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Chapter 4 Chapter 4 –– Basic Concepts in Basic Concepts in 

Number Theory and Finite Number Theory and Finite 

FieldsFields
The next morning at daybreak, Star flew indoors, seemingly keen The next morning at daybreak, Star flew indoors, seemingly keen for for 
a lesson. I said, "Tap eight." She did a brilliant exhibition, fa lesson. I said, "Tap eight." She did a brilliant exhibition, first irst 
tapping it in 4, 4, then giving me a hasty glance and doing it itapping it in 4, 4, then giving me a hasty glance and doing it in 2, 2, n 2, 2, 
2, 2, before coming for her nut.  It is astonishing that Star le2, 2, before coming for her nut.  It is astonishing that Star learned to arned to 
count up to 8 with no difficulty, and of her own accord discovercount up to 8 with no difficulty, and of her own accord discovered ed 
that each number could be given with various different divisionsthat each number could be given with various different divisions, this , this 
leaving no doubt that she was consciously thinking each number. leaving no doubt that she was consciously thinking each number. In In 
fact, she did mental arithmetic, although unable, like humans, tfact, she did mental arithmetic, although unable, like humans, to o 
name the numbers. But she learned to recognize their spoken name the numbers. But she learned to recognize their spoken 
names almost immediately and was able to remember the sounds of names almost immediately and was able to remember the sounds of 
the names. Star is unique as a wild bird, who of her own free withe names. Star is unique as a wild bird, who of her own free will ll 
pursued the science of numbers with keen interest and astonishinpursued the science of numbers with keen interest and astonishing g 
intelligence.intelligence.

—— Living with BirdsLiving with Birds, Len Howard, Len Howard

OutlineOutline

•• will consider:will consider:

–– divisibility & GCDdivisibility & GCD

–– modular arithmetic with integersmodular arithmetic with integers

–– concept of groups, rings, fieldsconcept of groups, rings, fields

–– EuclidEuclid’’s algorithm for GCD & inverses algorithm for GCD & inverse

–– finite fields finite fields GF(pGF(p))

–– polynomial arithmetic in general and in GF(2polynomial arithmetic in general and in GF(2nn) ) 

IntroductionIntroduction

•• we build up to introduction of finite fieldswe build up to introduction of finite fields

•• of increasing importance in cryptographyof increasing importance in cryptography

–– AES, Elliptic Curve, IDEA, Public KeyAES, Elliptic Curve, IDEA, Public Key

•• concern operations on concern operations on ““numbersnumbers””

–– where what constitutes a where what constitutes a ““numbernumber”” and the and the 

type of operations varies considerablytype of operations varies considerably

•• start with basic number theory conceptsstart with basic number theory concepts



DivisorsDivisors

•• say a nonsay a non--zero number zero number bb dividesdivides aa if for if for 

some some mm have have aa == m.bm.b ((a,b,ma,b,m all integers) all integers) 

•• that is that is bb divides into divides into aa with no remainder with no remainder 

•• write this write this b|ab|a

•• and say that and say that bb is a is a divisordivisor of of aa

•• eg. all of eg. all of 1,2,3,4,6,8,12,241,2,3,4,6,8,12,24 divide divide 2424

•• eg. eg. 13|18213|182 ;; ––5|305|30 ;; 17|28917|289 ;; ––3|333|33 ;; 17|017|0

Properties of DivisibilityProperties of Divisibility

•• If If a|1a|1, then , then aa == ±±11..

•• If If a|ba|b and and b|ab|a, then , then aa == ±±bb..

•• Any Any bb ≠≠ 00 divides divides 00. . 

•• If If a|ba|b and and b|cb|c, then , then a|ca|c

–– e.g. e.g. 11|6611|66 and and 66|19866|198 implies implies 11|19811|198

•• If If b|gb|g and and b|hb|h, then , then b|(mgb|(mg ++ nhnh))

(for arbitrary integers (for arbitrary integers mm and and nn))

e.g. e.g. bb == 77 ; ; gg == 1414 ; ; hh == 6363 ; ; mm == 33 ; ; nn == 22

7|147|14 and and 7|637|63, hence , hence 7|(3.147|(3.14 ++ 2.63)2.63)

Division AlgorithmDivision Algorithm

•• if divide if divide aa by by nn get integer quotient get integer quotient qq and and 

integer remainder integer remainder rr such that:such that:

–– aa == qnqn ++ rr where  where  00 <=<= rr << nn; ; qq == floorfloor(a/n(a/n))

•• remainder remainder rr often referred to as a often referred to as a residueresidue

Modular ArithmeticModular Arithmetic

•• define define modulo operationmodulo operation aa modmod nn to yield to yield 
remainder remainder bb when when aa is divided by is divided by nn

–– where integer where integer nn is called the is called the modulusmodulus

•• bb is called a is called a residueresidue of of aa modmod nn

with integers can always write: with integers can always write: aa == qnqn ++ bb

–– usually choose smallest positive remainder as residueusually choose smallest positive remainder as residue
•• ieie. . 00 <=<= bb <=<= nn--11

–– known as known as modulo reductionmodulo reduction
•• eg. eg. --1212 modmod 7 7 == --55 modmod 7 7 == 22 modmod 7 7 == 99 modmod 77

•• aa and and bb are are congruentcongruent if if aa modmod n = bn = b modmod nn

–– aa and and bb have same remainder when divided by have same remainder when divided by nn

–– eg. eg. 100100 == 3434 modmod 1111



Modular Arithmetic OperationsModular Arithmetic Operations

•• can perform arithmetic with residuescan perform arithmetic with residues

•• use a finite number of values, and loop use a finite number of values, and loop 

back from either endback from either end

ZZnn == {0,1,...,(n{0,1,...,(n –– 1)}1)}

•• modular arithmetic is doing addition and modular arithmetic is doing addition and 

multiplication and modulo reduce answermultiplication and modulo reduce answer

•• can do reduction at any point, i.e.can do reduction at any point, i.e.

aa ++ bb modmod n = [an = [a modmod n + bn + b modmod n] mod nn] mod n

Modular Arithmetic OperationsModular Arithmetic Operations

1.1.[(a mod n) + (b mod n)] mod n [(a mod n) + (b mod n)] mod n 

= (a + b) mod n  = (a + b) mod n  

2.2.[(a mod n) [(a mod n) –– (b mod n)] mod n (b mod n)] mod n 

= (a = (a –– b) mod n  b) mod n  

3.3.[(a mod n) x (b mod n)] mod n [(a mod n) x (b mod n)] mod n 

= (a x b) mod n= (a x b) mod n
e.g.e.g.

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2       (11 + 15) m[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2       (11 + 15) mod 8 = 26 mod 8 = 2od 8 = 26 mod 8 = 2

[(11 mod 8) [(11 mod 8) –– (15 mod 8)] mod 8 = (15 mod 8)] mod 8 = ––4 mod 8 = 4       (11 4 mod 8 = 4       (11 –– 15) mod 8 = 15) mod 8 = ––4 mod 8 = 4 4 mod 8 = 4 

[(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5       (11 x 15) m[(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5       (11 x 15) mod 8 = 165 mod 8 = 5od 8 = 165 mod 8 = 5

Modulo 8 AdditionModulo 8 Addition

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

Modulo 8 MultiplicationModulo 8 Multiplication

+ 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1



Modulo 8 InversesModulo 8 Inverses Modular Arithmetic PropertiesModular Arithmetic Properties

Greatest Common Divisor (GCD)Greatest Common Divisor (GCD)

•• a common problem in number theorya common problem in number theory

•• GCD(a,bGCD(a,b)) of of aa and and bb is the largest integer is the largest integer 

that divides exactly into both that divides exactly into both aa and and bb

–– egeg. . GCD(60,24)GCD(60,24) == 1212

•• define define GCD(0,0)GCD(0,0) == 00

•• often want often want no common factorsno common factors (except 1) (except 1) 

such numbers such numbers relatively prime / relatively prime / coprimecoprime

–– egeg. . GCD(8,15)GCD(8,15) == 11

–– hence 8 are 15 are relatively prime or hence 8 are 15 are relatively prime or coprimecoprime

Euclidean AlgorithmEuclidean Algorithm

•• an efficient way to find the an efficient way to find the GCD(a,bGCD(a,b))

•• uses theorem that: uses theorem that: 
–– GCD(a,bGCD(a,b) = ) = GCD(bGCD(b,, aa modmod b)b)

•• Euclidean Algorithm to compute Euclidean Algorithm to compute GCD(a,bGCD(a,b)) is: is: 
Euclid(a,bEuclid(a,b)  )  

if (bif (b == 0) then return a; 0) then return a; 

else return else return Euclid(bEuclid(b,, aa modmod b);b);



Example GCD(1970,1066)Example GCD(1970,1066)

1970 = 1 x 1066 + 904 1970 = 1 x 1066 + 904 gcd(1066, 904)gcd(1066, 904)

1066 = 1 x 904 + 162 1066 = 1 x 904 + 162 gcd(904, 162)gcd(904, 162)

904 = 5 x 162 + 94 904 = 5 x 162 + 94 gcd(162, 94)gcd(162, 94)

162 = 1 x 94 + 68 162 = 1 x 94 + 68 gcd(94, 68)gcd(94, 68)

94 = 1 x 68 + 26 94 = 1 x 68 + 26 gcd(68, 26)gcd(68, 26)

68 = 2 x 26 + 16 68 = 2 x 26 + 16 gcd(26, 16)gcd(26, 16)

26 = 1 x 16 + 10 26 = 1 x 16 + 10 gcd(16, 10)gcd(16, 10)

16 = 1 x 10 + 6 16 = 1 x 10 + 6 gcd(10, 6)gcd(10, 6)

10 = 1 x 6 + 4 10 = 1 x 6 + 4 gcd(6, 4)gcd(6, 4)

6 = 1 x 4 + 2 6 = 1 x 4 + 2 gcd(4, 2)gcd(4, 2)

4 = 2 x 2 + 0 4 = 2 x 2 + 0 gcd(2, 0)gcd(2, 0)

GCD(1160718174, 316258250)GCD(1160718174, 316258250)

DividendDividend DivisorDivisor QuotientQuotient Remainder  Remainder  

a = 1160718174a = 1160718174 b = 316258250b = 316258250 q1 = 3 q1 = 3 r1 = 211943424  r1 = 211943424  

b = 316258250b = 316258250 r1 = 211943424r1 = 211943424 q2 = 1 q2 = 1 r2 = 104314826  r2 = 104314826  

r1 = 211943424r1 = 211943424 r2 = 104314826r2 = 104314826 q3 = 2 q3 = 2 r3 = 3313772  r3 = 3313772  

r2 = 104314826r2 = 104314826 r3 = 3313772 r3 = 3313772 q4 = 31q4 = 31 r4 = 1587894  r4 = 1587894  

r3 = 3313772 r3 = 3313772 r4 = 1587894 r4 = 1587894 q5 = 2 q5 = 2 r5 = 137984   r5 = 137984   

r4 = 1587894 r4 = 1587894 r5 = 137984 r5 = 137984 q6 = 11q6 = 11 r6 = 70070  r6 = 70070  

r5 = 137984 r5 = 137984 r6 = 70070 r6 = 70070 q7 = 1 q7 = 1 r7 = 67914 r7 = 67914 

r6 = 70070 r6 = 70070 r7 = 67914 r7 = 67914 q8 = 1 q8 = 1 r8 = 2516  r8 = 2516  

r7 = 67914 r7 = 67914 r8 = 2516 r8 = 2516 q9 = 31q9 = 31 r9 = 1078  r9 = 1078  

r8 = 2516 r8 = 2516 r9 = 1078 r9 = 1078 q10 = 2q10 = 2 r10 = 0 r10 = 0 

Extended Euclidean AlgorithmExtended Euclidean Algorithm

•• get not only get not only GCDGCD but but xx and and yy such thatsuch that

axax ++ byby == dd == GCD(a,bGCD(a,b))

•• useful for later crypto computationsuseful for later crypto computations

•• follow sequence of divisions for follow sequence of divisions for GCDGCD but but 

at each step at each step ii, keep track of , keep track of xx and and yy::

rr == axax ++ byby

•• at end find at end find GCDGCD value and also value and also xx and and yy

•• if if GCD(a,bGCD(a,b)) == 11 == axax ++ byby then then 

xx is inverse of is inverse of aa modmod bb (or (or modmod yy))

Finding InversesFinding Inverses

EXTENDED EXTENDED EUCLID(mEUCLID(m, b), b)

1.1. (A1, A2, A3)=(1, 0, m); (A1, A2, A3)=(1, 0, m); 

(B1, B2, B3)=(0, 1, b)(B1, B2, B3)=(0, 1, b)

2. if 2. if B3 = 0B3 = 0

return return A3 = A3 = GCD(mGCD(m, b); no inverse, b); no inverse

3. if 3. if B3 = 1 B3 = 1 

return return B3 = B3 = GCD(mGCD(m, b); B2 = b, b); B2 = b––11 mod mmod m

4. 4. Q = A3 div B3Q = A3 div B3

5. 5. (T1, T2, T3)=(A1 (T1, T2, T3)=(A1 –– Q B1, A2 Q B1, A2 –– Q B2, A3 Q B2, A3 –– Q B3)Q B3)

6. 6. (A1, A2, A3)=(B1, B2, B3)(A1, A2, A3)=(B1, B2, B3)

7. 7. (B1, B2, B3)=(T1, T2, T3)(B1, B2, B3)=(T1, T2, T3)

8. 8. gotogoto 22



Inverse of 550 in GF(1759)Inverse of 550 in GF(1759)

Q A1 A2 A3 B1 B2 B3

— 1 0 1759 0 1 550

3 0 1 550 1 –3 109

5 1 –3 109 –5 16 5

21 –5 16 5 106 –339 4

1 106 –339 4 –111 355 1

Inverse of 550 in GF(1759)Inverse of 550 in GF(1759)

Q A1 A2 A3 B1 B2 B3

— 1 0 1759 0 1 550

3 0 1 550 1 –3 109

5 1 –3 109 –5 16 5

21 –5 16 5 106 –339 4

1 106 –339 4 –111 355 1

GroupGroup

•• a set of elements or a set of elements or ““numbersnumbers””

–– may be finite or infinitemay be finite or infinite

•• with some operation whose result is also with some operation whose result is also 
in the set (closure) in the set (closure) 

•• obeys:obeys:
–– associative law:associative law: ((a.b).ca.b).c = = a.(b.ca.(b.c))

–– has identity has identity ee:: e.ae.a = = a.ea.e = a= a

–– has inverses has inverses aa--11:: a.aa.a--11 = e= e

•• if commutative if commutative a.ba.b = = b.ab.a

–– then forms an then forms an abelianabelian groupgroup

Cyclic GroupCyclic Group

•• define define exponentiationexponentiation as repeated as repeated 

application of operatorapplication of operator

–– example:example: aa33 == a.a.aa.a.a

•• and write identity as:and write identity as: ee == aa00

•• a group is cyclic if every element a group is cyclic if every element bb is a is a 

power of some fixed element power of some fixed element aa

–– i.e. every   i.e. every   bb == aakk for some for some kk

•• aa is said to be a generator of the groupis said to be a generator of the group



RingRing

•• a set of elements or a set of elements or ““numbersnumbers””

•• with two operations (addition and multiplication) with two operations (addition and multiplication) 
which form:which form:

•• an an abelianabelian group with respect to additiongroup with respect to addition

•• and multiplication:and multiplication:
–– has closurehas closure

–– is associativeis associative
–– distributive over addition:distributive over addition: a(ba(b ++ c)c) == abab ++ acac

•• if multiplication operation is if multiplication operation is commutativecommutative, we , we 
have a have a commutative ringcommutative ring

•• if if multiplication operation has an multiplication operation has an identityidentity and and no no 
zero divisorszero divisors, it forms an , it forms an integral domainintegral domain

FieldField

•• a set of elements or a set of elements or ““numbersnumbers””

•• with two operations which form:with two operations which form:

–– abelianabelian group for addition group for addition 

–– abelianabelian group for multiplication (ignoring 0) group for multiplication (ignoring 0) 

–– ringring

•• have hierarchy with more axioms/lawshave hierarchy with more axioms/laws

–– group group →→ ring ring →→ fieldfield

Group, Ring, FieldGroup, Ring, Field Finite (Galois) FieldsFinite (Galois) Fields

•• finite fields play a key role in cryptographyfinite fields play a key role in cryptography

•• can show number of elements in a finite can show number of elements in a finite 

field field mustmust be a power of a prime be a power of a prime ppnn

•• known as Galois fieldsknown as Galois fields

•• denoted denoted GF(pGF(pnn))

•• in particular often use the fields:in particular often use the fields:

–– GF(pGF(p))

–– GF(2GF(2nn))



Galois Fields Galois Fields GF(pGF(p))

•• GF(pGF(p) is the set of integers ) is the set of integers {0,1,{0,1,……,p,p--1}1}

with arithmetic operations modulo prime with arithmetic operations modulo prime pp

•• these form a finite fieldthese form a finite field

–– 11……pp--11 coprimecoprime to to pp, so have multiplicative inv., so have multiplicative inv.

–– find inverse with Extended Euclidean algorithm find inverse with Extended Euclidean algorithm 

•• hence arithmetic is hence arithmetic is ““wellwell--behavedbehaved”” and can and can 

do addition, subtraction, multiplication, and do addition, subtraction, multiplication, and 

division without leaving the field division without leaving the field GF(pGF(p))

•• everything works as expectedeverything works as expected

GF(7) MultiplicationGF(7) Multiplication

× 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Arithmetic
in GF(7)

Polynomial ArithmeticPolynomial Arithmetic

•• can compute using polynomialscan compute using polynomials

ff((xx) = ) = aannxxnn + a+ ann--11xxnn--11 + + …… + a+ a11x + x + aa00 = = ∑∑ aaiixx
ii

•• nbnb. not interested in any specific value of x. not interested in any specific value of x

•• x is the indeterminate x is the indeterminate …… like an unspecified baselike an unspecified base

•• several alternatives availableseveral alternatives available

–– ordinary polynomial arithmeticordinary polynomial arithmetic

–– poly arithmetic with coefficients mod ppoly arithmetic with coefficients mod p

–– poly arithmetic with coefficients mod p and poly arithmetic with coefficients mod p and 

polynomials mod polynomials mod m(xm(x))



Ordinary Polynomial ArithmeticOrdinary Polynomial Arithmetic

•• add or subtract corresponding coefficientsadd or subtract corresponding coefficients

•• multiply all terms by each othermultiply all terms by each other

•• e.g. e.g. 

let let ff((xx) = ) = xx33 + + xx22 + 2 and + 2 and gg((xx) = ) = xx22 –– x x + 1+ 1

ff((xx) + ) + gg((xx) = ) = xx33 + 2+ 2xx22 –– x x + 3+ 3

ff((xx) ) –– gg((xx) = ) = xx33 + + x x + 1+ 1

ff((xx) x ) x gg((xx) = ) = xx55 + 3+ 3xx22 –– 22x x + 2+ 2

Polynomial Arithmetic with Modulo Polynomial Arithmetic with Modulo 

CoefficientsCoefficients

•• when computing value of each coefficient when computing value of each coefficient 

do the calculation modulo some valuedo the calculation modulo some value

–– forms a polynomial ringforms a polynomial ring

•• could be modulo any primecould be modulo any prime

•• but we are most interested in mod 2but we are most interested in mod 2

–– ieie all coefficients are 0 or 1all coefficients are 0 or 1

–– egeg. let . let ff((xx) = ) = xx33 + + xx22 and and gg((xx) = ) = xx22 + + x x + 1+ 1

ff((xx) + ) + gg((xx) = ) = xx33 + + x x + 1+ 1

ff((xx) x ) x gg((xx) = ) = xx55 + + xx22



Polynomial DivisionPolynomial Division

We can divide polynomials using We can divide polynomials using ‘‘long divisionlong division’’

•• can write any polynomial in the form:can write any polynomial in the form:

–– ff((xx) = ) = qq((xx) ) gg((xx) + ) + rr((xx))

–– can interpret can interpret rr((xx) ) as being a remainderas being a remainder

–– rr((xx) = ) = ff((xx) mod ) mod gg((xx))

•• if no remainder, say if no remainder, say gg((xx) divides ) divides ff((xx))

•• if if gg((xx) has no divisors other than itself and 1, say ) has no divisors other than itself and 1, say 

it is it is irreducibleirreducible (or prime) polynomial(or prime) polynomial

•• arithmetic modulo an irreducible polynomial arithmetic modulo an irreducible polynomial 

forms a fieldforms a field

Polynomial GCDPolynomial GCD

•• can find greatest common divisor for can find greatest common divisor for polyspolys

–– c(xc(x)) == GCD(GCD(a(xa(x),), b(xb(x)))) if if c(xc(x)) is the poly of is the poly of 

greatest degree which divides both greatest degree which divides both a(xa(x),), b(xb(x))

•• can adapt Euclidcan adapt Euclid’’s Algorithm to find it:s Algorithm to find it:

Euclid(Euclid(aa((xx)),, bb((xx)))  )  

if (if (bb((xx)) == 0) then return 0) then return aa((xx)); ; 

else return else return 

Euclid(Euclid(bb((xx)),, aa((xx)) modmod bb((xx))););

Modular Polynomial ArithmeticModular Polynomial Arithmetic

•• can compute in field GF(2can compute in field GF(2nn) ) 

–– elements of GF(2elements of GF(2nn) are polynomials with ) are polynomials with 
coefficients modulo 2coefficients modulo 2

–– whose degree is less than nwhose degree is less than n

–– hence must reduce modulo an irreducible poly hence must reduce modulo an irreducible poly 
of degree n (when you multiply)of degree n (when you multiply)

•• form a finite fieldform a finite field

•• can always find an inversecan always find an inverse

–– use Extend Euclid Algorithm to find inverseuse Extend Euclid Algorithm to find inverse

Computational ConsiderationsComputational Considerations

•• since coefficients are 0 or 1, can represent since coefficients are 0 or 1, can represent 
any such polynomial as a bit stringany such polynomial as a bit string

•• addition becomes XOR of these bit stringsaddition becomes XOR of these bit strings

•• multiplication is shift and XORmultiplication is shift and XOR

–– cf. long multiplicationcf. long multiplication

•• modulo reduction done by repeatedly modulo reduction done by repeatedly 
substituting highest power with remainder substituting highest power with remainder 
of irreducible poly (also shift and XOR)of irreducible poly (also shift and XOR)

•• egeg. . irreducible irreducible polypoly = = xx33 + + x x + 1 + 1 meansmeans

xx33 = = x x + 1 in the + 1 in the polynomial polynomial fieldfield



Irreducible polynomial manipulation

• Why is it that if xx33 + + x x + 1 is an + 1 is an irreducible irreducible 

polynomilalpolynomilal in GF(2in GF(2nn), then), then xx33 = = x x + 1 in + 1 in 

the the polynomial polynomial field?field?

If If xx33 + + x x + 1 is + 1 is irreducible, then irreducible, then xx33 + + x x + 1 = + 1 = 

0 in the field. 0 in the field. 

So So xx33 = = –– x x –– 1. But +1 = 1. But +1 = –– 1 in Z1 in Z22 because because 

addition/subtraction is mod 2 in Zaddition/subtraction is mod 2 in Z22. . 

So So xx33 = = x x + 1 after all.  + 1 after all.  

Computational ExampleComputational Example

•• inin GF(2GF(233)  have )  have (x(x22+1) is 101+1) is 10122 & (x& (x22+x+1) is 111+x+1) is 11122

•• so addition isso addition is
–– (x(x22+1) + (x+1) + (x22+x+1) = x +x+1) = x 

–– 101 XOR 111 = 010101 XOR 111 = 01022

•• and multiplication isand multiplication is
–– (x+1).(x(x+1).(x22+1) = x.(x+1) = x.(x22+1) + 1.(x+1) + 1.(x22+1) +1) 

= x= x33+x + x+x + x22+1 = x+1 = x33+x+x22+x+1 +x+1 

–– 011.101 = (101)<<1 XOR (101)<<0 = 011.101 = (101)<<1 XOR (101)<<0 = 

1010 XOR 0101 = 11111010 XOR 0101 = 111122

•• polynomial modulo reduction (to get polynomial modulo reduction (to get q(xq(x) & ) & r(xr(x))))
–– (x(x33+x+x22+x+1 ) mod (x+x+1 ) mod (x33+x+1) = 1.(x+x+1) = 1.(x33+x+1) + (x+x+1) + (x22) = x) = x22

–– 1111 mod 1011 = 1111 XOR 1011 = 01001111 mod 1011 = 1111 XOR 1011 = 010022

Example GF(2Example GF(233))
Arithmetic
in GF(23)



Using a GeneratorUsing a Generator

•• equivalent definition of a finite fieldequivalent definition of a finite field

•• a a generatorgenerator g is an element whose g is an element whose 
powers generate all nonpowers generate all non--zero elementszero elements

–– in F have 0, gin F have 0, g00, g, g11, , ……, g, gqq--22

•• can create generator from can create generator from rootroot of the of the 
irreducible polynomialirreducible polynomial

•• then implement multiplication by adding then implement multiplication by adding 
exponents of generatorexponents of generator

•• just a just a relabellingrelabelling of the field elements of the field elements 
(since only one field of a given size)(since only one field of a given size)


