3])) is a typed abstract mon-
ic span morphism, therefore the split opfibration [PD-Gr-Sp] enables us to find a unique
[t1,t2,t3] : πTT(f(p)/[id[π(f(p))]]) → (([X] ← [Y] → [Z]) → [TG2]), enabling us to simul-
taneously deduce that (([X] ← [Y] → [Z]) → [TG2]) is a typed production of [U#](TT).
This gives [U#](g) : [U#](GTS∗) → [U#](TT). We now setgP((p, [d1,d2,d3])) =
(f(p)/[id[π(f(p))]])/[t1,t2,t3] = gP((p, [id[π(p)]]))/[t1,t2,t3]. It is clear that all the required
equations hold so that we haveg : [TS#](GG) → TT. (So in the end we accomplish the
whole thing in the reverse order to what one might expect.)

The above construction of the uniqueg was rather drawn out — we could simply hav
invoked [PD-Gr-Sp] directly and left it at that — the slower more detailed presentati
was for convenience later, in Section 11. Now Definition 9.2, which describes how
extra structure in an abstract graph transition system behaves under morphisms,
the following expected statement evident.

Theorem 9.5 The obvious projection [PGraTS#] : [GraTS#] → [Gr-Sp] is an opfibra-
tion, where all arrows ([TG0] ← [TG1] → [TG2], f) : ([TG0], [G0], P0, π0, /0) → ([TG2],
[G2], P2, π2, /2) such thatf is an iso inSet are opcartesian.

At this point the reader will be expecting the usual * version of the preceding resu
but he will be disappointed. Although there is an opfibration result which we qu
shortly, the adjoint construction fails. The reason is the point alluded to at the en
Section 6, namely that whereas a diagram extended by a bunch of opcartesian a
can generate a diagram morphism as in Section 4.5, extending by a bunch of opcar
arrows themselves extended by in-fibre morphisms, in general will not do so. View
the structure of the productions in an abstract graph transition system as a “large
gram”, shows that the construction ofg in Theorem 9.4 would not go through in the
more general case. This breakdown also explains why we have been careful to pr
separately results including and not including in-fibre aspects hitherto.

Now taking the definition of [GraTS#*], the category of abstract graph transition sys
tems whose morphisms use the morphisms of [Gr*↓Gr-Sp] and [D-Gr-MSp*↓Gr-Sp],
for granted, we have the following.

Theorem 9.6 The obvious projection [PGraTS#*] : [GraTS#*] → [Gr-Sp] is an opfi-
bration, where all arrows ([TG0] ← [TG1] → [TG2], f) : ([TG0], [G0], P0, π0, /0) →
([TG2], [G2], P2, π2, /2) such thatf is an iso inSet and all arrows over ((♣, i), 2) |→ ((♣,
i), * ) abstract isomorphisms, are opcartesian.

10 The Category of Derivation Systems

Now we can further enrich our transition systems, with an operation; of horizontal
composition on production names, inherited from the corresponding propert
[D-Gr-MSp↓Gr-Sp].
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Definition 10.1 An abstract graph derivation system is a sextuple ([TG], [G], P, π, /,
;) where ([TG], [G], P, π, /) is an abstract graph transition system, and; : P × P +→ P
satisfies:

(1) If π(p) = [A] ← [B] → [C] andπ(q) = [C] ← [D] → [E] thenp;q is defined and
π(p;q) = [A] ← [M] → [E], whereM is a pullback ofB → C ← D

(2) If π(p) = [A] ← [B] → [C] thenP contains ap[A] with π(p[A]) = [A] ← [A] → [A],
an identity name such thatp[A];p = p, and also a similar identity namep[C] with
π(p[C]) = [C] ← [C] → [C] andp;p[C] = p

(3) ; is associative

(4) If both (p;q)/([s1,s2,s3]∗h[t1,t2,t3]) and (p/[s1,s2,s3]);(q/[t1,t2,t3]) are defined
then (p;q)/([s1,s2,s3]∗h[t1,t2,t3]) = (p/[s1,s2,s3]);(q/[t1,t2,t3])

Definition 10.2 The category [GraDS#] of abstract graph derivation systems has
objects abstract graph derivation systems, and as morphisms ([TG0] ← [TG1] → [TG2],
f) : ([TG0], [G0], P0, π0, /0, ;0) → ([TG2], [G2], P2, π2, /2, ;2), where ([TG0] ← [TG1]
→ [TG2], f) is a morphism between the underlying abstract transition systems, such
for each identity namep[A] in P0, f(p[A]) is an identity name, and for each (p, q) pair de-
fined for;0, we havef(p;0q) = f(p);2f(q).

As in Section 9 there is a forgetful functor [V#] : [GraDS#] → [GraTS#] which just
ignores;. We now give the construction that will provide a left adjoint functor to [V#].

Definition 10.3 Let [GTS#] = ([TG], [G], P, π, /) be an abstract graph transition sys
tem. Then the abstract graph transition system [GDS#] = ([TG], [G], PP, ππ, /PP, ;PP)
is given by firstly, constructingPPP, πππ, /PPPand;PPPas the smallest sets satisfying
the following properties:

(1) (p) is in PPP for p in P, andπππ((p)) = π(p); and wheneverp/[d1,d2,d3] is de-
fined, (p)/PPP[d1,d2,d3] = (p/[d1,d2,d3]), (and πππ((p)/PPP[d1,d2,d3]) = cod(
[d1,d2,d3]))

(2) (p[A]) and (p[C]) are inPPP for eachp in P with π(p) = [A] ← [B] → [C], and
πππ((p[A])) = [A] ← [A] → [A] andπππ((p[C])) = [C] ← [C] → [C] both identity
abstract spans, andπππ((p[A]);PPP(p)) = πππ((p)) = πππ((p);PPP(p[C])); and
whenever [A] = dom([d]), (p[A])/PPP[d,d,d] = (pcod(d)), (andπππ((pcod(d))) =
cod([d,d,d])), and similarly for (p[C])

(3) (p, q) is in PPPfor p, q in PPPsuch thatπππ(p) = [A] ← [B] → [C] andπππ(p)
= [C] ← [D] → [E]; (p, q) = p;PPPq, andπππ((p, q)) is given via the local pull-
back ofπππ(p) andπππ(q); and wheneverp/PPP[s1,s2,s3], q/PPP[t1,t2,t3] and
[s1,s2,s3]∗h[t1,t2,t3] are defined, (p, q)/PPP[s1,s2,s3]∗h[t1,t2,t3] is defined and
πππ((p, q)/PPP[s1,s2,s3]∗h[t1,t2,t3]) = cod([s1,s2,s3]∗h[t1,t2,t3])

And then secondly, lettingPP, ππ, /PP and;PP be given by takingPPP, πππ, /PPP and
;PPP modulo the composition law (p/[d1,d2,d3])/PPP[d′1,d′2,d′3] = p/PPP[d′1.d1,d′2.d2,
d′3.d3] and identity lawp/PPPidπ(p) = p, and the associative law ((A;PPPB);PPPC) =
(A;PPP(B;PPPC)) and identity laws (p[A]);PPP(p) = (p) = (p);PPP(p[C]).

It is clear that [GDS#] is an abstract graph derivation system.
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Note that as our constructions are based on properties of [D-Gr-MSp↓Gr-Sp], the in-
terchange laws of [GraDS#] contained within the span-transition lemma of Corradi
et al. (1996b), derive directly from those of the subcategories [D-Gr-MSp-DP#↓
Gr-Sp].

Theorem 10.4 The forgetful functor [V#] : [GraDS#] → [GraTS#] has a left adjoint
[DS#] : [GraTS#] → [GraDS#] where [DS#](GTS#) = GDS# is given by Definition
6.3 for objects, with the unique extension for arrows.

Proof. Define the universal arrowv : GTS# → [V#]([DS#](GTS#) = GDS#) for a
concrete transition systemGTS# = ([TG], [G], P, π, /) by

v : DG → [V#](GDS#) = ([TG] ← [TG] → [TG], in)

where ([TG] ← [TG] → [TG]) is an identity in [Gr-Sp], andin(p) = (p). Given a mor-
phismf : GTS# → [V#](TT) = ([TG0] ← [TG1] → [TG2], fP) into the forgetful image
of some derivation systemTT, we must show there is a unique morphismg : [DS#](
GTS#) → TT such thatf = [V#](g) v.

Let g be given by ([TG0] ← [TG1] → [TG2], gP) : GDS# → TT such that for allp in P,
gP((p)) = fP(p), extending by; to the whole ofGDS#. It is clear that the required prop-
erties hold.

Finally we have:

Theorem 10.5 The obvious projection [PGraDS#] : [GraDS#] → [Gr-Sp] is an opfi-
bration, where all arrows ([TG0] ← [TG1] → [TG2], f) : ([TG0], [G0], P0, π0, /0, ;0) →
([TG2], [G2], P2, π2, /2, ;2) such thatf is an iso inSet are opcartesian.

11 Weakened Approaches

The preceding sections presented what was undeniably the simplest and most app
treatment of its subject matter known to the authors thus far. By adhering to the gre
level of abstraction possible for graphs, spans, and morphisms of these under va
operations, all the irritations of other approaches were neatly sidestepped. In partic
maximal abstraction, when properly expressed, makes various operations determ
which in a less abstract setting would not be so, and this avoids a number of ung
constructions designed to overcome this difficulty.

In this section we discuss the relationship between our treatment and what is obta
both when one takes a less abstract perspective within our own technical context, a
also when the more traditional technical route to abstraction is utilised, namely equ
lence classes.

Essentially there are two areas that merit discussion, largely orthogonal to one an
The first concerns the entities to be manipulated and the purpose of the manipula
The second is the technical strategy used for the manipulation. For the first are
have:

(A) Graphs as entities to be rewritten, and spans as productions and as transi
derivations.

(B) Graphs as type information, and spans as the mechanism for type change.
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These are largely independent aspects. For the technical strategy area we have t
sentially independent considerations to think about. The first concerns the level o
straction at various vertices, giving:

1. Abstraction up toiso at all vertices of all diagrams; the abstract variant.

2. Abstraction up tostd at selected vertices, and standard isomorphisms; the sta
ard variant.

3. Abstraction up toid at selected vertices; the individual variant.

4. Abstraction up tostd at all vertices, and standard isomorphisms; the fully stan
ard variant.

5. Concrete diagram techniques based on abstract objects and arrows.

More or less independently we have:

(i) Abstract diagram techniques, including in particular interface-diagram categ
cal techniques.

(ii) Pseudoabstract diagram techniques (see below), or equivalence classes.

As is clear, we have used strategy 1.(i) to formulate both aspects (A) and (B) in this
per. In the rest of this section we will see that by forgetting various aspects of the the
we obtain alternative accounts of the phenomena discussed, corresponding to othe
sible strategies. Of course where there is some forgetting going on, there is alw
left adjoint lurking nearby, and we comment briefly on this at the end. To simplify w
follows, we will continue to treat (A) and (B) together, and to stick to strand (i) un
further notice.

Now for strategy 2.(i), let us consider using graphs up to standard isomorphisms a
entities to be rewritten and as type information. More specifically, we take abst
graphs to be abstract diagrams of kindstd over a one vertex shape graph, i.e.〈G〉. Since
span composition figures at both horizontal composition level and at type change l
spans must still be abstract diagrams kinded as (〈A〉 ← [B] → 〈C〉), and span morphisms
must be the evident generalisation, i.e. abstract diagrams like (〈A〉 ← [B] → 〈C〉)
-〈a,[b],c〉-› (〈A′〉 ← [B′] → 〈C′〉) in an evident notation. In general, because certain is
morphisms are no longer available to us, two concrete diagrams, which differ onl
the use of such a forbidden isomorphism at one vertex say, may no longer both b
jects within the same abstract diagram.  Our abstract diagrams thus become sma

Looking to other key elements of the theory, we must replace the category [Gr↓Gr-Sp]
by a category〈Gr↓Gr-Sp〉 which relates typed graphs up tostd, 〈X〉 → 〈A〉, to other such
typed graphs,〈Y〉 → 〈C〉, via diagrams with kindsstd and iso like ((〈X〉 ← [Y] == 〈Y〉)
-〈a,[b],c〉-› (〈A〉 ← [B] → 〈C〉)). Note that [Y] and 〈Y〉 refer to the same collection of
graphs but with different permitted internal structure. The vital category that descr
how type change affects transition steps, [D-Gr-MSp↓Gr-Sp], is replaced by the cate-
gory 〈D-Gr-MSp↓Gr-Sp〉, which relates typed abstract monic span morphism dou
cells like (((〈X〉 ← [Y] → 〈Z〉) -〈x,[y],z〉-› (〈X˜〉 ← [Ỹ ] → 〈Z˜〉)) → 〈A〉) to similar such
cells, by the evident type change operation, which we write as -〈A[B]C〉=› for brevity.
44



wo
rces

a ca-
er its
the
eak
plit

oof

s

writ-
riant

ram-
cts,

raph
us the

ince
ces in
with
., we
itself

struc-

rt of
s fol-
ther-
ing
The details of this strategy 2.(i) variant are much like those of the 1.(i) variant with t
crucial differences. The first is that the shrinkage of abstract diagrams in general, fo
a loss of splitting in the analogous opfibration theorems, since there is no longer
nonical choice of opcartesian arrow, given a base category arrow and an object ov
source. Specifically, Theorems 6.7, 6.8, 6.12, 6.13, 7.4, 7.5, still hold, but without
claims of a splitting. The second is that the left adjoint in Theorem 9.4 becomes a w
left adjoint. This is easy to see from the structure of the proof which exploited the s
opfibration of Theorem 6.12. A modified proof can be modelled on the given pr
(which is why it was presented that way); but instead of having for eachπGTS#((p,
[d1,d2,d3])) a canonical abstract monic span (([X] ← [Y] → [Z]) → [TG2]) as described,
we would have for eachπGTS#((p, 〈d1,[d2],d3〉)) as it would be, a number of possible
((〈X〉 ← [Y] → 〈Z〉) → 〈TG2〉), obtained through different choices of opcartesian arrow
for πGTS#((p, 〈d1,[d2],d3〉)) and the (〈TG0〉 ← [TG1] → 〈TG2〉) base arrow. The totality
of these would make up the class of arrows for the requisite feeble functor.

Next, for strategy 3.(i), we use individual concrete graphs as as the entities to be re
ten and as type information. Since span composition figures just as much in this va
as in the others, spans must be abstract diagrams with kindsA ← [B] → C, and span
morphisms appear thus: (A ← [B] → C) -a,[b],c-› (A′ ← [B′] → C′) in a selfexplanatory
notation.  Our theory becomes affected by three connected things.

The first thing is a dramatic fragmentation phenomenon. For example, two graph g
mars with isomorphic but non-identical start graphs, and identical in all other respe
must be considered as distinct entities. This is deeply unsatisfying in a theory of g
transformation. The same phenomenon touches other aspects of the theory. Th
category [Gr↓Gr-Sp] must be replaced byGr↓Gr-Sp which relates individual concrete
typed graphsX → A to typed graphsY → C via diagrams kinded as ((X ← [Y] == Y)
-a,[b],c-› (A ← [B] → C)), where [Y] is the isomorphism class of graphY. Likewise
[D-Gr-MSp↓Gr-Sp] is replaced by the categoryD-Gr-MSp↓Gr-Sp which relates
typed monic span morphism double cells (((X ← [Y] → Z) -x,[y],z-› (X˜ ← [Ỹ ] → Z˜))
→ A) to similar such cells by the analogous type change operation written as -A[B]C=›
for short.

The second thing is the cardinality explosion associated with this fragmentation. S
the isomorphism class of a graph is indeed a proper class, we see the consequen
the theory of graph transformation. As well as a proper class of graph grammars
isomorphic but non-identical start graphs, and identical in all other respects etc. etc
have to recognise that the production name component of a graph grammar must
become a proper class in general. This is forced on us by the transition system con
tion, which requires a separate production namep/(d1,[d2],d3) for each span morphism
(d1,[d2],d3) with a given domain. Since these constitute a proper class because pa
the morphism is concrete, the requirement for proper classes of production name
lows immediately — even when we restrict attention to graph grammars that are o
wise completely finitistic. This too is deeply unsatisfying, and the only way of avoid
it is by some global choice mechanism, that supplies ap/(d1,[d2],d3) for only some
(d1,[d2],d3), carefully specified.
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The third thing, a consequence of the preceding two, is the nondeterminism that a
whenever the result of some operation is allowed to be any one graph out of an iso
phism class, and there is no a priori way of forcing the choice. This nondeterminis
noteworthy, but by no means as undesirable a feature as the other two. Its consequ
are familiar from variant 2.(i), namely the loss of splitting in the split opfibrations of t
same theorems as were quoted for variant 2.(i), and the weakening of the left adjo
Theorem 9.4 to a weak left adjoint. Note that whereas in variant 2.(i) there was no
biguity about the target of putative splitting arrows, there merely being more than
such arrow to consider in general, in the present case, because of the greater fra
tation, there is ambiguity even about the target, each distinct isomorphic graph pro
ing a distinct target.  So the failure of splitting is more dramatic.

Similar remarks apply to the weakening of the left adjoint. Instead of having for e
πGTS#((p, [d1,d2,d3])) a canonical abstract monic span (([X] ← [Y] → [Z]) → [TG2]) as
described, we would have for eachπGTS#((p, (d1,[d2],d3))) as it would be, a myriad pos-
sible ((X ← [Y] → Z) → TG2), differing amongst themselves in their choice of isomo
phic variants ofX andZ. The totality of these would make up the class of arrows f
the requisite feeble functor.  This outlines the main features of the individual varia

The fully standard variant, 4.(i), where we take all vertices of all diagrams to be of k
std, is a little different in character. We run into the difficulty that horizontal compo
tion of spans is doggedly only up to arbitrary, not standard, isomorphisms. There
we cannot take a span as a single abstract diagram〈A〉 ← 〈B〉 → 〈C〉, but must take the
collection of such, indexed by the group of automorphisms ofB according to Lemma
4.4.3. This we can write as〈A〉 ← { 〈B〉} → 〈C〉 to indicate that several abstract diagram
of kind std are being considered simultaneously. Of course this can be viewed as n
ing more than a mild repackaging of the 3.(i) variant, done by discarding just those
crete diagram morphisms that use isomorphisms ofB forbidden by the kindstd

retriction, so we do not go into detail.

Now consider the fact that throughout the whole of Sections 8-10 we never made
ous use of the concrete diagram morphisms inside an abstract diagram. If we ta
abstract diagram and forget all the concrete diagram morphisms between its objec
get a discrete functor category. We call this a pseudoabstract diagram. An equiv
way of viewing a pseudoabstract diagram is as just an equivalence class of concre
agrams, the elements of which are related by the claim of theexistenceof (one or more)
suitable natural transformations (rather than these natural transformations being p
the data defining the entity, as is the case for abstract diagrams). It will not take
reader long to realise that we could redo the whole of Sections 8-10, for variants
described above, using an easily imagined theory of interface-pseudoabstract-dia
categories (or its equivalent, a theory of pasting etc. of appropriate equivalence cla
This gives us strand (ii) in the overall scheme outlined above. We note that in stran
there is almost no difference between variants 3 and 4, since a variant 3 descriptio
be based on a collection of equivalence classes, while the corresponding variant
scription will be based on its union.

This discussion brings us to the final variant of the theory, variant 5, using concret
agrams built out of abstract objects and arrows. There is not much to say here d
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the comprehensive exposition of relationships between such concrete diagram
their abstract counterparts in Section 4.3. The most direct route to this variant is vi
4.(i) variant, which is cast in terms of abstract diagrams completely of kindstd. Such
abstract diagrams (and also collections of them, as required), are readily turned
concrete diagrams built out of abstract objects and abstract arrows using the fun
ℑµ

std,• for various shapesµ. Thus for example, typed graphs become concrete arro
(G〈〉 → TG〈〉) : 〈G〉 → 〈TG〉. Spans on the other hand, because of the necessity for h
zontal composition, must remain collections of concrete spans which we can writ
analogy with variant 4.(i) as (A〈〉 ← { B〈〉} → C〈〉) : 〈A〉 → 〈C〉. Similarly for the remain-
ing aspects of the theory. This completes the taxonomy of alternative variants o
theory.

Of the variants discussed, the ones featuring graphs up tostd in various ways, allow us
connect the present theory to that in eg. Corradini et al. (1994a,b,c, 1996a,b). In p
ular, isomorphisms up tostd are required to properly distinguish individual event
through concurrent executions of graph grammars.

Finally we point out that given that we have generated all our variants by forget
some aspects of the original theory, and these aspects (specifically, the diagram
phisms in question) were characterised by the canonical property of maximality, t
will be left adjoints to the forgetful functors that simply reinstate the forgotten structu
The workings of these left adjoints will be quite straightforward, so we do not paus
elaborate the details.

12 Conclusions

In the preceding sections we set up a general framework for reasoning about how
diagrams of different kinds behave under change of typing, where the change of ty
is controlled by a span, and the crucial observation turned out to be that the beha
of diagrams is exactly captured by an opfibration over the type change category.
ferent graph rewriting phenomena were then reduced almost entirely to choosin
right kind of diagram to work with to describe the situation in question. We were a
to define a notion of graph grammar, and then via appropriate free constructions, t
tain notions of transition and derivation system that captured various ways of man
lating the grammar data algebraically. Much of this work can be seen as extendin
double category nature of [D-Gr-Sp] to the triple categories [D-Gr-MSp- DP#↓Gr-Sp],
and thence to the richer situation in which production names are present and mu
have properly. Provided we adhered to the maximum level of abstraction, everyt
went smoothly. Alternative treatments, somewhat more in the spirit of existing wo
emerged in the preceding section by a process of forgetting various concrete dia
morphisms. The one message that emerges clearly from this work is that in exam
questions of abstractness where the subject matter is categorical, functor categorie
vide the most convincing approach, and treatments involving equivalence classe
be smoothly recovered from them post hoc.
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