
Moded and Continuous Abstract State Machines

Richard Banach?1 and Huibiao Zhu??2

1Department of Computer Science, University of Manchester, Manchester, M13 9PL,
U.K.

2Shanghai Key Laboratory of Trustworthy Computing, MOE International Joint
Laboratory of Trustworthy Software, International Research Center of Trustworthy

Software, East China Normal University, Shanghai, China.
richard.banach@manchester.ac.uk , hbzhu@sei.ecnu.edu.cn

Abstract. In view of the increasing importance of cyber-physical sys-
tems, and of their correct design, the Abstract State Machine (ASM)
framework is extended to include continuously varying quantities as well
as the conventional discretely changing ones. This opens the door to the
more faithful modelling of many scenarios where digital systems have to
interact with the continuously varying physical world. Transitions in the
extended framework are thus either moded (catering for discontinuously
changing quantities), or pliant (catering for smoothly changing quanti-
ties). An operational semantics is provided, first for monolithic systems,
and this is then extended to give a semantics for systems consisting of
several distinct subsystems. This allows each subsystem to undergo its
own subsystem-specific mode and pliant transitions. Refinement is elabo-
rated in the extended context for both monolithic and composed systems.
The formalism is illustrated using an example of a bouncing tennis ball.

1 Introduction

Conventional model based formal refinement technologies (e.g. [17, 54, 2, 3, 13])
are based on purely discrete concepts. These are typically ill suited to modelling
applications which are best expressed using continuous mathematics. So there is
a mismatch between the continuous modelling needed at the abstract level, and
the discrete techniques used close to code in hybrid and cyber-physical (CPS)
systems [48, 37, 38, 22, 1, 36, 47, 15, 55, 8, 53, 29, 18].

Hybrid and CPS systems display considerable complexity in their behaviour,
which poses challenges for verification techniques. One well respected way of
confronting verification complexity is the top-down design and development ap-
proach. Supported by suitable formal notions, it allows complex behaviour to be

? A large portion of the work reported in this paper was done while the first author
was a visiting researcher at the Software Engineering Institute at East China Normal
University. The support of ECNU is gratefully acknowledged.

?? Huibiao Zhu is supported by National Key Research and Development Program of
China (Grant No. 2018YFB2101300), National Natural Science Foundation of China
(Grant No. 61872145), and Shanghai Collaborative Innovation Center of Trustworthy
Software for Internet of Things (Grant No.ZF1213).

approached in stages, with properties that have been established previously per-
sisting in suitable form as more design detail is added. This makes it eminently
suited to confront the challenges posed by complex systems development.

The Abstract State Machine (ASM) approach [13, 11] is an established method-
ology for top-down design and development. It differs from many other formal
approaches by having a very liberal type system, based on universal algebra
rather than a fixed collection of low level built-in types. Following on from this,
the model of state update in ASM is based on the idea of modifying dynamic
functions, a generalisation of the idea of state variables (although, most often,
this full generality is not needed).

In this paper we present an extension of the ASM formalism that enables
us to treat continuously changing quantities fluently, especially at the abstract
level. This is essential if we are to model hybrid and cyber-physical systems
effectively. We also develop the needed extension of ASM refinement. The ASM
extension is based on restricting the continuous behaviours that are permitted to
those which can be described, piecewise, by solutions to well posed initial value
problems, this being sufficient for most engineering purposes. These fundamental
ideas are applied both to monolithic systems, and to systems consisting of several
cooperating subsystems.

The rest of this paper is structured as follows. In Section 2 we review the
essentials of ASM, and then describe the continuous extension. We base this on
a discussion of the desired semantic domain first, and then construct the syntax
and the desired semantics to map cleanly to it. Section 3 covers a simple example
concerning a tennis ball bouncing back and forth over a tennis net. Section 4
discusses the formal operational semantics of the given description. The formal
semantics lends itself to defining the semantics of composed (or decomposed)
systems, which we also discuss. With the detailed semantics covered, in Section
5 we return to the tennis ball example to explore some of its more subtle aspects.
Then in Section 6 we develop the refinement machinery relevant to Continuous
ASM. This is given as a minimal generalisation of the discrete formulation, and
is followed by a discussion of compositionality issues. Section 7 returns to the
tennis ball and discusses a simple refinement scenario for the example. Section
8 discusses related work, while Section 9 concludes.

2 ASM, Discrete and Continuous

In this section we review the essentials of ASM [13, 11], and extend the formalism
to cope with continuously varying quantities. The advantage of considering such
a clean extension of a discrete formalism is that it opens the door to adapting
existing tools for the discrete formalism, rather than having to start from scratch.

2.1 Discrete Basic ASM Models

A definitive description of conventional, discrete ASM, is given in [13]. Here, we
give an overview sufficient to prepare the ground for the continuous extension.

2

As noted above, ASM is founded on concepts of universal algebra [25, 50].
This starts by defining signatures, from which we can generate algebras and then
look for models that satisfy the constraints imposed by the algebras. These static
structures constitute a universe within which ASM dynamics runs its course.

Focusing on the concept of basic ASM, the key update notion is carried by
dynamic functions, functions that get (partly) redefined by updates of the form:

f(t1, . . . , tn) := t (1)

In (1), the t1, . . . , tn, t are terms evaluated in the current state, i.e. with respect
to the current definitions of all the elements of the algebras (static and dynamic);
with these values, the dynamic function f at the element of its domain consisting
of the values of the tuple t1, . . . , tn is redefined to be the value of t. If f is a
nullary dynamic function, then (1) corresponds to updating a variable.

A basic ASM transition rule is a construct of the form:

if Condition then Updates (2)

where the Updates are as in (1), and Condition evaluates to a truth value.
In practice, the basic form in (2) is enhanced to improve readability by ad-
mitting various syntactic sugars: the usual elaborations of the conditional; a
forall x with cond Rule form for iterating Rule over a collection ranged over
by x (with x constrained by cond); and a choose x with cond Rule form to
allow Rule to be nondeterministic. Below, we only need rules of the form:

Op(in is,out os) =
if guard(xs, is) then
choose xs′, os with rel(xs′, xs, is, os)
do xs, os := xs′, os (3)

In (3) the rule’s name is Op, and we have (read-only) inputs in is and (write-
only) outputs out os in the signature of Op. For us, a basic ASM is a finite set
of such rules.

We say that a rule like (3) is enabled if its guard evaluates to true. In most
model based development formalisms, given a state of the model, i.e. a valuation
that maps each variable to a value in its type, progress is made by selecting
one of the enabled rules and executing it. The ASM policy though, is that all
enabled rules are selected, and their updates are performed in parallel. So the
sets of enabled rules that arise must define consistent sets of updates. If not,
execution aborts. A run of an ASM system thus starts at an initial state, and
continues via a succession of state changes, defined by maximal sets of enabled
rules that define consistent update sets.

2.2 Continuous ASM Models

We extend the framework above to the continuous world by first examining the
semantic domain. Looking ahead a little, we will be using differential equations

3

(DEs), and therefore, for mathematical consistency, we need to be precise about
the semantic domain with respect to which the DEs will be interpreted.

For simplicity, we restrict to the case in which the states are given by valua-
tions of the tuple of variables of the model, i.e. functions from the tuple of vari-
ables to the tuple of the variables’ types. To extend such models smoothly to in-
clude continuously varying phenomena, we partition the variables into two kinds:
mode variables, whose types are discrete sets, and which only change discon-
tinuously, and pliant variables, whose types include topologically dense sets,
and which are permitted to evolve both continuously and via discrete changes.
In our terminology, discrete ASM just uses mode variables.

We model time as a left-closed interval T of the reals R, with a finite left
endpoint for the initial state, and with a right endpoint which is either finite (and
right-open) or infinite, depending on whether the dynamics is finite or infinite.
Now, the values of all variables become functions of T .

For a mode variable v, the function is a piecewise constant function, which is
constant on each element of a sequence of left-closed right-open intervals. Thus
the behaviour of v partitions T into a sequence of left-closed right-open intervals,
〈[tv,0 . . . tv,1), [tv,1 . . . tv,2), . . .〉, on each piece of which the behaviour is constant.

For a pliant variable x, the permitted behaviours are piecewise continuous.1

These pieces again partition T into a sequence of left-closed right-open intervals,
〈[tx,0 . . . tx,1), [tx,1 . . . tx,2), . . . 〉, on each piece of which the behaviour undergoes
no discontinuities.

Putting together all the behaviours of all the variables that participate in
defining a particular execution of a system, yields a sequence of left-closed right-
open intervals, 〈[t0 . . . t1), [t1 . . . t2), . . .〉, which is the coarsest partition of T into
such intervals where all discontinuous changes of all the variables of the system
during that execution take place at a boundary point ti.

We note at this juncture that our formulation is by no means the first work
on the ASM formalism to consider the notion of time per se. In this context we
could mention the earlier work in [26, 12, 9, 23, 24, 42, 16, 45] for example. While
all of these are concerned with time, in all of them the concern is with pure
timing, i.e. there is no continuously varying behaviour. So in our formulation,
states in all of these works are piecewise constant functions of time.

In a typical interval [ti . . . ti+1), mode variables will be constant, but pliant
variables will change in a continuously varying manner. However, mere continuity
still allows for a very wide range of mathematically pathological behaviours.2 To
constrain these, we make the following restrictions and recommendations:

I Zeno: there is a constant δZeno, such that for all i needed, ti+1 − ti ≥
δZeno. N. B. Since the presence or absence of Zeno behaviour is usually
a global property of a system’s reachability relation, this point must be
regarded as a recommendation rather than a restriction that is statically
enforceable.

1 We mention below that actually, we need absolute continuity, not mere continuity
alone.

2 Texts on mathematical analysis are usually replete with relevant examples.

4

II Limits: for every variable x, and for every time t ∈ T , the left limit

limδ→0 x(t− δ), written
−−→
x(t), and the right limit limδ→0 x(t+ δ), written

←−−
x(t), (with δ > 0 in each case) both exist, and for every t, x(t) =

←−−
x(t).

(N. B. At the endpoint(s) of T , any missing limit is defined to equal its
counterpart.)

III Differentiability: The behaviour of every pliant variable x in the interval
[ti . . . ti+1) is given by the solution of a well posed initial value problem
Dxs = φ(xs, t) (where xs is a relevant tuple of pliant variables and D

is the time derivative). “Well posed” means that φ(xs, t) has Lipschitz
constants which are uniformly bounded over [ti . . . ti+1) bounding its
variation with respect to xs, and that φ(xs, t) is measurable in t.

It is recognised that ASM types can be mathematically complex entities. There-
fore it is intended that I-III above apply to variables with as general a type as
might be needed, provided that the concepts required in I-III (such as left/right
limits, initial value problem, Lipschitz constants, uniform boundedness, measur-
ability) make sense for them. That said, in the overwhelming majority of cases,
the conventional real type R is sufficient, so we do not consider more complicated
possibilities in this paper.

With I-III in place, the behaviour of every pliant variable is piecewise ab-
solutely continuous [41, 52], with the variation being described by a suitable
differential equation.

Accompanying the distinction between mode and pliant variables, is a dis-
tinction between mode and pliant transitions. Mode transitions are just like
conventional ASM transitions in that they record a discrete transition from
before-values to after-values of the mode variables, albeit that these are the
values of piecewise constant functions of time. A rule for a mode transition Op
can be written using familiar ASM notation:

Op(in
−→
is,out ←−os) =

if guard(−→xs,−→is) then

choose
←−
xs′,←−os with rel(

←−
xs′,−→xs,−→is,←−os)

do xs, os :=
←−
xs′,←−os (4)

In (4), the overarrows are semantic decorations. These are not part of the syn-
tax, but are included for clarity to indicate which limiting value for a variable
(selected from its behaviour as a function of time) is to be taken as being referred
to in the rule. This needs to be understood since all runtime executions of Op
take place at points of discontinuity in the temporal behaviour of (at least some
of the) variables, because rules like Op are intended precisely to define such
discontinuities. Note therefore that the choice of left limit for before-values and
right limit for after-values (at a given transition point) makes (4) into the kind
of instantaneous transition we would expect. Stripping off the overarrows from
(4) yields the form one would write to describe a rule in a specific application.

In (4) we single out the inputs is and outputs os, (read-only and write-
only respectively), while xs are the state variables (accessed in read/write man-

5

ner). Note the double decoration of the after-state variables
←−
xs′. The prime

corresponds to the usual syntactic decoration that one would expect to use in
distinguishing before-states (unprimed) from after-states (primed), whereas the
overarrow indicates the temporal semantic interpretation. Obviously, if the after-
values for xs and os are available explicitly, the relevant expression can be as-
signed in the do clause, and the choose and with clauses can be omitted.

Pliant transitions do the corresponding job for pliant variables. While a mode
transition is a single before-/after-value pair, a pliant transition is a family of
before-/after-value pairs parameterised by the relevant time interval [ti . . . ti+1).
Moreover, instead of the change from before-values to after-values taking place
instantaneously, the before-value can be understood to refer to the initial value
at ti (which, by II, equals the right limit at ti), while the after-value refers
to an arbitrary time in the open interval (ti . . . ti+1), so the before-value and
after-value are separated in time. To reflect the constraints that apply to pliant
transitions, we write rules for them thus:

PliOp(in is(t ∈ (tL(t) . . . tR(t))),out os(t ∈ (tL(t) . . . tR(t))))
c
=

if IV (xs(tL(t))) ∧ guard(xs(tL(t))) then
with rel(xs, is, os, t)
do xs(t), os(t) := solve DE(xs(t), is(t), os(t), t) (5)

In (5), the symbol
c
= signals the presence of a rule for a pliant transition, distin-

guishing it from the instantaneously executed kind. The notations tL(t) and tR(t)

refer to the beginning and end, respectively, of the time interval during which
PliOp executes. Of course, the values of these cannot be known statically, even
disregarding the fact that different invocations of the rule at runtime will re-
quire different values for tL(t) and tR(t). Therefore all explicitly given references
in (5) to variables’ time dependencies, and to tL(t) and tR(t) values, are semantic
decorations, included for readability, and indicated by the shading. They do not
form part of the syntactic form of the rule, and so “t ∈ (tL(t) . . . tR(t))” in the
declaration of the input “in is(. . .)” is redundant (similarly for the output), as
is “(t)” in occurrences of “xs(t)”, etc. In this paper, we have opted to retain the
“var(t)” way of referring to the time dependent behaviour of pliant variables
inside pliant rules, for improved readability.

Given a specific execution of the system, which generates a specific partition
of T , for an arbitrary t, we define L(t) = max{i | ti ≤ t} and R(t) = min{i | ti >
t} (with obvious default for an infinite last interval) which yields the indexes in
the partition of T relevant to the subinterval of T to which t belongs. This is
consistent with the notations tL(t) and tR(t) in (5). These devices allow us to refer
to the beginning and end of the interval during which the pliant event runs in a
generic manner in our meta level discussions. They also permit, despite what has
been said above, rules like PliOp to refer to relative time from the beginning
of the execution of a transition specified by PliOp, by using expressions like
(t − tL(t)). This is useful within clauses such as rel(xs, is, os, t), for example.
Obviously, fresh syntactic sugar could be introduced to handle this, if desired.

6

For a specific execution of PliOp, the inputs is and outputs os are con-
tinuously absorbed from and emitted to the environment over the open interval
(tL(t) . . . tR(t)), as indicated in the signature. (Both must be absolutely right con-
tinuous.) Note that the initial values IV and guard guard depend only on the
before-value of the state,3 and not on the input, whereas rel, which expresses
any additional constraints that must hold beyond the differential equation DE
itself, can depend on all state and input values from the start of the interval tL(t)
up to the current time t. The assignment in (5) says that the after-state and out-
put at t should satisfy the differential equation DE (as well as rel). As for the
instantaneous case, if the continuous functions of t to be assigned to xs, os are
known explicitly, we can omit the with and/or solve clauses as appropriate,
and just assign xs, os to the relevant expression.

As mentioned earlier, pliant variables can undergo instantaneous discontin-
uous transitions as well as continuous ones. For such transitions, the structure
in (4) is sufficient. We continue to call instantaneous transitions involving both
kinds of variable mode transitions, introducing the term pure mode tran-
sitions for the former kind.

A continuous ASM ruleset is well formed iff:

• Every enabled mode transition is feasible, i.e. has an after-state, and on
its completion enables a pliant transition (but does not enable any mode
transition).

• Every enabled pliant transition is feasible, i.e. has a time-indexed family of
after-states, and EITHER:

(i) During the run of the pliant transition a mode transition becomes
enabled. It preempts the pliant transition, defining its end. ORELSE

(ii) During the run of the pliant transition it becomes infeasible: finite
termination. ORELSE

(iii) The pliant transition continues indefinitely: nontermination.

A run of a continuous ASM system starts with a mode transition which assigns
the initial state of all system variables, and then, pliant transitions alternate
with mode transitions. The last transition (if there is one) is a pliant transition
(whose duration may be finite or infinite). We thus see that the sequence ti of
times at which discontinuities take place, emerges as the sequence of times at
which the first possible preemptions of the pliant transitions by the enabling of
mode transitions arises.

3 Example: A Bouncing Tennis Ball

To illustrate our formalism, we consider an idealised tennis rally, in which a
pointlike tennis ball of unit mass is being hit back and forth over the tennis net,
which is of height N . Let the horizontal and vertical components of the ball’s

3 Normally, we would expect IV to depend on the pliant variables and guard to depend
on the mode variables, but there is no need to insist on this formally.

7

N

L

R

α

Fig. 1. A single shot in a tennis rally.

velocity be vx and vy, positive
for rightwards and upwards mo-
tion. Suppose horizontal and ver-
tical positions are measured from
the bottom point of the net, pos-
itive for rightwards and upwards
displacements, and for the tennis
ball, these are px and py.

We consider a single shot in
the rally. As illustrated in Fig. 1,
the ball appears from the right,
with velocity (vxin, vyin) say (both vxin and vyin being negative), bounces once,
and then on its continuing path encounters the player’s racquet at height R, hav-
ing travelled a horizontal distance L. After striking the ball, the racquet gives
it a velocity (vxout, vyout). We can model this scenario using continuous ASM
rules as follows. The free flight of the ball is governed by a pliant rule:

Flight
c
=

if py > 0 then with py ≥ 0

do px(t), py(t), vx(t), vy(t) := solve [Dpx,Dpy,Dvx,Dvy] = [vx, vy, 0,−g]

In Flight we see the usual equations of Newtonian motion for a point mass in
first order row-vector form. We use the symbol D to denote the time derivative
in “program-like” situations; g is the acceleration due to gravity. We check, and
continually enforce, the constraint that py is non-negative — the ball is not al-
lowed to penetrate the surface of the tennis court. This one rule is enough for
all three free-flight episodes of our scenario.

The interactions of the ball with the ground and with the racquet require
some mode rules. The simplest is the bounce off the tennis court surface. The
following rule will do.

Bounce = if py = 0 ∧ vy < 0 then do vy := −c vy
Rule Bounce assumes that the motion of the pointlike tennis ball in the hor-
izontal direction is unaffected by the bounce, but that the vertical component
is reflected, and scaled down by the coefficient of restitution c (where we have
0 < c < 1).

While the modelling of the bounce can be said to be reasonably realistic, we
simplify the interaction with the racquet fairly dramatically, by assuming that
the racquet has infinite mass and is infinitely stiff. In this case, the encounter
between the ball and racquet can be modelled just like a bounce, i.e. the normal
component of the relative velocity is reflected modulo the coefficient of restitution
c, and the tangential component remains unaffected.

To model this properly, we need position and velocity variables for the rac-
quet; let these be rpx, rpy, rvx, rvy respectively, and suppose that these variables
refer to the precise point of impact on the racquet of the ball. Suppose that at
the moment of impact, the racquet is inclined at an angle α to the horizontal,
as in Fig. 1. Then a mode rule that will fulfill our requirements is the following.

8

Racquet =
if py > 0∧py = rpy∧px < 0∧px = rpx∧vx < 0∧vx.rvx+vy.rvy < 0 then
do
vx := −(vx−rvx)(cos2(α)+c sin2(α))+(vy−rvy)(1−c) cos(α) sin(α)+rvx,
vy := (vx−rvx)(1− c) cos(α) sin(α)− (vy−rvy)(sin2(α)+ c cos2(α))+rvy

The guard of Racquet checks that the ball is above the ground and to the left
of the net, and that the ball and racquet are in the same place. The final conjunct
of the guard is the inner product of the racquet and ball velocities. Insisting that
it is negative ensures that the racquet strikes the ball in such a way that there
is a component of the resulting velocity that is opposed to the ball’s previous
motion — which, if the ball is travelling as we would expect, towards the left,
ensures that the ball will travel towards the net after the impact. Beyond that,
explaining the assignments to vx and vy in the rule takes us deeper into classical
mechanics than is appropriate here, so the details are relegated to an appendix.

Our model is completed with an Init rule to assign appropriate initial values
to all the variable. We do not write it down.

4 Formal Semantics

The account of the Continuous ASM in Section 2 was intended to give a picture
of our formalism that is conceptually easy to grasp and is clear enough for
model building, relying to some extent on the reader’s intuition and experience
to fill in any gaps (e.g. positing ab initio the sequence ti of times at which
discontinuities take place). In this section we give a summary of the formal
operational semantics of our formalism. In order to not waste large amounts of
space on repeating routine material, we rely heavily on existing work: on [13]
(especially Chapter 2.4) for conventional ASM semantics; and on [49] (especially
Chapter III §10) for differential equations in the sense of Carathéodory. Given
these trusted foundations for discrete and continuous update respectively, the
issues we must be most careful about are the handovers between mode and pliant
transitions. We discuss these further after presenting the semantics.

One thing that we have not explicitly mentioned hitherto, is that we have
been assuming that the system being discussed is defined monolithically, i.e. as a
single indivisible syntactic unit. This is in accord with the automata-centric view
taken in the majority of work on hybrid systems in the literature (see Section
8). However, in rule based formalisms (such as ASM), it is quite common to
compose systems out of smaller subsystems — in the ASM case, the simultaneous
execution of all enabled rules at each step provides a very simple semantics for
composing subsystems that just aggregates the subsystems’ rulesets.4

In this regard, the semantics we sketched in Section 2.2 is inadequate. For one
thing, we spoke (almost exclusively) of transitions, and did not explore in detail
how they might be related to ASM rules, except that intuitively it is clear that

4 Dually, one can approach the same issue by decomposing simpler abstract systems
into collections of smaller, more detailed subsystems, as happens in Event-B for
instance.

9

rules should specify transitions. This also sidesteps the scheduling convention
just mentioned. For another thing, we did not consider whether insisting that
the system as a whole engaged in the alternation of mode and pliant transitions
as we described them, made sense when the system is not monolithic.

The latter point raises an issue not present in the usual discrete world. In the
discrete world, when an update is made to some system variables, any variables
not mentioned in the syntactic description of the update, conventionally remain
at their existing value. This coincides with the natural real time behaviour of
variables that have piecewise constant values over time. So there is no observ-
able distinction between leaving such a variable unaltered (to pursue its natural
temporal evolution) on the one hand, and updating it to remain at the same
constant value on the other hand. The former view is appropriate if the vari-
able belongs to a different subsystem which is unaware of the ongoing update,
while the latter view is appropriate if the variable belongs to the system being
currently updated, but no change in its value is required.

In the continuous world, in which the values held in system variables may vary
in a non-piecewise constant manner over time, the distinction between these two
views can become apparent. If a variable that belongs to the subsystem currently
being updated (via a pliant transition that is about to start) is not mentioned
in the syntactic description of the update, then the policy that its value remains
constant throughout the ensuing interval of time during which the new pliant
transition will act, represents a specific design decision about the semantics of
the current subsystem.

While it might be possible to justify such a design decision on requirements
grounds when the variable belongs to the system being updated, the same design
decision can seem very unnatural when the variable in question belongs to a dif-
ferent subsystem, in which its behaviour is being governed by a pliant transition
that started in that subsystem earlier, and which demands some non-constant
behaviour for the variable. Then, the idea that that behaviour is suddenly over-
ridden by a constant behaviour that “appears out of nowhere” (from the point of
view of that other subsystem) is very counterintuitive. So it is highly preferable
that such variables be allowed to continue with their pre-existing behaviour.

Taking this latter view complicates the semantic picture a little. On the face
of it, the definition of the sequence of times ti at which discontinuities take
place becomes more problematic — the sequence that is “naturally” seen by
one subsystem need not coincide with the sequence that is “naturally” seen by
another subsystem. Additionally, specifying the moments at which mode transi-
tions arise, and their scope, as well as determining the scope of pliant transitions,
requires more care. Deciding what “subsystem” refers to, and how to handle it
in the context of a rule system based formulation, also requires care.

Our semantics takes these considerations into account. It defines the be-
haviours of a set of rules R, much as one would do for a monolithic system.
However, we allow for the fact that R may itself be made of the union of
one or more constituent sets of rules. We do this by: (i) allowing for several
Initial rules (which must, of course, be consistent, originating from different

10

Table 1. Notations utilised in the semantics

Notation Explanation

T time interval, duration of the dynamics

Uvar type for variable var

R set of rules

S semantics of R, a set of system traces

ζvar system trace of var , ζvar : T → Uvar

PlRl(pli, t) pliant rule for variable pli that ζpli obeys at time t

InitUDS set of consistent update sets for the initial rules of R

PliRsEN
set of enabled pliant rules of R (at any execution of step [5] of the
semantics)

PliRsCT
set of pliant rules that are to continue preceding execution (at any
execution of step [6] of the semantics)

PliREM
set of remaining pliant rules (not in PliRsEN ∪ PliRsCT at any
execution of step [7] of the semantics)

MoRs
set of non-Init mode rules enabled at a preemption point (at any
execution of step [12.2] of the semantics)

MoRsUDS
set of consistent update sets for the rules in MoRs (at any
execution of step [12.3] of the semantics)

constituent rule subsets), (ii) having a preemption mechanism that allows pliant
rules to continue past a preemption point (when this is appropriate) as well to
be preempted (when that is appropriate), using rule-variable dependencies to
determine which course of action to apply after any mode transition. This gives
a simple syntax-independent semantics for composition. With these thoughts in
mind, the semantics is given in the following sections.

4.1 Semantic Context

We start with a number of contextual observations and definitions. Table 1 sum-
marises the specialised notations introduced during the course of the technical
details.

[A] Time, referred to as t, takes values in the real left-closed right-open set
[t0 . . .+∞), where t0 is an initial value for time. For every other system variable
var, there is a universe of values (or type) Uvar. If var is pliant, then Uvar is
R. (N. B. Earlier we were more lax concerning the types of pliant variables. Now
we will be more specific, recognising that, in practice, more complex types that
are of interest can be constructed from R anyway.)

[B] The semantics is given for R which is a set of rules. R contains one or more
distinguished Initial rules. Each Init rule has a guard which is either “true” or
“t = t0”.

[C] Time is a distinguished variable (read-only, never assigned by rules). All
other variables have interpretations which are functions of an interval of time

11

starting at t0. (See [E].) As well as directly referring to the time variable, time
may be handled indirectly by using clock variables. Their values may be assigned
by mode rules, and their rates of change with respect to time may (during use
in pliant rules) be specified directly, or defaulted to unity.

[D] R consists of mode rules and pliant rules. A mode rule (e.g. (4)), is enabled
iff, under the current valuation of the system variables, the value of the guard
of (4) lies in the topological closure of the true-set of the guard. A pliant rule
(e.g. (5)), is enabled iff IV ∧ guard evaluates to true under the current valuation
of the system variables. A variable is governed by a mode rule iff it is assigned
by that rule. A pliant variable is governed by a pliant rule iff it appears in the
left hand side of the DE of the rule, or is directly assigned in the rule, or is
constrained in the with clause.

[E] The semantics of R is a set of system traces S. Each system trace S ∈ S is
given by a time interval T = [t0 . . . tfinal) (where tfinal, with tfinal > t0, is finite
or +∞), and a set of time dependent variable interpretations ζvar : T → Uvar,
one for each variable var. If S is empty we say that the semantics of R is void.

[F] In order that the evolution of each pliant variables is suitably managed,
an additional data structure is needed. For each pliant variable pli, the function
PlRl(pli, t) returns the pliant rule that the interpretation ζpli of variable pli is
obeying at time t.

[G] The set of traces S is constructed by the step by step process below,
which describes how individual system traces are incrementally constructed.5

Whenever a choose is encountered, the current trace-so-far is replicated as
many times as there are different possible choices, a different choice is allocated
to each copy, and the procedure is continued for each resulting trace-so-far.
Whenever a terminate is encountered, the current trace-so-far is complete.
Whenever an abort is encountered, the current trace-so-far is abandoned, and
eliminated from the semantics S, of R.

4.2 Operational Semantics

In the context of the assumptions [A]-[G] above, the operational semantics of
the Continuous ASM can be given as follows.

[1] Let i := 0 (where i is a meta-level variable).
[2] Let InitUDS be the set of consistent update sets for the collection of initial

rules of R. If InitUDS is empty then void. Otherwise, choose an update
set from InitUDS and assign all variables accordingly, thereby interpreting
their values at time t0. (N. B. We assume that all system variables acquire
an initial value in this manner.)

[3] If any non-Init mode rule is enabled when the variables have the values at
ti then abort.

[4] If no pliant rule from R is enabled then abort.

5 N. B. The process is not intended to be executable. All traces-so-far are intended to
be explored simultaneously.

12

[5] Let PliRsEN be the set of enabled pliant rules from R.

[5.1] If any pliant variable occurs in the left hand side of the DE (or direct
assignment) of more than one rule in PliRsEN (or more than once in
the left hand side of the DE in the same rule), then abort.

[6] If i = 0 let PliRsCT = ∅. Otherwise, let PliRsCT be the set of pliant
rules from R, such that: PliRsCT is maximal; no rule in PliRsCT is in
PliRsEN ; no variable governed by any rule in PliRsCT is governed by any
rule in PliRsEN ; for every rule PliRlCT in PliRsCT , for every pliant

variable pli governed by PliRlCT,
−−−−−−−−→
PlRl(pli, ti) = PliRlCT; for every rule

PliRlCT in PliRsCT , for every mode variable v which occurs in the guard

of PliRlCT,
−−→
v(ti) = v(ti).

[7] Let PliREM consist of any pliant variables pli that are not governed by any
rule in either PliRsEN or PliRsCT . If PliREM is nonempty, then abort.

[8] If there does not exist a tnew > ti such that there is a simultaneous solution
of all the DEs and direct assignments in the rules in PliRsEN ∪ PliRsCT
in the left-closed, right-open interval [ti . . . tnew), using as initial values the
variable values and right limits of inputs and outputs at ti, and such that the
rel predicates also evaluate to true in the interval [ti . . . tnew), then abort.

[9] Otherwise, choose a simultaneous solution as in [8], and let tmax be maximal
such that tmax > ti and this solution is defined in the interval [ti . . . tmax).

[9.1] For all pliant variables pli, for all t ∈ [ti . . . tmax), let PlRl(pli, t) be the
rule governing the behaviour of pli. (N. B. This assignment is total by
[7] and unambiguous by [5.1].)

[9.2] For every mode variable, extend its value at ti to a constant function in
the interval [ti . . . tmax).

[10] If no non-Init mode rule is enabled at any time tnext in the open interval
(ti . . . tmax), or no non-Init mode rule is enabled by the left-limit values of
the state variables at time tmax in the case that these left-limit values exist
and are finite at tmax, then terminate.

[11] Let i := i+ 1.
[12] Let ti be the smallest time tnext at which some non-Init mode rule is enabled

in [10].

[12.1] Discard the interpretation of all variables, and the definition of PlRl, in
the interval [ti . . . tmax).

[12.2] Let MoRs be the set of non-Init mode rules that are enabled when all

variables var are interpreted as the left-limit values at ti, i.e. as
−−−−→
var(ti).

[12.3] Let MoRsUDS be the set of consistent update sets for the rules in
MoRs. If MoRsUDS is empty then abort. Otherwise, choose an up-
date set from MoRsUDS and assign all the updated variables accord-
ingly, thereby interpreting their values at time ti.

[12.4] For all other variables var, interpret their values at time ti to be their

left-limit values at ti, i.e. to be
−−−−→
var(ti).

[13] Goto [3].

13

4.3 Mode-Pliant and Pliant-Mode Handovers

Before commenting further, we make some observations on the consistency of
the above definition. As noted earlier, we can take certain things for granted,
such as well definedness of mode transitions via ASM update semantics, and the
existence of solutions to differential equations. The key remaining points then,
are whether the handovers from pliant to mode transitions, and those from mode
to pliant transitions, are well defined.

We observe that the handover from pliant to mode transitions is trouble-free
as follows. Since the set of values at which any mode rule becomes enabled is
closed (being given by the closure of the true-set of the guard of the rule, by
[D]), and since the system trajectory is a continuous function during any interval
in which a pliant rule is active, if the system trajectory meets the closure at
all during such an interval, it first meets it at some specific time point. Since
there are only finitely many rules, the minimum of these points is a unique well
defined time point, and so ti in [12] emerges as this minimum. Thus the earliest
moment that a mode transition becomes enabled during a pliant transition is a
well defined time point, and the time at which the pliant transition is preempted
is well defined, from which a consistent set of mode updates is derived, by [12],
[12.1], [12.2], [12.3].

We argue that the handover from mode to pliant transitions is also consistent.
Firstly, upon completion of a mode transition, some pliant rules will (typically)
be enabled, [5]; these are required to be unambiguous and consistent by [5.1].
Secondly, these rules need not govern all the pliant variables of the whole system.
By [6], if there were pliant rules contributing to the pliant transition that was
just preempted, which govern variables disjoint from those governed by the first
case, they are permitted to continue — we might term this figurative interruption
and resumption a “virtual skip”. Thirdly, the former two measures may still not
take care of all pliant variables, since there is no requirement for pliant rules
and the sets of variables that they govern to dovetail neatly together. If there
are any pliant variables left over, [7] ensures that the run is aborted.

With suitable attention to routine details, the above remarks can be turned
into a formal proof of the consistency of the definition of system traces.

4.4 Multiple Subsystems

We return to the questions that were raised earlier concerning the definition of,
and interaction between, subsystems that coexist within a single encompassing
system. We examine how the formal semantics above helps to address these, and
we tie up the semantic loose ends.

To start with, we would normally expect that a separate subsystem would
control (i.e. have write access to) an exclusive set of variables. We therefore take
that as a fundamental principle.6

6 We can imagine that write access to some variable might, exceptionally, be shared
by more than one subsystem, but under such circumstances a suitable protocol will

14

The next basic insight comes from [13], which promotes a perspective in which
a system’s variables are either monitored or controlled. Controlled variables are
written to by the system, whereas monitored variables are merely read. For the
latter, it is assumed that the environment supplies the values that are read, but
aside from the condition that the values of monitored variables should be stable
when read, no further restriction is placed on them. Thus, there is nothing to
prevent their values from being supplied by another ASM system, the original
system and its environment thus becoming two subsystems of a larger system. In
other words, the conventional definition of an ASM system is intended to enable
it to play the role of subsystem, essentially without modification.

For our purposes, we add a couple of observations to the above picture to
make it suit the Continuous ASM situation. Firstly, since pliant variables’ val-
ues will change continuously in general, we can modify “stable when read” to
“reliably readable when needed”, to avoid any possible confusion. Secondly, we
emphasise that in the context of a system comprising several subsystems (i,e,
one constructed via the composition of the subsystems’ rulesets), each writable
variable is written to by the rules belonging to exactly one of the subsystems,
and no rule (of the whole system) writes to the writable variables of more than
one of the subsystems. With these simple structural restrictions in place, the
semantics of a system consisting of the composition of multiple subsystems is
simply given by aggregating all of the rules of all of the subsystems in the usual
way, and processing them according to the single system semantics given above.

Of course, a non-void semantics for subsystem A1 which assigns a variable
x1 while reading variable x2 which belongs to subsystem A2, and a non-void
semantics for subsystem A2 which assigns a variable x2 while reading variable
x1, does not guarantee a non-void semantics for the entire system consisting
of A1 together with A2, since there may not be values for x1 and x2 that
simultaneously satisfy all the constraints imposed by the two subsystems.

The second proviso above also acts in concert with the stipulations of the
formal semantics to ensure that, in a multi-subsystem system, each preemption
point is caused by an identifiable subset of the subsystems,7 and upon completion
of the preemption, an identifiable subset of the subsystems embarks on new
pliant behaviour, with the remainder resuming the pliant behaviour they were
executing previously. (N.B. The two subsets need not be the same.)

The last point brings us to the issue of the how the indexing of mode and pli-
ant transitions works in a system conceptually divided into separate subsystems.
We see that the semantics defines a global indexing, which is a strict sequentiali-
sation of the mode transitions of the entire system, regardless of which subsystem
they might arise from. From the vantage point of any given subsystem, only a
subset of these mode transitions might be “visible”, but this amounts to simply
re-indexing the mode transitions if we want to describe the system dynamics

have be in place to prevent race conditions, such as in the case of familiar mutual
exclusion protocols [40, 31]. We do not consider such cases here.

7 For simplicity, we permit simultaneous preemption by more than one subsystem,
even if it would be a little impractical in reality.

15

from that subsystem’s viewpoint. Allied to this is the fact that if a remote sub-
system undergoes a mode transition of which a given subsystem is unaware,
some values being read by the local subsystem might still undergo discontinuous
change in the midst of a pliant transition (of the local subsystem). This discon-
tinuity causes no discomfort, since we understand differential equations in the
sense of Carathéodory. Provided that the right hand side of each ODE in the
system has the uniformly bounded Lipschitz property in the system variables,
and remains measurable over time, it is guaranteed that a solution exists and is
absolutely continuous.

Lastly, a note on Zeno behaviour. Nothing in the semantics that we have
discussed precludes it. Therefore the semantic model does not of itself guarantee
the recommendation I of Section 2.2. As we remarked, Zeno-freeness normally
depends on global reachability, so our view is that if a system model is capable
of exhibiting Zeno behaviour, then there is potentially something wrong with
the model, and, depending on circumstances, the model ought to be improved
to remove or mitigate those aspects that lead to it.8

5 The Tennis Ball Revisited

What is interesting about the tennis ball example is to consider how the formal
semantics of Section 4 views the behaviour of the tennis ball system. We start
by noting that the guards of the various mode rules in the tennis ball system all
featured strict inequalities. However, in order that in any given run, the times
at which mode events occur are well defined, the runtime interpretation of mode
events’ guards is via the closure regions of their true-sets. In other words, the
strict inequalities of guards are reinterpreted non-strictly. This gives rise to some
interesting effects, which we comment on now.

One interesting effect concerns the constraint py > 0 in the guard of Rac-
quet. If this is replaced by py ≥ 0, then the scenario is possible in which py = 0
becomes true at the precise time that the ball strikes the racquet. In this case
both Bounce and Racquet are enabled. If Bounce runs first, then Racquet
will be enabled immediately afterwards, and the run will be aborted by point
[3] of the formal semantics. If Racquet runs first, then Bounce will be en-
abled immediately afterwards, and the run will also be aborted. These aborts
are typical of the “cleaning up” that the semantics performs when the rules do
not neatly conform to the requirements of the strucure of runs that we have
demanded. This also supports the view that one should design and reason about
systems using such guards etc. as most eloquently address the needed system
requirements. Regarding behaviours at awkward boundary cases which arise be-
cause of the semantics, even if the semantics does not abort, behaviours may be
forced that could justifiably be regarded as anomalous.

As an example of this consider the flight of the ball after the racquet strike,
as it approaches the net. If the path of the ball is low, it will hit the net after

8 This could depend on requirements. Zeno behaviour may sometimes be tolerable and
sometimes not.

16

having travelled a horizontal distance L from the point of impact with the rac-
quet. Assuming the racquet strikes the ball so that it has an upward velocity
component, let us consider increasing the velocity with which the racquet strikes
the ball. As this increases, the ball will typically hit the net at points higher and
higher up. Eventually, the top of the net will be reached. If the net is modelled as
a vertical line, closed at the top (i.e. using a definition such as 0 ≤ net y ≤ N),
then the family of ball trajectories including these net impacts, generated by the
above rules will behave smoothly as the limit of the top of the net is reached.

By contrast, keeping the same net definition, consider the case when the ball
has a lot of energy on its return towards the net. Then it will fly over the net
towards the right. Now consider reducing the ball’s energy gradually. At the limit
point, i.e. when the flight of the ball touches the net at height N , there will be a
discontinuity in the family of ball trajectories. At the limit point, instead of the
ball flying over the net, it will hit the net and drop leftwards. Assuming that the
net is modelled as we said, and that we have a mode rule to model the impact
with the net, this anomalous limiting behaviour of the family of trajectories in
which the ball flies over the net will be generated by the semantics.

By contrast, if we model the net as 0 ≤ net y < N , then the anomaly would
be generated the other way round, as the point of impact with the net rose.

Is the existence of either anomalous limit harmful? We argue that it is not.
The anomaly exists at a single set of values for the system parameters. Viewed
from the perspective of the system as a whole, this is a set of measure zero. In
engineering terms, it is something which cannot be observed since the slight-
est departure from the specific parameter values causes a change in behaviour
— only behaviours that are modelled by systems in which the behaviours are
robust over parameter sets of non-zero measure can play a role in real life, so
the existence of relatively isolated anomalous behaviours does no harm. These
relatively isolated anomalous behaviours are the price that one sometimes has
to pay for being able to model at an idealised level. And although such idealised
models are clearly unrealistic to a degree, the clarity they can bring to high level
system conceptualisation makes the price one that is worth paying.

A further set of interesting behaviours arises if we allow the coefficient of
restitution parameter c, to vary. Under normal circumstances, one would expect
a single bounce of the ball before the racquet returns the ball over the net, this
being what is allowed by the rules of tennis. If, however, we consider a succession
of further bounces, more interesting things can occur.

We assume that the racquet stays at a horizontal distance L away from the
net. Then the number of bounces that the ball can experience depends on the
value of c. Provided there is at least one bounce, then by adjusting the value of
c we can increase the number of subsequent bounces arbitrarily. To see this we
observe that the (vertical part of the) kinetic energy reduces by a factor of c2 on
every bounce. So the height of the parabolic flight segment after every bounce
also reduces by a factor of c2, and so does its width, which corresponds to the
horizontal distance travelled during that parabolic flight segment. So, aside from
the initial part in which the ball comes over the net, the total horizontal distance

17

travelled is proportional to
∑∞
k=1 c

2k = c2(1 − c2)−1. As c reduces to zero, this
approaches c2, which also approaches zero.

So the total additional horizontal distance travelled after the first bounce can
get arbitrarily small, and thus the ball may never reach the racquet while still
in the air. What we see here is an example of a Zeno effect. To absorb all the
initial vertical kinetic energy takes an infinite number of bounces.

What happens afterwards? Arguing physically (though still in a highly ide-
alised way), since the vertical and horizontal elements of the kinetic energy are
decoupled, after the vertical kinetic energy has been absorbed by the bounces,
the horizontal kinetic energy remains, so the ball rolls along the ground with ve-
locity vxin. Arguing according to the semantics of Section 4, if c is small enough
for this behaviour to ensue, then the single system run allowed by a fixed set
of system parameters never gets past the limiting Zeno point of the behaviour
described. This is because the semantic construction in Section 4 only allows
for a number of steps that is indexable by the naturals. Going beyond the Zeno
point would require a transfinite construction, which we have not explored in
this paper. Such constructions, while possible, would always be unphysical to a
greater or lesser extent, so are of limited value for application modelling.

What we have just been discussing, illustrates in a very clear way the difficul-
ties inherent in the Zeno recommendation of Section 2. For one set of parameters,
the Zeno effect is absent, and the model behaves in an exemplary way. For an-
other set of parameters, looking not much different from the first, the behaviour
is completely different, exhibiting Zeno effects. (And, of course, there is the
boundary scenario, in which the limit of the Zeno behaviour reaches exactly the
distance L, which we didn’t explore.)

5.1 The Tennis Ball as a Multiple System

Let us contemplate our tennis ball example from the vantage point of multiple
subsystems. Taking the rules we wrote at face value, there is no sensible possi-
bility of partitioning the system, since its simplicity dictates that all the rules
modify all all variables, more or less.

However, we can consider enlarging the system, for example by adding a
television camera that follows the flight of the ball.9 This would have read access
to the ball’s dynamical variables, but not write access. In this case, the TV
camera’s variables and rules would reside in a separate subsystem from those of
the tennis ball itself. Depending on the detail of its model, the ball’s dynamical
variables would, via read access, determine which pixels of the camera’s CCD
sensor changed in response to the ball’s flight, etc.

An alternative approach might note that we have focused on building a sys-
tem for the left hand side of the tennis court. We could thus contemplate building
a complementary system to cover the right hand side of the court, subsequently
composing the two subsystems to get a system covering the entire court.

9 A sports programme that genuinely did this would make viewers dizzy, but we can
tolerate the idea of it for the sake of the example.

18

However, there are problems with this approach, should we attempt to con-
struct the system described. The ball would alternately be found, first in one
half of the court, and next in the other. This means that the ball’s behaviour
would not be the responsibility of a single subsystem. This flies in the face of
the restriction made at the beginning of Section 4.4, to ensure each variable is
updated by a single subsystem.

The motivations for imposing such a restriction differ between mode and
pliant variables. For mode variables, the fact that a mode variable can retain its
value indefinitely, without special supervision, until an update changes the value,
reduces the problem of its semantics’ consistency to well understood questions
of mutual exclusion, so that a single agent has authority to update the variable
at any moment. The restriction of updates to a variable to a single subsystem is
therefore just the simplest incarnation of this policy.

For pliant variables, the situation is different. A pliant variable’s semantics
demands that its value needs to be supervised at all times, by a differential
equation for example. This corresponds to the physical reality that the laws of
nature hold at all times, and therefore that any description of a physical process
must adhere to the same principle. If responsibility for ensuring this is divided
among a number of subsystems, the challenge of verifying that it is met becomes
the harder. In particular, the description must be continuous and unbroken over
time. This is easiest to ensure if all updates to the pliant variable are contained
in one subsystem.

In [7] there is a much more extensive discussion of the implications of physical
law for language systems intended for the definition and description of cyber-
physical systems.

6 Continuous ASM Refinement

Now we develop our Continuous ASM framework to encompass refinement of
Continuous ASM models. We start by describing the usual ASM refinement
formulation, appropriate to pure mode transitions, and then show how to extend
this to encompass the new kinds of transition.

6.1 The Discrete Case

In general, to prove a conventional ASM refinement, we verify so-called (m,n)
diagrams, in which m abstract steps simulate n concrete ones in an appropriate
way. This means that there is nothing that the n concrete steps can do that is
not suitably reflected in m appropriately chosen abstract steps, where both m
and n can be freely chosen to suit the application. It will be sufficient to focus on
the refinement proof obligations (POs) which are the embodiment of this policy.
The situation for refinement is illustrated in Fig. 2, in which we suppress input
and output for clarity.

In Fig. 2 the refinement relation RA,C (also often referred to as the gluing
relation) between abstract and concrete states, holds at the beginning and end

19

• •

• •

••

• • ••

. . .

.

m steps

n steps

x x′

y′y

RA,C(x, y) RA,C(x′, y′)

(a)(b)

P

Q

R

S

T

(a) (b)

RMAX

R0

TMAXT0

•

• • • • • • • • •

• • • • • • • • •

•CVH

DVH

BVH

R0 RMAX

δ=

+eg=

+

•••••

•

•
•W

X

Y

Z

1

2

3

4
• • • •

•

•

•
5

6

7

A

C D

B

RefA,C

RetC,D

RetA,B

RefB,D

w

x

y

z

Fig. 2. An ASM (m,n) diagram, showing how m
abstract steps, going from state x to state x′ simu-
late n concrete steps, going from y to y′. The simu-
lation is embodied in the refinement relation RA,C,
which holds for the before-states of the series of steps
RA,C(x, y), and is re-established for the after-states
of the series RA,C(x′, y′).

of the (m,n) pair. This per-
mits us to abut such (m,n)
diagrams, by identifying the
last (abstract and concrete)
states of one (m,n) diagram,
with the first (abstract and
concrete respectively) states
of the next, and thereby to
create relationships between
abstract and concrete runs in
which RA,C is periodically re-
established. (N. B. In much
of the ASM literature, the
main focus is on an equiva-
lence, usually written ≡, be-
tween abstract and concrete
states. This is normally deemed to contain a “practically useful” subrelation
RA,C, chosen to be easier to work with. The approach via RA,C will be the focus
of our treatment, and is also focus of the KIV [30] formalization in [43, 44].)

The first PO is the initialization PO:

∀ y′ • CInit(y′)⇒ (∃x′ •AInit(x′) ∧RA,C(x′, y′)) (6)

In (6), it is demanded that for each concrete initial state y′, there is an abstract
initial state x′ such that RA,C(x′, y′) holds.

The second PO is correctness. The PO is concerned with the verification of
(m,n) diagrams. For this, we have to have some way of deciding which (m,n)
diagrams are sufficient for the application. In practice, this is part of the design
process, so let us assume that this has been done. Let CFrags be the set of
fragments of concrete runs that we have previously determined will permit a
covering of all the concrete runs of interest for the application. Using :: to denote
concatenation, we write y :: ys :: y′ ∈ CFrags to denote an element of CFrags
starting with concrete state y, ending with concrete state y′, and with intervening
concrete state sequence ys. Likewise we write x ::xs ::x′ ∈ AFrags for abstract
fragments. Let is, js, os, ps denote the sequences of abstract inputs, concrete
inputs, abstract outputs, concrete outputs, respectively, belonging to x::xs::x′

and y::ys::y′ and let InAOps,COps(is, js) and OutAOps,COps(os, ps) denote suitable
input and output relations. Then the correctness PO reads:

∀x, is, y, ys, y′, js, ps • y ::ys ::y′∈CFrags ∧
RA,C(x, y) ∧ InAOps,COps(is, js) ∧COps(y :: ys :: y′, js, ps)⇒

(∃xs, x′, os • x ::xs ::x′∈AFrags ∧
AOps(x ::xs ::x′, is, os) ∧RA,C(x′, y′) ∧OutAOps,COps(os, ps)) (7)

20

In (7), it is demanded that whenever there is a concrete run fragment of the
form COps(y ::ys ::y′, js, ps), carried out by a sequence of concrete operations10

COps, with state sequence y ::ys ::y′, input sequence js and output sequence ps,
such that the refinement and input relations RA,C(x, y)∧InAOps,COps(is, js) hold
between the concrete and abstract before-states and inputs, then an abstract run
fragment AOps(x ::xs ::x′, is, os) can be found to re-establish the refinement and
output relations RA,C(x′, y′) ∧OutAOps,COps(os, ps).

The ASM refinement policy also demands that non-termination be preserved
from concrete to abstract. We retain this in our extension of the formalism for
when it is needed.

Assuming that (6) holds, and that we can prove enough instances of (7)
to cater for the application of interest, then the concrete model is a correct
refinement of the abstract model. In a correct refinement, all the properties of
the concrete model (that are visible through the refinement and other relations),
are suitably reflected in properties of the abstract model (because of the direction
of the implication in (7)). If in addition, the abstract model is also a correct
refinement of the concrete model (using the converses of the same relations),
then the concrete model is a complete refinement of the abstract model. In a
complete refinement, all relevant properties of the abstract model are also present
in the concrete model (because of the direction of the implication in the modified
version of (7)). Therefore, to ensure that the complete set of requirements of an
intended system is faithfully preserved through a series of refinement steps, it is
enough to express them all in a single abstract model, and then to ensure that
each refinement step is a complete refinement.

6.2 The Continuous Case

The preceding was formulated for the discrete world. However, to extend it to the
continuous world is not very hard. The essence of the approach is to reinterpret
the run fragments AOps(x ::xs ::x′, is, os) and COps(y ::ys ::y′, js, ps) appearing
in (7) in a way that yields a natural extension of the discrete case.

In the discrete context, such a notation refers to a sequence of states, i.e. a
map from some natural number indexes to state values. In a context including
real time, the analogue of this is a function from an interval of time to state
values, which is piecewise constant. More precisely, the interval of time in ques-
tion will be a finite closed interval [tA . . . tB], where tA < tB . Such an interval
corresponds to a typical left-closed right-open interval [tA . . . tB) on which the
function is piecewise constant plus the right endpoint tB . The interval [tA . . . tB)
itself is partitioned into a finite sequence of left-closed right-open subintervals,
on each piece of which the function is constant (as seen in the semantics of mode
variables in Section 4).

The purpose of the right endpoint tB , is to record the after-state of the last
mode transition, so that it can be identified with the initial state of a successor

10 We define an operation as a maximal enabled set of rules — provided its updates
are consistent. Enabled inconsistent updates cause abortion of the run, as usual in
ASM.

21

function, when (m,n) diagrams are abutted. Referring to Fig. 2, we can view the
rightward pointing arrows (both abstract and concrete) as the constant functions
on non-empty left-closed right-open subintervals (with the blobs at their tails
representing the leftmost values), and the final blob (both abstract and concrete)
representing the isolated value at the right closure of the entire interval.

We allow an exception to this convention when tB =∞. In that case the last
subinterval of [tA . . . tB) is of infinite length, corresponding to a nonterminating
final transition, and there is no isolated right endpoint, and no abutting of an
(m,n) diagram featuring this kind of final subinterval to any successor.

The obvious generalisation of this for the framework of Continuous ASM is
to use piecewise absolutely continuous functions from intervals of time to state
values. These would be defined on finite closed intervals [tA . . . tB], with tA < tB .
As above, such an interval would partition into one or more left-closed right-
open subintervals on each of which the state function is absolutely continuous
and without internal discontinuities, plus an isolated state at the right endpoint
tB , included to allow identification with the initial state of a successor function.

In this context, AOps(x ::xs ::x′, is, os) at the abstract level and COps(y ::
ys :: y′, js, ps) at the concrete level, each consist of an alternating sequence of
pliant and mode transitions (starting with pliant and ending with mode — unless
the tB =∞ exception applies, and the last transition is pliant too).

Similar principles apply to inputs and outputs. Mode inputs and outputs are
mapped to the time instant at which the after-state is established, while pliant
inputs and outputs are mapped to the (left- and right-) open interval during
which the pliant transition runs. We thereby derive an interpretation for the
notation used in (7) appropriate for the current context. Thus R(x, y) becomes
a predicate about the earliest abstract and concrete state values referred to by
the state functions mentioned, while R(x′, y′) refers to the latest state values.

In this way, (7) continues to define refinement in the Continuous ASM con-
text. The piecing together of (m,n) diagrams to build an abstract simulation
of a concrete run, now reduces to the identification of the latest (abstract and
concrete) state values reached by one (m,n) diagram, with the earliest (abstract
and concrete) state values of its successor (m,n) diagram, in the way indicated
above for the discrete case.

Given the above, it is instructive to point out what the PO (7) does not
demand. We have already said that the ASM PO does not mention states that
are internal to the length m and length n fragments that occur in a given (m,n)
diagram. This frequently simplifies the relations R, In,Out etc., that capture the
relationship between abstract and concrete worlds — the policy is particularly
useful when it is easy to predict that the systems are guaranteed to schedule
their steps in the particular way exploited in a given (m,n) diagram.

Finally, there is no explicit mention of time in (7). In particular there is
nothing in (7) that indicates, in any relative way, how time is expected to progress
during the respective length m and length n fragments — the abstract and
concrete systems are free to progress according to their own notions of time.

22

Such aspects give the ASM POs great flexibility. Designers can define rela-
tionships between systems in the most practically useful way, a perspective the
the ASM philosophy promotes. The appropriateness of the policy adopted for a
given development becomes a matter for the wider requirements arena.

6.3 Continuous ASM Refinement and Multiple Subsystems

It is clear that refinement, as thus defined, suits a monolithic semantics — the
correctness PO implicitly speaks of the state and I/O spaces in their entirety,
and makes no concession to the subsystem issues debated in detail in Section
4.4. We comment on this now.

Suppose we have two subsystems A1 and A2. Taking A1 in isolation, its
semantics is given in Section 4, on the understanding that any external values
needed (e.g. from A2) appear as values of free variables of A1 that are “reliably
readable when needed”. On the other hand, viewing the system as a whole, forces
the same Section 4 semantics to address the whole system, and to supply values
of variables for both A1 and A2 simultaneously and consistently. Additionally,
concerning the effect of a single rule, the ASM rule firing policy (namely that any
enabled rule executes), also allows us to largely ignore whether the rule is being
executed by a monolithic system, or by one of its subsystems.11 We observed
already though, that a non-void semantics for A1 and a non-void semantics
A2, do not in themselves guarantee a non-void semantics for the combination
of A1 and A2, since a globally consistent assignment of values to variables does
not follow from individually consistent partial assignments.

The last observation makes clear that things get more complicated when
refinement is considered. Suppose abstract subsystem A1, with variables x1,
is1, os1, is refined by concrete subsystem C1, with variables y1, js1, ps1, using
relations RA1,C1, InA1Opsd,C1Opsd and OutA1Opsd,C1Opsd , where d indexes over the
(m,n) diagrams of the A1 to C1 refinement. Suppose abstract subsystem A2,
with variables x2, is2, os2, is refined by concrete subsystem C2, with variables
y2, js2, ps2, using relations RA2,C2, InA2Opsd,C2Opsd and OutA2Opse,C2Opse , where
e indexes over the (m,n) diagrams of the A2 to C2 refinement.

Now, even if there is a non-void semantics for the combination of A1 and
A2, there is no guarantee of a non-void semantics for the combination of C1
and C2. Furthermore, even if there is a non-void semantics for the combination
of C1 and C2, there is no a priori guarantee that the non-void semantics for
the C1 and C2 combination is a refinement of the non-void semantics of the
combination of A1 and A2.

The root cause of these problems is the presence of the existential quantifiers
in the conclusion of (7), since a conjunction of existential quantifications does
not imply the existential quantification of the conjunction, as would be needed

11 Contrast that with the case in which only one enabled rule is chosen to execute at a
time. Then, whether a single rule executes, or a single rule per subsystem executes
(and how this is reflected in observable effects), has a significant impact on the
semantics and becomes very visible to the environment.

23

if refinement of the combined system were to follow from the refinements of the
subsystems individually.

Moreover, even contemplating the C1 and C2 combination as a refinement
of the combination of A1 and A2 raises difficulties, since the lexical scope of (7)
reaches beyond just the state variables of the abstract and concrete systems,
to include any read-only input variables and write-only output variables (via
InA1Ops,C1Ops and OutA1Ops,C1Ops respectively for A1, for example). If some of
the read-only input variables or write-only output variables of one subsystem
are identified with state variables of the other, the form of (7) itself would have
to be adapted to reflect this, depending on the context.

Further difficulties in eliciting a refinement of A1 and A2 to C1 and C2
from individual refinements of A1 to C1 and A2 to C2 come from the fact that
these individual refinements need not use (m,n) diagrams that are necessarily
congruent. Thus the ‘shape’ of the diagram used at a particular point of the
A1/C1 execution (in terms of the number of steps and their durations at the
two levels of abstraction) need not coincide with the ‘shape’ of the diagram used
at the corresponding point of the A2/C2 execution. All this notwithstanding the
fact that the two separate refinements do not have to agree about the way that
time itself progresses in their constituent models.

In the face of all the difficulties pointed out, there are two approaches that
make sense. The first approach is to leave the resolution of all the issues that
come up, case by case, to individual application developments. Most often, an
individual application will be characterised by features that reduce most of the
points raised to trivialities, and by other features that indicate the way to resolve
those that remain in ways that are relatively convincing and evident from the
structure of the application.

The second approach is to simplify matters drastically, until a point is reached
at which the difficulties pointed out are sufficiently reduced that a relatively
tractable generic formulation results. We illustrate what can be done using a
simple example of this approach.

To start with, we make a number of restrictions, and we argue for their suffi-
ciency as a scheme for combining two subsystems (having a restricted structure)
below.12 Thus let A1 be refined to C1 and A2 be refined to C2, and let us
assume the other notations introduced above. We will refer to the combination
of A1 and A2 as A, with state variables x, and the combination of C1, and C2
as C, with state variables y. The sought for refinement from A to C will be
described by a refinement relation RA,C, which we define in terms of the per
subsystem ones already introduced.

In less technical terms, what follows can be seen as the opening of the lexical
scopes of the separate name spaces of the A1 and A2 systems, and the creation
of the name space of A via their union. This allows name capture of identical
identifiers. Similarly for C1 and C2, yielding C. To then get a valid A to C
refinement requires a number of additional compatibility properties to hold, so
that the desired refinement can be proved.

24

(1) Time is deemed to progress at the same rate in all models of the construction.
(2) For simplicity, we assume that none of A1, A2, C1, C2 have any I/O.
(3) The state variables x1 of A1 partition into x11, x12. The state variables C1

y1 partition into y11, y12. The state variables x2 of A2 partition into x21,
x22. The state variables C2 y2 partition into y21, y22.

(4) The following pairs of variables are identical: x12 ≡ x21 (≡ x12); y12 ≡
y21 (≡ y12). There are no other variable clashes.

(5) The refinement relations of the A1/C1 and A2/C2 refinements decompose as
follows, being nontrivial on only the variables mentioned. RA1,C1(x1, y1) ≡
R11

A1,C1(x11, y11) ∧ R12
A1,C1(x12, y12); RA2,C2(x2, y2) ≡ R21

A2,C2(x21, y21) ∧
R22

A2,C2(x22, y22). R12
A1,C1(x12, y12) = R21

A2,C2(x21, y21) ≡ R12
A2,C2(x12, y12).

We defineRA,C(x, y) ≡ R11
A1,C1(x11, y11)∧R12

A2,C2(x12, y12)∧R22
A2,C2(x22, y22).

(6) There is a relation ρ1,2 from the (m,n) diagrams of the A1/C1 refinement
to the (m,n) diagrams of the A2/C2 refinement. It satisfies the following
conditions. (i) For every (m,n) diagram of the A1/C1 refinement featuring
a given behaviour of x12 in A1 and y12 in C1 (over the duration of the
diagram), there is a (m,n) diagram of the A2/C2 refinement featuring an
identical behaviour of x21 in A2 and y21 in C2 (over the identical duration),
and the pair of (m,n) diagrams is in ρ1,2. (ii) As for (i), but directed from
the A2/C2 refinement to the A1/C1 refinement using the converse of ρ1,2.
(iii) ρ1,2 is universal on all A1/C1 and A2/C2 (m,n) diagram pairs having
a given common x12/y12 (≡ x21/y21) behaviour.

(7) For each pair of ρ1,2-related (m,n) diagrams, we construct an (m,n) diagram
of the A/C refinement as follows. The execution fragment of A is the con-
junction of: the execution fragment of A1 on x11, the execution fragment of
A1 (or A2) on x12, and the execution fragment of A2 on x22. The execution
fragment of C is the conjunction of: the execution fragment of C1 on y11,
the execution fragment of C1 (or C2) on y12, and the execution fragment of
C2 on y22. (And the refinement relation satisfied at the beginning and end
of the constructed (m,n) diagram is RA,C.

Theorem 1. Let system A1 have refinement C1 and system A2 have refinement
C2, as described. Let systems A and C be as constructed above, and suppose
points (1)-(7) above hold. Then

1. The (m,n) diagrams constructed for A and C in (7) are valid (m,n) dia-
grams, in that the abstract and concrete execution fragments are related via
the RA,C refinement relation.

2. The collection of (m,n) diagrams for A and C thereby constructed yields a
Continuous ASM refinement from A to C.

Proof: To show claim 1., we consider a typical constructed (m,n) diagram, cre-
ated by fusing an A1/C1 (m,n) diagram with a corresponding A2/C2 (m,n)

12 In the sequel, we refer to manipulations on relations via the logical operations on the
logical definition of their bodies, for simplicity — e.g., (set theoretic) intersection of
relations (over the same signature) is expressed via conjunction.

25

diagram. The C1 execution fragment starts in a C1 state that is related by
RA1,C1 to the starting state of the A1 execution fragment. Likewise for C2 and
A2. Composing the two concrete execution fragments in parallel while fusing the
two identical behaviours of y12 and y21, yields an execution fragment of C that
starts in a state which is related by RA,C to the starting state of A, and because
the two concrete execution fragments have the same duration as a consequence
of being related by ρ1,2, they end simultaneously, in states that are RA1,C1 and
RA2,C2 related respectively to end states of the corresponding abstract execu-
tion fragments (whose identical x12 and x21 behaviours have also been fused),
reestablishing RA,C for the after-state of the constructed (m,n) diagram.

To show claim 2., we work by induction on an arbitrary execution of C. The
initial C state decomposes into a C1 initial state fused with a C2 initial state.
The combination of these is related by RA,C to an A initial state, similarly de-
composed and fused. For the inductive hypothesis we assume that the execution
of C has been simulated, using a succession of the constructed (m,n) diagrams,
reaching a concrete state y ≡ (y11, y12, y22) which is related by RA,C(x, y) to an
abstract state x ≡ (x11, x12, x2).

Consider the concrete execution continuing from y. The (y11, y12) part of the
initial portion of it is a C1 execution fragment that is simulated by an A1 exe-
cution fragment via an (m,n) diagram of the A1/C1 refinement. The y12 ≡ y12
part of the C1 execution fragment is common to the (y21, y22) part of the con-
crete execution continuing from y, i.e. common to a C2 execution fragment that
is simulated by an A2 execution fragment via an (m,n) diagram of the A2/C2
refinement. By (6).(i) and (6).(ii), we can choose the A2 execution fragment to
have the same x12 behaviour exhibited by the A1 execution fragment. Therefore,
by (6).(iii) we can fuse the two (m,n) diagrams to give an (m,n) diagram of
the A to C refinement that simulates the concrete execution continuing from y.
By (5) we easily derive that the refinement relation satisfied at the end of the
(m,n) diagram is R. ut

The preceding constitutes a basic generic result of the kind being sought.
We can imagine many variations on a result like this. For instance, we could
involve inputs and outputs. Alternatively, we could insist that some of the R
relations (and/or their I/O analogues) were functions from concrete to abstract.
As another option we could relax the independence of the various relations on
shared vs. unshared variables in various ways. And so on.

It is now evident that the all the mechanisms involved in combining the A1
to C1 refinement with the A2 to C2 refinement to get the A to C refinement
—whether as described above, or via the generalisations suggested— centre on
manipulation of the name spaces of the individual subsystems. In principle, these
act as lexical binders, fixing the meaning of each identifier within the context of
that subsystem. The objective of the manipulation is to then open these name
spaces, in order to permit name capture of the free identifiers inside, which then
become variables shared across the larger system. The ASM approach of allow-
ing an individual subsystem’s behaviour to be influenced by monitored variables
—whose updates need not be defined within the subsystem— allows each sub-

26

system to have enough available behaviours, that the behaviours required for
shared variable cooperation are available, and can be specified within a larger
system by the name capture technique.

7 Refinement and the Tennis Ball

We now expand our tennis ball example to illustrate the potential for our frame-
work to express the inclusion of design detail via refinement. However, rather
than developing a more elaborated version of the previous model —which typi-
cally would entail the introduction of copious quantities of technical detail— we
develop an abstraction of the model of Section 3, and we argue that our original
model arises as a refinement of the new one via the ASM refinement mechanism.

Thus, suppose the rally was taking place in a court surrounded by a fence
of height H. One approach to the design might be that the fence is sufficiently
high that no player can hit the ball out of the court. Of course, to enforce such
a restriction absolutely might well be too demanding in a realistic setting, but
we can pursue it in our idealised scenario anyway.

From this perspective, the only property of the ball that we need to care
about is its total energy. That determines the maximum height it can reach via
the conversion of all that energy into potential energy via the law of conservation
of energy. In fact, since the ball’s kinetic energy arises from the inner product
of the velocity vector with itself, and the vertical and horizontal components
of the velocity are orthogonal, we can identify the vertical energy (arising from
the square of the vertical component of the velocity) as a separately conserved
quantity, and it is only that energy that is available to be converted into po-
tential energy as the ball flies upwards. Therefore, aside from an abstract Init
rule, we can model the path of the ball in abstract terms using the following
abstract pliant event, in which, for clarity, the subscriptA distinguishes abstract
variables from their former (now concrete) counterparts:

FlightA
c
=

choose px′A(t), py′A(t), vx′A(t), vy′A(t) with 1
2vy
′ 2
A(t) + g pyA(t) ≤ Emax

do pxA(t), pyA(t), vxA(t), vyA(t) := px′A(t), py′A(t), vx′A(t), vy′A(t)

In FlightA, we use the direct assignment form of a pliant rule to allow the
dynamics of the abstract tennis ball to evolve arbitrarily, subject only to the
constraint that its vertical energy, 1

2vy
′ 2
A(t) + g pyA(t) remains within Emax. In

such direct assignment pliant rules, it is tacitly assumed that the behaviours of
the variables are only ever assigned to (piecewise) absolutely continuous func-
tions of time. This restriction implies that the derivatives of these functions
exist in the Carathéodory sense, and thus the semantics of such direct assign-
ment cases falls within the scope of the previously given differential equation
semantics when we interpret a direct assignment z := Θ via differentiation, i.e.,
Dz := DΘ. (We observe that if Θ has discontinuities, then these can be han-
dled via the “virtual skip” mechanism discussed earlier.) With the FlightA rule

27

in place, it is now easy to build an (m,n) diagram to show the refinement of
FlightA to some of the behaviours we discussed in the previous section.

Firstly, we model the passage of time in the same way in our two systems.
Secondly, the m of our (m,n) diagram will be 2: i.e. an execution of the ab-
stract Init rule, followed by a single execution of FlightA at the abstract level.
Thirdly, the n of our (m,n) diagram will be covered by two broad cases: it
will be 6 for the normal dynamics case discussed in Section 3; and it will be
6 + 2k (with k ≥ 1) for the “approaching Zeno” cases.

For the normal dynamics case, the sequence of 6 steps consists of Init,
Flight, Bounce, Flight, Racquet, Flight. For the “approaching Zeno”
cases, it consists of Init, Flight, then k repetitions of (Bounce, Flight), and
then Racquet, Flight. The Zeno case itself would correspond to Flight, fol-
lowed by an infinite number of repetitions of (Bounce, Flight). But we do not
regard that as a proper (m,n) diagram because of the infinite number of steps.

To qualify as ASM refinements, we need to make explicit the equivalence
R that such (m,n) diagrams preserve. For this, we observe that provided that
the parameters of the earlier model are confined (in the static algebra within
which the dynamics takes place), to values that limit the vertical energy of the
ball appropriately, then R can taken to be a partial identity relation between
abstract and concrete states, being defined as the identity on those states which
have a vertical energy that does not exceed the specified maximum. The fact
that the equivalence is preserved is proved by the observation that the concrete
dynamics permitted by the explicit model of Section 3 is simply one of the
arbitrary behaviours allowed in the abstract model (provided that the energy of
the concrete model remains suitably constrained).

8 Related Work

The framework we described above is similar to many ways of formulating hybrid
systems present in the literature. We comment on some aspects of that here. Ear-
lier work includes [4, 5, 27, 32]. Shortly after these works were published, there
appeared a spate of other papers, such as [32, 20, 21]. Much further activity
ensued, too much to be surveyed comprehensively. A large proportion of it is de-
scribed in the Hybrid Systems: Computation and Control series of international
conferences. Slightly later formulations include [33, 10, 28]. Many of these earlier
approaches, and especially the tools that support the relevant methodologies are
surveyed in [14]. A less old theoretical overview is to be found in [48].

The majority of these works take an automata-theoretic view of hybrid sys-
tems. Thus, they have named states for the discrete control, within each of which,
continuous behaviour evolves. This continues until the next preemption point ar-
rives, triggered by the guard condition of the next discrete state becoming true.
We achieve a similar effect via our mode and pliant operations. This relatively
small degree of difference is in fact reassuring, since, in attempting to describe
physical behaviour we have little leeway: the physical world is as it is and all
descriptions must conform to it.

28

From our point of view, the capabilities of most of these systems are rather
similar, except in those cases where the expressivity of the continuous part has
been deliberately curtailed in order to get greater decidability, e.g. the pioneering
[28] where continuous behaviour is linear in time. The focus on decidability is
pursued vigorously in the literature. The survey [19] is a contemporary overview
of reachability analysis of hybrid systems, and discusses many sublanguages of
the general hybrid framework, restricted so that one or other variation of the
notion of reachability is decidable for them.

The general hybrid framework is so expressive, that its undecidability is
relatively self-evident, even if attention has to be paid to the details in order
to model a two counter machine, which is the usual route to the result. The
consequence of this is that unbounded state values are needed, or the state
space will have accumulation points. While these are fine theoretically, both are
unrealistic from an engineering standpoint, since engineering state spaces have
both a finite size, and a limited accuracy.

The absence of the automata-theoretic structure in our approach simplifies
the description of systems somewhat. All aspects become expressible in a rela-
tively recognisable “program-like” syntax. The separation of discrete transitions
from continuous ones also chimes with our other goal, of developing a hybrid
formalism as a clean extension of an existing discrete formalism, syntactically
and semantically. This also allows for different kinds of mathematical reasoning,
relevant to the two worlds, to be cleanly separated on a per rule basis.

One difference between these approaches and ours, is the greater attention we
have paid to the general semantics of differential equations. Issues of noise aside,
classical physics is invariably defined in these terms, so we took that as basic.
Many of the approaches above sidestep the issue by merely positing the existence
of a continuous flow over the time interval between two discrete transitions. The
equivalent of that for us would have been to take the criteria at the end of
section 2.2 as part of our formalism’s definition, rather than as properties to be
demonstrated on the basis of that definition. We argued for the truth of these
on the basis of “off the shelf” mathematics in Section 4.

Properly controlling the continuous behaviour is just as important as prop-
erly defining the discrete, of course. Innocent looking conditions, such as merely
requiring the right hand side of a DE to be continuous (c.f. [6]), can, strictly
speaking, be unsound.13

The way to avoid problems, is to restrict the form of the allowed differential
equations to cases whose properties are known. The results surveyed in [19] give
many examples of this kind. Among these are several that incorporate the stan-
dard textbook results on linear and non-linear DEs, long included in computer
algebra systems like Mathematica [35] or Maple [34]. A more general approach
to DEs is taken in [37, 38]. In our case, we have broadened the class of allowed

13 The standard counterexample that mere continuity of the right hand side admits is
Dx = x2. This has a solution x(t) = (a− t)−1 (for some constant of integration a),
which explodes at t = a. Such counterexamples are very familiar in the differential
equations literature, typically being surveyed in the opening pages of standard texts.

29

differential equations quite a bit, to maximise expressivity, relying on the “off the
shelf” mathematics mentioned above to suply solutions, where they are avail-
able. (Of course, only a tiny fraction of the DEs that one can write down have
solutions that one can write down [39].)

9 Conclusions

In the preceding sections we first reviewed traditional discrete ASM, founding
it on a discussion of basic ASM rules, and then we embarked on an extension
that would allow a convincing description of the continuous phenomena inherent
in hybrid and cyber-physical systems. Our strategy was based on deciding on a
simple semantic domain first, centered on piecewise absolutely continuous func-
tions of time that were solutions of well posed initial value problems of ordinary
differential equations. We then arranged the syntax and its formal semantics to
map cleanly onto it. The benefits of this included the fact that the behaviour
of every variable could be fully described by a straightforward function: from a
semi-infinite or finite interval of time to its type, and satisfying the properties
mentioned. Of the many available ways of formulating continuous phenomena
within applied mathematics, this semantic domain covers the vast majority of
the problems that arise in practice, and is ultimately behind most formulations
of hybrid and cyber-physical systems, which are so intensively studied today [48,
37, 1, 36, 47, 46], [15, 55, 56, 51, 8, 53, 27].

The formal semantics was then described, in sufficient detail that a fully rigor-
ous technical definition could be elaborated from it if desired. We did not go into
the full details however, since so much of that could be straightforwardly taken
from quite standard sources. After that we considered refinement, and having
reviewed discrete ASM refinement, we formulated continuous ASM refinement
as a minimal extension of the discrete case. Our various discussions of semantics
were complemented by discussions of issues surrounding compositionality and
multi-subsystem systems, in the light of the formulation given. Accompanying
this, we gave a simple illustration of the formalism in an example involving the
flight of a tennis ball. Despite the apparent simplicity, this example nevertheless
provided an opportunity to discuss further technical issues that arise when we
model hybrid systems in a clean way, for example as Zeno effects. We illustrated
the formulation of Continuous ASM refinement by showing an abstraction, il-
lustrating how very general properties could be specified in our formalism, and
could then be refined to more specific behaviours. In future work, we intend to
use our formulation to explore larger, more complex case studies.

References

1. Summit Report: Cyber-Physical Systems (2008),
http://iccps2012.cse.wustl.edu/ doc/CPS Summit Report.pdf

2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

30

3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

4. Alur, R., Courcoubetis, C., Henzinger, T., Ho, P.H.: Hybrid Automata: An Algo-
rithmic Approach to the Specification and Verification of Hybrid Systems. In: Proc.
Workshop on Theory of Hybrid Systems. LNCS, vol. 736, pp. 209–229. Springer
(1993)

5. Alur, R., Dill, D.: A Theory of Timed Automata. Theor. Comp. Sci. 126, 183–235
(1994)

6. Back, R.J., Petre, L., Porres, I.: Continuous Action Systems as a Model for Hybrid
Systems. Nordic J. Comp. 8, 2–21 (2001), extended version of FTRTFT-00, LNCS
1926, 202-213.

7. Banach, R., Zhu, H.: Language Evolution and Healthiness for Critical Cyber-
Physical Systems. J. Soft. Evol. and Proc. 2020;e2301, 24pp. (2021)

8. Barolli, L., Takizawa, M., Hussain, F.: Special Issue on Emerging Trends in Cyber-
Physical Systems. J. Amb. Intel. Hum. Comp. 2, 249–250 (2011)

9. Beauquier, D., Slissenko, A.: On Semantics of Algorithms with Continuous Time.
Tech. Rep. TR-LACL-1997-15, LACL, University of Paris-12 (1997)

10. Bender, K. and Broy, M. and Péter, I. and Pretschner, A. and Stauner, T.: Model
Based Development of Hybrid Systems: Specification, Simulation, Test Case Gen-
eration. In: Modelling, Analysis, and Design of Hybrid Systems, vol. 279, pp. 37–51.
Springer, LNCIS (2002)

11. Börger, E.: The ASM Refinement Method. FACJ 15, 237–257 (2003)
12. Börger, E., Gurevich, Y., Rosenzweig, D.: The Bakery Algorithm: Yet another

Specification and Verification. In: Börger (ed.) Specification and Validation Meth-
ods. Oxford University Press (1995)

13. Börger, E., Stärk, R.: Abstract State Machines. A Method for High Level System
Design and Analysis. Springer (2003)

14. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and
Tools for Hybrid Systems Design. Foundations and Trends in Electronic Design
Automation 1, 1–193 (2006)

15. Clarke, E., Zuliani, P.: Statistical Model Checking for Cyber-Physical Systems. In:
Bultan, Hsiung (eds.) Proc. ATVA-11. LNCS, vol. 6996, pp. 1–12. Springer (2011)

16. Cohen, J., Slissenko, A.: Implementation of Timed Abstract State Machines with
Instantaneous Actions by Machines with Delays. Tech. Rep. TR-LACL-2008-2,
LACL, University of Paris-12 (2008)

17. Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced
Applications. Springer-Verlag UK (2001)

18. ESW: Embedded Systems Week Conferences
19. Fränzle, M. and Chen, M. and Kröger, P.: In Memory of Oded Maler: Automatic

Reachability Analysis of Hybrid-State Automata. ACM SIGLOG News 6, 19–39
(2019)

20. Friesen, V., Nordwig, A., Weber, M.: Object-Oriented Specification of Hybrid
Systems using UML, h and ZimOO. In: Proc. ZUM-98, vol. 1493, pp. 328–346.
Springer, LNCS (1998)

21. Friesen, V., Nordwig, A., Weber, M.: Toward an Object-Oriented Design Methodol-
ogy for Hybrid Systems. In: Object-Oriented Technology and Computing Systems
Re-Engineering, pp. 1–15. Elsevier (1999)

22. Geisberger, E., Broy (eds.), M.: Living in a Networked World. Integrated Research
Agenda Cyber-Physical Systems (agendaCPS) (2015), http://www.acatech.de/file
admin/user upload/Baumstruktur nach Website/Acatech/root/de/Publikationen/Pro
jektberichte/acaetch STUDIE agendaCPS eng WEB.pdf

31

23. Graf, S., Prinz, A.: A Framework for Time in FDTs. In: Proc. FORTE-04. LNCS,
vol. 1092, pp. 266–290. Springer (2004)

24. Graf, S., Prinz, A.: Time in Abstract State Machines. Fund. Inf. 77, 143–174 (2007)
25. Gratzer, G.: Universal Algebra. Springer (2008)
26. Gurevich, Y., Huggins, J.: The Railroad Crossing Problem: An Experiment with

Instantaneous Actions and Immediate Reactions. In: Proc. CSL-95. LNCS, vol.
1092, pp. 266–290. Springer (1996)

27. He, J.: From CSP to Hybrid Systems. In: Roscoe (ed.) A Classical Mind, Essays
in Honour of C.A.R. Hoare. pp. 171–189. Prentice-Hall (1994)

28. Henzinger, T.: The Theory of Hybrid Automata. In: Proc. IEEE LICS-96. pp.
278–292. IEEE (1996), Also http://mtc.epfl.ch/˜tah/Publications/the theory of hyb
rid automata.pdf

29. HSCC: Hybrid Systems: Command and Control Conferences
30. Karlsruhe Interactive Verifier: http://www.informatik.uni-augsburg.de/lehrstuehle/

swt/se/kiv/
31. Lynch, N.: Distributed Algorithms. Morgan Kaufmann (1996)
32. Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.: Hybrid I/O Automata.

Springer (1996)
33. Lynch, N., Segala, R., Vaandrager, F.a.: Hybrid I/O Automata. Information and

Computation 185, 105–157, mIT Technical Report MIT-LCS-TR-827d.
34. Maple: http://www.maplesoft.com
35. Mathematica: http://www.wolfram.com
36. National Science and Technology Council: Trustworthy Cyberspace: Strategic

Plan for the Federal Cybersecurity Research and Development Program (2011),
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed cybersecurity rd
strategic plan 2011.pdf

37. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer (2010)

38. Platzer, A.: Logical Foundations of Hybrid Systems. Springer (2018)
39. Polyanin, A., Zaitsev, V.: Handbook of Ordinary Differential Equations: Exact

Solutions, Methods, and Problems. C.R.C. Press (2018)
40. Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations.

Springer (2013)
41. Royden, H., Fitzpatrick, P.: Real Analysis. Pearson (2010)
42. Rust, H.: Hybrid Abstract State Machines: Using the Hyperreals for Describing

Continuous Changes in a Discrete Notation. Tech. Rep. Proc. ASM-00, TIK Report
87, ETH Zurich (2000)

43. Schellhorn, G.: Verification of ASM Refinements Using Generalized Forward Sim-
ulation. JUCS 7, 952–979 (2001)

44. Schellhorn, G.: ASM Refinement and Generalizations of Forward Simulation in
Data Refinement: A Comparison. Theor. Comp. Sci. 336, 403–435 (2005)

45. Slissenko, A., Vasilyev, P.: Simulation of Timed Abstract State Machines with
Predicate Logic model Checking. JUCS 14, 1984–2006 (2008)

46. Stehr, M., Kim, M., Talcott, C.: Toward Distributed Declarative Control of Net-
worked Cyber-Physical Systems. In: Yu, Liscano, Chen, Zhang, Zhou (eds.) Proc.
UIC-10. LNCS, vol. 6406, pp. 397–413. Springer (2010)

47. Sztipanovits, J.: Model Integration and Cyber Physical Systems: A Semantics
Perspective. In: Butler, Schulte (eds.) Proc. FM-11. Springer, LNCS 6664, p.1,
http://sites.lero.ie/download.aspx?f=Sztipanovits-Keynote.pdf (2011), Invited talk,
FM 2011, Limerick, Ireland

32

48. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer (2009)

49. Walter, W.: Ordinary Differential Equations. Springer (1998)
50. Wechler, W.: Universal Algebra for Computer Scientsts. Springer (1992)
51. White, J., Clarke, S., Groba, C., Dougherty, B., Thompson, C., Schmidt, D.: R&D

Challenges and Solutions for Mobile Cyber-Physical Applications and Supporting
Internet Services. J. Internet Serv. Appl. 1, 45–56 (2010)

52. Wikipedia: Absolute continuity.
53. Willems, J.: Open Dynamical Systems: Their Aims and their Origins. Ruberti Lec-

ture, Rome (2007), http://homes.esat.kuleuven.be/̃ jwillems/Lectures/2007/Ruberti
lecture.pdf

54. Woodcock, J., Davies, J.: Using Z, Specification, Refinement and Proof. Prentice
Hall (1996)

55. Zhang, L., He, J.: A Formal Framework for Aspect-Oriented Specification of Cyber
Physical Systems. In: Lee, Howard, Slezak (eds.) Proc. ICHIT-11. CCIS, vol. 206,
pp. 391–398. Springer (2011)

56. Zhlke, L., Ollinger, L.: Agile Automaton Sysytems Based on Cyber-Physical Sys-
tems and Service Oriented Architectures. In: Lee (ed.) Proc. ICAR-11. LNEE, vol.
122, pp. 567–574. Springer (2011)

A The RAQUET Rule

We recall the Racquet rule of Section 3.

Racquet =
if py > 0∧py = rpy∧px < 0∧px = rpx∧vx < 0∧vx.rvx+vy.rvy < 0 then
do
vx := −(vx−rvx)(cos2(α)+c sin2(α))+(vy−rvy)(1−c) cos(α) sin(α)+rvx,
vy := (vx−rvx)(1− c) cos(α) sin(α)− (vy−rvy)(sin2(α)+ c cos2(α))+rvy

To understand the assignments to to vx and vy in the above we use vector
notation. So let p,v, rp, rv be 2D vectors (in the plane of Fig. 1) corresponding
to our earlier quantities. Let r = [− cos(α), sin(α)] be a unit vector pointing
upwards along the line of the racquet, and let r⊥ = [sin(α), cos(α)] be a unit
vector normal to the racquet, pointing towards the net.

We make a rigid Galilean transformation into the rest frame of the racquet,
keeping the orientation of the racquet the same, but reducing its velocity to
zero. In this frame of reference, the ball approaches the racquet with velocity
v−rv. When the ball strikes the racquet, the tangential component of the ball’s
velocity remains the same, while the perpendicular component is reflected, and
is reduced by the coefficient of restitution c. Resolving the velocity into these
two components, the velocity before the collision is [(v − rv) · r, (v − rv) · r⊥],
while the velocity after the collision is [(v − rv) · r,−c(v − rv) · r⊥] = [−(vx−
rvx) cos(α) + (vy− rvy) sin(α),−c(vx− rvx) sin(α)− c(vy− rvy) cos(α)], where
in the last expression, we have evaluated the dot products in the rectiliear frame
of reference, since dot products are rotationally invariant. We can re-express this
after-velocity in the rectilinear frame by applying a rotation matrix as follows:[

cos(α) sin(α)
− sin(α) cos(α)

] [
−(vx− rvx) cos(α) + (vy − rvy) sin(α)
−c(vx− rvx) sin(α)− c(vy − rvy) cos(α)

]

33

=

−(vx− rvx) cos2(α) + (vy − rvy) cos(α) sin(α) −

c(vx− rvx) sin2(α)− c(vy − rvy) cos(α) sin(α)

(vx− rvx) cos(α) sin(α)− (vy − rvy) sin2(α) −
c(vx− rvx) cos(α) sin(α)− c(vy − rvy) cos2(α)

Now, reversing the rigid Galilean transformation, we get the assignment given
in Racquet.

34

