Cryptography and Network Security Chapter 4

Fifth Edition
by William Stallings
Lecture slides by Lawrie Brown
(with edits by RHB)

Chapter 4 - Basic Concepts in Number Theory and Finite Fields

The next morning at daybreak, Star flew indoors, seemingly keen for a lesson. I said, "Tap eight." She did a brilliant exhibition, first tapping it in 4, 4, then giving me a hasty glance and doing it in 2, 2, 2, 2, before coming for her nut. It is astonishing that Star learned to count up to 8 with no difficulty, and of her own accord discovered that each number could be given with various different divisions, this leaving no doubt that she was consciously thinking each number. In fact, she did mental arithmetic, although unable, like humans, to name the numbers. But she learned to recognize their spoken name the numbers. But she learned to recognize their spoken
names almost immediately and was able to remember the sounds of names almost immediately and was able to remember the sounds
the names. Star is unique as a wild bird, who of her own free will the names. Star is unique as a wild bird, who of her own free will
pursued the science of numbers with keen interest and astonishing intelligence.

> — Living with Birds, Len Howard

Outline

- will consider:
- divisibility \& GCD
- modular arithmetic with integers
- concept of groups, rings, fields
- Euclid's algorithm for GCD \& inverse
- finite fields GF(p)
- polynomial arithmetic in general and in $\operatorname{GF}\left(2^{n}\right)$

Introduction

- we build up to introduction of finite fields
- of increasing importance in cryptography
- AES, Elliptic Curve, IDEA, Public Key
- concern operations on "numbers"
- where what constitutes a "number" and the type of operations varies considerably
- start with basic number theory concepts

Divisors

- say a non-zero number b divides a if for some m have $a=m . b$ (a, b, m all integers)
- that is b divides into a with no remainder
- write this bla
- and say that b is a divisor of a
- eg. all of $1,2,3,4,6,8,12,24$ divide 24
- eg. 13|182; -5|30; 17|289; -3|33; 17|0

Division Algorithm

- if divide a by n get integer quotient q and integer remainder r such that:
$-\mathrm{a}=\mathrm{qn}+\mathrm{r}$ where $0<=\mathrm{r}<\mathrm{n} ; \mathrm{q}=$ floor $(\mathrm{a} / \mathrm{n})$
- remainder r often referred to as a residue

Modular Arithmetic Operations

- can perform arithmetic with residues
- use a finite number of values, and loop back from either end

$$
Z_{n}=\{0,1, \ldots,(n-1)\}
$$

- modular arithmetic is doing addition and multiplication and modulo reduce answer
- can do reduction at any point, i.e.
$a+b \bmod n=[a \bmod n+b \bmod n] \bmod n$

Modular Arithmetic Operations

```
1.[(a mod n) + (b mod n)] mod n
    =(a+b) mod n
2.[(a mod n) - (b mod n)] mod n
    =(a-b) mod n
3.[(a mod n) x (b mod n)] mod n
    =(axb) mod n
e.g.
[(11 mod 8) + (15 mod 8)] mod 8=10 mod 8=2 (11+15) mod 8=26 mod 8=2
[(11 mod 8) - (15 mod 8)] mod 8=-4 mod 8=4 (11-15) mod 8=-4 mod 8=4
[(11 mod 8) x (15 mod 8)] mod 8=21 mod 8=5 (11\times15) mod 8=165 mod 8=5
```

Modulo 8 Multiplication

| | 0 | | | | | | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 3

Modulo 8 Inverses

Modular Arithmetic Properties

w	$-w$	
0	w^{-1}	
0	0	-
1	7	1
2	6	-
3	5	3
4	4	-
5	3	5
6	2	-
7	1	7

(c) Additive and multiplicative inverses modulo 8

Property	Expression
Commutative laws	$\begin{array}{l}(w+x) \bmod n=(x+w) \bmod n \\ (w \times x) \bmod n=(x \times w) \bmod n\end{array}$
Associative laws	$[(w+x)+y] \bmod n=[w+(x+y)] \bmod n$
$[(w \times x) \times y] \bmod n=[w \times(x \times y)] \bmod n$	
\begin{array}{ll|}\hline \text { Distributive law } & {[w \times(x+y)] \bmod n=[(w \times x)+(w \times y)] \bmod n}\end{array}
$$ \quad \begin{array}{l}(0+w) \bmod n=w \bmod n

(1 \times w) \bmod n=w \bmod n\end{array}\right]\)| Identities | For each $w \in Z_{n}$, there exists a z such that $w+z=0 \bmod n$ |
| :--- | :--- |
| Additive inverse $(-w)$ | |

Greatest Common Divisor (GCD)

- a common problem in number theory
- $\operatorname{GCD}(a, b)$ of a and b is the largest integer that divides exactly into both a and b - eg. $\operatorname{GCD}(60,24)=12$
- define $\operatorname{GCD}(0,0)=0$
- often want no common factors (except 1) such numbers relatively prime / coprime
- eg. $\operatorname{GCD}(8,15)=1$
- hence 8 are 15 are relatively prime or coprime

Euclidean Algorithm

- an efficient way to find the $\operatorname{GCD}(\mathrm{a}, \mathrm{b})$
- uses theorem that:
$-\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\operatorname{GCD}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$
- Euclidean Algorithm to compute $\operatorname{GCD}(\mathrm{a}, \mathrm{b})$ is:

Euclid (a, b)
if $(b=0)$ then return a;
else return Euclid(b, a mod b);

Example GCD $(1970,1066)$

$1970=1 \times 1066+904$	$\operatorname{gcd}(1066,904)$
$1066=1 \times 904+162$	$\operatorname{gcd}(904,162)$
$904=5 \times 162+94$	$\operatorname{gcd}(162,94)$
$162=1 \times 94+68$	$\operatorname{gcd}(94,68)$
$94=1 \times 68+26$	$\operatorname{gcd}(68,26)$
$68=2 \times 26+16$	$\operatorname{gcd}(26,16)$
$26=1 \times 16+10$	$\operatorname{gcd}(16,10)$
$16=1 \times 10+6$	$\operatorname{gcd}(10,6)$
$10=1 \times 6+4$	$\operatorname{gcd}(6,4)$
$6=1 \times 4+2$	$\operatorname{gcd}(4,2)$
$4=2 \times 2+0$	$\operatorname{gcd}(2,0)$

GCD(1160718174, 316258250)

Dividend	Divisor	Quotient	Remainder
$\mathrm{a}=1160718174$	$\mathrm{~b}=316258250$	$\mathrm{q} 1=3$	$\mathrm{r} 1=211943424$
$\mathrm{~b}=316258250$	$\mathrm{r} 1=211943424$	$\mathrm{q} 2=1$	$\mathrm{r} 2=104314826$
$\mathrm{r} 1=211943424$	$\mathrm{r} 2=104314826$	$\mathrm{q} 3=2$	$\mathrm{r} 3=3313772$
$\mathrm{r} 2=104314826$	$\mathrm{r} 3=3313772$	$\mathrm{q} 4=31$	$\mathrm{r} 4=1587894$
$\mathrm{r} 3=3313772$	$\mathrm{r} 4=1587894$	$\mathrm{q} 5=2$	$\mathrm{r} 5=137984$
$\mathrm{r} 4=1587894$	$\mathrm{r} 5=137984$	$\mathrm{q} 6=11$	$\mathrm{r} 6=70070$
$\mathrm{r} 5=137984$	$\mathrm{r} 6=70070$	$\mathrm{q} 7=1$	$\mathrm{r} 7=67914$
$\mathrm{r} 6=70070$	$\mathrm{r} 7=67914$	$\mathrm{q} 8=1$	$\mathrm{r} 8=2516$
$\mathrm{r} 7=67914$	$\mathrm{r} 8=2516$	$\mathrm{q} 9=31$	$\mathrm{r} 9=1078$
$\mathrm{r} 8=2516$	$\mathrm{r} 9=1078$	$\mathrm{q} 10=2$	$\mathrm{r} 10=0$

Extended Euclidean Algorithm

- get not only GCD but x and y such that

```
ax + by = d = GCD (a,b)
```

- useful for later crypto computations
- follow sequence of divisions for GCD but at each step i, keep track of x and y :

$$
r=a x+b y
$$

- at end find GCD value and also x and y
- if $\operatorname{GCD}(a, b)=1=a x+b y$ then x is inverse of $\mathrm{a} \bmod \mathrm{b}($ or $\bmod \mathrm{y})$

Finding Inverses

EXTENDED EUCLID (m, b)

1. (A1, A2, A3) $=(1,0, \mathrm{~m})$;
$(B 1, B 2, B 3)=(0,1, b)$
2. if $\mathrm{B} 3=0$
return A3 $=\operatorname{GCD}(\mathrm{m}, \mathrm{b})$; no inverse
3. if $\mathrm{B} 3=1$
return $B 3=G C D(m, b) ; B 2=b^{-1} \bmod m$
4. $\mathrm{Q}=\mathrm{A} 3$ div B3
5. (T1, T2, T3)=(A1 - Q B1, A2 - Q B2, A3 - Q B3)
6. (A1, A2, A3) $=(\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3)$
7. (B1, B2, B3) $=(\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3)$
8. goto 2

Inverse of 550 in GF(1759)

\mathbf{Q}	A1	A2	A3	B1	B2	B3
-	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1

Group

- a set of elements or "numbers"
- may be finite or infinite
- with some operation whose result is also in the set (closure)
- obeys:
- associative law: (a.b).c = a.(b.c)
- has identity e: e.a = a.e = a
-has inverses $\mathrm{a}^{-1}: ~ a \cdot a^{-1}=e$
- if commutative $a \cdot b=b \cdot a$
- then forms an abelian group

Inverse of 550 in GF(1759)

Q	A1	A2	A3	B1	B2	B3
-	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1

Cyclic Group

- define exponentiation as repeated application of operator
- example: $\quad a^{3}=a \cdot a \cdot a$
- and write identity as: $\quad e=a^{0}$
- a group is cyclic if every element b is a power of some fixed element a
- i.e. every $b=a^{k}$ for some k
- a is said to be a generator of the group

Ring

- a set of elements or "numbers"
- with two operations (addition and multiplication) which form:
- an abelian group with respect to addition
- and multiplication:
- has closure
- is associative
- distributive over addition: $a(b+c)=a b+a c$
- if multiplication operation is commutative, we have a commutative ring
- if multiplication operation has an identity and no zero divisors, it forms an integral domain

Field

- a set of elements or "numbers"
- with two operations which form:
- abelian group for addition
- abelian group for multiplication (ignoring 0)
- ring
- have hierarchy with more axioms/laws
- group \rightarrow ring \rightarrow field

Group, Ring, Field

Finite (Galois) Fields

- finite fields play a key role in cryptography
- can show number of elements in a finite field must be a power of a prime p^{n}
- known as Galois fields
- denoted GF(pn)
- in particular often use the fields:
- GF(p)
- GF(2 $2^{\text {n }}$

Galois Fields GF(p)

- $\operatorname{GF}(p)$ is the set of integers $\{0,1, \ldots, p-1\}$ with arithmetic operations modulo prime p
- these form a finite field
- 1...p-1 coprime to p, so have multiplicative inv. - find inverse with Extended Euclidean algorithm
- hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)
- everything works as expected

GF(7) Multiplication

(a) Addition modulo 7

(b) Multiplication modulo 7

Arithmetic in $G F(7)$

Polynomial Arithmetic

- can compute using polynomials
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=\sum a_{i} x^{i}$
- nb. not interested in any specific value of x
- x is the indeterminate ... like an unspecified base
- several alternatives available
- ordinary polynomial arithmetic
- poly arithmetic with coefficients mod p
- poly arithmetic with coefficients mod p and polynomials $\bmod m(x)$

Ordinary Polynomial Arithmetic

- add or subtract corresponding coefficients
- multiply all terms by each other
- e.g.
let $f(x)=x^{3}+x^{2}+2$ and $g(x)=x^{2}-x+1$
$f(x)+g(x)=x^{3}+2 x^{2}-x+3$
$f(x)-g(x)=x^{3}+x+1$
$f(x) \times g(x)=x^{5}+3 x^{2}-2 x+2$

$$
\begin{gathered}
x^{3}+x^{2}+2 \\
+\left(x^{2}-x+1\right) \\
\hline x^{3}+2 x^{2}-x+3 \\
\text { (a) Addition }
\end{gathered}
$$

(c) Multiplication

$x^{3}+x^{2}+2$
$-\quad\left(x^{2}-x+1\right)$
$x^{3}+x+1$

(b) Subtraction

(d) Division

Figure 4.3 Examples of Polynomial Arithmetic

Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient do the calculation modulo some value - forms a polynomial ring
- could be modulo any prime
- but we are most interested in mod 2
- ie all coefficients are 0 or 1
- eg. let $f(x)=x^{3}+x^{2}$ and $g(x)=x^{2}+x+1$

$$
\begin{aligned}
& f(x)+g(x)=x^{3}+x+1 \\
& f(x) \times g(x)=x^{5}+x^{2}
\end{aligned}
$$

Polynomial Division

We can divide polynomials using 'long division'

- can write any polynomial in the form:
$-f(x)=q(x) g(x)+r(x)$
- can interpret $r(x)$ as being a remainder
$-r(x)=f(x) \bmod g(x)$
- if no remainder, say $g(x)$ divides $f(x)$
- if $g(x)$ has no divisors other than itself and 1 , say it is irreducible (or prime) polynomial
- arithmetic modulo an irreducible polynomial forms a field

Polynomial GCD

- can find greatest common divisor for polys
- $c(x)=\operatorname{GCD}(a(x), b(x))$ if $c(x)$ is the poly of greatest degree which divides both $a(x), b(x)$
- can adapt Euclid's Algorithm to find it:

```
Euclid(a(x), b(x))
    if (b(x) =0) then return a(x);
    else return
```

Euclid(b(x), $a(x) \bmod b(x))$;

Modular Polynomial Arithmetic

- can compute in field GF(2^{n})
- elements of $\operatorname{GF}\left(2^{n}\right)$ are polynomials with coefficients modulo 2
- whose degree is less than n
- hence must reduce modulo an irreducible poly of degree n (when you multiply)
- form a finite field
- can always find an inverse
- use Extend Euclid Algorithm to find inverse

Computational Considerations

- since coefficients are 0 or 1 , can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift and XOR - cf. long multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift and XOR)
- eg. irreducible poly $=x^{3}+x+1$ means $x^{3}=x+1$ in the polynomial field

Irreducible polynomial manipulation

- Why is it that if $x^{3}+x+1$ is an irreducible polynomilal in $\mathrm{GF}\left(2^{\mathrm{n}}\right)$, then $x^{3}=x+1$ in the polynomial field?
If $x^{3}+x+1$ is irreducible, then $x^{3}+x+1=$ 0 in the field.
So $x^{3}=-x-1$. But $+1=-1$ in Z_{2} because addition/subtraction is $\bmod 2$ in Z_{2}. So $x^{3}=x+1$ after all.

Computational Example

- in $\operatorname{GF}\left(2^{3}\right)$ have $\left(x^{2}+1\right)$ is $101_{2} \&\left(x^{2}+x+1\right)$ is 111_{2}
- so addition is

$$
-\left(x^{2}+1\right)+\left(x^{2}+x+1\right)=x
$$

-101 XOR $111=010_{2}$

- and multiplication is
$-(x+1) \cdot\left(x^{2}+1\right)=x \cdot\left(x^{2}+1\right)+1 \cdot\left(x^{2}+1\right)$

$$
=x^{3}+x+x^{2}+1=x^{3}+x^{2}+x+1
$$

- $011.101=(101) \ll 1$ XOR $(101) \ll 0=$

$$
1010 \text { XOR } 0101=1111_{2}
$$

- polynomial modulo reduction (to get $q(x) \& r(x)$)
$-\left(x^{3}+x^{2}+x+1\right) \bmod \left(x^{3}+x+1\right)=1 .\left(x^{3}+x+1\right)+\left(x^{2}\right)=x^{2}$
$-1111 \bmod 1011=1111$ XOR $1011=0100_{2}$

Example GF(2^{3})

(a) Addition

(b) Multiplication
(c) Additive and multiplicative
inverses

Using a Generator

- equivalent definition of a finite field
- a generator g is an element whose powers generate all non-zero elements - in F have $0, g^{0}, g^{1}, \ldots, g^{q-2}$
- can create generator from root of the irreducible polynomial
- then implement multiplication by adding exponents of generator
- just a relabelling of the field elements (since only one field of a given size)

