Landing Gear System in Hybrid Event-B — Nominal Regime: Machines and Interfaces I

Richard Banach

Received: by the Almighty / Accepted: in good faith

Abstract A digest of the machines of the Landing Gear Case Study.

Keywords Landing Gear Case Study · Hybrid Event-B

1 Guiding Principle

The most important principle is that each ‘autonomous’ part of the system, i.e. each portion capable of behaving or reacting on its own, is housed in its own machine. This is to allow each part to have its own pliant behaviour, even though in this case study, there are more or less no continuous properties mentioned in the requirements [1].

Besides that, the approach is top-down, at each stage modelling only those parts of the system that are visible at that level.

2 Notational Conventions

A brief summary of the main notational conventions used in the case study.

For ease of orientation, each figure of the development includes a summary of the constituent machines and interfaces at the current level.

Level n_\ldots is used as a prefix for names of machines and interfaces. Once introduced at level n, a machine or interface stays in the development at successive levels until refined or decomposed further.

Keywords REFINES, DECOMPOSES, REFINESandDECOMPOSES indicate that a machine has been refined from an earlier level predecessor, or decomposed from an earlier level predecessor, or that both decomposition and refinement are involved in the development step from the earlier level predecessor. The same considerations apply to individual events.

‘X’ as a suffix to an input parameter means that it is a stimulus received from the external environment, and is not synchronised with any corresponding output in the whole system model.

‘s’ as a suffix to an event name means that it is a synchronised event, which is synchronised with an event of the same name in another machine, using an input parameter in one machine and an output parameter in the other.

clk_\ldots is the name of a clock.

$s\text{ens}_\ldots$ is the name of a sensor.

3 The Actual Machines ... are below

References

MACHINE Level0_PilotAndLightsNominal
VARIABLES
 handle,
 green, orange
INVARIANTS
 handle ∈ {UP, DOWN}
 green, orange ∈ {ON, OFF}
EVENTS
 INITIALISATION
 STATUS ordinary
 BEGIN
 handle := DOWN
 green, orange := ON, OFF
 END
 PliTrue
 STATUS pliant
 COMPLY INVARIANTS
 END
 PilotGearUP
 STATUS ordinary
 ANY in?
 WHERE in? = pilotGearUP_X ∧
 handle = DOWN
 THEN
 handle := UP
 END
 PilotGearDOWN
 STATUS ordinary
 ANY in?
 WHERE in? = pilotGearDOWN_X ∧
 handle = UP
 THEN
 handle := DOWN
 END
... ...

Fig. 1 Level 0: Nominal top level mode machine for the landing gear system. System consists of:
MACHINE Level1_TopLevelNominal
REFINES Level0_PilotAndLights
VARIABLES
 handle, green, orange, gearsMoving, gearsLocked
INVARINTS
 handle ∈ {UP, DOWN}
 green, orange ∈ {ON, OFF}
 gearsMoving ∈ BOOL
 gearsLocked ∈ BOOL
 gearsMoving ↔ orange = ON
 gearsLocked ↔ green = ON
EVENTS
INITIALISATION
 STATUS ordinary
 REFINES INITIALISATION
 BEGIN
 handle := DOWN
 green, orange := ON, OFF
 gearsMoving := FALSE
 gearsLocked := TRUE
 END
PliTrue
 STATUS pliant
 REFINES PliTrue
 COMPLY INVARINTS
END
PilotGearUP
 STATUS ordinary
 REFINES PilotGearUP
 ANY in?
 WHERE in? = pilotGearUP_X ∧
 handle := DOWN
 THEN
 handle := UP
END
PilotGearDOWN
 STATUS ordinary
 REFINES PilotGearDOWN
 ANY in?
 WHERE in? = pilotGearDOWN_X ∧
 handle = UP
 THEN
 handle := DOWN
END
GearStartMoving
 STATUS ordinary
 REFINES GearStartMoving
 ANY in?
 WHERE in? = gearStartMoving_X ∧ ¬gearsMoving
 THEN
 orange := ON
 gearsMoving := TRUE
END
GearStopMoving
 STATUS ordinary
 REFINES GearStopMoving
 ANY in?
 WHERE in? = gearStopMoving_X ∧ gearsMoving
 THEN
 orange := OFF
 gearsMoving := FALSE
END
GearIsLockedDown
 STATUS ordinary
 REFINES GearIsLockedDown
 ANY in?
 WHERE in? = gearIsLockedDown_X ∧ ¬gearsLocked ∧
 THEN
 green := ON
 gearsLocked := TRUE
END
GearNotLockedDown
 STATUS ordinary
 REFINES GearNotLockedDown
 ANY in?
 WHERE in? = gearNotLockedDown_X ∧ gearsLocked
 THEN
 green := OFF
 gearsLocked := FALSE
END

Fig. 2 Level 1: Nominal top level model for the landing gear system with internal variables. System consists of:
INTERFACE Level2_Comp_IF

VARIABLES
- green, orange,
- gearsMoving, gearsLocked

INVARIANTS
- green, orange ∈ \{ON, OFF\}
- gearsMoving ∈ BOOL
- gearsLocked ∈ BOOL
- gearsMoving ⇔ orange = ON
- gearsLocked ⇔ green = ON

INITIALISATION
BEGIN
- green, orange := ON, OFF
- gearsMoving := FALSE
- gearsLocked := TRUE
END

MACHINE Level2_PilotNominal

REFINES and **DECOMPOSES** Level1_TopLevelTimingNominal

CONNECTS Level2_LightsGears_IF

VARIABLES
- handle

INVARIANTS
- handle ∈ \{UP, DOWN\}

EVENTS

INITIALISATION
BEGIN
- handle := DOWN
END

PilotGearUP
- STATUS ordinary
- DECOMPOSES PilotGearUP
- ANY in?
- WHERE in? = pilotGearUP _X ∧ handle = DOWN
- THEN
- handle := UP
END

PilotGearDOWN
- STATUS ordinary
- DECOMPOSES PilotGearDOWN
- ANY in?
- WHERE in? = pilotGearDOWN _X ∧ handle = UP
- THEN
- handle := DOWN
END

Fig. 3 Level 2: Computer interface for nominal decomposed top level nominal timing model. System consists of:

Fig. 4 Level 2: Decomposed nominal top level model: pilot machine. System consists of:
MACHINE Level2_CompNominal
REFINESandDECOMPOSES Level1_TopLevelTimingNominal
CONNECTS Level2_CompIF

VARIABLES
handlecmp

INVARIANTS
handlecmp ∈ {UP, DOWN}

EVENTS
INITIALISATION
BEGIN
handlecmp := DOWN
END
PilotGearUP
PilotGearUP_S
STATUS ordinary
REFINESandDECOMPOSES PilotGearUP
BEGIN
handlecmp := UP
END

PilotGearDOWN_S
STATUS ordinary
REFINESandDECOMPOSES PilotGearDOWN
BEGIN
handlecmp := DOWN
END

...

GearStartMoving_S
STATUS ordinary
DECOMPOSES GearStartMoving
ANY in?
WHERE in? = gearStartMoving_X ∧ ¬gearsMoving
THEN gearsMoving := TRUE
END

GearStopMoving_S
STATUS ordinary
DECOMPOSES GearStopMoving
ANY in?
WHERE in? = gearStopMoving_X ∧ gearsMoving
THEN gearsMoving := FALSE
END

GearIsLockedDown_S
STATUS ordinary
DECOMPOSES GearIsLockedDown
ANY in?
WHERE in? = gearIsLockedDown_X ∧ ¬gearsLocked
THEN gearsLocked := TRUE
END

GearNotLockedDown_S
STATUS ordinary
DECOMPOSES GearNotLockedDown
ANY in?
WHERE in? = gearNotLockedDown_X ∧ gearsLocked
THEN gearsLocked := FALSE
END

END

Fig. 5 Level 2: Decomposed nominal top level model: computing machine. System consists of:

Level2_CompIF Level2_PilotNominal Level2_CompNominal

...

Landing Gear System in Hybrid Event-B — Nominal Regime: Machines and Interfaces
INTERFACE Level3_Compl_IF
REFINES Level2_Compl_IF
VARIABLES
 handlecmp,
 green, orange,
 gearsMoving, gearsLocked
handlecmp1, handlecmp2,
gearsMoving1, gearsMoving2,
gearsLocked1, gearsLocked2
INVARIANTS
 handlecmp ∈ {UP, DOWN}
 green, orange ∈ {ON, OFF}
 gearsMoving ∈ BOOL
 gearsLocked ∈ BOOL
 handlecmp1, handlecmp2 ∈ {UP, DOWN}
 handlecmp = handlecmp1 ∧ handlecmp = handlecmp2
...
MACHINE Level3_CompNominal
REFINES Level2_CompNominal
CONNECTS Level3_CompIF
EVENTS
PilotTrue

PilotGearUP
STATUS ordinary
DECOMPOSES PilotGearUP
BEGIN
handlecmp := UP
END

PilotGearDOWN
STATUS ordinary
DECOMPOSES PilotGearDOWN
BEGIN
handlecmp := DOWN
END

GearStartMoving2
STATUS ordinary
REFINES GearStartMoving2
ANY in?
WHERE in? = gearStartMoving2 X \neg gearsMoving
THEN
gearsMoving := TRUE
gearsMoving2 := TRUE
END

GearStopMoving2
STATUS ordinary
REFINES GearStopMoving2
ANY in?
WHERE in? = gearStopMoving2 X \neg gearsMoving
THEN
gearsMoving := FALSE
gearsMoving2 := FALSE
END

Level2_PilotNominal Level3_CompIF Level3_CompNominal

Fig. 7 Level 3: This level implements the OR from the two computing machines to the abstract computing machine seen by the pilot. Refined nominal computing machines.

System consists of:

• First part.

GearsMovingIn := TRUE
GearsMoving := FALSE
Fig. 8 Level 3: This level implements the OR from the two computing machines to the abstract computing and machine seen by the pilot. Refined nominal computing machines.

System consists of:

Level2_PilotNominal Level3_CompJF Level3_CompNominal
MACHINE Level4_CompNominal
DECOMPOSES Level3_CompNominal
CONNECTS Level3_CompIF
EVENTS
PilotTrue
PilotGearUP_s
 STATUS ordinary
 DECOMPOSES PilotGearUP_s
 BEGIN
 handlecmp := UP
 END
PilotGearDOWN_s
 STATUS ordinary
 DECOMPOSES PilotGearDOWN_s
 BEGIN
 handlecmp := DOWN
 END
GearStartMoving1_s
 STATUS ordinary
 DECOMPOSES GearStartMoving1_s
 WHEN
 ¬gearsMoving
 THEN
 gearsMoving := TRUE
 END
GearStartMoving2_s
 STATUS ordinary
 DECOMPOSES GearStartMoving2_s
 WHEN
 ¬gearsMoving
 THEN
 gearsMoving := TRUE
 END
GearStopMoving1_s
 STATUS ordinary
 DECOMPOSES GearStopMoving1_s
 WHEN
 gearsMoving
 THEN
 gearsMoving := FALSE
 END
GearStopMoving2_s
 STATUS ordinary
 DECOMPOSES GearStopMoving2_s
 WHEN
 gearsMoving
 THEN
 gearsMoving := FALSE
 END

Fig. 9 Level 4: Decomposed refined nominal computing machine: Comp machine.

System consists of:

| Level2_PilotNominal | Level3_CompIF | Level4_CompNominal | Level4_Comp1Nominal | Level4_Comp2Nominal |
MACHINE Level4_Comp1Nominal
DECOMPOSES Level3_CompNominal1
CONNECTS Level3_CompNominal2

EVENTS
PilotTrue

CONNECTS PilotNominal

IF Level4_CompNominal1

DECOMPOSES GearStartMoving1S

STARTS ordinary

WHERE in? = gearStartMoving1S

THEN gearsMoving1 := TRUE

END

DECOMPOSES GearStopMoving1S

ANY in?

WHERE in? = gearStopMoving1S

THEN gearsMoving1 := FALSE

END

DECOMPOSES GearIsLockedDown1S

ANY in?

WHERE in? = gearIsLockedDown1S

THEN gearsLocked1 := TRUE

END

DECOMPOSES GearNotLockedDown1S

ANY in?

WHERE in? = gearNotLockedDown1S

THEN gearsLocked1 := FALSE

END

Fig. 10 Level 4: Decomposed refined nominal computing machine: Comp1 machine.

System consists of:
MACHINE Level4_Comp2Nominal
DECOMPOSES Level3_CompNominal
CONNECTS Level3_CompIF

EVENTS
PlicTrue
PilotGearUP_S
 STATUS ordinary
 DECOMPOSES PilotGearUP_S
 BEGIN
 handlecmp2 := UP
 END
PilotGearDOWN_S
 STATUS ordinary
 DECOMPOSES PilotGearDOWN_S
 BEGIN
 handlecmp2 := DOWN
 END
GearStartMoving_S
 STATUS ordinary
 DECOMPOSES GearStartMoving_S
 WHERE in? = gearStartMoving2_X
 THEN
 gearsMoving2 := TRUE
 END
GearStartMoving2_Second
 STATUS ordinary
 DECOMPOSES GearStartMoving2_Second
 WHERE in? = gearStartMoving2_Second_X
 THEN
 gearsMoving2 := TRUE
 END
GearStopMoving_S
 STATUS ordinary
 DECOMPOSES GearStopMoving_S
 WHERE in? = gearStopMoving2_X
 THEN
 gearsMoving2 := FALSE
 END
GearStopMoving2_Second
 STATUS ordinary
 DECOMPOSES GearStopMoving2_Second
 WHERE in? = gearStopMoving2_Second_X
 THEN
 gearsMoving2 := FALSE
 END

...

GearIsLockedDown_S
 STATUS ordinary
 DECOMPOSES GearIsLockedDown_S
 ANY in?
 WHERE in? = gearIsLockedDown2_X
 THEN
 gearsLocked2 := TRUE
 END
GearIsLockedDown2_Second
 STATUS ordinary
 DECOMPOSES GearIsLockedDown2_Second
 ANY in?
 WHERE in? = gearIsLockedDown2_Second_X
 THEN
 gearsLocked2 := TRUE
 END
GearNotLockedDown_S
 STATUS ordinary
 DECOMPOSES GearNotLockedDown_S
 ANY in?
 WHERE in? = gearNotLockedDown2_X
 THEN
 gearsLocked2 := FALSE
 END
GearNotLockedDown2_Second
 STATUS ordinary
 DECOMPOSES GearNotLockedDown2_Second
 ANY in?
 WHERE in? = gearNotLockedDown2_Second_X
 THEN
 gearsLocked2 := FALSE
 END

END

Fig. 11 Level 4: Decomposed refined nominal computing machine: Comp2 machine.

System consists of:

Level2_PilotNominal | Level3_CompIF | Level4_CompNominal | Level4_Comp1Nominal | Level4_Comp2Nominal
REST IS DONE PER GENERIC Comp MACHINE