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The next morning at daybreak, Star flew indoors, seemingly keen for
a lesson. | said, "Tap eight." She did a brilliant exhibition, first
tapping it in 4, 4, then giving me a hasty glance and doing it in 2, 2,
2, 2, before coming for her nut. It is astonishing that Star learned to
count up to 8 with no difficulty, and of her own accord discovered
that each number could be given with various different divisions, this
leaving no doubt that she was consciously thinking each number. In
fact, she did mental arithmetic, although unable, like humans, to
name the numbers. But she learned to recognize their spoken
names almost immediately and was able to remember the sounds of
the names. Star is unique as a wild bird, who of her own free will
pursued the science of numbers with keen interest and astonishing
intelligence.

— Living with Birds, Len Howard

Qutline

« will consider:
— divisibility & GCD
— modular arithmetic with integers
— concept of groups, rings, fields
— Euclid’s algorithm for GCD & inverse
— finite fields GF(p)
— polynomial arithmetic in general and in GF(2")

Introduction

we build up to introduction of finite fields
of increasing importance in cryptography
— AES, Elliptic Curve, IDEA, Public Key
concern operations on “numbers”

— where what constitutes a “number” and the
type of operations varies considerably

start with basic number theory concepts




Divisors

say a non-zero number b divides a if for
some m have a =m.b (a, b, m all integers)

that is b divides into a with no remainder
write this b | a

and say that b is a divisor of a
eg.allof1,2,3,4,6,8,12,24 divide 24
€Qg.131182; -5|30; 171289 ; -3133; 170

Properties of Divisibility

If a|1,then a=%1.

If alband b|a, then a = tb.

Any b # 0 divides 0.

Ifalbandb|c,thenalc

—e.g.11|66and 66198 implies 11198

lfblgand b|h,thenb| (mg + nh)

(for arbitrary integers m and n)
€0.b=7;g=14;h=63;,m=3;n=2
7114 and 7|163,hence 7| (3.14 + 2.63)

Division Algorithm

» if divide a by n get integer quotient g and
integer remainder r such that:
—a=qgn+r wWhere 0 <=r <n;g=floor(a/n)
« remainder r often referred to as a residue

I |
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0 15 k) 45 60 75
=2x%15 =3x15 =4x13 =5x15

(b) Example: 70 = (4=15) + 10 10

Modular Arithmetic

 define modulo operation a mod n to yield
remainder b when a is divided by n
— where integer n is called the modulus
« b is called a residue of a mod n
with integers can always write: a = gn + b
— usually choose smallest positive remainder as residue
*ie.0<=b<=n-1
— known as modulo reduction
ceg. -12mod7 = -5mod7 = 2mod 7 = 9 mod 7
+ aand b are congruent if amodn = bmodn
- a and b have same remainder when divided by n
—e0.100=34mod 11




Modular Arithmetic Operations

» can perform arithmetic with residues

« use a finite number of values, and loop
back from either end
z.=1{0,1,...,(n-1)}

« modular arithmetic is doing addition and
multiplication and modulo reduce answer

 can do reduction at any point, i.e.

Modular Arithmetic Operations

l1.[(a mod n) + (b mod n)] mod n
= (a + b) mod n

2.[(a mod n) - (b mod n)] mod n
= (a — b) mod n

3.[(a mod n) x (b mod n)] mod n

= (a x b) mod n
e.g.

[(11 mod 8) + (15mod 8)] mod 8 =10mod8=2 (11 + 15) mod 8 = 26 mod 8 = 2
@ tpmodn = famodn + bmodn] mod (1 o) x (1 mad Bl mod8 - 21 mad8 -5 (11 15) mod 8~ 163 mod 8.5
Modulo 8 Addition Modulo 8 Multiplication
+ 01234567 + 01234567
0[0|1(2(3]4(5]|6|7 0/0/0/0(0]0|0|0|O0O
1{1(2{3(4|5/6|7|0 110|1(2(3]4]|5/6|7
2121314(5/6|7|0(1 210(214(6(/0(2]|4|6
31314|5/6(7/0(1]|2 310(3|6(1(4]7|2|5
414/5(6/7(0]1/2(3 410/4(0(4|0(4/0\4
5/5|/6|/7(0(1[2|3|4 51015(2(7]4|1|6/|3
6/6|7/0(1]2|3/4|5 6/0/6/4(2/0(64(2
717(0[1(2(3|4]5/|6 710(7|6(5(4|3[2|1




Modulo 8 Inverses
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() Additive and multiplicative
inverses modulo 8

Modular Arithmetic Properties

Property Expression

{(w+x) mod i = (x+ w) mod n
Commutative laws
{(wxx)modn={x=xw)modn

[(w+x)+y]mod n=[w+(x+y)]mod n
Associative laws

[(wxx)x y]mod n=[wx(xxy)]modn

Distributive law [ [+ )] mod a =W x) = w3 y)] mod »

{0+ w) mod # = wmod »
Identities
{1 =wlmod r=wmod n

Additive inverse (—=w) For each w £ Z, . there exists & £ such that w + 2 = 0 mod n

Greatest Common Divisor (GCD)

« a common problem in number theory

« GCD (a, b) of a and b is the largest integer
that divides exactly into both a and b
—eQ.GCD(60,24) =12

» define GCD(0,0) =0

- often want no common factors (except 1)
such numbers relatively prime / coprime
—eg.GCD(8,15) =1
—hence 8 are 15 are relatively prime or coprime

Euclidean Algorithm

+ an efficient way to find the GCD(a,b)
» uses theorem that:
- GCD(a,b) = GCD(b, amod b)
» Euclidean Algorithm to compute GCD (a, b) is:
Euclid(a,b)
if (b=0) then return a;

else return Euclid (b, amodb);




Example GCD(1970,1066)

1970 = 1 x 1066 + 904
1066 = 1 x 904 + 162
904 = 5 x 162 + 94
162 = 1 x 94 + 68

94 = 1 x 68 + 26
68 = 2 x 26 + 16
26 =1 x 16 + 10
16 =1 x 10 + 6
10 =1 x 6 + 4

6 =1 x 4 + 2
4 =2 x 2+ 0

gcd (1066, 904)
gcd (9204, 162)
gcd (162, 94)
68)

(
(
(
(9
(6 )
gcd (2 16)
gcd (1 )
gcd ( )
gcd (
gcd (
(

gcd

GCD(1160718174, 316258250)

Dividend Divisor Quotient Remainder

a = 1160718174 b = 316258250 gl = 3 rl = 211943424
b = 316258250 rl = 211943424 g2 =1 r2 = 104314826
rl = 211943424 r2 = 104314826 g3 = 2 r3 = 3313772
r2 = 104314826 r3 = 3313772 q4 = 31 rd4 = 1587894
r3 = 3313772 r4 = 1587894 a5 = 2 r5 = 137984

r4 = 1587894 r5 = 137984 g6 = 11 r6 = 70070

r5 = 137984 r6 = 70070 q7 =1 r7 = 67914

r6 = 70070 r7 = 67914 g8 =1 r8 = 2516

r7 = 67914 r8 = 2516 q9 = 31 r9 = 1078

r8 = 2516 r9 = 1078 gqld = 2 rl0 =0

Extended Euclidean Algorithm

get not only GCD but x and y such that
ax + by=d=GCD(a, b)

useful for later crypto computations

follow sequence of divisions for GCD but

at each step i, keep track of x and y:
r = ax + by

at end find GCD value and also x and y
if GCD (a, b) =1 = ax + by then

x is inverse of a mod b (or mod y)

Finding Inverses

EXTENDED EUCLID(m, b)

1.

2.

w

(Al, A2, A3)=(1, 0, m);

(B1, B2, B3)=(0, 1, b)

if B3 =0

return A3 = GCD(m, b); no inverse
if B3 =1

return B3 = GCD(m, b); B2 = b'! mod m

. Q = A3 div B3

0 o U

(T1, T2,
(A1, A2,
(B1, BZ,
. goto 2

T3)=
A3)=

Al - Q BI1,
(B1, B2, B3)

A2 - Q B2, A3

B3)=(T1, T2, T3)

- Q B3)




Inverse of 550 in GF(1759)

Inverse of 550 in GF(1759)

Q Al A2 A3 B1 B2 B3 Q Al A2 A3 B1 B2 B3
— 1 0 1759 0 1 550 — 1 0 1759 O 1 550
0 1 550 1 -3 109 0 1 550% -3 109
1 -3 109 -5 16 5 1 -3 109 -5 16 5
21 -5 16 5 106 -339 4 21 -5 16 5 106 -339 4
1 106 339 4 111 355 1 1 106 -339 4  -111 1
Group Cyclic Group

a set of elements or “numbers”
—may be finite or infinite

with some operation whose result is also

in the set (closure)
obeys:

— associative law:

— has identity e:
—has inverses a™!: a.a! = e

if commutative a.b = b.a
—then forms an abelian group

(a.b).c = a.
e.a = a.e =

(
a

b.c)

 define exponentiation as repeated
application of operator
—example:

 and write identity as:

» a group is cyclic if every element b is a
power of some fixed element a
—i.e.every b =a* forsome k

« a Is said to be a generator of the group

a’=a.a.a

e =al




Ring

a set of elements or “numbers”

with two operations (addition and multiplication)
which form:

an abelian group with respect to addition

and multiplication:

— has closure

— is associative
— distributive over addition: a(b +c¢) =ab + ac

if multiplication operation is commutative, we
have a commutative ring

if multiplication operation has an identity and no
zero divisors, it forms an integral domain

Field

a set of elements or “numbers”

« with two operations which form:

— abelian group for addition

— abelian group for multiplication (ignoring 0)
—ring

have hierarchy with more axioms/laws
— group — ring — field

Group, Ring, Field

(A1} Closure under addition:
(A2) Associativity of addition:
(A3} Additive identity:

(Ad) Additive inverse:

=%
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=]
=
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g
=
=
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=
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Ring

(A5} Commutativity of addition:
(M1} Closure under multiplication:
(M2} Associativity of multiplication:
(M3) Distributive laws:

Commutative ring

Integral domain
_A_

(MS5) Multiplicative identity:

(M) Commutativity of multiplication:
(M&) Mo zero divisors:

(M7) Multiplicative inverse:

Finite (Galois) Fields

finite fields play a key role in cryptography
can show number of elements in a finite
field must be a power of a prime p"
known as Galois fields

denoted GF(p")

in particular often use the fields:
— GF(p)
— GF(2)




Galois Fields GF(p)

» GF(p) is the set of integers {0, 1, ..,p-1}
with arithmetic operations modulo prime p
* these form a finite field
- 1..p—1 coprime to p, so have multiplicative inv.
—find inverse with Extended Euclidean algorithm
* hence arithmetic is “well-behaved” and can
do addition, subtraction, multiplication, and
division without leaving the field GF(p)

- everything works as expected

GF(7) Multiplication

x0123456
0(0(0]0{0]|0(0/O0
110]1]2]|3]|4|5]6
21012]4]|6|1|3]|5
310(3({6(2|5|1|4
410/4/1/5/2/6|3
5/015|3|1]|6[4]|2
6/0/6/5|4]|3[2]|1

+ [} 1 2 3 4 5 6
i} 0 1 2 3 4 5 6 . .
IR Arithmetic
2 2 3 4 5 [ i} 1 in GF(?)
3 3 4 5 6 i} 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

(a) Addition modulo 7
® 0 1 2 3 4 5 [ W —w wl
0 0 0 i} [} [} 0 0 0 i} —
1 0 1 2 3 4 5 6 1 6 1
2 0 2 4 6 1 3 5 2 5 4
3 0 3 3 2 5 1 4 3 4 5
4 0 4 1 5 2 [ 3 4 3 2
5 0 5 3 1 6 4 2 5 2 3
6 0 6 5 4 3 2 1 6 1 6

(b} Multiplication modulo 7 () Additive and mul tipli cative
inverses modulo 7

Polynomial Arithmetic

« can compute using polynomials
fix)=a X" +a, X"+ ... +a;x+a,=2 ax
* nb. not interested in any specific value of x
« x is the indeterminate ... like an unspecified base

 several alternatives available
— ordinary polynomial arithmetic
— poly arithmetic with coefficients mod p

— poly arithmetic with coefficients mod p and
polynomials mod m(x)




Ordinary Polynomial Arithmetic

 add or subtract corresponding coefficients
« multiply all terms by each other
. e.g.

letix)=x+x+2and g(x) = x> — x + 1

iX)+9(X)=x3+2X¥ - x+3
(X)) —9g(x) =3+ x+ 1
fix) x g(xX) = X0 +3x%—-2x+ 2

el +2 el +2
+ (P-x+1) - (x2-x+ D
Paxl-x+3 x +x+1
(a) Addition (b) Subtraction
el + 2 x + 2
« (Xlox+1) .\‘3—::+1/Jr3+x2 +2
-xt-a -2x 2o x 42
Frxt and 22— 2x+ 2
X +32 -2+ 2 x
(¢) Multiplication (d) Division

Figure 4.3 Examples of Polynomial Arithmetic

Polynomial Arithmetic with Modulo
Coefficients

« when computing value of each coefficient
do the calculation modulo some value
—forms a polynomial ring

« could be modulo any prime

 but we are most interested in mod 2
—ie all coefficients are 0 or 1
—eg.letfix) =x®+ x2and g(x) = X + x + 1

fixX) + g(x) =x3+ x+ 1
f(x) x g(x) = X5 + X2

x +x8 et o +x+1 x7 +xf ity o +x+1
+(x? +x+1) — (¥ +x+1)
4 +25 42t x7 +xfeat
(a) Addition (b) Subtraction
- 5. 4.4 il
x! +X7 Ty +x+1
x (2 +x+1) ::3+x+l/x7 +xf et +x+1
x7 +28 et e +x+1 x7 +xf 4t
+F +x5 4 x50t 22+ x x +x+1
x10 + x84 x4 a6 +xte 2 +xr+1
+10 +2t +22 +1
(¢) Multiplication (d) Division

Figure 4.4 Examples of Polynomial Arithmetic over GF(2)




Polynomial Division

We can divide polynomials using ‘long division’
 can write any polynomial in the form:
— f(x) = q(x) 9(X) + r(x)
— can interpret r(x) as being a remainder
— 1(x) = f(x) mod g(x)
+ if no remainder, say g(x) divides f(x)
« if g(x) has no divisors other than itself and 1, say
it is irreducible (or prime) polynomial
« arithmetic modulo an irreducible polynomial
forms a field

Polynomial GCD

« can find greatest common divisor for polys
- c¢(x) =GCD(a(x), b(x)) if c (x) is the poly of
greatest degree which divides both a (x), b (x)
« can adapt Euclid’s Algorithm to find it:
Euclid(a(x), b(x))
if (b(x) =0) then return a(x);
else return
Euclid(b(x), a(x) mod b(x));

Modular Polynomial Arithmetic

« can compute in field GF(2")

— elements of GF(2") are polynomials with
coefficients modulo 2

—whose degree is less than n

—hence must reduce modulo an irreducible poly
of degree n (when you multiply)

« form a finite field

 can always find an inverse
— use Extend Euclid Algorithm to find inverse

Computational Considerations

« since coefficients are 0 or 1, can represent
any such polynomial as a bit string

+ addition becomes XOR of these bit strings

« multiplication is shift and XOR
— cf. long multiplication

» modulo reduction done by repeatedly
substituting highest power with remainder
of irreducible poly (also shift and XOR)

* eg. irreducible poly = x® + x + 1 means
x3 = x + 1 in the polynomial field




Irreducible polynomial manipulation

« Why is it that if X + x + 1 is an irreducible

polynomilal in GF(2"), then X3 = x + 1 in
the polynomial field?

If X3 + x+ 1isirreducible, then x® + x+ 1 =
0 in the field.

So x®=—x—-1.But+1 =-1inZ, because
addition/subtraction is mod 2 in Z,.

So x® = x + 1 after all.

Computational Example

in GF(23) have (x?+1) is 101, & (x2+x+1) is 111,
so addition is

— (X2+1) + (X2+x+1) = x

- 101 XOR 111 = 010,

and multiplication is

= (X+1).(x2+1) = x.(x2+1) + 1.(x2+1)

= X34+X + X241 = X3+ X24+x+1

— 011.101 = (101)<<1 XOR (101)<<0 =

1010 XOR 0101 = 1111,

polynomial modulo reduction (to get q(x) & r(x))
— (x3+x2+x+1 ) mod (X3+x+1) = 1.(x3+x+1) + (x2) = x2
— 1111 mod 1011 = 1111 XOR 1011 = 0100,

000
ool
(O]
011
100
101
110
111

000
ool
(O]
011
100
101
110
111

Example GF(23)

Table 4.7 Polynomial Arithmetic Modulo (x? + x + 1)

{a) Addition

00 ool 010 011 100 101 110 111
+ 0 1 x x+1 X 2+l K +x L+x+l
0 0 1 X x+1 X 2+l P +x L+x+l
1 1 0 x+1 x ! a2 Frx+l P rx
X X x+1 0 1 Pax H+x+l % 2+1
+1 x+1 X 1 0 Pax+l 2 4x P! 2
i 1 Pt P+l 0 1 x x+1
41 Pand| a2 Prx+] &by 1 0 x+1
2 x tx P+l 2 P+l x x+1 0 !
Srr+l | Prx+l Zrx P+ a2 x+1 X 1 0
(b} Multiplication
00 ool 010 011 100 1o 110 111
* 0 1 x x+1 X 2+l i+ L+x+l
0 ] 0 ] 0 ] 0 ] 0
1 4 1 * x+1 X 2+l Xrx Frx+l
X 4 £ X o x x+1 1 Frx+] 21
x+ 1 0 x+1 +x K+ 1 P ra+l it 1
a? 0 it x+1 Hrx+l P +x X A+l 1
2+1 0 Z+1 1 a2 x H+x+l x+1 P rx
A rx 0 A rx Frxl 1 24 x+ 1 X 2
e+l 0 P+l Pt x 1 P x % x+1

001
010
011
100
101
110
11

001
010
011
100
10
1o
1

R -

I T -

000 001 010 011 100 101 110 111

1] 1 2 3 4 5 6 7

1] 1 2 3 4 5 6 7 H H
N N N ER RN R Arithmetic
2 3 1] 1 6 7 4 5 in GF(23)
3 2 1 0 7 6 5 4

4 5 6 7 1] 1 2 3

5 4 7 6 1 1] 3 2

6 7 4 5 2 3 0 1

7 6 5 4 3 2 1 ]

(a) Addition

000 001 010 O11 100 101 110 111

1] 1 2 3 4 5 6 7 woo—w ow!

1] 0 1] 1] 0 1] 1] 1] 1] 0| -

1] 1 2 3 4 5 6 7 1 1 1

0 2 4 6 3 1 7 5 2 2 5

0 3 6 5 7 4 1 2 3 3 [

0 4 3 7 6 2 5 1 4 4 7

0 5 1 4 2 7 3 6 5 5 2

1] 6 7 1 5 3 2 4 6 6 3

1] 7 5 2 1 6 4 3 7 7 4

(b) Multiplication (c) Additive and mul tiplic ative
inverses




Using a Generator

« equivalent definition of a finite field

« a generator g is an element whose
powers generate all non-zero elements
—in F have 0, g% ¢', ..., 992

 can create generator from root of the
irreducible polynomial

+ then implement multiplication by adding
exponents of generator

» just a relabelling of the field elements
(since only one field of a given size)




