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I. INTRODUCTION

Building large scale software with both high quality and
effectiveness is a huge challenge. Quality is meant in the sense
that the software should be robust, reliable, secure, and serve
the intended needs of users, and effectiveness is meant in the
sense that the group of people building the software should be
productive, and effective at their tasks. The process of building
large scale software contains several stages including:

• Requirements gathering: understanding what software needs
to be built and how the software is intended to interact with
its environment. The environment typically includes users,
hardware and other software.
• Design: coming up with the architecture of the software
that meets the requirements, taking into account constraints
on resources and performance.
• Implementation: coding the design in a programming lan-
guage, and fleshing out all the details, so as to conform to the
design, and satisfy all the requirements.
• Testing: checking if the software indeed satisfies require-
ments by trying it out on important scenarios, whether it
functions with expected performance, whether it is robust,
reliable and secure in terms of adversarial inputs.
• Deployment: installing the software to the users, and col-
lecting feedback on how the software works.

These stages are typically iterated in the software life cycle.
Most successful software has a long shelf-life, and is typically
modified and evolved so as to fix errors, and accommodate
changing requirements. This article surveys the state of the art
in tools and methodologies for building software, and points
out opportunities for further research.

II. STATE OF THE ART

Several people with varying backgrounds and skills need to
interact to produce useful software. Gathering of requirements
is best done by domain experts that understand the intended
use of the software. For example, insurance experts are the best
people to determine the requirements of insurance software.
Design is a black-art that is not well understood today.
People get ‘good’ at design, from the experience of repeatedly
building software. Implementation, testing and deployment are
done by programmers who typically have basic education in
computer science, or have basic education in mathematics or
science or engineering with some training in programming.
From requirements to deployment, the ‘intent’ of some domain
experts gradually gets refined to ‘working code’.

Tools for implementation and testing

Over the past decade or so, we have witnessed a revolution in
tools to improve productivity of implementation and testing.
The biggest breakthrough in this area has been the use of
static analysis. Static analysis works by examining the program
without running it, and can check if the program could ever
violate simple properties. This is fundamentally different from
running the program on a few scenarios during testing, and
ensuring that violations don’t occur during those runs. In
contrast to testing which only finds errors that ’did happen’,
static analysis finds errors that ‘could happen’. The flip side
of static analysis is that some of the errors reported by static
analysis tools might be ‘false errors’ that can never manifest in
any concrete execution of the program. Static analysis tools are
intended to augment, rather than replace, testing. These tools
do not typically ensure that the software implements intended
functionality correctly. Instead, they look for specific kinds of
error more thoroughly inside the program by analyzing how
control and data flow through the program.
Heuristic analyzers. Heuristic analyzers such as PREFix [4],
[15], PREFast [15] and Metal [10] do not attempt to cover
all paths. Further, along each path they do approximations.
However, they manage to exercise code paths that are difficult
to exercise using testing. Thus they are able to detect property
violations that remain undetected after testing. Due to their
heuristic nature, they are neither sound nor complete. They
manage false errors by using filtering mechanisms to separate
high-quality error reports, and statistical techniques to rank
error reports. However, these tools have provided impressive
utility to their users. PREFix and PREFast have been success-
ful in reporting useful errors over tens of millions of lines
of Windows code, and are now used routinely as part of
the Windows build process. Metal has similarly found useful
errors over several millions of lines of open source code.
Sound analyzers. Sound analyzers explore the property state
machine using a conservative abstraction of the program. Usu-
ally, the abstraction used is the control flow graph, augmented
with the state machine representing the property. Thus, the
analyses explores all the feasible executions of the program,
and several more infeasible executions. However the analyses
do not explore individual paths. Instead, they explore abstract
states. The complexity of the analysis is typically the product
of the number of nodes of the property state machine and the
size of the control flow graph of the program. Thus, for a
100,000 line program, and a 5-state property, the analysis can
be done in 500,000 steps which is very feasible on modern pro-



cessors. However, sound analyzers are necessarily incomplete,
and consequently report false errors. A promising technique
to reduce false errors is counterexample driven refinement
[14], [7], [2]. Here, abstract counterexamples are simulated
in the original program to check if they are true errors. If
they are not true errors, then the analysis automatically adds
more state to track in the abstraction. Counterexample driven
refinement has been used to build tools that have a very low
false error rate [2], [13], [5]. Expressive type systems have also
been used to state and check properties [9], [11]. Since types
are integrated into the programming language, the approach
has several advantages. Recent approaches allow enhanced
programmability of properties using types [6]. While type
based approaches are very natural for specifying protocols on
one object at a time, they have difficulties specifying protocols
that involve multiple objects. Abstract interpretation [8] is
a generic theory for building sound static analyzers. Tools
based on abstract interpretation have been tuned using domain
knowledge to produce very few false errors in large safety
critical software [3].

Early detection of programming errors using static analysis
has come of age in the past decade, and is widely used in
industrial practice in companies like Microsoft [15], [12], [1].

III. OPPORTUNITIES FOR IMPROVEMENT

In spite of the advancements in implementation tools, the
biggest problem in software engineering continues to be
the bridging of the ‘gap’ between the intent captured in
requirements and expressed at a high level, and the detailed
encoding of this intent in the code. There are no good tools,
either mental or mechanical, that allow comprehension of
large programs, and provide a mapping between how different
parts of the code work together to satisfy the requirements.
Thus, looking for any high-level requirements within a million
line program is analogous to running around New York City
looking for a lost cat, without a map, and without any street
signs. This problem cannot be remedied without a fundamental
change in the way software is built, and without changing our
belief about what software is.

So, what constitutes software? Today, most people would
say that software consists of code written by programmers,
and the compiled executable that runs on the hardware, and is
shipped to customers. Herein lies the problem. Software needs
to be much more than an instruction stream that communicates
with the hardware at a detailed level about what instructions to
execute. It needs to be a medium of communication between
all the different people who are using it and building it, ranging
from the users, domain experts, architects, developers and
testers. It needs to be a repository of actual requirements that
the software is intended to satisfy, high level design decisions
that have been taken about the architecture of the code, and
how different components of the software interact through
interfaces. Such information is present only in the ‘brains’ of
senior developers and architects in software companies today.
Much can be improved if this information can be represented
as higher level abstractions of the software, and if these higher

level abstractions can be maintained and kept synchronized
with code, as the code evolves.

This would require innovations in the way requirements
are specified, the ways by which architectural and design
decisions can be represented, rich description of interfaces
that convey more of the semantics of the interfaces, and tools
and technologies to tie these down to the actual code. Such
knowledge has to be imparted as part of education given
to both software practitioners and computer scientists. This
would require people with different skills, domain experts,
programmers, testers, and academic computer scientists to
communicate and work together. Most importantly, it re-
quires a fundamental change in attitude as to what constitutes
software. If that attitude is changed, we can certainly hope
that someday we will consummate David Parnas’ dream:
that software engineering becomes a true marriage between
computer science and engineering! [16].
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